
Evaluating Open Source Malware Sandboxes with Linux

malware

OLABOYEJO OLOWOYEYE

A thesis submitted to the Faculty of Design and Creative Technologies

Auckland University of Technology

In partial fulfilment of the requirements for the degree of

Master of Information Security and Digital Forensics

School of Engineering, Computer and Mathematical Sciences

Auckland, New Zealand

2018

ii

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which, to a substantial extent, has been accepted for the qualification of any other

degree or diploma of a University or other institution of higher learning, except where due

acknowledgment is made in the acknowledgments.

------------------------------------ ---------------------------------------

OLABOYEJO OLOWOYEYE

(05-June-2018)

iii

Abstract

Analysis of Linux binaries for indicators of compromise is an area of research gaining in interest due

to the ubiquity of Internet connected embedded devices. These devices have also been the subject of

high profile cybersecurity incidents as a result of the damage caused by their compromise. Malware

analysis sandboxes are used to examine malware samples in an isolated environment. They provide a

safe environment for the analysis of malware. Most of the discussion on malware analysis and

associated tools have been devoted to the Windows operating system. This is because the Windows

operating system is the dominant operating system in the desktop operating system space. This

research examines the Linux operating system and evaluates the malware analysis sandboxes that are

available for the examination of malware developed for the platform. These analysis sandboxes were

tested against Linux malware binaries and the relative effectiveness of the sandboxes were observed.

Malware samples were sourced from online repositories and a honeypot setup. The malware samples

obtained from the repositories were restricted to those first submitted to the portals within the last

four years. The honeypot was deployed to attract malware samples in the wild that are possibly

unknown to existing portals. Four malware samples were extracted from the honeypot which were

added to the two hundred and ninety-three (293) selected from VirusTotal and VirusShare. The five

sandboxes tested were REMnux, Limon, Cuckoo, Detux and HaboMalhunter. The malware samples

were examined and analysed on these platforms. The static and dynamic analysis features of these

tools were observed as well as their support for automation and reporting. The consistency of the

results where applicable were also noted.

It was observed that despite the consistency of analysis noticed; collectively, the five sandboxes failed

to detect indications of compromise in twenty-seven (27) of two hundred and ninety-seven (297)

malware samples. HaboMalhunter was found to be the most effective during dynamic analysis in the

detection of indications of compromise; however, its workflow required each analysis run to be done

manually because it did not have in-built virtual machine orchestration like Limon, Detux and Cuckoo.

During static analysis results, the results were observed to be similar with the exception of Limon

which employed Yara rules to detect the packers used to mask the malware samples. Limon was also

alone in its use of Context Triggered Piecewise Hashing (CTPH) to determine the similarity between

malware samples by its maintenance of a master list of analysed samples. Cuckoo and HaboMalHunter

generated output reports in HTML and JSON while Detux supported only JSON output. REMnux and

Limon generated only plaintext output reports. The addition of virtual machine control to

HaboMalhunter to restore virtual machine state before and after each analysis run was suggested as

a recommended improvement to facilitate the automation of the analysis process. The need to

develop more packing signatures for Yara rules was also mentioned for the automatic detection of

packers.

iv

Contents

Evaluating Open Source Malware Sandboxes with Linux malware .. i

Declaration .. ii

Abstract .. iii

List of Figures ... viii

List of Tables ... x

List of Abbreviations .. xi

1. Introduction .. 1

1.1 Background, motivation and objective ... 1

1.2 Organisation .. 2

2 Literature Review ... 3

2.1 Introduction .. 3

2.2 Malware and the Linux Operating System .. 3

2.3 Linux Operating System Internals ... 4

2.3.1 Internals ... 4

2.3.2 Forensic Artefacts .. 16

2.4 Malware Analysis .. 20

2.4.1 Static Analysis... 20

2.4.2 Dynamic Analysis ... 21

2.5 Related Work .. 21

2.5.1 Survey of malware analysis solutions .. 21

2.5.2 Analysis of Linux Malware Samples ... 26

2.6 Research Goals .. 27

3 Research Design ... 29

v

3.1 Introduction .. 29

3.2 Review of malware analysis methodology ... 29

3.2.1 Sourcing malware samples .. 29

3.2.2 Analysis methods ... 30

3.3 Data Acquisition .. 32

3.3.1 Honeypot.. 32

3.3.2 Public Repositories ... 35

3.4 Analysis methodology ... 36

3.4.1 Honeypot setup.. 38

3.4.2 Sandbox .. 39

3.5 Research Questions and Hypotheses .. 45

3.5.1 REMnux .. 45

3.5.2 Limon.. 45

3.5.3 Cuckoo .. 46

3.5.4 Detux .. 46

3.5.5 HaboMalHunter ... 46

3.6 Conclusion ... 47

4. Results ... 48

4.1 Introduction .. 48

4.2 Honeypot analysis ... 48

4.3 Sandbox static analysis results .. 51

4.3.1 REMnux .. 51

4.3.2 Limon.. 52

4.3.3 Cuckoo .. 54

4.3.4 Detux .. 54

vi

4.3.5 HaboMalHunter ... 54

4.4 Sandbox dynamic analysis results ... 55

4.4.1 REMnux .. 55

4.4.2 Limon.. 55

4.4.3 Cuckoo .. 55

4.4.4 Detux .. 56

4.4.5 HaboMalhunter .. 56

4.5 Automation and reporting features evaluation .. 56

4.5.1 REMnux .. 56

4.5.2 Limon.. 56

4.5.3 Cuckoo .. 57

4.5.4 Detux .. 58

4.5.5 HaboMalHunter ... 59

4.6 Conclusion ... 60

5. Discussion .. 61

5.1 Introduction .. 61

5.2 Dataset family classification .. 61

5.3 Static Analysis.. 63

5.3.1 Obfuscation and packing .. 63

5.3.2 Virustotal .. 65

5.3.3 Answers to sub-questions on packing and obfuscation .. 65

5.4 Dynamic Analysis... 66

5.4.1 REMnux .. 66

5.4.2 Limon.. 67

5.4.3 Cuckoo .. 67

vii

5.4.4 Detux .. 68

5.4.5 HaboMalHunter ... 69

5.5 Answers to research hypotheses .. 71

5.6 Conclusion ... 71

6. Conclusions ... 72

6.1 Introduction .. 72

6.2 Thesis Review .. 72

6.3 Contribution .. 73

6.4 Limitations ... 75

6.4.1 Diversity of dataset .. 75

6.4.2 System libraries and hardware extensions .. 75

6.4.3 Internet Access ... 75

6.5 Future Work .. 76

6.6 Conclusion ... 76

7. References .. 77

APPENDIX .. 90

List of malware samples .. 90

viii

List of Figures

Figure 2. 1 System Organisation adapted from (Tanenbaum & Bos, 2014) ... 5

Figure 2. 2 Memory mapping operations adapted from (Tanenbaum & Bos, 2014) 7

Figure 2. 3 Memory Swap-out Operation adapted from (Bovet & Cesati, 2005) 8

Figure 2. 4 Memory Swap-in Operation adapted from (Bovet & Cesati, 2005) 9

Figure 2. 5 32-bit System Memory Zone adapted from (Corbet et al., 2005) .. 9

Figure 2. 6 64-bit System Memory Zone adapted from (Corbet et al., 2005) 10

Figure 2. 7 ELF File Structure adapted from (Tool Interface Standards Committee, 2001) 18

Figure 2. 8 Function call address resolution adapted from (M. H. Ligh et al., 2014) 19

Figure 3. 1 Honeypot Topology ... 32

Figure 3. 2 Stages of Analysis .. 37

Figure 3. 3 Malware analysis with REMnux .. 39

Figure 3. 4 Malware analysis with Limon .. 41

Figure 3. 5 Malware analysis with Cuckoo .. 42

Figure 3. 6 Malware analysis with Detux .. 43

Figure 3. 7 Malware analysis with HaboMalHunter ... 44

Figure 4. 1 Uploaded files to VirusTotal .. 48

Figure 4. 2 VirusTotal Analysis of nskusejjex_31541.dmp .. 49

Figure 4. 3 VirusTotal Analysis of mkqetifiknxzmxn_31654.dmp ... 49

Figure 4. 4 VirusTotal Analysis of ddjqioholr_18232.dmp .. 50

Figure 4. 5 VirusTotal Analysis of hxnrgwitwx_18317.dmp .. 50

Figure 4. 6 Snort packet capture analysis screenshot .. 51

Figure 4. 7 Suricata packet capture analysis screenshot .. 51

Figure 4. 8 Malware samples similarity graph using ssdeep .. 53

ix

Figure 4. 9 Sample Cuckoo HTML report .. 57

Figure 4. 10 Sample Cuckoo JSON report ... 58

Figure 4. 11 Sample Detux JSON report .. 58

Figure 4. 12 Sample HaboMalHunter JSON report ... 59

Figure 4. 13 Sample HaboMalHunter HTML report .. 60

Figure 5. 1 Testing pool malware classification .. 61

Figure 5. 2 Malware sample similarity and malware family comparison ... 64

x

List of Tables

Table 3. 1 Summary of design decisions of related research efforts .. 31

Table 3. 2 Firewall security policies .. 34

Table 3. 3 Switch interface and VLAN configuration .. 34

Table 3. 4 Virtual machines addressing information .. 44

Table 4. 1 Summary of String and ELF header analysis ... 55

Table 5. 1 Summary of Malware family .. 62

Table 5. 2 Malware samples making random connections by family (Limon) 67

Table 5. 3 Triggered signatures by family (Cuckoo) .. 68

Table 5. 4 Malware samples connecting to multiple hosts by family (Detux) 68

Table 5. 5 Malware samples connecting to control centres by family (Detux) 69

Table 5. 6 Malware samples connecting to local TCP process by family (HaboMalHunter) 70

Table 5. 7 Malware samples connecting to multiple hosts by family (HaboMalHunter) 70

Table 5. 8 Malware samples connecting to control centres (HaboMalHunter) 71

xi

List of Abbreviations

AEMS Analysis Evasion Malware Sandbox

AIDE Advanced Intrusion Detection Environment

ASCII American Standard Code for Information Interchange

BIOS Basic Input Output Systems

CFQ Completely Fair Queuing

CFS Completely Fair Scheduler

CTPH Context Triggered Piecewise Hashing

DMA Direct Memory Access

DNS Domain Name System

ELF Executable and Linkable Format

FIFO First in First out

GOT Global Offsets Table

HCI Human Computer Interaction

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electronic and Electrical Engineers

IoT Internet of Things

IRC Internet Relay Chat

ISA Industry Standard Architecture

JSON JavaScript Object Notation

LTS Long-Term Support

MBR Master Boot Record

MMU Memory Management Unit

xii

PDF Portable Data Format

PFN Page Frame Number

PHT Program Header Table

PID Process Identifier

PLT Procedure Linkage Table

POSIX Portable Operating System Interface

SHT Section Header Table

SSH Secure Shell

SVM Support Vector Machine

TID Task Identifier

TLB Translation Look-aside Buffer

TLSH Trend Locality Sensitive Hashing

URL Uniform Resource Locator

VFS Virtual File System

VLAN Virtual LAN

VPS Virtual Private Server

1

1. Introduction

1.1 Background, motivation and objective

Malicious software (or malware) are programs written with the intention of causing harm to the target

of the program execution (Moser, Kruegel, & Kirda, 2007). The ubiquity of the Internet has helped

facilitate the spread of malware infections. Business enhancement tools such as instant messaging,

electronic mail and shared files which have become an essential part of collaboration are being used

as enablers for the spread of malware in the enterprise. Critical infrastructure services in health,

transportation, energy and communication are supported by Information technology systems. The

potential impact of harmful tools on these services have not gone unnoticed to criminal organisations.

Criminal activities using malware have ranged from the deployment of keyloggers and spyware to

steal data from individual users to corporate theft, blackmail and sabotage. A couple of high profile

attacks against critical infrastructure are the Wannacry ransomware attack that particularly affected

the operations of the National Health Service in the UK and the Trojan.Disakill attack on the Ukraine

energy infrastructure (Ehrenfeld, 2017; Symantec, 2017).

The most popular platforms, due to the large size of infection footprint generally have the most

malware attacks and hence the most amount of analysis activities and tools. The foregoing is the

reason that the erroneous view was held that there were no viruses on Linux. The computer desktop

market is dominated by the Microsoft Windows operating systems. The uptake in the use of Linux for

servers and the increasing popularity of Internet connected embedded systems and the Internet of

Things (IoT) have suddenly made the Linux operating system a lucrative target. More than half of the

malware samples attracted by the Symantec IoT honeypot were written for the Linux operating system

as vulnerabilities on the Linux operating system are being actively sought for exploits (Symantec,

2018a). The Trojan.Disakill attack on the Ukraine energy infrastructure in 2016 was a disk wiping attack

on Linux servers supporting the energy grid. One of the highest profile exploits was directed at the

web hosting company OVH, it involved the compromise and enlistment of IoT devices into a botnet

using the Mirai malware to create one of the biggest Distributed Denial of Service attacks (Symantec,

2017).

Malware analysis allows researchers to dissect malware to determine their objectives and operations.

This activity can be useful in creating static, behavioural and heuristic signatures that can be added to

security appliances. It can also be used to stop the effect of an ongoing attack as well as for conducting

a post-mortem analysis of a breach. Malware analysis sandboxes allow execution and examination of

the malware samples in a safe and isolated environment. Malware samples are also released at a very

high rate that challenges the ability of the analyst and the available tools to cope. It has been found

that most new malware samples are variants of existing ones. In order to cope with the rate of

malware deployment, the ability to detect variations of existing samples is necessary as is the ability

to automate analysis in a safe environment.

The foregoing motivations are due to the prevalence of malware and the increasing interest in Linux

malware samples by malware authors as well as the need for automated analysis in a safe

environment. The analysis of Windows operating system based malware has been given the most

coverage in available literature (Botacin, de Geus, & Grégio, 2017). This research seeks to explore and

evaluate the existing tools and platforms for malware analysis on Linux systems. This involves the

sourcing of malware samples as well as the tooling environment. This appraisal is to guide the security

2

community on the relative utility of the available tools for malware analysis in the Linux environment

and recommendations to the open source community on improvements to these tools.

1.2 Organisation

The thesis is structured into six parts. The first part is the introduction which discussed the background

and motivation for the thesis. The underlying concepts involved with internals of the Linux operating

system and malware analysis were addressed in the second chapter as well as the related research

activities. The five sandboxes, REMnux, Limon, Cuckoo, Limon and HaboMalHunter were selected for

testing after the review. The third chapter explored the methods used for sourcing the malware

samples and the research design. Drawing from existing research the malware samples were obtained

from malware repositories and a honeypot setup. The honeypot setup was described and testing

methodology for the five sandboxes decided upon in chapter 2, laid out. The research sub-questions

and hypotheses concluded the chapter. The result of the honeypot entrapment scheme and the

malware analysis results on the sandboxes were presented in chapter 4. The research sub-questions

related to automation and reporting features were also answered in chapter 4. Chapter 5 was a

discussion of the results within the context of the malware families and the CPU families of the

malware samples. The remaining research sub-questions and the research hypotheses were answered

in chapter 5. Chapter 6 concluded the thesis with an overview, the contribution and the limitations of

the research. Suggestions for future work were also made.

3

2 Literature Review

2.1 Introduction

This chapter is a review of the existing body of work upon which this research builds. It is divided into

five sections. The first section discusses malware classification and analysis with respect to the Linux

operating system. A study of malware analysis on the Linux operating system requires a thorough

understanding of the internal workings of the operating system. The second section accomplishes this

with a discussion of internals of the Linux operating systems, with brief descriptions of some key

system calls and forensic artefacts, while the third explores the subject of malware analysis

techniques. A review of similar research activities was undertaken in the fourth section and the

chapter concludes with the identification of the gaps this research seeks to fill in light of the review.

2.2 Malware and the Linux Operating System

Malware is software designed with harmful intent, affecting optimal and secure operation of a

computing environment (Bryant, 2016). Malware can be categorised based on mobility, that is, if it

can spread without human interaction. Viruses, worms and mobile code are examples of mobile

malware while Trojans and rootkits are non-mobile malware (Boyle & Panko, 2014). Viruses are self-

propagating malicious code that are set in motion by execution of legitimate benign programs which

serve as hosts to the viruses (Szor, 2005). Viruses enter a system through several means. Computers

ship with Basic Input Output Systems (BIOS) on the motherboards. These are generic instructions with

as little assumptions as possible that pass execution to the first sector of the first hard disk drive - the

Master Boot Record (MBR) for boot instructions. The executable nature of the instructions in the MBR

make them an attractive area for viruses (Skoudis & Zeltser, 2004). These viruses are called boot sector

viruses. Other methods of infection involve overwriting legitimate programs as well as appending or

prepending their instructions to legitimate programs (Skoudis & Zeltser, 2004).

Worms are similar to viruses with respect to their ability to self-replicate; however, they are

standalone programs that do not leech on other programs before they can cause damage (Boyle &

Panko, 2014). They are written to exploit vulnerabilities, using the Internet or the corporate Intranet

as a medium of infection for effective and rapid propagation. They are composed of two components,

the target selection algorithm and the payload. The target selection algorithm probes a host for its

system attributes to determine if it is the intended or a susceptible victim platform and the payload

contains code for the destructive tasks (Skoudis & Zeltser, 2004). Mobile code makes up the class of

malicious programs written to take advantage of the ubiquity of the Internet and proliferation of

applications on browsers and mobile devices. ActiveX plugins, Java Applets, JavaScript files are

examples of propagation media for the spread of mobile code (Marek, 2002).

Trojans are malicious programs that appear benign and harmless. Spyware are a category of Trojans

that mine and steal information from host system by logging keys, reading browser cookies,

encryption keys and authentication parameters (Boyle & Panko, 2014). Trojans try to avoid detection

by sometimes taking names of legitimate files and they form the basis of Advanced Persistent Threats

(APTs). Remote Access Trojans (RATs) like Gh0st RAT and Poison Ivy give intruders remote control of

victim computers (Daly, 2009). While Trojans can sometimes appear as system files to deceive users,

they do not actually modify system binaries; however, rootkits on the other hand replace legitimate

4

system binaries. This is usually done to hide the presence of an intruder by modifying the output of

legitimate system commands, files and libraries (Ligh, Adair, Hartstein, & Richard, 2010).

The free and open source nature of the Linux kernel has also made it attractive as the base operating

system of a variety of platforms ranging from smart phones, servers, smart appliances and machinery

giving rise to an increase in malware written for Linux (Damri & Vidyarthi, 2016). Ahnlab (2014)

identified two methods of categorising current Linux malware – classification by malware purpose and

by malware attack method.

The categories of malware when classified by purpose are exploits, Distributed Denial of Service

attacks (DDoS), digital currency mining and backdoors. Exploits are written to take advantage of

published and unpublished vulnerabilities to cause system instability. The availability of the source

code also reduces the barrier to writing these exploits (AhnLab, 2014). Servers are attractive to

malware authors because they contain valuable data which serves as an incentive for an intruder to

insert backdoors to mine information from them. Servers are also expected to have high system

uptime and high-end hardware specifications making them reliable hosts for launching malicious

attacks against other systems in DDoS attacks as well as digital currency mining (AhnLab, 2014; Boyle

& Panko, 2014). Rootkits are written to disguise the presence of other malware and the availability of

source code makes it easy to write them (Messier, 2015).

2.3 Linux Operating System Internals

2.3.1 Internals

This section is a walk-through of the system organisation of a Linux based system. It undertakes a

discussion of the operating system, its layers and the relationship and management of the underlying

hardware. The internal operations, system services and calls are areas of the system where secure

computing principles should be adhered to because vulnerabilities in these areas make malicious

exploits possible (Bryant & O'Hallaron, 2015).

2.3.1.1 System Architecture

As illustrated in Figure 2.1, a Linux system is comprised of three layers – the hardware, operating

system software and the user layers. The hardware layer consists of the Central Processing Unit(s),

physical memory, disk drives(s), and Input/Output (I/O) peripherals. The operating system software is

divided into two modes – the kernel space and the user space. The kernel sits atop the hardware layer

and manages access to the hardware resources from user programs and processes as well as the CPU’s

access to memory and other peripherals. In kernel mode, a process has full access to all the system

resources. The Linux kernel is described as monolithic because it has memory and file system

management built into the kernel as against a microkernel architecture where those functions are

implemented in user space with kernel responsible for coordinating messaging and signalling between

processes (Tanenbaum & Bos, 2014).

5

Figure 2. 1 System Organisation adapted from (Tanenbaum & Bos, 2014)

The kernel manages access to physical memory through the memory management unit and using the

virtual memory construct enables the system to address a memory address space greater than

physical memory (Tanenbaum & Bos, 2014). It provides mappings of virtual memory to physical

memory addresses, maintaining a cache of recently used mappings and managing processes’ page

tables during context switching (Corbet, Rubini, & Kroah-Hartman, 2005).

User programs spawn processes and these processes require CPU resources and other devices to carry

out their tasks. The kernel schedules access to resources from processes by managing communications

between processes and enforcing a scheduling algorithm for access to CPU time while giving the

illusion of simultaneous operation of the user programs (Ward, 2014). Processes are created,

suspended, destroyed and execution mode changed from user to protected kernel mode through

systems calls and signals. The process management subsystem also works with the memory

management function to manage process access to the system memory and the handling of process

signals indicating process states and requirements (Tanenbaum & Bos, 2014).

Love (2010) classified devices in Linux systems into character, block and network devices. Network

devices are types of character devices because they share the attribute of only permitting sequential

or stream based access to data. The data locations are generally not addressable or uniquely

6

identifiable (Tanenbaum & Bos, 2014). Other examples of character devices are printers, keyboard,

and mouse. Block devices on the other hand allow random access to data because they have defined

addressing (Love, 2010). Disk drives, physical memory are examples of block devices. The kernel

manages these devices through device drivers and some are built into the kernel while others are

loaded at runtime (Corbet et al., 2005).

The User layer access kernel managed resources using system calls implemented in the kernel. The

user space provides standard library interfaces that are used by user programs and services. These

library procedures are translated to system calls in the kernel and they are defined by the Institute of

Electronic and Electrical Engineers (IEEE) under the Portable Operating System Interface (POSIX)

1003.1 standard to facilitate uniform APIs for portable programming on conformant systems. The user

space of the Linux operating system also has application programs and utilities like editors, compilers,

shells. They provide the means for user interaction and machine to machine communications, calling

the standard library interfaces (which are mapped to system calls in kernel) when they need access to

kernel managed resources (Tanenbaum & Bos, 2014).

The memory, process and device management functions of the kernel are addressed in more detail in

the following sub-sections.

2.3.1.2 Memory Management

The memory management functions of the kernel are discussed in this section. The identification and

instantiation of memory, allocation of pages and virtual memory management operations such as

swapping and context switching are discussed in the sections below.

2.3.1.2.1 Pages, virtual memory and swap operations

Memory is an array of uniquely addressable bytes of storage. Pages are the smallest unit of memory

allocation. They are typically 4KB on 32 bit architectures and 8KB on 64 bit architectures but these

values can be configurable at kernel build time (Love, 2010). While a page refers to a unit of memory

defined by the page size adopted by the operating system architecture, a page frame is a physical

representation of pages on page sized aligned physical memory blocks. Pages are virtual or logical

representations while page frames are concrete instantiations of physical memory and are uniquely

identified in the kernel by Page Frame Numbers (PFN) (Tanenbaum & Bos, 2014).

The virtual memory feature of the Linux operating system lets each process run its own memory

address space. This provides memory access control and protection, preventing one process from

interfering with the address space of another and separating user mode and kernel mode processes.

User mode and kernel mode programs refer to virtual memory while peripheral devices use physical

memory addresses during Direct Memory Access (DMA) (Silberschatz, Galvin, & Gagne, 2013).

The Memory Management Unit (MMU) is a part of the CPU that manages the translation from virtual

memory to physical memory. Complete mappings of virtual to physical addresses are held in page

tables. The page tables are implemented in memory in a hierarchical arrangement for efficient use of

system storage. They divide the virtual memory address space into sections with each section serving

as an index to a table which either has an entry for another table lower in the hierarchical order or to

the physical page itself. Each process has its set of page tables with the threads spawn from the same

process sharing the same set of tables (Love, 2010; Tanenbaum & Bos, 2014).

7

Figure 2. 2 Memory mapping operations adapted from (Tanenbaum & Bos, 2014)

In order to prevent two look-up operations for each memory access - the first one to determine the

physical memory location of the required page table and the second one to query the page table for

the physical address of the required virtual memory address - the CPU keeps a mapping of virtual to

physical addresses for the process it is currently executing. It keeps this mapping in a cache called the

Translation Look-aside Buffer (TLB). This is illustrated in figure 2.2. The TLB has entries for virtual

address to physical address mappings and access controls. The use of the TLB speeds up physical

memory address look up operations but the TLB is a limited resource and there are times when the

process has more mappings than the TLB can hold. When a process attempts to access a virtual

memory location for which there is no corresponding physical memory address mapping in the TLB, a

page fault error is thrown (Corbet et al., 2005; Tanenbaum & Bos, 2014). This triggers the page fault

handler in the kernel which loads the required page table. This also occurs during process context

switching. When CPU switches execution to a process and the process' page tables have not been

loaded, the first virtual memory access by the process will result in a page fault which will cause the

appropriate page tables to be loaded (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).

Lazy allocation and memory swapping also result in page faults. During lazy allocation or demand

paging, the kernel reserves pages immediately when they are requested by the user space application

using malloc library call (Bovet & Cesati, 2005). Actual allocation of page frames only occurs at runtime

when the running process needs access to the allocated pages. This is meant to be a performance and

resource optimisation feature that ensures that if a reservation is not needed at runtime (not accessed

by its process), it is not holding up a resource that should be available for other tasks. Typically, when

8

a request for memory is made, the kernel takes note of the request in its page table and it returns

execution back to the user mode without updating the TLB. When the virtual memory addressed is

referenced by the requesting process, the address returned to user is not seen in the TLB so a page

fault exception is generated which returns control to the kernel (through the page fault handler)

(Tanenbaum & Bos, 2014). The kernel, seeing that the allocation is valid, allocates page frames in

physical memory for the virtual address and records the address mapping entry in the TLB before

returning execution to the user mode application. For applications that want to avoid the performance

penalty introduced by this feature, the library function call memset can be used to initialise the

allocation or the use of calloc instead of malloc in the memory request (Kerrisk, 2010; Silberschatz et

al., 2013).

Figure 2. 3 Memory Swap-out Operation adapted from (Bovet & Cesati, 2005)

Swap operations as shown in figures 2.3 and 2.4, are done to free up space in the physical memory.

Swapping allows the total memory allocated to be greater than the physical memory installed. It

involves moving pages from the RAM to the disk and marking the entry in memory tables as swapped.

A page is swapped out when it is copied from the physical memory to the swap media (hard disk) and

its entry in the TLB removed. There is still a reference in the user mode process pointing to this frame

as it is still in the user virtual address space for the process. When it is needed, a page fault is generated

because the entry is not in the TLB. The page is copied back from the swap media back to the physical

memory (swapped in) and its entry updated in TLB. The library function calls mlock and mlockall can

be used to prevent an allocation from being a candidate for swap out (Bovet & Cesati, 2005;

Tanenbaum & Bos, 2014).

9

Figure 2. 4 Memory Swap-in Operation adapted from (Bovet & Cesati, 2005)

2.3.1.2.2 Memory Zones

Figure 2. 5 32-bit System Memory Zone adapted from (Corbet et al., 2005)

The physical memory can be divided into zones and these zones and their allocations are dependent

on the memory systems in use by the CPU and the I/O hardware. The zones are ZONE_DMA,

ZONE_DMA32, LOW_MEM and HIGH_MEM. ZONE_DMA is the lower 16MB of physical memory that

is addressable by some old hardware devices such as Industry Standard Architecture (ISA) devices.

10

These devices can only access the lower 16MB of physical memory using direct memory access.

ZONE_DMA32 is the 32-bit address visible to other devices capable of direct memory access but are

however limited by being 32-bit devices which have a memory addressable region of about 4GB (Love,

2010). Figure 2.5 illustrates the virtual memory to physical memory zone mappings for the 32-bit

systems.

On 32-bit architectures, the first 896MB area that is directly addressable by the kernel is referred to

as the LOW_MEM or Normal Zone. This region is used for kernel logical addressing. The kernel logical

address is a predictable one to one mapping to the physical address, usually by a fixed offset (the size

of the user virtual address). It can be used for contiguous memory allocations (Corbet et al., 2005).

This memory region has a direct one to one mapping to physical memory and can never be swapped

out or paged out. Contiguous allocations made in this area are always contiguous in the physical

memory making them suitable for operations and processes requiring direct memory access. The

kmalloc and kfree library functions are used for requesting and deallocating the kernel memory in the

LOW_MEM zone (Love, 2010). kmalloc does a contiguous allocation of the physical memory. It accepts

the required size as argument and returns a pointer to the address of the first memory location

assigned if the call succeeded. Typically, more bytes than that requested are allocated because the

kernel memory allocations are done in multiples of pages necessitating rounding to the nearest page

boundary (Kerrisk, 2010).

The High memory zone (HIGH_MEM) is typically applicable on 32-bit architectures where a total of

4GB of physical RAM is supported. In 32-bit systems, the kernel can only directly address the first

896MB of the first 1GB. The 1GB - 4GB address region that the kernel is unable to logically map to is

the HIGH_MEM zone. It is used for the virtual memory allocation of the kernel and user space

processes. On 64-bit systems, the kernel has access to the full memory address range so all memory

is LOW or normal memory with no concept of high memory zone (Corbet et al., 2005). This is illustrated

in Figure 2.6.

Figure 2. 6 64-bit System Memory Zone adapted from (Corbet et al., 2005)

11

The 104MB area at the top of the kernel virtual space (between 896MB and 1024MB) is reserved for

non-contiguous allocations in 32-bit systems for the physical memory requirements of the kernel

beyond the 896MB point. The kernel creates mappings in the 897MB – 1024MB region for allocations

it has made in the physical memory beyond the 896MB area. The kernel virtual address space does

not have the one to one mapping with the physical address space. It is used as a pointer to reference

the memory addresses in areas beyond the kernel logical addresses and the non-contiguous memory

mappings that might require large buffers (Corbet et al., 2005).

Bulk memory allocations and deallocations beyond the LOW_MEM zone by the kernel for the kernel

space processes are with the vmalloc and vfree library functions. The difference between kmalloc and

vmalloc is that the allocations made with vmalloc can be logically contiguous but they are not

physically contiguous, requiring mapping entries for the translation between the virtual address space

to the physical address space maintained on the page table for the process. In contrast, kmalloc

allocations that are logically contiguous are also physically contiguous with a fixed offset as the

translation value (Corbet et al., 2005). Allocations by vmalloc use more entries in the TLB because of

the distributed and dispersed allocation as each page in the virtual memory must be mapped to its

corresponding location in the physical memory. User space programs use the user virtual address and

its size is architecture dependent and forms the fixed offset for the translation of the kernel logical

addresses to physical memory addresses (Bovet & Cesati, 2005). User space processes use the

malloc/calloc library calls for allocation. The difference between them is that malloc uses a lazy

allocation while calloc initialises the requested allocation to zero. Both library calls use mmap and

brk/sbrk system calls in the background. The former is for large allocations while the latter is for

incremental allocations such as for the increase of memory heap size (Kerrisk, 2010).

