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Abstract 

Analysis of Linux binaries for indicators of compromise is an area of research gaining in interest due 

to the ubiquity of Internet connected embedded devices. These devices have also been the subject of 

high profile cybersecurity incidents as a result of the damage caused by their compromise.  Malware 

analysis sandboxes are used to examine malware samples in an isolated environment. They provide a 

safe environment for the analysis of malware. Most of the discussion on malware analysis and 

associated tools have been devoted to the Windows operating system. This is because the Windows 

operating system is the dominant operating system in the desktop operating system space. This 

research examines the Linux operating system and evaluates the malware analysis sandboxes that are 

available for the examination of malware developed for the platform. These analysis sandboxes were 

tested against Linux malware binaries and the relative effectiveness of the sandboxes were observed. 

Malware samples were sourced from online repositories and a honeypot setup. The malware samples 

obtained from the repositories were restricted to those first submitted to the portals within the last 

four years. The honeypot was deployed to attract malware samples in the wild that are possibly 

unknown to existing portals. Four malware samples were extracted from the honeypot which were 

added to the two hundred and ninety-three (293) selected from VirusTotal and VirusShare. The five 

sandboxes tested were REMnux, Limon, Cuckoo, Detux and HaboMalhunter. The malware samples 

were examined and analysed on these platforms. The static and dynamic analysis features of these 

tools were observed as well as their support for automation and reporting. The consistency of the 

results where applicable were also noted.  

It was observed that despite the consistency of analysis noticed; collectively, the five sandboxes failed 

to detect indications of compromise in twenty-seven (27) of two hundred and ninety-seven (297) 

malware samples. HaboMalhunter was found to be the most effective during dynamic analysis in the 

detection of indications of compromise; however, its workflow required each analysis run to be done 

manually because it did not have in-built virtual machine orchestration like Limon, Detux and Cuckoo. 

During static analysis results, the results were observed to be similar with the exception of Limon 

which employed Yara rules to detect the packers used to mask the malware samples. Limon was also 

alone in its use of Context Triggered Piecewise Hashing (CTPH) to determine the similarity between 

malware samples by its maintenance of a master list of analysed samples. Cuckoo and HaboMalHunter 

generated output reports in HTML and JSON while Detux supported only JSON output. REMnux and 

Limon generated only plaintext output reports. The addition of virtual machine control to 

HaboMalhunter to restore virtual machine state before and after each analysis run was suggested as 

a recommended improvement to facilitate the automation of the analysis process. The need to 

develop more packing signatures for Yara rules was also mentioned for the automatic detection of 

packers. 
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1. Introduction 

1.1 Background, motivation and objective 

Malicious software (or malware) are programs written with the intention of causing harm to the target 

of the program execution (Moser, Kruegel, & Kirda, 2007). The ubiquity of the Internet has helped 

facilitate the spread of malware infections. Business enhancement tools such as instant messaging, 

electronic mail and shared files which have become an essential part of collaboration are being used 

as enablers for the spread of malware in the enterprise. Critical infrastructure services in health, 

transportation, energy and communication are supported by Information technology systems. The 

potential impact of harmful tools on these services have not gone unnoticed to criminal organisations. 

Criminal activities using malware have ranged from the deployment of keyloggers and spyware to 

steal data from individual users to corporate theft, blackmail and sabotage. A couple of high profile 

attacks against critical infrastructure are the Wannacry ransomware attack that particularly affected 

the operations of the National Health Service in the UK and the Trojan.Disakill attack on the Ukraine 

energy infrastructure (Ehrenfeld, 2017; Symantec, 2017).  

The most popular platforms, due to the large size of infection footprint generally have the most 

malware attacks and hence the most amount of analysis activities and tools. The foregoing is the 

reason that the erroneous view was held that there were no viruses on Linux. The computer desktop 

market is dominated by the Microsoft Windows operating systems. The uptake in the use of Linux for 

servers and the increasing popularity of Internet connected embedded systems and the Internet of 

Things (IoT) have suddenly made the Linux operating system a lucrative target. More than half of the 

malware samples attracted by the Symantec IoT honeypot were written for the Linux operating system 

as vulnerabilities on the Linux operating system are being actively sought for exploits (Symantec, 

2018a). The Trojan.Disakill attack on the Ukraine energy infrastructure in 2016 was a disk wiping attack 

on Linux servers supporting the energy grid. One of the highest profile exploits was directed at the 

web hosting company OVH, it involved the compromise and enlistment of IoT devices into a botnet 

using the Mirai malware to create one of the biggest Distributed Denial of Service attacks (Symantec, 

2017).  

Malware analysis allows researchers to dissect malware to determine their objectives and operations. 

This activity can be useful in creating static, behavioural and heuristic signatures that can be added to 

security appliances.  It can also be used to stop the effect of an ongoing attack as well as for conducting 

a post-mortem analysis of a breach. Malware analysis sandboxes allow execution and examination of 

the malware samples in a safe and isolated environment. Malware samples are also released at a very 

high rate that challenges the ability of the analyst and the available tools to cope. It has been found 

that most new malware samples are variants of existing ones. In order to cope with the rate of 

malware deployment, the ability to detect variations of existing samples is necessary as is the ability 

to automate analysis in a safe environment. 

The foregoing motivations are due to the prevalence of malware and the increasing interest in Linux 

malware samples by malware authors as well as the need for automated analysis in a safe 

environment. The analysis of Windows operating system based malware has been given the most 

coverage in available literature (Botacin, de Geus, & Grégio, 2017). This research seeks to explore and 

evaluate the existing tools and platforms for malware analysis on Linux systems. This involves the 

sourcing of malware samples as well as the tooling environment. This appraisal is to guide the security 
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community on the relative utility of the available tools for malware analysis in the Linux environment 

and recommendations to the open source community on improvements to these tools. 

1.2 Organisation 

The thesis is structured into six parts. The first part is the introduction which discussed the background 

and motivation for the thesis. The underlying concepts involved with internals of the Linux operating 

system and malware analysis were addressed in the second chapter as well as the related research 

activities. The five sandboxes, REMnux, Limon, Cuckoo, Limon and HaboMalHunter were selected for 

testing after the review. The third chapter explored the methods used for sourcing the malware 

samples and the research design. Drawing from existing research the malware samples were obtained 

from malware repositories and a honeypot setup. The honeypot setup was described and testing 

methodology for the five sandboxes decided upon in chapter 2, laid out. The research sub-questions 

and hypotheses concluded the chapter. The result of the honeypot entrapment scheme and the 

malware analysis results on the sandboxes were presented in chapter 4. The research sub-questions 

related to automation and reporting features were also answered in chapter 4. Chapter 5 was a 

discussion of the results within the context of the malware families and the CPU families of the 

malware samples. The remaining research sub-questions and the research hypotheses were answered 

in chapter 5. Chapter 6 concluded the thesis with an overview, the contribution and the limitations of 

the research. Suggestions for future work were also made. 
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2 Literature Review 

2.1 Introduction 

This chapter is a review of the existing body of work upon which this research builds. It is divided into 

five sections. The first section discusses malware classification and analysis with respect to the Linux 

operating system. A study of malware analysis on the Linux operating system requires a thorough 

understanding of the internal workings of the operating system. The second section accomplishes this 

with a discussion of internals of the Linux operating systems, with brief descriptions of some key 

system calls and forensic artefacts, while the third explores the subject of malware analysis 

techniques. A review of similar research activities was undertaken in the fourth section and the 

chapter concludes with the identification of the gaps this research seeks to fill in light of the review. 

2.2 Malware and the Linux Operating System 

Malware is software designed with harmful intent, affecting optimal and secure operation of a 

computing environment (Bryant, 2016). Malware can be categorised based on mobility, that is, if it 

can spread without human interaction. Viruses, worms and mobile code are examples of mobile 

malware while Trojans and rootkits are non-mobile malware (Boyle & Panko, 2014). Viruses are self-

propagating malicious code that are set in motion by execution of legitimate benign programs which 

serve as hosts to the viruses (Szor, 2005).  Viruses enter a system through several means. Computers 

ship with Basic Input Output Systems (BIOS) on the motherboards. These are generic instructions with 

as little assumptions as possible that pass execution to the first sector of the first hard disk drive - the 

Master Boot Record (MBR) for boot instructions. The executable nature of the instructions in the MBR 

make them an attractive area for viruses (Skoudis & Zeltser, 2004). These viruses are called boot sector 

viruses. Other methods of infection involve overwriting legitimate programs as well as appending or 

prepending their instructions to legitimate programs (Skoudis & Zeltser, 2004).  

Worms are similar to viruses with respect to their ability to self-replicate; however, they are 

standalone programs that do not leech on other programs before they can cause damage (Boyle & 

Panko, 2014). They are written to exploit vulnerabilities, using the Internet or the corporate Intranet 

as a medium of infection for effective and rapid propagation. They are composed of two components, 

the target selection algorithm and the payload. The target selection algorithm probes a host for its 

system attributes to determine if it is the intended or a susceptible victim platform and the payload 

contains code for the destructive tasks (Skoudis & Zeltser, 2004). Mobile code makes up the class of 

malicious programs written to take advantage of the ubiquity of the Internet and proliferation of 

applications on browsers and mobile devices. ActiveX plugins, Java Applets, JavaScript files are 

examples of propagation media for the spread of mobile code (Marek, 2002). 

Trojans are malicious programs that appear benign and harmless. Spyware are a category of Trojans 

that mine and steal information from host system by logging keys, reading browser cookies, 

encryption keys and authentication parameters (Boyle & Panko, 2014). Trojans try to avoid detection 

by sometimes taking names of legitimate files and they form the basis of Advanced Persistent Threats 

(APTs). Remote Access Trojans (RATs) like Gh0st RAT and Poison Ivy give intruders remote control of 

victim computers (Daly, 2009). While Trojans can sometimes appear as system files to deceive users, 

they do not actually modify system binaries; however, rootkits on the other hand replace legitimate 
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system binaries. This is usually done to hide the presence of an intruder by modifying the output of 

legitimate system commands, files and libraries (Ligh, Adair, Hartstein, & Richard, 2010).  

The free and open source nature of the Linux kernel has also made it attractive as the base operating 

system of a variety of platforms ranging from smart phones, servers, smart appliances and machinery 

giving rise to an increase in malware written for Linux (Damri & Vidyarthi, 2016). Ahnlab (2014) 

identified two methods of categorising current Linux malware – classification by malware purpose and 

by malware attack method. 

The categories of malware when classified by purpose are exploits, Distributed Denial of Service 

attacks (DDoS), digital currency mining and backdoors. Exploits are written to take advantage of 

published and unpublished vulnerabilities to cause system instability. The availability of the source 

code also reduces the barrier to writing these exploits (AhnLab, 2014). Servers are attractive to 

malware authors because they contain valuable data which serves as an incentive for an intruder to 

insert backdoors to mine information from them. Servers are also expected to have high system 

uptime and high-end hardware specifications making them reliable hosts for launching malicious 

attacks against other systems in DDoS attacks as well as digital currency mining (AhnLab, 2014; Boyle 

& Panko, 2014). Rootkits are written to disguise the presence of other malware and the availability of 

source code makes it easy to write them (Messier, 2015).  

2.3 Linux Operating System Internals 

2.3.1 Internals  

This section is a walk-through of the system organisation of a Linux based system. It undertakes a 

discussion of the operating system, its layers and the relationship and management of the underlying 

hardware. The internal operations, system services and calls are areas of the system where secure 

computing principles should be adhered to because vulnerabilities in these areas make malicious 

exploits possible (Bryant & O'Hallaron, 2015).  

2.3.1.1 System Architecture 

As illustrated in Figure 2.1, a Linux system is comprised of three layers – the hardware, operating 

system software and the user layers. The hardware layer consists of the Central Processing Unit(s), 

physical memory, disk drives(s), and Input/Output (I/O) peripherals. The operating system software is 

divided into two modes – the kernel space and the user space. The kernel sits atop the hardware layer 

and manages access to the hardware resources from user programs and processes as well as the CPU’s 

access to memory and other peripherals. In kernel mode, a process has full access to all the system 

resources. The Linux kernel is described as monolithic because it has memory and file system 

management built into the kernel as against a microkernel architecture where those functions are 

implemented in user space with kernel responsible for coordinating messaging and signalling between 

processes (Tanenbaum & Bos, 2014).  
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Figure 2. 1 System Organisation adapted from (Tanenbaum & Bos, 2014) 

The kernel manages access to physical memory through the memory management unit and using the 

virtual memory construct enables the system to address a memory address space greater than 

physical memory (Tanenbaum & Bos, 2014). It provides mappings of virtual memory to physical 

memory addresses, maintaining a cache of recently used mappings and managing processes’ page 

tables during context switching (Corbet, Rubini, & Kroah-Hartman, 2005). 

User programs spawn processes and these processes require CPU resources and other devices to carry 

out their tasks. The kernel schedules access to resources from processes by managing communications 

between processes and enforcing a scheduling algorithm for access to CPU time while giving the 

illusion of simultaneous operation of the user programs (Ward, 2014). Processes are created, 

suspended, destroyed and execution mode changed from user to protected kernel mode through 

systems calls and signals. The process management subsystem also works with the memory 

management function to manage process access to the system memory and the handling of process 

signals indicating process states and requirements (Tanenbaum & Bos, 2014).  

Love (2010) classified devices in Linux systems into character, block and network devices. Network 

devices are types of character devices because they share the attribute of only permitting sequential 

or stream based access to data. The data locations are generally not addressable or uniquely 
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identifiable (Tanenbaum & Bos, 2014). Other examples of character devices are printers, keyboard, 

and mouse. Block devices on the other hand allow random access to data because they have defined 

addressing (Love, 2010). Disk drives, physical memory are examples of block devices. The kernel 

manages these devices through device drivers and some are built into the kernel while others are 

loaded at runtime (Corbet et al., 2005).  

The User layer access kernel managed resources using system calls implemented in the kernel. The 

user space provides standard library interfaces that are used by user programs and services. These 

library procedures are translated to system calls in the kernel and they are defined by the Institute of 

Electronic and Electrical Engineers (IEEE) under the Portable Operating System Interface (POSIX) 

1003.1 standard to facilitate uniform APIs for portable programming on conformant systems. The user 

space of the Linux operating system also has application programs and utilities like editors, compilers, 

shells. They provide the means for user interaction and machine to machine communications, calling 

the standard library interfaces (which are mapped to system calls in kernel) when they need access to 

kernel managed resources (Tanenbaum & Bos, 2014). 

The memory, process and device management functions of the kernel are addressed in more detail in 

the following sub-sections. 

2.3.1.2 Memory Management 

The memory management functions of the kernel are discussed in this section. The identification and 

instantiation of memory, allocation of pages and virtual memory management operations such as 

swapping and context switching are discussed in the sections below. 

2.3.1.2.1 Pages, virtual memory and swap operations 

Memory is an array of uniquely addressable bytes of storage. Pages are the smallest unit of memory 

allocation. They are typically 4KB on 32 bit architectures and 8KB on 64 bit architectures but these 

values can be configurable at kernel build time (Love, 2010). While a page refers to a unit of memory 

defined by the page size adopted by the operating system architecture, a page frame is a physical 

representation of pages on page sized aligned physical memory blocks. Pages are virtual or logical 

representations while page frames are concrete instantiations of physical memory and are uniquely 

identified in the kernel by Page Frame Numbers (PFN) (Tanenbaum & Bos, 2014).  

The virtual memory feature of the Linux operating system lets each process run its own memory 

address space. This provides memory access control and protection, preventing one process from 

interfering with the address space of another and separating user mode and kernel mode processes. 

User mode and kernel mode programs refer to virtual memory while peripheral devices use physical 

memory addresses during Direct Memory Access (DMA) (Silberschatz, Galvin, & Gagne, 2013).  

The Memory Management Unit (MMU) is a part of the CPU that manages the translation from virtual 

memory to physical memory. Complete mappings of virtual to physical addresses are held in page 

tables. The page tables are implemented in memory in a hierarchical arrangement for efficient use of 

system storage. They divide the virtual memory address space into sections with each section serving 

as an index to a table which either has an entry for another table lower in the hierarchical order or to 

the physical page itself. Each process has its set of page tables with the threads spawn from the same 

process sharing the same set of tables (Love, 2010; Tanenbaum & Bos, 2014).  
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Figure 2. 2 Memory mapping operations adapted from (Tanenbaum & Bos, 2014) 

In order to prevent two look-up operations for each memory access - the first one to determine the 

physical memory location of the required page table and the second one to query the page table for 

the physical address of the required virtual memory address - the CPU keeps a mapping of virtual to 

physical addresses for the process it is currently executing. It keeps this mapping in a cache called the 

Translation Look-aside Buffer (TLB). This is illustrated in figure 2.2. The TLB has entries for virtual 

address to physical address mappings and access controls. The use of the TLB speeds up physical 

memory address look up operations but the TLB is a limited resource and there are times when the 

process has more mappings than the TLB can hold. When a process attempts to access a virtual 

memory location for which there is no corresponding physical memory address mapping in the TLB, a 

page fault error is thrown (Corbet et al., 2005; Tanenbaum & Bos, 2014). This triggers the page fault 

handler in the kernel which loads the required page table. This also occurs during process context 

switching. When CPU switches execution to a process and the process' page tables have not been 

loaded, the first virtual memory access by the process will result in a page fault which will cause the 

appropriate page tables to be loaded (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).  

Lazy allocation and memory swapping also result in page faults. During lazy allocation or demand 

paging, the kernel reserves pages immediately when they are requested by the user space application 

using malloc library call (Bovet & Cesati, 2005). Actual allocation of page frames only occurs at runtime 

when the running process needs access to the allocated pages. This is meant to be a performance and 

resource optimisation feature that ensures that if a reservation is not needed at runtime (not accessed 

by its process), it is not holding up a resource that should be available for other tasks. Typically, when 
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a request for memory is made, the kernel takes note of the request in its page table and it returns 

execution back to the user mode without updating the TLB. When the virtual memory addressed is 

referenced by the requesting process, the address returned to user is not seen in the TLB so a page 

fault exception is generated which returns control to the kernel (through the page fault handler) 

(Tanenbaum & Bos, 2014). The kernel, seeing that the allocation is valid, allocates page frames in 

physical memory for the virtual address and records the address mapping entry in the TLB before 

returning execution to the user mode application. For applications that want to avoid the performance 

penalty introduced by this feature, the library function call memset can be used to initialise the 

allocation or the use of calloc instead of malloc in the memory request (Kerrisk, 2010; Silberschatz et 

al., 2013).   

 

Figure 2. 3 Memory Swap-out Operation adapted from (Bovet & Cesati, 2005) 

Swap operations as shown in figures 2.3 and 2.4, are done to free up space in the physical memory. 

Swapping allows the total memory allocated to be greater than the physical memory installed. It 

involves moving pages from the RAM to the disk and marking the entry in memory tables as swapped. 

A page is swapped out when it is copied from the physical memory to the swap media (hard disk) and 

its entry in the TLB removed. There is still a reference in the user mode process pointing to this frame 

as it is still in the user virtual address space for the process. When it is needed, a page fault is generated 

because the entry is not in the TLB. The page is copied back from the swap media back to the physical 

memory (swapped in) and its entry updated in TLB. The library function calls mlock and mlockall can 

be used to prevent an allocation from being a candidate for swap out (Bovet & Cesati, 2005; 

Tanenbaum & Bos, 2014).  
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Figure 2. 4 Memory Swap-in Operation adapted from (Bovet & Cesati, 2005) 

2.3.1.2.2 Memory Zones 

 

Figure 2. 5 32-bit System Memory Zone adapted from (Corbet et al., 2005) 

The physical memory can be divided into zones and these zones and their allocations are dependent 

on the memory systems in use by the CPU and the I/O hardware. The zones are ZONE_DMA, 

ZONE_DMA32, LOW_MEM and HIGH_MEM. ZONE_DMA is the lower 16MB of physical memory that 

is addressable by some old hardware devices such as Industry Standard Architecture (ISA) devices. 
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These devices can only access the lower 16MB of physical memory using direct memory access. 

ZONE_DMA32 is the 32-bit address visible to other devices capable of direct memory access but are  

however limited by being 32-bit devices which have a memory addressable region of about 4GB (Love, 

2010). Figure 2.5 illustrates the virtual memory to physical memory zone mappings for the 32-bit 

systems. 

On 32-bit architectures, the first 896MB area that is directly addressable by the kernel is referred to 

as the LOW_MEM or Normal Zone. This region is used for kernel logical addressing. The kernel logical 

address is a predictable one to one mapping to the physical address, usually by a fixed offset (the size 

of the user virtual address). It can be used for contiguous memory allocations (Corbet et al., 2005).  

This memory region has a direct one to one mapping to physical memory and can never be swapped 

out or paged out. Contiguous allocations made in this area are always contiguous in the physical 

memory making them suitable for operations and processes requiring direct memory access. The 

kmalloc and kfree library functions are used for requesting and deallocating the kernel memory in the 

LOW_MEM zone (Love, 2010). kmalloc does a contiguous allocation of the physical memory. It accepts 

the required size as argument and returns a pointer to the address of the first memory location 

assigned if the call succeeded. Typically, more bytes than that requested are allocated because the 

kernel memory allocations are done in multiples of pages necessitating rounding to the nearest page 

boundary (Kerrisk, 2010).  

The High memory zone (HIGH_MEM) is typically applicable on 32-bit architectures where a total of 

4GB of physical RAM is supported. In 32-bit systems, the kernel can only directly address the first 

896MB of the first 1GB. The 1GB - 4GB address region that the kernel is unable to logically map to is 

the HIGH_MEM zone. It is used for the virtual memory allocation of the kernel and user space 

processes. On 64-bit systems, the kernel has access to the full memory address range so all memory 

is LOW or normal memory with no concept of high memory zone (Corbet et al., 2005). This is illustrated 

in Figure 2.6. 

 

Figure 2. 6 64-bit System Memory Zone adapted from (Corbet et al., 2005) 
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The 104MB area at the top of the kernel virtual space (between 896MB and 1024MB) is reserved for 

non-contiguous allocations in 32-bit systems for the physical memory requirements of the kernel 

beyond the 896MB point. The kernel creates mappings in the 897MB – 1024MB region for allocations 

it has made in the physical memory beyond the 896MB area. The kernel virtual address space does 

not have the one to one mapping with the physical address space. It is used as a pointer to reference 

the memory addresses in areas beyond the kernel logical addresses and the non-contiguous memory 

mappings that might require large buffers (Corbet et al., 2005).  

Bulk memory allocations and deallocations beyond the LOW_MEM zone by the kernel for the kernel 

space processes are with the vmalloc and vfree library functions. The difference between kmalloc and 

vmalloc is that the allocations made with vmalloc can be logically contiguous but they are not 

physically contiguous, requiring mapping entries for the translation between the virtual address space 

to the physical address space maintained on the page table for the process. In contrast, kmalloc 

allocations that are logically contiguous are also physically contiguous with a fixed offset as the 

translation value (Corbet et al., 2005). Allocations by vmalloc use more entries in the TLB because of 

the distributed and dispersed allocation as each page in the virtual memory must be mapped to its 

corresponding location in the physical memory. User space programs use the user virtual address and 

its size is architecture dependent and forms the fixed offset for the translation of the kernel logical 

addresses to physical memory addresses (Bovet & Cesati, 2005). User space processes use the 

malloc/calloc library calls for allocation. The difference between them is that malloc uses a lazy 

allocation while calloc initialises the requested allocation to zero. Both library calls use mmap and 

brk/sbrk system calls in the background. The former is for large allocations while the latter is for 

incremental allocations such as for the increase of memory heap size (Kerrisk, 2010). 

2.3.1.2.3 Zone Allocators 

Each memory zone has a zone allocator that addresses the efficient allocation of pages in physical 

memory reducing fragmentation. Memory allocations for user mode processes are generally done 

with the buddy system of allocation. The buddy system of allocation involves neighbouring memory 

blocks combining or a memory block splitting by a power of two. Information is maintained about 

used and unallocated blocks in memory using kernel data structures. To reduce occurrences of 

external fragmentation, which occurs when a process requires a large allocation but there is no single 

block to handle the request necessitating the need to split the allocation to different areas, this 

allocation method allows unused adjacent blocks of same sizes to be combined into a buddy heap. 

This buddy heap can also combine recursively with an adjacent block of same size that is unused. This 

process allows the allocator to handle large requests. For smaller requests, a block recursively splits 

by a power of two in size (its square root) until it gets to a defined lower limit or the smallest size that 

can accommodate the request with least amount of waste (internal fragmentation). This lower limit 

is usually the page size of the platform. The choice of the lower limit involves trade-offs. A very low 

value reduces memory waste (internal fragmentation) but has more overhead as there are now more 

blocks to track with the kernel data structures (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).  

The kernel allocations for data structures and kernel objects like inodes, task_struct objects change 

frequently and require as little fragmentation as possible because the kernel allocations have direct 

mappings to physical memory. These foregoing factors necessitate the use of slab allocation method 

to increase the speed of allocation and reduce fragmentation. In this method, the system memory is 
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partitioned into physically contiguous areas (using the buddy system) called slabs with each variable 

sized slab dedicated to different types of kernel data structures/objects. Each kernel object has a cache 

that is made up of one or more slabs. These caches maintain pointers to empty, partially used and full 

slabs for each type of data structure. When a request is made, the data structure is allocated to a free 

object in a partially free slab for that type data structure involved thus reducing internal 

fragmentation. When memory is freed, the kernel simply marks the object as unused in the cache, 

freeing it up for subsequent allocations (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).  

2.3.1.3 Process control 

The process management function of the kernel is discussed in the following sub-sections. The system 

calls and signals for process (and thread) management and communication are briefly described as 

well as kernel synchronisation and task scheduling. 

2.3.1.3.1 System calls and signals 

Each process in Linux has a unique Process Identifier (PID). Process creation in Linux is achieved with 

the fork system call. Historically, this call copied the memory image and variables related to the parent 

(creating or calling) process into the child (created or called process) allowing the child to have access 

to the files opened by the parent process (Tanenbaum & Bos, 2014). The fork system call causes the 

kernel to return twice and the value of the return values are the PID of the child when it is returning 

to the parent and PID 0 when it is returning to the child (Love, 2010). The getpid system call is used by 

the child to get the PID of the parent if it needs it. This is important because as children spawn more 

children processes, a complex family tree is easily being formed (Kerrisk, 2010).  

Shell commands launched by processes are created using the exec system call. This call replaces the 

memory image and environment variables of the parent process with those of the commands invoked. 

