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Evolving Intelligent Systems: Methods, Learning, & Applications

Nikola Kasabov, Dimitar Filev

Abstract—The basic concept, formulation, background, and a
panoramic view over the recent research results and open
problems in the newly emerging area of Evolving Intelligent
Systems are summarized in this short communication. Intelligent
systems can be defined as systems that incorporate some form of
reasoning that is typical for humans. Fuzzy Systems are well
known for being able to formalize human knowledge that still
separates humans from machines. Artificial Neural Networks
have proven to be a useful form of parallel processing of
information that employs principles from the organization of the
brain. Finally, the evolution is a phenomenon that was initially
used to solve optimization problems inspired by the progress in
Genetic Algorithms, Evolutionary Computing, and Genetic
Programming. These types of evolutionary algorithms are
mimicking the natural selection that takes place in populations of
living creatures over generations. More recently, the evolution
of individual systems within their life-span (self-organization,
learning through experience, and self-developing) has attracted
attention. These systems called ‘evolving’ came as a result of the
research on practical intelligent systems and on-line learning
algorithms that are capable of extracting knowledge from data
and performing a higher level adaptation of model structure as
well as model parameters. Evolving systems can also be
considered an extension of the multi-model concept known from
the control theory, and of the on-line identification of fuzzy
rule-based models. They can also be regarded as an extension of
the methods for on-line learning neural networks with flexible
structure that can grow and shrink. This new concept of evolving
intelligent systems can also be treated in the framework of
knowledge and data integration. Evolutionary, population /
generation based computation, can be applied to optimize
parameters and features of an individual system, that learns
incrementally from incoming data. The specifics of this paper
lays in the generalization of the recent advances in the
development of evolving fuzzy and neuro-fuzzy models and the
more analytical angle of consideration through the prism of
knowledge evolution as opposed to the wusually used
data-centered approach. This powerful new concept has been
recently introduced by the authors in a series of parallel works
and is still under intensive development. It forms the conceptual
basis for the development of the truly intelligent systems. A
number of applications of this technique to a range of industrial
and benchmark processes have been recently reported. Due to
the lack of space only some of them will be mentioned primarily
with illustrative purpose.
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I INTRODUCTION

T is widely accepted that systems that are capable of
Idecision making and reasoning, that posses knowledge, are

regarded as ‘intelligent’ [1, 9]. Currently, it is recognized
that the techniques that contribute to increase of the “‘machine
intelligence quotient’ [3] of a system are primarily fuzzy logic,
artificial neural networks, machine learning and evolutionary
algorithms [2-8]. The rationale behind the intelligent label of
those methods is their ability to represent and deal with
knowledge. These branches form the triad of the so called
computational intelligence.

The problem of adaptivity of intelligent systems and their
use in on-line mode for real-time applications in industry,
defense, advanced technology, biology and medicine has
attracted research attention recently. This led during the last
few years to the formation of the area of evolving intelligent
systems.

We use further the term evolving intelligent systems to
portray the phenomenon of gradual development of the system
structure (rule-base or the architecture of the neural network
that represents this system) and their parameters. While
conventional adaptive techniques [43] are suitable to
represent objects with slowly changing parameters, they can
hardly handle complex systems with multiple operating modes
or abruptly changing characteristics since it takes a long time
after every drastic change in the system to relearn model
parameters. The evolving systems paradigm is based on the
concept of evolving (expanding or shrinking) model structure
that is capable of adjusting to the changes in the objects that
cannot solely be represented by parameter adaptation.

Fuzzy systems and their multiple neuro-fuzzy
interpretations provide the natural foundation for the evolving
systems. This can be understood from the dual role played by
the fuzzy rule-based models. From a data-geometric
perspective, the rules are representations of multiple clusters
(bundles, granules) of input-output data that correspond to
different system modes, operating regimes, physiological
states and behaviors. The clusters define a decomposition of
the input-output data space. From a systems perspective, the
rules encompass a multiple model interpretation. Multiple
rules with fuzzy predicates and crisp / fuzzy consequents
along with radial basis neural networks define collections of
multiple models that are represented by multiple focal
(generalized) data kernels in the input-output space. Multiple
rules with fuzzy predicates and functional (linear / nonlinear)
consequents define collections of multiple linear / nonlinear
models. The multiple model interpretation enables complex
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system decomposition. The reasoning mechanism applied to
the fuzzy rule-based models essentially provides a
knowledge-driven, condition-based aggregation operator
combining the models in a system in flexible manner that
corresponds to the current data structures. Since the data
streams are often non-stationary or they are driven by different
operating conditions and modes, it is logical to assume the
structure of the data to also be dynamic, that is, to evolve.
New input-output data formations are identified by new
clusters and are associated with new rules. Evolving data
streams drive the creation of new clusters. The new clusters
generate new rules and evolve the structure of the system.
Fuzzy rule base models and radial basis networks are hardly
the only structures that can blend the data-geometric and
multiple model interpretations. A similar concept was
explored and developed through the works Rajbman and his
colleagues [67].
decompose the state space of a dynamic system into disjunct
regions by using pattern recognitions methods and identify the
system dynamics of these regions with multiple (generally)

