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Abstract 

In this paper, we investigate the extent to which features derived from bank 

statements provided by loan applicants, and which are not declared on an 

application form, can enhance a credit scoring model for a New Zealand 

lending company. Exploring the potential of such information to improve 

credit scoring models in this manner has not been studied previously. We 
construct a baseline model based solely on the existing scoring features 

obtained from the loan application form, and a second baseline model based 
solely on the new bank statement derived features. A combined feature 

model is then created by augmenting the application form features with the 
new bank statement derived features. Our experimental results show that a 

combined feature model performs better than both of the two baseline 
models, and that a number of the bank statement derived features have value 

in improving the credit scoring model. As is often the case in credit scoring, 
our target data was highly imbalanced, and Naive Bayes was found to be the 

best performing classifier, outperforming a number of other classifiers 
commonly used in credit scoring. Future experimentation with Naive Bayes 

on other highly imbalanced credit scoring data sets will help to confirm 

whether the classifier should be more commonly used in the credit scoring 
context. 
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1. Introduction 

Credit scoring models are widely used by banks and other financial 
institutions, in order to assess the risk of default of applicants for loans. 

Credit scoring can be thought of as a classification problem. Credit scoring 

models take a vector of attributes for a loan applicant, and given these 

attributes, attempt to discriminate between goods and bads; that is, to 

discriminate between those that are not likely to default or be in arrears with 
their payments, and those that are. 

A lending company in New Zealand scores loan applicants based on 11 

attributes obtained from an application form, which is filled out online when 
applying for a loan. The lending company had recently begun to incorporate 

data from an application called Credit Sense 1  into their data warehouse, 

which automatically extracts line-by-line bank statement data for a 90-day 
period of spending. The bank statement data is currently used for purposes 

such as income verification. The company was interested in exploring the 
potential of this data for credit scoring purposes. 

The company was firstly interested in seeing whether a sufficiently 

predictive scoring model could be created using only the bank statement 
derived features, in which case the questions in the online application form 

would then be unnecessary to ask. Loan applicants would then be able to 

complete the application process faster, and the lending company would 
potentially be able to write more loans. If this model was not found to be 

sufficiently predictive, then the lending company was interested in 
investigating the extent to which the bank statement derived features could 

be of use in developing an improved scoring model by supplementing 
existing scoring features. A number of machine learning and statistical 

methods have been used for experimentation in this paper to develop this 
new scoring model. 

The novelty of our contribution is in the investigation of deriving features 
from bank statement data provided by loan applicants, which are not 

declared on the loan application form, to be used in credit scoring models. To 
the best of our knowledge, this has not been studied previously. For this 

investigation, firstly we construct two baseline models. The first, based 

solely on the existing scoring features, and the second, based solely on the 

new bank statement derived features. Secondly, we create a combined 

                                                        
1 https://creditsense.com.au 
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feature model by combining the existing scoring features with the new bank 

statement derived features. 

Our experimental results using ROC analysis show firstly that the 

application form feature baseline model outperforms the bank statement 
baseline model, and in turn, a combined feature model performs better than 

both of the two baseline models. This indicates that the bank statement 

derived features have value in supplementing, but not in replacing, the 

application form features. A Naive Bayes model consisting of the 11 existing 
application form features, along with 5 new bank statement derived features, 

was found to be the best performing model. 

The rest of the paper is organized as follows. Section 2 provides a 

background on credit scoring. Section 3 presents our research goals and 
methodology – in particular, the knowledge discovery in databases 

framework that is used to guide the data mining and knowledge discovery 
process. Section 4 outlines the candidate models that are used in the 

experimentation, our experimental approach, and the results of the 
experiments. Section 5 provides some discussion of the results, and Section 

6 concludes the paper and presents some avenues for further work. 

2. Credit Scoring 

Thomas et al. (2002) defined credit scoring as “the set of decision models 
and their underlying techniques that aid lenders in the granting of consumer 

credit. These techniques decide who will get credit, how much credit they 
should get, and what operational strategies will enhance the profitability of 

the borrowers to the lenders”. The present study is focused on models 
deciding who will get credit (application scoring), rather than on modelling 

the behaviour of existing loans (behavioural scoring). 

There has been a significant amount of academic research in the area of 

credit scoring. There exists a number of review papers in the literature on 
credit scoring including those by Rosenberg & Gleit (1994), Hand & Henley 

(1997) and Thomas (2000). More recent expositions include that by Abdou 
& Pointon (2011). Yu et al. (2008) also provided a useful summary in chapter 

1 of their book, althought the book primarily focused specifically on the use 

of Support Vector Machines for credit scoring. 