The waitpid system call is used when a parent needs to wait on a child process and the parameters for 

this system call are the child PID (or any child denoted by PID of -1), address of the variable holding 

the value of the exit status and a parameter to determine if the call should be blocking or return if no 

child has been terminated yet. A completed child process without a parent process to return control 

to is a zombie process (Love, 2010).  

The uniqueness of PIDs allow for the communication of signals and messages among processes. A 

collection of processes in the same family tree (a process group) can send signals to each other. These 

signals can be instructions to restart a process or to instruct it to re-read its configuration file SIGHUP 

(terminate gracefully), SIGTERM (terminate unconditionally and immediately), SIGKILL or SIGILL 

(suspend itself) (Shotts Jr, 2012). A process implements the SIGACTION system call to determine how 

it wants to handle a signal (included as one of the parameters). If SIGACTION is implemented, on 

receipt of the signal referenced in the SIGACTION implementation, control passes to the handler. 

SIGKILL goes straight to the kernel and is never handled by SIGACTION (Tanenbaum & Bos, 2014).  

2.3.1.3.2 Process data structure 

Each process has a user part (with associated program counter and memory stack) and a kernel mode 

part when one of its threads makes a system call giving it access to the machine resources with its 

own kernel mode stack and program counter. Processes and threads in Linux are represented 

internally as tasks with a task_struct data structure (Bovet & Cesati, 2005). Each user level thread has 
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in the kernel a task structure and for each process, there is a process descriptor of task_struct in 

memory with information for the management of all the processes, open files and scheduling 

parameters. Internally, the kernel organizes all processes in a doubly linked list of task structures with 

PID as keys to the address of the task_struct. Some of the variables held or referenced by the process 

descriptor are the scheduling parameters, memory image, signals, machine registers, system call 

state, file descriptor table, kernel stack (Tanenbaum & Bos, 2014). 

2.3.1.3.3 Copy on write  

During the fork operation, the operating system does a copy on write to conserve the system memory. 

The expectation is that the parent memory stack and its other resources should be copied to the child 

so that both can work without writing into each other's space but in modern implementations of the 

Linux kernel, each child has separate page tables but point to the parent’s table (Love, 2010). If either 

the parent or child subsequently need to write to that page, a page protection fault exception is 

thrown and a copy of the page is created which they can then write to it, hence copy on write. This 

form of demand paging is done to reduce memory requirements and overhead in process creation. It 

also turns outs to be efficient because in a lot of cases, the children processes might not need to refer 

to the parent process resources because they (parent) are either terminated shortly after being 

spawned or there is a need to call the exec system call to launch another program whose pages and 

memory image replaces theirs (Love, 2010). 

2.3.1.3.4 Processes, threads, tasks, clone system call and scheduling 

Historically, all processes spawn threads and all threads share file descriptors, signal handlers, address 

space, alarms and other global properties while maintaining unique registers, but modern Linux 

kernels introduced the concept of these parameters being thread or process specific with the 

introduction of the clone system call (Tanenbaum & Bos, 2014). When a process is created with the 

clone system call, if it shares nothing with its parent, it is given a unique PID but if it does, it is given 

the same PID but a different Task Identifier (TID) and both fields are stored in the task_struct 

(Tanenbaum & Bos, 2014). The clone system call has bit map parameters to define the resource 

sharing mode (Kerrisk, 2010). 

The kernel deals with user modes processes which are kernel mode processes that are a consequence 

of user mode processes making systems calls as well as internal kernel code operations called by I/O 

devices. There are two algorithms for managing process access to the CPU resources. The first is the 

Completely Fair Scheduler (CFS) which is for processes that are non-real-time time sharing processes. 

CFS uses two configuration parameters - the minimum granularity and the target latency. The latter is 

the time interval within which every runnable process should have run once. Basically, all runnable 

processes using the niceness value as weight are given proportional access to the CPU. if all processes 

have same weight, they will be able to run (1/N) * the target latency where N is number of runnable 

processes. Those with higher priorities based on niceness value are run more often and those with 

lower priorities (higher niceness values) are run less frequently. The minimum granularity addresses 

the inefficiency of context and processor switching when there are many runnable processes. It is the 

minimum amount of time a process has access to the processor. This reduces costs associated with 

switching between processes (Tanenbaum & Bos, 2014). 

For real-time scheduling, there are two types of such processes. Real Time First in First out (FIFO) and 

Real Time Round-Robin. Both run and are pre-empted by processes with higher priorities or if priorities 
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are equal, processes that have been in the wait state longest are prioritised. The difference is that the 

FIFO process is not interrupted periodically but will run until it blocks or exits (Silberschatz et al., 2013; 

Tanenbaum & Bos, 2014). 

2.3.1.3.5 Kernel Synchronisation 

When kernel code is running, it is usually using some internal data structure. To maintain the integrity 

and consistency of these data structures, there needs to be a scheme to protect the kernel processes 

from interfering with each other and yet operate efficiently because if a process is not allowed to be 

interrupted to prevent corruption of the data structures it is working with, the system operation can 

degrade because there might be I/O devices waiting around and unable to run their processes. To 

balance these conflicting goals, interrupt processes are categorised into four (4) classes. The classes 

in increasing priorities are User mode programs, kernel service routines, bottom-half interrupt service 

handlers and top-half interrupt service handlers. Only the user mode programs can be pre-empted by 

processes in similar categories, others can only be pre-empted by other processes in higher categories 

(Tanenbaum & Bos, 2014).  

2.3.1.4 Device Control 

Device and I/O management in Linux is done through the device drivers (Tanenbaum & Bos, 2014). 

The management of access to these resources from processes is a function of device management.  

The file centric nature of the operating system is also examined below in the discussion of the virtual 

file system and the organisation and features of the supported file systems. 

2.3.1.4.1 Device Drivers 

Device drivers form the basis of I/O operations in the Linux operating system. One device driver usually 

handles I/O for a device type. This relationship is defined in the kernel with major and minor device 

numbers. All devices of same type (either block or character devices) with the same major number 

generally use the same device driver. The minor number comes to play when a device driver needs to 

differentiate between different instances of the same device it controls. The kernel has internal hash 

tables of data structures for character and block devices. These objects are pointers to the procedures 

for the functionality supported on a device. When a user access one of special files representing a 

device, the filesystem determines the minor and major number and selects one of the kernel hash 

tables depending on if the device is a block or a character device. I/O devices are integrated into the 

file system and accessed as special files in the /dev/ directory. These special files are broadly divided 

into two categories - block and character files.  There are two parts to a device driver and while both 

parts exist in the kernel, one part is the interface to the user process while the other part interacts 

with the device. The drivers enable direct interaction with the kernel, calling procedures for memory 

allocation, DMA control, timer management etc. (Silberschatz et al., 2013; Tanenbaum & Bos, 2014). 

The block device subsystem maintains the performance for disk devices by the scheduling of I/O 

operations. The request manager manages the read and write operations with buffering as an 

intermediate operation. Linux used the Completely Fair Queuing (CFQ) I/O scheduler for handling I/O 

operations. It maintains a set of lists - one for each process so every request from a process goes into 

the list maintained for the process. A specified number of requests are withdrawn from each list at 

each I/O operations interval (Tanenbaum & Bos, 2014).  
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Character device drivers when registering must also notify the Linux kernel of the set of functions (I/O 

operations) that they implement. The drivers implement the line discipline that dictates the 

formatting and encoding of data stream either controlling terminal input and output or network 

protocols like PPP and SLIP (Tanenbaum & Bos, 2014). The Linux kernel networking subsystem is 

implemented in three modules - the socket interface, protocol drivers and network device drivers. The 

socket interface is used by user applications to perform all network related operations. It provides an 

abstraction for the possibly wide range of networking protocols supported by the kernel isolating the 

user applications from the complexity. The protocol stack contains the set of procedures by which the 

devices will communicate. The functions at this layer include error checking and reporting, packet 

sequencing and fragmentation, reliable transfer and routing. Device drivers are the abstractions of the 

networking device hardware for remote communication (Silberschatz et al., 2013). 

2.3.1.4.2 Virtual File System 

Linux conceptually treats everything that can take input and provide output as a file. These include 

conventional directories and files, network connections, device drivers. It provides as abstraction for 

file operations using the Virtual File System (VFS). VFS defines file system objects and the operations 

that can be performed on them enabling the kernel to perform the equivalent operation on a specific 

object while on the higher layer, programmers and users work with generic library and system calls 

(Tanenbaum & Bos, 2014).  

The file system objects are the inode, file descriptor, superblock and dentry objects. The inode is a 

representation of an individual file, it is a pointer to the data block belonging to a specific file. Each 

file, directory, network socket is represented by a unique inode object. The file descriptor object 

represents an open file. Each process has a file descriptor object for each file it opens. This object 

tracks the state of the file, the access requested, when it was opened and its modifications. It is 

possible for multiple processes to open a file. The inode is same for the file but the file descriptor is 

unique per process allowing for simultaneous alteration of files. The superblock object provides access 

to the files represented as inode to processes. There is a superblock object for each disk and network 

file system mounted. Every inode is uniquely identified by a unique file-system/inode number pair. A 

dentry object is a directory entry and it includes the directory and file name in the path name of a file. 

When a file is requested, the inode for each folder(dentry) in the directory tree is resolved until the 

file itself is reached. A dentry cache is kept for each file name translation to speed up subsequent 

requests for files or folders (Silberschatz et al., 2013; Tanenbaum & Bos, 2014). 

The file system objects are implemented on physical media as file systems which determine their 

arrangement and access by the kernel. Ext3 is the most popular file system used on Linux. It added 

journaling support to the file system. This is the use of a separate dedicated area on the disk for storing 

file system changes, operations and metadata. This reduces the possibility of file system corruption 

during system crashes. Ext3 supports a maximum individual file size of between 16GB to 2TB and an 

overall file system size of between 2TB to 32TB. It stores files on the disk in block sizes of 1,2,4 or 8KB 

depending on the architecture. Ext3 supports a maximum of 32,000 subdirectories in a directory. Its 

allocation policy seeks to ensure that during I/O operations, several disk blocks can be read in a single 

operation instead of reading at single block sizes. It does this by partitioning the file system into block 

groups, allocating files in same block groups as their inodes and the inodes themselves are stored in 

same block group as their parent directories for non-directory files. Directory files are kept in different 

block groups where possible. These policies ensured that related information are kept together and 
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disk contents are spread around disk groups and subsequently across the disk (Silberschatz et al., 

2013). 

Ext4 is the latest iteration of the Linux file system. It has some advantages over ext3. It supports a 

maximum individual size ranging from 16GB to 16TB and an overall maximum file system size of 1 EB. 

Directories can contain more than 64,000 subdirectories and there is an option to turn off journaling 

as the overhead might not be required on simple systems. Before Ext4, these systems typically used 

the older ext2 file system to avoid journaling (Linux Kernel Organization, 2016; Tanenbaum & Bos, 

2014). 

Extents are the significant new addition to ext4. Ext3 keeps track of allocations (file data to block 

group) by maintaining a bitmap of free blocks in a block group. Journaling is also done at block level. 

This can be inefficient for bigger files hence the use of extents by ext4. An extent is contiguous 

sequence of blocks that indicate the data in a file. Instead of tracking a pointer to each data block that 

a file inhabits, extents keep a pointer to the start and end or size of the data block consumed by file. 

Entries are kept for extents and multiple extents can represent a file if a contiguous allocation of blocks 

is not available. Tracking at extent level often means that there is less overhead for journaling as 

extents for a file are monitored not each data block of the file. Ext4 is the default file system in new 

installations for most Linux operating system distributions (Linux Kernel Organization, 2016). 

The process file system is a special file system that does not store data permanently but instead 

changes its contents stored in the /proc directory dynamically based on the state (command line, 

environment variables, signals, masks) of the processes running on the system. Each running process 

has a directory in /proc and the file contents are a representation of the process states. Inode numbers 

are 32 bits long and PIDs are 16 bits in size. The first 16 bits of the inode of the files in the /proc 

directory are the 16 bits of the PID of the process while the remaining 16 bits define other information 

about the process. As PID 0 does not exist, the inodes with the PID field value of zero report global 

information about the system such as the kernel version and operating statistics (free memory, CPU 

load, I/O utilisation, device drivers running etc). The /proc/sys directory provides access to the kernel 

variables and values in American Standard Code for Information Interchange (ASCII) decimal can be 

read and written to these variables. The system call sysctl can be used to edit these values by passing 

binary numbers to set and unset a parameter (Tanenbaum & Bos, 2014). 

2.3.2 Forensic Artefacts  

This section is a review of parts of the Linux system that can be checked for indicators of compromise 

when the presence of malware is suspected. The log files, the binary file structure and memory and 

configuration files are discussed below. 

2.3.2.1 Log files 

Log files are a record of the activities on the system by users and processes. System services and 

daemons have their respective log files to report on the activities of the services as well as errors if 

there are any. Log files are a good indication of the state of the system and are usually modified by 

attackers to hide their activities whenever possible. Log file sizes and archive settings indicate how 

long the system keeps a process’ log files. With respect to system integrity, log files can be divided 
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into user activity logs, and system logs comprising of application and process files (Malin, Casey, & 

Aquilina, 2008).  

The user activity logs are files that hold user related information on the system. Examples are 

/var/run/utmp, /var/log/wtmp, /var/log/lastlog, /var/log/btmp files that store information about 

current logged on users, historical logons within a log rotation period, last time all users logged on to 

the system and all failed logon attempts respectively. These files are binary, not world-readable files. 

They are less prone to being altered to conceal a specific activity. They can be deleted with the 

appropriate privileges and the executable files that generated them can be altered to give false 

outputs; however, these would serve as definite signs of intrusion. Every user has a command history 

file listing all commands entered on the shell by the user. This file is text editor modifiable with the 

right access and it does not have  time stamp information (Malin et al., 2008; Nelson, Phillips, & 

Steuart, 2014). 

Application and process logs are logging files in the /var/log file directory tree. These are system log 

files that give information about specific processes. A web server like Apache for instance logs 

information about its operations, the requests it is handling and any errors either system or user 

related ones that it encounters. Depending on distribution, these files can be stored in the 

/var/log/apache2 or /var/log/httpd directories or any other location determined by the administrator. 

Each log entry is time stamped and it indicates the facility (the part of the Linux system the message 

concerns for example auth and kern represent for authentication and kernel related logs respectively) 

that generated it, the severity, a descriptive message among other bits of text. These files are plain 

text also and they can be manipulated with the right access permissions (Malin et al., 2008). 

2.3.2.2 Memory 

Memory images of a live system hold information about the activities of system users and processes 

as well as malware events. Open network sockets, encryption keys, time stamps of system calls are 

some of the information available in memory images that are useful during investigation of malicious 

activities on a system (Malin, Casey, & Aquilina, 2013). 

Memory forensics involve acquisition and analysis. (Ligh, Case, Levy, & Walters, 2014) identified three 

historical schemes for memory acquisition on Linux based systems - the /dev/mem and /dev/kmem 

device files and the ptrace (Linux Programmer's Manual, 2016) system call. These methods were only 

viable on 32-bit systems. The /dev/mem device was made available to tools like dd and cat for reading 

and writing. It allowed export of physical memory which potentially contained protected areas, device 

memory and the unmapped physical addresses of memory presenting the risk of memory corruption. 

Its acquisition capability was limited to the LOW_MEM region (896 MB). /dev/kmem exported kernel 

virtual address space with the attendant risk of exposing kernel space to user space applications, giving 

rise to the possibility of memory corruption. The risks to system stability presented by /dev/mem and 

/dev/kmem is the reason for disabling them by default on most recent distributions. The ptrace system 

call dumps the memory image of the process under investigation not the complete memory footprint. 

It gets the process memory footprint from /proc/<pid>/maps file and dumps the pages to disk. 

Forensically, It is only suitable in cases where a process memory footprint is under investigation (M. 

H. Ligh et al., 2014).  

Fmem is a kernel module that creates a character based device driver /dev/fmem when loaded. This 

presents a view of physical memory by reading the /proc/iomem file to get the memory allocation 
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layout so that investigator can avoid device memory and unmapped addresses.  Linux Memory 

extractor, LiME (504ensicslabs, 2017) is another kernel module but it does not create a user mode 

device driver interface thereby improving accuracy by avoiding user space and  kernel space 

interactions and  context switch during acquisition (Ligh et al., 2014).  

The use of the /proc/kcore file avoids the need to have a loadable kernel module for memory 

acquisition. The kernel keeps a mapping of its virtual memory address space in the /proc/kcore file. 

On 64-bit systems, since all physical memory is in kernel virtual memory, the complete picture of the 

physical memory can be gleaned by exporting the /proc/kcore file. There are limitations with this 

method on 32-bit systems because on such systems only the first 896 MB of physical memory is 

mapped to the kernel virtual memory. Linux systems have different memory map and data layout 

structure depending on kernel version hence the need for loading specially compiled kernel modules 

for the target system when using the Fmem and LiME kernel drivers for memory acquisition. The use 

of the /proc/kcore file for acquisition while avoiding this compilation, merely moves the requirement 

of getting the kernel profile to the analysis phase from the acquisition phase. The analysis of kernel 

memory dump acquired using the export of /proc/kcore file involves getting a suitable kernel memory 

map profile of the target system based on the Linux kernel version in use (Case & Richard, 2017). The 

/proc/kcore file needs to be enabled in the kernel for this acquisition to be possible; however, this is 

enabled by default on most stock Linux operating system distributions (Ligh et al., 2014). 

2.3.2.3 Executable and Linkable Format 

 

Figure 2. 7 ELF File Structure adapted from (Tool Interface Standards Committee, 2001) 
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Executable and Linkable Format (ELF) is the executable format of the Linux file system analogous to 

Windows executable (exe) and dynamic link library (dll) files. It is the format for user applications, 

shared libraries, core dump files, kernel modules and the kernel itself. An object using ELF format 

consists of an ELF header followed by program header table and or section header table or both. The 

ELF header is always at offset zero of the file. The section and program header table’s offset are 

defined in the ELF header. They describe specifics of the file.  The ELF header has fields indicating the 

magic number or file signature of the executable e_ident. This can be searched in the memory dump 

to indicate the beginning of executable program execution, processor architecture and word format 

big or little endian. The e_type field indicates whether the file is a relocatable, executable, shared 

object or core file (Tool Interface Standards Committee, 2001).  

The ELF file consists of sections and segments which are indexed by Section Header Table (SHT) and 

Program Header Table (PHT) respectively. PHTs are important for executable and shared object files 

as they describe how a process image that is loaded onto the system memory should be built. They 

are important at program runtime. This is shown in the loading and runtime view of Figure 2.7. 

Sections hold information about program linking - instructions, data, symbol table and relocation 

information so they are important to relocatable files. They are important at compile time and files 

used during program linking must have SHT as illustrated in the compilation and linking view of Figure 

2.7.  Shared libraries are functions and variables dynamically loaded to other executables or shared 

libraries. They are typically stored on disk as .so files. They are primarily used so that the need to create 

static links in programs is avoided, thereby reducing the memory size of a program (Tool Interface 

Standards Committee, 2001).  

 

Figure 2. 8 Function call address resolution adapted from (M. H. Ligh et al., 2014) 

The concept of shared libraries can be exploited by attackers to cause harm. This is because when a 

program is created as position independent, it cannot have absolute virtual addresses for the global 

variables and shared library functions it uses. The global variables are referenced as an offset to the 

ELF headers in the Global Offsets Table (GOT). GOT is a list of symbol addresses that cannot be 

computed at runtime. A program references the GOT at runtime to resolve the virtual address for the 

global variable. The Procedure Linkage Table (PLT) is used to resolve the address of functions from 

shared libraries that cannot be resolved at runtime. Each entry in the PLT is a reference to an offset in 
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the GOT which specifies the virtual address to the function call. If the function call has not been called 

before, the GOT’s entry will point back to the resolver routine in PLT which is a call for the dynamic 

loader to locate the virtual address of the function call which is then populated in the GOT for 

subsequent calls. The foregoing is illustrated in figure 2.8. Attackers can manipulate the entries in GOT 

thereby forwarding library functions calls to malicious code (Ligh et al., 2014)  (Malin et al., 2013). 

2.3.2.4 Configuration files 

The configuration files for the system, applications and services are stored in the /etc file system. They 

contain the settings for the system and the services. Examples are /etc/ssh directory for the Secure 

Shell (SSH) service configuration files, /etc/shadow file for the configured users on the system, 

/etc/group file for the groups on the system. The content of these files in the /etc directory are an 

important point for investigation because they can be altered by attackers. Unexplained alterations 

to these files are an indication of compromise. Examples are unexpected user entries and blank root 

password in /etc/shadow as well as changes in /etc/ssh directory files making it more permissive for 

remote access (Nelson et al., 2014). 

2.4 Malware Analysis 

The study of malware specimen code and behaviour in an isolated environment is an important 

undertaking to get a complete understanding of the extent of damage it may have caused during a 

breach. This study also assists in prevention of repeat attacks especially from variants and incarnates 

of the one under analysis. Working on the assumption that a lot of existing malware are a result of 

polymorphic and metamorphic variants of older ones, analysis can provide protection vectors beyond 

the signature based detection strategies (Bayer, Kirda, & Kruegel, 2010). 

Malware analysis is a key function of security research organisations, malware prevention software 

vendors and information security incident response firms.  Anti-virus signature updates, software 

patches and anomaly heuristics engines are products of malware analysis (Sikorski & Honig, 2012).   

2.4.1 Static Analysis 

Static analysis is a form of code analysis that requires an in depth knowledge of CPU architecture and 

instruction as well as programming (Sikorski & Honig, 2012). This form of analysis is a walkthrough of 

malware source code if available although some disassembly, debugging and sometimes decryption 

might be necessary. Static analysis can be applied to different forms of programs, source code and 

program binary. A common method of static analysis involves function parameter analysis speculating 

on possible values of function arguments values and types to predict possible effect and 

consequences. Another technique for analysing binary representation of code involves identifying 

library functions and the point they are called in the code. From these function call graphs, the intent 

of the code can be discovered (Egele, Scholte, Kirda, & Kruegel, 2012).  

Static analysis has the advantage of being impervious to conditional code execution and file level 

tweaks that can thwart or influence dynamic analysis (Bayer et al., 2010). This is because all modules 

and functions of the code can be stepped through and explored during the analysis. Apart from the 

manual intensity of static analysis, steep learning curve and specialised knowledge required, the other 

limitation of static analysis is that it comes unstuck in the presence of code obfuscation, runtime 

packing and encryption (Tian, Islam, Batten, & Versteeg, 2010). It struggles with packers that self-
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modify code as well as code that depend on dynamic values like current date and time (Egele et al., 

2012). 

2.4.2 Dynamic Analysis 

Dynamic malware analysis involves code execution in a secure and isolated environment (Egele et al., 

2012). This execution can be a virtual machine or isolated system. The analysis involves an examination 

of the behaviour of the malware. It has the advantage of being unaffected by runtime packing and 

code obfuscation. Dynamic analysis lends itself to automation and scripting for large scale analysis 

(Oktavianto & Muhardianto, 2013). Dynamic analysis monitors the system under investigation for 

system calls, filesystem changes, dynamic link libraries and modules, logs and registry file changes 

while malware execution is ongoing. The result of changes observed give an indication of the workings 

of the malware under observation (Willems, Holz, & Freiling, 2007). 

Its shortcomings include possible failure to explore the full gamut of the malware if there are 

conditional hooks in the code preventing it from executing a specific procedure because of an unmet 

condition (Bayer et al., 2010). There is also a limitation of time. Some malware might not run all the 

time or within a specific time interval. The foregoing make it possible for dynamic analysis to miss 

characteristics of the malware sample because a single run might turn out to be inadequate to 

evaluate the full impact (Provataki & Katos, 2013a). Other challenges to dynamic analysis are anti-

analysis features like sandbox detection and anti-dumping (Zoltan, 2016) and (De Andrade, De Mello, 

& Duarte, 2013).  

 A technique for dynamic analysis is use of function hook to record the activities of functions called by 

malware at a high level. These functions are usually a part of APIs and system calls. This method will 

not work for a kernel mode malware. Where there is source code access, hooking can be done by 

specifying the hooking function where the monitored calls are invoked. For binary access, debuggers 

can be used to monitor the program execution by adding breakpoints to the call instructions or 

monitored functions giving debugger access to the memory areas and the state of CPU registers for 

the running process. Another function hooking method, for dynamic analysis, involves manipulating 

the binary execution in such a way that calls to the monitored library functions are passed to the 

hooking functionality first by manipulating the virtual addresses of call instructions in memory so 

instead of executing the instructions in at those addresses, the hooking functions is invoked instead, 

giving visibility to function parameters and arguments (Egele et al., 2012). 

2.5 Related Work 

This section is an overview of existing studies related to evaluation of open source sandboxes for 

analysing Linux malware. These works can be divided into works that evaluate existing malware 

analysis solutions and those that do an analysis of Linux malware samples. The former explores the 

position of sandboxes in malware analysis process, surveys of malware sandboxes and other tools in 

the analysis process. The latter is a review of analysis of existing research activities on analysis of Linux 

malware samples. 

2.5.1 Survey of malware analysis solutions 

The subsections below are a review of existing literature that have undertaken a survey or an 

evaluation of malware analysis solutions. This discussion is divided into the components of malware 
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analysis systems, the explosion of malware variants - metamorphic and polymorphic malware, the 

effects of anti-analysis techniques and the implementation of sandbox solutions with respect to 

indicators of compromise. 

2.5.1.1 Components of analysis systems 

(Wagner et al., 2015) listed the components of malware analysis systems as data providers and 

analysis environments. The data providers are standalone tools or packages used for static and/or 

dynamic analysis of malware samples. These are tools such as code debuggers, like GDB, IDA, Radare2 

used for static analysis and Volatility, Rekall for memory (dynamic) analysis. Packages are self- 

contained analysis environments like Cuckoo and ThreatAnalyzer. Dynamic analysis is reliant on the 

analysis environment which can be bare metal, virtual machines or emulated environments. (Wagner 

et al., 2015) reviewed an on-site 2010 installation of Anubis, FireEye MAS 6.40, 2013 version of Joe 

Sandbox, Process Monitor 3.1, API Monitor v2 r-13. The online public front ends of Malwr (Built on 

Cuckoo), ThreatAnalyzer and Anubis were also evaluated. The data samples for evaluation were the 

Windows portable executable and dynamic link library files, Uniform Resource Locators (URL), 

Portable Data Format (PDF) files. The data providers were tested for their ability to accept single and 

batch file submissions, analysis environment support – bare metal, virtual machines or emulated 

hypervisors. The analysis operations capabilities (file system, Internet and simulated networks 

services, system calls) of the tools were also examined as well as the reporting options available. 