2.3.1.2.3 Zone Allocators

Each memory zone has a zone allocator that addresses the efficient allocation of pages in physical

memory reducing fragmentation. Memory allocations for user mode processes are generally done

with the buddy system of allocation. The buddy system of allocation involves neighbouring memory

blocks combining or a memory block splitting by a power of two. Information is maintained about

used and unallocated blocks in memory using kernel data structures. To reduce occurrences of

external fragmentation, which occurs when a process requires a large allocation but there is no single

block to handle the request necessitating the need to split the allocation to different areas, this

allocation method allows unused adjacent blocks of same sizes to be combined into a buddy heap.

This buddy heap can also combine recursively with an adjacent block of same size that is unused. This

process allows the allocator to handle large requests. For smaller requests, a block recursively splits

by a power of two in size (its square root) until it gets to a defined lower limit or the smallest size that

can accommodate the request with least amount of waste (internal fragmentation). This lower limit

is usually the page size of the platform. The choice of the lower limit involves trade-offs. A very low

value reduces memory waste (internal fragmentation) but has more overhead as there are now more

blocks to track with the kernel data structures (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).

The kernel allocations for data structures and kernel objects like inodes, task_struct objects change

frequently and require as little fragmentation as possible because the kernel allocations have direct

mappings to physical memory. These foregoing factors necessitate the use of slab allocation method

to increase the speed of allocation and reduce fragmentation. In this method, the system memory is

12

partitioned into physically contiguous areas (using the buddy system) called slabs with each variable

sized slab dedicated to different types of kernel data structures/objects. Each kernel object has a cache

that is made up of one or more slabs. These caches maintain pointers to empty, partially used and full

slabs for each type of data structure. When a request is made, the data structure is allocated to a free

object in a partially free slab for that type data structure involved thus reducing internal

fragmentation. When memory is freed, the kernel simply marks the object as unused in the cache,

freeing it up for subsequent allocations (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).

2.3.1.3 Process control

The process management function of the kernel is discussed in the following sub-sections. The system

calls and signals for process (and thread) management and communication are briefly described as

well as kernel synchronisation and task scheduling.

2.3.1.3.1 System calls and signals

Each process in Linux has a unique Process Identifier (PID). Process creation in Linux is achieved with

the fork system call. Historically, this call copied the memory image and variables related to the parent

(creating or calling) process into the child (created or called process) allowing the child to have access

to the files opened by the parent process (Tanenbaum & Bos, 2014). The fork system call causes the

kernel to return twice and the value of the return values are the PID of the child when it is returning

to the parent and PID 0 when it is returning to the child (Love, 2010). The getpid system call is used by

the child to get the PID of the parent if it needs it. This is important because as children spawn more

children processes, a complex family tree is easily being formed (Kerrisk, 2010).

Shell commands launched by processes are created using the exec system call. This call replaces the

memory image and environment variables of the parent process with those of the commands invoked.

The waitpid system call is used when a parent needs to wait on a child process and the parameters for

this system call are the child PID (or any child denoted by PID of -1), address of the variable holding

the value of the exit status and a parameter to determine if the call should be blocking or return if no

child has been terminated yet. A completed child process without a parent process to return control

to is a zombie process (Love, 2010).

The uniqueness of PIDs allow for the communication of signals and messages among processes. A

collection of processes in the same family tree (a process group) can send signals to each other. These

signals can be instructions to restart a process or to instruct it to re-read its configuration file SIGHUP

(terminate gracefully), SIGTERM (terminate unconditionally and immediately), SIGKILL or SIGILL

(suspend itself) (Shotts Jr, 2012). A process implements the SIGACTION system call to determine how

it wants to handle a signal (included as one of the parameters). If SIGACTION is implemented, on

receipt of the signal referenced in the SIGACTION implementation, control passes to the handler.

SIGKILL goes straight to the kernel and is never handled by SIGACTION (Tanenbaum & Bos, 2014).

2.3.1.3.2 Process data structure

Each process has a user part (with associated program counter and memory stack) and a kernel mode

part when one of its threads makes a system call giving it access to the machine resources with its

own kernel mode stack and program counter. Processes and threads in Linux are represented

internally as tasks with a task_struct data structure (Bovet & Cesati, 2005). Each user level thread has

13

in the kernel a task structure and for each process, there is a process descriptor of task_struct in

memory with information for the management of all the processes, open files and scheduling

parameters. Internally, the kernel organizes all processes in a doubly linked list of task structures with

PID as keys to the address of the task_struct. Some of the variables held or referenced by the process

descriptor are the scheduling parameters, memory image, signals, machine registers, system call

state, file descriptor table, kernel stack (Tanenbaum & Bos, 2014).

2.3.1.3.3 Copy on write

During the fork operation, the operating system does a copy on write to conserve the system memory.

The expectation is that the parent memory stack and its other resources should be copied to the child

so that both can work without writing into each other's space but in modern implementations of the

Linux kernel, each child has separate page tables but point to the parent’s table (Love, 2010). If either

the parent or child subsequently need to write to that page, a page protection fault exception is

thrown and a copy of the page is created which they can then write to it, hence copy on write. This

form of demand paging is done to reduce memory requirements and overhead in process creation. It

also turns outs to be efficient because in a lot of cases, the children processes might not need to refer

to the parent process resources because they (parent) are either terminated shortly after being

spawned or there is a need to call the exec system call to launch another program whose pages and

memory image replaces theirs (Love, 2010).

2.3.1.3.4 Processes, threads, tasks, clone system call and scheduling

Historically, all processes spawn threads and all threads share file descriptors, signal handlers, address

space, alarms and other global properties while maintaining unique registers, but modern Linux

kernels introduced the concept of these parameters being thread or process specific with the

introduction of the clone system call (Tanenbaum & Bos, 2014). When a process is created with the

clone system call, if it shares nothing with its parent, it is given a unique PID but if it does, it is given

the same PID but a different Task Identifier (TID) and both fields are stored in the task_struct

(Tanenbaum & Bos, 2014). The clone system call has bit map parameters to define the resource

sharing mode (Kerrisk, 2010).

The kernel deals with user modes processes which are kernel mode processes that are a consequence

of user mode processes making systems calls as well as internal kernel code operations called by I/O

devices. There are two algorithms for managing process access to the CPU resources. The first is the

Completely Fair Scheduler (CFS) which is for processes that are non-real-time time sharing processes.

CFS uses two configuration parameters - the minimum granularity and the target latency. The latter is

the time interval within which every runnable process should have run once. Basically, all runnable

processes using the niceness value as weight are given proportional access to the CPU. if all processes

have same weight, they will be able to run (1/N) * the target latency where N is number of runnable

processes. Those with higher priorities based on niceness value are run more often and those with

lower priorities (higher niceness values) are run less frequently. The minimum granularity addresses

the inefficiency of context and processor switching when there are many runnable processes. It is the

minimum amount of time a process has access to the processor. This reduces costs associated with

switching between processes (Tanenbaum & Bos, 2014).

For real-time scheduling, there are two types of such processes. Real Time First in First out (FIFO) and

Real Time Round-Robin. Both run and are pre-empted by processes with higher priorities or if priorities

14

are equal, processes that have been in the wait state longest are prioritised. The difference is that the

FIFO process is not interrupted periodically but will run until it blocks or exits (Silberschatz et al., 2013;

Tanenbaum & Bos, 2014).

2.3.1.3.5 Kernel Synchronisation

When kernel code is running, it is usually using some internal data structure. To maintain the integrity

and consistency of these data structures, there needs to be a scheme to protect the kernel processes

from interfering with each other and yet operate efficiently because if a process is not allowed to be

interrupted to prevent corruption of the data structures it is working with, the system operation can

degrade because there might be I/O devices waiting around and unable to run their processes. To

balance these conflicting goals, interrupt processes are categorised into four (4) classes. The classes

in increasing priorities are User mode programs, kernel service routines, bottom-half interrupt service

handlers and top-half interrupt service handlers. Only the user mode programs can be pre-empted by

processes in similar categories, others can only be pre-empted by other processes in higher categories

(Tanenbaum & Bos, 2014).

2.3.1.4 Device Control

Device and I/O management in Linux is done through the device drivers (Tanenbaum & Bos, 2014).

The management of access to these resources from processes is a function of device management.

The file centric nature of the operating system is also examined below in the discussion of the virtual

file system and the organisation and features of the supported file systems.

2.3.1.4.1 Device Drivers

Device drivers form the basis of I/O operations in the Linux operating system. One device driver usually

handles I/O for a device type. This relationship is defined in the kernel with major and minor device

numbers. All devices of same type (either block or character devices) with the same major number

generally use the same device driver. The minor number comes to play when a device driver needs to

differentiate between different instances of the same device it controls. The kernel has internal hash

tables of data structures for character and block devices. These objects are pointers to the procedures

for the functionality supported on a device. When a user access one of special files representing a

device, the filesystem determines the minor and major number and selects one of the kernel hash

tables depending on if the device is a block or a character device. I/O devices are integrated into the

file system and accessed as special files in the /dev/ directory. These special files are broadly divided

into two categories - block and character files. There are two parts to a device driver and while both

parts exist in the kernel, one part is the interface to the user process while the other part interacts

with the device. The drivers enable direct interaction with the kernel, calling procedures for memory

allocation, DMA control, timer management etc. (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).

The block device subsystem maintains the performance for disk devices by the scheduling of I/O

operations. The request manager manages the read and write operations with buffering as an

intermediate operation. Linux used the Completely Fair Queuing (CFQ) I/O scheduler for handling I/O

operations. It maintains a set of lists - one for each process so every request from a process goes into

the list maintained for the process. A specified number of requests are withdrawn from each list at

each I/O operations interval (Tanenbaum & Bos, 2014).

15

Character device drivers when registering must also notify the Linux kernel of the set of functions (I/O

operations) that they implement. The drivers implement the line discipline that dictates the

formatting and encoding of data stream either controlling terminal input and output or network

protocols like PPP and SLIP (Tanenbaum & Bos, 2014). The Linux kernel networking subsystem is

implemented in three modules - the socket interface, protocol drivers and network device drivers. The

socket interface is used by user applications to perform all network related operations. It provides an

abstraction for the possibly wide range of networking protocols supported by the kernel isolating the

user applications from the complexity. The protocol stack contains the set of procedures by which the

devices will communicate. The functions at this layer include error checking and reporting, packet

sequencing and fragmentation, reliable transfer and routing. Device drivers are the abstractions of the

networking device hardware for remote communication (Silberschatz et al., 2013).

2.3.1.4.2 Virtual File System

Linux conceptually treats everything that can take input and provide output as a file. These include

conventional directories and files, network connections, device drivers. It provides as abstraction for

file operations using the Virtual File System (VFS). VFS defines file system objects and the operations

that can be performed on them enabling the kernel to perform the equivalent operation on a specific

object while on the higher layer, programmers and users work with generic library and system calls

(Tanenbaum & Bos, 2014).

The file system objects are the inode, file descriptor, superblock and dentry objects. The inode is a

representation of an individual file, it is a pointer to the data block belonging to a specific file. Each

file, directory, network socket is represented by a unique inode object. The file descriptor object

represents an open file. Each process has a file descriptor object for each file it opens. This object

tracks the state of the file, the access requested, when it was opened and its modifications. It is

possible for multiple processes to open a file. The inode is same for the file but the file descriptor is

unique per process allowing for simultaneous alteration of files. The superblock object provides access

to the files represented as inode to processes. There is a superblock object for each disk and network

file system mounted. Every inode is uniquely identified by a unique file-system/inode number pair. A

dentry object is a directory entry and it includes the directory and file name in the path name of a file.

When a file is requested, the inode for each folder(dentry) in the directory tree is resolved until the

file itself is reached. A dentry cache is kept for each file name translation to speed up subsequent

requests for files or folders (Silberschatz et al., 2013; Tanenbaum & Bos, 2014).

The file system objects are implemented on physical media as file systems which determine their

arrangement and access by the kernel. Ext3 is the most popular file system used on Linux. It added

journaling support to the file system. This is the use of a separate dedicated area on the disk for storing

file system changes, operations and metadata. This reduces the possibility of file system corruption

during system crashes. Ext3 supports a maximum individual file size of between 16GB to 2TB and an

overall file system size of between 2TB to 32TB. It stores files on the disk in block sizes of 1,2,4 or 8KB

depending on the architecture. Ext3 supports a maximum of 32,000 subdirectories in a directory. Its

allocation policy seeks to ensure that during I/O operations, several disk blocks can be read in a single

operation instead of reading at single block sizes. It does this by partitioning the file system into block

groups, allocating files in same block groups as their inodes and the inodes themselves are stored in

same block group as their parent directories for non-directory files. Directory files are kept in different

block groups where possible. These policies ensured that related information are kept together and

16

disk contents are spread around disk groups and subsequently across the disk (Silberschatz et al.,

2013).

Ext4 is the latest iteration of the Linux file system. It has some advantages over ext3. It supports a

maximum individual size ranging from 16GB to 16TB and an overall maximum file system size of 1 EB.

Directories can contain more than 64,000 subdirectories and there is an option to turn off journaling

as the overhead might not be required on simple systems. Before Ext4, these systems typically used

the older ext2 file system to avoid journaling (Linux Kernel Organization, 2016; Tanenbaum & Bos,

2014).

Extents are the significant new addition to ext4. Ext3 keeps track of allocations (file data to block

group) by maintaining a bitmap of free blocks in a block group. Journaling is also done at block level.

This can be inefficient for bigger files hence the use of extents by ext4. An extent is contiguous

sequence of blocks that indicate the data in a file. Instead of tracking a pointer to each data block that

a file inhabits, extents keep a pointer to the start and end or size of the data block consumed by file.

Entries are kept for extents and multiple extents can represent a file if a contiguous allocation of blocks

is not available. Tracking at extent level often means that there is less overhead for journaling as

extents for a file are monitored not each data block of the file. Ext4 is the default file system in new

installations for most Linux operating system distributions (Linux Kernel Organization, 2016).

The process file system is a special file system that does not store data permanently but instead

changes its contents stored in the /proc directory dynamically based on the state (command line,

environment variables, signals, masks) of the processes running on the system. Each running process

has a directory in /proc and the file contents are a representation of the process states. Inode numbers

are 32 bits long and PIDs are 16 bits in size. The first 16 bits of the inode of the files in the /proc

directory are the 16 bits of the PID of the process while the remaining 16 bits define other information

about the process. As PID 0 does not exist, the inodes with the PID field value of zero report global

information about the system such as the kernel version and operating statistics (free memory, CPU

load, I/O utilisation, device drivers running etc). The /proc/sys directory provides access to the kernel

variables and values in American Standard Code for Information Interchange (ASCII) decimal can be

read and written to these variables. The system call sysctl can be used to edit these values by passing

binary numbers to set and unset a parameter (Tanenbaum & Bos, 2014).

2.3.2 Forensic Artefacts

This section is a review of parts of the Linux system that can be checked for indicators of compromise

when the presence of malware is suspected. The log files, the binary file structure and memory and

configuration files are discussed below.

2.3.2.1 Log files

Log files are a record of the activities on the system by users and processes. System services and

daemons have their respective log files to report on the activities of the services as well as errors if

there are any. Log files are a good indication of the state of the system and are usually modified by

attackers to hide their activities whenever possible. Log file sizes and archive settings indicate how

long the system keeps a process’ log files. With respect to system integrity, log files can be divided

17

into user activity logs, and system logs comprising of application and process files (Malin, Casey, &

Aquilina, 2008).

The user activity logs are files that hold user related information on the system. Examples are

/var/run/utmp, /var/log/wtmp, /var/log/lastlog, /var/log/btmp files that store information about

current logged on users, historical logons within a log rotation period, last time all users logged on to

the system and all failed logon attempts respectively. These files are binary, not world-readable files.

They are less prone to being altered to conceal a specific activity. They can be deleted with the

appropriate privileges and the executable files that generated them can be altered to give false

outputs; however, these would serve as definite signs of intrusion. Every user has a command history

file listing all commands entered on the shell by the user. This file is text editor modifiable with the

right access and it does not have time stamp information (Malin et al., 2008; Nelson, Phillips, &

Steuart, 2014).

Application and process logs are logging files in the /var/log file directory tree. These are system log

files that give information about specific processes. A web server like Apache for instance logs

information about its operations, the requests it is handling and any errors either system or user

related ones that it encounters. Depending on distribution, these files can be stored in the

/var/log/apache2 or /var/log/httpd directories or any other location determined by the administrator.

Each log entry is time stamped and it indicates the facility (the part of the Linux system the message

concerns for example auth and kern represent for authentication and kernel related logs respectively)

that generated it, the severity, a descriptive message among other bits of text. These files are plain

text also and they can be manipulated with the right access permissions (Malin et al., 2008).

2.3.2.2 Memory

Memory images of a live system hold information about the activities of system users and processes

as well as malware events. Open network sockets, encryption keys, time stamps of system calls are

some of the information available in memory images that are useful during investigation of malicious

activities on a system (Malin, Casey, & Aquilina, 2013).

Memory forensics involve acquisition and analysis. (Ligh, Case, Levy, & Walters, 2014) identified three

historical schemes for memory acquisition on Linux based systems - the /dev/mem and /dev/kmem

device files and the ptrace (Linux Programmer's Manual, 2016) system call. These methods were only

viable on 32-bit systems. The /dev/mem device was made available to tools like dd and cat for reading

and writing. It allowed export of physical memory which potentially contained protected areas, device

memory and the unmapped physical addresses of memory presenting the risk of memory corruption.

Its acquisition capability was limited to the LOW_MEM region (896 MB). /dev/kmem exported kernel

virtual address space with the attendant risk of exposing kernel space to user space applications, giving

rise to the possibility of memory corruption. The risks to system stability presented by /dev/mem and

/dev/kmem is the reason for disabling them by default on most recent distributions. The ptrace system

call dumps the memory image of the process under investigation not the complete memory footprint.

It gets the process memory footprint from /proc/<pid>/maps file and dumps the pages to disk.

Forensically, It is only suitable in cases where a process memory footprint is under investigation (M.

H. Ligh et al., 2014).

Fmem is a kernel module that creates a character based device driver /dev/fmem when loaded. This

presents a view of physical memory by reading the /proc/iomem file to get the memory allocation

18

layout so that investigator can avoid device memory and unmapped addresses. Linux Memory

extractor, LiME (504ensicslabs, 2017) is another kernel module but it does not create a user mode

device driver interface thereby improving accuracy by avoiding user space and kernel space

interactions and context switch during acquisition (Ligh et al., 2014).

The use of the /proc/kcore file avoids the need to have a loadable kernel module for memory

acquisition. The kernel keeps a mapping of its virtual memory address space in the /proc/kcore file.

On 64-bit systems, since all physical memory is in kernel virtual memory, the complete picture of the

physical memory can be gleaned by exporting the /proc/kcore file. There are limitations with this

method on 32-bit systems because on such systems only the first 896 MB of physical memory is

mapped to the kernel virtual memory. Linux systems have different memory map and data layout

structure depending on kernel version hence the need for loading specially compiled kernel modules

for the target system when using the Fmem and LiME kernel drivers for memory acquisition. The use

of the /proc/kcore file for acquisition while avoiding this compilation, merely moves the requirement

of getting the kernel profile to the analysis phase from the acquisition phase. The analysis of kernel

memory dump acquired using the export of /proc/kcore file involves getting a suitable kernel memory

map profile of the target system based on the Linux kernel version in use (Case & Richard, 2017). The

/proc/kcore file needs to be enabled in the kernel for this acquisition to be possible; however, this is

enabled by default on most stock Linux operating system distributions (Ligh et al., 2014).

2.3.2.3 Executable and Linkable Format

Figure 2. 7 ELF File Structure adapted from (Tool Interface Standards Committee, 2001)

19

Executable and Linkable Format (ELF) is the executable format of the Linux file system analogous to

Windows executable (exe) and dynamic link library (dll) files. It is the format for user applications,

shared libraries, core dump files, kernel modules and the kernel itself. An object using ELF format

consists of an ELF header followed by program header table and or section header table or both. The

ELF header is always at offset zero of the file. The section and program header table’s offset are

defined in the ELF header. They describe specifics of the file. The ELF header has fields indicating the

magic number or file signature of the executable e_ident. This can be searched in the memory dump

to indicate the beginning of executable program execution, processor architecture and word format

big or little endian. The e_type field indicates whether the file is a relocatable, executable, shared

object or core file (Tool Interface Standards Committee, 2001).

The ELF file consists of sections and segments which are indexed by Section Header Table (SHT) and

Program Header Table (PHT) respectively. PHTs are important for executable and shared object files

as they describe how a process image that is loaded onto the system memory should be built. They

are important at program runtime. This is shown in the loading and runtime view of Figure 2.7.

Sections hold information about program linking - instructions, data, symbol table and relocation

information so they are important to relocatable files. They are important at compile time and files

used during program linking must have SHT as illustrated in the compilation and linking view of Figure

2.7. Shared libraries are functions and variables dynamically loaded to other executables or shared

libraries. They are typically stored on disk as .so files. They are primarily used so that the need to create

static links in programs is avoided, thereby reducing the memory size of a program (Tool Interface

Standards Committee, 2001).

Figure 2. 8 Function call address resolution adapted from (M. H. Ligh et al., 2014)

The concept of shared libraries can be exploited by attackers to cause harm. This is because when a

program is created as position independent, it cannot have absolute virtual addresses for the global

variables and shared library functions it uses. The global variables are referenced as an offset to the

ELF headers in the Global Offsets Table (GOT). GOT is a list of symbol addresses that cannot be

computed at runtime. A program references the GOT at runtime to resolve the virtual address for the

global variable. The Procedure Linkage Table (PLT) is used to resolve the address of functions from

shared libraries that cannot be resolved at runtime. Each entry in the PLT is a reference to an offset in

20

the GOT which specifies the virtual address to the function call. If the function call has not been called

before, the GOT’s entry will point back to the resolver routine in PLT which is a call for the dynamic

loader to locate the virtual address of the function call which is then populated in the GOT for

subsequent calls. The foregoing is illustrated in figure 2.8. Attackers can manipulate the entries in GOT

thereby forwarding library functions calls to malicious code (Ligh et al., 2014) (Malin et al., 2013).

2.3.2.4 Configuration files

The configuration files for the system, applications and services are stored in the /etc file system. They

contain the settings for the system and the services. Examples are /etc/ssh directory for the Secure

Shell (SSH) service configuration files, /etc/shadow file for the configured users on the system,

/etc/group file for the groups on the system. The content of these files in the /etc directory are an

important point for investigation because they can be altered by attackers. Unexplained alterations

to these files are an indication of compromise. Examples are unexpected user entries and blank root

password in /etc/shadow as well as changes in /etc/ssh directory files making it more permissive for

remote access (Nelson et al., 2014).

2.4 Malware Analysis

The study of malware specimen code and behaviour in an isolated environment is an important

undertaking to get a complete understanding of the extent of damage it may have caused during a

breach. This study also assists in prevention of repeat attacks especially from variants and incarnates

of the one under analysis. Working on the assumption that a lot of existing malware are a result of

polymorphic and metamorphic variants of older ones, analysis can provide protection vectors beyond

the signature based detection strategies (Bayer, Kirda, & Kruegel, 2010).

Malware analysis is a key function of security research organisations, malware prevention software

vendors and information security incident response firms. Anti-virus signature updates, software

patches and anomaly heuristics engines are products of malware analysis (Sikorski & Honig, 2012).

2.4.1 Static Analysis

Static analysis is a form of code analysis that requires an in depth knowledge of CPU architecture and

instruction as well as programming (Sikorski & Honig, 2012). This form of analysis is a walkthrough of

malware source code if available although some disassembly, debugging and sometimes decryption

might be necessary. Static analysis can be applied to different forms of programs, source code and

program binary. A common method of static analysis involves function parameter analysis speculating

on possible values of function arguments values and types to predict possible effect and

consequences. Another technique for analysing binary representation of code involves identifying

library functions and the point they are called in the code. From these function call graphs, the intent

of the code can be discovered (Egele, Scholte, Kirda, & Kruegel, 2012).

Static analysis has the advantage of being impervious to conditional code execution and file level

tweaks that can thwart or influence dynamic analysis (Bayer et al., 2010). This is because all modules

and functions of the code can be stepped through and explored during the analysis. Apart from the

manual intensity of static analysis, steep learning curve and specialised knowledge required, the other

limitation of static analysis is that it comes unstuck in the presence of code obfuscation, runtime

packing and encryption (Tian, Islam, Batten, & Versteeg, 2010). It struggles with packers that self-

21

modify code as well as code that depend on dynamic values like current date and time (Egele et al.,

2012).

2.4.2 Dynamic Analysis

Dynamic malware analysis involves code execution in a secure and isolated environment (Egele et al.,

2012). This execution can be a virtual machine or isolated system. The analysis involves an examination

of the behaviour of the malware. It has the advantage of being unaffected by runtime packing and

code obfuscation. Dynamic analysis lends itself to automation and scripting for large scale analysis

(Oktavianto & Muhardianto, 2013). Dynamic analysis monitors the system under investigation for

system calls, filesystem changes, dynamic link libraries and modules, logs and registry file changes

while malware execution is ongoing. The result of changes observed give an indication of the workings

of the malware under observation (Willems, Holz, & Freiling, 2007).

Its shortcomings include possible failure to explore the full gamut of the malware if there are

conditional hooks in the code preventing it from executing a specific procedure because of an unmet

condition (Bayer et al., 2010). There is also a limitation of time. Some malware might not run all the

time or within a specific time interval. The foregoing make it possible for dynamic analysis to miss

characteristics of the malware sample because a single run might turn out to be inadequate to

evaluate the full impact (Provataki & Katos, 2013a). Other challenges to dynamic analysis are anti-

analysis features like sandbox detection and anti-dumping (Zoltan, 2016) and (De Andrade, De Mello,

& Duarte, 2013).

 A technique for dynamic analysis is use of function hook to record the activities of functions called by

malware at a high level. These functions are usually a part of APIs and system calls. This method will

not work for a kernel mode malware. Where there is source code access, hooking can be done by

specifying the hooking function where the monitored calls are invoked. For binary access, debuggers

can be used to monitor the program execution by adding breakpoints to the call instructions or

monitored functions giving debugger access to the memory areas and the state of CPU registers for

the running process. Another function hooking method, for dynamic analysis, involves manipulating

the binary execution in such a way that calls to the monitored library functions are passed to the

hooking functionality first by manipulating the virtual addresses of call instructions in memory so

instead of executing the instructions in at those addresses, the hooking functions is invoked instead,

giving visibility to function parameters and arguments (Egele et al., 2012).

2.5 Related Work

This section is an overview of existing studies related to evaluation of open source sandboxes for

analysing Linux malware. These works can be divided into works that evaluate existing malware

analysis solutions and those that do an analysis of Linux malware samples. The former explores the

position of sandboxes in malware analysis process, surveys of malware sandboxes and other tools in

the analysis process. The latter is a review of analysis of existing research activities on analysis of Linux

malware samples.

2.5.1 Survey of malware analysis solutions

The subsections below are a review of existing literature that have undertaken a survey or an

evaluation of malware analysis solutions. This discussion is divided into the components of malware

22

analysis systems, the explosion of malware variants - metamorphic and polymorphic malware, the

effects of anti-analysis techniques and the implementation of sandbox solutions with respect to

indicators of compromise.

2.5.1.1 Components of analysis systems

(Wagner et al., 2015) listed the components of malware analysis systems as data providers and

analysis environments. The data providers are standalone tools or packages used for static and/or

dynamic analysis of malware samples. These are tools such as code debuggers, like GDB, IDA, Radare2

used for static analysis and Volatility, Rekall for memory (dynamic) analysis. Packages are self-

contained analysis environments like Cuckoo and ThreatAnalyzer. Dynamic analysis is reliant on the

analysis environment which can be bare metal, virtual machines or emulated environments. (Wagner

et al., 2015) reviewed an on-site 2010 installation of Anubis, FireEye MAS 6.40, 2013 version of Joe

Sandbox, Process Monitor 3.1, API Monitor v2 r-13. The online public front ends of Malwr (Built on

Cuckoo), ThreatAnalyzer and Anubis were also evaluated. The data samples for evaluation were the

Windows portable executable and dynamic link library files, Uniform Resource Locators (URL),

Portable Data Format (PDF) files. The data providers were tested for their ability to accept single and

batch file submissions, analysis environment support – bare metal, virtual machines or emulated

hypervisors. The analysis operations capabilities (file system, Internet and simulated networks

services, system calls) of the tools were also examined as well as the reporting options available.

The capabilities of malware analysis systems can be extended with the addition of machine learning

libraries. These serve to train systems for malware detection and classification. The output of data

providers were used with the machine learning algorithms to build these systems (Shah & Singh,

2015). (Shah & Singh, 2015) and (Boukhtouta, Mokhov, Lakhdari, Debbabi, & Paquet, 2016) in their

experiments used the output of dynamic analysis of malware samples and benign files to train systems

for automated malware detection and classification. In (Shah & Singh, 2015), the extraction of

prominent API calls from the execution of benign and malicious files were used as input to linear

Support Vector Machines (SVM) library. (Boukhtouta et al., 2016), using the ThreatTrack online

sandbox for deep packet analysis and examination of flow packet headers in malicious network traffic,

trained a system using J48 machine learning algorithms. Benign traffic was sought from the Internet

Service Provider edge and customer traffic.

(Egele et al., 2012) undertook a survey of dynamic malware analysis tools and sought to evaluate them

using mode of analysis – user mode, kernel mode, full system simulation or emulation, virtual machine

monitoring etc. Process level, API calls, network, file system operations support was also examined.

Some of the systems evaluated are Anubis, Joebox, CWSandbox, Norman Sandbox and Ether.

2.5.1.2 Malware variants and automated analysis

The need for automated analysis of malware samples was also raised in (Shah & Singh, 2015). This was

in response to the impracticality of the manual analysis with respect to the rate of malware samples

being discovered and the possibilities afforded by the alteration of existing samples through

polymorphic and metamorphic means. These variants are undetected by signatures written for the

original samples. Polymorphic variations are created by inclusion of mutation engine in malware. This

engine serves acts on the rest of the payload to produce the original sample at run time. The engine

logic can sometimes involve encryption/decryption. In metamorphic alterations, the executable code

is adjusted by adding dud functions or re-arranging existing functions. Both methods serve to render

23

pattern matching discovery ineffective (Shah & Singh, 2015). Metamorphic variants are more difficult

to discover because while in polymorphism, the executed code is exactly same in content (when tested

with cryptographic hash functions) as the original sample after the action of the mutation engine,

metamorphism introduces changes to code that do not affect the functionality but the appearance

(You & Yim, 2010). The foregoing is the motivation behind research works aimed at automation of the

analysis process, detection of similarities between malware samples and introduction of machine

learning libraries into the analysis process.

(Sarantinos, Benzaïd, Arabiat, & Al-Nemrat, 2016) examined the efficiency of fuzzy hashing techniques

to detect similarities between different malware samples. This technique involves a process known as

Context Triggered Piecewise Hashing (CTPH) which is a combination of traditional cryptographic

hashes, rolling hashes and piecewise hashes. SSDEEP proposed by (Kornblum, 2006) was found to fast

and effective with respect to running time in the absence of unspecialised hardware. SDHASH was

found to be the most effective in malware detection. Other tools evaluated were mvHASH, MRSH v2.

(Azab, Layton, Alazab, & Oliver, 2014) demonstrated the use of the Trend Locality Sensitive Hashing

(TLSH) algorithm to group binaries of similar variants together. It was found to be almost as effective

as SDHASH. NILSIMSA and SSDEEP were the other hashing techniques compared. The TLSH algorithm

uses the K-Nearest Neighbours (K-NN) algorithm, a simple supervised machine learning classification

algorithm for grouping objects based on similar training instances in the feature set.

(Choudhary & Vidyarthi, 2015) proposed a system for detection of metamorphic malware by using the

output of dynamic analysis to a text mining function implemented using Support Vector Machine from

WEKA machine learning suite. This was used to build a classifier using the process states of malware

samples and benign files as training data. The analysis was done using the Process Monitor tool from

Microsoft SysInternals suite.