The notion of this approach was to

nonlinear models each with its own specific structure and
parameters. Other disjunct multiple model representations for
indirect adaptive control were proposed by Narendra and his
co-workers [68-70]. In the realistic situations, however, such
disjoint (crisp) decomposition might be hard to accomplish
due to the inherent lack of natural region boundaries in the
system. The fuzzy model allows one to replace the crisp
decomposition by a fuzzy decomposition, and to replace the
crisp switching between the models by an interpolative
reasoning mechanism [29].

The evolving concept closely relates to the process of
identifying new rules from data. The flexibility of the
structures presented by the fuzzy and neural models (exhibited
in their proven role of universal approximators) and their
natural ability for information granulation constitute the basic
characteristic features of the evolving systems. An evolving
intelligent system continuously collects new data and attempts
to integrate this data with the existing clusters and
corresponding models. If'this is possible, i.e. if the new data is
compatible with the existing clusters / model structure it uses
the new data parameter adaptation. In the opposite case it
updates the structure by creating new rules and models.
Therefore, it develops its structure and parameters
continuously, always adapting and modifying its knowledge
contents.

During last several years there are increasing number of
publications that treat the theoretical development and
applications in evolving systems in both fuzzy systems and
neural networks domains [17-25, 31, 34-35, 44-66]. The 2006
International Symposium on Evolving Fuzzy Systems is
recognition of the growing importance of this area brought
together more than sixty high quality contributions [32].

The remainder of the paper is organized as follows. Section
IT outlines the main contributions and directions in the
Evolving Connectionist Systems (ECOS) approach. Section

IIT summarizes the Evolving Fuzzy Systems (EFS)
methodology for system representation and learning. Section
IV discusses some of the main evolving systems applications
in industry, medicine, bioinformatics, neuroinformatics, and
business. Section V concludes the paper.

II. EVOLVING CONNECTIONIST SYSTEMS (ECOS)

A. General Principles of ECOS

Evolving connectionist systems (ECOS) are modular
connectionist-based systems that evolve their structure and
functionality in a continuous, self-organised, on-line, adaptive,
interactive way from incoming information. They can process
both data and knowledge in a supervised and/or unsupervised
way [10,11].

ECOS learn local models from data through clustering of
the data and associating a local output function for each
cluster. Clusters of data are created based on similarity
between data samples either in the input space (this is the case
in some of the ECOS models, e.g. the dynamic neuro-fuzzy
inference system DENFIS [25]), or in both the input space and
the output space (this is the case in the EFulNN models [10]).
Samples that have a distance to an existing cluster center (rule
node) N of less than a threshold Rmax (for the EfuNN models
it is also needed that the output vectors of these samples are
different from the output value of this cluster center in not
more than an error tolerance E) are allocated to the same
cluster Nc. Samples that do not fit into existing clusters, form
new clusters as they arrive in time. Cluster centers are
continuously adjusted according to new data samples, and
new clusters are created incrementally.

The similarity between a sample S' = (x,y) and an existing
rule node N = (W, W,) can be measured in different ways, the
most popular of them being the normalized FEuclidean
distance:

ASN) = [Z 41y (6= W) ]/, D

where n is the number of the input variables.

ECOS learn from data and automatically create or update a
local output function for each cluster, the function being
represented in the /¥, connection weights, thus creating local
models. Fach model is represented as a local rule with an
antecedent — the cluster area, and a consequent — the output
function applied to data in this cluster, e.g.:

IF (data is in cluster N¢) THEN (the output is calculated with
a function Fc) )
Implementations of the FECOS framework require
connectionist structures that support these principles. One
implementation of ECOS is the evolving fuzzy neural network

(EFuNN).