The capabilities of malware analysis systems can be extended with the addition of machine learning 

libraries. These serve to train systems for malware detection and classification. The output of data 

providers were used with the machine learning algorithms to build these systems (Shah & Singh, 

2015).  (Shah & Singh, 2015) and (Boukhtouta, Mokhov, Lakhdari, Debbabi, & Paquet, 2016) in their 

experiments used the output of dynamic analysis of malware samples and benign files to train systems 

for automated malware detection and classification. In (Shah & Singh, 2015), the extraction of  

prominent API calls from the execution of benign and malicious files were used as input to linear 

Support Vector Machines (SVM) library. (Boukhtouta et al., 2016), using the ThreatTrack online 

sandbox for deep packet analysis and examination of flow packet headers in malicious network traffic, 

trained a system using J48 machine learning algorithms. Benign traffic was sought from the Internet 

Service Provider edge and customer traffic.  

(Egele et al., 2012) undertook a survey of dynamic malware analysis tools and sought to evaluate them 

using mode of analysis – user mode, kernel mode, full system simulation or emulation, virtual machine 

monitoring etc. Process level, API calls, network, file system operations support was also examined. 

Some of the systems evaluated are Anubis, Joebox, CWSandbox, Norman Sandbox and Ether. 

2.5.1.2 Malware variants and automated analysis 

The need for automated analysis of malware samples was also raised in (Shah & Singh, 2015). This was 

in response to the impracticality of the manual analysis with respect to the rate of malware samples 

being discovered and the possibilities afforded by the alteration of existing samples through 

polymorphic and metamorphic means. These variants are undetected by signatures written for the 

original samples. Polymorphic variations are created by inclusion of mutation engine in malware. This 

engine serves acts on the rest of the payload to produce the original sample at run time. The engine 

logic can sometimes involve encryption/decryption. In metamorphic alterations, the executable code 

is adjusted by adding dud functions or re-arranging existing functions. Both methods serve to render 
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pattern matching discovery ineffective (Shah & Singh, 2015). Metamorphic variants are more difficult 

to discover because while in polymorphism, the executed code is exactly same in content (when tested 

with cryptographic hash functions) as the original sample after the action of the mutation engine, 

metamorphism introduces changes to code that do not affect the functionality but the appearance 

(You & Yim, 2010). The foregoing is the motivation behind research works aimed at automation of the 

analysis process, detection of similarities between malware samples and introduction of machine 

learning libraries into the analysis process.  

(Sarantinos, Benzaïd, Arabiat, & Al-Nemrat, 2016) examined the efficiency of fuzzy hashing techniques 

to detect similarities between different malware samples. This technique involves a process known as 

Context Triggered Piecewise Hashing (CTPH) which is a combination of traditional cryptographic 

hashes, rolling hashes and piecewise hashes. SSDEEP proposed by (Kornblum, 2006) was found to fast 

and effective with respect to running time in the absence of unspecialised hardware. SDHASH was 

found to be the most effective in malware detection. Other tools evaluated were mvHASH, MRSH v2. 

(Azab, Layton, Alazab, & Oliver, 2014) demonstrated the use of the Trend Locality Sensitive Hashing 

(TLSH) algorithm to group binaries of similar variants together. It was found to be almost as effective 

as SDHASH. NILSIMSA and SSDEEP were the other hashing techniques compared. The TLSH algorithm 

uses the K-Nearest Neighbours (K-NN) algorithm, a simple supervised machine learning classification 

algorithm for grouping objects based on similar training instances in the feature set. 

(Choudhary & Vidyarthi, 2015) proposed a system for detection of metamorphic malware by using the 

output of dynamic analysis to a text mining function implemented using Support Vector Machine from 

WEKA machine learning suite. This was used to build a classifier using the process states of malware 

samples and benign files as training data. The analysis was done using the Process Monitor tool from 

Microsoft SysInternals suite. 

(Nataraj, Yegneswaran, Porras, & Zhang, 2011) and (Han, Lim, Kang, & Im, 2015) proposed workflows 

that incorporated repeatable and automated processes by converting malware binaries into images 

and graphs with the resulting classification based on the output image texture. Benign files and 

malware samples were put through this process. The malware samples used for training already had 

classification from VirusTotal and Kaspersky Antivirus engine. The test of effectiveness was done with 

dataset from VX-heavens. This method is based upon work by (Nataraj, Karthikeyan, Jacob, & 

Manjunath, 2011) aimed at malware classification at scale using image texture. The research noticed 

that for grey-scale images, samples from the same malware family exhibited similar patterns and 

texture.  

(Sebastián, Rivera, Kotzias, & Caballero, 2016) presented AVCLASS as a solution to the challenge of 

associating malware samples to a family. This tool removes the reliance on generic names when 

labelling a malware sample or identifying its family. It leverages on the combination of the malware 

sample size in the VirusTotal repository as well as the participating malware detection engine for 

which the repository aggregates output. The label assignment is based on the labels adopted by the 

detection engines. The solution has been evaluated on ten datasets of 8.9 million malware samples. 

2.5.1.3 Anti Analysis 

(Ferrie, 2016) acknowledged the importance of emulators to dynamic malware analysis classifying 

emulators into hardware, hardware assisted and software emulators. Malware analysis evasion 

techniques and possible mitigation activities were catalogued. The environments used in the 
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experiment were VirtualPC, VMware, Parallels, Bochs, Hydra and QEMU. Software emulators such as 

QEMU were identified as most transparent with the ability to cause uncertainty within the logic of the 

evasion techniques about the presence or otherwise of emulation. The use of software emulators can 

when tested by anti-analysis logic give similar output as routine CPU errors making detection logic 

unreliable. The observation of the growing use of cloud infrastructure with more systems being 

deployed on emulated virtual environments also reduce the impact of malware evasion techniques as 

malware will have fewer platform options and smaller execution footprint for operation if anti-

virtualisation procedures are included. 

(Kirat, Vigna, & Kruegel, 2014) proposed BareCloud which unlike other automated malware analysis 

systems, runs on transparent bare-metal native operating system analysis environment. It 

incorporates different analysis platforms like Ether in bare metal form and Anubis in emulated QEMU 

environment and Cuckoo using Virtualbox for virtualisation based malware analysis. It does not rely 

on snapshots taken before and after as it does not performed monitoring within the guest analysis 

client making it unable to detect non-persistent changes. While it can detect anti-analysis behaviour, 

it is unable to force malware execution.  

Using the Trojan upcliker.exe, (Mehra & Pandey, 2016) tested the effectiveness of sandboxing 

techniques in presence of malware anti-sandboxing in form of Human Computer Interaction (HCI). 

Anubis and Malwr were tested with a decidedly unnamed proprietary suite used as control. While 

Anubis did not discover the malware, Malwr could detect changes to the file system and identify the 

Trojan as malware. The commercial tool had a more comprehensive report. 

(Yokoyama et al., 2016) in their reconnaissance on online sandboxes, sent malware samples to online 

sandboxes with the objective of obtaining information about their internal operations to prevent 

malware from executing in the presence of those unique conditions. Virtualisation was used to allow 

creation of snapshots for pre- and post-execution comparison. The research focussed its discussion 

on windows because of its popularity.  

In (Provataki & Katos, 2013b), it was concluded that different executions of a malware sample yielded 

different results. This test was done comparing a local Cuckoo installation with online malware 

analysis sandboxes such as Anubis (Anubis, 2015), GFI Sandbox (GFI Software, 2017), Comodo and 

Cuckoo-based Malwr (Malwr, 2016) by dropping the Trojan ‘Trojan-Dropper.Win32.Xpaj.a’. Anubis 

and Cuckoo identified the malware while GFI and Comodo did not. Multiple runs of the malware on 

the local Cuckoo installation with three Windows operating systems as the sandboxes revealed 

different file changes with each run.  

(Noor, Abbas, & Shahid, 2018) proposed the Analysis Evasion Malware Sandbox based (AEMS) based 

on Cuckoo analysis sandbox. This system is specifically targeted at malware written to evade analysis. 

This system modified Cuckoo with the inclusion of a dynamic link library on monitoring station to allow 

for the detection of anti-analysis techniques. When these techniques are discovered during analysis 

of a malware samples, the execution of the malware sample is forced. 

2.5.1.4 Sandboxes and Indications of compromise 

Sandboxes are isolated environments for the execution of malware samples for analysis and research. 

They form important components of malware analysis service and malware security appliances. 

Malware analysis services are a combination of sandboxes offered as a service portal for receiving 
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malware submissions. They can be public or private portals. These services can share samples and 

they use cryptographic hash functions to uniquely identify samples. Malware security appliances are 

used to protect end points by dynamic analysis of unknown samples with embedded sandboxes 

(Yokoyama et al., 2016). (Vasilescu, Gheorghe, & Tapus, 2014) demonstrated a distributed firewall 

solution integrated with Cuckoo (Cuckoo Foundation, 2015) for automated malware analysis of 

malicious Uniform Resource Locators (URLs).  Three virtual machines were spawn for the automated 

testing – Ubuntu, Windows XP and Windows 7. It was found that the results of automated analysis 

was comparable to that derived from performing a manual analysis using a Windows XP virtual 

machine running Volatility (The Volatility Foundation, 2014) for memory analysis, DumpIt (Suiche, 

2016) for memory acquisition and IDA (Hex-Rays, 2016) for code disassembly but considerably faster. 

Willems, Holz, & Freiling, (2007) demonstrated CWSandbox, an automated dynamic malware analysis 

platform for WIN32 family of malware using API hooking and DLL code injection to avoid detection. It 

saves the state of the sandbox system before malware execution and compares this state to the post 

execution state. A plugin Cuckoo profiler was added to the standalone Cuckoo installation to speed 

up the discovery of the changes in the guest operating systems. The design and implementation of 

TTAnalyze was described in (Bayer, Kruegel, & Kirda, 2006). This system used the QEMU emulator to 

monitor Windows system and API calls made by the malware sample under observation. 

Another approach to automated malware analysis makes uses of CPU virtualisation extensions and 

purpose built virtual machine monitors running at a higher privilege level by booting with the host 

operating system. These monitors can intercept system calls on the guest operating systems used for 

malware analysis transparently to avoid detection by malware. This method was used in (Dinaburg, 

Royal, Sharif, & Lee, 2008), (Nguyen et al., 2009) and (Deng, Xu, Zhang, & Jiang, 2012). (Dinaburg et 

al., 2008) demonstrated Ether, a solution based on the Xen hypervisor that used the Intel VT CPU 

virtualisation extensions to monitor Windows API and system calls during malware behaviour analysis. 

(Nguyen et al., 2009) implemented a dedicated virtual machine monitor for malware analysis MAVMM 

using the AMD SVM as hardware virtualisation to monitor malware behaviour on Ubuntu 8 guest 

operating system. Using ninety-three (93) real world Windows viruses, (Deng et al., 2012) 

implemented IntroLib using the KVM hypervisor to intercept the interaction between malware code 

and operating system library code. Based on the same principle used in Ether and MAVMM, IntroLib 

was found to have lower overhead. 

The use of a combination of static and dynamic analysis output as learning features for machine 

learning libraries was employed in (Islam, Tian, Batten, & Versteeg, 2013) and (Shijo & Salim, 2015). 

In the former, static examination was done using IDA pro to get total length of all functions in the 

malware executable as well as printable string information. These features were combined with 

dynamic analysis features from API logs using the API feature extraction tool from the virtual 

environment. An application was built to interact with the WEKA machine learning library using the 

features from the analysis to classify malware. The malware samples were obtained from CA Vet zoo.  

Using malware samples from VirusShare and dynamic analysis performed on Cuckoo sandbox running 

on Ubuntu 10 with Windows guests on VMware, the latter extracted API call logs and combined with 

static features in form of printable string information obtained using the strings utility, developed a 

classification system using SVM and random forest algorithms. 

(Neugschwandtner, Comparetti, & Platzer, 2011) implemented SQUEEZE integrated with Anubis to 

observe Domain Name System (DNS) traffic during dynamic analysis of malware samples. The 

objective was to detect failover activities of Command and Control (C2) servers in botnet attackers in 

the face of takedown attempts. It explored the execution path malware explores when the primary 
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path is blocked. The logic for failover is run by ensuring a forced execution of malware domain 

generation algorithm. 

With dataset from VirusShare, (Tirli, Pektas, Falcone, & Erdogan, 2013) presented Virmon as an 

analysis system that is effective for current Windows operating systems on 64-bit architectures. This 

is in response to the trend of testing malware with older Windows operating systems on 32-bit 

architecture. Virmon analyses malware samples by monitoring host based features like file system, 

registry, process interactions and network features such as DNS requests that the malware droppers 

might be making to reach the command and control centres. (Pektaş & Acarman, 2017) proposed a 

system for classification of malware families based on runtime behaviour. This system made use of 

Virmon and Cuckoo sandbox to extract run time behaviour features - API calls and registry changes. 

Malware sample labelling was done with VirusTotal with the samples divided into training and test 

set. 

(Aslan & Samet, 2017) tested local and online sandboxes in conjunction with standalone static and 

dynamic analysis tools like PEiD, PEview, PE Explorer, MD5Deep, Process Explorer, Process Monitor. 

The local sandbox installations tested are Cuckoo, CW Sandbox, Norman Sandbox, Droidbox, while the 

online sandboxes tested are VirusTotal, ThreatExpert, Malwr. Jotti’s Malware Scan. The malware 

samples were tested on Window 7 and Windows 10 Virtual machine instances. It was found that using 

a combination of these tools yielded better results than individual use of the tools. The best 

combination comprised of Cuckoo sandbox, IDA Pro, PEiD, PEview, Process Monitor, Wireshark, Malwr 

and VirusTotal. 

(Tsyganok, Tumoyan, Babenko, & Anikeev, 2012) sought to classify polymorphic and metamorphic 

malware samples based on the features exhibited during dynamic analysis. Cuckoo framework with 

Windows virtual machine guests was used for classification of Windows portable executable files. 

Cuckoo was used to extract operating system and network interactions, file system changes and code 

injections.  

2.5.2 Analysis of Linux Malware Samples 

Machine learning methods were applied to detecting Linux malware in (Mehdi, Tanwani, & Farooq, 

2009), (Shahzad & Farooq, 2012) and (Asmitha & Vinod, 2014). While (Mehdi et al., 2009) investigated 

the process memory image and used the task struct data structure as classification criteria, (Shahzad 

& Farooq, 2012) and (Asmitha & Vinod, 2014) investigated the ELF file structure. The former based its 

classification on 383 features of the ELF file headers and using 709 Linux malware samples from VX-

heavens (VX Heaven, 2017) recorded 99% accuracy in malware detection without resorting to 

signatures, making it effective for zero-day malware detection. The latter used the systems calls 

invoked during the execution of an ELF file as classification criteria and this scheme recorded 97% 

accuracy using Linux malware samples from VX-heavens.  

(Pa et al., 2015) proposed IoTPOT and IoTBOX targeted at malware analysis of Internet of Things (IoT) 

devices. The former is high interaction honeypot supporting multiple architectures and IoTBOX is 

sandbox supporting cross compilation to multiple platforms using QEMU for device emulation. IoTPOT 

as a honeypot emulates Telnet services of various IoT devices to allow detailed analysis of an on-going 

attack. IoTBOX, using QEMU emulator supports analysis of malware on eight (8) different CPU 

architectures, namely as MIPS, MIPSEL, PPC, SPARC, ARM, MIPS64, sh4 and X86. 
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(Damri & Vidyarthi, 2016) in their survey of techniques used for dynamic analysis of malware samples 

written for the Linux operating identified five (5) approaches. These approaches are based on the 

system call, process control block, ELF, kernel and hybrid investigation which is a combination of any 

of the other four methods. The investigated literature used strace tool to investigate the system calls, 

arguments and return values. The process block is the runtime state of the process in task_struct 

containing the user and group identity of the process owner, memory information, file system 

information, process signals, open files and network sockets. Features of the ELF header in the 

execution state were used in some of the surveyed literature to differentiate between malicious and 

benign programs. Files in the /proc file system like the /proc/meminfo and /proc/cpu were used to 

extract information about the kernel state which some of the evaluated works used to detect the 

presence of malware. 

(Asmitha & Vinod, 2014) proposed a system call based investigation technique for malicious activity 

detection. This involved a system call logger and extraction of useful function calls. This was used with 

malware from VX-Heavens. The malware samples were divided into training set alongside benign 

samples from the /bin directory and test set to ascertain the effectiveness of the algorithm. 

With 10,548 Linux ELF malware samples sourced from VirusTotal, (Cozzi, Graziano, Fratantonio, & 

Balzarotti, 2018) identified challenges associated with Linux malware analysis such as variety of 

possible CPU architectures, deliberate obfuscation techniques such as file header manipulation and 

packing. Challenges with shared libraries and dynamic linking were also mentioned. The samples were 

subjected to a series of processing steps involving investigation of file metadata, static and behavioural 

analysis. The file utility was used to determine the file types, the readelf binary was used for file 

metadata analysis and AVCLASS (Malicia Lab, 2018) was used to label the samples by antivirus families. 

IDA Pro debugger (Hex-Rays, 2016) and Radare2 (Radare, 2017) were used for the static analysis step 

while dynamic analysis was carried out using SystemTap (Sourceware, 2018b) to investigate file 

system interactions, systems calls during execution of the samples in KVM (Openshift, 2018) and 

Qemu (QEMU, 2017) CPU emulators. Malware samples written for x86, x86-64 were executed with 

the KVM emulators while 32-bit MIPS, PowerPC and ARM architectures were executed using Qemu. 

The experiments revealed the differences within malware families in terms of obfuscation techniques 

and access privileges required to run the malware samples. The methods malware authors employ to 

ensure persistence of malicious code and the frequently requested system calls, libraries and 

commands were also determined.  

Curated lists of automated malware analysis sandboxes and online services from (Shipp, 2018) and 

(Zeltser, 2017a) have only five tools for Linux malware analysis from a combined list of 42 tools. The 

five tools are REMnux which is used in SANS malware analysis course (SANS, 2017), Cuckoo sandbox 

Limon, Detux and Tencent HaboMalHunter. (Monnappa, 2015) presented Limon at the Blackhat 

Europe 2015 conference (UBM Tech, 2015). In the conference, the static and dynamic memory 

analysis of the tsuna/httpd.txt (voip scanner - binario elf) ELF malware sample was demonstrated. 

Tencent HaboMalHunter sandbox is the open source standalone version of the Tencent Habo 

analysis portal that has been integrated with VirusTotal (VirusTotal, 2017). It is a subproject of the 

Tencent Malware analysis platform (Tencent, 2018). 

2.6 Research Goals 

The previous section is a summary of the current literature and the contributions they have provided. 

The discussion of the indications of compromise and the use of sandboxes for malware analysis has 
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been dominated by research related with analysis of Windows portable executable malware samples. 

In the exception above, (Vasilescu et al., 2014) analysed malware on an Ubuntu guest to show that 

employing sandboxes for automatic analysis is faster and as effective as manual analysis. The existing 

research on Linux malware analysis have been predominantly focussed on the use of individual tools 

or data providers like readelf, strings utility and strace. The output of these tools was used as training 

data for machine learning algorithms and libraries.  

The objective of this research is an investigation of the malware analysis sandboxes that are known to 

support Linux ELF binary malware analysis to determine their relative capabilities. This research is 

focussed on the issues raised in the previous section with respect to the evaluated sandboxes’ 

effectiveness in detecting compromise, resistance to anti-analysis as well as the level of support for 

automation and reporting. The relative effectiveness is evaluated, considering the static and dynamic 

analysis capabilities of the tools. Static analysis is used to determine if samples match signatures of 

known malicious files and if anti-analysis tools such as packers and morphing engines are used.  

Dynamic analysis determines the ability of a sandbox to spot indications of compromise after memory 

analysis, and investigation of network traffic and operating system interactions such as system calls 

and file system operations. The reporting and automation support is also investigated. 

From the previous subsection, five sandbox environments were identified and this research focuses 

its comparison on the five packages. They are Cuckoo, Limon, REMnux, Detux and HaboMalHunter. 

The analysis is done with the latest Linux kernel version – 4.4. In the next chapter, the approach to 

this comparison will be undertaken with a discussion of the research design decisions and the testing 

methodology.  

 

 

  



29 

 

3 Research Design 

3.1 Introduction 

This chapter details the research methodology and the reasons for the design decisions. Malware 

analysis requires acquisition of data samples for testing and a process for testing (Wade, 2011). The 

next section is a discussion of the approaches other researchers have employed in the acquisition and 

testing of malware samples. It follows from the concluding sections of the previous chapter that 

reviewed the related literature on the theme of malware analysis tools. The third section highlights 

the approaches adopted for acquisition of malware samples in this research. The testing process is 

described in the fourth section. A restatement of the research objectives concludes this chapter. 

3.2 Review of malware analysis methodology 

Testing malware and evaluating malware analysis sandboxes requires access to malware samples and 

the implementation of a testing environment. This section reviews the approach similar research 

efforts have taken to source malware samples as well as the methods used for testing the malware 

samples. 

3.2.1 Sourcing malware samples 

Two approaches have been used in the acquisition of sample data for malware analysis. The first 

approach involves the use of honeypots and entrapment systems. These are systems that are designed 

to attract potential attackers to get an understanding of contemporary threats at the time of 

deployment (Guarnizo et al., 2017).  They can be classified based upon the level of interaction 

permitted (Mokube & Adams, 2007) or by deployment purposes (Mairh, Barik, Verma, & Jena, 2011). 

With respect to level of interaction, they can be further classified as high or low interaction honeypots. 

The purpose of deployment can be research related or as a permanent fixture on a production 

network to serve as an early warning device for detection of vulnerabilities and exploits. (Rieck, Holz, 

Willems, Düssel, & Laskov, 2008) and (Vasilescu et al., 2014) employed spam traps and honeypots to 

acquire malicious emails attachments and URLs in their investigation of patterns for classification of 

malware and comparison of manual and automated malware analysis respectively. In their 

investigation of malware samples that they considered as being under-investigated (64-bit Windows 

portable executables and Dot Net/Mono files), (Botacin et al., 2017) extracted sample Dot Net files 

from email attachments. 

The other method for sourcing malware samples requires the use of public and private malware 

repositories. These are portals that accept malware samples from members such as researchers, anti-

malware vendors and partners. They classify these samples and generate cryptographic and fuzzy hash 

functions of these samples to detect if they are the same or similar samples to previously uploaded 

ones. They provide search and download functionality of varying access levels to different categories 

of users. Some require membership or registration (free or fee-based) (Zeltser, 2017b) (Shipp, 2018). 

In the research by (Mehdi et al., 2009) and (K. Asmitha & P. Vinod, 2014), the training data for the 

malware processes that formed input to the machine learning libraries were sought from VX Heaven 

(VX Heaven, 2017). Malware samples from VX Heaven and Offensive Computing (Offensive Security, 

2017) were used by (Shahzad & Farooq, 2012), (Deng et al., 2012) and (Shahzad, Shahzad, & Farooq, 
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2013) in their investigation of Linux ELF binary headers, operating system calls and kernel data 

structures respectively .  

More than 38,000 malware samples from Virus Share (Virus Share, 2017) repository were used as 

training data in the demonstration of an open source automated malware analysis tool by (Rubio 

Ayala, 2017). In building a stable, high processing malware analysis platform, (Miller et al., 2017) used 

tens of thousands of malware from VirusShare with various parameters and virtualisation systems. 

These tests were done to compare stability of platform when different parameters and virtualisation 

platforms were used. The specifics of the malware samples were not of significance in these tests. The 

volume of samples and the effect on the tested platform choices were the most important 

considerations. (Botacin et al., 2017) obtained the 64-bit Windows PE samples from VirusShare in their 

investigation of non-mainstream malware samples. Samples from VirusShare were also used by 

(Gandotra, Bansal, & Sofat, 2016) in their experiment aimed at training a system to detect zero-day 

malware attacks. 

3.2.2 Analysis methods 

The analysis methods used in the existing body of work are a combination of static, dynamic and hybrid 

analysis techniques. (Mehdi et al., 2009) and (Shahzad et al., 2013) employed dynamic analysis by 

observing malware process execution using strace (Strace, n.d.). (Shahzad & Farooq, 2012) made a 

static analysis of ELF headers of malware samples. The hybrid approach combining static and dynamic 

approaches was employed in some other research activities. The approach makes use of sandboxes 

and virtual machines to execute malware samples, studying the memory, processes and network 

interactions, while also examining the binary code (header and routines) for signs of packing and 

obfuscation. The static analysis component also submits cryptographic hash checksum output to 

online repositories like VirusTotal (Vasilescu et al., 2014). VirusTotal accepts malware samples from 

individual contributors, researchers, anti-malware vendors and other sources. It has a database of 

malware samples, cryptographic hash function outputs and a reporting system indicating the anti-

malware engines that have successfully identified a file sample as malicious as well as the engines that 

have failed to detect the samples as  malicious (Google, 2017).  

(Vasilescu et al., 2014) tested malware samples using Cuckoo sandbox integrated with a distributed 

firewall application implemented on an Ubuntu system for its automated tests and the combination 

of VirusTotal submissions and queries, Wireshark, IDA debugger and DumpIt for manual analysis. 

Other works that utilised the Cuckoo sandbox are (Rubio Ayala, 2017), (Miller et al., 2017) and 

(Gandotra et al., 2016). (Rubio Ayala, 2017) employed Cuckoo sandbox in combination with Weka 

machine learning libraries to demonstrate an open source malware analysis system. Cuckoo sandbox 

and the Weka machine learning libraries were also used by (Gandotra et al., 2016) in implementation 

of a system to detect zero-day attacks. In their demonstration of a stable high processing malware 

analysis system,  (Miller et al., 2017) tested Cuckoo sandbox with KVM, VMware and Virtualbox 

virtualisation platforms using different testing options. CWSandbox was used in (Deng et al., 2012) 

and (Rieck et al., 2008). The former proposed a high-performance malware detection system immune 

to kernel hooking by malware – Introlib which was compared with CWSandbox and Anubis while the 

latter used CWSandbox to implement a system for the study and classification of malware samples.  