(Nataraj, Yegneswaran, Porras, & Zhang, 2011) and (Han, Lim, Kang, & Im, 2015) proposed workflows

that incorporated repeatable and automated processes by converting malware binaries into images

and graphs with the resulting classification based on the output image texture. Benign files and

malware samples were put through this process. The malware samples used for training already had

classification from VirusTotal and Kaspersky Antivirus engine. The test of effectiveness was done with

dataset from VX-heavens. This method is based upon work by (Nataraj, Karthikeyan, Jacob, &

Manjunath, 2011) aimed at malware classification at scale using image texture. The research noticed

that for grey-scale images, samples from the same malware family exhibited similar patterns and

texture.

(Sebastián, Rivera, Kotzias, & Caballero, 2016) presented AVCLASS as a solution to the challenge of

associating malware samples to a family. This tool removes the reliance on generic names when

labelling a malware sample or identifying its family. It leverages on the combination of the malware

sample size in the VirusTotal repository as well as the participating malware detection engine for

which the repository aggregates output. The label assignment is based on the labels adopted by the

detection engines. The solution has been evaluated on ten datasets of 8.9 million malware samples.

2.5.1.3 Anti Analysis

(Ferrie, 2016) acknowledged the importance of emulators to dynamic malware analysis classifying

emulators into hardware, hardware assisted and software emulators. Malware analysis evasion

techniques and possible mitigation activities were catalogued. The environments used in the

24

experiment were VirtualPC, VMware, Parallels, Bochs, Hydra and QEMU. Software emulators such as

QEMU were identified as most transparent with the ability to cause uncertainty within the logic of the

evasion techniques about the presence or otherwise of emulation. The use of software emulators can

when tested by anti-analysis logic give similar output as routine CPU errors making detection logic

unreliable. The observation of the growing use of cloud infrastructure with more systems being

deployed on emulated virtual environments also reduce the impact of malware evasion techniques as

malware will have fewer platform options and smaller execution footprint for operation if anti-

virtualisation procedures are included.

(Kirat, Vigna, & Kruegel, 2014) proposed BareCloud which unlike other automated malware analysis

systems, runs on transparent bare-metal native operating system analysis environment. It

incorporates different analysis platforms like Ether in bare metal form and Anubis in emulated QEMU

environment and Cuckoo using Virtualbox for virtualisation based malware analysis. It does not rely

on snapshots taken before and after as it does not performed monitoring within the guest analysis

client making it unable to detect non-persistent changes. While it can detect anti-analysis behaviour,

it is unable to force malware execution.

Using the Trojan upcliker.exe, (Mehra & Pandey, 2016) tested the effectiveness of sandboxing

techniques in presence of malware anti-sandboxing in form of Human Computer Interaction (HCI).

Anubis and Malwr were tested with a decidedly unnamed proprietary suite used as control. While

Anubis did not discover the malware, Malwr could detect changes to the file system and identify the

Trojan as malware. The commercial tool had a more comprehensive report.

(Yokoyama et al., 2016) in their reconnaissance on online sandboxes, sent malware samples to online

sandboxes with the objective of obtaining information about their internal operations to prevent

malware from executing in the presence of those unique conditions. Virtualisation was used to allow

creation of snapshots for pre- and post-execution comparison. The research focussed its discussion

on windows because of its popularity.

In (Provataki & Katos, 2013b), it was concluded that different executions of a malware sample yielded

different results. This test was done comparing a local Cuckoo installation with online malware

analysis sandboxes such as Anubis (Anubis, 2015), GFI Sandbox (GFI Software, 2017), Comodo and

Cuckoo-based Malwr (Malwr, 2016) by dropping the Trojan ‘Trojan-Dropper.Win32.Xpaj.a’. Anubis

and Cuckoo identified the malware while GFI and Comodo did not. Multiple runs of the malware on

the local Cuckoo installation with three Windows operating systems as the sandboxes revealed

different file changes with each run.

(Noor, Abbas, & Shahid, 2018) proposed the Analysis Evasion Malware Sandbox based (AEMS) based

on Cuckoo analysis sandbox. This system is specifically targeted at malware written to evade analysis.

This system modified Cuckoo with the inclusion of a dynamic link library on monitoring station to allow

for the detection of anti-analysis techniques. When these techniques are discovered during analysis

of a malware samples, the execution of the malware sample is forced.

2.5.1.4 Sandboxes and Indications of compromise

Sandboxes are isolated environments for the execution of malware samples for analysis and research.

They form important components of malware analysis service and malware security appliances.

Malware analysis services are a combination of sandboxes offered as a service portal for receiving

25

malware submissions. They can be public or private portals. These services can share samples and

they use cryptographic hash functions to uniquely identify samples. Malware security appliances are

used to protect end points by dynamic analysis of unknown samples with embedded sandboxes

(Yokoyama et al., 2016). (Vasilescu, Gheorghe, & Tapus, 2014) demonstrated a distributed firewall

solution integrated with Cuckoo (Cuckoo Foundation, 2015) for automated malware analysis of

malicious Uniform Resource Locators (URLs). Three virtual machines were spawn for the automated

testing – Ubuntu, Windows XP and Windows 7. It was found that the results of automated analysis

was comparable to that derived from performing a manual analysis using a Windows XP virtual

machine running Volatility (The Volatility Foundation, 2014) for memory analysis, DumpIt (Suiche,

2016) for memory acquisition and IDA (Hex-Rays, 2016) for code disassembly but considerably faster.

Willems, Holz, & Freiling, (2007) demonstrated CWSandbox, an automated dynamic malware analysis

platform for WIN32 family of malware using API hooking and DLL code injection to avoid detection. It

saves the state of the sandbox system before malware execution and compares this state to the post

execution state. A plugin Cuckoo profiler was added to the standalone Cuckoo installation to speed

up the discovery of the changes in the guest operating systems. The design and implementation of

TTAnalyze was described in (Bayer, Kruegel, & Kirda, 2006). This system used the QEMU emulator to

monitor Windows system and API calls made by the malware sample under observation.

Another approach to automated malware analysis makes uses of CPU virtualisation extensions and

purpose built virtual machine monitors running at a higher privilege level by booting with the host

operating system. These monitors can intercept system calls on the guest operating systems used for

malware analysis transparently to avoid detection by malware. This method was used in (Dinaburg,

Royal, Sharif, & Lee, 2008), (Nguyen et al., 2009) and (Deng, Xu, Zhang, & Jiang, 2012). (Dinaburg et

al., 2008) demonstrated Ether, a solution based on the Xen hypervisor that used the Intel VT CPU

virtualisation extensions to monitor Windows API and system calls during malware behaviour analysis.

(Nguyen et al., 2009) implemented a dedicated virtual machine monitor for malware analysis MAVMM

using the AMD SVM as hardware virtualisation to monitor malware behaviour on Ubuntu 8 guest

operating system. Using ninety-three (93) real world Windows viruses, (Deng et al., 2012)

implemented IntroLib using the KVM hypervisor to intercept the interaction between malware code

and operating system library code. Based on the same principle used in Ether and MAVMM, IntroLib

was found to have lower overhead.

The use of a combination of static and dynamic analysis output as learning features for machine

learning libraries was employed in (Islam, Tian, Batten, & Versteeg, 2013) and (Shijo & Salim, 2015).

In the former, static examination was done using IDA pro to get total length of all functions in the

malware executable as well as printable string information. These features were combined with

dynamic analysis features from API logs using the API feature extraction tool from the virtual

environment. An application was built to interact with the WEKA machine learning library using the

features from the analysis to classify malware. The malware samples were obtained from CA Vet zoo.

Using malware samples from VirusShare and dynamic analysis performed on Cuckoo sandbox running

on Ubuntu 10 with Windows guests on VMware, the latter extracted API call logs and combined with

static features in form of printable string information obtained using the strings utility, developed a

classification system using SVM and random forest algorithms.

(Neugschwandtner, Comparetti, & Platzer, 2011) implemented SQUEEZE integrated with Anubis to

observe Domain Name System (DNS) traffic during dynamic analysis of malware samples. The

objective was to detect failover activities of Command and Control (C2) servers in botnet attackers in

the face of takedown attempts. It explored the execution path malware explores when the primary

26

path is blocked. The logic for failover is run by ensuring a forced execution of malware domain

generation algorithm.

With dataset from VirusShare, (Tirli, Pektas, Falcone, & Erdogan, 2013) presented Virmon as an

analysis system that is effective for current Windows operating systems on 64-bit architectures. This

is in response to the trend of testing malware with older Windows operating systems on 32-bit

architecture. Virmon analyses malware samples by monitoring host based features like file system,

registry, process interactions and network features such as DNS requests that the malware droppers

might be making to reach the command and control centres. (Pektaş & Acarman, 2017) proposed a

system for classification of malware families based on runtime behaviour. This system made use of

Virmon and Cuckoo sandbox to extract run time behaviour features - API calls and registry changes.

Malware sample labelling was done with VirusTotal with the samples divided into training and test

set.

(Aslan & Samet, 2017) tested local and online sandboxes in conjunction with standalone static and

dynamic analysis tools like PEiD, PEview, PE Explorer, MD5Deep, Process Explorer, Process Monitor.

The local sandbox installations tested are Cuckoo, CW Sandbox, Norman Sandbox, Droidbox, while the

online sandboxes tested are VirusTotal, ThreatExpert, Malwr. Jotti’s Malware Scan. The malware

samples were tested on Window 7 and Windows 10 Virtual machine instances. It was found that using

a combination of these tools yielded better results than individual use of the tools. The best

combination comprised of Cuckoo sandbox, IDA Pro, PEiD, PEview, Process Monitor, Wireshark, Malwr

and VirusTotal.

(Tsyganok, Tumoyan, Babenko, & Anikeev, 2012) sought to classify polymorphic and metamorphic

malware samples based on the features exhibited during dynamic analysis. Cuckoo framework with

Windows virtual machine guests was used for classification of Windows portable executable files.

Cuckoo was used to extract operating system and network interactions, file system changes and code

injections.

2.5.2 Analysis of Linux Malware Samples

Machine learning methods were applied to detecting Linux malware in (Mehdi, Tanwani, & Farooq,

2009), (Shahzad & Farooq, 2012) and (Asmitha & Vinod, 2014). While (Mehdi et al., 2009) investigated

the process memory image and used the task struct data structure as classification criteria, (Shahzad

& Farooq, 2012) and (Asmitha & Vinod, 2014) investigated the ELF file structure. The former based its

classification on 383 features of the ELF file headers and using 709 Linux malware samples from VX-

heavens (VX Heaven, 2017) recorded 99% accuracy in malware detection without resorting to

signatures, making it effective for zero-day malware detection. The latter used the systems calls

invoked during the execution of an ELF file as classification criteria and this scheme recorded 97%

accuracy using Linux malware samples from VX-heavens.

(Pa et al., 2015) proposed IoTPOT and IoTBOX targeted at malware analysis of Internet of Things (IoT)

devices. The former is high interaction honeypot supporting multiple architectures and IoTBOX is

sandbox supporting cross compilation to multiple platforms using QEMU for device emulation. IoTPOT

as a honeypot emulates Telnet services of various IoT devices to allow detailed analysis of an on-going

attack. IoTBOX, using QEMU emulator supports analysis of malware on eight (8) different CPU

architectures, namely as MIPS, MIPSEL, PPC, SPARC, ARM, MIPS64, sh4 and X86.

27

(Damri & Vidyarthi, 2016) in their survey of techniques used for dynamic analysis of malware samples

written for the Linux operating identified five (5) approaches. These approaches are based on the

system call, process control block, ELF, kernel and hybrid investigation which is a combination of any

of the other four methods. The investigated literature used strace tool to investigate the system calls,

arguments and return values. The process block is the runtime state of the process in task_struct

containing the user and group identity of the process owner, memory information, file system

information, process signals, open files and network sockets. Features of the ELF header in the

execution state were used in some of the surveyed literature to differentiate between malicious and

benign programs. Files in the /proc file system like the /proc/meminfo and /proc/cpu were used to

extract information about the kernel state which some of the evaluated works used to detect the

presence of malware.

(Asmitha & Vinod, 2014) proposed a system call based investigation technique for malicious activity

detection. This involved a system call logger and extraction of useful function calls. This was used with

malware from VX-Heavens. The malware samples were divided into training set alongside benign

samples from the /bin directory and test set to ascertain the effectiveness of the algorithm.

With 10,548 Linux ELF malware samples sourced from VirusTotal, (Cozzi, Graziano, Fratantonio, &

Balzarotti, 2018) identified challenges associated with Linux malware analysis such as variety of

possible CPU architectures, deliberate obfuscation techniques such as file header manipulation and

packing. Challenges with shared libraries and dynamic linking were also mentioned. The samples were

subjected to a series of processing steps involving investigation of file metadata, static and behavioural

analysis. The file utility was used to determine the file types, the readelf binary was used for file

metadata analysis and AVCLASS (Malicia Lab, 2018) was used to label the samples by antivirus families.

IDA Pro debugger (Hex-Rays, 2016) and Radare2 (Radare, 2017) were used for the static analysis step

while dynamic analysis was carried out using SystemTap (Sourceware, 2018b) to investigate file

system interactions, systems calls during execution of the samples in KVM (Openshift, 2018) and

Qemu (QEMU, 2017) CPU emulators. Malware samples written for x86, x86-64 were executed with

the KVM emulators while 32-bit MIPS, PowerPC and ARM architectures were executed using Qemu.

The experiments revealed the differences within malware families in terms of obfuscation techniques

and access privileges required to run the malware samples. The methods malware authors employ to

ensure persistence of malicious code and the frequently requested system calls, libraries and

commands were also determined.

Curated lists of automated malware analysis sandboxes and online services from (Shipp, 2018) and

(Zeltser, 2017a) have only five tools for Linux malware analysis from a combined list of 42 tools. The

five tools are REMnux which is used in SANS malware analysis course (SANS, 2017), Cuckoo sandbox

Limon, Detux and Tencent HaboMalHunter. (Monnappa, 2015) presented Limon at the Blackhat

Europe 2015 conference (UBM Tech, 2015). In the conference, the static and dynamic memory

analysis of the tsuna/httpd.txt (voip scanner - binario elf) ELF malware sample was demonstrated.

Tencent HaboMalHunter sandbox is the open source standalone version of the Tencent Habo

analysis portal that has been integrated with VirusTotal (VirusTotal, 2017). It is a subproject of the

Tencent Malware analysis platform (Tencent, 2018).

2.6 Research Goals

The previous section is a summary of the current literature and the contributions they have provided.

The discussion of the indications of compromise and the use of sandboxes for malware analysis has

28

been dominated by research related with analysis of Windows portable executable malware samples.

In the exception above, (Vasilescu et al., 2014) analysed malware on an Ubuntu guest to show that

employing sandboxes for automatic analysis is faster and as effective as manual analysis. The existing

research on Linux malware analysis have been predominantly focussed on the use of individual tools

or data providers like readelf, strings utility and strace. The output of these tools was used as training

data for machine learning algorithms and libraries.

The objective of this research is an investigation of the malware analysis sandboxes that are known to

support Linux ELF binary malware analysis to determine their relative capabilities. This research is

focussed on the issues raised in the previous section with respect to the evaluated sandboxes’

effectiveness in detecting compromise, resistance to anti-analysis as well as the level of support for

automation and reporting. The relative effectiveness is evaluated, considering the static and dynamic

analysis capabilities of the tools. Static analysis is used to determine if samples match signatures of

known malicious files and if anti-analysis tools such as packers and morphing engines are used.

Dynamic analysis determines the ability of a sandbox to spot indications of compromise after memory

analysis, and investigation of network traffic and operating system interactions such as system calls

and file system operations. The reporting and automation support is also investigated.

From the previous subsection, five sandbox environments were identified and this research focuses

its comparison on the five packages. They are Cuckoo, Limon, REMnux, Detux and HaboMalHunter.

The analysis is done with the latest Linux kernel version – 4.4. In the next chapter, the approach to

this comparison will be undertaken with a discussion of the research design decisions and the testing

methodology.

29

3 Research Design

3.1 Introduction

This chapter details the research methodology and the reasons for the design decisions. Malware

analysis requires acquisition of data samples for testing and a process for testing (Wade, 2011). The

next section is a discussion of the approaches other researchers have employed in the acquisition and

testing of malware samples. It follows from the concluding sections of the previous chapter that

reviewed the related literature on the theme of malware analysis tools. The third section highlights

the approaches adopted for acquisition of malware samples in this research. The testing process is

described in the fourth section. A restatement of the research objectives concludes this chapter.

3.2 Review of malware analysis methodology

Testing malware and evaluating malware analysis sandboxes requires access to malware samples and

the implementation of a testing environment. This section reviews the approach similar research

efforts have taken to source malware samples as well as the methods used for testing the malware

samples.

3.2.1 Sourcing malware samples

Two approaches have been used in the acquisition of sample data for malware analysis. The first

approach involves the use of honeypots and entrapment systems. These are systems that are designed

to attract potential attackers to get an understanding of contemporary threats at the time of

deployment (Guarnizo et al., 2017). They can be classified based upon the level of interaction

permitted (Mokube & Adams, 2007) or by deployment purposes (Mairh, Barik, Verma, & Jena, 2011).

With respect to level of interaction, they can be further classified as high or low interaction honeypots.

The purpose of deployment can be research related or as a permanent fixture on a production

network to serve as an early warning device for detection of vulnerabilities and exploits. (Rieck, Holz,

Willems, Düssel, & Laskov, 2008) and (Vasilescu et al., 2014) employed spam traps and honeypots to

acquire malicious emails attachments and URLs in their investigation of patterns for classification of

malware and comparison of manual and automated malware analysis respectively. In their

investigation of malware samples that they considered as being under-investigated (64-bit Windows

portable executables and Dot Net/Mono files), (Botacin et al., 2017) extracted sample Dot Net files

from email attachments.

The other method for sourcing malware samples requires the use of public and private malware

repositories. These are portals that accept malware samples from members such as researchers, anti-

malware vendors and partners. They classify these samples and generate cryptographic and fuzzy hash

functions of these samples to detect if they are the same or similar samples to previously uploaded

ones. They provide search and download functionality of varying access levels to different categories

of users. Some require membership or registration (free or fee-based) (Zeltser, 2017b) (Shipp, 2018).

In the research by (Mehdi et al., 2009) and (K. Asmitha & P. Vinod, 2014), the training data for the

malware processes that formed input to the machine learning libraries were sought from VX Heaven

(VX Heaven, 2017). Malware samples from VX Heaven and Offensive Computing (Offensive Security,

2017) were used by (Shahzad & Farooq, 2012), (Deng et al., 2012) and (Shahzad, Shahzad, & Farooq,

30

2013) in their investigation of Linux ELF binary headers, operating system calls and kernel data

structures respectively .

More than 38,000 malware samples from Virus Share (Virus Share, 2017) repository were used as

training data in the demonstration of an open source automated malware analysis tool by (Rubio

Ayala, 2017). In building a stable, high processing malware analysis platform, (Miller et al., 2017) used

tens of thousands of malware from VirusShare with various parameters and virtualisation systems.

These tests were done to compare stability of platform when different parameters and virtualisation

platforms were used. The specifics of the malware samples were not of significance in these tests. The

volume of samples and the effect on the tested platform choices were the most important

considerations. (Botacin et al., 2017) obtained the 64-bit Windows PE samples from VirusShare in their

investigation of non-mainstream malware samples. Samples from VirusShare were also used by

(Gandotra, Bansal, & Sofat, 2016) in their experiment aimed at training a system to detect zero-day

malware attacks.

3.2.2 Analysis methods

The analysis methods used in the existing body of work are a combination of static, dynamic and hybrid

analysis techniques. (Mehdi et al., 2009) and (Shahzad et al., 2013) employed dynamic analysis by

observing malware process execution using strace (Strace, n.d.). (Shahzad & Farooq, 2012) made a

static analysis of ELF headers of malware samples. The hybrid approach combining static and dynamic

approaches was employed in some other research activities. The approach makes use of sandboxes

and virtual machines to execute malware samples, studying the memory, processes and network

interactions, while also examining the binary code (header and routines) for signs of packing and

obfuscation. The static analysis component also submits cryptographic hash checksum output to

online repositories like VirusTotal (Vasilescu et al., 2014). VirusTotal accepts malware samples from

individual contributors, researchers, anti-malware vendors and other sources. It has a database of

malware samples, cryptographic hash function outputs and a reporting system indicating the anti-

malware engines that have successfully identified a file sample as malicious as well as the engines that

have failed to detect the samples as malicious (Google, 2017).

(Vasilescu et al., 2014) tested malware samples using Cuckoo sandbox integrated with a distributed

firewall application implemented on an Ubuntu system for its automated tests and the combination

of VirusTotal submissions and queries, Wireshark, IDA debugger and DumpIt for manual analysis.

Other works that utilised the Cuckoo sandbox are (Rubio Ayala, 2017), (Miller et al., 2017) and

(Gandotra et al., 2016). (Rubio Ayala, 2017) employed Cuckoo sandbox in combination with Weka

machine learning libraries to demonstrate an open source malware analysis system. Cuckoo sandbox

and the Weka machine learning libraries were also used by (Gandotra et al., 2016) in implementation

of a system to detect zero-day attacks. In their demonstration of a stable high processing malware

analysis system, (Miller et al., 2017) tested Cuckoo sandbox with KVM, VMware and Virtualbox

virtualisation platforms using different testing options. CWSandbox was used in (Deng et al., 2012)

and (Rieck et al., 2008). The former proposed a high-performance malware detection system immune

to kernel hooking by malware – Introlib which was compared with CWSandbox and Anubis while the

latter used CWSandbox to implement a system for the study and classification of malware samples.

Table 3.1 is a summary of the research design decisions of related works.

31

Table 3. 1 Summary of design decisions of related research efforts

Author(s) Aim/Outcome Malware Sample/Source Analysis Tool(s)/Method

(Rieck et al., 2008) Detection, Investigation and classification of malware Spam trap and honeypot CWSandbox

(Vasilescu et al., 2014) Compare manual and automated malware analysis Malicious URLs and email attachments Cuckoo and integrated Firewall compared with
manual analysis using combination of Wireshark,
VirusTotal, IDA Debugger, Dumpit

(Hirono, Yamaguchi,
Shimada, & Takakura, 2014)

Trace effect of malware from inside a network Poison Ivy RAT Python network services libraries for Internet services
emulation, Squid proxy for transparent proxy, Clam
AV and Snort IDS for threat analysis

(K. Asmitha & P. Vinod,
2014)

The goal is to detect metamorphic and polymorphic
viruses

226 malware samples from vxheavens and 442 benign files from /bin,
/usr/bin, /sbin

Strace to monitor binary execution

(Mehdi et al., 2009) Detect parameters in process task struct that differ
greatly between benign and malicious processes

VX heaven Investigation of task_struct data structure in kernel

(Shahzad & Farooq, 2012) Creation of non-signature based malware detection
scheme

VX heaven and Offensive Computing ELF header binary investigation

(Deng et al., 2012) Creation of high performance dynamic analysis
virtualisation tool immune to API hooking and
emulation detection

Sample from Offensive computing KVM based hardware virtualisation platform - Introlib
which intercepts library calls on Windows and Ubuntu
Linux 11.04 guest platforms. compared with Anubis
and CWSandbox

(Shahzad et al., 2013) Creation of kernel module for differentiation of benign
and malicious processes

Training data included 114 malware samples from VX heaven and offensive
computing and 105 benign files

Investigation of kernel structure of processes

(Rubio Ayala, 2017) Creation of open source software for malware analysis 54 software programs from CNET Download site and 549 freeware.com
formed the benign group while 97 Windows System PE malware and 38152
CrptoRansom malware were sourced from VirusShare

Cuckoo, Virtualbox and Weka data mining and
machine learning library.

(Miller et al., 2017) Build stable high processing dynamic analysis platform Various tests using tens of thousands of samples from VirusShare. The number
of sample in this case is more important than the specifics of the samples as
the stability of platform with different associated software and settings were
the goal of the exercise.

Cuckoo with various settings and virtualisation
platforms (Vmware, Virtualbox and Qemu)

(Botacin et al., 2017) Analysis Dot Net/Mono and 64-bit Windows Portable
executables

426 samples (from suspicious e-mail attachments collected between 2012 and
2015), 64-bit Windows malware binaries from VirusShare

Qemu/KVM with monitoring driver to record
callbacks, registry calls

(Gandotra et al., 2016) Detecting zero-day attacks using machine learning
trained system

Malware samples from VirusShare confirmed with AVG antivirus and benign
files from Windows system directory

Modified Cuckoo with Weka data mining and machine
learning libraries

32

The summary in Table 3.1 shows the approach other researchers have used in sourcing for malware

samples and the testing environments for malware analysis. These research efforts with the exception

of (Botacin et al., 2017) used either honeypots or malware portals to source malware samples.

(Botacin et al., 2017) used both methods, however the analysis was not related to Linux ELF binaries.

CWSandbox, Anubis and Cuckoo were the only malware analysis sandboxes used in the tests above.

Anubis was an online portal for malware analysis, however it does not exists any more (Anubis, 2015).

CWSandbox does not exist as a free use service any longer and it does not support the analysis of Linux

ELF binaries (Ouchn, 2011). The reviewed literature in Table 3.1 generally employed malware

repositories to determine and establish the baseline for malware samples which is used for

comparison with the experimental results derived from the tests. This approach is adopted in this

research in addition to the sourcing malware samples from a honeypot.

3.3 Data Acquisition

The use of malware repositories and a honeypot entrapment scheme was adopted for this research.

The malware repositories offer labelling, identification and classification services for the malware

under investigation to allow for consistent testing of the sandboxes. The use of the honeypot is to

supplement the samples from repository with live malware samples and network packet captures,

creating the possibility of adding unknown malware samples to the testing pool. This section discusses

the setup and components of the honeypot as well as the selection and testing of the malware samples

from the online repositories selected. The reasons behind the design decisions are also discussed.

3.3.1 Honeypot

The use of the honeypot creates the possibility of adding unknown malware samples to the pool. This

section focuses on the setup, component description and decisions taken in the implementation of

the honeypot. A high interaction honeypot was set up to allow the whole system to be infected with

the aim of capturing and understanding the malware sample(s) and reusing them to test the

sandboxes. Figure 3.1 shows the topology of the honeypot setup.

Figure 3. 1 Honeypot Topology

33

3.3.1.1 Open access system

The open access system is the honeypot system that is deployed to be infected and compromised.

This system runs Ubuntu 16.04 operating system. This is the current Long-Term Support (LTS)

distribution and it has maintenance support until 2021 (Canonical Ltd, 2017). The Ubuntu distribution

was selected in particular because according to (DistroWatch, 2017), since its inception in 2004, it has

grown to be one of the most popular Linux distributions. After installation, the system was updated

to run the most current security and application updates and LTS supported kernel version 4.10. A

web application was deployed on it with a MySQL (Oracle, 2017) database server backend. The web

application was created using the Flask framework (Ronancher, 2017) and it was deployed on an

Apache web server (The Apache Software Foundation, 2017).

The web application accepts input from a web form that requires the first name and surname of an

actor or actress and returns in JavaScript Object Notation (JSON) format, the list of titles the actor or

actress has appeared in and the name of the character portrayed. MySQL, being a networked database

service also offers potential attackers an additional footprint to attack the system (Singhal & Ou,

2017). Flask was chosen because it offers rapid deployment and ease of web application prototyping

(Grinberg, 2014). The choice of JSON output is also to give the impression that while the system is

standalone, it could also be a part of a larger system that can use it for machine to machine

communication in the form of an API. The popularity of the Apache webserver necessitated its use as

the application web server as it is still the most deployed webserver (Netscraft Ltd, 2017) and it offers

an additional attack surface for potential attackers (Durumeric et al., 2014).

The Advanced Intrusion Detection Environment (AIDE) (Sourceforge, 2016) application was deployed

to detect file manipulation and changes to the file system, configuration files and system binaries.

AIDE works by taking a snapshot of the attributes of files marked for monitoring. AIDE can

subsequently detect manipulation of monitored files if changes are made either to the files with

respect to content or access control rights and ownership. The snapshot of the system binaries and

configuration files were taken. MD5 and SHA256 cryptographic hash function outputs were taken of

the snapshot before it was transferred to the trusted upstream system. The hash values were

confirmed at the upstream server to match the hashing function output obtained on the open access

system prior to the transfer. The AIDE application was uninstalled and the configuration and library

files deleted so that potential attackers are oblivious to the intrusion detection plans.

The Secure Shell (SSH) server configuration file - /etc/ssh/sshd_config was edited to permit root login

and the root password of ‘love’ was set to make the system easily susceptible to a dictionary attack.

allowing easy access to the system from a brute force attacker. The username of ‘root’ has been found

to be one of the most tried usernames for brute force attacks for remote login (Sochor & Zuzcak,

2015).

3.3.1.2 Firewall

A Juniper (Juniper Networks, 2017a) SRX 300 security appliance was deployed as the firewall. It was

running Junos OS version 15.1X49 (Juniper Networks, 2017c) which is the tested version for the

published specifications of five thousand (5,000) sustained new sessions per second, a maximum of

sixty-four thousand (64,000) and one thousand (1,000) concurrent sessions and firewall rules

respectively. It has also been benchmarked to have a firewall traffic throughput of 1Gbps (Juniper

Networks, 2017d).

34

The SRX 300 has the property of stateful firewalls whereby the permitted connections are tracked so

related transactions of same sessions are permitted without recourse to the CPU cycles of matching

packets against firewall rules. For example, if a firewall rule permits traffic of a protocol type from a

specific internal host to a destination external host, return traffic from the destination is also implicitly

permitted without a need for a firewall rule match. The traffic headers are checked to confirm that

they are part of the same session that had been tracked when the initial firewall rule was invoked

(Gouda & Liu, 2005).

The firewall was partitioned into two security zones. The internal zone which the honeypot server was

placed was named zone in, while the external zone (the expected source of attack traffic) was named

zone out. The firewall rules deployed on the firewall effectively permitted access to the server (zone

in) from the wider Internet, while denying traffic originated from the server to all external destinations

(zone out) except Google public Domain Name Servers (DNS) 8.8.8.8 and 8.8.4.4. Allowing domain

name resolution was done to increase the level of interaction available to prospective attackers. The

deny actions were to silently discard packets without sending an Internet Control Message Protocol

(ICMP) destination unreachable packet. Sending this packet would have made the presence of traffic

filtering visible to an attacker (Rosen, 2014). Table 3.2 is a summary of the stateful firewall rules

configured.

Table 3. 2 Firewall security policies

Source Zone Source
host/network

Destination
Zone

Destination
host/Network

Applications Action

out Any hosts In 202.124.118.49 All
applications

Permit and
log

in 202.124.118.49 Out 8.8.8.8 and
8.8.4.4

UDP 53 DNS Permit and
log

in 202.124.118.49 Out Any hosts All
applications

Deny and
log

3.3.1.3 Switch

The connecting switch in this setup is a Juniper EX2200-C switch running Junos OS version 12.3. It has

twelve (12) gigabit ethernet ports and supports full line rate switching (Juniper Networks, 2017b). It

was configured for port mirroring. This enabled the duplication of all the packets entering and leaving

the port assigned to the honeypot to a Virtual LAN (VLAN). The only member of this traffic monitor

VLAN is the port the IDS system is connected to. Table 3.3 shows the port to host and VLAN mapping

configuration of the switch.