B. Evolving Fuzzy Neural Network EFuNN

A general EFulNN architecture has 5 feed-forward layers and a
feedback layer of neurons, but the second and the fourth fuzzy
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representation layers and also - the feedback layer, are
optional — Fig. 1. The third layer contains rule nodes that
evolve through supervised / unsupervised learning. The rule
nodes represent prototypes of input-output data associations.
Each rule node r is defined by two vectors of connection
weights, W;(r) and W,(r), the latter being adjusted through
supervised learning based on the output error, and the former
being adjusted through unsupervised learning based on a
similarity measure within a local area of the problem space.
The fourth layer of neurons represents fuzzy quantization for
the output variables, similar to the input fuzzy neurons
representation. The fifth layer represents the real values for
the output variables.

Fuzzy outputs
W2

Rule (case)
layer

Fuzzy input
layer

Figure 1 An EFuNN architecture with a short term memory and feedback
connections (adapted from [10, 11, 46])

The evolving process can be based on either of the two
assumptions: (1) rule nodes exist prior to learning and only
connections are created during learning; (2) all nodes are
created during the evolving process.

Each rule node (e.g., r;) represents an association between
a hyper-sphere from the fuzzy input space and a hyper-sphere
from the fuzzy output space, the W,;(r;) connection weights
representing the co-ordinates of the centre of the sphere in the
fuzzy input space, and the JW;(r;) — the co-ordinates in the
fuzzy output space. The radius of an input hyper-sphere of a
rule node is defined as (1 — Sthr), where Sthr is the sensitivity
threshold parameter defining the minimum activation of a rule
node (e.g., r;) to an input vector (e.g., (Xd,, Yd,)) in order for
the new input vector to be associated to this rule node.

Through the process of associating (learning) a new data
vector Xd to a rule node, the centre of this node hyper-sphere
is adjusted in the fuzzy input space depending on a learning
rate Ir; and in the fuzzy output space depending on a learning
rate Ir,. The adjustment of the centre ;! to its new position i
can be represented mathematically by the change in the

connection weights of the rule node r; from Wl(rll) and W;(rll)

to Wy(r;) and W,(r;") as it is presented in the following vector
operations:

Wi(r?) = Wir,") + Ir;* Ds(Xd, Wi(r,")) €)

Wir?) = Walr,) + Iro* Err(Yd, Yd") * A,(ri) )

where: Err(Yd, Yd") = Ds(Yd, Yd’) is the distance between the
desired and the obtained in the system output vectors in the
output space; A I(rll) is the activation of the rule node r,’ for
the input vector Xd.

While the connection weights from W, and W, capture
spatial characteristics of the learned data (centers of
hyper-spheres), the temporal layer of connection weights
from Fig. 1 captures temporal dependences between
consecutive data examples. If the winning rule node at the
moment (f— 1) (to which the input data vector at the moment (¢
— 1) was associated), was r; = inda;(t — 1), and the winning
node at the moment ¢ is r, = inda,(f), then a connection
between the two nodes is established as follows:

Wirs, 1) =W ar )™ +lrs* A(r)P * 4,)? ©)

where: 4,(”)® denotes the activation of a rule node r at a time
moment (7); Ir; defines the degree to which the EFuNN
associates links between rules (clusters, prototypes) that
include consecutive data examples (if /r; = 0, no temporal
associations are learned in an EFuNN).

The following is a new learning rule that takes into account
both spatial similarity and temporal correlation) through
introducing two parameters Ss and 7¢ , such that the activation
of a rule node r for a new data example d,,,, is defined as the
following vector operation:

A1) = FSSEDV 1 (1) e )T W30, 1) ©)

where: f1s the activation function of the rule node r; D(W1(r),
d,.e) 18 the normalized fuzzy distance between the new input
vector and the W1(r) representing the spatial component; 7"
1s the winning neuron at time moment (¢ — 1). The second term
in equation (16) represents the temporal component.

An EFuNN functional implementation can include pruning
nodes and aggregating nodes [10,11]. An example of a
pruning rule is:

IF (a rule node r; is OLD) AND (average activation
A1) is LOW) AND (the density of the neighbouring area of
neurons is HIGH or MODERATE THEN the probability of
pruning node (r,) is HIGH.

Nodes can also be aggregated [10,11].

