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ABSTRACT In recent eras, the complexity and fluctuations of the global crude oil prices have affected the
economic progress of society. It is therefore, the oil price prediction has hauled the attention of scholars
and policymakers. Driven by this critical concern for forecasting of crude oil prices, we introduces a novel
hybrid model keeping in mind the primary objective of enhancing prediction accuracy while considering
the specific characteristics as inherent in the data. To achieve this achievement, the trend is eliminated,
allowing the scrutiny of whether the residual component validates the assurance of a series ran by stochastic
trends. Following the removal of the trend, the residual component undergoes rigorous evaluation through
autoregressive model following the decomposition model. Then we got support from the support vector
machine, autoregressive integrated moving average and long-short term memory. The predictions accuracy
can be evaluated by using the various performance metrics. The proposed hybrid model’s robustness
and forecasting performance are rigorously evaluated through Diebold-Mariano test in comparison to
competing models. Furthermore, the forecasting ability is evaluated via directional forecast. Ultimately, the
empirical findings explicitly determine the superior predictive capabilities of the proposed hybrid model
over alternative approaches.

INDEX TERMS Crude oil prices, decomposition and ensemble model, forecasting, reconstructions of IMFs.

I. INTRODUCTION
Due to the globalization of economic and finance sector,
the crude oil has gained significant prominence in the social
and economic progress. Oil, currently, stands as the foremost
and crucial energy source. The crude oil market serves as
the foundation of the petroleum industry, exhibits a signifi-
cantly larger trading volume compared to other oil product
markets. During the previous two decades, it has garnered
considerable attention due to its strong association with
corporate strategic planning, risk management, household
expenditures, and various other factors. The volatility of the
crude oil prices has influenced not only the economic growth
of countries on a large scale and the financial investment
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decisions of related industries, but it has also intertwined
the everyday life intricately. The present global economy has
been undergoing through a period of transformation due to
the insignificant policies of the government, energy crises
market, cultural and marketplace psychology factors. While
underlying the economic indicators and market need serve as
fundamental drivers of energy price fluctuations, the shortage
and non-renewable quality of energy resources, combined
with inequitable sharing and expenditure of resources across
countries, contribute to the highly unpredictable nature of
energy price developments. In particular, the outbreak of the
novel coronavirus pandemic in 2020 triggered the short-term
economic stagnation, bringing the transportation and manu-
facturing industries to close. This led to a sharp contraction
in the crude oil and energy resource requirements, caus-
ing the world economy to experience a ‘‘dark moment.’’
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Market panic ensued, reaching a point where the May futures
cost of Brent crude oil turned negative. Then the year 2021,
the successful rollout of COVID-19 vaccinations and robust
government economic stimulus measures led to a gradual
increase in energy demand and a subsequent rise in global
energy prices. However, in the latter half of the year, recurring
outbreaks hindered the recovery of the energy supply chain,
resulting in depleted natural gas inventories in Europe and
the United States. This, in turn, led to a staggering surge in
the price of UK natural gas on the IPE exchange in 2021.
Given that the Europe heavily relies on gas for electricity
generation, the soaring natural gas prices caused electricity
prices to skyrocket, resulting in significant production reduc-
tions or temporary factory closures for numerous industrial
enterprises in Europe. Moreover, energy expenses in differ-
ent regions worldwide experienced notable increases, with
Asia facing coal shortages. Additionally, an international oil
prices remained consistently high throughout the year, with
a cumulative increase of over 60% in 2021. Presently, the
global energy conflicts and crises continue to unfold.

Among the various energy needs, crude oil holds a vital
position as a cornerstone of the industry and a crucial com-
ponent of the transportation sector. It serves as a fundamental
energy source, a raw material for the chemical industry, and a
strategic resource necessary for socio-economic betterment.
Crude oil plays a pivotal role in economic progress and
remains the leading global fossil energy source, account-
ing for around 33% of total energy consumption. Adverse
changes in crude oil prices can significantly impact a coun-
try’s economic development, social stability, and national
security. As a significant energy commodity, crude oil pos-
sesses not only inherent physical aspects, both financial and
political characteristics in nature. Fluctuations in crude oil
prices exert a substantial influence with regard to the inter-
national economy, financial markets, and local well-being.
Moreover, the complex nature of crude petroleum assets
categorizes the global crude oil market is an example of
multi-dimensional nonlinear system. The variations in crude
oil prices result from a myriad of interconnected fundamental
and secondary risk factors, encompassing supply and demand
dynamics in the crude oil market, changes in the value of
the US currency, high-risk trading, geopolitical tensions, and
natural calamities, and various other elements. Over the last
20-years, worldwide crude oil rates have exhibited significant
volatility, characterized by shorter cycles of large surges and
declines, and reduced periods of smooth transitions. Exam-
ples include the 2001 economic recession triggered by the
bursting of the internet bubble, causing a 40% decrease in
oil rates; the 2008 worldwide economic crisis, leading to a
75% decrease in oil prices; the period of May to June 2009,
characterized by global economic recovery, weak dollar due
to the Central bank’s unconventional monetary policy, low
OPEC production, and continuous flow of funds into the
energy sector, resulting in a 36.5% price increase within
two months. The period from 2014 to 2016 witnessed the
shale oil revolution, leading to a 76% drop in oil prices.

In 2018, the U.S.-China trade dispute, U.S.-Iran conflict,
and increased OPEC production caused a 42% decline in oil
prices. International COVID-19 crisis in 2020 had a severe
impact, with WTI crude oil rates dropping sharply from
$63.27/barrel to -$37.63/barrel, marking a staggering 159%
decline. Given the high market risks associated with crude oil
futures, it becomes crucial to develop robust methodologies
for accurately forecasting the direction and scale of crude oil
price variations. These forecasts aid microeconomic agents
in identifying and hedging price risks in the crude oil market,
while also uncovering potential profit opportunities.