Table 3.1 is a summary of the research design decisions of related works.
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Table 3. 1 Summary of design decisions of related research efforts 

Author(s) Aim/Outcome Malware Sample/Source Analysis Tool(s)/Method 

(Rieck et al., 2008) Detection, Investigation and classification of malware Spam trap and honeypot CWSandbox 

(Vasilescu et al., 2014) Compare manual and automated malware analysis Malicious URLs and email attachments Cuckoo and integrated Firewall compared with 
manual analysis using combination of Wireshark, 
VirusTotal, IDA Debugger, Dumpit 

(Hirono, Yamaguchi, 
Shimada, & Takakura, 2014) 

Trace effect of malware from inside a network Poison Ivy RAT Python network services libraries for Internet services 
emulation, Squid proxy for transparent proxy, Clam 
AV and Snort IDS for threat analysis 

(K. Asmitha & P. Vinod, 
2014) 

The goal is to detect metamorphic and polymorphic 
viruses 

226 malware samples from vxheavens and 442 benign files from /bin, 
/usr/bin, /sbin 

Strace to monitor binary execution 

(Mehdi et al., 2009) Detect parameters in process task struct that differ 
greatly between benign and malicious processes 

VX heaven Investigation of task_struct data structure in kernel 

(Shahzad & Farooq, 2012) Creation of non-signature based malware detection 
scheme 

VX heaven and Offensive Computing ELF header binary investigation 

(Deng et al., 2012) Creation of high performance dynamic analysis 
virtualisation tool immune to API hooking and 
emulation detection 

Sample from Offensive computing KVM based hardware virtualisation platform - Introlib 
which intercepts library calls on Windows and Ubuntu 
Linux 11.04 guest platforms. compared with Anubis 
and CWSandbox 

(Shahzad et al., 2013) Creation of kernel module for differentiation of benign 
and malicious processes 

Training data included 114 malware samples from VX heaven and offensive 
computing and 105 benign files 

Investigation of kernel structure of processes 

(Rubio Ayala, 2017) Creation of open source software for malware analysis 54 software programs from CNET Download site and 549 freeware.com 
formed the benign group while 97 Windows System PE malware and 38152 
CrptoRansom malware were sourced from VirusShare 

Cuckoo, Virtualbox and Weka data mining and 
machine learning library. 

(Miller et al., 2017) Build stable high processing dynamic analysis platform Various tests using tens of thousands of samples from VirusShare. The number 
of sample in this case is more important than the specifics of the samples as 
the stability of platform with different associated software and settings were 
the goal of the exercise. 

Cuckoo with various settings and virtualisation 
platforms (Vmware, Virtualbox and Qemu) 

(Botacin et al., 2017) Analysis Dot Net/Mono and 64-bit Windows Portable 
executables 

426 samples (from suspicious e-mail attachments collected between 2012 and 
2015), 64-bit Windows malware binaries from VirusShare 

Qemu/KVM with monitoring driver to record 
callbacks, registry calls 

(Gandotra et al., 2016) Detecting zero-day attacks using machine learning 
trained system 

Malware samples from VirusShare confirmed with AVG antivirus and benign 
files from Windows system directory 

Modified Cuckoo with Weka data mining and machine 
learning libraries 
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The summary in Table 3.1 shows the approach other researchers have used in sourcing for malware 

samples and the testing environments for malware analysis. These research efforts with the exception 

of (Botacin et al., 2017) used either honeypots or malware portals to source malware samples. 

(Botacin et al., 2017) used both methods, however the analysis was not related to Linux ELF binaries.  

CWSandbox, Anubis and Cuckoo were the only malware analysis sandboxes used in the tests above. 

Anubis was an online portal for malware analysis, however it does not exists any more (Anubis, 2015). 

CWSandbox does not exist as a free use service any longer and it does not support the analysis of Linux 

ELF binaries (Ouchn, 2011). The reviewed literature in Table 3.1 generally employed malware 

repositories to determine and establish the baseline for malware samples which is used for 

comparison with the experimental results derived from the tests. This approach is adopted in this 

research in addition to the sourcing malware samples from a honeypot. 

3.3 Data Acquisition 

The use of malware repositories and a honeypot entrapment scheme was adopted for this research. 

The malware repositories offer labelling, identification and classification services for the malware 

under investigation to allow for consistent testing of the sandboxes. The use of the honeypot is to 

supplement the samples from repository with live malware samples and network packet captures, 

creating the possibility of adding unknown malware samples to the testing pool. This section discusses 

the setup and components of the honeypot as well as the selection and testing of the malware samples 

from the online repositories selected. The reasons behind the design decisions are also discussed.  

3.3.1 Honeypot 

The use of the honeypot creates the possibility of adding unknown malware samples to the pool. This 

section focuses on the setup, component description and decisions taken in the implementation of 

the honeypot. A high interaction honeypot was set up to allow the whole system to be infected with 

the aim of capturing and understanding the malware sample(s) and reusing them to test the 

sandboxes. Figure 3.1 shows the topology of the honeypot setup. 

 

Figure 3. 1 Honeypot Topology 
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3.3.1.1 Open access system 

The open access system is the honeypot system that is deployed to be infected and compromised. 

This system runs Ubuntu 16.04 operating system. This is the current Long-Term Support (LTS) 

distribution and it has maintenance support until 2021 (Canonical Ltd, 2017). The Ubuntu distribution 

was selected in particular because according to (DistroWatch, 2017), since its inception in 2004, it has 

grown to be one of the most popular Linux distributions. After installation, the system was updated 

to run the most current security and application updates and LTS supported kernel version 4.10. A 

web application was deployed on it with a MySQL (Oracle, 2017) database server backend. The web 

application was created using the Flask framework (Ronancher, 2017) and it was deployed on an 

Apache web server (The Apache Software Foundation, 2017).  

The web application accepts input from a web form that requires the first name and surname of an 

actor or actress and returns in JavaScript Object Notation (JSON) format, the list of titles the actor or 

actress has appeared in and the name of the character portrayed. MySQL, being a networked database 

service also offers potential attackers an additional footprint to attack the system (Singhal & Ou, 

2017). Flask was chosen because it offers rapid deployment and ease of web application prototyping 

(Grinberg, 2014). The choice of JSON output is also to give the impression that while the system is 

standalone, it could also be a part of a larger system that can use it for machine to machine 

communication in the form of an API. The popularity of the Apache webserver necessitated its use as 

the application web server as it is still the most deployed webserver (Netscraft Ltd, 2017) and it offers 

an additional attack surface for potential attackers (Durumeric et al., 2014). 

The Advanced Intrusion Detection Environment (AIDE) (Sourceforge, 2016) application was deployed 

to detect file manipulation and changes to the file system, configuration files and system binaries. 

AIDE works by taking a snapshot of the attributes of files marked for monitoring. AIDE can 

subsequently detect manipulation of monitored files if changes are made either to the files with 

respect to content or access control rights and ownership. The snapshot of the system binaries and 

configuration files were taken. MD5 and SHA256 cryptographic hash function outputs were taken of 

the snapshot before it was transferred to the trusted upstream system. The hash values were 

confirmed at the upstream server to match the hashing function output obtained on the open access 

system prior to the transfer. The AIDE application was uninstalled and the configuration and library 

files deleted so that potential attackers are oblivious to the intrusion detection plans.  

The Secure Shell (SSH) server configuration file - /etc/ssh/sshd_config was edited to permit root login 

and the root password of ‘love’ was set to make the system easily susceptible to a dictionary attack. 

allowing easy access to the system from a brute force attacker. The username of ‘root’ has been found 

to be one of the most tried usernames for brute force attacks for remote login (Sochor & Zuzcak, 

2015).  

3.3.1.2 Firewall 

A Juniper (Juniper Networks, 2017a) SRX 300 security appliance was deployed as the firewall. It was 

running Junos OS version 15.1X49 (Juniper Networks, 2017c) which is the tested version for the 

published specifications of five thousand (5,000) sustained new sessions per second, a maximum of 

sixty-four thousand (64,000) and one thousand (1,000) concurrent sessions and firewall rules 

respectively. It has also been benchmarked to have a firewall traffic throughput of 1Gbps (Juniper 

Networks, 2017d).  
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The SRX 300 has the property of stateful firewalls whereby the permitted connections are tracked so 

related transactions of same sessions are permitted without recourse to the CPU cycles of matching 

packets against firewall rules. For example, if a firewall rule permits traffic of a protocol type from a 

specific internal host to a destination external host, return traffic from the destination is also implicitly 

permitted without a need for a firewall rule match. The traffic headers are checked to confirm that 

they are part of the same session that had been tracked when the initial firewall rule was invoked 

(Gouda & Liu, 2005).  

The firewall was partitioned into two security zones. The internal zone which the honeypot server was 

placed was named zone in, while the external zone (the expected source of attack traffic) was named 

zone out. The firewall rules deployed on the firewall effectively permitted access to the server (zone 

in) from the wider Internet, while denying traffic originated from the server to all external destinations 

(zone out) except Google public Domain Name Servers (DNS) 8.8.8.8 and 8.8.4.4. Allowing domain 

name resolution was done to increase the level of interaction available to prospective attackers. The 

deny actions were to silently discard packets without sending an Internet Control Message Protocol 

(ICMP) destination unreachable packet. Sending this packet would have made the presence of traffic 

filtering visible to an attacker (Rosen, 2014). Table 3.2 is a summary of the stateful firewall rules 

configured. 

Table 3. 2 Firewall security policies 

Source Zone Source 
host/network 

Destination 
Zone 

Destination 
host/Network 

Applications Action 

out Any hosts In 202.124.118.49 All 
applications 

Permit and 
log 

in 202.124.118.49 Out 8.8.8.8 and 
8.8.4.4  

UDP 53 DNS Permit and 
log 

in 202.124.118.49 Out Any hosts All 
applications 

Deny and 
log 

3.3.1.3 Switch 

The connecting switch in this setup is a Juniper EX2200-C switch running Junos OS version 12.3. It has 

twelve (12) gigabit ethernet ports and supports full line rate switching (Juniper Networks, 2017b). It 

was configured for port mirroring. This enabled the duplication of all the packets entering and leaving 

the port assigned to the honeypot to a Virtual LAN (VLAN). The only member of this traffic monitor 

VLAN is the port the IDS system is connected to. Table 3.3 shows the port to host and VLAN mapping 

configuration of the switch.  

Table 3. 3 Switch interface and VLAN configuration 

Device IP address Port Number VLAN ID 

Open access system 202.124.118.49/31 ge-0/0/0 75 

Firewall 202.124.118.48/31 ge-0/0/11 75 

IDS N/A ge-0/0/1 999 
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3.3.1.4 Intrusion Detection System 

The Intrusion Detection System (IDS) was deployed in passive mode to capture network traffic packets. 

It was implemented using an Ubuntu 16.04 LTS system with Snort IDS and TCPDUMP installed. Its 

network interface is connected to the switch to accept all communications coming from and going to 

the honeypot system. This is stored in PCAP format. Snort and TCPDUMP commands were used to 

place the interface in promiscuous mode to capture the packets.  

3.3.1.5 Trusted upstream server 

A Virtual Private Server (VPS) was deployed as the trusted upstream server. This is a Debian Linux 

server that is used to transfer to and copy files from the honeypot system. This server does not use 

password authentication and does not allow root login. SSH keys are required for client access to the 

server. The public key is stored on the server while the private key is on a remote client used to connect 

to the server. Communication is always initiated from the server to the open access server and not 

vice versa to avoid the need to have a copy of the private key of the secure key exchange on the 

honeypot system. This server was used to copy the AIDE database files from the open access system. 

It was also used to copy the linpmem binary (Cohen, 2016) for memory acquisition to the honeypot 

system. 

3.3.2 Public Repositories 

A number of repositories have been used in the research community as sources of malware as 

discussed in section 3.2.1. However, the need to use current malware samples as well as the specific 

constraints to analyse executable Linux malware file samples made some of the public repositories 

employed in previous research activities unsuitable. The latest bulk compilation on VX heavens was 

compiled in 2010. The quest for recent malware submissions (post 2014) stems from research that 

the properties of the samples uploaded prior to 2014 that might be of interest during testing will exist 

in some of the more recent samples since most new malware samples are polymorphic or 

metamorphic variants of old samples (Alam, Horspool, Traore, & Sogukpinar, 2015; Bist, 2014; Sharma 

& Sahay, 2014). The focus on recent samples allows the analysis sandboxes to be tested against the 

current field and trends in malware as well as variants of old samples.  

Another repository that featured prominently in the related works discussion was Offensive 

Computing (later transitioned to Open Malware). This repository is no longer available. VirusShare 

repository was the only repository left from those used in other research activities. Some of other 

repositories based on the list from (Zeltser, 2017c) were explored. VirusTotal and VirusShare were 

found to meet the requirements of the research for recent (between 2014 – 2017) ELF binaries for the 

x86 and x86-64 CPU architectures. A total of two hundred and ninety-three (293) samples were 

acquired from the two portals. 

3.3.2.1 VirusTotal 

VirusTotal is a portal for malware submission and scanning. It generates a report for the submitted 

malware based on the aggregation of results from participating vendor anti-malware engines. Its 

samples come from the public as well as partnerships with antivirus companies. Reports can be 

generated by submission of suspected malware sample files directly or by using as query parameter, 

the cryptographic hash function output of a suspected malware sample. Its database has other 
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metadata such as the MD5, SHA1, SHA256 cryptographic hashes and the SSDEEP fuzzy hash of the 

samples. Other information about the sample include date of first submission, scan results of each of 

the engines used as well as the names the sample is known by the engines that have flagged it as 

malicious (Google, 2017).  

The date of first submission of the sample was used as the indication of currency in the selection of 

malware. Only samples first submitted between 2014 and 2017 were considered for analysis. That 

was the primary use of VirusTotal in this research. It was used to get an indication of the age of a 

malware sample. The malware repository of VirusTotal could not be utilised because it required a paid 

subscription service. The paid subscription service also grants access to a private API key for making 

more detailed queries. A student research account was granted that gave access to forty-one (41) ELF 

malware samples out of which fourteen (14) were built for the x86 and x86-64 processor architectures. 

Those 14 samples were included in the analysis pool. 

3.3.2.2 VirusShare 

VirusShare required an account registration request and once approved, all the malware samples were 

available for download. There are special collections organised as torrent files but the ELF file 

collection was compiled in 2014. Most of the samples in it were first submitted to VirusTotal prior to 

2014. The other bulk samples on the site were organised chronologically in compressed ZIP archive 

files. They are archives of various types of malware samples for different platforms. Each archive had 

sixty-five thousand, five hundred and thirty-six (65,536) samples.   

The approach taken was to download from the latest bundle, extract the archive and run a Python 

script using the Unix magic file signature library to iterate through all the files to filter out the ELF files 

making a table of file name and magic file signature description. The grep utility was used to filter out 

the files built for the required processor architectures - the x86 and x86-64 processor architectures. 

This process was repeated for each bundle in succession. Two hundred and seventy-nine (279) 

samples were extracted for inclusion into the analysis pool at the end of this process. 

3.4 Analysis methodology 

This section discusses the analysis method used to evaluate the effectiveness and characteristics of 

the malware sandboxes being evaluated against Linux malware samples. There are two streams of 

analysis corresponding to the sources of the malware samples used. The malware sandboxes were 

evaluated against the malware samples derived from the VirusTotal and VirusShare repositories. The 

second stream involved investigating for indications of compromise on the honeypot system and 

extracting malware samples and traffic captures for further testing on the malware analysis 

sandboxes. Figure 3.2 illustrates these steps in the analysis process.  
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Figure 3. 2 Stages of Analysis 
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The sandboxes were tested for their ability to detect malware obfuscation techniques and the 

presence of malicious activities in the forensic artefacts.  The automated analysis features of the tools 

and the supported reporting features were also evaluated. The specific anti-analysis technique that 

was tested involved capability of the sandbox to detect the presence of packers and metamorphic 

variations when analysing the malware samples. The effectiveness of the sandboxes for dynamic 

malware analysis was investigated by testing the ability of the sandboxes to detect malicious activities 

and indicators of compromise based on forensic artefacts like memory, network activities, operating 

system operations. Acceptance of batch jobs for the analysis of multiple malware samples was also 

tested to ascertain support for automated analysis. 

3.4.1 Honeypot setup 

The honeypot testbed presented an opportunity for additional malware samples to be added to the 

testing pool. An investigation of the file system integrity using AIDE was performed on the honeypot 

server. AIDE was reinstalled and the old database file was copied from the trusted server back to the 

honeypot server. A comparison between the old database (prior to allowing external access to the 

system) with the current generated output was done to determine the file system changes, additional 

and modified system executables. Network packet capture files from the firewall were examined and 

the reputation of each of the communicating IP addresses was checked on VirusTotal. The packet 

capture files were also examined for traffic attributes and content using Snort IDS.  

The viable options for memory acquisition on 64-bit Linux systems were described in subsection 

2.3.2.2. The options are the use of a loadable kernel module that is precompiled in the kernel of the 

target system or the use of the /proc/kcore file if it is enabled. The /proc/kcore file is a mapping of the 

physical memory of the system (Case & Richard, 2017). The use of a precompiled loadable kernel 

module was avoided as this can be detected by a potential attacker and serve as a sign that the system 

is a honeypot. A memory dump of the open access system was taken using the linpmem binary from 

the Rekall repository. This binary reads the /proc/kcore file which is enabled by default on Ubuntu and 

most Linux distributions (M. H. Ligh et al., 2014). 

Rekall is a fork of the Volatility project and it has tools for memory acquisition and analysis while 

Volatility is solely a memory analysis tool. Rekall and Volatility have similar plugins for analysis of Linux 

memory images (Rekall Forensics, 2017). The decision to use to Rekall for the memory analysis was a 

consequence of the decision to use the linpmem binary from the Rekall toolkit for the memory 

acquisition. The default and recommended file format for the acquired memory image is the Advanced 

Forensic Format version 4 (AFF4)  image file format (Cohen, 2016). This file format has support for 

storage of additional metadata about the system under investigation during analysis that can be 

utilised by the Rekall memory analysis plugins (Cohen, Garfinkel, & Schatz, 2009). The AFF4 format 

was used as the file format of the memory image. The Rekall psxview plugin was used to view 

processes in memory. This plugin can view hidden processes which is an advantage over the pslist 

plugin. All the process names that could not be accounted for from the Linux manual pages were noted 

with their process IDs (PIDs). The executable files in these memory locations were extracted to the 

analysis system using the memdump plugin. This plugin takes the PID as argument and a location on 

disk as destination to dump the memory image. The file types of the files dumped from the memory 

were checked with the Unix magic file utility and the files found to be ELF binary files were uploaded 
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to VirusTotal for scanning. The file samples identified as malicious after scanning by the anti-malware 

engines associated with VirusTotal were added to the sandbox testing pool. 

3.4.2 Sandbox 

In this section, a description of the sandboxes under evaluation is undertaken as well as the test setup 

procedure. These sandboxes are made up of a combination of open source tools and they serve as 

wrappers and front end to ease the analysis of the Linux malware samples. 

3.4.2.1 REMnux 

REMNux is a suite of tools implemented on Ubuntu Linux distribution for malware analysis. It has 

scripts and APIs to make requests to VirusTotal. Specifically, for Linux malware analysis, it has built-in 

tools such as radare (Radare, 2017) and GDB (Free Software Foundation Inc, 2017) for static analysis, 

sysdiq (Sysdig, 2017) and strace for dynamic analysis and rekall (Rekall Forensics, 2017) and Volatility 

for memory analysis. The suite of tools can be installed on an Ubuntu 14.04 system or used by 

downloading the complete virtual machine (REMnux Documentation Team, 2017). The latter 

approach was chosen because Ubuntu 14.04 is no longer the current Ubuntu LTS version (Canonical 

Ltd, 2017) and the installation script does not run on any other version of the distribution. 

 

Figure 3. 3 Malware analysis with REMnux 

Figure 3.3 is the setup for the analysis. The REMnux sandbox and the malware test host run as 

Virtualbox virtual machines on another Ubuntu 16.04 system. The REMnux sandbox emulates Internet 

and network services for the malware testing virtual machine using Inetsim (Hungenberg & Eckert, 

2017) thus preventing the effects of the malware execution from leaving the confines of the Host PC. 

All static analysis tasks were performed on the REMnux sandbox virtual machine. Each sample from 

the repository were analysed using static, behavioural and memory analysis in turn. The samples and 

network traffic from the honeypot were also tested. Static analysis was performed by submitting the 

malware samples to VirusTotal using the virustotal-search utility. The malware detection engines 



40 

 

employed by VirusTotal are used to scan submitted samples with a resultant report indicating the 

number of engines that have detected the sample as malicious and the names of the engines as well 

as the name given the sample by the engines. The r2 and rabin binaries from radare2 were used to 

investigate the ELF header files. 

Dynamic analysis was performed by using the strace utility. The strace utility uses the ptrace system 

call to investigate the calls and library functions invoked by an program during execution. The 

arguments to these calls and functions are also available for analysis. This was done for each malware 

sample on the virtual machine guest for malware execution. A requirement of memory analysis is that 

a comparison be made between a clean snapshot of the virtual machine memory image and the 

memory snapshot after a malware sample has been executed. Using the Virtualbox virtual machine 

management utilities debugvm and dumpvmcore, the memory snapshot of the virtual machine was 

taken with the output in form of an ELF file. With objdump object file debugging utility being used to 

determine the main memory section memory base location and total offset, the system memory used 

by the virtual machine was located and extracted from the ELF file to a file format readable by 

Volatility. The foregoing process of memory extraction was repeated for each malware sample being 

tested. The malware samples were executed in turn on the guest virtual machine and the system 

memory extracted before being restored to the clean virtual machine state. The clean virtual machine 

guest image memory image was then compared with the memory image of the virtual machine after 

malware execution using the linux_mem_diff.py script on the REMnux virtual machine. This script runs 

Volatility memory analysis plugins against memory images and reports the differences. 

3.4.2.2 Limon 

Limon is a Python wrapper script that runs a sequential set of tests and procedures on a submitted 

malware sample. The tests involve static analysis of the malware sample, behaviour analysis and an 

option for memory analysis. It depends on the installation of Inetsim, Yara rules, ssdeep, Sysdig, 

Volatility, VMware workstation on the host machine. It uses Inetsim for network services emulation, 

Yara rules to determine if binaries are packed and the packing algorithm used. SSDEEP is used for fuzzy 

hashing calculation; this is used to determine the fuzzy hash output of the malware sample being 

examined. Sysdig is a front-end application for event monitoring and logging on the system. Volatility 

is a memory analysis library. The guests are implemented as VMware virtual machines which is the 

only virtualisation platform supported by Limon. Depending on the options chosen, different tasks are 

run. Some of the options are Internet mode in which the malware sample under examination is 

allowed unfettered access to the Internet. The alternative to Internet mode uses Inetsim to emulate 

network services. Limon uses Inetsim to emulate network services to avoid the need for the effect of 

malware sample execution to escape to the wider Internet. Other options are addition or exclusion of 

memory analysis. Limon uses Volatility for memory analysis.  

Figure 3.4 is an illustration of the testing setup. Limon runs on the host system and the execution and 

analysis host is a VMware guest. Pre-execution and post-execution snapshots of the virtual machine 

guests are compared during the analysis. The author documentation (Monnappa K A, 2015) for setup 

proposed an Ubuntu 15.04 host system and Ubuntu 12.04 guest system. These operating systems 

were updated to the Ubuntu 16.04 for both the host and the guest system respectively in the testing 

environment.  
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Figure 3. 4 Malware analysis with Limon 

The guest virtual machine also requires installation of Sysdig and strace for event monitoring and 

dynamic analysis. A snapshot of the guest virtual machine in this state was created and the name of 

the snapshot added to the Limon configuration file on the host system. A Volatility image profile was 

also created. This is because memory analysis in Linux is dependent on the kernel version as memory 

arrangement and structure is operating system kernel dependent (Case & Richard, 2017).  

When the Limon script is executed, some static analysis tasks are first performed on the malware 

sample (the name is part of the argument list during execution of the malware). An MD5 checksum of 

the malware sample is derived as well as a fuzzy hash function output. The MD5 checksum output is 

sent to VirusTotal to determine if the malware sample had been submitted to VirusTotal in the past 

for analysis. If the sample had been submitted to VirusTotal before, a scan test report is generated 

which shows the anti-malware engines (if any) that have successfully identified the malware sample 

as malicious and the name(s) it is known by. Limon also keeps a master list of fuzzy hash of all samples 

examined. This is used to compare similarity with the submitted samples. 

For dynamic analysis, the malware sample is copied from the host system to the guest virtual machine 

and run with the strace utility to monitor the system calls. The sysdig utility is also used to monitor 

operating system events. If the option for memory analysis is selected, Volatility is used to compare 

the memory images of the virtual machine prior to execution and after execution. VMware stores 

memory images of virtual machines in vmem files (Aljaedi, Lindskog, Zavarsky, Ruhl, & Almari, 2011). 

These are examined by Volatility during the memory analysis. 

The malware samples were placed in a directory and the Limon script was instructed to analyse all the 

samples in the directory with a run time of three minutes with the memory analysis option selected. 

3.4.2.3 Cuckoo 

Cuckoo is also a Python library that runs tests in sequence on submitted malware samples. It is 

integrated with open source analysis tools like Volatility, Yara, VirusTotal. It supports analysis of 

malware executed in guests implemented on VMware, Virtualbox and KVM. Cuckoo performs dynamic 

analysis by evaluating the behaviour of the sample during execution against its pool of 493 signatures 

which define triggers for different system and network activities. Figure 3.5 shows the analysis setup 

for Cuckoo. 
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Figure 3. 5 Malware analysis with Cuckoo 

Cuckoo testing setup is similar to Limon as it has the host operating systems running the sandbox 

software (Cuckoo) and a guest virtual machine to execute the malware samples. Cuckoo is a Python 

library that works with a combination of tools for malware analysis. Tools like Volatility, strace, and 

Yara are also used in Cuckoo. Cuckoo uses the string utility to investigate the string symbol table of 

ELF binaries as part of static analysis. Cuckoo supports VMware, Virtualbox, QEMU and KVM virtual 

machines. KVM was adopted for the analysis because of the performance benefits it offers as 

highlighted in (Bakhshayeshi, Akbari, & Javan, 2014; Younge et al., 2011). The virtual machine guest in 

Cuckoo depends on the inclusion and execution at system start-up of the agent.py script. This script 

orchestrates the analysis tasks on the guest. A systemd (freedesktop.org, 2017) unit file for the 

agent.py script was created as a service to ensure the script runs every time the system is started. The 

guest required the compilation and installation of a patched copy of strace binary for dynamic analysis 

to work. After the foregoing adjustments were made to the guest, a snapshot of the virtual machine 

was taken and the snapshot name was added to the Cuckoo configuration file on the host. This 

snapshot was used by Cuckoo to detect the effect of the execution of the malware samples by 

comparing the system state of the snapshot to the state of the virtual machine guests after the 

execution of each malware sample. The snapshot was also the state the virtual machine guest reverts 

to at the end of an analysis cycle. 