There are a number of important benefits from making use of credit 
scoring models. While initially credit analysts in the industry used methods 

based on their own judgment, sophisticated statistical methods found their 
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way into use and have generally been found to be more objective, as well as 

enabling the large scale automation of the loan acceptance process, and 
writing more loans than they otherwise would have been able to, at lower 

cost. Economic pressures from an increase in the demand for credit, as well 
as greater competition, and the development of new technology, are all 

factors that have led to the development of statistical models to aid the 

lending decision (Hand & Henley, 1997). Not only are scoring models the only 
way of handling the large number of applicants nowadays, but also they 

seemingly produce more accurate classifications than the subjective 
judgemental assessments by human experts (Rosenberg & Gleit, 1994). 

In assessing the credit risk of a loan applicant, a lending company 

typically obtains applicant characteristics via an application form, and often 
from credit bureau checks, which check the past credit history of applicants. 

In some cases, an initial application form screens good and bad risk 

applicants, and only those who proceed past this stage are checked by credit 

bureau agencies. This sequential assessment of loan applicants avoids 

unnecessary costs and provides quick credit application decision time to 
most applicants (Hand & Henley, 1997). 

As mentioned earlier, credit scoring can be viewed as a classification 

problem, where we attempt to discriminate between good and bad risks, 
given their characteristics. A useful mathematical summary of the traditional 

credit scoring evaluation problem was outlined in Yu et al. (2008), and is 

summarized below. Let 

 x = (x1,x2,..,xm)T (1) 

be a vector of m random variables that describe the information from a 
customer’s application form and credit bureau information. The actual value 

of the attributes for a specific loan applicant k are 

 xk = (x1k,x2k,..,xmk)T . (2) 

All samples are then given by 

 S = (xk,yk), k = 1,2,..,N (3) 

where N is the number of loan applicant samples in the data set, xk is the 
attribute vector of the kth applicant, and yk is the observed result of whether 

or not there was timely repayment. For example, we could define yk = 1 
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(‘good’) if the customer repaid the loan on time, and yk = 0 (‘bad’) if applicant 

k did not repay the loan (or was in arrears for some time). 

In cases where we have both the attribute vector and the observed loan 

outcome, the data is labelled and thus we are able to make use of supervised 
learning models for classification from statistics and machine learning. 

In order to make an accurate judgement of the likelihood of yk, given the 
applicants attribute vector xk, there have been a number of models that have 

been applied to the problem, drawing from different disciplines including 
machine learning, statistics and operations research. By analysing the 

techniques used in a large number of research papers, Yu et al. (2008) 
grouped these techniques broadly to fit within 5 categories as shown in Table 

1. 

Technique Category Technique 

Statistical Models Linear Discriminant Analysis 

Logistic Regression 

Probit Regression 

K-Nearest Neighbours 

Decision Trees 

Mathematical Programming Linear Programming 

Quadratic Programming 

Integer Programming 

Artificial Intelligence Artificial Neural Networks (ANN) 

Support Vector Machines (SVM) 

Genetic Algorithm 

Genetic Programming 

Rough Set 

Hybrid Approaches ANN and Fuzzy Systems 

Rough Set and ANN 

Fuzzy System and SVM 

Ensemble Approaches ANN Ensemble 

SVM Ensemble 

Hybrid Ensemble 
Table 1: Techniques for Credit Scoring (Yu et al., 2008) 

While traditionally statistical and linear programming techniques were 
most commonly applied in credit scoring, sophisticated methods from 
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artificial intelligence and machine learning have also become commonly 

applied in the area of credit scoring. 

3. Research Goals and Methodology 

3.1. Research Goals 

The primary goals of this research are as follows: 

1. Extract relevant features from the bank statement data which is a non-

trivial task. These features are then potentially used for modelling 
credit risk. 

2. Constructing following baseline models: 

• based solely on the existing scoring feature set, obtained from the 

information declared on the loan application form. 

• based solely on the bank statement derived feature set, obtained 
from bank statement information provided by loan applicants via 

Credit Sense. 

3. Comparing the performance of the combined feature model (both the 

application form and bank statement derived features) with the above 
defined two baseline models. The key purpose of the performance 

comparison is to investigate whether the bank statement derived 
features are sufficiently predictive by themselves for a credit scoring 

model, or the extent to which the bank statement derived features can 
supplement the existing scoring features to enhance a credit scoring 

model. 

3.2. Methodology 

For this project, a structured experimental approach to the data mining 
process was sought, in order to increase the likelihood of achieving good 

results. The knowledge discovery in databases process (KDP) outlines a 
formal experimental approach to extracting and creating knowledge from 

data. The KDP is defined as the non-trivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data (Fayyad et 
al., 1996). The KDP involves having some input data, and in the end, coming 

out with some new knowledge that is valuable and useful to the organization. 

KDP frameworks were initially developed in academia, and frameworks 
from industry followed (Cios et al., 2007). Two models that are considered to 

be leading ones are that developed by Fayyad et al. (1996), which was 
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developed from academic research, and the second is the Cross Industry 

Standard Process for Data Mining (CRISP-DM) model (Chapman et al., 

 

Figure 1: Steps in the CRISP-DM model of the KDP. 1. Business Understanding 2. Data 
Understanding 3. Data Preparation 4. Modeling 5. Evaluation 6. Deployment. Source: Cios et 
al. (2007). 