Nevertheless, predicting the crude oil prices presents
inherent challenges due to the multitude of factors that
influence them. In addition to the forces of supply and
demand [1], political events, the impact of alternative energy
sources, stock market performance, exchange rates of major
oil-importing or exporting nations, and various other ele-
ments hold significant sway over crude oil prices [2]. The
interplay of these factors contributes to the intricate and
unpredictable nature of the crude oil market.

Owing to the intricate interplay trying together the crude
oil market as well as the factors mentioned above, the
temporal data of crude oil prices exhibits non-linear and
non-stationary characteristics [3]. Consequently, accurately
forecasting crude oil prices proves to be a highly challenging
endeavour. Extensive research has been conducted to address
this issue and consequently, researchers and analysts contin-
uously strive to develop more effective forecasting methods
to enhance accuracy, which is also the main focus of our
study.

During the initial stages of research, numerous conven-
tional econometric models were developed. These models
has three categories [4]: Simple models, models employing
exponential smoothing techniques, and AR models, includ-
ing the autoregressive integrated moving average (ARIMA)
model [5], ARCH model [6], and generalized autoregres-
sive conditional heteroskedasticity (GARCH) model [7].
The models within the AR family have gained popularity
in effectively modelling and predicting the price fluctu-
ations’ volatility in crude oil, thanks to their impressive
performance [4]. These traditional econometric models have
established a strong foundation for the advancement of fore-
casting the crude oil prices. Though, it is widely recognized
that conventional models struggle to accurately capture the
non-linear components present in the temporal data of crude
oil prices [4].
With the advancement of computational technologies,

a range of modern methods have emerged, characterized by
the integration of artificial intelligence approaches. These
methods incorporate artificial neural networks (ANN), sup-
port vector machine (SVM) [8], [9], visual graph [10],
or network prediction techniques [11]. Leveraging these
modern methods, they exhibit the capability to handle the
time-varying nature of crude oil price and deliver encour-
aging results [12]. Considering the nature of model input,
we categorize these state-of-the-art models into three groups:
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TABLE 1. Categorization of the modern approaches.

sequential models, architectural models, and signal-analysis
models. These models are shown in following table 1.
The sequential model primarily relies on the crude oil

price temporal data as its input. For instance, in current
studies, the authors Khan et al. [13] proposed a predictive
model that combines the algorithm for optimizing using
chicken swarms with an artificial neural network, resulting in
improved performance compared to other prediction models
inspired by biological neural networks. Similarly, the authors
Bristone et al. [14] employed a visibility graph to represent
temporal data as a grid and utilized K-core network centrality
to capture the nonlinear characteristics of the crude oil price
dataset. These are just a few examples of such approaches.
However, due to the limited scope of input variables, the
time-series model faces challenges in obtaining sufficient
information for accurate predictions.

The structural model provides a solution to address the
aforementioned issue. By incorporating additional influences
and variables, the structural framework demonstrates excel-
lent performance. For instance, in study [15], a decision tree
model incorporating crude oil supply and demand, monthly
gross domestic product, and consumer price index as factors
yielded superior results. Another paper [16] highlighted the
significance of news texts in crude oil price forecasting,
while [17] even utilized Twitter public sentiment regard-
ing US foreign rule as an explanatory variable. These are
just a few examples showcasing the effectiveness of the
structural model. However, it is crucial to note that the per-
formance of the structural model heavily relies on the quality
of the selected factors. Selecting suitable variables poses a
challenge, as it necessitates specialized financial data and
thorough analysis and research.

Moreover, the realm of academic research pertaining to
the crude oil market is extensive, mainly because of its
significance and intricate connections with various financial
markets, such as gold, stocks, and exchange rates [18], [19],
[20]. Amidst this vast body of literature, the predicting crude
oil prices has emerged as a pressing and practical concern.
Nevertheless, accurately predicting the crude oil prices are
still poses integral challenges due to numerous factors come

into play, including the forces of demand and supply [21],
and other factor like the substantial impact of political events,
the use of alternative energy sources, stock market indices,
exchange rates of key the countries that import or export
oil, and many other variables [22]. The combination of these
factors contributes to the complexity and unpredictability of
the crude oil market.

II. LITERATURE REVIEW
Oil price forecasting has enticed substantial consideration
from researchers, primary to the proposal of various meth-
ods and models aimed at enhancing prediction accuracy.
An alignment with this, the author in [23] conducted new
method in this field by employing a concise data-driven
model for oil price forecasting, however, the authors only
consider the crude oil prices for Nigeria and also not con-
sidered the other factors like economic growth, financial
market and dollar exchange rate. Furthermore, the authors
Tang and Hammoudeh [24] utilized a nonlinear regression
model specifically for forecasting oil prices within the oil-
producing nations’ group (OPEC) using GA along with SVR
to enhance to prediction accuracy. Besides its increase in
the prediction accuracy the model has some labour costs as
of tuning parameters. Similarly, the authors [25] using ran-
dom forest regression to predict oil futures prices during the
COVID period. However, the authors only finds the impact
of outbreak on the crude oil prices. In the same way, the
authors [26] introduced a two- layer non-nagative matrix
factorization model to achieve more precise oil prices. Still,
it only find the risk of crude oil prices in oil market. The
authors in [27] utilized an ANFIS model for forecasting
monthly data of crude oil, though it only focus on the senti-
ment analysis to forecast the crude oil prices. In the sameway,
the authors in [28] forecasted oil prices using econometric
model but it is only for the year 1986 to 1991. The authors
in [29] used the target zone model to investigate the nature
of oil price globally. Nevertheless, the authors only used
the monthly data in the study. The authors in [30] further
incorporated the ARIMA and GARCH model to improve the
accuracy of oil price forecasting. However, the data was used
from 1983 to 2003.