For the analysis, Cuckoo was run in daemon mode and the malware samples were submitted as a 

batch job using the Cuckoo submit.py script. The Cuckoo configuration file was used to specify the 

options required such as the use of KVM, Inetsim to prevent malware interaction with the wider 

Internet and the need for memory analysis. 

Figure 3.6 illustrates the setup for the malware analysis process using Detux. Detux supports analysis 

of Linux applications such as ELF binaries, scripts (Python, PHP, Perl and shell) written for x86, x86-64, 

MIPS, MIPSEL and ARM architectures. This is made possible by the provision of Debian Linux QEMU 

images in these architectures for the execution of the malware samples. Detux performs static analysis 

by using the string, file and readelf utilities. The string utility gives an output of all printable characters 

associated with the binary. The file program confirms the type of file being analysed detecting if it is 

an ELF binary or a script based on the file header information. If it is an ELF binary, it also determines 

the CPU architecture it was written for. The readelf program investigates the structure of the ELF file 

analysing the headers, determining the required libraries and confirming the intended CPU 

architecture. 
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3.4.2.4 Detux 

 

Figure 3. 6 Malware analysis with Detux 

The dynamic analysis component of Detux requires that the QEMU virtual machine of the target CPU 

architecture be started. The target CPU architecture can be specified as an execution option or 

detected during the static analysis process. The malware sample is then copied from the host system 

to the running virtual machine and executed. During execution, the network interactions are observed 

by capturing the packets from the virtual network card of the host machine (Detux Sandbox, 2018).  

As required by the setup instructions (Detux Sandbox, 2018), a virtual bridge was installed on the host 

systems and an IP address configured for it. The five QEMU images representing the supported CPU 

architectures were manually configured with IP addresses also. This was done to facilitate network 

communication and file transfer between the host analysis system and the virtual machines. The 

common bridge also allowed packet capture from the host system. Table 3.4 shows the IP and MAC 
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addressing allocation of the virtual machines. The host IP address was set as the default gateway and 

DNS server address of the virtual machines. Inetsim was executed on the host to emulate network 

services such as name resolution, network time synchronisation and Internet file transfer service 

interactions, preventing the effects of the sandbox execution from escaping to the wider Internet. The 

detux.py script was executed on the host for each malware sample and this initiated the file transfer 

to and subsequent execution on the appropriate guest virtual machine. 

Table 3. 4 Virtual machines addressing information 

Emulated CPU Type IP Address (/24 mask) MAC Address Default Gateway/DNS 
Server 

X86 10.180.1.2 00:11:22:33:44:51 10.180.1.1 

X86-64 10.180.1.3 00:11:22:33:44:52 10.180.1.1 

ARM 10.180.1.4 00:11:22:33:44:53 10.180.1.1 

MIPS 10.180.1.5 00:11:22:33:44:54 10.180.1.1 

MIPSEL 10.180.1.6 00:11:22:33:44:55 10.180.1.1 

 

3.4.2.5 HaboMalhunter 

 

Figure 3. 7 Malware analysis with HaboMalHunter 

HaboMalhunter also supports static analysis of malware samples using the readelf and string Unix 

utilities. HaboMalHunter uses a special program to load and execute ELF binary files instead of strace 

as employed by Limon. The process ID of this malware execution is then monitored by Sysdig and 

tcpdump. Sysdig monitors systems calls and file system activities while tcpdump monitors the network 

interactions. 

As illustrated in figure 3.7, the malware sample is executed on a Virtualbox virtual machine guest. The 

host analysis system emulated network services for the guest using the inetsim Internet services 

emulation programme. The recommended virtual machine installation advises the use of the REMnux 
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virtual machine as base system for the installation. The Virtual machine was updated with the 

HaboMalhunter update scripts and a snapshot was taken. This snapshot was used as the execution 

environment for each malware sample analysis. Each sample was copied to the virtual machine. After 

execution and analysis of each malware sample, the reports generated were copied to the host system 

and the virtual machine state was restored to the saved snapshot for subsequent execution and 

analysis tasks.  

3.5 Research Questions and Hypotheses 

The object of the tests is to compare the evaluated malware sandboxes in features, effectiveness of 

analysis, reporting and resistance to obfuscation. The first hypothesis addresses the effectiveness of 

the open source analysis sandboxes. The first hypothesis, based on the description of the tools from 

the project pages and documentation mentioned in section 2.6 is: 

Hypothesis H1: The malware analysis sandboxes will collectively be able to detect indications of 

compromise from execution of all the malware samples. 

The second hypothesis that will be tested relates to the consistency of analysis results across the 

sandboxes.  

Hypothesis H2:  All the analysis systems will have consistent analysis results for the malware samples 

executed and analysed.  

To address the hypotheses above, this research will answer the following sub-questions on the 

features of REMnux, Limon, Cuckoo, Detux and HaboMalHunter in the analysis of Linux malware 

samples. 

3.5.1 REMnux 

Does REMnux detect the presence of packing and the type of packing algorithm used? 

Does REMnux detect metamorphic variants? 

Is REMnux able to detect network, memory and operating system operations of malware samples after 

execution? 

What batch processing and automated execution features are supported in REMnux? 

What reporting features are available for malware analysis using REMnux? 

3.5.2 Limon 

Does Limon detect the presence of packing and the type of packing algorithm used? 

Does Limon detect metamorphic variants? 
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Is Limon able to detect network, memory and operating system operations of malware samples after 

execution? 

What batch processing and automated execution features are supported in Limon? 

What reporting features are available for malware analysis using Limon? 

3.5.3 Cuckoo 

Does Cuckoo Sandbox detect the presence of packing and the type of packing algorithm used? 

Does Cuckoo Sandbox detect metamorphic variants? 

Is Cuckoo Sandbox able to detect network, memory and operating system operations of malware 

samples after execution? 

What batch processing and automated execution features are supported in Cuckoo Sandbox? 

What reporting features are available for malware analysis using Cuckoo Sandbox? 

3.5.4 Detux 

Does Detux Sandbox detect the presence of packing and the type of packing algorithm used? 

Does Detux Sandbox detect metamorphic variants? 

Is Detux Sandbox able to detect network, memory and operating system operations of malware 

samples after execution? 

What batch processing and automated execution features are supported in Detux Sandbox? 

What reporting features are available for malware analysis using Detux Sandbox? 

3.5.5 HaboMalHunter 

Does HaboMalhunter Sandbox detect the presence of packing and the type of packing algorithm used? 

Does HaboMalhunter Sandbox detect metamorphic variants? 

Is HaboMalhunter Sandbox able to detect network, memory and operating system operations of 

malware samples after execution? 

What batch processing and automated execution features are supported in HaboMalhunter Sandbox? 

What reporting features are available for malware analysis using HaboMalhunter Sandbox? 
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3.6 Conclusion 

The research design was designed in this chapter drawing on the approaches used in similar work for 

sourcing and testing malware samples. The malware samples were obtained using a combination of 

the deployment of a honeypot and the use of online malware repositories. The discussion of the 

testing procedure was also undertaken and the research goals were presented in form of the research 

hypotheses and research sub-questions. 

The result of the malware extraction from the honeypot and that derived from the execution of the 

malware samples in the evaluated sandbox environments are presented in chapter 4. The extraction 

process and output are described. The results of the analysis are organised by analysis type (static and 

dynamic) and automation and reporting features. 
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4. Results 

4.1 Introduction 

The research design and the reasons behind the research decisions were discussed in the previous 

chapter. The previous chapter addressed the sourcing of malware samples for testing as well as a 

description of the operation of the sandboxes and the steps for testing. This chapter presents the 

observations from the testing activities. The results of the honeypot analysis and investigation are 

highlighted in the following section. The third and fourth sections address the static and dynamic 

analysis outcomes respectively. The fifth section presents the results of the evaluation of the 

automation and reporting features of the sandboxes as well as the answers to the related research 

questions. 

4.2 Honeypot analysis 

Four (4) file samples out of the files carved out of the memory image of the honeypot system were 

identified as malicious when uploaded to VirusTotal. Figure 4.1 is a screenshot of the submissions to 

VirusTotal, showing the four files extracted from the memory image and the network traffic packet 

capture file. 

 

Figure 4. 1 Uploaded files to VirusTotal 

The file names were automatically chosen for the extracted images by Rekall using the format – 

process-name_process-id.dmp where process-name and process-id were the process names and 

process identifiers from the process listings they were extracted from. hxnrgwitwx_18317.dmp and 

ddjqioholr_18232.dmp were uploaded on 23rd March 2018 and were flagged by fifteen (15) and 

twenty-four (24) out of fifty-nine (59) malware scanning engines as malicious respectively. 

mkqetfiknxzmxn_31654.dmp and nskusejjex_31541.dmp on the other hand were flagged as malicious 
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by eighteen (18) and twenty-four (24) malware scanning engines as malicious respectively. They were 

both uploaded on the 2nd of March 2018.   

In line with the resolution in sub-section 3.3.2 about the acceptance of only malware samples that 

were first uploaded to VirusTotal in 2014 and beyond, the extracted samples were also examined for 

their date of first upload to VirusTotal. While the dates the files were uploaded are indicated in the 

foregoing paragraph, using the additional analysis option of VirusTotal, it is possible to make this 

confirmation using the SHA256 cryptographic hash values. This was in consideration of the possibility 

that the files have been uploaded previously under a different name.  

 

Figure 4. 2 VirusTotal Analysis of nskusejjex_31541.dmp 

Figure 4.2 is a screenshot of nskusejjex_31541.dmp with the file size displayed as 512 KB and first 

submission date displayed as the 2nd of March 2018. 

           

Figure 4. 3 VirusTotal Analysis of mkqetifiknxzmxn_31654.dmp 
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Displayed in figure 4.3, mkqetfiknxzmxn_31654.dmp was first uploaded on the 2nd of March 2018. It is 

1.2 MB in size. 

 

Figure 4. 4 VirusTotal Analysis of ddjqioholr_18232.dmp 

In figure 4.4, a screenshot of ddjqioholr_18232.dmp is displayed. With a file size of 900 KB, it was first 

submitted to VirusTotal on 23rd of March 2018. 

 

Figure 4. 5 VirusTotal Analysis of hxnrgwitwx_18317.dmp 
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Figure 4.5 shows a screenshot of the details of hxnrgwitwx_18317.dmp. It was first uploaded to 

VirusTotal on the 23rd of March 2018. It has a file size of 1.2 MB. 

These first submission dates make these four samples eligible for addition to the testing pool because 

the dates are after 2014. The addition of the four extracted malware samples took the total number 

of malware samples to two hundred and ninety-seven (297). The network packet capture file was 

scanned using VirusTotal. The VirusTotal service utilises Snort and Suricata intrusion detection systems 

to scan packet capture files and the alerts triggered were reported.  

 

Figure 4. 6 Snort packet capture analysis screenshot 

 

Figure 4. 7 Suricata packet capture analysis screenshot 

Figures 4.6 and 4.7 are excerpts of the screenshot from the Snort and Suricata IDS analysis. Both 

reports alluded to the presence of a network trojan among other attack vectors such as signature 

alerts for DDoS participation, privileged escalation attempts and network reconnaissance. 

4.3 Sandbox static analysis results 

4.3.1 REMnux 

The Radare2 reversing engineering binaries rabin2 and r2 were used for ELF header analysis and the 

investigation of dynamic loader references. The dynamic loader specified in the ELF header is 
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responsible for loading the program image to memory with the associated shared libraries required. 

Forty-five (45) of the malware samples requested the use of a dynamic loader, ten (10) of which 

requested the ld-uClibc dynamic loader preferred on embedded devices and resourced constrained 

systems (Cozzi et al., 2018). The examination of the ELF headers also revealed that six of the files have 

no section headers, thereby concealing the compile time view of the program from analysis. The ELF 

header also shows the entry points of programs; This is the virtual memory address that code 

execution begins at. On x86 and x86-64 CPU architectures, these entry points start at around the 

virtual memory addresses 0x8048000 and 0x400000 respectively (R. E. Bryant & O'Hallaron, 2015). 

Nineteen (19) of the malware samples were found to have entry points not in those regions. A possible 

reason for the use of different entry point regions is the use of packers. Packers select different entry 

point ranges to avoid conflict with the entry point the system program loader assigns the concealed 

binaries when they are eventually unpacked (Malin et al., 2013). 

The VirusTotal query application component displayed the static analysis reports of the VirusTotal 

scanning. These results were the same as that derived from the portal indicating the malware analysis 

engines that have successfully identified the tested samples as malicious and the names associated 

with the samples. 

4.3.2 Limon 

The VirusTotal query aspect of the static analysis tasks resulted in same outcomes as that derived from 

the VirusTotal analysis report on each malware sample. The Linux readelf binary displayed the binary 

file program and section headers. The examination of the header files indicated that forty-five (45) of 

the binary samples requested the use of the dynamic linker, ten (10) of which were for the ld-

uClibc.so.0 library file while the remaining requests were for ld-linux.so.2 and ld-linux-so library files. 

ld-linux.so.2 and ld-linux-so usually refer to the same files using the soft link file references (Shotts Jr, 

2012). The virtual memory address used as entry point of the all the 297 sample files were displayed. 

Nineteen (19) of the malware sample files had entry points that were a deviation from the ranges used 

in 32-bit and 64-bit Intel CPU architectures. 

Limon made use of ssdeep fuzzy hashing utility to determine the degree of similarity between 

evaluated malware samples. When a sample is under examination, Limon stores it fuzzy hash value in 

a master file. Each examined sample’s fuzzy hash is compared in similarity with the other entries in 

the master file to determine its similarity with every other entry. One hundred and eighty-seven (187) 

samples out of a total of two hundred and ninety-seven (297) samples in the testing pool were found 

to exhibit some degree of similarity with other samples. An illustration of the relationship between 

the degree of similarity as a percentage and the number of pairs found to display the level of similarity 

is shown in figure 4.8. The degree of similarity spanned a range from 25% to 100% with twenty-seven 

(27) pairs of samples observed to have 100% similarity by ssdeep. The most common extent of 

similarity was 91% displayed by two hundred and thirty-seven (237) pairs of malware samples.
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Figure 4. 8 Malware samples similarity graph using ssdeep
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String analysis included references to packet flooding and encryption libraries, the use of the UPX 

packer, extraction of system settings and key strokes logging. Thirteen (13) of the malware samples 

had ASCII string references to commands that tried to extract the settings of the system. Another 

twenty-three (23) samples made references to altering the system. The methods referenced include 

encryption with text indicating the URL for decryption and changing the system start-up scripts or 

periodic execution (cron job) script to ensure a downloaded script runs every time the system starts 

or periodically. String analysis also revealed the packers in use in eight (8) malware samples. Eleven of 

the malware samples made references in the string symbol table to flooding and attack libraries and 

thirteen (13) samples made references to contacting control and command servers to download 

additional programs. 

4.3.3 Cuckoo 

The only static analysis performed by Cuckoo apart from the use of the string utility to view the string 

symbol table of the executable files was the call to the VirusTotal API and this returned the same 

output as that already derived from VirusTotal when the malware samples were extracted. The 

information indicated the malware scanning engines in use and the ones that have flagged the 

samples as malicious with the associated label given to the samples by those engines.  

4.3.4 Detux 

String analysis and ELF header analysis were performed by Detux during the static analysis phase. The 

ELF header analysis used the readelf utility and the results returned were the same as that reported 

by Limon with respect to the library call references and number of malware samples, whose entry 

point memory addresses varied from the traditional memory entry points for the process images 

executed on x86 and x86-64 CPU architectures. The string analysis using the string utility revealed text 

in seventy-eight (78) of the malware samples that gave indications of malicious intent.  References to 

attempts at identifying the execution platform accounted for nineteen (19) of these samples. This was 

done by direct system settings extractions such as executing system configuration request commands 

and reading the system /proc file system. Another method employed was examination of system error 

output when an invalid command is entered. The foregoing is a platform fingerprinting method 

employed by malware authors to eliminate platforms that are not the target for execution and it also 

serves as means for honeypot avoidance (Ullrich, 2016). Text references to directly alter the system 

by changing the system settings when the system is restarted, or direct alteration of system through 

encryption accounted for twelve (12) of the malware samples with indications of malicious intent. 

Other text references indicated the packer used in eight (8) samples. Ten (10) malware samples gave 

an indication of the class of devices that the malware was targeted at with the dynamic linker 

referenced in the string analysis output. The potentially harmful characteristics of the malware 

samples could be inferred by references to flooding protocol libraries and communications and file 

transfer activity with specific hosts in fourteen (14) and sixteen (16) of the malware samples 

respectively. 

4.3.5 HaboMalHunter 

Static analysis involved string analysis and ELF header analysis. The results derived for ELF header 

analysis are the same as that derived from Limon, REMnux and Detux. The string analysis results are 
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same as that derived from using Limon and Detux. The string analysis results are summarised below 

in table 4.1. 

Table 4. 1 Summary of String and ELF header analysis 

String references Number of samples  

UPX packer 8 

Encryption libraries 3 

Adjustments to start up or periodic scripts 9 

Fingerprinting procedures 19 

File transfer and communications with command centre 16 

Traffic flooding attacks 14 

 /lib/ld-uClibc.so.0 dynamic loader 10 

4.4 Sandbox dynamic analysis results 

4.4.1 REMnux 

One hundred and nine (109) of the malware samples could not be executed using strace. Ninety of 

them terminated execution by dumping their core files while the remaining nineteen (19) failed to run 

due to absence of requested libraries and unsuitability of the testing environment. The malware 

samples that ran successfully displayed indications of compromise by network connections to random 

hosts, connections attempt to botnet command and control servers and attempts to alter the system 

job scheduling file. One hundred and forty-nine (149) samples out of those that executed successfully 

were observed to be making connections to various hosts, twenty-nine (29) samples were attempting 

to reach command and control servers while three (3) samples were making changes to the system 

start up script. 

4.4.2 Limon 

The dynamic analysis results for Limon were similar to those derived from the REMnux analysis as 

strace was used in the dynamic execution analysis. Ninety (90) files terminated execution with a dump 

of the core while nineteen (19) malware samples did not execute all. Out of the latter, four failed to 

run due to lack of requested libraries, while two complained about the absence of AES-NI option on 

the CPU. From the samples that ran successfully, twenty-nine (29) were attempting to reach command 

and control servers, three (3) were making changes to the system boot scripts while One hundred and 

forty-nine (149) were attempting to connected to various IP addresses. 

4.4.3 Cuckoo 

Cuckoo relies on included signatures with internal thresholds for indications of compromise during 

dynamic analysis of malware sample. The VirusTotal signature was alerted for all the malware samples 

tested. Three of the samples raised alerts for the suspicious_tld and network_http signatures while 

fourteen samples raised alerts for the network_icmp signature.  
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4.4.4 Detux 

Detux performed dynamic analysis by evaluating network traffic packet captures during malware 

execution. It was discovered that seventy (70) of the samples were attempting to make outgoing 

connections to various IP addresses. Thirty-six (36) malware samples were attempting to make 

connections to command and control servers to download scripts and replacement binaries for system 

binaries. 

4.4.5 HaboMalhunter 

From investigation of the network traffic during dynamic analysis, it was found that one hundred and 

twenty-one (121) files out of the malware samples attempted to contact various hosts on the wider 

Internet, six (6) malware samples attempted to connect to command and control servers while 

execution of one hundred and seventeen (117) samples showed traffic with loopback IP address 

(127.0.0.1) as source and destination address. It was also discovered during process analysis that the 

malware process exited with the segmentation fault exit code in forty-three (43) instances. 

4.5 Automation and reporting features evaluation 

4.5.1 REMnux 

REMnux does not possess automatic virtual machine instrumentation so malware analysis cannot be 

automated because of the need to revert to a known clean snapshot after each analysis. The reporting 

features were limited to the output features of the individual scripts and utilities. The default console 

terminal standard output (stdout) of the tools (linux_mem_diff.py, strace, r2 and rabin) used by 

REMnux can be redirected to text files. Sysdiq also logs system interactions to text files. Unix text 

processing utilities like grep, sed, awk and the Python JSON Tool can be applied to manually format 

the text file outputs. 

Sub Question 3.5.1d What batch processing and automated execution features are supported 
in REMnux? 

Batch processing was absent as it had no tools for virtual machine control. 

Sub Question 3.5.1e What reporting features are available for malware analysis using 
REMnux? 

Text output and the result of text processing tools. 

4.5.2 Limon 

Automation was possible with Limon because the limon.py script handles the virtual machine 

orchestration allowing for a clean snapshot to be available for the analysis of each malware sample. 

The script also can be given a list of malware samples to analyse by taking advantage of the Unix 

command arguments expansion. In the tests undertaken, all the malware samples were place in a 

folder which was the command argument passed to the script. The limon.py script on completion of 

each malware sample analysis created a new folder for each of the malware samples tested. In each 

folder were text output of string and ELF header analysis, strace execution, memory analysis. A master 

file was kept for all the ssdeep operations which was used to test for the degree of familiarity with 

each individual file analysed.  
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Sub Question 3.5.2d What batch processing and automated execution features are supported 
in Limon? 

Batch processing was possible as the wrapper script controls the virtual machine and restores a 
clean snapshot for each execution run. 

Sub Question 3.5.2e What reporting features are available for malware analysis using Limon? 

Text output and the result of text processing tools. 

4.5.3 Cuckoo 

Cuckoo was run in daemon mode so automation was possible by batch job submission using the 

submit.py script. The argument to the script was the directory where all the malware samples were 

stored. This also took advantage of the Unix command argument expansion. The server-side daemon 

on the analysis host and the agent.py script on the virtual machine worked in concert to ensure each 

analysis started with a clean snapshot. Cuckoo has a general text log file that reports on all the testing 

activities. Each analysed file also had a folder with the packet capture files and output reports. At 

conclusion of each malware analysis event, a JSON file and a HTML file were generated as reports.   

 

Figure 4. 9 Sample Cuckoo HTML report 

Both reports classified the report into sections for VirusTotal reporting and specific Cuckoo signature 

analysis. Figure 4.9 is a screenshot of a sample Cuckoo HTML report. It shows the malware sample file 

information, the signatures that have detected the flagged the analysed sample as malicious and 

network communication activities of the virtual machine. 

The sample JSON counterpart of the report is shown in figure 4.10. It contains the string analysis report 

in addition to the information contained in the HTML report. The screenshot below focuses on the 

string symbol analysis reporting section of the output.  
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Figure 4. 10 Sample Cuckoo JSON report 

Sub Question 3.5.3d What batch processing and automated execution features are supported 
in Cuckoo? 

Batch processing and automated analysis is possible. The combination of the backend daemon on 
the analysis host and the agent.py client script on the virtual machine organise the restoration to 
clean snapshot for each analysis.  

Sub Question 3.5.3e What reporting features are available for malware analysis using Cuckoo? 

HTML and JSON reporting are available.  

4.5.4 Detux 

The detux.py script requires the specification of a destination report file for each file analysed. This 

made it impossible to use the Unix command argument expansion feature. The find command with 

the exec option was used to pass all the samples in a directory to the script file, allowing automatic 

analysis as well as the creation of unique output destination report for each sample.  

 

Figure 4. 11 Sample Detux JSON report 
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A JSON file report was created for every sample analysed. The report separated the analysis reports 

into two categories, the network analysis section and the static analysis section that was further 

subdivided into the ELF header and string analysis sections. Figure 4.11 is an example of a Detux JSON 

report. The example report shows the network connections attempted following the execution of the 

malware sample. 

Sub Question 3.5.4d What batch processing and automated execution features are supported 
in Detux? 

Automated analysis was possible with Unix find exec command option and the wrapper detux.py 
script that handled the start-up, shutdown and restoration of the virtual machine images. 

Sub Question 3.5.4e What reporting features are available for malware analysis using Detux? 

JSON reports 

4.5.5 HaboMalHunter 

While analysis is initiated on the host system in Detux, Limon and Cuckoo, HaboMalHunter requires 

the analysis script to be executed from the virtual machine. This limits the amount of automation of 

analysis that can be possible because the virtual machine image must be restored to a vanilla snapshot 

state prior to execution and analysis of another malware sample. This is a similar situation to REMnux 

where analysis is also initiated on the virtual machine image. Where HaboMalhunter differs from 

REMnux is in the reporting. While HaboMalHunter creates unique string analysis, ELF header analysis, 

trace and memory dump log files for each malware samples prefixed with the sample name, the HTML 

and JSON reports used the generic names output.html and output.xpcn respectively. This necessitated 

the need to change the default names manually to match the sample names before being transferred 

to the analysis host. The report files aggregate the results for only the dynamic analysis activities with 

sections dedicated to network traffic analysis, file and process activities. Figures 4.12 and 4.13 show 

the JSON and HTML versions of the HaboMalHunter analysis report respectively.  

 

Figure 4. 12 Sample HaboMalHunter JSON report 
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Figure 4. 13 Sample HaboMalHunter HTML report 

Sub Question 3.5.5d What batch processing and automated execution features are supported 
in HaboMalHunter? 

HaboMalHunter is unable to support batch processing of malware samples because like REMnux, it 

does not have a method to control the virtual machine. 

Sub Question 3.5.5e What reporting features are available for malware analysis using 
HaboMalHunter? 

HTML and JSON reports are available. 

4.6 Conclusion 

The result of the testing activities was presented and organised by analysis type for each sandbox 

tested. The reporting and automation features were also discussed with screenshots and descriptions 

of reports for sandboxes that offered more than text file output. The research sub-questions on 

automation and reporting were also answered. The following chapter is a discussion of the test results 

in the context of the nature of samples in the dataset and the conclusions that can be inferred about 

the relative effectiveness of the sandboxes. 
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5. Discussion 

5.1 Introduction 

The previous chapter presented the results of the testing and analysis of the malware samples on the 

different sandbox environments. This chapter is a discussion of the results considering the 

characteristics of the malware samples used in the dataset. The next section breaks down the malware 

samples by CPU architecture and malware families. The characteristics of the malware families are 

also summarised to correlate with the analysis results. The following sections on static and dynamic 

analysis discusses the results with respect to these classifications of the dataset. The final section in 

this chapter presents the answers to the research questions and hypotheses in section 3.5. 

5.2 Dataset family classification 

The malware samples in the testing pool consists of binaries targeted at the x86 and x86-64 CPU 

architectures. There were two hundred and seventy-five (275) and twenty-two (22) samples 

respectively in the dataset. The AVCLASS program was used to label the malware samples and indicate 

the families they belong. 