2000), which was developed out of a project led by a number of organizations 

from industry. 

Due to this project being conducted with industry, we decided to apply 

the CRISP-DM methodology. This framework consists of 6 main steps as 
shown in Figure 1. 

In the first two steps, the data miner needs to gain understanding of the 

business or application domain. In the current project, this involved 

becoming familiar with the lending company and its data sources. This is a 
natural process of spending time in the company, talking with staff, as well 

as preliminary investigation and querying of the lending company’s data 
warehouse. 

Data preparation or preprocessing involves the (often time-consuming) 

process of creating a final target data set that can be used as an input to the 

machine learning or statistical model. The data preprocessing indeed proved 

to be a time consuming aspect of the present study, and involved extracting 

new features from the bank statement data, and then augmenting these 
features with the existing scoring features. Nonetheless, it is a very important 
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step as it can considerably affect the success of the data mining experiments 

and helps to ensure that one does not obtain misleading results (Pyle, 1999). 

Algorithm selection in the present study involves investigating previous 

literature in the application domain, and selecting and experimenting with 
algorithms that have been successful in previous studies. The 

experimentation with the different candidate models constitutes the data 

mining step. 

The final steps are to evaluate the model, its potential use to the company, 

and potentially to deploy it in some way. This involves putting the results 

and/or knowledge obtained from the model to use e.g. through deploying the 

model into existing company IT systems, or in the production of a report 

outlining the analysis and results from the project. 

4. Experiments 

4.1. Experimental Arrangements 

4.1.1. Candidate Models 

An important step in the knowledge discovery process is selecting 

candidate models. The candidate models that were used for experimentation 

in this study are as follows: 

1. Logistic Regression 

2. Naive Bayes 

3. Support Vector Machine (SVM) with a linear kernel 

4. Nearest Neighbor 

5. J48 Decision Tree 

6. Random Forest 

Linear Discriminant analysis (LDA) was not considered in this study due 
to its difficulty in dealing with nominal features. Neural Networks were not 

used because of their lengthy training time, and lack of interpret ability. We 
also decided not to consider mathematical programming approaches, as to 

consider these would require a completely different experimental set-up in 
terms of defining objective functions and constraints. Naive Bayes, 

interestingly, was not noted by Yu et al. (2008) as being a common technique 

in credit scoring; however for comprehensiveness, it was included in this 
study. 

To simplify the experimentation, all learning schemes were run in WEKA 

(Hall et al., 2009) with their default parameter settings. 
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We now briefly outline some of the theoretical background of each of the 

candidate models that will be used in the experimentation. 

Logistic Regression is a general linear model (GLM) that models a binary 

outcome (0/1, good/bad etc.) on a certain number of predictors. Logistic 
regression is the most commonly applied and a strong performing method 

for credit scoring. A strong theoretical basis in that is that it directly gives us 

an additive log odds score, which is a weighted linear sum of the attribute 

values (Thomas, 2009). 

A logistic transformation yields a dependent variable that is between 0 

and 1, and this provides an intuitive interpretation, being the probability of 

default given the attribute vector for that particular loan applicant. The 

logistic function is given by 

 . (4) 

In logistic regression, we substitute the standard linear regression model 
into the logistic function (4). That is, 

y = β · x = β0 + β1x1 + β2x2 + ... + βkxk (5) 

 x (6) 

where y is the class value (good, bad), and x is a vector of applicant 

characteristics. 

Rearranging (6) and taking the natural logarithm of both sides yields 

 , (7) 

 . (8) 

If p(x) is defined as taking the value 0 if the loan applicant is a bad risk, 
and 1 if the loan applicant is a good risk, then the term p(x) is the conditional 

probability of being a good risk, given the loan applicants attribute vector x. 

Estimation of the coefficients of the model in (8) can be achieved using 

maximum likelihood estimation (MLE), where we try to find estimates for the 

beta coefficients such that the predicted probability of default for each 

individual corresponds as closely as possible to the individuals observed 
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status (James et al., 2013). This MLE procedure is built into most modern 

statistical computing packages. 

The Naive Bayes classifier is a probabilistic classifier that uses the 

wellknown Bayes Theorem from probability theory. We follow the notation 
of Hall et al. (2011), and state Bayes Theorem as 

  (9) 

where H denotes the hypothesis (the class of the particular instance), and E 

represents the evidence (the attribute values for the particular instance). 

Given an applicant attribute vector x and a new instance to classify, if 

P(Good|x) is larger than P(Bad|x) then we classify the new instance as good, 
but otherwise we classify the new instance as bad. 