C. Dynamic Evolving Neuro-Fuzzy Inference Systems
(DENFIS) [25]

While EFuNN is a fuzzy neural network that evolves
incrementally its structure and functionality using supervised
clustering, DENFIS is a dynamic fuzzy inference system that
incrementally creates Takagi-Sugeno fuzzy rules to
accommodate data in unsupervised learned clusters. New
fuzzy rules are created and updated during the operation of the
system. At each time moment the output of DENFIS is
calculated through a fuzzy inference system based on m-most
activated fuzzy rules which are dynamically selected from the
existing fuzzy rule set. As the knowledge, fuzzy rules can be
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mserted into DENFIS before, or during its learning process
and, they can also be extracted during the learning process or

after it. The fuzzy rules used in DENFIS are indicated as
follows:
Ry ifx;isF;;and x,is Fypand ... and xp1s Fyp,

then y; = b+ bpx; +hpx, +... +bpxp )
where “x;isF;”, [=1,2,...m,j=1,2, ... P,are M x P fuzzy
propositions that form m antecedents for m fuzzy rules
respectively; x, j = 1, 2, ..., P, are antecedent variables
defined over universes of discourse X, j= 1,2, ..., P,and Fy, [
=1,2,... M;j=1,2, .., P are fuzzy sets defined by their
fuzzy membership functions pg; X; — [0, 1],/=1,2, ... M;j
=1,2, ..., P. In the consequent parts of fuzzy rules, y;, /=1,
2, ... m, are the consequent variables defined by linear
functions.

In DENFIS, F; are defined by a Gaussian membership
function. All fuzzy rules in DENFIS are created and updated
during a possible ‘one-pass’ training process by applying the
Evolving Clustering Method (ECM) and the Weighted
Recursive Least Square Estimator with Forgetting Factors
(WRLSE) [25].

The ECOS models have the following advantages: (1)
incremental, fast learning (possibly ‘one pass’); (2) on-line
adaptation; (3) ‘open’ structure; (4) allowing for time and
space representation based on biological plausibility; (5) rule
extraction and rule insertion; (6) data and knowledge
integration (as discussed below).

D. Integrating Knowledge (Old Models) and Data in ECOS

As the eCI, and ECOS in particular, are adaptive,
knowledge-based systems, they can accommodate both
existing knowledge on the problem (e.g. formulas, models)
and new data, allowing for incremental adaptation of the
system’s rule representation.

In many domain areas, such as medical decision support,
there are existing regression formulas and new data is
accumulating in time, making the integration of both an
important issue for a better decision support.

In [46,47] ECOS are used to accommodate regression
formulas and new data in the following away. The formula is
first used to generate “historical” data. This data is used to
train an ECOS as an initial knowledge representation
architecture. Then the ECOS system is further trained
(adapted) on the new data.

In [48] a novel method of “Integrated kernel-regression
knowledge-based neural networks” is presented for the
integration of several, used in practice, regression formulas
and new data into one system. The method optimizes the size
of the clusters of the data using different kernels, and for each
cluster — a suitable type of regression is chosen and the
parameters are adapted on the data:

y(x) = Gi(x) Fi(x) + Gox) Fo)+ .. + Gu(x) Fax) - (8)

where, x = [x1, x2, ..., xp[ 1s the input vector; y is the output
vector; G, are kernel functions; and F,are regression formulas,
1=1,2,... M.

E. Incremental parameter and feature oprimisation using G4,
incremental PCA and LDA
An ECOS evolves its structure and functionality in time from
incoming data, for which the dynamics may not be known in
advance. That requires an incremental (possibly - on-line)
parameter and feature optimization. One way to optimize
these parameters and obtain an optimal for the time moment
model according to certain criteria (e.g. classification
accuracy) is through evolutionary computation, e.g. GA [7].
GA optimization can be applied on a population of individual
models that are trained and tested on consecutive chunks of
data, so that at any time of the operation of the ECOS the best
model (e.g. the model with the highest accuracy/ fitness) is
selected. A methodology and examples are given in [55, 59].
In Fig. 2 a simple ECOS model, called ECF, is optimized
with the use of GA. ECF is characterized by 4 parameters
(maximum field radius Rmax, minimum field radius Rmin,
number of nodes m to use for a new vector, number of
membership functions, epochs to train) and initial 12 input
features describing the outcome of DLBCL cancer of 56
patients [40] is optimized as shown in fig. 2.

-) Siftware - Genetic Algorithm For Offline ECF Optimisation
Fie Help

Data
I Muliple Files.  Training Data [LymphiPI1 12565, v |

Testing Dete [ mphipt1 156t <.

[ Singl Fie [LymphlPI11g58s v

Hetdnatorvariog | 70

T

2 4 6 8 10 12

Status:
No Netwark Loaded

Start

I Apply pres wmber of genes

Figure 2 Using GA for parameter and feature optimization of a simple ECOS
— ECF (experiments are done in a software environment NeuCom —
www.theneucom.com)

The variables are a clinical variable (IPI index) and 11 genes
selected in for the prognosis of DLBCL cancer outcome. In
the experiment shown in Fig. 2 both the ECF parameters and
features are optimised with the use of a GA which ran over 20
generations. At each generation, there are 20 ECF models in a
population, having different parameter values and feature sets,
and a fitness criteria of overall highest accuracy for the
smallest number of features is used. The optimal ECF
parameters are given in the figure and the best model has an
overall accuracy of 90.66%, which is higher than any of the
non-optimised models. The optimal values of all the ECF
parameters and also the used variables (variables 5,8 and 12
are not included) are shown in the figure.
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In some cases, PCA or LDA transformations need to be
performed on the input feature set to obtain a more compact
input vectors and to improve the accuracy of the model.
Incremental PCA and incremental LDA methods are
presented in [49,54]. After features are selected in an
incremental way, the ECOS if adapted to these features.