 

Figure 5. 1 Testing pool malware classification 

As shown in Fig 5.1, Most of the malware samples are from the Mirai family. Two hundred and fifteen 

(215) of the malware samples were classified as part of the Mirai family. There were sixteen (16) 

malware samples in the testing pool from the Gafgyt family. The Xorddos family make up the last 

major family of malware in the pool that was labelled by AVCLASS. The class had eight (8) malware 

samples. Twenty-nine (29) of the samples could not be labelled and the remaining twenty-nine (29) 
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samples consisted of malware samples in families with less than five members. Table 5.1 is a summary 

of the characteristic of the malware families identified in the testing dataset. 

Table 5. 1 Summary of Malware family 

Family Number of 
Samples 

Summary of characteristics 

Adore 1 Downloads binaries from remote hosts and replaces systems ps utility with a modified version. Steals information from host and seeks new 
systems to infect (Symantec, 2018b) 

Binom 1 Primarily a dropper file that infects other ELF files and they in turn seek out other ELF files to infect (McAfee, 2018) 

Bonk 1 Used to install malware remotely on compromised system. (Microsoft, 2018b) 

Ddostf 1 Backdoor exploit that downloads other malware, makes remote access connections, captures keyboard strokes and used for DDoS attacks 
(Fortiguard, 2018a) 

Dofloo 2 Opens backdoor on compromised system. Modifies boot up script so it starts everything system is restarted and used for DDoS attacks (Symantec, 
2018c) 

Gafgyt 16 Backdoor connection to command centre where it receives commands to effect DDoS and information theft (Symantec, 2018d) 

Erebus 1 Ransomware that bypasses user access control and starts encrypting files with specific suffixes (Redhat, 2018) 

Grip 1 Infects legitimate programs and stops them from working (Microsoft, 2018f) 

Local 1 Exploit on compromised system that allows installation of other programs (Microsoft, 2018c) 

Mibsun 1 Backdoor trojan that allows compromised system to be controlled remotely, also participates in information theft from compromises system 
(Fortiguard, 2018b) 

Midav 1 A tool to spoof network addresses with logic to adapt to the network configuration of compromised system and allows system to be controlled 
remotely (Microsoft, 2018e) 

Miner 2  Attacker connects to victim via brute-force attack then installs miner trojan to use system CPU to mine Monero (XMR) cryptocurrency. (Dr Web, 
2018) 

Mirai 215 Exploits Universal Plug and Play vulnerability to downloads a script from remote server and launch DDoS attacks (Symantec, 2018e) 

Mumblehard 1 Connects to remote locations to download files. Turns compromised host to a spam bot (Symantec, 2018f) 

Nestea 1 Exploits IP fragmentation vulnerability on Linux 2 kernel to cause DOS attacks on host system (Insecure, 2018) 

Pnscan 1 Brute-force SSH attack on a system. Victim system  is then used to attack other systems with SYN flood (NJCCIC, 2018) 

Race 1 Exploits system vulnerability to install other malware (Microsoft, 2018d) 

Scalper 1 An Apache vulnerability exploit to cause denial of service on victim host (F-Secure, 2018) 

Setag 3 Leaves victim open to unauthorised access through a backdoor connection (Microsoft, 2018a) 

Snoopy 1 File infector, monitors process when file is launched (Trend Micro, 2018c) 

Sshgo 2 Connects to systems with weak authentication. Connects to command and control server downloads malware to scan for others with weak 
authentication credentials (Talos, 2018) 

Svat 1 Overwrites standard library on Linux systems with downloaded copy from remote host (Trend Micro, 2018a) 

Thou 1 Infects legitimate programs and stops them from running (Microsoft, 2018g) 

Tsunami 1 Communicates with Internet Relay Chat (IRC) command and control server. It receives commands to launch DDoS attacks on other hosts 
(Monnappa, 2015) 

Turla 1 Synchronizes files system between compromised hosts and remote host using remote backdoor connection (Symantec, 2018g) 

Xorddos 8 Downloads scripts from command centre and ensures persistence by altering system start up script. It conceals its activities by installing a rootkit. 
It partcipates in DDoS attacks (Symantec, 2018h) 

Znaich 1 Downloads script from command and control centre and participates in DDoS attack. It Installs a rootkit to hide network and file ensuring 
persistence with a cron job at system start up (Trend Micro, 2018b) 
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The characteristics of the malware samples include participation in distributed denial of service 

attacks under the control of a command centre, ransomware and bitcoin mining and information 

theft. The Xorddos, Mirai, Gafgyt are some of the families used for launching DDoS attacks. Erebus 

and its variants are a family of ransomware. The Miner family enlists the compromised system as a 

cryptographic currency mining bot.  

5.3 Static Analysis 

This section discusses the results of the static analysis. These results are discussed with reference to 

the underlying tools employed by the sandboxes and the combination of the results obtained from 

the different tools with respect to the malware classes. The sub-questions related to static analysis 

are also answered in this section. 

5.3.1 Obfuscation and packing 

Limon was unique in its use of ssdeep to detect metamorphic variations of the malware samples. There 

were 187 malware samples in 1913 pair combinations with varying degrees of similarity from 25% to 

100%.  Some of the later discussions will be placed in the context of this similarity information 

especially in cases where malware samples were unlabelled according to families. Figure 5.2 shows 

the comparison of malware families for the sample pairs that have degrees of similarity. For pairs of 

malware samples with 100% similarity, twenty-three (23) out of twenty-seven (27) malware samples 

are members of the same malware family as classified by AVCLASS. Thirty-nine (39) out of forty-four 

(44) malware samples with 99% have the same family memberships. Forty-two (42) out of fifty-three 

(53) malware samples with 98% similarity are of the same family. Malware sample pairs with 86%, 

88%, 91% similarity have twenty-four (24) out of twenty-nine (29), one hundred (100) out of one 

hundred and thirty-nine (139), one hundred and eighty-six (186) out of two hundred and thirty-seven 

(237) as members of the same malware family respectively. 

The readelf binary is part of the GNU Binary Utilities binutils package (Sourceware, 2018a). It was used 

as part of the static analysis component of Limon, HaboMalhunter and Detux sandboxes. The result 

of the ELF header analysis performed by readelf was the same for the three sandboxes. Radare2 was 

used for ELF header analysis by REMnux and its results were similar as those derived from the 

sandboxes that employed readelf. Using both radare2 and readelf revealed that nineteen (19) of the 

malware samples have memory entry points that are different from the default range used by x86 and 

x86-64 CPU architectures.  

The string analysis detected references to the UPX packer in eight (8) of the malware samples. Seven 

(7) of them were among the nineteen found to have memory entry points that were not within the 

regular ranges for the CPU architectures used. String analysis using the string utility was used by 

Limon, Cuckoo and HaboMalhunter. Eight (8) of the sixteen (16) malware samples that had string 

references to connections to a remote command and control centre for commands and file downloads 

were found to be in the Mirai family while the other eight were labelled as Gafgyt. This is consistent 

with the behaviour of both families as listed in table 5.1. Out of the nineteen (19) files that employed 

host fingerprinting procedures, two (2) had the family name of Setag while fifteen (15) had the family 

name of Mirai. Out of the two that were unlabelled, taking ssdeep similarity index into account, one 

of them had 94% similarity with another sample labelled as part of the Mirai family.
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Figure 5. 2 Malware sample similarity and malware family comparison
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Two of the three files with string references to encryption were unlabelled while the last one was 

categorised as belonging to the Erebus family using AVCLASS. The Erebus class as noted in Table 5.1 is 

a family of ransomware. 

Limon in addition to ELF header analysis and string symbol table analysis also used Yara rules to detect 

the packer used in four of the malware samples, two of which were among the nineteen detected by 

readelf to be using different memory entry points from that associated the x86 and x86-64 CPU 

architectures. Cuckoo also supports the use of Yara rules; however, in the tests, there was no 

indication of any detected packers. 

5.3.2 Virustotal 

Limon and Cuckoo employed the VirusTotal API in static analysis by submitting the MD5 hash function 

output of the malware samples to VirusTotal. The resultant report was the same as static call to 

VirusTotal. The results showed the anti-malware engines that have successfully identified the samples 

as malicious and the given names by the engines. This method of static analysis is only effective for 

samples that have been previously submitted to VirusTotal for analysis. REMnux’s application of 

VirusTotal submits the sample to VirusTotal for analysis. This could be useful for samples that have 

yet to be submitted to VirusTotal. The utility of this could not be confirmed as all the samples used in 

the experiment have been previously scanned by VirusTotal with its participating engines. 

5.3.3 Answers to sub-questions on packing and obfuscation 

Sub Question 3.5.1a Does REMnux detect the presence of packing and the type of packing 
algorithm used? 

REMnux detects the presence of packing using radare if the entry point memory address is not that 
associated with the CPU architecture.  

Sub Question 3.5.1b Does REMnux detect metamorphic variants? 

REMnux does not detect samples that are metamorphic variants 

 

Sub Question 3.5.2a Does Limon detect the presence of packing and the type of packing 
algorithm used? 

Limon also detects the presence of packing using readelf if the entry point memory address is not 
that associated with the CPU architecture. Limon, using Yara rules, detects the type of packing 
algorithm employed depending on the installed ruleset.  The string analysis can also be used to 
determine the type of packer used. 

Sub Question 3.5.2b Does Limon detect metamorphic variants? 

Limon’s use of storing ssdeep fuzzy hash outputs of analysed samples allows it to determine 
similarities in file structure that makes it effective for detecting metamorphic variants. 
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Sub Question 3.5.3a Does Cuckoo detect the presence of packing and the type of packing 
algorithm used? 

Cuckoo can detect the presence of packing using string analysis as this gives an indication of the 
packers used when added to the string symbol table. 

Sub Question 3.5.3b Does Cuckoo detect metamorphic variants? 

Cuckoo does not detect samples that are metamorphic variants. 

 

Sub Question 3.5.4a Does Detux detect the presence of packing and the type of packing 
algorithm used? 

Detux can detect the presence of packing using string analysis and readelf as the former reads the 
string symbol table for references to known packers and the latter detects packing by observation 
of the virtual memory entry points. 

Sub Question 3.5.4b Does Detux detect metamorphic variants? 

Detux does not detect samples that are metamorphic variants. 

 

Sub Question 3.5.5a Does HalMalHunter detect the presence of packing and the type of 
packing algorithm used? 

The use of readelf and string analysis allows HalMalHunter to detect the presence of packing and 
the packer employed. With the former, the memory entry point of the binary is the indicator. The 
latter relies on the string symbol table references to known packers. 

Sub Question 3.5.5b Does HalMalHunter detect metamorphic variants? 

HaboMalhunter does not detect samples that are metamorphic variants. 

 5.4 Dynamic Analysis 

The dynamic analysis results for the different sandboxes are discussed in this section. The relationship 

between the indications of compromise and malware family classification are examined. The Limon 

ssdeep similarity list was used to infer the families of unlabelled malware samples where possible. 

This discussion is also extended to the CPU families. The research sub questions related to dynamic 

analysis are also addressed.  

5.4.1 REMnux 

The choice of tools used in REMNux were discretionary based on the recommendations in the 

documentation for tools available for static and dynamic analysis on Linux systems as it does not 

possess an automatic analysis application or wrapper like the other sandboxes tested.  

A total of One hundred and forty-nine (149) malware samples were observed attempting to 

connecting to multiple hosts. One hundred and thirty-eight (138) of these were of the Mirai family, 

four (4) were from the Gafgyt family and one each from the SSHgo and Pnscan families. Five of the 

malware samples were unlabelled. 

The other major category of indication of compromise is the attempt by some malware samples to 

connect to command and control servers to download files, creating remote backdoor connections to 
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facilitate reception of commands. There were twenty-nine (29) malware samples in this category. 

Twelve (12) of these were of the Gafgyt family, nine (9) were from the Mirai family, four (4) were from 

the Xorddos family while Setag, Mumblehard, Turla and an unlabelled sample each contributed one 

sample each. 

Sub Question 3.5.1c Is REMnux able to detect network, memory and operating system 
operations of malware samples after execution? 

REMnux was able to detect indicators of compromise in 181 out of the 297 malware samples across 
the two CPU architectures. 

5.4.2 Limon 

Limon recorded similar results as REMnux since its dynamic analysis is also based on strace. The major 

categories of indications of compromise are the observation of malware samples attempting to 

connect to various hosts and attempts to connect to specific hosts. Limon reported the same results 

as REMnux in both categories. Table 5.2 shows the distribution by family of the malware samples 

attempting to connect to various hosts on the wider Internet. Limon also recorded indications of 

compromise for thirteen (13) of the twenty-two (22) malware samples built for x86-64 processors and 

one hundred and sixty-eight (168) out of two hundred and seventy-five (275) malware samples built 

for the x86 architecture. 

Table 5. 2 Malware samples making random connections by family (Limon) 

Family Number of Samples 

Mirai 138 

Unlabeled 5 

Gafgyt 4 

SSHgo 1 

PnScan 1 

 

Sub Question 3.5.2c Is Limon able to detect network, memory and operating system operations 
of malware samples after execution? 

Limon detected indicators of compromise in 181 out of the 297 malware samples across the two 
CPU architectures. 

 

5.4.3 Cuckoo 

The indications of compromise detected by Cuckoo were in form of custom signatures alerts during 

analysis. The custom signatures flagged were suspicious_tld, network_icmp and network_http. Three 

(3) samples on execution displayed characteristics that matched the suspicious_tld signature and all 

three were of the Mirai family. Thirteen (13) malware samples from the Mirai family and one 

unlabelled sample triggered the network_icmp signature. Three malware samples made up of two 

from the Xorddos and one from the Mumblehard family were flagged by the network_http signature. 

Table 5.3 is a breakdown of the signature alerts triggered by malware family. 
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Table 5. 3 Triggered signatures by family (Cuckoo) 

Signature Family Number of Samples 

network_icmp 

Mirai 13 

Unlabeled 1 

suspicious_tld Mirai 3 

network_http 

Xorddos 2 

Mumblehard 1 

There were eighteen (18) unique samples for which signatures were triggered during dynamic analysis 

and they were all built for the x86 CPU architecture. 

Sub Question 3.5.3c Is Cuckoo able to detect network, memory and operating system 
operations of malware samples after execution? 

Cuckoo detected indications of compromise on 18 out of 297 malware samples and they were all 
on the x86 CPU architecture. 

5.4.4 Detux 

The only two categories of indications of compromise discovered using Detux were attempts by 

malware samples to connect to command and control centres and attempts to connect to multiple 

hosts on the wider Internet. Table 5.4 shows the distribution of the latter class by malware families. 

Sixty-two (62) of the seventy (70) malware samples attempting to connect to multiple hosts were of 

the Mirai family. The Gafgyt family accounted for three (3) of the malware samples with SSHgo 

accounting for just one of the malware samples. Four (4) of the malware samples were unlabelled 

with two of them having similarity of 90% (using ssdeep context based hashing results from Limon) 

with samples in the Mirai family. One of the unlabelled samples also recorded 99% similarity with a 

sample in the Mirai family. 

Table 5. 4 Malware samples connecting to multiple hosts by family (Detux) 

Family Number of Samples 

Mirai 62 

Gafgyt 3 

SSHgo 1 

Unlabelled 4 

Table 5.5 shows the malware family distribution of malware samples attempting to connect to specific 

IP addresses for command and control instructions and scripts. Out of the thirty-six (36) samples in 

this category, twenty (20) were from the Mirai family. The other major categories were Gafgyt and 

Xorddos which recorded six (6) and four (4) samples respectively. 

All one hundred and six (106) malware samples that displayed indications of compromise during Detux 

dynamic analysis were built for the x86 CPU architecture. 
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Table 5. 5 Malware samples connecting to control centres by family (Detux) 

Family Number of Samples 

Mirai 20 

Gafgyt 6 

Xorddos 4 

Dofloo 2 

Mumblehard 1 

Turla 1 

Setag 1 

Unlabelled 1 

Detux was unable to detect any indication of compromise for all the twenty-two (22) malware samples 

built for the x86-64 architecture. Detux, as described in sub-section 3.4.2.4 has virtual machine images 

for analysis of malware samples built for the x86, x86-64, ARM, MIPS and MIPSEL platforms. After the 

initial automatic analysis, the x86-64 architecture was specifically selected for the analysis of the 64-

bit malware samples to eliminate the possibility of a failure in the built-in architecture detection, 

however Detux was not unable to detect any indication of compromise in the 64-bit samples. 

Sub Question 3.5.4c Is Detux able to detect network, memory and operating system operations 
of malware samples after execution? 

Detux was able to detect indications of compromise on 106 out of 297 malware samples, However, 
it was unable to detect malicious activity on the malware samples built for x86-64 architecture. 

5.4.5 HaboMalHunter 

There were three major categories during the dynamic analysis on HaboMalHunter. The first category 

was the malware samples invoking processes connecting to a TCP port locally on the system. The most 

popular of the TCP ports used was port 48101. This is a characteristic of a variant of the Mirai botnet 

malware. The malware process binds to the port to listen to incoming connections from the command 

centre (MalwareMustDie, 2016). One hundred and seventeen (117) malware samples exhibited this 

characteristic. Ninety-five (95) of them were of the Mirai family. The Xorddos and Gafgyt families were 

the other major contributors with five (5) and four (4) malware samples respectively. Five (5) of the 

malware samples were unlabelled, one of which had 96% similarity with a sample in the Mirai family. 

Table 5.6 shows the distribution of malware samples making this local process connections by 

malware family. The Dofloo, Turla, SSHgp, Grip, Miner, Scalper, Snoopy and PNScan families recorded 

one member each in this category. 
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Table 5. 6 Malware samples connecting to local TCP process by family (HaboMalHunter) 

Family Number of Samples 

Mirai  95 

Xorddos 5 

Gafgyt 4 

Dofloo 1 

Turla 1 

PnScan 1 

SSHgo 1 

Scalper 1 

Miner 1 

Grip 1 

Snoopy 1 

Unlabelled 5 

The second major category is that of malware samples attempting to make connections to a variety 

of hosts. There are one hundred and twenty-one of these malware samples. The distribution per 

malware family class is shown in table 5.7. The major family categories with this indication of 

compromise were Mirai, Gafgyt and Xorddos with eight-nine (89), six (6) and three (3) malware 

samples respectively. There were fourteen (14) unlabelled malware samples.  Four of the unlabelled 

malware samples were found to have some degree of similarity with other samples in the Mirai family. 

Two of them had 88% similarity while the remaining two had 90% and 94% similarity.  

Table 5. 7 Malware samples connecting to multiple hosts by family (HaboMalHunter) 

Family Number of Samples 

Mirai 89 

Gafgyt 6 

Xorddos 3 

Znaich 1 

Tsunami 1 

Erebus 1 

SSHgo 1 

Mumblehard 1 

Setag 1 

Local 1 

Adore 1 

Nestea 1 

Unlabelled 14 

The last major category recorded six malware samples attempting to connect to command and control 

server IP addresses. The distribution is illustrated in table 5.8. Two of the samples are from the Mirai 

family while the Gafgyt and Binom families contributed one each. Two of the malware samples were 

unlabelled with one recorded as having 94% similarity with a malware sample in the Mirai family. 

 



71 

 

 

Table 5. 8 Malware samples connecting to control centres (HaboMalHunter) 

Family Number of Samples 

Mirai 2 

Gafgyt 1 

Binom 1 

Unlabelled 2 

HaboMalhunter detected indications of compromise for sixteen (16) out of the twenty-two (22) 

malware samples built for the X86-64 architecture. It also detected malicious activity in two hundred 

and twenty-eight (228) out of the two hundred and seventy-five (275) malware samples targeted at 

the x86 platform. 

Sub Question 3.5.5c Is HalMalHunter able to detect network, memory and operating system 
operations of malware samples after execution? 

Halmalhunter was able to detect indicators of compromise in 244 out of the 297 malware samples 
across the two CPU architectures. 

 

5.5 Answers to research hypotheses 

There are twenty-seven (27) malware samples that all the sandboxes collectively could not detect any 

indications of compromise for. As a result, the first hypothesis; the malware analysis sandboxes will 

collectively be able to detect indications of compromise from execution of all the malware samples 

is rejected. 

The second hypothesis that all the analysis systems will have consistent analysis results for the 

malware samples executed and analysed is accepted as the analysis results were consistent across 

the platforms for the samples that were identified as malicious by all samples. The classification of 

families by indicators of compromise was consistent across the platforms. 

5.6 Conclusion 

This chapter discussed results of the malware analysis by the sandbox platforms with respect to the 

malware family and CPU family classifications. The static and dynamic analysis results were discussed 

in detail and the remaining research questions as well as the research hypotheses were answered. 

Chapter 6 gives summary of the thesis as well as the contribution, limitations and possible future work 

that can follow on from the thesis. 
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6. Conclusions 

6.1 Introduction 

The popularity of the Microsoft Windows family of operating systems have made them the most 

researched platforms for malware analysis. Most malware samples in existence are targeted towards 

these systems. The server infrastructure space is dominated by Linux based systems. The processing 

power and relative stability of servers have made them lucrative targets for attackers. Servers also 

hold high value data. The increasing popularity IoT devices has also made Linux systems  objects of 

attention to intruders. This chapter concludes the discussion on open source malware analysis 

sandboxes for Linux ELF binaries. The next section is a brief review of the previous chapters 

culminating in the conclusions reached. The contributions of this research are highlighted in the third 

section. The fourth section is a discussion of some of the limitations of the research that might have 

impacted the conclusions arrived at. The fifth section explores the possible research activities that can 

be embarked upon as a follow up to this research. The conclusions are restated in the final section. 

6.2 Thesis Review 

The research started with an introduction that discussed the motivation and aims of the research as 

well as the organisation of the thesis. A review of body of work that laid the foundation for this 

research was undertaken in the second chapter with a deep dive into the internals of the Linux 

operating system and the underlying concepts. The system organisation, system calls and libraries and 

forensic artefacts were discussed. The chapter also explored the topic of malware and malware 

analysis. The malware analysis types and their relative strengths and weaknesses were discussed. The 

foregoing topics on the Linux operating system and malware analysis drew upon key literature in those 

fields. Related literature to the topic of malware analysis sandboxes were reviewed. The review 

discussed the components of an analysis system and the importance of automation and 

instrumentation as well as the anti-analysis techniques of malware authors. Another aspect of this 

review touched on the existing research on the analysis of Linux ELF binaries. The existing research 

predominantly involved the use of data providers to generate properties of an ELF binary and the use 

of machine learning algorithms to predict the possibility of malicious intent. There was a dearth of 

research information on some of the malware analysis sandboxes that supported Linux ELF binary file 

analysis. The information available on these tools were author documentations and demonstrations 

at security events and trainings. 

With the recognition of the need for malware samples, the third chapter further reviewed the current 

body of knowledge with respect the methods used to source malware samples and the 

instrumentation and analysis tools used. This review and that of second chapter exposed the gaps that 

exist in analysis of Linux malware samples with respect to analysis sandboxes. Adopting the practices 

already used in similar research, the processes for the sourcing malware samples were described and 

the steps for testing the malware samples on the sandboxes were also discussed. The research 

hypotheses and questions were stated in this chapter. 

The results of the tests were discussed in the fourth chapter. The static and dynamic analysis results 

as well as reporting and instrumentation possibilities of the analysis sandboxes were presented. The 

research sub-questions on the reporting and automation functionality were answered in this chapter. 
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The fifth chapter discussed the results of the testing within the context of the characteristic of the 

dataset used. This discussion considered the CPU architectures the malware samples were built for 

and the malware family membership of the samples. The remaining research questions on the 

dynamic and static analysis features of the analysis sandboxes and the research hypothesis were 

answered in this chapter. While the analysis sandboxes had varying degrees of success in detecting 

indications of compromise; when multiple sandboxes have detected malicious intent during analysis 

of a malware sample, the indicators were consistent. Collectively, the sandboxes were unable to 

detect harmful properties in all the malware samples tested. 

6.3 Contribution 

This research explored the topic of malware analysis on the Linux operating system. This required an 

in-depth study of the system architecture of the operating system involving a discussion of the logical 

units. Malware are computer programs that are written with the objective to cause harm to their 

operating environment. Examination of these programs is a key step in understanding their methods 

of operation, providing answers to questions such as the specific vulnerabilities of the systems being 

exploited as well as the nature and the extent of the harm caused. These learnings form input into 

post infection activities. Some of these involve incident reports and disclosure to stake holders, 

improvement of exploited systems through patches or architectural overhaul, development of 

systems or signatures to prevent repeat occurrences. Malware analysis is challenged by the increasing 

rate of malware creation. This is aided by the ease of creating variants of existing malware samples in 

ways that change the signature hash but keep most of the functionality. Existing studies have 

proposed different ways to rapidly identify these variations using Context Triggered Piecewise Hashing 

and the importance of having an automated workflow to cope with the deluge of malware samples 

has also been addressed. Another challenge faced by malware analysis is the consistency of naming 

and classification of malware samples. Different anti-malware vendors refer to the same (by 

cryptographic hash) malware samples by different names. A method of labelling was proposed in one 

of the reviewed studies (Sebastián et al., 2016) that employed the aggregation of names used by anti-

malware engines to specify a family label for malware samples.  

The study of malware can be done without executing the sample. The process is known as static 

analysis and it involves an examination of the program structure. With reference to executable 

programs on the Linux operating system, an understanding of the ELF program structure is necessary. 

This file format as described in chapter 2 is the structure of executable binary files, core dump, shared 

libraries and process memory image. The ELF file describes how a program was compiled, the external 

libraries required and how it transformed into a process image in memory. The presence or absence 

of a requested linker library, the functions and symbol references can be used to determine the nature 

of a Linux binary file. These properties have been combined with machine leaning algorithms to 

predict malicious intent in malware samples as referenced in the related work section on chapter 2. 

The use of packers and the types used can also be inferred from static analysis.  

A file can meet the requirements of the ELF specification and still sufficiently conceal information 

about its operation, making it impossible for static analysis to derive any meaningful observations.  

The removal of debugging information during compilation, compression and encryption of functions 

are some of the other anti-analysis methods that can be used to frustrate static analysis. The ability 

to execute these malware samples in a secure environment while observing them can be vital because 
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of the aforementioned challenges to static analysis. Chapter 2 discusses the file system, memory and 

process sub-system of the Linux operating system in depth. The study of a process through its 

interaction with memory, its system calls and signals to other processes, files and network entities are 

very important in dynamic analysis.  This research also explored the forensic artefacts of the Linux 

system which serve as the staging points for the indicators of compromise. The different standalone 

tools for examination of malware samples during execution were investigated with focus of the 

staging environments in the form of hardware emulators and virtual machines. Some of the 

developments in lightweight emulators that avoid detection by malware such as Introlib and 

TTAnalyze were also discussed. Current research in Linux malware is dominated by systems tasked 

with prediction of malicious intent primarily through machine learning libraries and the classification 

of static, dynamic or hybrid qualities of the malware sample under examination. The importance of 

detection and prevention cannot be overstated; however, malware analysis through secure 

observation in a sandbox environment is invaluable in the inevitable situations of breach and 

compromise. The available literature on integrated dynamic analysis and sandbox environments for 

Linux malware samples were restricted to defunct projects such as Malwr and Anubis. Apart from 

Cuckoo sandbox, information about the other sandbox environments were in the domain of security 

blogs and conference demonstrations and trainings. Most of the references to Cuckoo were with 

respect to analysis of Windows based malware samples.  