The key assumption of Naive Bayes is that the attributes are conditionally 
independent of each other, given the class. When we have conditional 

independence of attributes given the class value, we can write (9) as 

  (10) 

Where P(H) is the prior probability of obtaining class H, regardless of the 
attributes, and the P(Ei|H) denote the probability of obtaining that attribute 

value Ei, given the class value. Although we do not have the denominator in 

Bayes Theorem P(E), one can normalize the likelihoods so that the P(H|E) 
probabilities add up to one for the different class values. 

Although the conditional independence assumption rarely holds in 
practice, the Naive Bayes classifier has nonetheless often provides 
impressive results (Hall et al., 2011). Its probabilistic foundation is also 
relatively interpretable and intuitive. 

Support vector machines (SVM) perform classification by attempting to 

divide the points that belong to the two classes by constructing the largest 
possible ‘wedge’ between the two classes. The SVM was first proposed in 

Cortes & Vapnik (1995). 

The SVM produces nonlinear boundaries by constructing a linear 
boundary in a large, transformed version of the feature space (by using a 

kernel function), and the method does not require that the classes be linearly 
separable (James et al., 2013). A soft margin allows some observations to be 

on the incorrect side of the margin or hyperplane. A parameter known as the 

complexity parameter (often denoted by C) reflects the number and 



 

11 

seriousness of violations to the margin and hyperplane that we are willing to 

tolerate. 

By using a soft margin, SVM usually generalizes well. SVM has proved to 

be a powerful method for classification that has outperformed other methods 
in a wide variety of application domains e.g. text categorization and face and 

fingerprint identification, and has been successful in various studies of credit 

risk evaluation (Yu et al., 2008). As a result of the SVM depending primarily 

on (possibly few) support vectors, the method is quite robust to data noise. 
A weakness of SVM is that the output of the model (weights) are not 

particularly interpretable. 

The k-nearest neighbors method classifies an unseen data instance using 

the classification of the instance(s) that are closest to the unseen instance, 
using some specified distance metric (Bramer, 2007). The algorithm 

determines the distance between the test instance and every training 
example and selects the set of k training instances to the test example, then 

it predicts the most common class of these nearest training examples by a 
majority-voting scheme (Pang-Ning et al., 2006). In the special case where k 

= 1, we simply refer to the algorithm as the nearest neighbor classifier. For 
simplicity, we use k = 1 in the experiments in this paper. By far the most 

common distance metric used is Euclidean distance. The Euclidean distance 
D between two attribute vectors in n-dimensional Euclidean space x = 

(x1,x2,..xn) and y = (y1,y2,..,yn) is given by 

 . (11) 

An advantage of the nearest neighbor classifier is in its simplicity, in that 
the algorithm is relatively easy to understand and can guide one’s intuition 

(Aha et al., 1991). Its theoretical basis is appealing when considering how the 
algorithm is aligned intuitively to how traditional loan decisions were made 

via human judgement, where credit officers compared the application 
characteristics to previous similar applicants in order to classify a new loan 

applicant. Another advantage is that since all work is done when we want to 

classify a new instance rather than when the training data is processed (Hall 

et al., 2011), classification speed is very fast. On the other hand, since the 

distance of all combinations between test and training instances must be 
computed, the training speed of the algorithm can be slow. 
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The J48 decision tree is the WEKA implementation of the C4.5 decision 

tree developed by Quinlan (1993). Decision Trees summarize training data 
in a tree structure, where each branch represents an association between 

attribute values and a class label (Novakovi´c et al., 2011). The tree 
recursively splits the training data based on tests on the potential of feature 

values in separating the classes (where for C4.5/J48, potential is measured 

by information gain). New test instances are simply classified by following 
the decision rules from the top node of the tree downwards. 

The main advantage of the decision tree classifier is in its output: the tree 

structure can provide a compact and interpretable structure with decision 
rules to classify fresh test instances. However, if not pruned adequately, trees 

can become overly complex and can overfit the training data. 

Random Forests (Breiman, 2001) are an ensemble method, which 

combine the votes of multiple decision trees that have been generated, 
through a bagging procedure. Candidate features to split on are selected 

randomly, from a set of a number of the most important features. The random 
forest calculates a response variable y by creating many (usually several 

hundred the default in WEKA is 100) different decision trees and then 
putting each object to be modeled down each of the decision trees - the 

response is then determined by evaluating the responses from all of the trees 
(Horning et al., 2010). 

Although random forests have proven to usually perform better than 
single decision trees, Random Forests lose their interpretability when 

compared with a single decision tree structure. 

4.1.2. Model Evaluation Metrics 

A common way to evaluate the performance of a classifier is by observing 

a confusion matrix (Table 2). A confusion matrix shows all of the instances in 

the data set, categorized into four different categories: Goods that were 
classified correctly as such (TP/True Positives), Bads that were classified 

correctly as such (TN/True Negatives), Goods that were incorrectly classified 
as Bads (FN/False Negatives), and Bads that were incorrectly classified as 

Goods (FP/False Positives). 