F. A Framework of Multimodel ECOS

So far, this paper described some methods for building
adaptive, evolving, knowledge based models from data. eCI
may require several evolving models. Fig. 3 presents a
framework of eClI, that consists of several parts: several
e-models (EM), higher level decision part, adaptation part,
featiure selection part where new features may be added in
time, knowledge (rules) extraction part; interaction with
environment and an output module [11].

O :P Y 1| [Level
Inputs O o i| | Decis.
° » EM Fity
=» R Ik ==z == P H q
" A Results
—"._. n
New i ::
Inputs ™
A\ 4
Knowl.
extractr t
on

Figure 3. A general framework for an e-intelligent system (eCI)

III. EVOLVING Fuzzy SYSTEMS (EFS)

A. EFS Structure

Evolving fuzzy systems are families of rules with fuzzy
antecedents and generic consequents:
IF x; is close to xli*AND ... X, is close to xni*

THEN ' = f (%) ©
where R’ denotes the i fuzzy rule; i=/1,N]; x; is close to xji* is
the j” antecedent sets of the i” rule, j=/7,n] and x;” is its focal
point; ' is the output of the /” linear subsystem.

The model (9) covers a wide range of multiple model
structures dependent on the type of the consequent:
e It is the first order Takagi-Sugeno type when the
consequents 3’ = f'(x) are linear functions of the input
vector x, similarly to the model (7) considered in
DENFIS:

S =x 72 xS =[1x] (10)

. a] T oranm
X (n+1) dimensional matrix in the multiple output case of m
outputs) of i local linear sub-system.
It is the simplified Mamdani (sM) model (known also as
zero order Takagi-Sugeno model) when the consequents
are singletons or the consequent fuzzy set is replaced by
its defuzzified value [29]:
f=a (an
e The consequent model can be also any nonlinear
function, including a first principle based nonlinear
model [29], a neural mapping, or a relational fuzzy model
[71].
The overall output of the system, y is formed as a collection
of loosely combined multiple subsystems, V' = f(x), with
simpler structure that are combined by a linear combiner

(12)

where 7 is the parameter vector 7' = [ay; ay ..

N . .
y= 34y
i=1
where A is the normalized firing level of the i” rule and N is
the number of rules:
1

p =

oon
> Tl = H/u;(x])
7=l

13)

N
>’
J=1

and ,u;- is the membership value of the /* input (antecedent) x,

Jj=[1n]:

i*

i
By = a4

The linear combiner weights A'’s are driven by the firing
levels of the rules. Dynamic reinforcement of certain models
can be accomplished if (14) is replaced by more advanced

aggregating operators, e.g.
;Li _ (Ti )ﬁ
TN
(! )’

J=1

15

where increased values of parameter /5 assign higher priorities
to the consequent models associated with higher firing levels
[29] gradually transforming the multiple model representation
(9) from a universal approximator into a classifier.

B. eTS Learning — a Blend between Recursive Clustering and
Recursive Least Square Learning

EFS is learned by combining unsupervised learning with
respect to the antecedent part of the model (9) with the
supervised in terms of the consequent parameters. Each one
of the fuzzy rules of type (9) operate in certain sub-area of the
input/output data space, z, = [x'; y']", z, = R"™. To identify
these regions, one can employ real-time clustering.  The
unsupervised clustering algorithm continuously analyzes the
input-output data streams and identifies emerging new data
structures.
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The eTS learning algorithm [12, 13] clusters the input-output
space into N fuzzy regions. The clusters define a fuzzy
partitioning of the input space into subsets that are obtained by
projecting the clusters centers onto the space of input
(antecedent) variables. The learning algorithm also assigns to
each of the clusters a linear subsystem. The eTS learning
algorithm is a density-based clustering that stems from the
Mountain clustering method [72] and extension called the
Subtractive clustering [73] the pofential was calculated for
each data sample.