Table 3. 3 Switch interface and VLAN configuration

Device IP address Port Number VLAN ID

Open access system 202.124.118.49/31 ge-0/0/0 75

Firewall 202.124.118.48/31 ge-0/0/11 75

IDS N/A ge-0/0/1 999

35

3.3.1.4 Intrusion Detection System

The Intrusion Detection System (IDS) was deployed in passive mode to capture network traffic packets.

It was implemented using an Ubuntu 16.04 LTS system with Snort IDS and TCPDUMP installed. Its

network interface is connected to the switch to accept all communications coming from and going to

the honeypot system. This is stored in PCAP format. Snort and TCPDUMP commands were used to

place the interface in promiscuous mode to capture the packets.

3.3.1.5 Trusted upstream server

A Virtual Private Server (VPS) was deployed as the trusted upstream server. This is a Debian Linux

server that is used to transfer to and copy files from the honeypot system. This server does not use

password authentication and does not allow root login. SSH keys are required for client access to the

server. The public key is stored on the server while the private key is on a remote client used to connect

to the server. Communication is always initiated from the server to the open access server and not

vice versa to avoid the need to have a copy of the private key of the secure key exchange on the

honeypot system. This server was used to copy the AIDE database files from the open access system.

It was also used to copy the linpmem binary (Cohen, 2016) for memory acquisition to the honeypot

system.

3.3.2 Public Repositories

A number of repositories have been used in the research community as sources of malware as

discussed in section 3.2.1. However, the need to use current malware samples as well as the specific

constraints to analyse executable Linux malware file samples made some of the public repositories

employed in previous research activities unsuitable. The latest bulk compilation on VX heavens was

compiled in 2010. The quest for recent malware submissions (post 2014) stems from research that

the properties of the samples uploaded prior to 2014 that might be of interest during testing will exist

in some of the more recent samples since most new malware samples are polymorphic or

metamorphic variants of old samples (Alam, Horspool, Traore, & Sogukpinar, 2015; Bist, 2014; Sharma

& Sahay, 2014). The focus on recent samples allows the analysis sandboxes to be tested against the

current field and trends in malware as well as variants of old samples.

Another repository that featured prominently in the related works discussion was Offensive

Computing (later transitioned to Open Malware). This repository is no longer available. VirusShare

repository was the only repository left from those used in other research activities. Some of other

repositories based on the list from (Zeltser, 2017c) were explored. VirusTotal and VirusShare were

found to meet the requirements of the research for recent (between 2014 – 2017) ELF binaries for the

x86 and x86-64 CPU architectures. A total of two hundred and ninety-three (293) samples were

acquired from the two portals.

3.3.2.1 VirusTotal

VirusTotal is a portal for malware submission and scanning. It generates a report for the submitted

malware based on the aggregation of results from participating vendor anti-malware engines. Its

samples come from the public as well as partnerships with antivirus companies. Reports can be

generated by submission of suspected malware sample files directly or by using as query parameter,

the cryptographic hash function output of a suspected malware sample. Its database has other

36

metadata such as the MD5, SHA1, SHA256 cryptographic hashes and the SSDEEP fuzzy hash of the

samples. Other information about the sample include date of first submission, scan results of each of

the engines used as well as the names the sample is known by the engines that have flagged it as

malicious (Google, 2017).

The date of first submission of the sample was used as the indication of currency in the selection of

malware. Only samples first submitted between 2014 and 2017 were considered for analysis. That

was the primary use of VirusTotal in this research. It was used to get an indication of the age of a

malware sample. The malware repository of VirusTotal could not be utilised because it required a paid

subscription service. The paid subscription service also grants access to a private API key for making

more detailed queries. A student research account was granted that gave access to forty-one (41) ELF

malware samples out of which fourteen (14) were built for the x86 and x86-64 processor architectures.

Those 14 samples were included in the analysis pool.

3.3.2.2 VirusShare

VirusShare required an account registration request and once approved, all the malware samples were

available for download. There are special collections organised as torrent files but the ELF file

collection was compiled in 2014. Most of the samples in it were first submitted to VirusTotal prior to

2014. The other bulk samples on the site were organised chronologically in compressed ZIP archive

files. They are archives of various types of malware samples for different platforms. Each archive had

sixty-five thousand, five hundred and thirty-six (65,536) samples.

The approach taken was to download from the latest bundle, extract the archive and run a Python

script using the Unix magic file signature library to iterate through all the files to filter out the ELF files

making a table of file name and magic file signature description. The grep utility was used to filter out

the files built for the required processor architectures - the x86 and x86-64 processor architectures.

This process was repeated for each bundle in succession. Two hundred and seventy-nine (279)

samples were extracted for inclusion into the analysis pool at the end of this process.

3.4 Analysis methodology

This section discusses the analysis method used to evaluate the effectiveness and characteristics of

the malware sandboxes being evaluated against Linux malware samples. There are two streams of

analysis corresponding to the sources of the malware samples used. The malware sandboxes were

evaluated against the malware samples derived from the VirusTotal and VirusShare repositories. The

second stream involved investigating for indications of compromise on the honeypot system and

extracting malware samples and traffic captures for further testing on the malware analysis

sandboxes. Figure 3.2 illustrates these steps in the analysis process.

37

Figure 3. 2 Stages of Analysis

38

The sandboxes were tested for their ability to detect malware obfuscation techniques and the

presence of malicious activities in the forensic artefacts. The automated analysis features of the tools

and the supported reporting features were also evaluated. The specific anti-analysis technique that

was tested involved capability of the sandbox to detect the presence of packers and metamorphic

variations when analysing the malware samples. The effectiveness of the sandboxes for dynamic

malware analysis was investigated by testing the ability of the sandboxes to detect malicious activities

and indicators of compromise based on forensic artefacts like memory, network activities, operating

system operations. Acceptance of batch jobs for the analysis of multiple malware samples was also

tested to ascertain support for automated analysis.

3.4.1 Honeypot setup

The honeypot testbed presented an opportunity for additional malware samples to be added to the

testing pool. An investigation of the file system integrity using AIDE was performed on the honeypot

server. AIDE was reinstalled and the old database file was copied from the trusted server back to the

honeypot server. A comparison between the old database (prior to allowing external access to the

system) with the current generated output was done to determine the file system changes, additional

and modified system executables. Network packet capture files from the firewall were examined and

the reputation of each of the communicating IP addresses was checked on VirusTotal. The packet

capture files were also examined for traffic attributes and content using Snort IDS.

The viable options for memory acquisition on 64-bit Linux systems were described in subsection

2.3.2.2. The options are the use of a loadable kernel module that is precompiled in the kernel of the

target system or the use of the /proc/kcore file if it is enabled. The /proc/kcore file is a mapping of the

physical memory of the system (Case & Richard, 2017). The use of a precompiled loadable kernel

module was avoided as this can be detected by a potential attacker and serve as a sign that the system

is a honeypot. A memory dump of the open access system was taken using the linpmem binary from

the Rekall repository. This binary reads the /proc/kcore file which is enabled by default on Ubuntu and

most Linux distributions (M. H. Ligh et al., 2014).

Rekall is a fork of the Volatility project and it has tools for memory acquisition and analysis while

Volatility is solely a memory analysis tool. Rekall and Volatility have similar plugins for analysis of Linux

memory images (Rekall Forensics, 2017). The decision to use to Rekall for the memory analysis was a

consequence of the decision to use the linpmem binary from the Rekall toolkit for the memory

acquisition. The default and recommended file format for the acquired memory image is the Advanced

Forensic Format version 4 (AFF4) image file format (Cohen, 2016). This file format has support for

storage of additional metadata about the system under investigation during analysis that can be

utilised by the Rekall memory analysis plugins (Cohen, Garfinkel, & Schatz, 2009). The AFF4 format

was used as the file format of the memory image. The Rekall psxview plugin was used to view

processes in memory. This plugin can view hidden processes which is an advantage over the pslist

plugin. All the process names that could not be accounted for from the Linux manual pages were noted

with their process IDs (PIDs). The executable files in these memory locations were extracted to the

analysis system using the memdump plugin. This plugin takes the PID as argument and a location on

disk as destination to dump the memory image. The file types of the files dumped from the memory

were checked with the Unix magic file utility and the files found to be ELF binary files were uploaded

39

to VirusTotal for scanning. The file samples identified as malicious after scanning by the anti-malware

engines associated with VirusTotal were added to the sandbox testing pool.

3.4.2 Sandbox

In this section, a description of the sandboxes under evaluation is undertaken as well as the test setup

procedure. These sandboxes are made up of a combination of open source tools and they serve as

wrappers and front end to ease the analysis of the Linux malware samples.

3.4.2.1 REMnux

REMNux is a suite of tools implemented on Ubuntu Linux distribution for malware analysis. It has

scripts and APIs to make requests to VirusTotal. Specifically, for Linux malware analysis, it has built-in

tools such as radare (Radare, 2017) and GDB (Free Software Foundation Inc, 2017) for static analysis,

sysdiq (Sysdig, 2017) and strace for dynamic analysis and rekall (Rekall Forensics, 2017) and Volatility

for memory analysis. The suite of tools can be installed on an Ubuntu 14.04 system or used by

downloading the complete virtual machine (REMnux Documentation Team, 2017). The latter

approach was chosen because Ubuntu 14.04 is no longer the current Ubuntu LTS version (Canonical

Ltd, 2017) and the installation script does not run on any other version of the distribution.

Figure 3. 3 Malware analysis with REMnux

Figure 3.3 is the setup for the analysis. The REMnux sandbox and the malware test host run as

Virtualbox virtual machines on another Ubuntu 16.04 system. The REMnux sandbox emulates Internet

and network services for the malware testing virtual machine using Inetsim (Hungenberg & Eckert,

2017) thus preventing the effects of the malware execution from leaving the confines of the Host PC.

All static analysis tasks were performed on the REMnux sandbox virtual machine. Each sample from

the repository were analysed using static, behavioural and memory analysis in turn. The samples and

network traffic from the honeypot were also tested. Static analysis was performed by submitting the

malware samples to VirusTotal using the virustotal-search utility. The malware detection engines

40

employed by VirusTotal are used to scan submitted samples with a resultant report indicating the

number of engines that have detected the sample as malicious and the names of the engines as well

as the name given the sample by the engines. The r2 and rabin binaries from radare2 were used to

investigate the ELF header files.

Dynamic analysis was performed by using the strace utility. The strace utility uses the ptrace system

call to investigate the calls and library functions invoked by an program during execution. The

arguments to these calls and functions are also available for analysis. This was done for each malware

sample on the virtual machine guest for malware execution. A requirement of memory analysis is that

a comparison be made between a clean snapshot of the virtual machine memory image and the

memory snapshot after a malware sample has been executed. Using the Virtualbox virtual machine

management utilities debugvm and dumpvmcore, the memory snapshot of the virtual machine was

taken with the output in form of an ELF file. With objdump object file debugging utility being used to

determine the main memory section memory base location and total offset, the system memory used

by the virtual machine was located and extracted from the ELF file to a file format readable by

Volatility. The foregoing process of memory extraction was repeated for each malware sample being

tested. The malware samples were executed in turn on the guest virtual machine and the system

memory extracted before being restored to the clean virtual machine state. The clean virtual machine

guest image memory image was then compared with the memory image of the virtual machine after

malware execution using the linux_mem_diff.py script on the REMnux virtual machine. This script runs

Volatility memory analysis plugins against memory images and reports the differences.

3.4.2.2 Limon

Limon is a Python wrapper script that runs a sequential set of tests and procedures on a submitted

malware sample. The tests involve static analysis of the malware sample, behaviour analysis and an

option for memory analysis. It depends on the installation of Inetsim, Yara rules, ssdeep, Sysdig,

Volatility, VMware workstation on the host machine. It uses Inetsim for network services emulation,

Yara rules to determine if binaries are packed and the packing algorithm used. SSDEEP is used for fuzzy

hashing calculation; this is used to determine the fuzzy hash output of the malware sample being

examined. Sysdig is a front-end application for event monitoring and logging on the system. Volatility

is a memory analysis library. The guests are implemented as VMware virtual machines which is the

only virtualisation platform supported by Limon. Depending on the options chosen, different tasks are

run. Some of the options are Internet mode in which the malware sample under examination is

allowed unfettered access to the Internet. The alternative to Internet mode uses Inetsim to emulate

network services. Limon uses Inetsim to emulate network services to avoid the need for the effect of

malware sample execution to escape to the wider Internet. Other options are addition or exclusion of

memory analysis. Limon uses Volatility for memory analysis.

Figure 3.4 is an illustration of the testing setup. Limon runs on the host system and the execution and

analysis host is a VMware guest. Pre-execution and post-execution snapshots of the virtual machine

guests are compared during the analysis. The author documentation (Monnappa K A, 2015) for setup

proposed an Ubuntu 15.04 host system and Ubuntu 12.04 guest system. These operating systems

were updated to the Ubuntu 16.04 for both the host and the guest system respectively in the testing

environment.

41

Figure 3. 4 Malware analysis with Limon

The guest virtual machine also requires installation of Sysdig and strace for event monitoring and

dynamic analysis. A snapshot of the guest virtual machine in this state was created and the name of

the snapshot added to the Limon configuration file on the host system. A Volatility image profile was

also created. This is because memory analysis in Linux is dependent on the kernel version as memory

arrangement and structure is operating system kernel dependent (Case & Richard, 2017).

When the Limon script is executed, some static analysis tasks are first performed on the malware

sample (the name is part of the argument list during execution of the malware). An MD5 checksum of

the malware sample is derived as well as a fuzzy hash function output. The MD5 checksum output is

sent to VirusTotal to determine if the malware sample had been submitted to VirusTotal in the past

for analysis. If the sample had been submitted to VirusTotal before, a scan test report is generated

which shows the anti-malware engines (if any) that have successfully identified the malware sample

as malicious and the name(s) it is known by. Limon also keeps a master list of fuzzy hash of all samples

examined. This is used to compare similarity with the submitted samples.

For dynamic analysis, the malware sample is copied from the host system to the guest virtual machine

and run with the strace utility to monitor the system calls. The sysdig utility is also used to monitor

operating system events. If the option for memory analysis is selected, Volatility is used to compare

the memory images of the virtual machine prior to execution and after execution. VMware stores

memory images of virtual machines in vmem files (Aljaedi, Lindskog, Zavarsky, Ruhl, & Almari, 2011).

These are examined by Volatility during the memory analysis.

The malware samples were placed in a directory and the Limon script was instructed to analyse all the

samples in the directory with a run time of three minutes with the memory analysis option selected.

3.4.2.3 Cuckoo

Cuckoo is also a Python library that runs tests in sequence on submitted malware samples. It is

integrated with open source analysis tools like Volatility, Yara, VirusTotal. It supports analysis of

malware executed in guests implemented on VMware, Virtualbox and KVM. Cuckoo performs dynamic

analysis by evaluating the behaviour of the sample during execution against its pool of 493 signatures

which define triggers for different system and network activities. Figure 3.5 shows the analysis setup

for Cuckoo.

42

Figure 3. 5 Malware analysis with Cuckoo

Cuckoo testing setup is similar to Limon as it has the host operating systems running the sandbox

software (Cuckoo) and a guest virtual machine to execute the malware samples. Cuckoo is a Python

library that works with a combination of tools for malware analysis. Tools like Volatility, strace, and

Yara are also used in Cuckoo. Cuckoo uses the string utility to investigate the string symbol table of

ELF binaries as part of static analysis. Cuckoo supports VMware, Virtualbox, QEMU and KVM virtual

machines. KVM was adopted for the analysis because of the performance benefits it offers as

highlighted in (Bakhshayeshi, Akbari, & Javan, 2014; Younge et al., 2011). The virtual machine guest in

Cuckoo depends on the inclusion and execution at system start-up of the agent.py script. This script

orchestrates the analysis tasks on the guest. A systemd (freedesktop.org, 2017) unit file for the

agent.py script was created as a service to ensure the script runs every time the system is started. The

guest required the compilation and installation of a patched copy of strace binary for dynamic analysis

to work. After the foregoing adjustments were made to the guest, a snapshot of the virtual machine

was taken and the snapshot name was added to the Cuckoo configuration file on the host. This

snapshot was used by Cuckoo to detect the effect of the execution of the malware samples by

comparing the system state of the snapshot to the state of the virtual machine guests after the

execution of each malware sample. The snapshot was also the state the virtual machine guest reverts

to at the end of an analysis cycle.

For the analysis, Cuckoo was run in daemon mode and the malware samples were submitted as a

batch job using the Cuckoo submit.py script. The Cuckoo configuration file was used to specify the

options required such as the use of KVM, Inetsim to prevent malware interaction with the wider

Internet and the need for memory analysis.

Figure 3.6 illustrates the setup for the malware analysis process using Detux. Detux supports analysis

of Linux applications such as ELF binaries, scripts (Python, PHP, Perl and shell) written for x86, x86-64,

MIPS, MIPSEL and ARM architectures. This is made possible by the provision of Debian Linux QEMU

images in these architectures for the execution of the malware samples. Detux performs static analysis

by using the string, file and readelf utilities. The string utility gives an output of all printable characters

associated with the binary. The file program confirms the type of file being analysed detecting if it is

an ELF binary or a script based on the file header information. If it is an ELF binary, it also determines

the CPU architecture it was written for. The readelf program investigates the structure of the ELF file

analysing the headers, determining the required libraries and confirming the intended CPU

architecture.

43

3.4.2.4 Detux

Figure 3. 6 Malware analysis with Detux

The dynamic analysis component of Detux requires that the QEMU virtual machine of the target CPU

architecture be started. The target CPU architecture can be specified as an execution option or

detected during the static analysis process. The malware sample is then copied from the host system

to the running virtual machine and executed. During execution, the network interactions are observed

by capturing the packets from the virtual network card of the host machine (Detux Sandbox, 2018).

As required by the setup instructions (Detux Sandbox, 2018), a virtual bridge was installed on the host

systems and an IP address configured for it. The five QEMU images representing the supported CPU

architectures were manually configured with IP addresses also. This was done to facilitate network

communication and file transfer between the host analysis system and the virtual machines. The

common bridge also allowed packet capture from the host system. Table 3.4 shows the IP and MAC

44

addressing allocation of the virtual machines. The host IP address was set as the default gateway and

DNS server address of the virtual machines. Inetsim was executed on the host to emulate network

services such as name resolution, network time synchronisation and Internet file transfer service

interactions, preventing the effects of the sandbox execution from escaping to the wider Internet. The

detux.py script was executed on the host for each malware sample and this initiated the file transfer

to and subsequent execution on the appropriate guest virtual machine.

Table 3. 4 Virtual machines addressing information

Emulated CPU Type IP Address (/24 mask) MAC Address Default Gateway/DNS
Server

X86 10.180.1.2 00:11:22:33:44:51 10.180.1.1

X86-64 10.180.1.3 00:11:22:33:44:52 10.180.1.1

ARM 10.180.1.4 00:11:22:33:44:53 10.180.1.1

MIPS 10.180.1.5 00:11:22:33:44:54 10.180.1.1

MIPSEL 10.180.1.6 00:11:22:33:44:55 10.180.1.1

3.4.2.5 HaboMalhunter

Figure 3. 7 Malware analysis with HaboMalHunter

HaboMalhunter also supports static analysis of malware samples using the readelf and string Unix

utilities. HaboMalHunter uses a special program to load and execute ELF binary files instead of strace

as employed by Limon. The process ID of this malware execution is then monitored by Sysdig and

tcpdump. Sysdig monitors systems calls and file system activities while tcpdump monitors the network

interactions.

As illustrated in figure 3.7, the malware sample is executed on a Virtualbox virtual machine guest. The

host analysis system emulated network services for the guest using the inetsim Internet services

emulation programme. The recommended virtual machine installation advises the use of the REMnux

45

virtual machine as base system for the installation. The Virtual machine was updated with the

HaboMalhunter update scripts and a snapshot was taken. This snapshot was used as the execution

environment for each malware sample analysis. Each sample was copied to the virtual machine. After

execution and analysis of each malware sample, the reports generated were copied to the host system

and the virtual machine state was restored to the saved snapshot for subsequent execution and

analysis tasks.

3.5 Research Questions and Hypotheses

The object of the tests is to compare the evaluated malware sandboxes in features, effectiveness of

analysis, reporting and resistance to obfuscation. The first hypothesis addresses the effectiveness of

the open source analysis sandboxes. The first hypothesis, based on the description of the tools from

the project pages and documentation mentioned in section 2.6 is:

Hypothesis H1: The malware analysis sandboxes will collectively be able to detect indications of

compromise from execution of all the malware samples.

The second hypothesis that will be tested relates to the consistency of analysis results across the

sandboxes.

Hypothesis H2: All the analysis systems will have consistent analysis results for the malware samples

executed and analysed.

To address the hypotheses above, this research will answer the following sub-questions on the

features of REMnux, Limon, Cuckoo, Detux and HaboMalHunter in the analysis of Linux malware

samples.

3.5.1 REMnux

Does REMnux detect the presence of packing and the type of packing algorithm used?

Does REMnux detect metamorphic variants?

Is REMnux able to detect network, memory and operating system operations of malware samples after

execution?

What batch processing and automated execution features are supported in REMnux?

What reporting features are available for malware analysis using REMnux?

3.5.2 Limon

Does Limon detect the presence of packing and the type of packing algorithm used?

Does Limon detect metamorphic variants?

46

Is Limon able to detect network, memory and operating system operations of malware samples after

execution?

What batch processing and automated execution features are supported in Limon?

What reporting features are available for malware analysis using Limon?

3.5.3 Cuckoo

Does Cuckoo Sandbox detect the presence of packing and the type of packing algorithm used?

Does Cuckoo Sandbox detect metamorphic variants?

Is Cuckoo Sandbox able to detect network, memory and operating system operations of malware

samples after execution?

What batch processing and automated execution features are supported in Cuckoo Sandbox?

What reporting features are available for malware analysis using Cuckoo Sandbox?

3.5.4 Detux

Does Detux Sandbox detect the presence of packing and the type of packing algorithm used?

Does Detux Sandbox detect metamorphic variants?

Is Detux Sandbox able to detect network, memory and operating system operations of malware

samples after execution?

What batch processing and automated execution features are supported in Detux Sandbox?

What reporting features are available for malware analysis using Detux Sandbox?

3.5.5 HaboMalHunter

Does HaboMalhunter Sandbox detect the presence of packing and the type of packing algorithm used?

Does HaboMalhunter Sandbox detect metamorphic variants?

Is HaboMalhunter Sandbox able to detect network, memory and operating system operations of

malware samples after execution?

What batch processing and automated execution features are supported in HaboMalhunter Sandbox?

What reporting features are available for malware analysis using HaboMalhunter Sandbox?

47

3.6 Conclusion

The research design was designed in this chapter drawing on the approaches used in similar work for

sourcing and testing malware samples. The malware samples were obtained using a combination of

the deployment of a honeypot and the use of online malware repositories. The discussion of the

testing procedure was also undertaken and the research goals were presented in form of the research

hypotheses and research sub-questions.

The result of the malware extraction from the honeypot and that derived from the execution of the

malware samples in the evaluated sandbox environments are presented in chapter 4. The extraction

process and output are described. The results of the analysis are organised by analysis type (static and

dynamic) and automation and reporting features.

48

4. Results

4.1 Introduction

The research design and the reasons behind the research decisions were discussed in the previous

chapter. The previous chapter addressed the sourcing of malware samples for testing as well as a

description of the operation of the sandboxes and the steps for testing. This chapter presents the

observations from the testing activities. The results of the honeypot analysis and investigation are

highlighted in the following section. The third and fourth sections address the static and dynamic

analysis outcomes respectively. The fifth section presents the results of the evaluation of the

automation and reporting features of the sandboxes as well as the answers to the related research

questions.

4.2 Honeypot analysis

Four (4) file samples out of the files carved out of the memory image of the honeypot system were

identified as malicious when uploaded to VirusTotal. Figure 4.1 is a screenshot of the submissions to

VirusTotal, showing the four files extracted from the memory image and the network traffic packet

capture file.

Figure 4. 1 Uploaded files to VirusTotal

The file names were automatically chosen for the extracted images by Rekall using the format –

process-name_process-id.dmp where process-name and process-id were the process names and

process identifiers from the process listings they were extracted from. hxnrgwitwx_18317.dmp and

ddjqioholr_18232.dmp were uploaded on 23rd March 2018 and were flagged by fifteen (15) and

twenty-four (24) out of fifty-nine (59) malware scanning engines as malicious respectively.

mkqetfiknxzmxn_31654.dmp and nskusejjex_31541.dmp on the other hand were flagged as malicious

49

by eighteen (18) and twenty-four (24) malware scanning engines as malicious respectively. They were

both uploaded on the 2nd of March 2018.

In line with the resolution in sub-section 3.3.2 about the acceptance of only malware samples that

were first uploaded to VirusTotal in 2014 and beyond, the extracted samples were also examined for

their date of first upload to VirusTotal. While the dates the files were uploaded are indicated in the

foregoing paragraph, using the additional analysis option of VirusTotal, it is possible to make this

confirmation using the SHA256 cryptographic hash values. This was in consideration of the possibility

that the files have been uploaded previously under a different name.

Figure 4. 2 VirusTotal Analysis of nskusejjex_31541.dmp

Figure 4.2 is a screenshot of nskusejjex_31541.dmp with the file size displayed as 512 KB and first

submission date displayed as the 2nd of March 2018.

Figure 4. 3 VirusTotal Analysis of mkqetifiknxzmxn_31654.dmp

50

Displayed in figure 4.3, mkqetfiknxzmxn_31654.dmp was first uploaded on the 2nd of March 2018. It is

1.2 MB in size.

Figure 4. 4 VirusTotal Analysis of ddjqioholr_18232.dmp

In figure 4.4, a screenshot of ddjqioholr_18232.dmp is displayed. With a file size of 900 KB, it was first

submitted to VirusTotal on 23rd of March 2018.

Figure 4. 5 VirusTotal Analysis of hxnrgwitwx_18317.dmp

51

Figure 4.5 shows a screenshot of the details of hxnrgwitwx_18317.dmp. It was first uploaded to

VirusTotal on the 23rd of March 2018. It has a file size of 1.2 MB.

These first submission dates make these four samples eligible for addition to the testing pool because

the dates are after 2014. The addition of the four extracted malware samples took the total number

of malware samples to two hundred and ninety-seven (297). The network packet capture file was

scanned using VirusTotal. The VirusTotal service utilises Snort and Suricata intrusion detection systems

to scan packet capture files and the alerts triggered were reported.

Figure 4. 6 Snort packet capture analysis screenshot

Figure 4. 7 Suricata packet capture analysis screenshot

Figures 4.6 and 4.7 are excerpts of the screenshot from the Snort and Suricata IDS analysis. Both

reports alluded to the presence of a network trojan among other attack vectors such as signature

alerts for DDoS participation, privileged escalation attempts and network reconnaissance.

4.3 Sandbox static analysis results

4.3.1 REMnux

The Radare2 reversing engineering binaries rabin2 and r2 were used for ELF header analysis and the

investigation of dynamic loader references. The dynamic loader specified in the ELF header is

52

responsible for loading the program image to memory with the associated shared libraries required.

Forty-five (45) of the malware samples requested the use of a dynamic loader, ten (10) of which

requested the ld-uClibc dynamic loader preferred on embedded devices and resourced constrained

systems (Cozzi et al., 2018). The examination of the ELF headers also revealed that six of the files have

no section headers, thereby concealing the compile time view of the program from analysis. The ELF

header also shows the entry points of programs; This is the virtual memory address that code

execution begins at. On x86 and x86-64 CPU architectures, these entry points start at around the

virtual memory addresses 0x8048000 and 0x400000 respectively (R. E. Bryant & O'Hallaron, 2015).

Nineteen (19) of the malware samples were found to have entry points not in those regions. A possible

reason for the use of different entry point regions is the use of packers. Packers select different entry

point ranges to avoid conflict with the entry point the system program loader assigns the concealed

binaries when they are eventually unpacked (Malin et al., 2013).

The VirusTotal query application component displayed the static analysis reports of the VirusTotal

scanning. These results were the same as that derived from the portal indicating the malware analysis

engines that have successfully identified the tested samples as malicious and the names associated

with the samples.

4.3.2 Limon

The VirusTotal query aspect of the static analysis tasks resulted in same outcomes as that derived from

the VirusTotal analysis report on each malware sample. The Linux readelf binary displayed the binary

file program and section headers. The examination of the header files indicated that forty-five (45) of

the binary samples requested the use of the dynamic linker, ten (10) of which were for the ld-

uClibc.so.0 library file while the remaining requests were for ld-linux.so.2 and ld-linux-so library files.

ld-linux.so.2 and ld-linux-so usually refer to the same files using the soft link file references (Shotts Jr,

2012). The virtual memory address used as entry point of the all the 297 sample files were displayed.

Nineteen (19) of the malware sample files had entry points that were a deviation from the ranges used

in 32-bit and 64-bit Intel CPU architectures.

Limon made use of ssdeep fuzzy hashing utility to determine the degree of similarity between

evaluated malware samples. When a sample is under examination, Limon stores it fuzzy hash value in

a master file. Each examined sample’s fuzzy hash is compared in similarity with the other entries in

the master file to determine its similarity with every other entry. One hundred and eighty-seven (187)

samples out of a total of two hundred and ninety-seven (297) samples in the testing pool were found

to exhibit some degree of similarity with other samples. An illustration of the relationship between

the degree of similarity as a percentage and the number of pairs found to display the level of similarity

is shown in figure 4.8. The degree of similarity spanned a range from 25% to 100% with twenty-seven

(27) pairs of samples observed to have 100% similarity by ssdeep. The most common extent of

similarity was 91% displayed by two hundred and thirty-seven (237) pairs of malware samples.

53

Figure 4. 8 Malware samples similarity graph using ssdeep

54

String analysis included references to packet flooding and encryption libraries, the use of the UPX

packer, extraction of system settings and key strokes logging. Thirteen (13) of the malware samples

had ASCII string references to commands that tried to extract the settings of the system. Another

twenty-three (23) samples made references to altering the system. The methods referenced include

encryption with text indicating the URL for decryption and changing the system start-up scripts or

periodic execution (cron job) script to ensure a downloaded script runs every time the system starts

or periodically. String analysis also revealed the packers in use in eight (8) malware samples. Eleven of

the malware samples made references in the string symbol table to flooding and attack libraries and

thirteen (13) samples made references to contacting control and command servers to download

additional programs.

4.3.3 Cuckoo

The only static analysis performed by Cuckoo apart from the use of the string utility to view the string

symbol table of the executable files was the call to the VirusTotal API and this returned the same

output as that already derived from VirusTotal when the malware samples were extracted. The

information indicated the malware scanning engines in use and the ones that have flagged the

samples as malicious with the associated label given to the samples by those engines.

4.3.4 Detux

String analysis and ELF header analysis were performed by Detux during the static analysis phase. The

ELF header analysis used the readelf utility and the results returned were the same as that reported

by Limon with respect to the library call references and number of malware samples, whose entry

point memory addresses varied from the traditional memory entry points for the process images

executed on x86 and x86-64 CPU architectures. The string analysis using the string utility revealed text

in seventy-eight (78) of the malware samples that gave indications of malicious intent. References to

attempts at identifying the execution platform accounted for nineteen (19) of these samples. This was

done by direct system settings extractions such as executing system configuration request commands

and reading the system /proc file system. Another method employed was examination of system error

output when an invalid command is entered. The foregoing is a platform fingerprinting method

employed by malware authors to eliminate platforms that are not the target for execution and it also

serves as means for honeypot avoidance (Ullrich, 2016). Text references to directly alter the system

by changing the system settings when the system is restarted, or direct alteration of system through

encryption accounted for twelve (12) of the malware samples with indications of malicious intent.