 
Classified Bad Classified Good Actual 

Bad TN FP Actual Good FN TP 

 

Table 2: Confusion Matrix in Credit Scoring 
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The true positive rate is the proportion of actual goods that were correctly 

classified as such: 

 . (12) 

Similarly, the true negative rate is the proportion of actual bads that were 

classified correctly as such: 

  (13) 

In the credit scoring context, the costs of misclassification are quite 
different. False negatives only refer to the opportunity cost of lost interest 

that could have been gained, whereas for false positives, the lender loses 
some or all of not only the interest, but also the principal that was to be repaid 

(Abdou & Pointon, 2011). Therefore, false positives are significantly costlier 
since these are people who were classified as being good by the model, and 

granted a loan, but actually turned out to be bad. 

Accuracy is the most common metric to evaluate the performance of 

classifiers. Accuracy represents the proportion of total instances that were 
classified correctly by the model: 

  (14) 

When the input data set is balanced, and there are equal costs associated 

with errors, accuracy is an appropriate measure to maximize when selecting 
a model. However, with imbalanced data and unequal error costs, the ROC 

curve or other similar techniques are more appropriate (Chawla et al., 2002). 

In the case of highly imbalanced data (as we have in our data set), it is trivial 
for a classification model to obtain very high accuracy by simply classifying 

every loan applicant as a good (Elkan, 2001). But if all loan applicants are 
classified as good by the model, no actual bad applicants will be correctly 

classified as bad, which would obviously be a poor model for our purposes. 

An ROC curve plots the true positive (TP) rate – the proportion of good 
risks that are correctly classified, as a function of the false positive (FP) rate, 

for the whole possible range of cut-off values (Bastos, 2007). It is often easier 

to think of the x-axis as 1−TNRate. The ROC curve represents a trade-off 
between TP Rate, and TN Rate. Resampling or cost sensitive classification can 

move us to a different point on the ROC curve. More favorable models have 



 

14 

ROC curves that are situated towards the top-left hand corner of the (TP, FP) 

space. 

Rather than attempting to maximize accuracy, in the presence of 

imbalanced data it is common to attempt to maximize the area-under-ROC-
curve (AUC) measure. The AUC measure can show the general performance 

of a model to another model, in one number. 

4.1.3. Setup 

In this section, we outline some of the data preprocessing steps 
undertaken, as well as the characteristics of the target data set. 

Feature Extraction 

Data preprocessing is an important and often time consuming part of any 

real-world data mining project. 

In the present study, data preprocessing firstly involved feature 

extraction from the lending company’s data warehouse. The applicant 
features from the online application form, as well as the loan status (current, 

in arrears, defaulted), were held in one particular table in the data 
warehouse. The Credit Sense (bank statement) data was held in other 

separate tables in the data warehouse. OLAP queries in SQL Server were used 
to extract the data, and the two sets of features were then joined using the 

Pandas library in Python. 

Relevant features to extract from the bank statement data were decided 

on in consultation with two senior staff members at the lending company, 
both of whom have deep knowledge of the credit industry. 

Location and Merchant information was also initially extracted from the 

bank statement transactions, but were not found to be useful for modelling 
purposes (although location information is useful for address verification). 

The final feature set is shown in Table 3. 

Class Values: Defining ‘Bad’ 

In credit scoring, we often refer to good risks or simply ‘goods’, and bad 
risks or simply ‘bads’. It is important to be clear in our definition of what 

represents the good class and what represents the bad class, for the class 
values in the target data set. 

Upon consultation with a number of staff within the lending company, it 
was decided to use the following as the definition of bad: a bad is someone 

who has either been 90 days or more in arrears or has already defaulted. 
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Note that the 90 days in arrears aspect of this definition is consistent with 

the definition of default under the Basel II Accord (Siddiqi, 2012). 

Feature Selection 

In machine learning, feature selection methods are generally divided into 
two groups: filter methods and wrapper methods. 

Wrapper methods are scheme dependent, and evaluate different possible 
subsets of features from the original set (using some search method) to come 

up with the best subset for that particular classifier (Hall et al., 2011). Due to 
the fact that they evaluate many different subsets of features using the 

learning scheme, wrapper methods are computationally expensive and can 
sometimes result in over fitting. They were not used in this study because of 

their computational expense. 

Filter methods on the other hand, look at the predictive power of 

attributes using a particular measure, in a manner that is independent of the 

classifier used. Yang & Pedersen (1997) and Forman (2003) conducted 

comparative studies on filter methods in the context of text classification, and 
found that Chi-squared ranking and information gain ranking are among the 

best methods of feature selection for classification purposes (Yang & 
Pedersen (1997), Forman (2003) as cited in Geng et al. (2007)). 