As the oil prices are unstable and non-linear in nature.
Therefore, no such models can fully predict it. For this,
various methods are introduced to the address this issue. One
of the approaches is to decompose the whole data and then
used the models that in such a way that the ensemble models
are integrated at the end for the prediction. But still, the
researchers are working to enhance it more and more and
reduce the models complexities. The authors Zhang et al.
in [31] constructed a hybrid model based on EEMD and
applied AI techniques for crude oil price forecasting.

Several recent research studies have employed advanced
methodologies to enhance the price of oil forecasting. The
authors in [32] presented an iteration-based hybrid model that
incorporated macroeconomic indicators, technical analysis
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signals, and demonstrated its superior performance compared
to conventional models. In contrast the authors only used the
data from 1980 to 1998 and only work on the three possible
scenarios of the prices: linear, chaotic, and probabilistic.
Similarly, the authors [33] proposed a non-iterative ensem-
ble learning model utilizing random vector functional link
(RVFL) approach for predicting oil prices, which exhibited
improved forecasting accuracy when compared to support
vector machine. In their study the authors only used the two
methods for the prediction of crude oil prices.

The authors in [12] introduced a GARCH model for the
characterization of crude oil prices, thought it used a general
additive function of previous observations. Despite that, the
authors only compared the parametric and non-parametric
GARCH models. Gregor et al. [38] proposed a multi-layered
model incorporating web search data and oil-related factors
as predictors, demonstrating the superior performance of their
model compared to other approaches in an empirical study.
Although, the authors used the forecast combination method
within range 1 to 24months and used the mid of month within
average. However, it improved in a case when the discrete
wavelet transform used as an input for ANN. Additionally,
[34] improved the validity of predicting oil prices by employ-
ing predictive modelling using regression with robust error
metrics and regularization restrictions. The authors used the
simple average method to ensemble the models with the help
of different wavelet families. Despite that, the authors only
used the short term prediction. In the same way, [35] pro-
posed a hybrid model integrating wavelet de-noising, EMD,
ARIMA, and fractionally integrated GARCHmodels to fore-
cast crude oil data, and their model outperformed traditional
methods. Moreover, leveraging modern methods like SVM,
ANN and LSTM etc, they exhibit the capability to handle the
non-stationary nature of crude oil price and deliver promising
results [12].
The ARIMA model, vector autoregression (VAR), and

GARCH have been developed as traditional statistical models
for crude oil price forecasting. These models are constructed
on complete statistical theories, allowing for the testing of
model performance and parameters based on classical sta-
tistical principles. However, the performance of traditional
statistical models may not always meet expectations due to
the inherent instability and nonlinearity of crude oil price time
series. Nevertheless, the study bound restricts their practical
use in economic and management problems, as certain sta-
tistical hypotheses need to be satisfied, such as data stability
testing.

To fulfill the need for precise and adaptable prediction
models, artificial intelligence methods provide an option to
conventional statistical models. Unlike their counterparts,
AI models don’t depend on meeting statistical hypotheses
or adhering to a specific formula. As an alternative, they
leverage the advanced algorithms and machine learning to
analyze the data patterns and generate the accurate forecasts.

In more recent times, the adoption of Long Short-Term
Memory technique for time-series modelling has gained a

great attention. This is primarily attributed to its ability to
facilitate end-to-end modelling, seamless integration of inde-
pendent variables, and self-feature extraction capabilities.
However, the authors used the forecast returns of oil prices
[36]. LSTM has demonstrated remarkable success in various
sequence prediction tasks, spanning domains such as voice
identification [36], AI-driven translation [37], image/video
classification [38], melody composition [39], and more [40],
[41], [42], [43], [44], [45]. These studies highlight the effec-
tiveness of LSTM in capturing the intricate dependencies
within complex nonlinear time series systems.

The challenge is the selection and tuning of appropriate
model architectures and hyper-parameters as well as may
struggle with capturing long-term dependencies and under-
standing the underlying dynamics of time series data [46].
Hybrid models, which combine the strengths of both classical
and machine learning approaches, offer several advantages
over individual models in time series forecasting [47].
Since the oil prices are erratic and exhibit non-linear

patterns. The effectiveness of the structural model heavily
relies on the quality of the selected factors, complete pre-
diction remains poses a challenging task and it requires an
extensive research and expertise in temporal data. To tackle
this, different methods have been introduced. One approach
involves decomposing the overall data and utilizing models
in such a manner where the ensemble models are integrated
for prediction. Nonetheless, the researchers continue to strive
for improvement, aiming to reduce the model complexities.
To address the challenge of selecting factors amid com-
plexity and ensuring an ample supply of input information,
a signal-decomposition model is introduced. Although it
solely employs the crude oil prices data as regressor, the
model’s actual input is multifaceted. By applying signal
splitting techniques, the time series is broken down into
several sub-series, each capturing different frequency hori-
zons. Some sub-series reflect short-term fluctuations, while
others depict the long-term trends inherent in the original
series [48]. Various decomposition methods can be employed
to categorize the signal-decomposition model, including the
wavelet method [49], empirical mode decomposition [26],
ensemble empirical mode decomposition [26], [50], seasonal
adjustment methods [51] and many various decomposition
methods [48], [52]. The authors in [53] used the type of
autocorrelation integrated with Q-learning Swarm Optimiza-
tion for finding the possible interaction amid of irrigation
points with the credentials of high-impact irrigation zones.
Furthermore, for taking the oscillation between dry and
rainy seasons, the intrinsic mode decomposition is employed
with zero-crossing method. Then the authors used the GRU
approach for the extraction of IMFs information. However,
in his approach the authors used the irrigation data. More-
over, the authors in [54] developed the EMD in combination
with spectral analysis for the decomposition of suspended
sediment concentrations temporal data. The authors also
incorporates the Incosh function in the ridge regression for
handling the outliers in the data. To handle the outliers in
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the data, the authors [55] developed the adoptive trimmed
mean. In their studies, the proposed method is better than
the stable regulation parameters counterparts. Moreover, the
authors [56] developed the robust adaptive rescaled lncosh
neural network regression model for the time series data that
handles the outliers and noise problems. However, the wind
speed data is used.