The relative effectiveness of these tools, with their pros and cons have not been addressed in the 

available literature. This research sought to bridge that gap by undertaking an empirical assessment 

of these tools against a field of malware samples from malware repositories and a honeypot setup. 

This assessment was done with known malware samples and the consistency of the results derived 

from these tests were compared with attributes already known about the malware samples. The 

results showed that the tools were generally consistent in the indications they detected even though 

the relative effectiveness varied. While the tools collectively were unable to detect all malicious 

attributes in all the malware samples, the exercise brought to light some improvements that can be 

added to the sandboxes. The answers to the research sub-questions can also serve as a guideline for 

malware researchers on the Linux platform on tool selection and the relative attributes of the tools 

available. The availability of the tools under various open source licenses and hosting on Github 

creates an avenue for adoption and improvement by other contributors. 

HaboMalHunter was the most effective in detecting indicators of compromise, however, its operation 

is not automated. This limitation can potentially restrict its adoption because it would be unsuitable 

for high volume analysis. An analyst can choose to use it for one-off analysis based on its strengths in 

detection and reporting. A possible improvement to HaboMalHunter is the creation of a wrapper 

script to orchestrate the virtual machine during analysis so that a known good state can be reverted 

to after analysis. All the sandboxes could benefit from the multi architecture support offered by Detux 

through its use of the Qemu emulator. This will enhance the utility of these tools as Linux runs on a 

variety of architectures and a specific architecture might be the exclusive target execution 

environment for a malware sample.  
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6.4 Limitations 

This section is an overview on some of the items that have possibly affected the conclusions of the 

research. This is an exploration of factors that might have hampered the testing and ways this could 

have been improved upon. 

6.4.1 Diversity of dataset 

An examination of the malware samples revealed that most of the samples were of the Mirai family 

or its variants. This would likely have contributed to the context fuzzy hash investigations that 

indicated that most of the pairs that were similar belonged to the same family. A more diverse dataset 

with respect to malware family classification might have challenged the outcome of that correlation. 

The situation where most of the malware samples exhibited characteristics that were predominantly 

network related also limited the capabilities of the analysis sandboxes that could be tested. The 

limitation of the malware samples to just those built for the x86 and x86-64 platforms might have also 

limited the range of malware samples characteristics that could be tested. The popularity of IoT 

devices might have thrown up the possibility of a more diverse malware collection if other 

architectures especially those popular with embedded devices like ARM, MIPS, MIPSEL were 

considered. There were only twenty-two (22) malware samples built for the x86-64 platform so a 

conclusion on the ability of Detux to analyse malware samples built for the platform could not be 

arrived at.  

The lack of variety in the sample pool also stems from the deployment of the honeypot as a single 

host. Having multiple hosts with different CPU architectures and functions would have attracted a 

more diverse pool of malware samples. The VirusTotal paid subscription service gives access to 

versatile query APIs for selection of malware samples by family, architecture and file type as well as 

date. This flexibility would allow for a variety of options in sample selection. 

6.4.2 System libraries and hardware extensions 

Some of the malware samples failed to execute due to missing libraries. Cross compilation of dynamic 

linker and loaders for the analysis environment would have allowed analysis of some of those malware 

samples. Some ransomware samples failed to run also due to absence of AES-NI CPU extension. Having 

a variety of CPU hardware architectures in the analysis environment will enable more success in 

malware execution and analysis. 

6.4.3 Internet Access 

There was a restriction of outgoing Internet access in the analysis and honeypot environments. In the 

former environment, the full capabilities of the malware samples might not be on full display with a 

lack of outgoing Internet access despite the role Inetsim played in emulating network and Internet 

services. The constraint on outgoing Internet access was to prevent the enlistment of the analysed 

virtual systems as bots used to cause harm to other systems. The lack of outgoing Internet access from 

the honeypot might have affected the value of the post infection analysis as well as the effectiveness 

of the entrapment. 
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6.5 Future Work 

There are two areas of future research that can arise from this study. A focus on malware built for IoT 

devices will be an important study. The effectiveness of sandboxes in detecting indications of 

compromise in these devices would assist malware researchers in the selection of analysis tools. 

IoTPot and IoTBox are platforms that can be evaluated in this research (Pa et al., 2015).   

While the use of the string utility and Yara rules helped determine some of the packers (12) used in 

the samples, there is still a gap on definitively telling when an ELF file is packed from static analysis. 

This is an area where further research would be of benefit to the security community. The creation of 

more Yara rules will also enhance this activity. 

6.6 Conclusion 

This chapter concludes the thesis with an overview of the discussion, the contributions and limitations 

of the thesis and research opportunities in the field of Linux malware analysis. The thesis was focussed 

on experimental investigation of the performance of sandboxes for Linux binary files. This is of 

importance because of the increasing popularity of Linux in the embedded hardware space as well as 

the its large installed base of servers. Five malware testing sandboxes - REMnux, Limon, Cuckoo, Detux 

and HaboMalHunter - were tested for their ability to detect indicators of compromise in malware 

samples. The presence of obfuscation (packing) techniques was also tested. Security research firms 

have found that most malware samples are variations of existing ones. The ability of the sandboxes to 

make this association amongst the malware samples was also evaluated. The reporting and 

automation features available to the sandboxes were also examined. The importance of automation 

is due to the rate at which malware samples are being created which can make manual analysis 

unfeasible. 

Out of two hundred and ninety-seven (297) malware samples, the sandboxes collectively did not 

detect indicators of compromise in twenty-seven (27) of the samples. Limon was found to be the only 

sandbox capable of detecting metamorphic variants through its use of fuzzy hashing techniques. The 

sandboxes were found to be consistent in the indicators found where indicators of malice were 

discovered, with HaboMalhunter recording the most detections. Limon, Detux and Cuckoo had 

workflows that could be automated because they automatically handled the creation and the 

restoration to the default state of the virtual environments for each sample analysis. 
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APPENDIX 

List of malware samples 

MD5 Date of first submission Scan Summary 

374d0e146452a390bea075f1f6530cde 2016-10-03 18:32:12 UTC 33 of 59 positively flagged this sample as malicious 

27d857e12b9be5d43f935b8cc86eaabf 2017-06-13 01:19:11 UTC 39 of 57 positively flagged this sample as malicious 

320adee47e53823a1be8a335e4beb246 2015-07-24 08:40:50 UTC 36 of 59 positively flagged this sample as malicious 

a44aa4f46a9dc68c97142f3825431c29 2017-10-19 20:51:32 UTC 30 of 59 positively flagged this sample as malicious 

22dc1db1a876721727cca37c21d31655 2015-11-07 05:48:50 UTC 40 of 58 positively flagged this sample as malicious 

483b322b42835227d98f523f9df5c6fc 2016-11-27 11:26:26 UTC 31 of 59 positively flagged this sample as malicious 

61e0618a3984cbcb75b329beb069e0e9 2017-10-07 05:32:55 UTC 37 of 60 positively flagged this sample as malicious 

0c1aa91e8cae4352eb16d93f17c0da2b 2017-04-22 11:00:31 UTC 36 of 60 positively flagged this sample as malicious 

a7a1abb5d8e87fc670b6841a805103df 2017-04-22 11:00:37 UTC 37 of 59 positively flagged this sample as malicious 

19fbd8cbfb12482e8020a887d6427315 2014-12-06 13:35:37 UTC 35 of 59 positively flagged this sample as malicious 

132ba54b1b187a38a455dd27c1e74d62 2015-01-07 14:43:58 UTC 41 of 60 positively flagged this sample as malicious 

3437bd29e5c8fe493603581dbb0285c7 2014-06-06 20:05:37 UTC 36 of 60 positively flagged this sample as malicious 

009a9c6eee3e0fa532cfebe6a52be113 2017-10-20 11:07:41 UTC 38 of 60 positively flagged this sample as malicious 

1975ff1586f0115e89fa1fe72708939a 2014-12-18 01:37:39 UTC 41 of 60 positively flagged this sample as malicious 

1cadf5fc7f0729bb660aeb60a9e2207f 2015-08-05 14:24:19 UTC 39 of 60 positively flagged this sample as malicious 

12770c550d06e95e0d580fc7dc287647 2016-02-02 10:20:11 UTC 31 of 58 positively flagged this sample as malicious 

0b7630ead879da12b74b2ed7566da2fe 2014-12-16 19:31:24 UTC 38 of 59 positively flagged this sample as malicious 

1e19b857a5f5a9680555fa9623a88e99 2015-11-07 05:48:51 UTC 43 of 60 positively flagged this sample as malicious 

005c22845f8b7d92702ee3a5c37489cf 2017-10-10 12:12:24 UTC 22 of 60 positively flagged this sample as malicious 

01adaa2fc9412ee02cb7adde58cd4fe1 2017-09-14 05:44:49 UTC 21 of 58 positively flagged this sample as malicious 

024c094fff1f93ff68512d86b07d4f33 2017-08-17 01:02:57 UTC 36 of 60 positively flagged this sample as malicious 

03a1e6c72c9978158a954c85556f74d1 2017-09-14 07:07:14 UTC 21 of 58 positively flagged this sample as malicious 

0403fc76b30b735ae5881a06abe539a6 2016-06-24 18:32:54 UTC 37 of 58 positively flagged this sample as malicious 

04e634a2aade2b99473c26be78c1bfd6 2017-09-10 01:34:37 UTC 26 of 58 positively flagged this sample as malicious 
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056e5e432e4a57a44bb96498b649f1ee 2017-09-20 00:23:39 UTC 22 of 59 positively flagged this sample as malicious 

071a632b2c9babfea998df852e0dc1f0 2017-06-19 19:26:31 UTC 13 of 56 positively flagged this sample as malicious 

07b1295477c295540f08ecf07bbcfe30 2017-09-14 05:44:39 UTC 7 of 58 positively flagged this sample as malicious 

086fef17ec295a3f8d469f3893246f3c 2017-06-20 00:01:43 UTC 11 of 57 positively flagged this sample as malicious 

09f0b3699f57217ab669c47962a7aa4f 2017-09-25 07:26:10 UTC 28 of 59 positively flagged this sample as malicious 

0c1aa91e8cae4352eb16d93f17c0da2b 2017-04-22 11:00:31 UTC 36 of 60 positively flagged this sample as malicious 

0cdc43091b4b10ff0b4d574c841b803a 2017-09-14 05:06:08 UTC 21 of 58 positively flagged this sample as malicious 

0dbe035cb9c5901dcacfe6505fdfb7e5 2017-09-14 04:56:30 UTC 9 of 58 positively flagged this sample as malicious 

0de12e358555c92da2bf8dca21e6f54b 2017-08-18 22:56:19 UTC 26 of 57 positively flagged this sample as malicious 

0deb84fce9da7a3561994af4d8ee8a83 2017-09-14 05:59:11 UTC 20 of 57 positively flagged this sample as malicious 

0e104b109f86d7e5005e4ea7f3d27722 2017-09-14 06:49:13 UTC 9 of 57 positively flagged this sample as malicious 

0f4825035617c6b08c6a9a4b0def31bc 2017-10-10 19:01:56 UTC 22 of 60 positively flagged this sample as malicious 

0f60b0b617b04f1698526ac102787592 2017-08-21 09:45:08 UTC 20 of 57 positively flagged this sample as malicious 

0f795e0079bf208b82470e09a7675f83 2017-09-09 04:46:30 UTC 27 of 58 positively flagged this sample as malicious 

10c0e8ad9f935d33f396d99d0ba667a6 2016-06-18 18:32:34 UTC 26 of 60 positively flagged this sample as malicious 

116ebab5d8eaa36862963b92cc80d384 2017-08-18 23:51:31 UTC 28 of 58 positively flagged this sample as malicious 

127eacc6f5306caa43a600e428e9002f 2017-09-21 01:37:03 UTC 9 of 58 positively flagged this sample as malicious 

12847fb913333b5bfe9e3d48657d78ec 2017-08-15 17:11:32 UTC 26 of 58 positively flagged this sample as malicious 

12faad000218496fae305c88a3381494 2017-06-20 00:01:39 UTC 8 of 57 positively flagged this sample as malicious 

137c1520b37dfc3ce5072be7995c96fc 2016-06-24 18:32:51 UTC 34 of 58 positively flagged this sample as malicious 

13a704a8c4d463523e7a8b49527f4178 2017-10-11 22:18:17 UTC 26 of 60 positively flagged this sample as malicious 

14775d0fb2fe528d59046278077ba845 2017-09-14 05:12:06 UTC 21 of 58 positively flagged this sample as malicious 

157679ac46d453489aba544e266ae5af 2017-09-14 05:47:07 UTC 9 of 57 positively flagged this sample as malicious 

179aa00a454a97bb1e45e7fb3fb114d9 2017-09-14 07:18:01 UTC 22 of 59 positively flagged this sample as malicious 

19b72c2b11d70013fc2147382d75c656 2017-09-14 07:35:39 UTC 21 of 58 positively flagged this sample as malicious 

1b52265337ebc39516678869cc2aed5a 2017-09-10 15:00:56 UTC 25 of 57 positively flagged this sample as malicious 

1b9ec2551f8ade5f83394b23340ae5c8 2017-10-02 09:44:54 UTC 26 of 58 positively flagged this sample as malicious 

1c0bb403ace5a6e2bd6b7409db50d505 2017-08-16 03:45:11 UTC 24 of 57 positively flagged this sample as malicious 

1c50bc31a9d27b5cf912c1a2dd73e548 2017-10-03 12:24:40 UTC 29 of 60 positively flagged this sample as malicious 
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1cbac18d3bb664473855de7b2b958182 2017-06-20 00:07:25 UTC 5 of 57 positively flagged this sample as malicious 

1e3179dbfc95c8bbe0cd33830ae9802c 2017-09-14 06:48:09 UTC 21 of 60 positively flagged this sample as malicious 

1f48156c77fa432166b54d5503c1aac2 2017-09-13 04:48:00 UTC 28 of 58 positively flagged this sample as malicious 

214307803e25208095b2d27261f088e2 2017-08-24 03:45:52 UTC 24 of 58 positively flagged this sample as malicious 

215cc2aa6c9edb33648283cb49da2d99 2017-05-20 21:52:58 UTC 29 of 58 positively flagged this sample as malicious 

21652156824d4a074e1b690d4f6bfad7 2015-12-31 11:45:33 UTC 35 of 57 positively flagged this sample as malicious 

21aeb76c456e55dc52680da92d11e12d 2017-09-14 05:49:58 UTC 9 of 58 positively flagged this sample as malicious 

22b72382ca228ba76e58d9c98236f045 2017-09-14 06:17:50 UTC 20 of 58 positively flagged this sample as malicious 

24734ef952fe363415cd4c2f7322276f 2017-10-14 15:06:21 UTC 28 of 60 positively flagged this sample as malicious 

25993ee48b86b5a93a47bff5d0d697b8 2017-09-14 06:33:03 UTC 19 of 58 positively flagged this sample as malicious 

26dc4799eb1feaa43bec3b0ec3225fee 2017-04-10 18:06:11 UTC 27 of 58 positively flagged this sample as malicious 

2733137d5f8a152a2cf50929c0164894 2017-09-14 04:57:20 UTC 21 of 58 positively flagged this sample as malicious 

2760b583b79f9b43dbd9aa334b38b6fd 2017-09-11 10:15:11 UTC 28 of 60 positively flagged this sample as malicious 

28072a89a50e41ddb7dd9097ba06ee09 2017-09-16 22:14:08 UTC 16 of 59 positively flagged this sample as malicious 

2b11b4291193405868a9033fb2c768a1 2016-06-24 18:32:58 UTC 35 of 57 positively flagged this sample as malicious 

2ca03ef2125b0335b581302420cb8e91 2017-09-14 05:45:46 UTC 9 of 58 positively flagged this sample as malicious 

2cd75d23f526338ac0de7c8bc2fea4ce 2017-07-06 09:34:47 UTC 1 of 58 positively flagged this sample as malicious 

2db905373ea58920f7dbf9f3e59ba990 2017-09-10 00:01:08 UTC 14 of 59 positively flagged this sample as malicious 

2e912720306afd791206a3784bb743f4 2017-09-14 07:20:11 UTC 16 of 58 positively flagged this sample as malicious 

2ed334550bd45ad667ea7d4039ff3bb1 2017-09-14 07:22:27 UTC 23 of 58 positively flagged this sample as malicious 

2fa4b143c12b89527b5ad592fbf0692a 2017-06-19 23:43:52 UTC 11 of 57 positively flagged this sample as malicious 

2ff923596aa93ab6d03e3e970b5e1198 2017-09-14 07:03:42 UTC 9 of 58 positively flagged this sample as malicious 

30362aa28757a76a0e5fd90b81915001 2017-09-14 05:08:21 UTC 25 of 60 positively flagged this sample as malicious 

3171681b7e29bcfe85d8f1e2411babcd 2017-09-14 07:21:12 UTC 9 of 57 positively flagged this sample as malicious 

32128fa046336d06c328349bce366e1d 2016-12-21 03:39:13 UTC 1 of 55 positively flagged this sample as malicious 

33a50a9399f416b125e3302ebd2a132b 2017-09-14 06:27:20 UTC 21 of 58 positively flagged this sample as malicious 

34d31584f7e325b0857cc8275b1dd500 2017-09-14 10:10:44 UTC 9 of 59 positively flagged this sample as malicious 

35176e86b2e96733188e2f939364117f 2017-09-14 05:11:40 UTC 20 of 57 positively flagged this sample as malicious 

35dd1a618443862cda9f77c17aea4ddb 2017-06-19 23:49:43 UTC 6 of 57 positively flagged this sample as malicious 
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37cbae5f4249ed569fd3f657de2a36ac 2017-06-19 19:27:07 UTC 6 of 57 positively flagged this sample as malicious 

396cbbe2c7ce1f05341ae305621be460 2017-09-14 06:04:18 UTC 27 of 60 positively flagged this sample as malicious 

3b3f6977f77c82741d4c1e819d21f670 2017-08-21 19:46:12 UTC 12 of 57 positively flagged this sample as malicious 

3e247c19af30e80ac97de97050f41869 2017-06-19 19:26:43 UTC 9 of 57 positively flagged this sample as malicious 

3ebfbd542edc4d76a8597d9fbcb3e4c4 2017-06-19 23:56:35 UTC 7 of 57 positively flagged this sample as malicious 

40a4b4aebb65d16047e9bf56844ccae3 2017-09-14 07:27:23 UTC 23 of 57 positively flagged this sample as malicious 

40f1f759b87035ac6893bd94918d8e7e 2017-05-05 20:50:29 UTC 27 of 57 positively flagged this sample as malicious 

417c623a70d8514d888f9179a3bd957e 2017-10-09 12:48:40 UTC 22 of 60 positively flagged this sample as malicious 

42743e6af31c9b3a13ac2be41076752e 2017-06-09 21:51:39 UTC 28 of 57 positively flagged this sample as malicious 

42db0b662a69a7d94ab3e4f947e7e168 2017-09-14 06:57:49 UTC 18 of 58 positively flagged this sample as malicious 

42fe79a930203078da190d7a8e291d3d 2014-09-26 11:29:19 UTC 5 of 55 positively flagged this sample as malicious 

43ed5df62f74538552b899ab9c12c08f 2017-09-14 07:14:26 UTC 9 of 58 positively flagged this sample as malicious 

44c5badc2a1a145af7e59c2aa9ef6a27 2017-08-17 09:14:12 UTC 25 of 58 positively flagged this sample as malicious 

4516f702b804ef767f8719a29f24292d 2017-08-24 09:38:40 UTC 27 of 59 positively flagged this sample as malicious 

4716adafa14b337b41a4e14a3200b033 2017-09-14 05:55:43 UTC 20 of 58 positively flagged this sample as malicious 

47723d1a7936586ba972838583cc6c9e 2017-09-11 04:37:58 UTC 27 of 59 positively flagged this sample as malicious 

483b322b42835227d98f523f9df5c6fc 2016-11-27 11:26:26 UTC 31 of 59 positively flagged this sample as malicious 

4a1e830050766ca432536408eca8c58c 2017-06-19 23:56:55 UTC 4 of 57 positively flagged this sample as malicious 

4b2620c4d6778087a7ac92aa4cea3026 2017-09-14 05:04:50 UTC 9 of 58 positively flagged this sample as malicious 

4c45fc4a7ba1a77b0c7f7479a1036702 2016-06-08 10:08:28 UTC 37 of 58 positively flagged this sample as malicious 

4d193825ee038eb1b54c6633678f68e0 2017-09-14 06:36:31 UTC 7 of 56 positively flagged this sample as malicious 

4db8073fb6df550e404c6b46efe9f999 2017-06-20 00:07:54 UTC 12 of 57 positively flagged this sample as malicious 

4e593af1ab25873681c62ca4f49e31e3 2016-06-16 14:36:44 UTC 35 of 58 positively flagged this sample as malicious 

4ef491686122ef9670a3f0925af18d9e 2017-09-14 05:36:11 UTC 24 of 59 positively flagged this sample as malicious 

4f5d0ed102de7c171d1df4989c4cdcd0 2016-06-20 05:55:31 UTC 22 of 59 positively flagged this sample as malicious 

4f65385b62754f793d9a5e73ef747192 2017-09-14 05:27:58 UTC 21 of 58 positively flagged this sample as malicious 

4f8ec335722beb92211c1e87dd736698 2017-09-14 06:27:16 UTC 18 of 57 positively flagged this sample as malicious 

50f5f6d1f0f67f15f6a15ffdae671bef 2017-08-15 01:49:35 UTC 25 of 58 positively flagged this sample as malicious 

568320b732606052a095f9981f22f811 2017-09-14 06:21:43 UTC 25 of 59 positively flagged this sample as malicious 
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5687fcea772c382ec3eba30e7474fbbe 2017-08-23 13:48:17 UTC 26 of 58 positively flagged this sample as malicious 

57ae3c3a9341add2e35996231fd4a4d0 2017-09-14 05:45:22 UTC 36 of 60 positively flagged this sample as malicious 

57bb3571d1af9aaa5db3d3141a39b3e6 2017-09-14 05:33:40 UTC 21 of 57 positively flagged this sample as malicious 

57c514ca4f9c673c346cf448b10d63a4 2017-06-19 23:56:39 UTC 5 of 57 positively flagged this sample as malicious 

5803bd08bb5e7243d8f9013a07090e9f 2017-09-14 07:20:17 UTC 21 of 58 positively flagged this sample as malicious 

58a2bbdab2aee018609ebe16b4264e36 2017-06-19 19:27:04 UTC 3 of 57 positively flagged this sample as malicious 

5a5666fa9a9b7d4bd293508628bd156d 2017-09-14 06:15:14 UTC 28 of 59 positively flagged this sample as malicious 

5abdfc799d9df1edae9656b2634e1db9 2016-05-26 09:26:21 UTC 27 of 58 positively flagged this sample as malicious 

5b648c78a18b26d037f4b5bff5b8570d 2017-09-14 05:56:22 UTC 9 of 57 positively flagged this sample as malicious 

5ba639ecd5618a2bbe5170d768e74919 2017-05-06 16:39:12 UTC 28 of 58 positively flagged this sample as malicious 

5bc8cca9ad55d6a64f8e6d4a9ff70515 2017-10-15 17:38:23 UTC 28 of 59 positively flagged this sample as malicious 

5d7175a5fadbaa39b8adc4b0d25b6fb3 2017-09-13 08:39:06 UTC 28 of 59 positively flagged this sample as malicious 

604309ac21846b22b2caae57bf67f3fb 2014-10-08 23:03:26 UTC 1 of 55 positively flagged this sample as malicious 

60f34ddcbc1b17d08fbffaef22b68c54 2017-08-18 13:59:59 UTC 27 of 58 positively flagged this sample as malicious 

60fc6ad449a9516e4cc28f90501dcb45 2017-09-13 10:16:50 UTC 24 of 58 positively flagged this sample as malicious 

6215e3774235b0198b01591432711b1b 2017-09-14 06:18:17 UTC 20 of 58 positively flagged this sample as malicious 

62c041828b1e6912dfb03298ba438a4d 2017-09-14 07:08:25 UTC 20 of 58 positively flagged this sample as malicious 

630f3cb8a45c48e705884a3a7a569009 2017-09-14 07:02:52 UTC 21 of 58 positively flagged this sample as malicious 

63110ebe3240e9c10f697243c5b20546 2017-08-25 04:59:54 UTC 28 of 58 positively flagged this sample as malicious 

631715522c741190a7db60c7a1aa1857 2017-09-14 05:45:17 UTC 20 of 58 positively flagged this sample as malicious 

63cb6b921e038f7876ad1df989adae8f 2017-09-11 18:44:58 UTC 31 of 59 positively flagged this sample as malicious 

647160e2c4edb1227a9ea7f0515e7802 2017-06-19 23:56:13 UTC 4 of 56 positively flagged this sample as malicious 

6600a4555b57717198efa28c2f81a580 2017-01-30 08:23:39 UTC 1 of 54 positively flagged this sample as malicious 

66eb028016297b6ae9d83369fc27b8f1 2017-06-20 00:02:04 UTC 10 of 57 positively flagged this sample as malicious 

67ab34a6f119169933dde52fbd98449a 2017-09-14 06:38:21 UTC 9 of 57 positively flagged this sample as malicious 

68c99433880dcc983856d42bfe89fe18 2017-08-17 07:59:30 UTC 21 of 59 positively flagged this sample as malicious 

69485cd1d7f33ee63035b5a51322499d 2017-09-27 14:55:33 UTC 22 of 59 positively flagged this sample as malicious 

6bd761f1dc9d89088e32b0cd38a4a0bf 2017-08-31 04:19:29 UTC 29 of 60 positively flagged this sample as malicious 

700419e285c8940fb27399b907e5f6f4 2017-09-14 07:55:05 UTC 27 of 59 positively flagged this sample as malicious 
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706d02d456accd9f0c595719ecc9e4d7 2017-09-14 05:02:37 UTC 21 of 58 positively flagged this sample as malicious 