The approach in this study for feature selection was to rank the features 
based on their Chi-squared statistic and information gain with respect to the 

class, vary the number of features that are included in the model, and 
investigate the AUC value at different numbers of features. It was found that 

information gain produced very similar rankings to the Chi-squared statistic, 

and therefore ultimately it was decided to use only the Chi-squared statistic 

as the means of ranking features. Attribute selection is performed within the 
filtered-classifier meta learner in WEKA, so that we do not introduce bias by 

performing feature selection before training the model. 

Discretizing Numeric Features 

Numeric variables that are used in credit scoring are usually discretized 
into bins. Discretizing continuous variables has a number of advantages that 

are mentioned in Siddiqi (2012), including that doing so offers an easier way 

to deal with outliers, makes it easy to understand the nature and strength of 

relationships, and enables one to develop insights into the behaviour of risk 

predictors. 
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We discretize numeric features using the Discretize filter within the 

filteredClassifier meta-learner within WEKA, before applying the attribute 
selection filter. The binning algorithm used is the entropy-based multi-

interval discretization method proposed by Fayyad & Irani (1992). 

Class Imbalance 

Data sets used for credit scoring are usually imbalanced, since the number 
of bad risks is usually small relative to the number of good risks. Our target 

data set was highly imbalanced, with the proportion of bad instances only 

1.6% of the total number of instances (7401 good instances, 121 bad 
instances). 

There are a number of approaches to dealing with the class imbalance 

problem. One of them is using cost-sensitive learning (Elkan, 2001), where 
penalties are imposed for particular types of misclassification. However, this 

approach relies on knowing the exact cost of misclassification, which can be 

difficult to determine. 

Another approach is to reduce the number of instances in the good class 
in some way (under-sampling), or to boost the number of instances in the 

bad class (oversampling). A commonly used approach to oversampling the 
minority class is called Synthetic Minority Over-Sampling Technique 

(SMOTE), proposed by Chawla et al. (2002), which creates synthetic 
instances for the minority class by taking each minority class instance and 

introducing synthetic instances along the line segments joining any/all of the 
k minority class nearest neighbors. 

Brown & Mues (2012) investigated the performance of a number of credit 

scoring models on real world data sets with different levels of imbalance, and 

found that random forests performed well with data sets with large 
imbalance, but SVM with a linear kernel, QDA and C4.5 all performed poorly 

with imbalanced data. Marqu´es et al. (2013) reviewed the effectiveness of a 
number of oversampling techniques (e.g. SMOTE and newer extensions of 

SMOTE) compared with undersampling techniques, and found that the 
oversampling techniques outperformed the undersampling techniques in 

most cases, especially when logistic regression was used. 

Experimental Setup 

Most learning schemes output probabilities as part of the classification 

process. For example, by default, logistic regression classifies an applicant as 
good if the conditional probability of being good, given their attribute vector 
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x, is greater than 0.5, and bad otherwise. That is, If P(Good|x) > 0.5 then 

classify as Good; else classify as Bad. 

It was found in the experimentation that using the default cut-off value of 

0.5 generally resulted in poor discrimination in the bad class (nearly all bad 
risks would be classified as good risks), except for the Naive Bayes classifiers, 

which provided good performance regardless. 

The threshold selector selects a mid-point threshold on the probability 
output of a particular classifier. The midpoint threshold altered from the 

default of 0.5, and is set so that a given performance measure is optimized. In 

this study, the threshold selector was run to optimize the F1 measure, which 

balances classifier precision and recall. The F1 measure is defined as the 

harmonic mean between precision p and recall r (Pang-Ning et al., 2006): 

 . (15) 

The harmonic mean tends to be closer to the smaller of the two values used 
in the calculation. 

Threshold selection was performed with all classifiers for the purposes of 

initial comparison of candidate models. Once we have found the best 
performing model, we will then investigate the use of cost sensitive 

classification (rather than a resampling approach) to deal with the class 
imbalance. 

The model configurations in WEKA were set up so that base classifier 
(Naive Bayes, Logistic Regression, SVM etc.) were wrapped within the 

filtered-classifier meta-learner (which performs attribute discretization and 

attribute selection), and the filtered-classifier was in turn wrapped within 

the threshold-selector meta-learner. 

The features in each of our three feature sets (bank statement derived, 

application form derived, and combined) were ranked according to their 
Chisquared Statistic with respect to the class. The combined feature set 

rankings are shown below in Table 3. All features were initially included in 
the model, and the lowest ranked features were eliminated from the model 

one by one. At each number of features, each classifier was run, and the AUC 
value was recorded. 