Other text references indicated the packer used in eight (8) samples. Ten (10) malware samples gave

an indication of the class of devices that the malware was targeted at with the dynamic linker

referenced in the string analysis output. The potentially harmful characteristics of the malware

samples could be inferred by references to flooding protocol libraries and communications and file

transfer activity with specific hosts in fourteen (14) and sixteen (16) of the malware samples

respectively.

4.3.5 HaboMalHunter

Static analysis involved string analysis and ELF header analysis. The results derived for ELF header

analysis are the same as that derived from Limon, REMnux and Detux. The string analysis results are

55

same as that derived from using Limon and Detux. The string analysis results are summarised below

in table 4.1.

Table 4. 1 Summary of String and ELF header analysis

String references Number of samples

UPX packer 8

Encryption libraries 3

Adjustments to start up or periodic scripts 9

Fingerprinting procedures 19

File transfer and communications with command centre 16

Traffic flooding attacks 14

 /lib/ld-uClibc.so.0 dynamic loader 10

4.4 Sandbox dynamic analysis results

4.4.1 REMnux

One hundred and nine (109) of the malware samples could not be executed using strace. Ninety of

them terminated execution by dumping their core files while the remaining nineteen (19) failed to run

due to absence of requested libraries and unsuitability of the testing environment. The malware

samples that ran successfully displayed indications of compromise by network connections to random

hosts, connections attempt to botnet command and control servers and attempts to alter the system

job scheduling file. One hundred and forty-nine (149) samples out of those that executed successfully

were observed to be making connections to various hosts, twenty-nine (29) samples were attempting

to reach command and control servers while three (3) samples were making changes to the system

start up script.

4.4.2 Limon

The dynamic analysis results for Limon were similar to those derived from the REMnux analysis as

strace was used in the dynamic execution analysis. Ninety (90) files terminated execution with a dump

of the core while nineteen (19) malware samples did not execute all. Out of the latter, four failed to

run due to lack of requested libraries, while two complained about the absence of AES-NI option on

the CPU. From the samples that ran successfully, twenty-nine (29) were attempting to reach command

and control servers, three (3) were making changes to the system boot scripts while One hundred and

forty-nine (149) were attempting to connected to various IP addresses.

4.4.3 Cuckoo

Cuckoo relies on included signatures with internal thresholds for indications of compromise during

dynamic analysis of malware sample. The VirusTotal signature was alerted for all the malware samples

tested. Three of the samples raised alerts for the suspicious_tld and network_http signatures while

fourteen samples raised alerts for the network_icmp signature.

56

4.4.4 Detux

Detux performed dynamic analysis by evaluating network traffic packet captures during malware

execution. It was discovered that seventy (70) of the samples were attempting to make outgoing

connections to various IP addresses. Thirty-six (36) malware samples were attempting to make

connections to command and control servers to download scripts and replacement binaries for system

binaries.

4.4.5 HaboMalhunter

From investigation of the network traffic during dynamic analysis, it was found that one hundred and

twenty-one (121) files out of the malware samples attempted to contact various hosts on the wider

Internet, six (6) malware samples attempted to connect to command and control servers while

execution of one hundred and seventeen (117) samples showed traffic with loopback IP address

(127.0.0.1) as source and destination address. It was also discovered during process analysis that the

malware process exited with the segmentation fault exit code in forty-three (43) instances.

4.5 Automation and reporting features evaluation

4.5.1 REMnux

REMnux does not possess automatic virtual machine instrumentation so malware analysis cannot be

automated because of the need to revert to a known clean snapshot after each analysis. The reporting

features were limited to the output features of the individual scripts and utilities. The default console

terminal standard output (stdout) of the tools (linux_mem_diff.py, strace, r2 and rabin) used by

REMnux can be redirected to text files. Sysdiq also logs system interactions to text files. Unix text

processing utilities like grep, sed, awk and the Python JSON Tool can be applied to manually format

the text file outputs.

Sub Question 3.5.1d What batch processing and automated execution features are supported
in REMnux?

Batch processing was absent as it had no tools for virtual machine control.

Sub Question 3.5.1e What reporting features are available for malware analysis using
REMnux?

Text output and the result of text processing tools.

4.5.2 Limon

Automation was possible with Limon because the limon.py script handles the virtual machine

orchestration allowing for a clean snapshot to be available for the analysis of each malware sample.

The script also can be given a list of malware samples to analyse by taking advantage of the Unix

command arguments expansion. In the tests undertaken, all the malware samples were place in a

folder which was the command argument passed to the script. The limon.py script on completion of

each malware sample analysis created a new folder for each of the malware samples tested. In each

folder were text output of string and ELF header analysis, strace execution, memory analysis. A master

file was kept for all the ssdeep operations which was used to test for the degree of familiarity with

each individual file analysed.

57

Sub Question 3.5.2d What batch processing and automated execution features are supported
in Limon?

Batch processing was possible as the wrapper script controls the virtual machine and restores a
clean snapshot for each execution run.

Sub Question 3.5.2e What reporting features are available for malware analysis using Limon?

Text output and the result of text processing tools.

4.5.3 Cuckoo

Cuckoo was run in daemon mode so automation was possible by batch job submission using the

submit.py script. The argument to the script was the directory where all the malware samples were

stored. This also took advantage of the Unix command argument expansion. The server-side daemon

on the analysis host and the agent.py script on the virtual machine worked in concert to ensure each

analysis started with a clean snapshot. Cuckoo has a general text log file that reports on all the testing

activities. Each analysed file also had a folder with the packet capture files and output reports. At

conclusion of each malware analysis event, a JSON file and a HTML file were generated as reports.

Figure 4. 9 Sample Cuckoo HTML report

Both reports classified the report into sections for VirusTotal reporting and specific Cuckoo signature

analysis. Figure 4.9 is a screenshot of a sample Cuckoo HTML report. It shows the malware sample file

information, the signatures that have detected the flagged the analysed sample as malicious and

network communication activities of the virtual machine.

The sample JSON counterpart of the report is shown in figure 4.10. It contains the string analysis report

in addition to the information contained in the HTML report. The screenshot below focuses on the

string symbol analysis reporting section of the output.

58

Figure 4. 10 Sample Cuckoo JSON report

Sub Question 3.5.3d What batch processing and automated execution features are supported
in Cuckoo?

Batch processing and automated analysis is possible. The combination of the backend daemon on
the analysis host and the agent.py client script on the virtual machine organise the restoration to
clean snapshot for each analysis.

Sub Question 3.5.3e What reporting features are available for malware analysis using Cuckoo?

HTML and JSON reporting are available.

4.5.4 Detux

The detux.py script requires the specification of a destination report file for each file analysed. This

made it impossible to use the Unix command argument expansion feature. The find command with

the exec option was used to pass all the samples in a directory to the script file, allowing automatic

analysis as well as the creation of unique output destination report for each sample.

Figure 4. 11 Sample Detux JSON report

59

A JSON file report was created for every sample analysed. The report separated the analysis reports

into two categories, the network analysis section and the static analysis section that was further

subdivided into the ELF header and string analysis sections. Figure 4.11 is an example of a Detux JSON

report. The example report shows the network connections attempted following the execution of the

malware sample.

Sub Question 3.5.4d What batch processing and automated execution features are supported
in Detux?

Automated analysis was possible with Unix find exec command option and the wrapper detux.py
script that handled the start-up, shutdown and restoration of the virtual machine images.

Sub Question 3.5.4e What reporting features are available for malware analysis using Detux?

JSON reports

4.5.5 HaboMalHunter

While analysis is initiated on the host system in Detux, Limon and Cuckoo, HaboMalHunter requires

the analysis script to be executed from the virtual machine. This limits the amount of automation of

analysis that can be possible because the virtual machine image must be restored to a vanilla snapshot

state prior to execution and analysis of another malware sample. This is a similar situation to REMnux

where analysis is also initiated on the virtual machine image. Where HaboMalhunter differs from

REMnux is in the reporting. While HaboMalHunter creates unique string analysis, ELF header analysis,

trace and memory dump log files for each malware samples prefixed with the sample name, the HTML

and JSON reports used the generic names output.html and output.xpcn respectively. This necessitated

the need to change the default names manually to match the sample names before being transferred

to the analysis host. The report files aggregate the results for only the dynamic analysis activities with

sections dedicated to network traffic analysis, file and process activities. Figures 4.12 and 4.13 show

the JSON and HTML versions of the HaboMalHunter analysis report respectively.

Figure 4. 12 Sample HaboMalHunter JSON report

60

Figure 4. 13 Sample HaboMalHunter HTML report

Sub Question 3.5.5d What batch processing and automated execution features are supported
in HaboMalHunter?

HaboMalHunter is unable to support batch processing of malware samples because like REMnux, it

does not have a method to control the virtual machine.

Sub Question 3.5.5e What reporting features are available for malware analysis using
HaboMalHunter?

HTML and JSON reports are available.

4.6 Conclusion

The result of the testing activities was presented and organised by analysis type for each sandbox

tested. The reporting and automation features were also discussed with screenshots and descriptions

of reports for sandboxes that offered more than text file output. The research sub-questions on

automation and reporting were also answered. The following chapter is a discussion of the test results

in the context of the nature of samples in the dataset and the conclusions that can be inferred about

the relative effectiveness of the sandboxes.

61

5. Discussion

5.1 Introduction

The previous chapter presented the results of the testing and analysis of the malware samples on the

different sandbox environments. This chapter is a discussion of the results considering the

characteristics of the malware samples used in the dataset. The next section breaks down the malware

samples by CPU architecture and malware families. The characteristics of the malware families are

also summarised to correlate with the analysis results. The following sections on static and dynamic

analysis discusses the results with respect to these classifications of the dataset. The final section in

this chapter presents the answers to the research questions and hypotheses in section 3.5.

5.2 Dataset family classification

The malware samples in the testing pool consists of binaries targeted at the x86 and x86-64 CPU

architectures. There were two hundred and seventy-five (275) and twenty-two (22) samples

respectively in the dataset. The AVCLASS program was used to label the malware samples and indicate

the families they belong.

Figure 5. 1 Testing pool malware classification

As shown in Fig 5.1, Most of the malware samples are from the Mirai family. Two hundred and fifteen

(215) of the malware samples were classified as part of the Mirai family. There were sixteen (16)

malware samples in the testing pool from the Gafgyt family. The Xorddos family make up the last

major family of malware in the pool that was labelled by AVCLASS. The class had eight (8) malware

samples. Twenty-nine (29) of the samples could not be labelled and the remaining twenty-nine (29)

62

samples consisted of malware samples in families with less than five members. Table 5.1 is a summary

of the characteristic of the malware families identified in the testing dataset.

Table 5. 1 Summary of Malware family

Family Number of
Samples

Summary of characteristics

Adore 1 Downloads binaries from remote hosts and replaces systems ps utility with a modified version. Steals information from host and seeks new
systems to infect (Symantec, 2018b)

Binom 1 Primarily a dropper file that infects other ELF files and they in turn seek out other ELF files to infect (McAfee, 2018)

Bonk 1 Used to install malware remotely on compromised system. (Microsoft, 2018b)

Ddostf 1 Backdoor exploit that downloads other malware, makes remote access connections, captures keyboard strokes and used for DDoS attacks
(Fortiguard, 2018a)

Dofloo 2 Opens backdoor on compromised system. Modifies boot up script so it starts everything system is restarted and used for DDoS attacks (Symantec,
2018c)

Gafgyt 16 Backdoor connection to command centre where it receives commands to effect DDoS and information theft (Symantec, 2018d)

Erebus 1 Ransomware that bypasses user access control and starts encrypting files with specific suffixes (Redhat, 2018)

Grip 1 Infects legitimate programs and stops them from working (Microsoft, 2018f)

Local 1 Exploit on compromised system that allows installation of other programs (Microsoft, 2018c)

Mibsun 1 Backdoor trojan that allows compromised system to be controlled remotely, also participates in information theft from compromises system
(Fortiguard, 2018b)

Midav 1 A tool to spoof network addresses with logic to adapt to the network configuration of compromised system and allows system to be controlled
remotely (Microsoft, 2018e)

Miner 2 Attacker connects to victim via brute-force attack then installs miner trojan to use system CPU to mine Monero (XMR) cryptocurrency. (Dr Web,
2018)

Mirai 215 Exploits Universal Plug and Play vulnerability to downloads a script from remote server and launch DDoS attacks (Symantec, 2018e)

Mumblehard 1 Connects to remote locations to download files. Turns compromised host to a spam bot (Symantec, 2018f)

Nestea 1 Exploits IP fragmentation vulnerability on Linux 2 kernel to cause DOS attacks on host system (Insecure, 2018)

Pnscan 1 Brute-force SSH attack on a system. Victim system is then used to attack other systems with SYN flood (NJCCIC, 2018)

Race 1 Exploits system vulnerability to install other malware (Microsoft, 2018d)

Scalper 1 An Apache vulnerability exploit to cause denial of service on victim host (F-Secure, 2018)

Setag 3 Leaves victim open to unauthorised access through a backdoor connection (Microsoft, 2018a)

Snoopy 1 File infector, monitors process when file is launched (Trend Micro, 2018c)

Sshgo 2 Connects to systems with weak authentication. Connects to command and control server downloads malware to scan for others with weak
authentication credentials (Talos, 2018)

Svat 1 Overwrites standard library on Linux systems with downloaded copy from remote host (Trend Micro, 2018a)

Thou 1 Infects legitimate programs and stops them from running (Microsoft, 2018g)

Tsunami 1 Communicates with Internet Relay Chat (IRC) command and control server. It receives commands to launch DDoS attacks on other hosts
(Monnappa, 2015)

Turla 1 Synchronizes files system between compromised hosts and remote host using remote backdoor connection (Symantec, 2018g)

Xorddos 8 Downloads scripts from command centre and ensures persistence by altering system start up script. It conceals its activities by installing a rootkit.
It partcipates in DDoS attacks (Symantec, 2018h)

Znaich 1 Downloads script from command and control centre and participates in DDoS attack. It Installs a rootkit to hide network and file ensuring
persistence with a cron job at system start up (Trend Micro, 2018b)

63

The characteristics of the malware samples include participation in distributed denial of service

attacks under the control of a command centre, ransomware and bitcoin mining and information

theft. The Xorddos, Mirai, Gafgyt are some of the families used for launching DDoS attacks. Erebus

and its variants are a family of ransomware. The Miner family enlists the compromised system as a

cryptographic currency mining bot.

5.3 Static Analysis

This section discusses the results of the static analysis. These results are discussed with reference to

the underlying tools employed by the sandboxes and the combination of the results obtained from

the different tools with respect to the malware classes. The sub-questions related to static analysis

are also answered in this section.

5.3.1 Obfuscation and packing

Limon was unique in its use of ssdeep to detect metamorphic variations of the malware samples. There

were 187 malware samples in 1913 pair combinations with varying degrees of similarity from 25% to

100%. Some of the later discussions will be placed in the context of this similarity information

especially in cases where malware samples were unlabelled according to families. Figure 5.2 shows

the comparison of malware families for the sample pairs that have degrees of similarity. For pairs of

malware samples with 100% similarity, twenty-three (23) out of twenty-seven (27) malware samples

are members of the same malware family as classified by AVCLASS. Thirty-nine (39) out of forty-four

(44) malware samples with 99% have the same family memberships. Forty-two (42) out of fifty-three

(53) malware samples with 98% similarity are of the same family. Malware sample pairs with 86%,

88%, 91% similarity have twenty-four (24) out of twenty-nine (29), one hundred (100) out of one

hundred and thirty-nine (139), one hundred and eighty-six (186) out of two hundred and thirty-seven

(237) as members of the same malware family respectively.

The readelf binary is part of the GNU Binary Utilities binutils package (Sourceware, 2018a). It was used

as part of the static analysis component of Limon, HaboMalhunter and Detux sandboxes. The result

of the ELF header analysis performed by readelf was the same for the three sandboxes. Radare2 was

used for ELF header analysis by REMnux and its results were similar as those derived from the

sandboxes that employed readelf. Using both radare2 and readelf revealed that nineteen (19) of the

malware samples have memory entry points that are different from the default range used by x86 and

x86-64 CPU architectures.

The string analysis detected references to the UPX packer in eight (8) of the malware samples. Seven

(7) of them were among the nineteen found to have memory entry points that were not within the

regular ranges for the CPU architectures used. String analysis using the string utility was used by

Limon, Cuckoo and HaboMalhunter. Eight (8) of the sixteen (16) malware samples that had string

references to connections to a remote command and control centre for commands and file downloads

were found to be in the Mirai family while the other eight were labelled as Gafgyt. This is consistent

with the behaviour of both families as listed in table 5.1. Out of the nineteen (19) files that employed

host fingerprinting procedures, two (2) had the family name of Setag while fifteen (15) had the family

name of Mirai. Out of the two that were unlabelled, taking ssdeep similarity index into account, one

of them had 94% similarity with another sample labelled as part of the Mirai family.

64

Figure 5. 2 Malware sample similarity and malware family comparison

65

Two of the three files with string references to encryption were unlabelled while the last one was

categorised as belonging to the Erebus family using AVCLASS. The Erebus class as noted in Table 5.1 is

a family of ransomware.

Limon in addition to ELF header analysis and string symbol table analysis also used Yara rules to detect

the packer used in four of the malware samples, two of which were among the nineteen detected by

readelf to be using different memory entry points from that associated the x86 and x86-64 CPU

architectures. Cuckoo also supports the use of Yara rules; however, in the tests, there was no

indication of any detected packers.

5.3.2 Virustotal

Limon and Cuckoo employed the VirusTotal API in static analysis by submitting the MD5 hash function

output of the malware samples to VirusTotal. The resultant report was the same as static call to

VirusTotal. The results showed the anti-malware engines that have successfully identified the samples

as malicious and the given names by the engines. This method of static analysis is only effective for

samples that have been previously submitted to VirusTotal for analysis. REMnux’s application of

VirusTotal submits the sample to VirusTotal for analysis. This could be useful for samples that have

yet to be submitted to VirusTotal. The utility of this could not be confirmed as all the samples used in

the experiment have been previously scanned by VirusTotal with its participating engines.

5.3.3 Answers to sub-questions on packing and obfuscation

Sub Question 3.5.1a Does REMnux detect the presence of packing and the type of packing
algorithm used?

REMnux detects the presence of packing using radare if the entry point memory address is not that
associated with the CPU architecture.

Sub Question 3.5.1b Does REMnux detect metamorphic variants?

REMnux does not detect samples that are metamorphic variants

Sub Question 3.5.2a Does Limon detect the presence of packing and the type of packing
algorithm used?

Limon also detects the presence of packing using readelf if the entry point memory address is not
that associated with the CPU architecture. Limon, using Yara rules, detects the type of packing
algorithm employed depending on the installed ruleset. The string analysis can also be used to
determine the type of packer used.

Sub Question 3.5.2b Does Limon detect metamorphic variants?

Limon’s use of storing ssdeep fuzzy hash outputs of analysed samples allows it to determine
similarities in file structure that makes it effective for detecting metamorphic variants.

66

Sub Question 3.5.3a Does Cuckoo detect the presence of packing and the type of packing
algorithm used?

Cuckoo can detect the presence of packing using string analysis as this gives an indication of the
packers used when added to the string symbol table.

Sub Question 3.5.3b Does Cuckoo detect metamorphic variants?

Cuckoo does not detect samples that are metamorphic variants.

Sub Question 3.5.4a Does Detux detect the presence of packing and the type of packing
algorithm used?

Detux can detect the presence of packing using string analysis and readelf as the former reads the
string symbol table for references to known packers and the latter detects packing by observation
of the virtual memory entry points.

Sub Question 3.5.4b Does Detux detect metamorphic variants?

Detux does not detect samples that are metamorphic variants.

Sub Question 3.5.5a Does HalMalHunter detect the presence of packing and the type of
packing algorithm used?

The use of readelf and string analysis allows HalMalHunter to detect the presence of packing and
the packer employed. With the former, the memory entry point of the binary is the indicator. The
latter relies on the string symbol table references to known packers.

Sub Question 3.5.5b Does HalMalHunter detect metamorphic variants?

HaboMalhunter does not detect samples that are metamorphic variants.

 5.4 Dynamic Analysis

The dynamic analysis results for the different sandboxes are discussed in this section. The relationship

between the indications of compromise and malware family classification are examined. The Limon

ssdeep similarity list was used to infer the families of unlabelled malware samples where possible.

This discussion is also extended to the CPU families. The research sub questions related to dynamic

analysis are also addressed.

5.4.1 REMnux

The choice of tools used in REMNux were discretionary based on the recommendations in the

documentation for tools available for static and dynamic analysis on Linux systems as it does not

possess an automatic analysis application or wrapper like the other sandboxes tested.

A total of One hundred and forty-nine (149) malware samples were observed attempting to

connecting to multiple hosts. One hundred and thirty-eight (138) of these were of the Mirai family,

four (4) were from the Gafgyt family and one each from the SSHgo and Pnscan families. Five of the

malware samples were unlabelled.

The other major category of indication of compromise is the attempt by some malware samples to

connect to command and control servers to download files, creating remote backdoor connections to

67

facilitate reception of commands. There were twenty-nine (29) malware samples in this category.

Twelve (12) of these were of the Gafgyt family, nine (9) were from the Mirai family, four (4) were from

the Xorddos family while Setag, Mumblehard, Turla and an unlabelled sample each contributed one

sample each.

Sub Question 3.5.1c Is REMnux able to detect network, memory and operating system
operations of malware samples after execution?

REMnux was able to detect indicators of compromise in 181 out of the 297 malware samples across
the two CPU architectures.

5.4.2 Limon

Limon recorded similar results as REMnux since its dynamic analysis is also based on strace. The major

categories of indications of compromise are the observation of malware samples attempting to

connect to various hosts and attempts to connect to specific hosts. Limon reported the same results

as REMnux in both categories. Table 5.2 shows the distribution by family of the malware samples

attempting to connect to various hosts on the wider Internet. Limon also recorded indications of

compromise for thirteen (13) of the twenty-two (22) malware samples built for x86-64 processors and

one hundred and sixty-eight (168) out of two hundred and seventy-five (275) malware samples built

for the x86 architecture.

Table 5. 2 Malware samples making random connections by family (Limon)

Family Number of Samples

Mirai 138

Unlabeled 5

Gafgyt 4

SSHgo 1

PnScan 1

Sub Question 3.5.2c Is Limon able to detect network, memory and operating system operations
of malware samples after execution?

Limon detected indicators of compromise in 181 out of the 297 malware samples across the two
CPU architectures.

5.4.3 Cuckoo

The indications of compromise detected by Cuckoo were in form of custom signatures alerts during

analysis. The custom signatures flagged were suspicious_tld, network_icmp and network_http. Three

(3) samples on execution displayed characteristics that matched the suspicious_tld signature and all

three were of the Mirai family. Thirteen (13) malware samples from the Mirai family and one

unlabelled sample triggered the network_icmp signature. Three malware samples made up of two

from the Xorddos and one from the Mumblehard family were flagged by the network_http signature.

Table 5.3 is a breakdown of the signature alerts triggered by malware family.

68

Table 5. 3 Triggered signatures by family (Cuckoo)

Signature Family Number of Samples

network_icmp

Mirai 13

Unlabeled 1

suspicious_tld Mirai 3

network_http

Xorddos 2

Mumblehard 1

There were eighteen (18) unique samples for which signatures were triggered during dynamic analysis

and they were all built for the x86 CPU architecture.

Sub Question 3.5.3c Is Cuckoo able to detect network, memory and operating system
operations of malware samples after execution?

Cuckoo detected indications of compromise on 18 out of 297 malware samples and they were all
on the x86 CPU architecture.

5.4.4 Detux

The only two categories of indications of compromise discovered using Detux were attempts by

malware samples to connect to command and control centres and attempts to connect to multiple

hosts on the wider Internet. Table 5.4 shows the distribution of the latter class by malware families.

Sixty-two (62) of the seventy (70) malware samples attempting to connect to multiple hosts were of

the Mirai family. The Gafgyt family accounted for three (3) of the malware samples with SSHgo

accounting for just one of the malware samples. Four (4) of the malware samples were unlabelled

with two of them having similarity of 90% (using ssdeep context based hashing results from Limon)

with samples in the Mirai family. One of the unlabelled samples also recorded 99% similarity with a

sample in the Mirai family.

Table 5. 4 Malware samples connecting to multiple hosts by family (Detux)

Family Number of Samples

Mirai 62

Gafgyt 3

SSHgo 1

Unlabelled 4

Table 5.5 shows the malware family distribution of malware samples attempting to connect to specific

IP addresses for command and control instructions and scripts. Out of the thirty-six (36) samples in

this category, twenty (20) were from the Mirai family. The other major categories were Gafgyt and

Xorddos which recorded six (6) and four (4) samples respectively.

All one hundred and six (106) malware samples that displayed indications of compromise during Detux

dynamic analysis were built for the x86 CPU architecture.

69

Table 5. 5 Malware samples connecting to control centres by family (Detux)

Family Number of Samples

Mirai 20

Gafgyt 6

Xorddos 4

Dofloo 2

Mumblehard 1

Turla 1

Setag 1

Unlabelled 1

Detux was unable to detect any indication of compromise for all the twenty-two (22) malware samples

built for the x86-64 architecture. Detux, as described in sub-section 3.4.2.4 has virtual machine images

for analysis of malware samples built for the x86, x86-64, ARM, MIPS and MIPSEL platforms. After the

initial automatic analysis, the x86-64 architecture was specifically selected for the analysis of the 64-

bit malware samples to eliminate the possibility of a failure in the built-in architecture detection,

however Detux was not unable to detect any indication of compromise in the 64-bit samples.

Sub Question 3.5.4c Is Detux able to detect network, memory and operating system operations
of malware samples after execution?

Detux was able to detect indications of compromise on 106 out of 297 malware samples, However,
it was unable to detect malicious activity on the malware samples built for x86-64 architecture.

5.4.5 HaboMalHunter

There were three major categories during the dynamic analysis on HaboMalHunter. The first category

was the malware samples invoking processes connecting to a TCP port locally on the system. The most

popular of the TCP ports used was port 48101. This is a characteristic of a variant of the Mirai botnet

malware. The malware process binds to the port to listen to incoming connections from the command

centre (MalwareMustDie, 2016). One hundred and seventeen (117) malware samples exhibited this

characteristic. Ninety-five (95) of them were of the Mirai family. The Xorddos and Gafgyt families were

the other major contributors with five (5) and four (4) malware samples respectively. Five (5) of the

malware samples were unlabelled, one of which had 96% similarity with a sample in the Mirai family.

Table 5.6 shows the distribution of malware samples making this local process connections by

malware family. The Dofloo, Turla, SSHgp, Grip, Miner, Scalper, Snoopy and PNScan families recorded

one member each in this category.

70

Table 5. 6 Malware samples connecting to local TCP process by family (HaboMalHunter)

Family Number of Samples

Mirai 95

Xorddos 5

Gafgyt 4

Dofloo 1

Turla 1

PnScan 1

SSHgo 1

Scalper 1

Miner 1

Grip 1

Snoopy 1

Unlabelled 5

The second major category is that of malware samples attempting to make connections to a variety

of hosts. There are one hundred and twenty-one of these malware samples. The distribution per

malware family class is shown in table 5.7. The major family categories with this indication of

compromise were Mirai, Gafgyt and Xorddos with eight-nine (89), six (6) and three (3) malware

samples respectively. There were fourteen (14) unlabelled malware samples. Four of the unlabelled

malware samples were found to have some degree of similarity with other samples in the Mirai family.

Two of them had 88% similarity while the remaining two had 90% and 94% similarity.

Table 5. 7 Malware samples connecting to multiple hosts by family (HaboMalHunter)

Family Number of Samples

Mirai 89

Gafgyt 6

Xorddos 3

Znaich 1

Tsunami 1

Erebus 1

SSHgo 1

Mumblehard 1

Setag 1

Local 1

Adore 1

Nestea 1

Unlabelled 14

The last major category recorded six malware samples attempting to connect to command and control

server IP addresses. The distribution is illustrated in table 5.8. Two of the samples are from the Mirai

family while the Gafgyt and Binom families contributed one each. Two of the malware samples were

unlabelled with one recorded as having 94% similarity with a malware sample in the Mirai family.

71

Table 5. 8 Malware samples connecting to control centres (HaboMalHunter)

Family Number of Samples

Mirai 2

Gafgyt 1

Binom 1

Unlabelled 2

HaboMalhunter detected indications of compromise for sixteen (16) out of the twenty-two (22)

malware samples built for the X86-64 architecture. It also detected malicious activity in two hundred

and twenty-eight (228) out of the two hundred and seventy-five (275) malware samples targeted at

the x86 platform.

Sub Question 3.5.5c Is HalMalHunter able to detect network, memory and operating system
operations of malware samples after execution?

Halmalhunter was able to detect indicators of compromise in 244 out of the 297 malware samples
across the two CPU architectures.

5.5 Answers to research hypotheses

There are twenty-seven (27) malware samples that all the sandboxes collectively could not detect any

indications of compromise for. As a result, the first hypothesis; the malware analysis sandboxes will

collectively be able to detect indications of compromise from execution of all the malware samples

is rejected.

The second hypothesis that all the analysis systems will have consistent analysis results for the

malware samples executed and analysed is accepted as the analysis results were consistent across

the platforms for the samples that were identified as malicious by all samples. The classification of

families by indicators of compromise was consistent across the platforms.

5.6 Conclusion

This chapter discussed results of the malware analysis by the sandbox platforms with respect to the

malware family and CPU family classifications. The static and dynamic analysis results were discussed

in detail and the remaining research questions as well as the research hypotheses were answered.

Chapter 6 gives summary of the thesis as well as the contribution, limitations and possible future work

that can follow on from the thesis.

72

6. Conclusions

6.1 Introduction

The popularity of the Microsoft Windows family of operating systems have made them the most

researched platforms for malware analysis. Most malware samples in existence are targeted towards

these systems. The server infrastructure space is dominated by Linux based systems. The processing

power and relative stability of servers have made them lucrative targets for attackers. Servers also

hold high value data. The increasing popularity IoT devices has also made Linux systems objects of

attention to intruders. This chapter concludes the discussion on open source malware analysis

sandboxes for Linux ELF binaries. The next section is a brief review of the previous chapters

culminating in the conclusions reached. The contributions of this research are highlighted in the third

section. The fourth section is a discussion of some of the limitations of the research that might have

impacted the conclusions arrived at. The fifth section explores the possible research activities that can

be embarked upon as a follow up to this research. The conclusions are restated in the final section.

6.2 Thesis Review

The research started with an introduction that discussed the motivation and aims of the research as

well as the organisation of the thesis. A review of body of work that laid the foundation for this

research was undertaken in the second chapter with a deep dive into the internals of the Linux

operating system and the underlying concepts. The system organisation, system calls and libraries and

forensic artefacts were discussed. The chapter also explored the topic of malware and malware

analysis. The malware analysis types and their relative strengths and weaknesses were discussed. The

foregoing topics on the Linux operating system and malware analysis drew upon key literature in those

fields. Related literature to the topic of malware analysis sandboxes were reviewed. The review

discussed the components of an analysis system and the importance of automation and

instrumentation as well as the anti-analysis techniques of malware authors. Another aspect of this

review touched on the existing research on the analysis of Linux ELF binaries. The existing research

predominantly involved the use of data providers to generate properties of an ELF binary and the use

of machine learning algorithms to predict the possibility of malicious intent. There was a dearth of

research information on some of the malware analysis sandboxes that supported Linux ELF binary file

analysis. The information available on these tools were author documentations and demonstrations

at security events and trainings.

With the recognition of the need for malware samples, the third chapter further reviewed the current

body of knowledge with respect the methods used to source malware samples and the

instrumentation and analysis tools used. This review and that of second chapter exposed the gaps that

exist in analysis of Linux malware samples with respect to analysis sandboxes. Adopting the practices

already used in similar research, the processes for the sourcing malware samples were described and

the steps for testing the malware samples on the sandboxes were also discussed. The research

hypotheses and questions were stated in this chapter.