The EEMD is proposed to address the issue of scale separa-
tion without relying on an intermittency perception test. This
new method, known as NAD: noise-assisted data analysis,
offers a solution to the problem at hand. It has many advan-
tages like robustness, adaptive nature, ensemble techniques,
preservation of signal features, compared to other methods
for IMF reconstruction [57].

Themain goal of this research is to forecast the Brent crude
oil price using a hybrid model that considers the specific
properties of the oil price data. To achieve this, the Brent oil
price data is decomposed, resulting in separate subseries with
unique nonlinear and volatile features. The proposed model
employs various models to predict each subseries based on
its individual characteristics. By combining these forecasts,
more accurate predictions are obtained compared to other
approaches. This methodology ensures a robust and precise
forecasting outcome.

While AI and machine learning models show the signif-
icant promise in time series forecasting, they also encounter
challenges. A primary issue is the need for extensive amounts
of high-quality training data. Time series data typically dis-
play intricate patterns, trends, and seasonality, demanding
large and representative datasets for successful model train-
ing.We, also know that the individual model can’t be efficient
in order to boost the prediction accuracy as shown in the
results and in the existence literature. In alignment with
the existing body of literature, the main objective of this
study is to predict the Brent crude oil data using a hybrid
model that effectively captures the unique characteristics of
the oil price time series data and to enhance the prediction
accuracy. To achieve this, the Brent oil prices data is decom-
posed, resulting in separate subseries with unique chaotic
and unstable features. Then, the trend is eliminated, allowing
the scrutiny of whether the residual component validates the
assurance of a series ran by stochastic trends. Following
the removal of the trend, the residual component undergoes
rigorous evaluation through autoregressive model following
the decomposition model. The proposed model adopts var-
ious techniques tailored to forecast each subseries based
on its inherent nature. This methodology ensures a robust
and precise forecasting outcome, as the linear combination
of these forecasts produces outcomes with greater accuracy
when compared to alternative methods.

III. METHODOLOGY
In the upcoming section, we will delve into the two methods
employed in the proposedmodel. Firstly, in Section III, a brief
introduction to EEMD will be presented and the reconstruc-
tion of IMFs. Following that, Section III-A, III-B and III-C

will cover the fundamental concepts of the ARIMA, SVM
and LSTM network. All the work are carried out in Python
and R version 3.11.2 and 4.4.3 respectively.

The EEMD which stands for Ensemble Empirical Mode
Decomposition, is a powerful algorithm for partitioning data
that operates on the time series. This method is an extension
of the EMD introduced by the authors in [57]. The EEMD
is a flexible technique that allows for the decomposition of
a data into multiple Intrinsic Mode Functions (IMFs). If the
data D (t) is decomposed into s (t) the true signal and n (t)
the noise, then it can be represented in (1).

D (t) = s (t)+ n (t) (1)

The authors in [58] an effort to mitigate the expansion of
moving the low frequency mode into the disturbed region,
Huang et al. introduced a small amount of noise to earthquake
data. However, they did not fully consider the consequences
of this noise addition in the EMD method. To address a
particular challenge in the original EMD method, the authors
Flandrin et al. in [59] incorporated additional noise as a
solution. Although they defined the true answer as the mean
breakdown of the Dirac function,

x [n] = limε→0+E {x [n]+ εrδ [n]} (2)

The notation [n] denotes the nth data point, while x [n]
represents the Dirac function. Additionally, , εrδ [n] corre-
sponds to a random number , ε symbolizes the infinitesimal
parameter, and E {} represents the expected value.

The author Gledhill [60] introduced a unique approach in
data analysis by incorporating noise to assess the resilience of
the EMD algorithm. Drawing from his findings regarding the
impact of noise on the EMD algorithm, the author’s assumed
that the clean data, unaffected by noise, provided the true
reference answer. Consequently, he introduced the discrep-
ancy, 1, to quantify the differences between the outcomes
produced by the EMD algorithm and the reference data.

1 =
∑m

k=1

(∑
t
(Irk (t)− knk (t))2

) 1
2

(3)

In his wide-ranging investigation into the intricate distri-
bution of the ‘‘discrepancy’’ induced by noise, he considered
Irk and Ink as the kth components of the IMF obtained from
the data without and with the addition of noise, respectively.
The variable m denotes the sum of total of IMFs obtained
from the data. Through this thorough analysis, Gledhill
aimed to gain a comprehensive understanding of how the
noise-induced deviations manifest within the dataset. After
careful examination, he reached the conclusion that the EMD
algorithm exhibits a satisfactory level of stability when sub-
jected to minor disturbances or perturbations. Furthermore,
in the EMD methodology, the dataset D (t) is decomposed
into intrinsic mode functions (IMFs), represented as Ik , which
capture the underlying components or patterns within the
data.