 

18 

4.2. Results 

4.2.1. Baseline Model with Application Form Features 

The AUC for each model, for the specific number of application form 

features, is shown in Figure 2. Naive Bayes was found to be the best perform- 

Rank Feature Source Chi-Square 

1 Demographic Feature 1 Application Form 140.5529 

2 Demographic Feature 2 Application Form 106.753 

3 Demographic Feature 3 Application Form 85.0343 

4 Loan Feature 1 Application Form 82.0138 

5 Bank Statement Transaction Feature 1 Bank Statement 79.9832 

6 Employment Feature 1 Application Form 55.6844 

7 Bank Statement Transaction Feature 2 Bank Statement 41.9988 

8 Employment Feature 2 Application Form 37.638 

9 Demographic Feature 4 Application Form 36.2622 

10 Demographic Feature 5 Application Form 32.9058 

11 Demographic Feature 6 Bank Statement 30.476 

12 Demographic Feature 7 Application Form 25.2823 

13 Credit Card Type 1 Bank Statement 16.987 

14 Bank 1 Bank Statement 12.5209 

15 Demographic Feature 8 Application Form 11.7183 

16 Demographic Feature 9 Application Form 9.5036 

17 Credit Card Type 2 Bank Statement 5.6001 

18 Bank 2 Bank Statement 4.722 

19 Credit Card Type 3 Bank Statement 4.1162 

20 Credit Card Type 4 Bank Statement 1.5046 

21 Bank Statement Transaction Feature 3 Bank Statement 0.8387 

22 Bank 3 Bank Statement 0.7701 

23 Bank 4 Bank Statement 0.3769 

24 Benefit Type 1 Bank Statement 0.3768 

25 Bank 5 Bank Statement 0.2995 

26 Benefit Type 2 Bank Statement 0.1636 

27 Bank 6 Bank Statement 0.0187 

28 Benefit Type 3 Bank Statement 0.0163 
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29 Benefit Type 4 Bank Statement 0.0163 
Table 3: Ranking of Combined Feature Set by Chi-squared Statistic with respect to the class. 
Note that the features have been anonymised for confidentiality purposes, as requested by 
the lending company 

ing classifier, followed by Logistic Regression. Random Forest and Nearest 

neighbors yielded similar performance to each other, but were both inferior 
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 1 2 3 4 5 6 7 8 9 10 11 

# Features 

Figure 2: Comparison of AUC for each candidate model with the existing application form 
features 

to Naive Bayes and Logistic Regression. It is noticeable that both the SVM and 

J48 models perform very poorly with this highly imbalanced data set 
(consistent with the findings of Brown & Mues (2012)), with both classifiers 

being unable to classify any bad applicants correctly. 

4.2.2. Baseline Model with Bank Statement Derived Features 

The AUC for each model, for the specific number of bank statement 
derived features, is shown in Figure 3. Naive Bayes and Logistic Regression 

are the best performing classifiers with the bank statement derived features. 
Random Forest and nearest neighbor classifier again both had similar 

performance to each other. Comparing Figure 2 and Figure 3, we can see that 
AUC values for the candidate models are clearly higher with the application 

form feature set than with the bank statement derived feature set. Thus, we 

can conclude that the lending company should not develop a credit scoring 
model solely with the bank statement-derived features. 
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4.2.3. Combined Feature Set Model 

We have established that models performed better with the 

application form feature set than with the bank statement derived 

feature set. We now investigate the extent to which the bank 

statement derived features can complement the existing application 

form features to improve AUC. The results 

 
# Features 

Figure 3: Comparison of AUC for each candidate model with the bank statement-derived 
features 

using the combined feature set are shown in Figure 4. We can see that Naive 

Bayes is clearly the best performing classifier on the combined feature set. 

The Naive Bayes classifier reaches its highest AUC value (0.829) when 16 
features are included in the model. Evidently, this feature set consists of all 

of the 11 existing application form features used by the lending company, 
along with 5 of the new bank statement derived features. 

5. Discussion 
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5.1. Evaluating the Final Model 

We now investigate specifically whether the combined 16-feature 

Naive Bayes model is superior to a Naive Bayes model based on the existing 
11 application form features that are currently used for scoring by the 

lending company. We can do this by visually comparing the ROC curves for 
each model in the same trade-off space. 

From Figure 5 (plotted using the Knowledge Flow interface in WEKA), we 

can observe that the ROC curve for the combined 16-feature model is 

generally superior for nearly all trade-off points, except for the regions 
circled. Thus, we can conclude that the combined feature model provides 

superior performance to the model based solely on the 11 existing features 

obtained 
 0 5 10 15 20 25 30 

# Features 

Figure 4: Comparison of AUC for each candidate model with the combined feature set 

from the application form, and therefore that the new features from the bank 

statements have improved the model. 

5.2. Cost Sensitive Classification 

A cost matrix contains the cost of misclassifying a good as a bad (false 
negative), and the cost of misclassifying a bad as a good. Estimation of these 
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specific costs was not undertaken in the present study, but in any case, 

we can suppose that the cost of misclassifying a good as a bad is $1, and 
the cost of misclassifying a bad as a good $x; in which case, the cost of 

misclassifying a bad as a good is x times as great as misclassifying a 

good as a bad. 