The results of the tests were discussed in the fourth chapter. The static and dynamic analysis results

as well as reporting and instrumentation possibilities of the analysis sandboxes were presented. The

research sub-questions on the reporting and automation functionality were answered in this chapter.

73

The fifth chapter discussed the results of the testing within the context of the characteristic of the

dataset used. This discussion considered the CPU architectures the malware samples were built for

and the malware family membership of the samples. The remaining research questions on the

dynamic and static analysis features of the analysis sandboxes and the research hypothesis were

answered in this chapter. While the analysis sandboxes had varying degrees of success in detecting

indications of compromise; when multiple sandboxes have detected malicious intent during analysis

of a malware sample, the indicators were consistent. Collectively, the sandboxes were unable to

detect harmful properties in all the malware samples tested.

6.3 Contribution

This research explored the topic of malware analysis on the Linux operating system. This required an

in-depth study of the system architecture of the operating system involving a discussion of the logical

units. Malware are computer programs that are written with the objective to cause harm to their

operating environment. Examination of these programs is a key step in understanding their methods

of operation, providing answers to questions such as the specific vulnerabilities of the systems being

exploited as well as the nature and the extent of the harm caused. These learnings form input into

post infection activities. Some of these involve incident reports and disclosure to stake holders,

improvement of exploited systems through patches or architectural overhaul, development of

systems or signatures to prevent repeat occurrences. Malware analysis is challenged by the increasing

rate of malware creation. This is aided by the ease of creating variants of existing malware samples in

ways that change the signature hash but keep most of the functionality. Existing studies have

proposed different ways to rapidly identify these variations using Context Triggered Piecewise Hashing

and the importance of having an automated workflow to cope with the deluge of malware samples

has also been addressed. Another challenge faced by malware analysis is the consistency of naming

and classification of malware samples. Different anti-malware vendors refer to the same (by

cryptographic hash) malware samples by different names. A method of labelling was proposed in one

of the reviewed studies (Sebastián et al., 2016) that employed the aggregation of names used by anti-

malware engines to specify a family label for malware samples.

The study of malware can be done without executing the sample. The process is known as static

analysis and it involves an examination of the program structure. With reference to executable

programs on the Linux operating system, an understanding of the ELF program structure is necessary.

This file format as described in chapter 2 is the structure of executable binary files, core dump, shared

libraries and process memory image. The ELF file describes how a program was compiled, the external

libraries required and how it transformed into a process image in memory. The presence or absence

of a requested linker library, the functions and symbol references can be used to determine the nature

of a Linux binary file. These properties have been combined with machine leaning algorithms to

predict malicious intent in malware samples as referenced in the related work section on chapter 2.

The use of packers and the types used can also be inferred from static analysis.

A file can meet the requirements of the ELF specification and still sufficiently conceal information

about its operation, making it impossible for static analysis to derive any meaningful observations.

The removal of debugging information during compilation, compression and encryption of functions

are some of the other anti-analysis methods that can be used to frustrate static analysis. The ability

to execute these malware samples in a secure environment while observing them can be vital because

74

of the aforementioned challenges to static analysis. Chapter 2 discusses the file system, memory and

process sub-system of the Linux operating system in depth. The study of a process through its

interaction with memory, its system calls and signals to other processes, files and network entities are

very important in dynamic analysis. This research also explored the forensic artefacts of the Linux

system which serve as the staging points for the indicators of compromise. The different standalone

tools for examination of malware samples during execution were investigated with focus of the

staging environments in the form of hardware emulators and virtual machines. Some of the

developments in lightweight emulators that avoid detection by malware such as Introlib and

TTAnalyze were also discussed. Current research in Linux malware is dominated by systems tasked

with prediction of malicious intent primarily through machine learning libraries and the classification

of static, dynamic or hybrid qualities of the malware sample under examination. The importance of

detection and prevention cannot be overstated; however, malware analysis through secure

observation in a sandbox environment is invaluable in the inevitable situations of breach and

compromise. The available literature on integrated dynamic analysis and sandbox environments for

Linux malware samples were restricted to defunct projects such as Malwr and Anubis. Apart from

Cuckoo sandbox, information about the other sandbox environments were in the domain of security

blogs and conference demonstrations and trainings. Most of the references to Cuckoo were with

respect to analysis of Windows based malware samples.

The relative effectiveness of these tools, with their pros and cons have not been addressed in the

available literature. This research sought to bridge that gap by undertaking an empirical assessment

of these tools against a field of malware samples from malware repositories and a honeypot setup.

This assessment was done with known malware samples and the consistency of the results derived

from these tests were compared with attributes already known about the malware samples. The

results showed that the tools were generally consistent in the indications they detected even though

the relative effectiveness varied. While the tools collectively were unable to detect all malicious

attributes in all the malware samples, the exercise brought to light some improvements that can be

added to the sandboxes. The answers to the research sub-questions can also serve as a guideline for

malware researchers on the Linux platform on tool selection and the relative attributes of the tools

available. The availability of the tools under various open source licenses and hosting on Github

creates an avenue for adoption and improvement by other contributors.

HaboMalHunter was the most effective in detecting indicators of compromise, however, its operation

is not automated. This limitation can potentially restrict its adoption because it would be unsuitable

for high volume analysis. An analyst can choose to use it for one-off analysis based on its strengths in

detection and reporting. A possible improvement to HaboMalHunter is the creation of a wrapper

script to orchestrate the virtual machine during analysis so that a known good state can be reverted

to after analysis. All the sandboxes could benefit from the multi architecture support offered by Detux

through its use of the Qemu emulator. This will enhance the utility of these tools as Linux runs on a

variety of architectures and a specific architecture might be the exclusive target execution

environment for a malware sample.

75

6.4 Limitations

This section is an overview on some of the items that have possibly affected the conclusions of the

research. This is an exploration of factors that might have hampered the testing and ways this could

have been improved upon.

6.4.1 Diversity of dataset

An examination of the malware samples revealed that most of the samples were of the Mirai family

or its variants. This would likely have contributed to the context fuzzy hash investigations that

indicated that most of the pairs that were similar belonged to the same family. A more diverse dataset

with respect to malware family classification might have challenged the outcome of that correlation.

The situation where most of the malware samples exhibited characteristics that were predominantly

network related also limited the capabilities of the analysis sandboxes that could be tested. The

limitation of the malware samples to just those built for the x86 and x86-64 platforms might have also

limited the range of malware samples characteristics that could be tested. The popularity of IoT

devices might have thrown up the possibility of a more diverse malware collection if other

architectures especially those popular with embedded devices like ARM, MIPS, MIPSEL were

considered. There were only twenty-two (22) malware samples built for the x86-64 platform so a

conclusion on the ability of Detux to analyse malware samples built for the platform could not be

arrived at.

The lack of variety in the sample pool also stems from the deployment of the honeypot as a single

host. Having multiple hosts with different CPU architectures and functions would have attracted a

more diverse pool of malware samples. The VirusTotal paid subscription service gives access to

versatile query APIs for selection of malware samples by family, architecture and file type as well as

date. This flexibility would allow for a variety of options in sample selection.

6.4.2 System libraries and hardware extensions

Some of the malware samples failed to execute due to missing libraries. Cross compilation of dynamic

linker and loaders for the analysis environment would have allowed analysis of some of those malware

samples. Some ransomware samples failed to run also due to absence of AES-NI CPU extension. Having

a variety of CPU hardware architectures in the analysis environment will enable more success in

malware execution and analysis.

6.4.3 Internet Access

There was a restriction of outgoing Internet access in the analysis and honeypot environments. In the

former environment, the full capabilities of the malware samples might not be on full display with a

lack of outgoing Internet access despite the role Inetsim played in emulating network and Internet

services. The constraint on outgoing Internet access was to prevent the enlistment of the analysed

virtual systems as bots used to cause harm to other systems. The lack of outgoing Internet access from

the honeypot might have affected the value of the post infection analysis as well as the effectiveness

of the entrapment.

76

6.5 Future Work

There are two areas of future research that can arise from this study. A focus on malware built for IoT

devices will be an important study. The effectiveness of sandboxes in detecting indications of

compromise in these devices would assist malware researchers in the selection of analysis tools.

IoTPot and IoTBox are platforms that can be evaluated in this research (Pa et al., 2015).

While the use of the string utility and Yara rules helped determine some of the packers (12) used in

the samples, there is still a gap on definitively telling when an ELF file is packed from static analysis.

This is an area where further research would be of benefit to the security community. The creation of

more Yara rules will also enhance this activity.

6.6 Conclusion

This chapter concludes the thesis with an overview of the discussion, the contributions and limitations

of the thesis and research opportunities in the field of Linux malware analysis. The thesis was focussed

on experimental investigation of the performance of sandboxes for Linux binary files. This is of

importance because of the increasing popularity of Linux in the embedded hardware space as well as

the its large installed base of servers. Five malware testing sandboxes - REMnux, Limon, Cuckoo, Detux

and HaboMalHunter - were tested for their ability to detect indicators of compromise in malware

samples. The presence of obfuscation (packing) techniques was also tested. Security research firms

have found that most malware samples are variations of existing ones. The ability of the sandboxes to

make this association amongst the malware samples was also evaluated. The reporting and

automation features available to the sandboxes were also examined. The importance of automation

is due to the rate at which malware samples are being created which can make manual analysis

unfeasible.

Out of two hundred and ninety-seven (297) malware samples, the sandboxes collectively did not

detect indicators of compromise in twenty-seven (27) of the samples. Limon was found to be the only

sandbox capable of detecting metamorphic variants through its use of fuzzy hashing techniques. The

sandboxes were found to be consistent in the indicators found where indicators of malice were

discovered, with HaboMalhunter recording the most detections. Limon, Detux and Cuckoo had

workflows that could be automated because they automatically handled the creation and the

restoration to the default state of the virtual environments for each sample analysis.

77

7. References

504ensicslabs. (2017). Linux Memory Extractor. Retrieved from

https://github.com/504ensicsLabs/LiME

AhnLab. (2014). All You Need to Know about the Latest Linux Malware. Retrieved from

http://global.ahnlab.com/global/upload/download/documents/1501086836841003.pdf

Alam, S., Horspool, R. N., Traore, I., & Sogukpinar, I. (2015). A framework for metamorphic

malware analysis and real-time detection. Computers & Security, 48, 212-233.

doi:10.1016/j.cose.2014.10.011

Aljaedi, A., Lindskog, D., Zavarsky, P., Ruhl, R., & Almari, F. (2011). Comparative analysis

of volatile memory forensics: live response vs. memory imaging. Paper presented at

the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust

(PASSAT) and 2011 IEEE Third International Conference on Social Computing

(SocialCom), Boston, MA, USA.

Anubis. (2015). We are discontinuing the Anubis and Wepawet services. Retrieved from

http://anubis.iseclab.org/

Aslan, Ö., & Samet, R. (2017). Investigation of Possibilities to Detect Malware Using

Existing Tools. 2017 IEEE/ACS 14th International Conference on Computer Systems

and Applications (AICCSA), Hammamet, Tunisia, 2018, pp. 1277-1284.

doi:10.1109/AICCSA.2017.24

Asmitha, K., & Vinod, P. (2014). A machine learning approach for linux malware detection.

2014 International Conference on Issues and Challenges in Intelligent Computing

Techniques (ICICT), Ghaziabad, 2014, pp. 825-830.

doi: 10.1109/ICICICT.2014.6781387

Asmitha, K. A., & Vinod, P. (2014). Linux malware detection using non-parametric

statistical methods. 2014 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), New Delhi, 2014, pp. 356-361.

doi: 10.1109/ICACCI.2014.6968611

Azab, A., Layton, R., Alazab, M., & Oliver, J. (2014). Mining Malware to Detect Variants.

2014 Fifth Cybercrime and Trustworthy Computing Conference, Auckland, 2014, pp.

44-53.

doi: 10.1109/CTC.2014.11

Bakhshayeshi, R., Akbari, M. K., & Javan, M. S. (2014). Performance analysis of virtualized

environments using HPC Challenge benchmark suite and Analytic Hierarchy Process.

2014 Iranian Conference on Intelligent Systems (ICIS), Bam, 2014, pp. 1-6.

doi: 10.1109/IranianCIS.2014.6802585

Bayer, U., Kirda, E., & Kruegel, C. (2010). Improving the efficiency of dynamic malware

analysis. Proceedings of the 2010 ACM Symposium on Applied Computing (SAC '10).

https://github.com/504ensicsLabs/LiME
http://global.ahnlab.com/global/upload/download/documents/1501086836841003.pdf
http://anubis.iseclab.org/

78

ACM, New York, NY, USA, 1871-1878. DOI:

https://doi.org/10.1145/1774088.1774484

Bayer, U., Kruegel, C., & Kirda, E. (2006). TTAnalyze: A tool for analyzing malware. Paper

presented at the 15th European Institute for Computer Antivirus Research (EICAR

2006) Annual Conference, Hamburg.

Bist, A. S. (2014). Detection of metamorphic viruses: A survey. 2014 International

Conference on Advances in Computing, Communications and Informatics (ICACCI),

New Delhi, 2014, pp. 1559-1565.

doi: 10.1109/ICACCI.2014.6968246

Botacin, M. F., de Geus, P. L., & Grégio, A. R. A. (2017). The other guys: automated

analysis of marginalized malware. Journal of Computer Virology and Hacking

Techniques, 1-12. doi: 10.1007/s11416-017-0292-8

Boukhtouta, A., Mokhov, S. A., Lakhdari, N.-E., Debbabi, M., & Paquet, J. (2016). Network

malware classification comparison using DPI and flow packet headers. Journal of

Computer Virology and Hacking Techniques, 12(2), 69-100. doi:10.1007/s11416-015-

0247-x

Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel: from I/O ports to

process management: Sebastopol, CA: O'Reilly Media, Inc.

Boyle, R. J., & Panko, R. R. (2014). Corporate computer security: Upper Saddle River, NJ:

Prentice Hall.

Bryant, R. (2016). Policing digital crime: New York, NY: Routledge.

Bryant, R. E., & O'Hallaron, D. R. (2015). Computer Systems: A Programmer's Perspective.

Upper Saddle River, NJ: Pearson Education Inc.

Canonical Ltd. (2017). Ubuntu release end of life. Retrieved from

https://www.ubuntu.com/info/release-end-of-life

Case, A., & Richard, G. G. (2017). Memory forensics: The path forward. Digital

Investigation, 20, 23-33. doi:https://doi.org/10.1016/j.diin.2016.12.004

Choudhary, S. P., & Vidyarthi, M. D. (2015). A Simple Method for Detection of

Metamorphic Malware using Dynamic Analysis and Text Mining. Procedia

Computer Science, 54, 265-270. doi:https://doi.org/10.1016/j.procs.2015.06.031

Cohen, M. (2016). The pmem suite of memory acquisition tools. Retrieved from

http://blog.rekall-forensic.com/2016/05/the-pmem-suite-of-memory-acquisition.html

Cohen, M., Garfinkel, S., & Schatz, B. (2009). Extending the advanced forensic format to

accommodate multiple data sources, logical evidence, arbitrary information and

forensic workflow. Digital Investigation, 6, S57-S68.

https://doi.org/10.1016/j.diin.2009.06.010

https://www.ubuntu.com/info/release-end-of-life
https://doi.org/10.1016/j.diin.2016.12.004
https://doi.org/10.1016/j.procs.2015.06.031
http://blog.rekall-forensic.com/2016/05/the-pmem-suite-of-memory-acquisition.html
https://doi.org/10.1016/j.diin.2009.06.010

79

Corbet, J., Rubini, A., & Kroah-Hartman, G. (2005). Linux Device Drivers: Where the Kernel

Meets the Hardware: Sebastopol, CA: O'Reilly Media, Inc.

Cozzi, E., Graziano, M., Fratantonio, Y., & Balzarotti, D. (2018). Understanding Linux

Malware. 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,

2018, pp. 161-175.

doi: 10.1109/SP.2018.00054

Cuckoo Foundation. (2015). Cuckoo Sandbox Book. Retrieved from

http://docs.cuckoosandbox.org/en/latest/

Daly, M. K. (2009). Advanced persistent threat. Usenix, November 4, 2009.

Damri, G., & Vidyarthi, D. (2016). Automatic dynamic malware analysis techniques for

Linux environment. Paper presented at the 3rd International Conference on

Computing for Sustainable Global Development (INDIACom), New Delhi, India.

De Andrade, C. A. B., De Mello, C. G., & Duarte, J. C. (2013). Malware automatic analysis.

2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on

Computational Intelligence, Ipojuca, 2013, pp. 681-686.

doi: 10.1109/BRICS-CCI-CBIC.2013.119

Deng, Z., Xu, D., Zhang, X., & Jiang, X. (2012). Introlib: Efficient and transparent library

call introspection for malware forensics. Digital Investigation, 9, S13-S23.

https://doi.org/10.1016/j.diin.2012.05.013

Detux Sandbox. (2018). The Multiplatform Linux Sandbox. Retrieved from

https://github.com/detuxsandbox/detux

Dinaburg, A., Royal, P., Sharif, M., & Lee, W. (2008). Ether: malware analysis via hardware

virtualization extensions. Paper presented at the Proceedings of the 15th ACM

conference on Computer and communications security, Alexandria, Virginia, USA.

https://doi.org/10.1145/1455770.1455779

DistroWatch. (2017). Top Ten Distributions: An overview of today's top distributions.

Retrieved from https://distrowatch.com/dwres.php?resource=major

Dr Web. (2018). Linux.BtcMine.26. Retrieved from

https://vms.drweb.com/virus/?i=15743486&lng=en

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M., Li, F., . . . Payer, M.

(2014). The matter of heartbleed. Paper presented at the Proceedings of the 2014

Conference on Internet Measurement Conference, Vancouver, BC, Canada, pp 475-

488. https://doi.org/10.1145/2663716.2663755

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on Automated Dynamic

Malware-Analysis Techniques and Tools. ACM Computing Surveys, 44(2), 6-6:42.

doi:10.1145/2089125.2089126

http://docs.cuckoosandbox.org/en/latest/
https://github.com/detuxsandbox/detux
https://distrowatch.com/dwres.php?resource=major
https://vms.drweb.com/virus/?i=15743486&lng=en

80

Ehrenfeld, J. M. (2017). Wannacry, cybersecurity and health information technology: A time

to act. Journal of medical systems, 41(7), 104. https://doi.org/10.1007/s10916-017-

0752-1

F-Secure. (2018). Scalper. Retrieved from https://www.f-secure.com/v-descs/scalper.shtml

Ferrie, P. (2016). Attacks on virtual machine emulators. Symantec Advanced Threat

Research.

Fortiguard. (2018a). Linux/Ddostf!tr. Retrieved from

https://fortiguard.com/encyclopedia/virus/7433648

Fortiguard. (2018b). W32/Multi.MIBSUN!tr.bdr. Retrieved from

https://fortiguard.com/encyclopedia/virus/7434810

Free Software Foundation Inc. (2017). GDB: The GNU Project Debugger. Retrieved from

https://www.gnu.org/software/gdb/

freedesktop.org. (2017). Systemd System and Service Manager. Retrieved from

https://www.freedesktop.org/wiki/Software/systemd/

Gandotra, E., Bansal, D., & Sofat, S. (2016). Zero-day malware detection. 2016 Sixth

International Symposium on Embedded Computing and System Design (ISED), Patna,

2016, pp. 171-175.

doi: 10.1109/ISED.2016.7977076

GFI Software. (2017). GFI Software. Retrieved from htps://www.gfi.com/products-and-

solutions/all-products

Google. (2017). Virus Total. Retrieved from https://www.virustotal.com/en/about/

Gouda, M. G., & Liu, A. X. (2005, 28 June-1 July 2005). A model of stateful firewalls and its

properties. 2005 International Conference on Dependable Systems and Networks

(DSN'05), Yokohama, Japan, 2005, pp. 128-137.

doi: 10.1109/DSN.2005.9

Grinberg, M. (2014). Flask web development: developing web applications with python:

Sebastopol, CA: O'Reilly Media, Inc.

Guarnizo, J., Tambe, A., Bunia, S. S., Ochoa, M., Tippenhauer, N., Shabtai, A., & Elovici, Y.

(2017). SIPHON: Towards ScalableHigh-Interaction Physical Honeypots. arXiv

preprint arXiv:1701.02446.

Han, K. S., Lim, J. H., Kang, B., & Im, E. G. (2015). Malware analysis using visualized

images and entropy graphs. International Journal of Information Security, 14(1), 1-

14. doi:10.1007/s10207-014-0242-0

Hex-Rays. (2016). About IDA. Retrieved from https://www.hex-rays.com/products/ida/

https://www.f-secure.com/v-descs/scalper.shtml
https://fortiguard.com/encyclopedia/virus/7433648
https://fortiguard.com/encyclopedia/virus/7434810
https://www.gnu.org/software/gdb/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.gfi.com/products-and-solutions/all-products
https://www.gfi.com/products-and-solutions/all-products
https://www.virustotal.com/en/about/
https://www.hex-rays.com/products/ida/

81

Hungenberg, T., & Eckert, M. (2017). INetSim: Internet Services Simulation Suite.

Retrieved from http://www.inetsim.org/about.html

Insecure. (2018). Nestea "Off By One" attack. Retrieved from

http://insecure.org/sploits/linux.PalmOS.nestea.html

Islam, R., Tian, R., Batten, L. M., & Versteeg, S. (2013). Classification of malware based on

integrated static and dynamic features. Journal of Network and Computer

Applications, 36(2), 646-656. doi:https://doi.org/10.1016/j.jnca.2012.10.004

Juniper Networks. (2017a). About Juniper. Retrieved from

https://www.juniper.net/us/en/company/

Juniper Networks. (2017b). EX Series. Retrieved from

https://www.juniper.net/us/en/products-services/switching/ex-

series/compare?p=EX2200-C

Juniper Networks. (2017c). JTAC Recommended Junos Software Versions. Retrieved from

https://kb.juniper.net/InfoCenter/index?page=content&id=KB21476&actp=METADA

TA

Juniper Networks. (2017d). SRX Series. Retrieved from

https://www.juniper.net/us/en/products-services/security/srx-

series/compare?p=SRX300

Kerrisk, M. (2010). The Linux programming interface: San Francisco, CA: No Starch Press.

Kirat, D., Vigna, G., & Kruegel, C. (2014). BareCloud: Bare-metal Analysis-based Evasive

Malware Detection. Proceedings of the 23rd USENIX conference on Security

Symposium, pp 287-301.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise

hashing. Digital Investigation, 3, 91-97. https://doi.org/10.1016/j.diin.2006.06.015

Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2010). Malware analyst's cookbook and

DVD: tools and techniques for fighting malicious code. New York, NY: Wiley

Publishing.

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The art of memory forensics: detecting

malware and threats in windows, linux, and Mac memory. New York, NY:John Wiley

& Sons.

Linux Kernel Organization. (2016). Ext4 (and Ext2/Ext3) Wiki Retrieved from

https://ext4.wiki.kernel.org/index.php/Main_Page

Linux Programmer's Manual. (2016). PTRACE(2). Retrieved from

http://man7.org/linux/man-pages/man2/ptrace.2.html

Love, R. (2010). Linux kernel development. Upper Saddle River, NJ: Pearson Education.

http://www.inetsim.org/about.html
http://insecure.org/sploits/linux.PalmOS.nestea.html
https://doi.org/10.1016/j.jnca.2012.10.004
https://www.juniper.net/us/en/company/
https://www.juniper.net/us/en/products-services/switching/ex-series/compare?p=EX2200-C
https://www.juniper.net/us/en/products-services/switching/ex-series/compare?p=EX2200-C
https://kb.juniper.net/InfoCenter/index?page=content&id=KB21476&actp=METADATA
https://kb.juniper.net/InfoCenter/index?page=content&id=KB21476&actp=METADATA
https://www.juniper.net/us/en/products-services/security/srx-series/compare?p=SRX300
https://www.juniper.net/us/en/products-services/security/srx-series/compare?p=SRX300
https://doi.org/10.1016/j.diin.2006.06.015
https://ext4.wiki.kernel.org/index.php/Main_Page
http://man7.org/linux/man-pages/man2/ptrace.2.html

82

Mairh, A., Barik, D., Verma, K., & Jena, D. (2011). Honeypot in network security: a survey.

Paper presented at the Proceedings of the 2011 international conference on

communication, computing & security. https://doi.org/10.1145/1947940.1948065

Malicia Lab. (2018). AVClass malware labeling tool. Retrieved from

https://github.com/malicialab/avclass

Malin, C. H., Casey, E., & Aquilina, J. M. (2008). Malware forensics: investigating and

analyzing malicious code. Burlington, MA: Syngress.

Malin, C. H., Casey, E., & Aquilina, J. M. (2013). Malware forensics field guide for Linux

systems: digital forensics field guides. Boston, MA: Newnes.

MalwareMustDie. (2016). MMD-0056-2016 - Linux/Mirai, how an old ELF malcode is

recycled.. . Retrieved from http://blog.malwaremustdie.org/2016/08/mmd-0056-

2016-linuxmirai-just.html

Malwr. (2016). Malwr. Retrieved from https://malwr.com/submission/

Marek, J. M. (2002). Plain English: Risks of Java Applets and Microsoft ActiveX Controls.

SANS Institute, March 4 (2002), p 4.

McAfee. (2018). Virus Profile: Linux/Binom. Retrieved from

https://home.mcafee.com/virusinfo/virusprofile.aspx?key=130506#none

Mehdi, S. B., Tanwani, A. K., & Farooq, M. (2009). IMAD: in-execution malware analysis

and detection. Paper presented at the Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, Montreal, Quebec, Canada.

https://doi.org/10.1016/j.ins.2011.09.016

Mehra, M., & Pandey, D. (2016). Event triggered malware: A new challenge to sandboxing.

2015 Annual IEEE India Conference (INDICON), New Delhi, 2015, pp. 1-6.

doi: 10.1109/INDICON.2015.7443327

Messier, R. (2015). Operating System Forensics. Burlington, MA: Syngress.

Microsoft. (2018a). Backdoor:Linux/Setag.C. Retrieved from

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=Backdoor%3ALinux%2FSetag.C

Microsoft. (2018b). Exploit:Linux/Bonk.E. Retrieved from https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-

description?Name=Exploit%252525253aLinux%252525252fBonk.E&ThreatID=-

2147390635

Microsoft. (2018c). Exploit:Linux/Local.AO. Retrieved from

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=Exploit%3ALinux%2FLocal.AO

https://github.com/malicialab/avclass
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://malwr.com/submission/
https://home.mcafee.com/virusinfo/virusprofile.aspx?key=130506#none
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3ALinux%2FSetag.C
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3ALinux%2FSetag.C
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%252525253aLinux%252525252fBonk.E&ThreatID=-2147390635
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%252525253aLinux%252525252fBonk.E&ThreatID=-2147390635
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%252525253aLinux%252525252fBonk.E&ThreatID=-2147390635
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%252525253aLinux%252525252fBonk.E&ThreatID=-2147390635
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%3ALinux%2FLocal.AO
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%3ALinux%2FLocal.AO

83

Microsoft. (2018d). Exploit:Linux/Race.H. Retrieved from https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-

description?Name=Exploit%3ALinux%2FRace.H&ThreatID=-2147390548

Microsoft. (2018e). Trojan:Linux/Midav.A. Retrieved from https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-

description?Name=Trojan%25253aLinux%25252fMidav.A&ThreatID=-2147391089

Microsoft. (2018f). Virus:Linux/Grip!gen0. Retrieved from https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-

description?Name=Virus%3ALinux%2FGrip!gen0

Microsoft. (2018g). Virus:Linux/Thou.B. Retrieved from https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-

description?Name=Virus%3ALinux%2FThou.B&ThreatID=-2147364920

Miller, C., Glendowne, D., Cook, H., Thomas, D., Lanclos, C., & Pape, P. (2017). Insights

gained from constructing a large scale dynamic analysis platform. Digital

Investigation, 22, S48-S56. https://doi.org/10.1016/j.diin.2017.06.007

Mokube, I., & Adams, M. (2007). Honeypots: concepts, approaches, and challenges. ACM-

SE 45 Proceedings of the 45th annual southeast regional conference, pp 321-326.

https://doi.org/10.1145/1233341.1233399

Monnappa, K. (2015). Automating Linux Malware Analysis Using Limon Sandbox. Black

Hat Europe 2015.

Monnappa K A. (2015). Setting up Limon Sandbox for Analyzing Linux Malwares.

Retrieved from http://malware-unplugged.blogspot.co.nz/2015/11/setting-up-limon-

sandbox-for-analyzing.html

Moser, A., Kruegel, C., & Kirda, E. (2007, 20-23 May 2007). Exploring Multiple Execution

Paths for Malware Analysis. 2007 IEEE Symposium on Security and Privacy (SP '07),

Berkeley, CA, 2007, pp. 231-245. doi: 10.1109/SP.2007.17

Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011). Malware images:

visualization and automatic classification. Paper presented at the Proceedings of the

8th International Symposium on Visualization for Cyber Security, Pittsburgh,

Pennsylvania, USA. https://doi.org/10.1145/2016904.2016908

Nataraj, L., Yegneswaran, V., Porras, P., & Zhang, J. (2011). A comparative assessment of

malware classification using binary texture analysis and dynamic analysis. Paper

presented at the Proceedings of the 4th ACM workshop on Security and artificial

intelligence, Chicago, Illinois, USA. https://doi.org/10.1145/2046684.2046689

Nelson, B., Phillips, A., & Steuart, C. (2014). Guide to computer forensics and

investigations. Boston, MA: Cengage Learning.

Netscraft Ltd. (2017). September 2017 Web Server Survey. Retrieved from

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%3ALinux%2FRace.H&ThreatID=-2147390548
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%3ALinux%2FRace.H&ThreatID=-2147390548
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit%3ALinux%2FRace.H&ThreatID=-2147390548
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%25253aLinux%25252fMidav.A&ThreatID=-2147391089
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%25253aLinux%25252fMidav.A&ThreatID=-2147391089
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%25253aLinux%25252fMidav.A&ThreatID=-2147391089
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FGrip!gen0
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FGrip!gen0
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FGrip!gen0
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FThou.B&ThreatID=-2147364920
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FThou.B&ThreatID=-2147364920
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3ALinux%2FThou.B&ThreatID=-2147364920
http://malware-unplugged.blogspot.co.nz/2015/11/setting-up-limon-sandbox-for-analyzing.html
http://malware-unplugged.blogspot.co.nz/2015/11/setting-up-limon-sandbox-for-analyzing.html

84

https://news.netcraft.com/archives/2017/09/11/september-2017-web-server-

survey.html

Neugschwandtner, M., Comparetti, P. M., & Platzer, C. (2011). Detecting malware's failover

C&C strategies with squeeze. Paper presented at the Proceedings of the 27th annual

computer security applications conference, Orlando, FL, USA.

https://doi.org/10.1145/2076732.2076736

Nguyen, A. M., Schear, N., Jung, H., Godiyal, A., King, S. T., & Nguyen, H. D. (2009).

MAVMM: Lightweight and Purpose Built VMM for Malware Analysis. 2009 Annual

Computer Security Applications Conference, Honolulu, HI, 2009, pp. 441-450.

doi: 10.1109/ACSAC.2009.48.

NJCCIC. (2018). PNScan. Retrieved from https://www.cyber.nj.gov/threat-profiles/trojan-

variants/pnscan

Noor, M., Abbas, H., & Shahid, W. B. (2018). Countering cyber threats for industrial

applications: An automated approach for malware evasion detection and analysis.