D (t) =
∑m

k=1
Ik + rn (4)
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The residue of the data D (t) after extracting n number of
IMFs is denoted as rn. It represents the remaining component
that cannot be further decomposed into additional IMFs.

As indicated in Eq. 1, the data consists of a combination
of signal and noise components. In order to enhance the data
accuracy, employing the ensemble mean method proves to be
effective. This technique involves gathering data from mul-
tiple independent observations, each of which incorporates
distinct sources of noise.

In order to simulate the random noise that can occur during
the measurement process, white noise is intentionally added.
This additional white noise is considered representative of the
potential random noise encountered during measurements.
In this context, each ‘‘artificial’’ observation, denoted by the
index i, is created under these conditions.

Di (t) = D (t)+ wi (t) (5)

In scenarios where only one observation is present, the
generation of multiple-observation ensembles involves incor-
porating diverse instances of white noise, denoted as wi (t),
into the single observation. This approach, outlined in (5),
aims to replicate the effect of having separate observations
with varying sources of random noise.

The step of EEMD are as follows:
1. Introduce a series of white noise to the target data.
2. Perform a decomposition of the data, including the added

white noise, into individual Intrinsic Mode Functions
(IMFs).

3. Repeat the process by incorporating various white noise
series each time and decomposing the data into IMFs
again.

4. Calculate the average (ensemble means) of the associ-
ated IMFs obtained from the decompositions as the final
outcome.
According to a well-established statistical principle, the

influence of the added white noise is expected to diminish.

αn =
α
√
n

(6)

Inαn +
α

2
In (n) = 0 (7)

In this context, n represents the count of ensemble com-
ponents, α denotes the magnitude of the added noise, and
αn signifies the ultimate standard deviation of the error,
described as the disparity pertaining to both the input signal
and the associated IMF(s).

The ultimate truth determined by EEMD is attained as the
ensemble size approaches infinity, implying that the number
becomes infinitely large.

Ik (t) =
1
n

∑n

j=1
{Ik (t)+ ωrj (t)} (8)

Ik (t)+ ωrj (t) (9)

In the equation, the jth trial of the kth IMF represents the
noisy signal, and the magnitude of the integrated noise, ω is
not necessarily small. However, it is crucial to have a large

number of trials in the ensemble, denoted by n. The disparity
between the true value and the ensemble result follows a
widely recognized statistical principle: it diminishes propor-
tionally to the inverse square root of n, as illustrated in (6).
Given the established definition of the truth, the discrep-

ancy (1) should be considered instead of the one specified
in (3). This revised measure accounts for the discrepancy
between the truth and the obtained results, incorporating the
necessary adjustments to ensure accuracy and reliability.

1 =
∑m

k=1

(∑
t
E{(Irk (t)} − knk (t))2

) 1
2

(10)

where E{} denotes the expected value, as expressed in (8).
This statistical concept encapsulates the anticipated outcome
or average result, providing a measure of central tendency in
relation to the given equation.

In this section, we propose a new method of forecasting
approach that combines IMFs reconstruction with an opti-
mized combined forecastingmodel. The aim is to improve the
accuracy of the forecasting process. This approach involves
reconstructing the IMFs and utilizing an optimal combined
forecasting model.

To improve the precision of crude oil price forecasting,
an approach which combines IMFs reconstruction, and an
optimized combined forecasting model is introduced. The
goal is to address the issue of certain decomposed IMFs
having similar impacts on the original series in terms of
trend and accuracy. To tackle this, the data is portioned using
the difference method. Once the trend is removed, then the
objective is to scrutinize whether the residual component
shows the characteristics of a series with a stochastic trend
and the residual component is subjected to estimate using
the autoregressive model and then examine the significance
of the coefficient being estimated [61] method is utilized to
reconstruct the IMFs based on their comprehensive contribu-
tion index. The series is represented as the combination of
a non-random trend, random walk, and stationary variation
components as given in the following in (11).

yt = τt + ϑt + ϵt (11)

The LM test is conducted to examine the hypothesis that
the random walk component has zero variance. The asymp-
totic distribution of the test statistic is derived under both the
null hypothesis and the alternative hypothesis, which assumes
the series is difference stationary. The overall framework of
this novel forecasting approach is depicted in figure 2.

A. ARIMA MODEL
Integrated Moving Average, known as Autoregressive Inte-
grated Moving Average [62], is formed by integration the
autoregressive (AR) model with the moving average (MA)
model after differencing the time series data. The necessary
equations are written below.

yt = C + β1yt−1 + β2yt−2 + . . .+ βpyt−p + et + ε1et−1
+ ε2et−2 + . . .+ εqet−q (12)
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FIGURE 1. Structure of LSTM model.

The AR component of the ARIMAmodel indicates that the
time series is regressed on its own past data, capturing the
relationship between current and previous values. The MA
component indicates that the forecast error is a linear com-
bination of past errors, considering the residual errors in the
model. The component signifies that differencing has been
applied to the data to achieve stationarity, a prerequisite for
the ARIMA model.

The above in (12) represents the predictors used in the
ARIMA (p,d,q) model, where the autoregressive (AR) part
consists of lagged p data points and the moving average (MA)
part includes lagged q errors, all of were modified by differ-
enced. The forecast is based on the differenced value of yt in
the dth order. In the ARIMA model, the coefficients β and
ε are estimated through methods like maximum likelihood
estimation, as the model develops an understanding from the
training data of oil prices. Selecting the appropriate values
for p, d, and q can be challenging, but by trying out different
combinations and evaluating the model’s performance, one
can determine the optimal configuration. In the current study,
an auto ARIMA is used using 80% training and 20% testing
parts of the daily crude oil prices.