Table 4 shows the accuracy, TP rate, the number of goods out of the 7401 

total that were classified correctly, the TN rate, and the number of bads out 
of the 121 total that were classified correctly by the combined 16-feature 

Naive Bayes model, for six different cost ratios. Note that as we increase the 

value of x, we can gain in true negative rate and move along the ROC curve, 
but at the expense of TP rate and overall accuracy. 

Further work in conjunction with the lending company is needed to 

determine the exact costs of misclassification, and therefore to end up on the 

appropriate trade-off point on the ROC curve. 
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Figure 5: Naive Bayes for the combined feature model vs. Naive Bayes for the traditional 
feature model. 

 
 1 2 5 10 20 50 

Accuracy 0.944 0.928 0.899 0.872 0.839 0.791 

True Positive Rate 0.953 0.936 0.904 0.876 0.842 0.793 

Goods Classified Correctly 

(out of 7401) 

7059 6931 6700 6493 6239 5876 

True Negative Rate 0.413 0.479 0.554 0.603 0.661 0.686 

Bads Classified Correctly 

(out of 121) 

50 58 67 73 80 83 

 

Table 4: 16-feature Naive Bayes Model Performance Metrics with different misclassification 
cost ratios. For example, the column with x = 2 assumes that a false positive is twice as costly 
as a false negative. 

5.3. Bank Statement Derived Features 

As has been mentioned, in the final model, there were 5 features that were 

derived from the bank statement data, which were found to be of use in 
complementing the existing 11 application form features. Table 5 shows each 
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of these features, bins and the weight of evidence (WOE) value for each bin. 

Note that the weight of evidence represents the natural logarithm of the odds 
ratio of the distribution of good relative to bad within that attribute bin 

(Siddiqi, 2012). 

Since the features and their bins have been anonymised for 
confidentiality reasons, our full interpretation of the results in table 5 cannot 

be provided here. However, we can note that holding a credit card of type 1 
is related to being a good risk, as well as not banking with bank 1, which is 

perhaps a reflection of customer quality of customers utilising these 

institutions. 

Attribute Bin WOE 

Bank with Bank 1 No 0.159 

 Yes -

0.568 

Hold Credit Card Type 1 No -

0.267 

 Yes 0.585 

Demographic Feature 6 low -

0.399 

 high 0.703 

Bank Statement Transaction Feature 2 low -

0.514 

 high 0.719 

Bank Statement Transaction Feature 1 low 0.412 

 high -

1.118 
Table 5: Weight of evidence values for each of the 5 bank statement-derived attribute bins, 
in the final Naive Bayes combined feature model. Numeric features were discretized using 
the Fayyad & Irani (1992) method. The actual feature names and bin values have been 
anonymised for confidentiality purposes, as requested by the lending company. 
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6. Conclusions and Future Work 

This research has supplemented features declared by loan applicants on 
a loan application form, that were currently used for credit scoring by a New 

Zealand lending company, with undeclared features that were extracted from 
bank statements provided by loan applicants during the loan application 

process. This work has highlighted the potential of using bank statement 
information from applications such as Credit Sense, to obtain additional 

features to improve credit scoring. 

Although the bank statement features were not sufficiently predictive by 

themselves, our experimental results showed that a number of the bank 
statement derived features have value in supplementing the application form 

features, in improving a credit scoring model. 

In particular, we found that a Naive Bayes model that used 16 combined 
features provided the best performance in terms of area under the ROC curve 

(AUC). This 16 feature model consisted of all 11 application form features 

that are currently used for credit scoring by the lending company, along with 
5 new features derived from the bank statements. 

There are a number of possible avenues for further work. One area is to 

extend this work is by incorporating reject inference methods. This involves 
attempting to assign a “value” to rejected applicants or determining the 

status of each reject and then using this “value” in the target data set 
(Thomas, 2009). This was not possible in the present study due to the non-

availability of this type of data within the company. 

This work has also highlighted the potential of Naive Bayes to be used 

with highly imbalanced data sets. It is interesting to note that Naive Bayes 
was not considered to be a commonly applied model in the credit scoring 

domain by Yu et al. (2008) (Naive Bayes is not in Table 1). We intend to 
perform further investigation of the ability of Naive Bayes to be used in the 

credit scoring context, and specifically with highly imbalanced data sets. 

Another extension would be to further investigate the costs of 

misclassification with the lending company. This would involve coming up 
with accurate estimates of the cost of false negatives, and the cost of false 

positives. In doing so, the lending company would be moving to the 

appropriate trade-off point on the ROC curve. 
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From an organizational perspective, further work would be required in 

implementing the credit scoring model in practice e.g. integrating the model 
with the data warehouse and other IT systems, testing and so on. 

In a separate line, data from bank statements obtained through 

applications like Credit Sense could be used in investigating possible fraud 
cases, for example, by using methods of outlier detection. 
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