The eTS learning method expands the Mountain / Subtractive
to the real time domain transforming it in a powerful tool for
on-line learning with numerous applications in classification,
rule-base generation, prediction, novelty detection [12, 35].
The eTS clustering is based on the recursive calculation of the
potential P,(z,) of each data point z, in the input-output space z,
— Rl’l‘Fm.

Bz)a———

(t=1)(a,+1)—2c; +b,

P{ . -1 p J P
WhereaﬁZ(ZZ)Z;br:ZZZi ca=X4fl =34

= i=1j=1 j=1 =l
and the potential of the clusters centers

(t-2)p_y(z")
(1-2)+B (2 )+By(2)||2 -z, |F

B(z )=

Existing cluster centers are updated only if the new data z, point is
substantially different than the existing clusters as detailed in [74]. If
the input vector associated with the current data point is too close to
one of the existing antecedent focal points, i.e.
N
min
i=1
N
min
i=1

0.30]). Otherwise z, becomes a new cluster center.

||xl —x ” < T then z, replaces the i-th cluster center, i = arg

"xl —x || < T (where T is a constant in the range [0.15 —

For fixed cluster centers the EFS model transforms into a linear
model

y=y'0 (16)
where Qz[ﬁIT,ﬁQT,...,ﬁ](,]T is a vector formed by the
subsystem parameters r, =[7,,,7;;..... 7, ] .i=[1,N], and

W= [)L]xT ,EQxT ,...,ﬂNxT]T is a virtual input vector,
which is formed by the system inputs that are weighted by the
normalized activation levels 4, , i=/1,N]. Under the linearity

assumption, the subsystem parameters can be learned
recursively using the Recursive Least Square (RLS, Kalman
Filter [43, 27]) algorithm:

Or=0i1+Cow, (v, =y 0i-1) (7

T
Crorwi Gy

C =C,_ ;-
I+l//tTC17]l//t

18)
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where C is the covariance matrix of the virtual input vectors
y. Obtained solution is optimal in least square sense.

The linearity assumption fails when the cluster centers are
continuously updated.  The correct recursive learning
algorithm in this case is the Extended Kalman Filter [27 ].
One of the main advantages of the eTS learning method as a
tool for developing EFS is due to its prototype-based
clustering nature. The cluster centers remain unchanged
except for the finite number of cases when a new center is
created. Therefore, the linearity condition is consistently
satisfied unless a new cluster is created. The problem of
parameter learning when a drastic change in the structure (due
to a newly created cluster) occurs is addressed by selectively
resetting the covariance matrix C in (18). It is implemented
by resetting the covariance matrix to a diagonal matrix with
large values of the main diagonal elements when a new cluster
is created. In this sense it is significantly different from the
mean-based approaches K-nearest Neghbour Algorithm
(k-NN) and Self-Organizing Maps (SOM) since these methods
locate the centers of clusters at the mean of the local data
structures and continuously update their positions. These
cluster methods continuously update the cluster centers.
Consequently, the assumption for linearity of the resulting
model (16) is no longer valid.

In the above discussion we focused on the learning of EFS
belonging to the cases of TS fuzzy models (10) and the
simplified Mamdani (sM) models (11). For nonlinear
multiple models in (9) the RL'S method is substituted by an
alternative recursive optimization method - the Extended
Kalman Filter.

C. fSPC - Learning through Distance Based Output / Input
Clustering

The simplified Mamdani (sM) model
IF x is close to x;* THEN y is y;* (19)

is applicable to slowly changing evolving systems that are
dominated by fewer operating modes and rarely changing
steady states. This is the case of the typical industrial systems
that are designed to operate predominantly in certain
operating modes where the transitions between the modes are
rather exceptions. Since the sM models are special case of the
TS model, this type of systems can be learned by the method
of learning EFS described in the previous section. The fSPC
learning approach [31] provides an alternative and pragmatic
way for developing EFS that are based on the sM model. The
fSPC is algorithm is inspired by the Statistical Process Control
(SPC) — a method for process variability monitoring. The
SPC control procedure naturally clusters the system output
data into granules (clusters) that relate to same process control
conditions and that are characterized with similar system
behavior. The boundaries of the output %ranules (the process
control limits) are defined through the T~ Hotelling statistics:

0=y C" v =3) < X pa (20)
where Cy; is the output covariance and sz)a 1s the (1 — oyth
value of the chi-squared distribution with p degrees of
freedom and o is the probability of a false alarm, e.g. X%,
00027 = 11.8290, %%, 0027 = 14.1563, while %’ o027= 9
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corresponds to the well-known +/- 3 & limit rule for the case of
a single output. From a system perspective the areas where
the process is under statistical control can be considered as
steady states related to a certain operating mode. In these
states the system output can be approximated with a high
probability with its mean y; .