Journal of Network and Computer Applications, 103, 249-261.

doi:https://doi.org/10.1016/j.jnca.2017.10.004

Offensive Security. (2017). Offensive Security Training, Certifications and Services.

Retrieved from https://www.offensive-security.com/

Oktavianto, D., & Muhardianto, I. (2013). Cuckoo Malware Analysis. Birmingham, UK:

Packt Publishing Ltd.

Openshift. (2018). Kernel Virtual Machine. Retrieved from https://www.linux-

kvm.org/page/Main_Page

Oracle. (2017). MySQL. Retrieved from https://www.mysql.com/

Ouchn, N. (2011). GFI Sandbox (formerly CWSandbox) The Malware Analysis Tool v3.2

released. Retrieved from http://www.toolswatch.org/2011/04/gfi-

sandbox%E2%84%A2-formerly-cwsandbox-the-malware-analysis-tool-v3-2-

released/

Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., & Rossow, C. (2015).

IoTPOT: Analysing the rise of IoT compromises. WOOT'15 Proceedings of the 9th

USENIX Conference on Offensive Technologies, pp 9-9.

Pektaş, A., & Acarman, T. (2017). Classification of malware families based on runtime

behaviors. Journal of Information Security and Applications, 37, 91-100.

doi:10.1016/j.jisa.2017.10.005

Provataki, A., & Katos, V. (2013a). Differential malware forensics. Digital Investigation, 10,

311-322. doi:10.1016/j.diin.2013.08.006

Provataki, A., & Katos, V. (2013b). Differential malware forensics. Digital Investigation,

https://news.netcraft.com/archives/2017/09/11/september-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/09/11/september-2017-web-server-survey.html
https://www.cyber.nj.gov/threat-profiles/trojan-variants/pnscan
https://www.cyber.nj.gov/threat-profiles/trojan-variants/pnscan
https://doi.org/10.1016/j.jnca.2017.10.004
https://www.offensive-security.com/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.mysql.com/
http://www.toolswatch.org/2011/04/gfi-sandbox%E2%84%A2-formerly-cwsandbox-the-malware-analysis-tool-v3-2-released/
http://www.toolswatch.org/2011/04/gfi-sandbox%E2%84%A2-formerly-cwsandbox-the-malware-analysis-tool-v3-2-released/
http://www.toolswatch.org/2011/04/gfi-sandbox%E2%84%A2-formerly-cwsandbox-the-malware-analysis-tool-v3-2-released/

85

10(4), 311-322. doi:https://doi.org/10.1016/j.diin.2013.08.006

QEMU. (2017). QEMU - The FAST! processor emulator. Retrieved from www.qemu.org

Radare. (2017). Radare. Retrieved from http://rada.re/r/index.html

Redhat. (2018). Erebus Malware. Retrieved from

https://access.redhat.com/solutions/3094421

Rekall Forensics. (2017). Rekall Forensics. Retrieved from http://www.rekall-forensic.com/

REMnux Documentation Team. (2017). REMnux Documentation. Retrieved from

https://remnux.org/docs/

Rieck, K., Holz, T., Willems, C., Düssel, P., & Laskov, P. (2008). Learning and

Classification of Malware Behavior. Paper presented at the 5th International

Conference of Detection of Intrusions and Malware, and Vulnerability Assessment,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70542-0_6

Ronancher, A. (2017). Flask: Web development, one drop at a time. Retrieved from

http://flask.pocoo.org/

Rosen, R. (2014). Internet Control Message Protocol (ICMP) Linux Kernel Networking:

Implementation and Theory (pp. 37-61). Berkeley, CA: Apress.

Rubio Ayala, S. (2017). An automated behaviour-based malware analysis method based on

free open source software. http://hdl.handle.net/10609/66365

SANS. (2017). SANS Institute. Retrieved from https://www.sans.org/

Sarantinos, N., Benzaïd, C., Arabiat, O., & Al-Nemrat, A. (2016). Forensic Malware

Analysis: The Value of Fuzzy Hashing Algorithms in Identifying Similarities. 2016

IEEE Trustcom/BigDataSE/ISPA, Tianjin, 2016, pp. 1782-1787.

doi: 10.1109/TrustCom.2016.0274

Sebastián, M., Rivera, R., Kotzias, P., & Caballero, J. (2016). Avclass: A tool for massive

malware labeling. International Symposium on Research in Attacks, Intrusions, and

Defenses (pp. 230-253). Springer, Cham.

Shah, K., & Singh, D. K. (2015). A survey on data mining approaches for dynamic analysis

of malwares. 2015 International Conference on Green Computing and Internet of

Things (ICGCIoT), Noida, 2015, pp. 495-499.

doi: 10.1109/ICGCIoT.2015.7380515

Shahzad, F., & Farooq, M. (2012). ELF-Miner: using structural knowledge and data mining

methods to detect new (Linux) malicious executables. Knowledge and Information

Systems, 30(3), 589-612. doi:10.1007/s10115-011-0393-5

Shahzad, F., Shahzad, M., & Farooq, M. (2013). In-execution dynamic malware analysis and

https://doi.org/10.1016/j.diin.2013.08.006
http://www.qemu.org/
http://rada.re/r/index.html
https://access.redhat.com/solutions/3094421
http://www.rekall-forensic.com/
https://remnux.org/docs/
http://flask.pocoo.org/
https://www.sans.org/

86

detection by mining information in process control blocks of Linux OS. Information

Sciences, 231, 45-63. https://doi.org/10.1016/j.ins.2011.09.016

Sharma, A., & Sahay, S. K. (2014). Evolution and detection of polymorphic and

metamorphic malwares: A survey. arXiv preprint arXiv:1406.7061.

Shijo, P. V., & Salim, A. (2015). Integrated Static and Dynamic Analysis for Malware

Detection. Procedia Computer Science, 46, 804-811.

https://doi.org/10.1016/j.procs.2015.02.149

Shipp, R. (2018). Online Scanners and Sandboxes. Retrieved from

https://github.com/rshipp/awesome-malware-analysis#online-scanners-and-sandboxes

Shotts Jr, W. E. (2012). The linux command line: A complete introduction. San Francisco,

CA: No Starch Press.

Sikorski, M., & Honig, A. (2012). Practical malware analysis: the hands-on guide to

dissecting malicious software. San Francisco, CA: No Starch Press.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2013). Operating system concepts (9th ed.).

Hoboken, NJ: Wiley.

Singhal, A., & Ou, X. (2017). Security Risk Analysis of Enterprise Networks Using

Probabilistic Attack Graphs Network Security Metrics (pp. 53-73). Cham: Springer

International Publishing.

Skoudis, E., & Zeltser, L. (2004). Malware: Fighting malicious code. Upper Saddle River,

NJ: Prentice Hall

Sochor, T., & Zuzcak, M. (2015). Attractiveness study of honeypots and honeynets in internet

threat detection. Paper presented at the International Conference on Computer

Networks. doi:10.1007/978-3-319-19419-6_7

Sourceforge. (2016). About AIDE. Retrieved from http://aide.sourceforge.net/

Sourceware. (2018a). Readelf. Retrieved from

https://sourceware.org/binutils/docs/binutils/readelf.html

Sourceware. (2018b). SystemTap Overview. Retrieved from

https://sourceware.org/systemtap/

Strace. (n.d.). strace(1) - Linux man page. Retrieved from https://linux.die.net/man/1/strace

Suiche, M. (2016). Your favorite Memory Toolkit is back… FOR FREE! Retrieved from

https://blog.comae.io/your-favorite-memory-toolkit-is-back-f97072d33d5c

Symantec. (2017). Internet Security Threat Report. Retrieved from

https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

https://doi.org/10.1016/j.procs.2015.02.149
https://github.com/rshipp/awesome-malware-analysis#online-scanners-and-sandboxes
http://aide.sourceforge.net/
https://sourceware.org/binutils/docs/binutils/readelf.html
https://sourceware.org/systemtap/
https://linux.die.net/man/1/strace
https://blog.comae.io/your-favorite-memory-toolkit-is-back-f97072d33d5c
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

87

Symantec. (2018a). Internet Security Threat Report. Retrieved from

https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf

Symantec. (2018b). Linux.Adore.Worm. Retrieved from

https://www.symantec.com/security-center/writeup/2001-040516-0452-99

Symantec. (2018c). Linux.Dofloo. Retrieved from https://www.symantec.com/security-

center/writeup/2015-070812-0012-99

Symantec. (2018d). Linux.Gafgyt. Retrieved from https://www.symantec.com/security-

center/writeup/2014-100222-5658-99?om_rssid=sr-

Symantec. (2018e). Linux.Mirai. Retrieved from https://www.symantec.com/security-

center/writeup/2016-112905-2551-99

Symantec. (2018f). Linux.Mumblehard. Retrieved from

https://www.symantec.com/security-center/writeup/2015-050707-4128-99

Symantec. (2018g). Linux.Turla. Retrieved from https://www.symantec.com/security-

center/writeup/2014-121014-2918-99

Symantec. (2018h). Linux.Xorddos. Retrieved from https://www.symantec.com/security-

center/writeup/2015-010823-3741-99

Sysdig. (2017). Sysdig. Retrieved from https://www.sysdig.org/

Szor, P. (2005). The art of computer virus research and defense. Upper Saddle River, NJ:

Pearson Education .

Talos. (2018). Forgot About Default Accounts? No Worries, GoScanSSH Didn’t Retrieved

from https://blog.talosintelligence.com/2018/03/goscanssh-analysis.html

Tanenbaum, A. S., & Bos, H. (2014). Modern operating systems. Upper Saddle River, NJ:

Prentice Hall

Tencent. (2018). HaboMalHunter: Habo Linux Malware Analysis System. Retrieved from

https://github.com/Tencent/HaboMalHunter

The Apache Software Foundation. (2017). The Apache HTTP Server Project. Retrieved

from https://httpd.apache.org/ABOUT_APACHE.html

The Volatility Foundation. (2014). VOLATILITY FOUNDATION. Retrieved from

http://www.volatilityfoundation.org/

Tian, R., Islam, R., Batten, L., & Versteeg, S. (2010). Differentiating malware from

cleanware using behavioural analysis. 2010 5th International Conference on

Malicious and Unwanted Software, Nancy, Lorraine, 2010, pp. 23-30.

doi: 10.1109/MALWARE.2010.5665796

https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/security-center/writeup/2001-040516-0452-99
https://www.symantec.com/security-center/writeup/2015-070812-0012-99
https://www.symantec.com/security-center/writeup/2015-070812-0012-99
https://www.symantec.com/security-center/writeup/2014-100222-5658-99?om_rssid=sr-
https://www.symantec.com/security-center/writeup/2014-100222-5658-99?om_rssid=sr-
https://www.symantec.com/security-center/writeup/2016-112905-2551-99
https://www.symantec.com/security-center/writeup/2016-112905-2551-99
https://www.symantec.com/security-center/writeup/2015-050707-4128-99
https://www.symantec.com/security-center/writeup/2014-121014-2918-99
https://www.symantec.com/security-center/writeup/2014-121014-2918-99
https://www.symantec.com/security-center/writeup/2015-010823-3741-99
https://www.symantec.com/security-center/writeup/2015-010823-3741-99
https://www.sysdig.org/
https://blog.talosintelligence.com/2018/03/goscanssh-analysis.html
https://github.com/Tencent/HaboMalHunter
https://httpd.apache.org/ABOUT_APACHE.html
http://www.volatilityfoundation.org/

88

Tirli, H., Pektas, A., Falcone, Y., & Erdogan, N. (2013). Virmon: a virtualization-based

automated dynamic malware analysis system. Paper presented at the 6th International

Information Security & Cryptology Conference, Istanbul, Turkey, pp. 1-6.

Tool Interface Standards Committee. (2001). Executable and Linkable Format (ELF).

Specification, Unix System Laboratories, 1(1), 1-20.

Trend Micro. (2018a). ELF_SVAT.A. Retrieved from

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/archive/malware/elf_svat.a

Trend Micro. (2018b). UNIX_FLOODDOS.A. Retrieved from

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/unix_flooddos.a

Trend Micro. (2018c). UNIX_SNOOPY.C. Retrieved from

http://www.trendmicro.com.hk/vinfo/hk/threat-

encyclopedia/archive/malware/unix_snoopy.c

Tsyganok, K., Tumoyan, E., Babenko, L., & Anikeev, M. (2012). Classification of

polymorphic and metamorphic malware samples based on their behavior. Paper

presented at the Proceedings of the Fifth International Conference on Security of

Information and Networks, Jaipur, India, pp. 111-116

UBM Tech. (2015). Blackhat Europe 2015. Retrieved from https://www.blackhat.com/eu-

15/briefings.html#automating-linux-malware-analysis-using-limon-sandbox

Ullrich, J. B. (2016). The Short Life of a Vulnerable DVR Connected to the Internet.

Retrieved from

https://isc.sans.edu/forums/diary/The+Short+Life+of+a+Vulnerable+DVR+Connecte

d+to+the+Internet/21543/

Vasilescu, M., Gheorghe, L., & Tapus, N. (2014, 11-13 Sept. 2014). Practical malware

analysis based on sandboxing. 2014 RoEduNet Conference 13th Edition: Networking

in Education and Research Joint Event RENAM 8th Conference, Chisinau, 2014, pp.

1-6.

doi: 10.1109/RoEduNet-RENAM.2014.6955304

Virus Share. (2017). Because sharing is caring. Retrieved from https://virusshare.com/

VirusTotal. (2017). Malware analysis sandbox aggregation: Welcome Tencent HABO! .

Retrieved from http://blog.virustotal.com/2017/11/malware-analysis-sandbox-

aggregation.html

VX Heaven. (2017). VX Heaven. Retrieved from http://vxheaven.org/

Wade, S. M. (2011). SCADA Honeynets: The attractiveness of honeypots as critical

infrastructure security tools for the detection and analysis of advanced threats.

Graduate Theses and Dissertations. 12138. https://lib.dr.iastate.edu/etd/12138

Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D. A., . . . Viola, I. (2015). A

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/archive/malware/elf_svat.a
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/unix_flooddos.a
http://www.trendmicro.com.hk/vinfo/hk/threat-encyclopedia/archive/malware/unix_snoopy.c
http://www.trendmicro.com.hk/vinfo/hk/threat-encyclopedia/archive/malware/unix_snoopy.c
https://www.blackhat.com/eu-15/briefings.html#automating-linux-malware-analysis-using-limon-sandbox
https://www.blackhat.com/eu-15/briefings.html#automating-linux-malware-analysis-using-limon-sandbox
https://isc.sans.edu/forums/diary/The+Short+Life+of+a+Vulnerable+DVR+Connected+to+the+Internet/21543/
https://isc.sans.edu/forums/diary/The+Short+Life+of+a+Vulnerable+DVR+Connected+to+the+Internet/21543/
https://virusshare.com/
http://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
http://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
http://vxheaven.org/

89

survey of visualization systems for malware analysis. Paper presented at the

Eurographics Conference on Visualization (EuroVis) (2015), At Cagliari, Italy.

Ward, B. (2014). How Linux works: What every superuser should know. San Francisco, CA:

No Starch Press

Willems, C., Holz, T., & Freiling, F. (2007). Toward Automated Dynamic Malware Analysis

Using CWSandbox. IEEE Security & Privacy, 5(2), 32-39. doi:10.1109/MSP.2007.45

Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K., Matsumoto, T., . . . Rossow, C.

(2016). SandPrint: Fingerprinting Malware Sandboxes to Provide Intelligence for

Sandbox Evasion. Paper presented at the Research in Attacks, Intrusions, and

Defenses. RAID 2016. Lecture Notes in Computer Science, vol 9854.

https://doi.org/10.1007/978-3-319-45719-2_8

You, I., & Yim, K. (2010, 4-6 Nov. 2010). Malware Obfuscation Techniques: A Brief Survey.

2010 International Conference on Broadband, Wireless Computing, Communication

and Applications, Fukuoka, 2010, pp. 297-300.

doi: 10.1109/BWCCA.2010.85 .

Younge, A. J., Henschel, R., Brown, J. T., Laszewski, G. v., Qiu, J., & Fox, G. C. (2011, 4-9

July 2011). Analysis of Virtualization Technologies for High Performance Computing

Environments. 2011 IEEE 4th International Conference on Cloud Computing,

Washington, DC, 2011, pp. 9-16. doi: 10.1109/CLOUD.2011.29

Zeltser, L. (2017a). Free Automated Malware Analysis Sandboxes and Services. Retrieved

from https://zeltser.com/automated-malware-analysis/

Zeltser, L. (2017b). Free Toolkits for Automating Malware Analysis. Retrieved from

https://zeltser.com/malware-analysis-tool-frameworks/

Zeltser, L. (2017c). Malware Sample Sources for Researchers. Retrieved from

https://zeltser.com/malware-sample-sources/

Zoltan, B. (2016). Malware Analysis Sandbox Testing Methodology. The Journal On

Cybercrime & Digital Investigations, 1(1). doi:10.18464/cybin.v1i1.3

https://zeltser.com/automated-malware-analysis/
https://zeltser.com/malware-analysis-tool-frameworks/
https://zeltser.com/malware-sample-sources/

90

APPENDIX

List of malware samples

MD5 Date of first submission Scan Summary

374d0e146452a390bea075f1f6530cde 2016-10-03 18:32:12 UTC 33 of 59 positively flagged this sample as malicious

27d857e12b9be5d43f935b8cc86eaabf 2017-06-13 01:19:11 UTC 39 of 57 positively flagged this sample as malicious

320adee47e53823a1be8a335e4beb246 2015-07-24 08:40:50 UTC 36 of 59 positively flagged this sample as malicious

a44aa4f46a9dc68c97142f3825431c29 2017-10-19 20:51:32 UTC 30 of 59 positively flagged this sample as malicious

22dc1db1a876721727cca37c21d31655 2015-11-07 05:48:50 UTC 40 of 58 positively flagged this sample as malicious

483b322b42835227d98f523f9df5c6fc 2016-11-27 11:26:26 UTC 31 of 59 positively flagged this sample as malicious

61e0618a3984cbcb75b329beb069e0e9 2017-10-07 05:32:55 UTC 37 of 60 positively flagged this sample as malicious

0c1aa91e8cae4352eb16d93f17c0da2b 2017-04-22 11:00:31 UTC 36 of 60 positively flagged this sample as malicious

a7a1abb5d8e87fc670b6841a805103df 2017-04-22 11:00:37 UTC 37 of 59 positively flagged this sample as malicious

19fbd8cbfb12482e8020a887d6427315 2014-12-06 13:35:37 UTC 35 of 59 positively flagged this sample as malicious

132ba54b1b187a38a455dd27c1e74d62 2015-01-07 14:43:58 UTC 41 of 60 positively flagged this sample as malicious

3437bd29e5c8fe493603581dbb0285c7 2014-06-06 20:05:37 UTC 36 of 60 positively flagged this sample as malicious

009a9c6eee3e0fa532cfebe6a52be113 2017-10-20 11:07:41 UTC 38 of 60 positively flagged this sample as malicious

1975ff1586f0115e89fa1fe72708939a 2014-12-18 01:37:39 UTC 41 of 60 positively flagged this sample as malicious

1cadf5fc7f0729bb660aeb60a9e2207f 2015-08-05 14:24:19 UTC 39 of 60 positively flagged this sample as malicious

12770c550d06e95e0d580fc7dc287647 2016-02-02 10:20:11 UTC 31 of 58 positively flagged this sample as malicious

0b7630ead879da12b74b2ed7566da2fe 2014-12-16 19:31:24 UTC 38 of 59 positively flagged this sample as malicious

1e19b857a5f5a9680555fa9623a88e99 2015-11-07 05:48:51 UTC 43 of 60 positively flagged this sample as malicious

005c22845f8b7d92702ee3a5c37489cf 2017-10-10 12:12:24 UTC 22 of 60 positively flagged this sample as malicious

01adaa2fc9412ee02cb7adde58cd4fe1 2017-09-14 05:44:49 UTC 21 of 58 positively flagged this sample as malicious

024c094fff1f93ff68512d86b07d4f33 2017-08-17 01:02:57 UTC 36 of 60 positively flagged this sample as malicious

03a1e6c72c9978158a954c85556f74d1 2017-09-14 07:07:14 UTC 21 of 58 positively flagged this sample as malicious

0403fc76b30b735ae5881a06abe539a6 2016-06-24 18:32:54 UTC 37 of 58 positively flagged this sample as malicious

04e634a2aade2b99473c26be78c1bfd6 2017-09-10 01:34:37 UTC 26 of 58 positively flagged this sample as malicious

91

MD5 Date of first submission Scan Summary

056e5e432e4a57a44bb96498b649f1ee 2017-09-20 00:23:39 UTC 22 of 59 positively flagged this sample as malicious

071a632b2c9babfea998df852e0dc1f0 2017-06-19 19:26:31 UTC 13 of 56 positively flagged this sample as malicious

07b1295477c295540f08ecf07bbcfe30 2017-09-14 05:44:39 UTC 7 of 58 positively flagged this sample as malicious

086fef17ec295a3f8d469f3893246f3c 2017-06-20 00:01:43 UTC 11 of 57 positively flagged this sample as malicious

09f0b3699f57217ab669c47962a7aa4f 2017-09-25 07:26:10 UTC 28 of 59 positively flagged this sample as malicious

0c1aa91e8cae4352eb16d93f17c0da2b 2017-04-22 11:00:31 UTC 36 of 60 positively flagged this sample as malicious

0cdc43091b4b10ff0b4d574c841b803a 2017-09-14 05:06:08 UTC 21 of 58 positively flagged this sample as malicious

0dbe035cb9c5901dcacfe6505fdfb7e5 2017-09-14 04:56:30 UTC 9 of 58 positively flagged this sample as malicious

0de12e358555c92da2bf8dca21e6f54b 2017-08-18 22:56:19 UTC 26 of 57 positively flagged this sample as malicious

0deb84fce9da7a3561994af4d8ee8a83 2017-09-14 05:59:11 UTC 20 of 57 positively flagged this sample as malicious

0e104b109f86d7e5005e4ea7f3d27722 2017-09-14 06:49:13 UTC 9 of 57 positively flagged this sample as malicious

0f4825035617c6b08c6a9a4b0def31bc 2017-10-10 19:01:56 UTC 22 of 60 positively flagged this sample as malicious

0f60b0b617b04f1698526ac102787592 2017-08-21 09:45:08 UTC 20 of 57 positively flagged this sample as malicious

0f795e0079bf208b82470e09a7675f83 2017-09-09 04:46:30 UTC 27 of 58 positively flagged this sample as malicious

10c0e8ad9f935d33f396d99d0ba667a6 2016-06-18 18:32:34 UTC 26 of 60 positively flagged this sample as malicious

116ebab5d8eaa36862963b92cc80d384 2017-08-18 23:51:31 UTC 28 of 58 positively flagged this sample as malicious

127eacc6f5306caa43a600e428e9002f 2017-09-21 01:37:03 UTC 9 of 58 positively flagged this sample as malicious

12847fb913333b5bfe9e3d48657d78ec 2017-08-15 17:11:32 UTC 26 of 58 positively flagged this sample as malicious

12faad000218496fae305c88a3381494 2017-06-20 00:01:39 UTC 8 of 57 positively flagged this sample as malicious

137c1520b37dfc3ce5072be7995c96fc 2016-06-24 18:32:51 UTC 34 of 58 positively flagged this sample as malicious

13a704a8c4d463523e7a8b49527f4178 2017-10-11 22:18:17 UTC 26 of 60 positively flagged this sample as malicious

14775d0fb2fe528d59046278077ba845 2017-09-14 05:12:06 UTC 21 of 58 positively flagged this sample as malicious

157679ac46d453489aba544e266ae5af 2017-09-14 05:47:07 UTC 9 of 57 positively flagged this sample as malicious

179aa00a454a97bb1e45e7fb3fb114d9 2017-09-14 07:18:01 UTC 22 of 59 positively flagged this sample as malicious

19b72c2b11d70013fc2147382d75c656 2017-09-14 07:35:39 UTC 21 of 58 positively flagged this sample as malicious

1b52265337ebc39516678869cc2aed5a 2017-09-10 15:00:56 UTC 25 of 57 positively flagged this sample as malicious

1b9ec2551f8ade5f83394b23340ae5c8 2017-10-02 09:44:54 UTC 26 of 58 positively flagged this sample as malicious

1c0bb403ace5a6e2bd6b7409db50d505 2017-08-16 03:45:11 UTC 24 of 57 positively flagged this sample as malicious

1c50bc31a9d27b5cf912c1a2dd73e548 2017-10-03 12:24:40 UTC 29 of 60 positively flagged this sample as malicious

92

MD5 Date of first submission Scan Summary

1cbac18d3bb664473855de7b2b958182 2017-06-20 00:07:25 UTC 5 of 57 positively flagged this sample as malicious

1e3179dbfc95c8bbe0cd33830ae9802c 2017-09-14 06:48:09 UTC 21 of 60 positively flagged this sample as malicious

1f48156c77fa432166b54d5503c1aac2 2017-09-13 04:48:00 UTC 28 of 58 positively flagged this sample as malicious

214307803e25208095b2d27261f088e2 2017-08-24 03:45:52 UTC 24 of 58 positively flagged this sample as malicious

215cc2aa6c9edb33648283cb49da2d99 2017-05-20 21:52:58 UTC 29 of 58 positively flagged this sample as malicious

21652156824d4a074e1b690d4f6bfad7 2015-12-31 11:45:33 UTC 35 of 57 positively flagged this sample as malicious

21aeb76c456e55dc52680da92d11e12d 2017-09-14 05:49:58 UTC 9 of 58 positively flagged this sample as malicious

22b72382ca228ba76e58d9c98236f045 2017-09-14 06:17:50 UTC 20 of 58 positively flagged this sample as malicious

24734ef952fe363415cd4c2f7322276f 2017-10-14 15:06:21 UTC 28 of 60 positively flagged this sample as malicious

25993ee48b86b5a93a47bff5d0d697b8 2017-09-14 06:33:03 UTC 19 of 58 positively flagged this sample as malicious

26dc4799eb1feaa43bec3b0ec3225fee 2017-04-10 18:06:11 UTC 27 of 58 positively flagged this sample as malicious

2733137d5f8a152a2cf50929c0164894 2017-09-14 04:57:20 UTC 21 of 58 positively flagged this sample as malicious

2760b583b79f9b43dbd9aa334b38b6fd 2017-09-11 10:15:11 UTC 28 of 60 positively flagged this sample as malicious

28072a89a50e41ddb7dd9097ba06ee09 2017-09-16 22:14:08 UTC 16 of 59 positively flagged this sample as malicious

2b11b4291193405868a9033fb2c768a1 2016-06-24 18:32:58 UTC 35 of 57 positively flagged this sample as malicious

2ca03ef2125b0335b581302420cb8e91 2017-09-14 05:45:46 UTC 9 of 58 positively flagged this sample as malicious

2cd75d23f526338ac0de7c8bc2fea4ce 2017-07-06 09:34:47 UTC 1 of 58 positively flagged this sample as malicious

2db905373ea58920f7dbf9f3e59ba990 2017-09-10 00:01:08 UTC 14 of 59 positively flagged this sample as malicious

2e912720306afd791206a3784bb743f4 2017-09-14 07:20:11 UTC 16 of 58 positively flagged this sample as malicious

2ed334550bd45ad667ea7d4039ff3bb1 2017-09-14 07:22:27 UTC 23 of 58 positively flagged this sample as malicious

2fa4b143c12b89527b5ad592fbf0692a 2017-06-19 23:43:52 UTC 11 of 57 positively flagged this sample as malicious

2ff923596aa93ab6d03e3e970b5e1198 2017-09-14 07:03:42 UTC 9 of 58 positively flagged this sample as malicious

30362aa28757a76a0e5fd90b81915001 2017-09-14 05:08:21 UTC 25 of 60 positively flagged this sample as malicious

3171681b7e29bcfe85d8f1e2411babcd 2017-09-14 07:21:12 UTC 9 of 57 positively flagged this sample as malicious

32128fa046336d06c328349bce366e1d 2016-12-21 03:39:13 UTC 1 of 55 positively flagged this sample as malicious

33a50a9399f416b125e3302ebd2a132b 2017-09-14 06:27:20 UTC 21 of 58 positively flagged this sample as malicious

34d31584f7e325b0857cc8275b1dd500 2017-09-14 10:10:44 UTC 9 of 59 positively flagged this sample as malicious

35176e86b2e96733188e2f939364117f 2017-09-14 05:11:40 UTC 20 of 57 positively flagged this sample as malicious

35dd1a618443862cda9f77c17aea4ddb 2017-06-19 23:49:43 UTC 6 of 57 positively flagged this sample as malicious

93

MD5 Date of first submission Scan Summary

37cbae5f4249ed569fd3f657de2a36ac 2017-06-19 19:27:07 UTC 6 of 57 positively flagged this sample as malicious

396cbbe2c7ce1f05341ae305621be460 2017-09-14 06:04:18 UTC 27 of 60 positively flagged this sample as malicious

3b3f6977f77c82741d4c1e819d21f670 2017-08-21 19:46:12 UTC 12 of 57 positively flagged this sample as malicious

3e247c19af30e80ac97de97050f41869 2017-06-19 19:26:43 UTC 9 of 57 positively flagged this sample as malicious

3ebfbd542edc4d76a8597d9fbcb3e4c4 2017-06-19 23:56:35 UTC 7 of 57 positively flagged this sample as malicious

40a4b4aebb65d16047e9bf56844ccae3 2017-09-14 07:27:23 UTC 23 of 57 positively flagged this sample as malicious

40f1f759b87035ac6893bd94918d8e7e 2017-05-05 20:50:29 UTC 27 of 57 positively flagged this sample as malicious

417c623a70d8514d888f9179a3bd957e 2017-10-09 12:48:40 UTC 22 of 60 positively flagged this sample as malicious

42743e6af31c9b3a13ac2be41076752e 2017-06-09 21:51:39 UTC 28 of 57 positively flagged this sample as malicious

42db0b662a69a7d94ab3e4f947e7e168 2017-09-14 06:57:49 UTC 18 of 58 positively flagged this sample as malicious

42fe79a930203078da190d7a8e291d3d 2014-09-26 11:29:19 UTC 5 of 55 positively flagged this sample as malicious

43ed5df62f74538552b899ab9c12c08f 2017-09-14 07:14:26 UTC 9 of 58 positively flagged this sample as malicious

44c5badc2a1a145af7e59c2aa9ef6a27 2017-08-17 09:14:12 UTC 25 of 58 positively flagged this sample as malicious

4516f702b804ef767f8719a29f24292d 2017-08-24 09:38:40 UTC 27 of 59 positively flagged this sample as malicious

4716adafa14b337b41a4e14a3200b033 2017-09-14 05:55:43 UTC 20 of 58 positively flagged this sample as malicious

47723d1a7936586ba972838583cc6c9e 2017-09-11 04:37:58 UTC 27 of 59 positively flagged this sample as malicious

483b322b42835227d98f523f9df5c6fc 2016-11-27 11:26:26 UTC 31 of 59 positively flagged this sample as malicious

4a1e830050766ca432536408eca8c58c 2017-06-19 23:56:55 UTC 4 of 57 positively flagged this sample as malicious

4b2620c4d6778087a7ac92aa4cea3026 2017-09-14 05:04:50 UTC 9 of 58 positively flagged this sample as malicious

4c45fc4a7ba1a77b0c7f7479a1036702 2016-06-08 10:08:28 UTC 37 of 58 positively flagged this sample as malicious

4d193825ee038eb1b54c6633678f68e0 2017-09-14 06:36:31 UTC 7 of 56 positively flagged this sample as malicious

4db8073fb6df550e404c6b46efe9f999 2017-06-20 00:07:54 UTC 12 of 57 positively flagged this sample as malicious