B. SVM MODEL
The support vector machine was first presented by Vapnik
[63] as a machine learning model that works on the mini-
mum structural risk criterion. It excels at modelling nonlinear
relationships, effectively mitigating the complexities associ-
ated with solving problems in high-dimensional spaces. This
model has extended and further helped in a new angle on
nonlinear combination forecasting, important to its extensive
adoption by researchers in various disciplines for addressing
predictive challenges. To demonstrate, SVMs have originate
utility in fields beyond prediction, such as evaluating the
performance of spark ignition systems [64] in areas like
automotive engineering and combustion research and iden-
tification of parameters [65]. In the same way, the authors
Qi and Zhang [66] introduced SVM for crude oil prices and
in the same the authors in [67] used SVM with optimization
techniques for the six months of crude oil prices data which
gave better results from convolutional models. The author in

Vapnik [63] employ ε-Robust loss function for the purpose of
regression analysis and temporal forecasting.

C(f (x)− y) =

{
|f (x)− y| − ε for |f (x)− y| ≥ ε

0 otherwise
(13)

C. LSTM MODEL
The Long Short-Term Memory [68] (LSTM) neural net-
work is a modified version of the Recurrent Neural Network
(RNN). LSTM incorporates three gates, namely the entry
gate, memory gate, and output gate, into its unit. These gates
play a crucial role in updating the data stored in the memory
unit. By doing so, LSTM effectively manages the balance
between retaining and discarding historical data. Addition-
ally, LSTM resolves the challenges of gradient vanishing and
exploding, which are common issues in traditional RNNs.
When upgrading the cell state of the LSTM unit, each gate
exerts control in the following manner:
The LSTM neural network incorporates three gates within

its unit to control the flow of information:

i Input gate: This gate selectively determines the data
stored in the cell state utilizing the current input and the
earlier hidden state.

ii Forget gate: The forget gate selectively determines which
information from the previous cell state should be dis-
carded, considering the current data input and the earlier
hidden state.

iii Output gate: Using the current input and the updated
cell state, the output gate conditionally determines the
information to be output from the LSTM unit.

Taking advantage of these three gates, the LSTM model
effectively manages the information stored in its memory
unit. By utilizing the input gate, LSTM can selectively deter-
mine which past data to retain and flexibly modify the cell
state with new information. This capability allows LSTM to
forget irrelevant information and retain relevant information,
thereby enhancing its ability to capture long-term interde-
pendencies in the data. Through the learning process, LSTM
receives input information and utilizes its unique structure
to process and store the data. The architecture of an LSTM
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FIGURE 2. Flowchart of the proposed method.

segment is depicted in Figure 1. The calculation method of
an LSTM unit can be summarized as follows:
1. At each time step t, the values of the candidate memory

cell Ct , input gate It , and forget gate Ft are computed
using the following equations:

C̃t t = tanh (wc [ht−1, yt ]+ Bc) (14)

It = δ (wi [ht−1, yt ]+ Bi) (15)

ft = δ
(
wf [ht−1, yt ]+ Bf

)
(16)

where wc,wi and wf denote the resultant weight matrices,
Bc,Bi and Bi denote the resultant biases, ht − 1 denotes the
output value of the LSTM unit at the previous time step, the
input value yt at time t , where tanh denotes the hyperbolic
tangent activation function within interval (-1, 1), and δ is the
sigmoid activation function within the range (0, 1).
2. The value of the memory cell Ct at time t is calculated

using the following equation:

Ct = ftCt−1 + It C̃t (17)

The value of the memory cell t at time t , which depends on
the last memory cell state t−1, is calculated using the weight
matrix w0 and bias B0 of the output gate:
3. The value of the output gate denoted as Ot and the

corresponding output value of the LSTM unit ht at time
t are calculated using the following formulas:

ot = σ (w0 [ht−1, yt ]+ B0) (18)

ht = ot tanh (Ct) (19)

By incorporating the architecture of three control gates and
a memory cell, LSTM is designed to effectively capture and
update long-term information, enabling it to learn and model
the long-term dependencies in time series data.

TABLE 2. Descriptive statistics of daily crude oil prices.

This capability allows LSTM to retain and utilize cru-
cial information over extended periods, enhancing its
performance in tasks involving long-term dependencies.
In this study, we used 64 hidden units in the first LSTM layers
followed by 32 hidden units in the second LSTM layers.
Furthermore, there are 16 hidden units in third LSTM layers
with 0.2 dropout and finally the single unit is in the dense
layer for the output. In the model, the number of epochs were
50, with min_delta 1e^-04 with patience set to 20. We have
used early stopping function to avoid over and under-fitting
during the training process. The general structure of LSTM is
shown in the following figure 1.

To increase the validity of crude oil price data forecast-
ing, a method which pools IMFs rebuild, and an enhanced
combine forecasting model is introduced. The objective is
to address the problem of certain decomposed IMFs having
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FIGURE 3. The Brent daily crude oil prices.

FIGURE 4. Number of IMFs using EEMD.

TABLE 3. Forecasting evaluation criterions.

similar effects on the original series in terms of trend and
accuracy. The trend is eliminated, allowing the scrutiny of
whether the residual component validates the assurance of a
series ran by stochastic trends. Following the removal of the

trend, the residual component undergoes rigorous evaluation
through autoregressive model following the decomposition
model. The following steps are used in the proposed method.

Step 1: Decomposition of data
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TABLE 4. (a). Performance metrics of the models. (b). Performance
metrics of the models.

TABLE 5. Directional forecast values of the models.

In the first step, the primary data Dt was decomposed into
k IMFs using EEMD.