The output granules induce corresponding granules
(clusters) in the input domain and define the parameters of the
rule antecedents:

close =: exp(- 0.5 (x - x;¥)' Cyi' (x - x,%))
where x;* is the vector of input means and Cy; is the input
covariance matrix. A sM model rule is the label of a pair of
corresponding input/output granules.

For outputs that belong to an output granule, i.e. satisfy
condition (20), the rule parameters associated with the
respective granule are recursively updated through
exponential smoothing:

yi*rl) = ay @) + (1- o) y(t+l);
Couft+1) = a Cof) + (1 = &) ((t+1) - y*®) pt+1) -y @)
XMtHl) = ax,X) + (1 - o) x(t+1);
caft+1) = aCuft) + (1 0) (x(t+1) - x,X1) (x(t+1) - x,X1)"

where o, 0 < r< 1, is a learning rate parameter. Outputs that

are not compatible with any of the existing output granules, i.e.

do not satisty condition (20), initialize new pair of input and
output granules.

IV. APPLICATIONS

ECOS and EFS in general have been used for a range of
applications so far, where adaptation to new data and
knowledge representation are crucial requirements. Here we
present only few examples of them.

A. Industrial Applications — Process Modeling

A simplified Mamdani model type EFS is applied to predict
the average paint film thickness on the vehicle body for a
given combination of factors governing the process in
automotive paint booths [31]. These variables include: 1. fluid
flow rates of the applicators (robotized bells and guns) — the
main parameter directly affecting the film thickness; i1. air
down draft velocity, temperature and humidity (air is
continuously supplied to the booth to remove the paint over
spray and to virtually separate individual sections of the
booth).

The EFS approximates the relationship between the process
variable and paint film thickness on the horizontal and vertical
surfaces of the vehicle body resulting in three alternative sM
models (19) of the paint film thickness on the left and right
vertical, and horizontal surfaces. The model maps the vector
of process inputs x = [FF (average fluid flow rate); DDb
(down draft, bell zone); DDr(down draft, reciprocator zone);
T (air temperature); H (air humidity)] to process outputy =FT
(average film thickness).

By applying fSPC learning algorithm we obtain three sets
of rule parameters x*(1), y*(1), S*(1). One of the models
covering the horizontal surface input/output data shown in
Figures 8 & 9 is listed below.

IfFF~ 147.59 and DDb = 66.90 and DDr~ 69.85 and T =
80.57 and H~ 42.08 Then FB =~ 0.82

IfFF =~ 150.68 and DDb~ 66.56 and DDr~ 70.42 and T =
82.41 and H~ 33.82 Then FB = 0.80

IfFF =~ 138.53 and DDb~ 64.88 and DDr~ 66.72 and T =
81.12and H~ 26.91 Then FB = 0.78

IfFF =~ 129.87 and DDb~ 60.04 and DDr~ 62.23 and T =
80.50 and H~ 21.56 Then FB = 0.75
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Figure 8. Input process data — horizontal surface: x = [FF (average fluid flow
rate),; DDb (down draft, bell zone),; DDr (down draft, reciprocator zone); T
(air temperature); H (air humidity)] (adapted from [31])

Linguistic  quantifiers close (=) parameterized
differently for individual rule antecedents and are completely
defined by the vectors x*(1) and antecedent covariance
matrices Cy, i=[ 1, 3].

are

A set of input/output data from 250 painted vehicles (part of
the input data (horizontal surfaces) is presented in Figure 9,
the actual scale and measurement units are omitted. The sM
model is used as one step predictor of the film thickness in a
supervisory adaptive control system that continuously adjusts
the fluid flow rates and down drafts minimizing a cost function
that optimizes desired film thickness and process efficiency.

£
£
&

Paint Film Thickness

Veicle Body

Figure 9. Measured vs. one step ahead predicted paint film thickness data
C. Medical Decision Support
In many medical decision support systems data is being made

continuously, but the practises still use only one or two well
established regression formulas for a prognostic or diagnostic
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purposes. The area needs new techniques for adaptive
learning and data and knowledge integration. Such techniques
are offered in eCL. An example is give below.

A renal function prognostic system with the use of
DENFIS is presented in [51]. The initial data set had 447
samples, collected at hospitals in New Zealand and Australia.
Each of the patient records includes six variables (features): 1)
age, 2) gender, 3) serum creatinine, 4) serum albumin, 5) race,
6) blood urea nitrogen concentrations, and one output - the
glomerular filtration rate value (GFR) [38]. For every data
cluster, a local model in DENFIS is derived as a logistic
regression — Fig. 10.