70e041ceb8cf1649bedde88fcc9f2fe9 2017-09-13 05:12:25 UTC 25 of 58 positively flagged this sample as malicious 

70ed42c63f6e928609b4c96c2d9bfed0 2017-09-14 06:54:43 UTC 19 of 58 positively flagged this sample as malicious 

725e4daaa2e7871376b8824f081c8407 2017-09-24 15:30:30 UTC 27 of 58 positively flagged this sample as malicious 

7266ddd8b30547e7b58be25068c4ca2d 2017-09-14 06:57:51 UTC 27 of 57 positively flagged this sample as malicious 

73c64457c379990a2ea9d6727273f153 2017-06-20 00:01:44 UTC 9 of 57 positively flagged this sample as malicious 

73d9116e2182ab33cc4ab049e4c184aa 2017-06-19 23:44:14 UTC 5 of 60 positively flagged this sample as malicious 

74022ded0c626bc340442eb0b2cde924 2017-09-14 06:31:55 UTC 21 of 58 positively flagged this sample as malicious 

7418711b0700bce6c1ec4ba3f73fa7ad 2017-06-19 23:56:11 UTC 5 of 55 positively flagged this sample as malicious 

748fe180301f7f36b8f3241a83a90b25 2017-10-03 19:36:27 UTC 27 of 59 positively flagged this sample as malicious 

7508cb71dcba0fc3ac0c636baf801fd5 2017-05-01 22:16:34 UTC 25 of 58 positively flagged this sample as malicious 

763c1f2b382afaf94e646e9db3d7d0bb 2017-05-12 21:04:05 UTC 28 of 58 positively flagged this sample as malicious 

77486750f502a76e530364d2fd7a7571 2017-09-28 01:24:01 UTC 29 of 60 positively flagged this sample as malicious 

77fd8616952647a01a3cad7d1ecf93aa 2017-09-09 15:26:01 UTC 27 of 57 positively flagged this sample as malicious 

78158b938a3ecfb21ff8aed13482990c 2017-09-11 07:58:18 UTC 28 of 59 positively flagged this sample as malicious 

78163c45c6a26741edbbf5517a28401d 2017-08-22 03:52:35 UTC 16 of 57 positively flagged this sample as malicious 

79992846a4d5b4e7109aa470bb8b8d26 2017-09-14 07:02:09 UTC 18 of 57 positively flagged this sample as malicious 

7a84e11af214468b5095ba3ba499763e 2017-07-08 05:06:43 UTC 25 of 58 positively flagged this sample as malicious 

7b06c08d5b89878285412c75e954bc46 2017-06-30 19:46:01 UTC 27 of 57 positively flagged this sample as malicious 

7b68d90ee7a225765911ec65535a3470 2017-06-19 19:27:13 UTC 8 of 57 positively flagged this sample as malicious 

7bc4166f715cc0c25a9ebadd33bbe3b9 2017-09-26 23:19:33 UTC 22 of 59 positively flagged this sample as malicious 

7fb7c97b2e9e0073ea81381289e31263 2017-09-14 07:10:56 UTC 21 of 58 positively flagged this sample as malicious 

80967df856279d385c848c588ed551f5 2017-09-14 06:11:47 UTC 25 of 60 positively flagged this sample as malicious 

814487db7841e925765f575e1b3020da 2017-09-11 08:12:19 UTC 29 of 59 positively flagged this sample as malicious 

81c8f77fe8eab66eb8a160e1e80032b1 2017-09-14 05:52:19 UTC 9 of 58 positively flagged this sample as malicious 

832daee7ef733fa06cb2cc6c4dd772e4 2017-08-25 13:39:48 UTC 28 of 57 positively flagged this sample as malicious 

845b20c45feb236d4e2660fbe6238ef7 2017-09-14 10:09:20 UTC 25 of 58 positively flagged this sample as malicious 

8484ab646e4963979b51c9a743fe813c 2017-09-14 05:55:53 UTC 25 of 56 positively flagged this sample as malicious 

849da70b51db35c04df5c4a2b0c49978 2017-09-14 07:33:24 UTC 7 of 58 positively flagged this sample as malicious 
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84e3ad0d62d21739d632d2106864e79e 2017-10-14 15:10:00 UTC 20 of 58 positively flagged this sample as malicious 

86c1c8fe6a156a44d9af74b23326b1a7 2017-09-14 07:06:54 UTC 7 of 58 positively flagged this sample as malicious 

876b3c44516a04af8e7b778a4fb6459c 2017-06-20 00:07:32 UTC 13 of 57 positively flagged this sample as malicious 

87955f9b3d487c29f3819534bfb458b8 2017-07-16 01:39:32 UTC 24 of 58 positively flagged this sample as malicious 

895c506102e65622d34ec29c864c8e78 2017-09-08 22:55:33 UTC 26 of 58 positively flagged this sample as malicious 

89bdece6977230f4a4bf4d9f7bdc450b 2017-06-19 23:57:12 UTC 6 of 57 positively flagged this sample as malicious 

8b38f484a0a2e2f1695800ac5867ed0c 2017-09-14 06:46:51 UTC 20 of 57 positively flagged this sample as malicious 

8ddb14db9417749384a22cb1ceeb5df5 2017-09-14 06:37:59 UTC 7 of 58 positively flagged this sample as malicious 

8e20898079f86f7fea338d0c581dc346 2017-09-14 05:14:47 UTC 9 of 57 positively flagged this sample as malicious 

8ec78510a7305d5036b83ea364919329 2017-09-13 10:27:00 UTC 29 of 60 positively flagged this sample as malicious 

8f160254d4544759ee2f21ee67e8d499 2017-08-19 19:44:24 UTC 28 of 57 positively flagged this sample as malicious 

8f9e3b3bee6284d7d2e60a5e4d380b51 2017-09-14 05:45:20 UTC 9 of 58 positively flagged this sample as malicious 

90eb5ae793c603ff5f2bed8405cfda9a 2017-09-14 04:52:16 UTC 18 of 57 positively flagged this sample as malicious 

90f4efbebefbb0d7c00fa6d2f3f493ef 2017-09-14 05:40:03 UTC 27 of 59 positively flagged this sample as malicious 

9182057f942e294e6411fa09a4e1bc07 2017-09-14 05:18:22 UTC 30 of 58 positively flagged this sample as malicious 

92b0647066a4bc5b2354337a3c7e53e1 2017-09-14 06:19:11 UTC 23 of 58 positively flagged this sample as malicious 

9590cf63c14047adec7effeaecd50d9a 2017-09-13 10:12:46 UTC 26 of 58 positively flagged this sample as malicious 

964cd8930da715979dfbf72ef6542e69 2017-09-11 03:14:01 UTC 24 of 57 positively flagged this sample as malicious 

971d5b9a22978c874896f6f4fd55c163 2016-12-21 03:39:03 UTC 2 of 53 positively flagged this sample as malicious 

9745d2ee10c917ed2bc5fd2a9b8437ac 2017-06-19 23:56:16 UTC 7 of 56 positively flagged this sample as malicious 

97db092615eb0dc51809763ff5543ab5 2017-09-14 04:58:24 UTC 9 of 58 positively flagged this sample as malicious 

982f509e3a517985a93584aa60ef6354 2014-03-06 18:10:26 UTC 0 of 56 positively flagged this sample as malicious 

984f22e4d7d47e3c4251a9e942a50a88 2017-09-14 05:15:15 UTC 9 of 58 positively flagged this sample as malicious 

988ccc200938e8035a706eab1d29f7ad 2017-09-25 17:31:23 UTC 37 of 60 positively flagged this sample as malicious 

9a15faa383e018b4373b53635c70ceb2 2017-08-20 17:38:12 UTC 28 of 58 positively flagged this sample as malicious 

9d8e3e4c23f6fea431fda602fb00629d 2017-05-06 08:04:04 UTC 30 of 57 positively flagged this sample as malicious 

9eba1f4cc856783ef3c3a9d15d221d17 2017-09-14 07:09:41 UTC 7 of 57 positively flagged this sample as malicious 

9f2994c909f497f4e2a06acc66da8e9f 2017-09-10 15:14:46 UTC 25 of 59 positively flagged this sample as malicious 

a00168464baa118d86c9280c70837dc8 2017-09-25 01:09:32 UTC 16 of 59 positively flagged this sample as malicious 
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a058896f22ee796009518eab6a263230 2017-09-14 06:23:37 UTC 9 of 57 positively flagged this sample as malicious 

a1d3f07a32b590c449c3ecb105a92bfb 2017-09-14 06:38:20 UTC 20 of 57 positively flagged this sample as malicious 

a1d511213200144ea2dcaf440800c6cd 2017-06-19 23:56:19 UTC 4 of 56 positively flagged this sample as malicious 

a1f54e3c01df0a94929db5070685c8ad 2017-08-17 01:03:00 UTC 18 of 58 positively flagged this sample as malicious 

a4371958b0bf2ef98c4786fc47b271f9 2017-08-23 12:59:58 UTC 25 of 58 positively flagged this sample as malicious 

a4944230d62083019d13af861b476f33 2016-06-18 18:32:41 UTC 24 of 60 positively flagged this sample as malicious 

a67c1814f5f558b10d11c312b2e2113a 2017-09-27 08:13:54 UTC 15 of 58 positively flagged this sample as malicious 

a686d857f840751ba0f6c09387ee2fcd 2017-06-20 00:06:43 UTC 8 of 57 positively flagged this sample as malicious 

a6c912cf92592835f9b5a7b0008c72fd 2017-08-20 12:00:06 UTC 25 of 58 positively flagged this sample as malicious 

a75f54ecd88370e15929a3c167788650 2017-08-14 06:11:45 UTC 26 of 58 positively flagged this sample as malicious 

a7a1abb5d8e87fc670b6841a805103df 2017-04-22 11:00:37 UTC 37 of 59 positively flagged this sample as malicious 

a848dd1b189794df9d663875306b5669 2017-08-12 19:18:44 UTC 25 of 58 positively flagged this sample as malicious 

a86488274b56159d89203a23060f4d39 2016-06-18 18:32:35 UTC 24 of 60 positively flagged this sample as malicious 

a91326d1a79c6e460290a18aa25e021d 2017-08-25 13:25:52 UTC 27 of 58 positively flagged this sample as malicious 

a9c23780accb1c2809d4f9a6da0e7ec6 2017-08-29 11:41:45 UTC 29 of 60 positively flagged this sample as malicious 

ab4dbede113872843d937b9bb71fd8a7 2017-08-27 08:03:58 UTC 26 of 57 positively flagged this sample as malicious 

abb49353283b58ef61f61c76be353f05 2017-10-13 07:10:24 UTC 26 of 59 positively flagged this sample as malicious 

ac34800f6312fb3a9667f86887c66bf0 2017-09-14 05:16:23 UTC 21 of 58 positively flagged this sample as malicious 

acfb380ad0694dd89dca6a0b81cc2272 2017-06-19 23:56:48 UTC 6 of 57 positively flagged this sample as malicious 

ae53acde59e7f0e3a6f4d0d1a6be0ef2 2017-10-05 01:28:11 UTC 26 of 59 positively flagged this sample as malicious 

af05768f8b9075c9ae29883c3536653e 2017-09-23 08:44:16 UTC 27 of 59 positively flagged this sample as malicious 

af85ff722b21b31701374107f7448cee 2017-08-17 21:10:22 UTC 27 of 58 positively flagged this sample as malicious 

afbfedc25605d51346369a98867227b6 2017-09-14 16:47:53 UTC 18 of 59 positively flagged this sample as malicious 

b04ce8871e94f850cb1c9c3f74286965 2016-06-20 05:54:34 UTC 27 of 60 positively flagged this sample as malicious 

b07745481e11ed4c26d027dee8708a1f 2017-02-26 17:14:34 UTC 29 of 58 positively flagged this sample as malicious 

b1e642d300f9e887f3f667e97b26b751 2017-07-08 13:35:10 UTC 23 of 59 positively flagged this sample as malicious 

b3d26632c4077e731ef2da329974519d 2017-10-14 15:02:51 UTC 8 of 58 positively flagged this sample as malicious 

b414cdc90dc260035dcf2787a534fdde 2017-09-14 06:50:12 UTC 9 of 58 positively flagged this sample as malicious 

b74bb1415a46e9e21c36cf688a044186 2017-09-14 07:27:06 UTC 20 of 58 positively flagged this sample as malicious 
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b76ffcdafb3861d3c30bb5becb73ec28 2017-09-14 05:23:27 UTC 21 of 60 positively flagged this sample as malicious 

b9e84b04d3f9c97912fd4e5e9e7d5346 2017-09-20 22:23:11 UTC 26 of 59 positively flagged this sample as malicious 

bee9a7e795527ed632bb42e2ba928363 2017-09-14 05:31:38 UTC 9 of 58 positively flagged this sample as malicious 

bef36ad5a5a6b4a5c0dbe5d4cc9c5586 2017-08-15 06:21:54 UTC 27 of 57 positively flagged this sample as malicious 

bf0c5d5cfafafc3893c3b4d99f67303c 2017-09-14 07:11:20 UTC 9 of 56 positively flagged this sample as malicious 

bf346e8bee16106849bd0f78a004efad 2017-07-06 22:49:30 UTC 1 of 60 positively flagged this sample as malicious 

bfb5300d63e8f266f7345b6e32b5bb6b 2017-09-14 06:47:00 UTC 7 of 58 positively flagged this sample as malicious 

c0c50b69f325d696a7cdb3311f235500 2017-08-15 02:05:54 UTC 28 of 58 positively flagged this sample as malicious 

c10d2e684af1fa079a8229fe3ae45cf5 2017-08-17 16:07:52 UTC 27 of 58 positively flagged this sample as malicious 

c13c5b779b9c3e6eaffcdc2addf29942 2017-09-14 06:33:15 UTC 7 of 58 positively flagged this sample as malicious 

c1accbab60a70d1b20b7fde2c73c5d76 2017-06-20 00:01:47 UTC 5 of 57 positively flagged this sample as malicious 

c2e67c8380ae5545e505cd44df4c702a 2017-08-18 12:43:18 UTC 27 of 58 positively flagged this sample as malicious 

c3d6bff74f0c40ccb3197c4f6f71e6eb 2017-09-13 08:14:42 UTC 25 of 58 positively flagged this sample as malicious 

c535fa75588dfa2c5c1b8c4c4473774c 2017-08-15 01:15:07 UTC 26 of 58 positively flagged this sample as malicious 

c6cf74ca4d29ebbadb876394922acda0 2017-09-14 05:59:55 UTC 26 of 60 positively flagged this sample as malicious 

c81f2d82a2809f7c576021e63d3f727c 2017-08-23 22:44:21 UTC 27 of 58 positively flagged this sample as malicious 

c83e26d778d5bf5b21861c75fdabb48d 2017-09-14 05:27:50 UTC 9 of 58 positively flagged this sample as malicious 

c90561275cdac5b734052f87cf9ff38e 2017-08-18 14:13:20 UTC 26 of 58 positively flagged this sample as malicious 

caa689187bf47e5fd2a2657cec0df6d5 2017-09-26 07:42:04 UTC 26 of 58 positively flagged this sample as malicious 

cac6603b4e6dab11c66581d89383a27c 2017-09-14 06:51:17 UTC 21 of 58 positively flagged this sample as malicious 

cb978527dc707aaa98504f14e58df5a6 2017-09-14 06:26:18 UTC 9 of 58 positively flagged this sample as malicious 

cb9f5a1898f96b7d8efcd18ec6e13f07 2017-09-14 05:54:37 UTC 20 of 56 positively flagged this sample as malicious 

cc064f8f4f8fe15f8d7fc07453ab8ee4 2017-09-26 01:50:11 UTC 29 of 60 positively flagged this sample as malicious 

ccb487179fe72da2c47e58eee380a260 2017-09-14 06:36:44 UTC 20 of 57 positively flagged this sample as malicious 

ce31c046270623f3fd157a882449b53f 2017-09-14 07:31:52 UTC 7 of 57 positively flagged this sample as malicious 

ce735a1a4202176505df4f5cd9ff4a0a 2017-09-14 05:36:25 UTC 17 of 58 positively flagged this sample as malicious 

d308b9b4d4f70b95003b23e3ada307bd 2017-09-14 04:58:31 UTC 9 of 58 positively flagged this sample as malicious 

d5e40f3e2d31e6c6c00d715a028db5bf 2016-06-15 09:14:46 UTC 36 of 58 positively flagged this sample as malicious 

d630c62215c2cc468450fd3b578c8a45 2017-04-26 12:22:06 UTC 25 of 56 positively flagged this sample as malicious 
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d8badd195f857f9cb0ecaf86ed6d32fd 2017-10-13 07:35:08 UTC 36 of 59 positively flagged this sample as malicious 

d91b28fc92246ac0ac0ab45bb814a586 2017-09-14 05:12:53 UTC 9 of 58 positively flagged this sample as malicious 

da0a7b5ade941f44c2a254444bf8f6f6 2017-09-14 05:33:20 UTC 21 of 58 positively flagged this sample as malicious 

dc0000195aa0fe2d3f8a6a977fb72a5d 2017-09-13 12:32:31 UTC 19 of 58 positively flagged this sample as malicious 

dc4a890cb15d3ce37fb5ed81d2db8d0b 2017-06-19 23:57:57 UTC 4 of 56 positively flagged this sample as malicious 

dd512bf7255bcfe3f1aeb1bfd2395cba 2017-09-14 07:03:14 UTC 20 of 58 positively flagged this sample as malicious 

de7a309e7288b276fa5e17dff62d5350 2017-05-18 02:26:43 UTC 25 of 57 positively flagged this sample as malicious 

df08353fe242893b11fcb14b4315b264 2017-09-14 07:30:52 UTC 16 of 58 positively flagged this sample as malicious 

e2bd3ead1d36071c0b7b3192535a9a8f 2017-09-14 05:06:20 UTC 20 of 58 positively flagged this sample as malicious 

e47961f9c406d31eab55e8d96802bef8 2017-10-14 19:29:29 UTC 26 of 60 positively flagged this sample as malicious 

e545bfb8dc484bd394d87dc5f9d908c3 2017-09-10 18:10:39 UTC 28 of 60 positively flagged this sample as malicious 

e56fd7e8979edecf2e5a60c736e0d682 2016-12-21 03:39:11 UTC 1 of 54 positively flagged this sample as malicious 

e631a27538a0731e2fec247f76d5987e 2017-09-14 05:14:27 UTC 28 of 58 positively flagged this sample as malicious 

e7355da37408a07ef759fc48bbfdfe7e 2017-09-14 02:58:36 UTC 37 of 60 positively flagged this sample as malicious 

e73db2a8d719529cdc28bc66c430904b 2017-05-28 22:23:46 UTC 26 of 58 positively flagged this sample as malicious 

e8866f7f63d608b19268473db8b8fd90 2017-09-14 05:32:03 UTC 21 of 58 positively flagged this sample as malicious 

e912b098f5a8e021e9e6d583cc34dd6e 2017-01-30 08:23:30 UTC 1 of 55 positively flagged this sample as malicious 

e9315e0769af400d495a7de50ccf54e2 2017-09-14 05:25:15 UTC 18 of 57 positively flagged this sample as malicious 

eb3b9051154103999852834872257d0d 2017-08-20 01:56:07 UTC 26 of 58 positively flagged this sample as malicious 

eb6f16478b50df8d0f479eb47c7c557c 2017-08-20 20:37:27 UTC 26 of 58 positively flagged this sample as malicious 

ec41436988e3356ce8b93c5803aa7e6c 2017-09-14 07:33:10 UTC 19 of 58 positively flagged this sample as malicious 

ee25b5aecaa22190352bf59287f29161 2017-09-14 05:52:17 UTC 21 of 58 positively flagged this sample as malicious 

f05c16b6fdfe3b1e099352c3d8002aa7 2017-09-14 05:58:46 UTC 9 of 56 positively flagged this sample as malicious 

f11454c3ff0614432dc2cabb8a012656 2017-09-14 06:44:01 UTC 16 of 57 positively flagged this sample as malicious 

f1de31cada16698cc6d212bc0f5db06d 2017-09-14 05:04:58 UTC 25 of 58 positively flagged this sample as malicious 

f3b04da9a52b547533399244efd24f55 2017-08-25 13:59:18 UTC 28 of 60 positively flagged this sample as malicious 

f3e1f5db377c2f11e25cbd2aa9343d37 2016-06-20 05:54:24 UTC 26 of 60 positively flagged this sample as malicious 

f43e971c37d492191ee973c42d7decc2 2017-06-19 23:56:45 UTC 5 of 57 positively flagged this sample as malicious 

f477afa7cafc0f8f1bf563262a96519a 2017-09-14 05:46:19 UTC 9 of 58 positively flagged this sample as malicious 
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f56b750439eb42693334ae0c330461d4 2016-12-21 03:39:08 UTC 1 of 55 positively flagged this sample as malicious 

f5dd74f08f9ea90aaeda2b2c43ea9859 2017-09-11 11:08:33 UTC 15 of 59 positively flagged this sample as malicious 

f5e6002beb92d913a1ee8fdbad4eaac1 2017-09-27 20:40:22 UTC 24 of 60 positively flagged this sample as malicious 

f6fdb413695acc50a536cec329214174 2017-09-14 05:26:35 UTC 19 of 58 positively flagged this sample as malicious 

fde76bf4faeb9316127260c1f4b6142f 2017-07-07 17:12:45 UTC 25 of 58 positively flagged this sample as malicious 

fdf19272e88f012e17b997f717e1b6d7 2017-09-14 06:01:05 UTC 9 of 58 positively flagged this sample as malicious 

fe06e8e7a59cc6a50925a335f6e9c3fa 2017-09-14 04:57:36 UTC 9 of 58 positively flagged this sample as malicious 

fe82c7fbcac1b1868a3c8401ea906bf1 2017-04-06 12:13:27 UTC 20 of 60 positively flagged this sample as malicious 

fde04f4492b96f449fd36fe10c0e9f3c 2018-03-23 07:58:41 UTC 15 of 59 positively flagged this sample as malicious 

35b6e58366611f17781a4948f77353b6 2018-03-23 07:55:33 UTC 23 of 59 positively flagged this sample as malicious 

f6b9127970d56de9a65419cb628206af 2018-03-02 19:09:25 UTC 17 of 60 positively flagged this sample as malicious 

eb8887024deb1889b5ac6cee37c9ef7d 2018-03-02 19:12:29 UTC 24 of 60 positively flagged this sample as malicious 

  



101 

 

 


	Evaluating Open Source Malware Sandboxes with Linux malware
	Declaration
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1. Introduction
	1.1 Background, motivation and objective
	1.2 Organisation

	2 Literature Review
	2.1 Introduction
	2.2 Malware and the Linux Operating System
	2.3 Linux Operating System Internals
	2.3.1 Internals
	2.3.1.1 System Architecture
	2.3.1.2 Memory Management
	2.3.1.2.1 Pages, virtual memory and swap operations
	2.3.1.2.2 Memory Zones
	2.3.1.2.3 Zone Allocators

	2.3.1.3 Process control
	2.3.1.3.1 System calls and signals
	2.3.1.3.2 Process data structure
	2.3.1.3.3 Copy on write
	2.3.1.3.4 Processes, threads, tasks, clone system call and scheduling
	2.3.1.3.5 Kernel Synchronisation

	2.3.1.4 Device Control
	2.3.1.4.1 Device Drivers
	2.3.1.4.2 Virtual File System


	2.3.2 Forensic Artefacts
	2.3.2.1 Log files
	2.3.2.2 Memory
	2.3.2.3 Executable and Linkable Format
	2.3.2.4 Configuration files


	2.4 Malware Analysis
	2.4.1 Static Analysis
	2.4.2 Dynamic Analysis

	2.5 Related Work
	2.5.1 Survey of malware analysis solutions
	2.5.1.1 Components of analysis systems
	2.5.1.2 Malware variants and automated analysis
	2.5.1.3 Anti Analysis
	2.5.1.4 Sandboxes and Indications of compromise

	2.5.2 Analysis of Linux Malware Samples

	2.6 Research Goals

	3 Research Design
	3.1 Introduction
	3.2 Review of malware analysis methodology
	3.2.1 Sourcing malware samples
	3.2.2 Analysis methods

	3.3 Data Acquisition
	3.3.1 Honeypot
	3.3.1.1 Open access system
	3.3.1.2 Firewall
	3.3.1.3 Switch
	3.3.1.4 Intrusion Detection System
	3.3.1.5 Trusted upstream server

	3.3.2 Public Repositories
	3.3.2.1 VirusTotal
	3.3.2.2 VirusShare


	3.4 Analysis methodology
	3.4.1 Honeypot setup
	3.4.2 Sandbox
	3.4.2.1 REMnux
	3.4.2.2 Limon
	3.4.2.3 Cuckoo
	3.4.2.4 Detux
	3.4.2.5 HaboMalhunter


	3.5 Research Questions and Hypotheses
	3.5.1 REMnux
	3.5.2 Limon
	3.5.3 Cuckoo
	3.5.4 Detux
	3.5.5 HaboMalHunter

	3.6 Conclusion

	4. Results
	4.1 Introduction
	4.2 Honeypot analysis
	4.3 Sandbox static analysis results
	4.3.1 REMnux
	4.3.2 Limon
	4.3.3 Cuckoo
	4.3.4 Detux
	4.3.5 HaboMalHunter

	4.4 Sandbox dynamic analysis results
	4.4.1 REMnux
	4.4.2 Limon
	4.4.3 Cuckoo
	4.4.4 Detux
	4.4.5 HaboMalhunter

	4.5 Automation and reporting features evaluation
	4.5.1 REMnux
	4.5.2 Limon
	4.5.3 Cuckoo
	4.5.4 Detux
	4.5.5 HaboMalHunter

	4.6 Conclusion

	5. Discussion
	5.1 Introduction
	5.2 Dataset family classification
	5.3 Static Analysis
	5.3.1 Obfuscation and packing
	5.3.2 Virustotal
	5.3.3 Answers to sub-questions on packing and obfuscation
	5.4 Dynamic Analysis
	5.4.1 REMnux
	5.4.2 Limon
	5.4.3 Cuckoo
	5.4.4 Detux
	5.4.5 HaboMalHunter

	5.5 Answers to research hypotheses
	5.6 Conclusion

	6. Conclusions
	6.1 Introduction
	6.2 Thesis Review
	6.3 Contribution
	6.4 Limitations
	6.4.1 Diversity of dataset
	6.4.2 System libraries and hardware extensions
	6.4.3 Internet Access

	6.5 Future Work
	6.6 Conclusion

	7. References
	APPENDIX
	List of malware samples