Step 2: Reconstructions of IMFs
The k number of IMFs are further reconstructed into

stochastic and deterministic components. For this, the data
is portioned using the difference method. Once the trend
is removed, then the objective is to scrutinize whether the
residual component shows the characteristics of a series with
a stochastic trend and the residual component is subjected to
estimate using the autoregressive model and then examine the
significance of the coefficient being estimated.

Step 3: Ensemble forecast outcomes
In the third step, the forecasted results which are obtained

from stochastic and deterministic components are aggregated

TABLE 6. Results of the Diebold-Mariano (DM).

using simple addition method.

PD =
∑k

j=1
St +

∑n

m=1
Dt (20)

where PD is the predicted data obtained from stochastic St
and deterministic Dt components respectively.

Step 4: Final output
The final output is then compared with using ARIMA,

LSTM and No-change-forecast method.
The EEMD method aims to break down the initial series

into IMFs and a residue, where each IMF operates that fulfils
two criteria:

i. In the complete dataset, the count of zero crossings and
extreme crossings should be either the same or show a
difference by a maximum of one.

ii. At any given point, themean value of the wrapper formed
by the local maxima and local minima is zero.

The impact of the added white noise can be computed as
given in (7). The pseudo code of the Algorithm is shown
below.

In this study, we have taken daily prices of crude oil data
from Jan-04-2010 to Oct-31-2022. There are total 3248 daily
prices of crude oil series. Dividing the data into training and
testing, we followed the 80/20 rule, with 2598 prices allocated
for training and 650 prices for testing which is shown in the
figure 3.
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FIGURE 5. (a). Actual and predicted values of the models. (b). Actual and predicted values with 95% CI of the models.

FIGURE 6. Multiple bar charts of the models using performance metrics.
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Algorithm for the Proposed of Reconstruction of IMFs
1: initialize Dt (t = 1, 2, 3, . . . ,T)

2: Dit← IMF1, IMF2, . . . , IMFk by using the equation 1
3: for k = 1 to m do by equation 12
4: if is_St do
5: St.append(IMF)
6: else
7: Dt.append(IMF)
8: end if
9: end for
10: procedure for PD given in equation 19
11: for j = 1 to k & m = 1 to n
12: if St in St(i) do
13: f t1 = apply_arima_model(St)
14: arima_ft_1.append(f t1)
15: else
16: Dt in Dt(i)
17: f t2 = apply_lstm_model(Dt)
18: lstm_ft_2.append(ft_2)
19: end if
20: end for

The Brent daily data are splits into various IMFs using the
EEMD. The number of IMFs are shown in the figure 4.
For the assessment of the current study, we have used

different performance metrics as shown in the Table 3. In the
same way, we have also used the Diebold-Mariano (DM) test
that the test the similarity between the two predictions under
the null hypothesis H_0 : E(d) = 0. The results indicate that
there is difference d among all the methods in prediction as
of P-values.

IV. RESULT AND DISCUSSION
In table 4 (a) and (b), we have compared the proposed method
with original data and the individual IMFs using ARIMA,
LSTM and No-change-forecast. The results are shown in the
following Table 4(a). The value of mean square error for
the proposed method, No-change forecast, LSTM, ARIMA,
LSTM (Individual IMFs) and ARIMA (Individual IMFs) is
1.13, 5.13, 8.05, 3459.1, 59.49 and 1892.47 respectively.
In the same way, the mean absolute error (MAE), mean per-
centage error, mean absolute percentage error (MAPE) and
mean absolute scaled error (MASE) of the proposed method
are smaller than the other methods. The median percentage
error (MDPE) is a robust statistic that measured the deviation
within the predicted and actual observations, thus the MDPE
values of the No-change forecast is better than the other
methods which indicates that it is more robust to the outliers
observations. In addition to, the mean percentage error of
No-change forecast is better than the rest of the methods.
In the same way, the standard deviation of percentage error
(SDPE) calculates the dispersion or variation of percentage
errors prediction of time series models. The SDPE value of
the proposed method, No-change forecast, LSTM, ARIMA,
LSTM (Individual IMFs) and ARIMA (Individual IMFs) is

FIGURE 7. Boxplots of the models.

1.55, 2.88, 3.40, 62.45, 7.89 and 84.27 respectively. The
value of SDPE shows that the proposed method is more
consistent and stable in-terms of performance. Moreover,
root mean squared scaled error (RMSSE) of the proposed
method, No- change forecast, LSTM and ARIMA is 0.470,
0.999, 1.25 and 25.96 while for LSTM (Individual IMFs) and
ARIMA (Individual IMFs) is 3.39 and 19.17 respectively.
The value of RMSSE indicates that the proposed method
have better performance than the other methods. In additions
to the values of symmetric mean absolute percentage error
(SMAPE) of the proposed method and No-change forecast is
1.37 and 1.53 whereas of LSTM, ARIMA, LSTM (Individual
IMFs) and ARIMA (Individual IMFs) is 2.65, 61.17, 9.67 and
44.45 respectively. The SMAPE equally weights to the under-
estimation and overestimation of the predicted model and the
value proved that the proposed technique prevails over the
other models. The WINKLER SCORE (WS) measures both
the absolute and relative error of between actual and predicted
values. The WS value of the proposed method is 44.04, No-
change forecast is 74.05, LSTM is 85.05, ARIMA is 1957.49,
while for LSTM (Individual IMFs) and ARIMA (Individual
IMFs) is 309.48 and 1422.63 respectively. The WS of the
proposed is smaller than the other methods and it indicates
that the proposed method is better than the other models in
terms of forecast accuracy.