Figure 10. A snapshot of an adaptive medical decision support system for
renal function evaluation [51]. The fuzzy rule on the right side is a regression
model of the data derived and updated for the highlighted cluster.

C. Bioinformatics

Bioinformatics is the area concerned with the biological data
storage, analysis, representation, modeling and knowledge
discovery. A review of problems and possible solutions is
given in [52, 59]. Several problems in bioinformatics have
been successfully solved with the use of adaptive eCI:

(a) Micro-array gene expression data analysis and pattern
discovery [40,59]. Figure 11 shows a graphical representation
of 5 EFulNN rules, each representing a profile of samples
clustered together, each of them belonging to the class of
good prognosis (class 1) or - bad prognosis (class 2) [11, 46,
52, 56].

Cancer Profiles

Figure 11. A graphical representation of 5 EFuNN rules, each representing a
profile of samples clustered together, and belonging to the class of
good prognosis (class 1), or - bad prognosis (class 2) [11,46,40].

(b) Gene regulatory network modeling (GRN)

GRNs describe the regulatory interaction between genes in a
cell [42,59]. Co-expressed genes over time relate to each
other — either one regulates the other, or both are regulated by
same other genes. eClI are useful tools for building adaptive
GRN models from time course gene expression data [50,53. In
[60] EFuNN and DENFIS have been used to derive a GRN of
4 genes from a cell line time course data. The GRN model is
then used to predict future values of the genes over time. Rules
can be extracted that explain the relationship between the
expression of genes at different time moments, e.g.:

IF g13(t) is High (0.87) and g23(1) is Low (0.9)
THEN g87 (t+dy) is High (0.6) and gl103(t+dt) is Low

C. Neuroinformatics and Brain Study

Brain models can be evolved incrementally from EEG brain
data collected from individuals that belong to different
categories, or from different brain states of the same
individual, using standard EEG equipment — Fig.12.

ag

a3

~ 4
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>

Figure 12. A standard set of EEG electrodes to collect data from a brain of an
individual, used to evolve a model

After evolving models are trained on EEG channel data, rules
Can be extracted in the form of: IF Channels 13 and 27 have
high values, THEN the state of the brain is sleep. This type of
research is reported in [11,46].

D. Multimodal Information Processing and Biometrics

Combining speech, image and other modalities in an
adaptive way, where new speech samples can be added in time,
new images, new modalities (e.g. fingerprints) for a person
recognition, person identification and person verification is a
promising area of application for eCI — Fig. 13 [11,46].
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Figure 13. An example of a multimodal (speech and imé_éz) Fo

E. Financial and Business Forecast

Adaptive learning and future value prediction of financial and
business time series with the use of eClI is reported in [46].
Fig.14 shows the weekly on-line prediction of the exchange
rate Euro/USS$ for 1-,2-,3- and 4 weeks ahead using 3 input
variables: ERate, Euro/Yen, Stock-E/US, with 4 week time
lags each [46]. The lower figure shows the number of rule
nodes evolved in an EFuNN structure applying also
aggregation of nodes.
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Figure 14. The weekly on-line prediction of the exchange rate Euro/US$ and
the number of the evolved and aggregated rule nodes in an EFuNN
architecture.

F. Autonomous mobile robots

Evolving, autonomous learning robots, that communicate
between each other, is an area of growing interest and
potential for eCL. In [66] ECOS are used to control the

position of robocup robots that adapt on the spot to the
opponent — Fig. 15.

Figure 15. An eCI is used to locate the players on the field while adapting
on-line to the opponent’s strategy [66]

V. CONCLUSIONS

The concept of evolving intelligent systems has been
presented as an effective tool to address the problem of
modeling non-stationary, highly non-linear processes on-line
in real-time. The basic elements of the concept and its
procedure have been outlined without going into details,
which are available in a number of recently published papers
by the authors and their collaborators. In essence, the concept
of evolving intelligent systems can be considered a higher
level adaptation that concerns model structure as well as
model parameters. It is demonstrated here through two
modeling constructs that the authors have introduced recently
and are continuing to develop, namely the evolving
connectionist systems, ECOS, and evolving fuzzy systems,
EFS.

Further research is planned in application areas as
highlighted in the paper, along with some novel generic
methods of eCl to be developed, such as: transductive
evolving systems [61,62]; evolving spiking neural networks
[63]: evolving neurogenetic models [64,65]; evolving
quantum inspired neural networks [46], and others.

The true intelligent systems must evolve their structure,
functionality and knowledge — they can not be fixed a priori.
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