4e593af1ab25873681c62ca4f49e31e3 2016-06-16 14:36:44 UTC 35 of 58 positively flagged this sample as malicious

4ef491686122ef9670a3f0925af18d9e 2017-09-14 05:36:11 UTC 24 of 59 positively flagged this sample as malicious

4f5d0ed102de7c171d1df4989c4cdcd0 2016-06-20 05:55:31 UTC 22 of 59 positively flagged this sample as malicious

4f65385b62754f793d9a5e73ef747192 2017-09-14 05:27:58 UTC 21 of 58 positively flagged this sample as malicious

4f8ec335722beb92211c1e87dd736698 2017-09-14 06:27:16 UTC 18 of 57 positively flagged this sample as malicious

50f5f6d1f0f67f15f6a15ffdae671bef 2017-08-15 01:49:35 UTC 25 of 58 positively flagged this sample as malicious

568320b732606052a095f9981f22f811 2017-09-14 06:21:43 UTC 25 of 59 positively flagged this sample as malicious

94

MD5 Date of first submission Scan Summary

5687fcea772c382ec3eba30e7474fbbe 2017-08-23 13:48:17 UTC 26 of 58 positively flagged this sample as malicious

57ae3c3a9341add2e35996231fd4a4d0 2017-09-14 05:45:22 UTC 36 of 60 positively flagged this sample as malicious

57bb3571d1af9aaa5db3d3141a39b3e6 2017-09-14 05:33:40 UTC 21 of 57 positively flagged this sample as malicious

57c514ca4f9c673c346cf448b10d63a4 2017-06-19 23:56:39 UTC 5 of 57 positively flagged this sample as malicious

5803bd08bb5e7243d8f9013a07090e9f 2017-09-14 07:20:17 UTC 21 of 58 positively flagged this sample as malicious

58a2bbdab2aee018609ebe16b4264e36 2017-06-19 19:27:04 UTC 3 of 57 positively flagged this sample as malicious

5a5666fa9a9b7d4bd293508628bd156d 2017-09-14 06:15:14 UTC 28 of 59 positively flagged this sample as malicious

5abdfc799d9df1edae9656b2634e1db9 2016-05-26 09:26:21 UTC 27 of 58 positively flagged this sample as malicious

5b648c78a18b26d037f4b5bff5b8570d 2017-09-14 05:56:22 UTC 9 of 57 positively flagged this sample as malicious

5ba639ecd5618a2bbe5170d768e74919 2017-05-06 16:39:12 UTC 28 of 58 positively flagged this sample as malicious

5bc8cca9ad55d6a64f8e6d4a9ff70515 2017-10-15 17:38:23 UTC 28 of 59 positively flagged this sample as malicious

5d7175a5fadbaa39b8adc4b0d25b6fb3 2017-09-13 08:39:06 UTC 28 of 59 positively flagged this sample as malicious

604309ac21846b22b2caae57bf67f3fb 2014-10-08 23:03:26 UTC 1 of 55 positively flagged this sample as malicious

60f34ddcbc1b17d08fbffaef22b68c54 2017-08-18 13:59:59 UTC 27 of 58 positively flagged this sample as malicious

60fc6ad449a9516e4cc28f90501dcb45 2017-09-13 10:16:50 UTC 24 of 58 positively flagged this sample as malicious

6215e3774235b0198b01591432711b1b 2017-09-14 06:18:17 UTC 20 of 58 positively flagged this sample as malicious

62c041828b1e6912dfb03298ba438a4d 2017-09-14 07:08:25 UTC 20 of 58 positively flagged this sample as malicious

630f3cb8a45c48e705884a3a7a569009 2017-09-14 07:02:52 UTC 21 of 58 positively flagged this sample as malicious

63110ebe3240e9c10f697243c5b20546 2017-08-25 04:59:54 UTC 28 of 58 positively flagged this sample as malicious

631715522c741190a7db60c7a1aa1857 2017-09-14 05:45:17 UTC 20 of 58 positively flagged this sample as malicious

63cb6b921e038f7876ad1df989adae8f 2017-09-11 18:44:58 UTC 31 of 59 positively flagged this sample as malicious

647160e2c4edb1227a9ea7f0515e7802 2017-06-19 23:56:13 UTC 4 of 56 positively flagged this sample as malicious

6600a4555b57717198efa28c2f81a580 2017-01-30 08:23:39 UTC 1 of 54 positively flagged this sample as malicious

66eb028016297b6ae9d83369fc27b8f1 2017-06-20 00:02:04 UTC 10 of 57 positively flagged this sample as malicious

67ab34a6f119169933dde52fbd98449a 2017-09-14 06:38:21 UTC 9 of 57 positively flagged this sample as malicious

68c99433880dcc983856d42bfe89fe18 2017-08-17 07:59:30 UTC 21 of 59 positively flagged this sample as malicious

69485cd1d7f33ee63035b5a51322499d 2017-09-27 14:55:33 UTC 22 of 59 positively flagged this sample as malicious

6bd761f1dc9d89088e32b0cd38a4a0bf 2017-08-31 04:19:29 UTC 29 of 60 positively flagged this sample as malicious

700419e285c8940fb27399b907e5f6f4 2017-09-14 07:55:05 UTC 27 of 59 positively flagged this sample as malicious

95

MD5 Date of first submission Scan Summary

706d02d456accd9f0c595719ecc9e4d7 2017-09-14 05:02:37 UTC 21 of 58 positively flagged this sample as malicious

70e041ceb8cf1649bedde88fcc9f2fe9 2017-09-13 05:12:25 UTC 25 of 58 positively flagged this sample as malicious

70ed42c63f6e928609b4c96c2d9bfed0 2017-09-14 06:54:43 UTC 19 of 58 positively flagged this sample as malicious

725e4daaa2e7871376b8824f081c8407 2017-09-24 15:30:30 UTC 27 of 58 positively flagged this sample as malicious

7266ddd8b30547e7b58be25068c4ca2d 2017-09-14 06:57:51 UTC 27 of 57 positively flagged this sample as malicious

73c64457c379990a2ea9d6727273f153 2017-06-20 00:01:44 UTC 9 of 57 positively flagged this sample as malicious

73d9116e2182ab33cc4ab049e4c184aa 2017-06-19 23:44:14 UTC 5 of 60 positively flagged this sample as malicious

74022ded0c626bc340442eb0b2cde924 2017-09-14 06:31:55 UTC 21 of 58 positively flagged this sample as malicious

7418711b0700bce6c1ec4ba3f73fa7ad 2017-06-19 23:56:11 UTC 5 of 55 positively flagged this sample as malicious

748fe180301f7f36b8f3241a83a90b25 2017-10-03 19:36:27 UTC 27 of 59 positively flagged this sample as malicious

7508cb71dcba0fc3ac0c636baf801fd5 2017-05-01 22:16:34 UTC 25 of 58 positively flagged this sample as malicious

763c1f2b382afaf94e646e9db3d7d0bb 2017-05-12 21:04:05 UTC 28 of 58 positively flagged this sample as malicious

77486750f502a76e530364d2fd7a7571 2017-09-28 01:24:01 UTC 29 of 60 positively flagged this sample as malicious

77fd8616952647a01a3cad7d1ecf93aa 2017-09-09 15:26:01 UTC 27 of 57 positively flagged this sample as malicious

78158b938a3ecfb21ff8aed13482990c 2017-09-11 07:58:18 UTC 28 of 59 positively flagged this sample as malicious

78163c45c6a26741edbbf5517a28401d 2017-08-22 03:52:35 UTC 16 of 57 positively flagged this sample as malicious

79992846a4d5b4e7109aa470bb8b8d26 2017-09-14 07:02:09 UTC 18 of 57 positively flagged this sample as malicious

7a84e11af214468b5095ba3ba499763e 2017-07-08 05:06:43 UTC 25 of 58 positively flagged this sample as malicious

7b06c08d5b89878285412c75e954bc46 2017-06-30 19:46:01 UTC 27 of 57 positively flagged this sample as malicious

7b68d90ee7a225765911ec65535a3470 2017-06-19 19:27:13 UTC 8 of 57 positively flagged this sample as malicious

7bc4166f715cc0c25a9ebadd33bbe3b9 2017-09-26 23:19:33 UTC 22 of 59 positively flagged this sample as malicious

7fb7c97b2e9e0073ea81381289e31263 2017-09-14 07:10:56 UTC 21 of 58 positively flagged this sample as malicious

80967df856279d385c848c588ed551f5 2017-09-14 06:11:47 UTC 25 of 60 positively flagged this sample as malicious

814487db7841e925765f575e1b3020da 2017-09-11 08:12:19 UTC 29 of 59 positively flagged this sample as malicious

81c8f77fe8eab66eb8a160e1e80032b1 2017-09-14 05:52:19 UTC 9 of 58 positively flagged this sample as malicious

832daee7ef733fa06cb2cc6c4dd772e4 2017-08-25 13:39:48 UTC 28 of 57 positively flagged this sample as malicious

845b20c45feb236d4e2660fbe6238ef7 2017-09-14 10:09:20 UTC 25 of 58 positively flagged this sample as malicious

8484ab646e4963979b51c9a743fe813c 2017-09-14 05:55:53 UTC 25 of 56 positively flagged this sample as malicious

849da70b51db35c04df5c4a2b0c49978 2017-09-14 07:33:24 UTC 7 of 58 positively flagged this sample as malicious

96

MD5 Date of first submission Scan Summary

84e3ad0d62d21739d632d2106864e79e 2017-10-14 15:10:00 UTC 20 of 58 positively flagged this sample as malicious

86c1c8fe6a156a44d9af74b23326b1a7 2017-09-14 07:06:54 UTC 7 of 58 positively flagged this sample as malicious

876b3c44516a04af8e7b778a4fb6459c 2017-06-20 00:07:32 UTC 13 of 57 positively flagged this sample as malicious

87955f9b3d487c29f3819534bfb458b8 2017-07-16 01:39:32 UTC 24 of 58 positively flagged this sample as malicious

895c506102e65622d34ec29c864c8e78 2017-09-08 22:55:33 UTC 26 of 58 positively flagged this sample as malicious

89bdece6977230f4a4bf4d9f7bdc450b 2017-06-19 23:57:12 UTC 6 of 57 positively flagged this sample as malicious

8b38f484a0a2e2f1695800ac5867ed0c 2017-09-14 06:46:51 UTC 20 of 57 positively flagged this sample as malicious

8ddb14db9417749384a22cb1ceeb5df5 2017-09-14 06:37:59 UTC 7 of 58 positively flagged this sample as malicious

8e20898079f86f7fea338d0c581dc346 2017-09-14 05:14:47 UTC 9 of 57 positively flagged this sample as malicious

8ec78510a7305d5036b83ea364919329 2017-09-13 10:27:00 UTC 29 of 60 positively flagged this sample as malicious

8f160254d4544759ee2f21ee67e8d499 2017-08-19 19:44:24 UTC 28 of 57 positively flagged this sample as malicious

8f9e3b3bee6284d7d2e60a5e4d380b51 2017-09-14 05:45:20 UTC 9 of 58 positively flagged this sample as malicious

90eb5ae793c603ff5f2bed8405cfda9a 2017-09-14 04:52:16 UTC 18 of 57 positively flagged this sample as malicious

90f4efbebefbb0d7c00fa6d2f3f493ef 2017-09-14 05:40:03 UTC 27 of 59 positively flagged this sample as malicious

9182057f942e294e6411fa09a4e1bc07 2017-09-14 05:18:22 UTC 30 of 58 positively flagged this sample as malicious

92b0647066a4bc5b2354337a3c7e53e1 2017-09-14 06:19:11 UTC 23 of 58 positively flagged this sample as malicious

9590cf63c14047adec7effeaecd50d9a 2017-09-13 10:12:46 UTC 26 of 58 positively flagged this sample as malicious

964cd8930da715979dfbf72ef6542e69 2017-09-11 03:14:01 UTC 24 of 57 positively flagged this sample as malicious

971d5b9a22978c874896f6f4fd55c163 2016-12-21 03:39:03 UTC 2 of 53 positively flagged this sample as malicious

9745d2ee10c917ed2bc5fd2a9b8437ac 2017-06-19 23:56:16 UTC 7 of 56 positively flagged this sample as malicious

97db092615eb0dc51809763ff5543ab5 2017-09-14 04:58:24 UTC 9 of 58 positively flagged this sample as malicious

982f509e3a517985a93584aa60ef6354 2014-03-06 18:10:26 UTC 0 of 56 positively flagged this sample as malicious

984f22e4d7d47e3c4251a9e942a50a88 2017-09-14 05:15:15 UTC 9 of 58 positively flagged this sample as malicious

988ccc200938e8035a706eab1d29f7ad 2017-09-25 17:31:23 UTC 37 of 60 positively flagged this sample as malicious

9a15faa383e018b4373b53635c70ceb2 2017-08-20 17:38:12 UTC 28 of 58 positively flagged this sample as malicious

9d8e3e4c23f6fea431fda602fb00629d 2017-05-06 08:04:04 UTC 30 of 57 positively flagged this sample as malicious

9eba1f4cc856783ef3c3a9d15d221d17 2017-09-14 07:09:41 UTC 7 of 57 positively flagged this sample as malicious

9f2994c909f497f4e2a06acc66da8e9f 2017-09-10 15:14:46 UTC 25 of 59 positively flagged this sample as malicious

a00168464baa118d86c9280c70837dc8 2017-09-25 01:09:32 UTC 16 of 59 positively flagged this sample as malicious

97

MD5 Date of first submission Scan Summary

a058896f22ee796009518eab6a263230 2017-09-14 06:23:37 UTC 9 of 57 positively flagged this sample as malicious

a1d3f07a32b590c449c3ecb105a92bfb 2017-09-14 06:38:20 UTC 20 of 57 positively flagged this sample as malicious

a1d511213200144ea2dcaf440800c6cd 2017-06-19 23:56:19 UTC 4 of 56 positively flagged this sample as malicious

a1f54e3c01df0a94929db5070685c8ad 2017-08-17 01:03:00 UTC 18 of 58 positively flagged this sample as malicious

a4371958b0bf2ef98c4786fc47b271f9 2017-08-23 12:59:58 UTC 25 of 58 positively flagged this sample as malicious

a4944230d62083019d13af861b476f33 2016-06-18 18:32:41 UTC 24 of 60 positively flagged this sample as malicious

a67c1814f5f558b10d11c312b2e2113a 2017-09-27 08:13:54 UTC 15 of 58 positively flagged this sample as malicious

a686d857f840751ba0f6c09387ee2fcd 2017-06-20 00:06:43 UTC 8 of 57 positively flagged this sample as malicious

a6c912cf92592835f9b5a7b0008c72fd 2017-08-20 12:00:06 UTC 25 of 58 positively flagged this sample as malicious

a75f54ecd88370e15929a3c167788650 2017-08-14 06:11:45 UTC 26 of 58 positively flagged this sample as malicious

a7a1abb5d8e87fc670b6841a805103df 2017-04-22 11:00:37 UTC 37 of 59 positively flagged this sample as malicious

a848dd1b189794df9d663875306b5669 2017-08-12 19:18:44 UTC 25 of 58 positively flagged this sample as malicious

a86488274b56159d89203a23060f4d39 2016-06-18 18:32:35 UTC 24 of 60 positively flagged this sample as malicious

a91326d1a79c6e460290a18aa25e021d 2017-08-25 13:25:52 UTC 27 of 58 positively flagged this sample as malicious

a9c23780accb1c2809d4f9a6da0e7ec6 2017-08-29 11:41:45 UTC 29 of 60 positively flagged this sample as malicious

ab4dbede113872843d937b9bb71fd8a7 2017-08-27 08:03:58 UTC 26 of 57 positively flagged this sample as malicious

abb49353283b58ef61f61c76be353f05 2017-10-13 07:10:24 UTC 26 of 59 positively flagged this sample as malicious

ac34800f6312fb3a9667f86887c66bf0 2017-09-14 05:16:23 UTC 21 of 58 positively flagged this sample as malicious

acfb380ad0694dd89dca6a0b81cc2272 2017-06-19 23:56:48 UTC 6 of 57 positively flagged this sample as malicious

ae53acde59e7f0e3a6f4d0d1a6be0ef2 2017-10-05 01:28:11 UTC 26 of 59 positively flagged this sample as malicious

af05768f8b9075c9ae29883c3536653e 2017-09-23 08:44:16 UTC 27 of 59 positively flagged this sample as malicious

af85ff722b21b31701374107f7448cee 2017-08-17 21:10:22 UTC 27 of 58 positively flagged this sample as malicious

afbfedc25605d51346369a98867227b6 2017-09-14 16:47:53 UTC 18 of 59 positively flagged this sample as malicious

b04ce8871e94f850cb1c9c3f74286965 2016-06-20 05:54:34 UTC 27 of 60 positively flagged this sample as malicious

b07745481e11ed4c26d027dee8708a1f 2017-02-26 17:14:34 UTC 29 of 58 positively flagged this sample as malicious

b1e642d300f9e887f3f667e97b26b751 2017-07-08 13:35:10 UTC 23 of 59 positively flagged this sample as malicious

b3d26632c4077e731ef2da329974519d 2017-10-14 15:02:51 UTC 8 of 58 positively flagged this sample as malicious

b414cdc90dc260035dcf2787a534fdde 2017-09-14 06:50:12 UTC 9 of 58 positively flagged this sample as malicious

b74bb1415a46e9e21c36cf688a044186 2017-09-14 07:27:06 UTC 20 of 58 positively flagged this sample as malicious

98

MD5 Date of first submission Scan Summary

b76ffcdafb3861d3c30bb5becb73ec28 2017-09-14 05:23:27 UTC 21 of 60 positively flagged this sample as malicious

b9e84b04d3f9c97912fd4e5e9e7d5346 2017-09-20 22:23:11 UTC 26 of 59 positively flagged this sample as malicious

bee9a7e795527ed632bb42e2ba928363 2017-09-14 05:31:38 UTC 9 of 58 positively flagged this sample as malicious

bef36ad5a5a6b4a5c0dbe5d4cc9c5586 2017-08-15 06:21:54 UTC 27 of 57 positively flagged this sample as malicious

bf0c5d5cfafafc3893c3b4d99f67303c 2017-09-14 07:11:20 UTC 9 of 56 positively flagged this sample as malicious

bf346e8bee16106849bd0f78a004efad 2017-07-06 22:49:30 UTC 1 of 60 positively flagged this sample as malicious

bfb5300d63e8f266f7345b6e32b5bb6b 2017-09-14 06:47:00 UTC 7 of 58 positively flagged this sample as malicious

c0c50b69f325d696a7cdb3311f235500 2017-08-15 02:05:54 UTC 28 of 58 positively flagged this sample as malicious

c10d2e684af1fa079a8229fe3ae45cf5 2017-08-17 16:07:52 UTC 27 of 58 positively flagged this sample as malicious

c13c5b779b9c3e6eaffcdc2addf29942 2017-09-14 06:33:15 UTC 7 of 58 positively flagged this sample as malicious

c1accbab60a70d1b20b7fde2c73c5d76 2017-06-20 00:01:47 UTC 5 of 57 positively flagged this sample as malicious

c2e67c8380ae5545e505cd44df4c702a 2017-08-18 12:43:18 UTC 27 of 58 positively flagged this sample as malicious

c3d6bff74f0c40ccb3197c4f6f71e6eb 2017-09-13 08:14:42 UTC 25 of 58 positively flagged this sample as malicious

c535fa75588dfa2c5c1b8c4c4473774c 2017-08-15 01:15:07 UTC 26 of 58 positively flagged this sample as malicious

c6cf74ca4d29ebbadb876394922acda0 2017-09-14 05:59:55 UTC 26 of 60 positively flagged this sample as malicious

c81f2d82a2809f7c576021e63d3f727c 2017-08-23 22:44:21 UTC 27 of 58 positively flagged this sample as malicious

c83e26d778d5bf5b21861c75fdabb48d 2017-09-14 05:27:50 UTC 9 of 58 positively flagged this sample as malicious

c90561275cdac5b734052f87cf9ff38e 2017-08-18 14:13:20 UTC 26 of 58 positively flagged this sample as malicious

caa689187bf47e5fd2a2657cec0df6d5 2017-09-26 07:42:04 UTC 26 of 58 positively flagged this sample as malicious

cac6603b4e6dab11c66581d89383a27c 2017-09-14 06:51:17 UTC 21 of 58 positively flagged this sample as malicious

cb978527dc707aaa98504f14e58df5a6 2017-09-14 06:26:18 UTC 9 of 58 positively flagged this sample as malicious

cb9f5a1898f96b7d8efcd18ec6e13f07 2017-09-14 05:54:37 UTC 20 of 56 positively flagged this sample as malicious

cc064f8f4f8fe15f8d7fc07453ab8ee4 2017-09-26 01:50:11 UTC 29 of 60 positively flagged this sample as malicious

ccb487179fe72da2c47e58eee380a260 2017-09-14 06:36:44 UTC 20 of 57 positively flagged this sample as malicious

ce31c046270623f3fd157a882449b53f 2017-09-14 07:31:52 UTC 7 of 57 positively flagged this sample as malicious

ce735a1a4202176505df4f5cd9ff4a0a 2017-09-14 05:36:25 UTC 17 of 58 positively flagged this sample as malicious

d308b9b4d4f70b95003b23e3ada307bd 2017-09-14 04:58:31 UTC 9 of 58 positively flagged this sample as malicious

d5e40f3e2d31e6c6c00d715a028db5bf 2016-06-15 09:14:46 UTC 36 of 58 positively flagged this sample as malicious

d630c62215c2cc468450fd3b578c8a45 2017-04-26 12:22:06 UTC 25 of 56 positively flagged this sample as malicious

99

MD5 Date of first submission Scan Summary

d8badd195f857f9cb0ecaf86ed6d32fd 2017-10-13 07:35:08 UTC 36 of 59 positively flagged this sample as malicious

d91b28fc92246ac0ac0ab45bb814a586 2017-09-14 05:12:53 UTC 9 of 58 positively flagged this sample as malicious

da0a7b5ade941f44c2a254444bf8f6f6 2017-09-14 05:33:20 UTC 21 of 58 positively flagged this sample as malicious

dc0000195aa0fe2d3f8a6a977fb72a5d 2017-09-13 12:32:31 UTC 19 of 58 positively flagged this sample as malicious

dc4a890cb15d3ce37fb5ed81d2db8d0b 2017-06-19 23:57:57 UTC 4 of 56 positively flagged this sample as malicious

dd512bf7255bcfe3f1aeb1bfd2395cba 2017-09-14 07:03:14 UTC 20 of 58 positively flagged this sample as malicious

de7a309e7288b276fa5e17dff62d5350 2017-05-18 02:26:43 UTC 25 of 57 positively flagged this sample as malicious

df08353fe242893b11fcb14b4315b264 2017-09-14 07:30:52 UTC 16 of 58 positively flagged this sample as malicious

e2bd3ead1d36071c0b7b3192535a9a8f 2017-09-14 05:06:20 UTC 20 of 58 positively flagged this sample as malicious

e47961f9c406d31eab55e8d96802bef8 2017-10-14 19:29:29 UTC 26 of 60 positively flagged this sample as malicious

e545bfb8dc484bd394d87dc5f9d908c3 2017-09-10 18:10:39 UTC 28 of 60 positively flagged this sample as malicious

e56fd7e8979edecf2e5a60c736e0d682 2016-12-21 03:39:11 UTC 1 of 54 positively flagged this sample as malicious

e631a27538a0731e2fec247f76d5987e 2017-09-14 05:14:27 UTC 28 of 58 positively flagged this sample as malicious

e7355da37408a07ef759fc48bbfdfe7e 2017-09-14 02:58:36 UTC 37 of 60 positively flagged this sample as malicious

e73db2a8d719529cdc28bc66c430904b 2017-05-28 22:23:46 UTC 26 of 58 positively flagged this sample as malicious

e8866f7f63d608b19268473db8b8fd90 2017-09-14 05:32:03 UTC 21 of 58 positively flagged this sample as malicious

e912b098f5a8e021e9e6d583cc34dd6e 2017-01-30 08:23:30 UTC 1 of 55 positively flagged this sample as malicious

e9315e0769af400d495a7de50ccf54e2 2017-09-14 05:25:15 UTC 18 of 57 positively flagged this sample as malicious

eb3b9051154103999852834872257d0d 2017-08-20 01:56:07 UTC 26 of 58 positively flagged this sample as malicious

eb6f16478b50df8d0f479eb47c7c557c 2017-08-20 20:37:27 UTC 26 of 58 positively flagged this sample as malicious

ec41436988e3356ce8b93c5803aa7e6c 2017-09-14 07:33:10 UTC 19 of 58 positively flagged this sample as malicious

ee25b5aecaa22190352bf59287f29161 2017-09-14 05:52:17 UTC 21 of 58 positively flagged this sample as malicious

f05c16b6fdfe3b1e099352c3d8002aa7 2017-09-14 05:58:46 UTC 9 of 56 positively flagged this sample as malicious

f11454c3ff0614432dc2cabb8a012656 2017-09-14 06:44:01 UTC 16 of 57 positively flagged this sample as malicious

f1de31cada16698cc6d212bc0f5db06d 2017-09-14 05:04:58 UTC 25 of 58 positively flagged this sample as malicious

f3b04da9a52b547533399244efd24f55 2017-08-25 13:59:18 UTC 28 of 60 positively flagged this sample as malicious

f3e1f5db377c2f11e25cbd2aa9343d37 2016-06-20 05:54:24 UTC 26 of 60 positively flagged this sample as malicious

f43e971c37d492191ee973c42d7decc2 2017-06-19 23:56:45 UTC 5 of 57 positively flagged this sample as malicious

f477afa7cafc0f8f1bf563262a96519a 2017-09-14 05:46:19 UTC 9 of 58 positively flagged this sample as malicious

100

MD5 Date of first submission Scan Summary

f56b750439eb42693334ae0c330461d4 2016-12-21 03:39:08 UTC 1 of 55 positively flagged this sample as malicious

f5dd74f08f9ea90aaeda2b2c43ea9859 2017-09-11 11:08:33 UTC 15 of 59 positively flagged this sample as malicious

f5e6002beb92d913a1ee8fdbad4eaac1 2017-09-27 20:40:22 UTC 24 of 60 positively flagged this sample as malicious

f6fdb413695acc50a536cec329214174 2017-09-14 05:26:35 UTC 19 of 58 positively flagged this sample as malicious

fde76bf4faeb9316127260c1f4b6142f 2017-07-07 17:12:45 UTC 25 of 58 positively flagged this sample as malicious

fdf19272e88f012e17b997f717e1b6d7 2017-09-14 06:01:05 UTC 9 of 58 positively flagged this sample as malicious

fe06e8e7a59cc6a50925a335f6e9c3fa 2017-09-14 04:57:36 UTC 9 of 58 positively flagged this sample as malicious

fe82c7fbcac1b1868a3c8401ea906bf1 2017-04-06 12:13:27 UTC 20 of 60 positively flagged this sample as malicious

fde04f4492b96f449fd36fe10c0e9f3c 2018-03-23 07:58:41 UTC 15 of 59 positively flagged this sample as malicious

35b6e58366611f17781a4948f77353b6 2018-03-23 07:55:33 UTC 23 of 59 positively flagged this sample as malicious

f6b9127970d56de9a65419cb628206af 2018-03-02 19:09:25 UTC 17 of 60 positively flagged this sample as malicious

eb8887024deb1889b5ac6cee37c9ef7d 2018-03-02 19:12:29 UTC 24 of 60 positively flagged this sample as malicious

101

	Evaluating Open Source Malware Sandboxes with Linux malware
	Declaration
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1. Introduction
	1.1 Background, motivation and objective
	1.2 Organisation

	2 Literature Review
	2.1 Introduction
	2.2 Malware and the Linux Operating System
	2.3 Linux Operating System Internals
	2.3.1 Internals
	2.3.1.1 System Architecture
	2.3.1.2 Memory Management
	2.3.1.2.1 Pages, virtual memory and swap operations
	2.3.1.2.2 Memory Zones
	2.3.1.2.3 Zone Allocators

	2.3.1.3 Process control
	2.3.1.3.1 System calls and signals
	2.3.1.3.2 Process data structure
	2.3.1.3.3 Copy on write
	2.3.1.3.4 Processes, threads, tasks, clone system call and scheduling
	2.3.1.3.5 Kernel Synchronisation

	2.3.1.4 Device Control
	2.3.1.4.1 Device Drivers
	2.3.1.4.2 Virtual File System

	2.3.2 Forensic Artefacts
	2.3.2.1 Log files
	2.3.2.2 Memory
	2.3.2.3 Executable and Linkable Format
	2.3.2.4 Configuration files

	2.4 Malware Analysis
	2.4.1 Static Analysis
	2.4.2 Dynamic Analysis

	2.5 Related Work
	2.5.1 Survey of malware analysis solutions
	2.5.1.1 Components of analysis systems
	2.5.1.2 Malware variants and automated analysis
	2.5.1.3 Anti Analysis
	2.5.1.4 Sandboxes and Indications of compromise

	2.5.2 Analysis of Linux Malware Samples

	2.6 Research Goals

	3 Research Design
	3.1 Introduction
	3.2 Review of malware analysis methodology
	3.2.1 Sourcing malware samples
	3.2.2 Analysis methods

	3.3 Data Acquisition
	3.3.1 Honeypot
	3.3.1.1 Open access system
	3.3.1.2 Firewall
	3.3.1.3 Switch
	3.3.1.4 Intrusion Detection System
	3.3.1.5 Trusted upstream server

	3.3.2 Public Repositories
	3.3.2.1 VirusTotal
	3.3.2.2 VirusShare

	3.4 Analysis methodology
	3.4.1 Honeypot setup
	3.4.2 Sandbox
	3.4.2.1 REMnux
	3.4.2.2 Limon
	3.4.2.3 Cuckoo
	3.4.2.4 Detux
	3.4.2.5 HaboMalhunter

	3.5 Research Questions and Hypotheses
	3.5.1 REMnux
	3.5.2 Limon
	3.5.3 Cuckoo
	3.5.4 Detux
	3.5.5 HaboMalHunter

	3.6 Conclusion

	4. Results
	4.1 Introduction
	4.2 Honeypot analysis
	4.3 Sandbox static analysis results
	4.3.1 REMnux
	4.3.2 Limon
	4.3.3 Cuckoo
	4.3.4 Detux
	4.3.5 HaboMalHunter

	4.4 Sandbox dynamic analysis results
	4.4.1 REMnux
	4.4.2 Limon
	4.4.3 Cuckoo
	4.4.4 Detux
	4.4.5 HaboMalhunter

	4.5 Automation and reporting features evaluation
	4.5.1 REMnux
	4.5.2 Limon
	4.5.3 Cuckoo
	4.5.4 Detux
	4.5.5 HaboMalHunter

	4.6 Conclusion

	5. Discussion
	5.1 Introduction
	5.2 Dataset family classification
	5.3 Static Analysis
	5.3.1 Obfuscation and packing
	5.3.2 Virustotal
	5.3.3 Answers to sub-questions on packing and obfuscation
	5.4 Dynamic Analysis
	5.4.1 REMnux
	5.4.2 Limon
	5.4.3 Cuckoo
	5.4.4 Detux
	5.4.5 HaboMalHunter

	5.5 Answers to research hypotheses
	5.6 Conclusion

	6. Conclusions
	6.1 Introduction
	6.2 Thesis Review
	6.3 Contribution
	6.4 Limitations
	6.4.1 Diversity of dataset
	6.4.2 System libraries and hardware extensions
	6.4.3 Internet Access

	6.5 Future Work
	6.6 Conclusion

	7. References
	APPENDIX
	List of malware samples