In the following Table 5, we find the directional forecast
(DF) accuracy for the models. The DF of the proposed,
LSTM and ARIMA models is 76.41, 53.44 and 58.80 while
of LSTM (Individual IMFs), ARIMA (Individual IMFs) and
No-change forecast is 55.30, 61.08 and 74.39 respectively.
The DF values revealed that the proposed method is better
than the other models in terms of assessing the ability of a
forecasting.

We have find the Diebold-Mariano (DM) tests and it
assume that there is no significant difference between the
forecasting accuracy of the models in the null hypothesis.
In the Table 6 below, the DM values shows that there is dif-
ference among forecasting accuracy of the proposed, LSTM,
LSTM, ARIMA, LSTM (Individual IMFs) and ARIMA
(Individual IMFs) respectively.

The forecasted outcomes of the proposed model in contrast
to the factual values and the other methods are plotted in the
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FIGURE 8. Density plots of the predicted models.

FIGURE 9. Violin plots of the predicted models.

following figure 5 (a). Moreover, we’ve constructed the 95%
confidence interval for each of the predicted models as shown
in the figure 5 (b). The ARIMA model predicted the values
with constant increase across time. In the same way, ARIMA
(Individual IMFs) first away from the original line and then
followed the trend of the actual values. There are various
peaks and hikes in the LSTM (Individual IMFs) across time
with the original values. Moreover, LSTM model followed
the pattern of the original values with fluctuations, while the
proposed model followed the trend of the actual values.

The figure 6 presents the multiple bar charts of the models.
We take Log for on the metrics values for better comparison
as some of values of ARIMA model were very unusual with
other models. The bar of the proposed model shows bet-
ter performance among the models following the no-change
forecast method. The poor efficiency is of ARIMA model,
this is because of probably due the taking of the differences
of data to become it stationary.

To find the overall performance of the models, box plot
is used. The figure 7 shows the boxplots for each model.
In the following figure, the proposed model shows more
stability than the other models. Then the no-change forecast
method show the stability as compared to the other meth-
ods. The LSTM (Individual IMFs) and ARIMA (Individual
IMFs) models shows the outliers in the predicted values
while the rest of the models including the proposed model
didn’t show any unusual observations in the predicted values.
The ARIMA (Individual IMFs) indicates that it negatively
skewed. In the same way, the LSTM, LSTM (Individual
IMFs) is to some extent skewed negativelywhile the proposed
model is less skewed negatively as compared to other models
except ARIMA model.

The figure 8 shows the Density or kernel density plots.
The density plot exploring and provide insights into data
characteristics and model performance as well as capture the
complex data patterns. The figures of Density plots indicates
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that ARIMA is more widely distributed. There is highly peak
in the ARIMA (Individual IMFs) model and less dense due
to the constant increase in the predicted values. The proposed
method is equally spread on the predicted data as compared
to the other models which shows that it align with the actual
data following the no- change forecast method.

In Figure 9, we plotted the Violin plots. It combines both
density plots and whisker plots and gives a comprehensive
view of data and its nature. The Violin plots are different
of each predicted model. All the models are shows bimodal
except ARIMA model. The proposed model is less spread
as compared to the other models. Following the proposed
method, the no-change forecast, and LSTMmodels show less
spread among the other methods.

V. CONCLUSION
Oil price complexity level might impart to the point that
the parallel time series contains nonlinear behaviour, shifts
in behaviour, and temporal lag. In this paper, we proposes
a hybrid model for predicting daily crude oil prices, with
an emphasis on apprehending these features to increase the
accuracy of forecasts. To achieve this objective, we instigates
by decomposing the temporal data into various components
using the ensemble empirical mode decomposition. Next,
the authors employs various forecasting models tailored to
the characteristics of each component to attain accurate
predictions.

Furthermore, various performance metrics are con-
ducted for comparison including directional forecast,
Diebold-Mariano test, and plots i.e., multiple bar chart,
boxplots, density plots and Violin plots for visualizations.
On average, the results reveal that solely the suggested hybrid
model yields high-quality forecast values.

VI. LIMITATIONS AND FUTURE WORK
Indeed, putting forth a specific model that claims accurate
forecasting is a highly challenging endeavor. However, such
forecasting efforts are comparable to attempts to shape a
future framework, enabling us to formulate effective strate-
gies as necessary based on the prevailing circumstances.

In the current study, we only studied the Brent crude oil
data. There can be other financial factors added like dollar
exchange, demand, and supply etc. Furthermore, some other
temporal data can be used.

The proposed hybrid model might conceivably be
enhanced by allowing for the following aspects.

The possibility of decomposition of data with some other
approaches. After the decomposition and for the reconstruc-
tion of the data, some other method can be employed to
enhance the prediction accuracy as compared to the trend
is eliminated, the residual component is evaluated through
autoregressive model.

The other possibility is of decomposition of data with
EEMD and exploring the incorporation of the SVM/ARIMA
and LSTM with alternative techniques like the Gated
Recurrent Unit (GRUs) and Transformers like Temporal
Convolutional Network or genetic algorithm can be consid-

ered. Moreover, it is dynamic to test the proposed model for
forecasting other energy commodities to assess its stability
and applicability. We intends to tackle these aspects in the
near future.

VII. LIST OF ABBREVIATION

ARIMA Autoregressive Integrated Moving Average
DM Diebold-Mariano
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
GRU Gated Recurrent Unit
IMF Intrinsic Mode Function
LSTM Long-short term memory
MSE Mean Square Error
MAE Mean absolute error
MAPE Mean absolute percentage error
MASE Mean Absolute Scaled error
MDPE Median percentage error
SDPE Standard deviation percentage error
RMSSE Root mean squared scale error
SVM Support Vector Machine
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