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Abstract— Transfer of learning (TL) has been an important 

research area for scholars, educators, and cognitive 

psychologists for over a century. However, it is not yet 

understood why applying existing knowledge and skills in a new 

context does not always follow expectations, and how to 

facilitate the activation of prior knowledge to enable TL.  This 

research uses cognitive load theory (CLT) and a neuroscience 

approach in order to investigate the relationship between 

cognitive load and prior knowledge in the context of learning a 

new programming language.  According to CLT, reducing 

cognitive load improves memory performance and may lead to 

better retention and transfer performance. A number of 

different frequency-based features of EEG data may be used for 

measuring cognitive load.  This study focuses on analysing 

spatio-temporal brain data (STBD) gathered experimentally 

using an EEG device. An SNN based computational 

architecture, NeuCube, was used to create a brain-like 

computation model and visualise the neural connectivity and 

spike activity patterns formed when an individual is learning a 

new programming language.  The results indicate that cognitive 

load and the associated Theta and Alpha band frequencies can 

be used as a measure of the TL process and, more specifically, 

that the neuronal connectivity and spike activity patterns 

visualised in the NeuCube model can be interpreted with 

reference to the brain activities associated with the TL process.   
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I. INTRODUCTION  

The fundamental goal of education and learning systems 
is to enable a learner to  apply the  learned material to different 
contexts and extend one’s learning to new situations [1]. 
However, the desired  transfer of knowledge and learned skills 
from one context to another  does not always happen smoothly 
or quickly [2].  

 Transfer of learning (TL) has been an important research 
area for scholars, educators, and cognitive psychologists for 
over a century. Various factors such as classroom 
environment, attention-getting techniques, and mental 
manipulations have been considered and investigated 
regarding how they may influence the transformation of 
sensory information into long-term memory and conceptual 
understanding [3].  

A specific area of interest is studying how an 
understanding of  brain activities during the process of TL can 
help improve learning in  a given context, for example, 
learning a computer programming language. As teaching and 
learning how to program has been found difficult by both 
learners and educators, the topics of how to improve student 
learning and support novice programmers have attracted a 
substantial body of research [4].  

It is assumed that the way students learn programming and 
build new knowledge may be influenced by their background 
and existing skills [5].  However, students in introductory 
programming courses may have different prior knowledge in 
the area of programming. Educators need to consider this 
when formulating learning goals and preparing teaching 
materials to facilitate the TL process of the different learner 
groups more effectively.  This is even more important in the 
now becoming widely adopted online education as online 
education models tend to increase learner’s cognitive load [6].     

 Research attempting to understand how the TL process 
works by gathering data through methods such as 
questionnaires, surveys and interviews has not yet explained 
how TL occurs in the human brain [3]. A potential reason for 
this may be the lack of accuracy in the data collected using 
these methods. In self-reported subjective data, bias may be 
introduced by factors such as personal preferences and 
cultural background [7]. 

 In recent years, there has been an increased  interest in 
studying how to activate prior knowledge stored in  the human  
brain  - as the brain is the seat of learning [8]. Learning impacts 
the brain by changing the connections among neurons which 
leads to changes in the existing internal synaptic structures [9]. 
This fact has prompted scientists to take a neuroscience 
approach towards studying TL. 

II. A NEUROSCIENCE APPROACH TO THE STUDY OF 

TRANSFER OF LEARNING   

Connecting neuroscience to education to study the TL 
process of learners taking challenging subjects such as 
computer programming may lay the scientific groundwork 
and build a strong research foundation for a better 
understanding of learning and its processes [10]. Knowing 
more about the neural mechanisms activated when a 



programmer is at work may help find better approaches to 
programmer training [11].  Recent advances in brain imaging 
techniques have provided additional opportunities for 
researchers to collect spatio-temporal brain data (STBD) and 
study in more depth the activities of the human brain that 
occur  during learning a computer programming language 
[12].  However, our knowledge about the patterns of neural 
activity  related to learning  computer programming or 
performing a programming  task  is still very limited [11]. 

A.  Cogntive Load Theory anf Transfer of Learning   

 Cognitive load is a concept  related to the use of the 
human brain’s  working memory (WM) which is limited in its 
capacity. WM can be defined as the capability of the 
individual to “simultaneously manipulate some information 
while maintaining other information” [13]. Thus, cognitive 
load signifies the total amount of WM resources used while a 
cognitive task is performed [14]. The study of factors that 
impact positively on WM performance and thus may improve 
learner performance and task completion has already attracted 
significant research interest [13]. 

Cognitive load theory (CLT) was developed by John 
Sweller to describe the relationship between WM and the  
cognitive effort used during a learning task [15]. According to 
CLT, WM usage  and learner performance  are inversely 
related. A low level of WM usage (i.e., low cognitive load) 
indicates that the learner has relevant prior knowledge and/or 
expertise about the learning task.  In contrast, high WM  usage 
(i.e., high cognitive load) indicates a lack of specific prior 
knowledge or expertise in relation to the task [7]. Therefore, a 
reduction in cognitive load improves learner outcomes (i.e., 
better retention and transfer performance) [16].  

Cognitive load can be used to predict learner performance.  
For example, it was demonstrated that measuring cognitive 
load during a computer programming comprehension exercise 
is a more reliable way to judge programmers’ expertise 
compared to evaluating the correctness and/or the speed of 
completing the task [17]. As relevant prior knowledge and/or 
expertise are expected to have a positive impact on learner 
performance, it may be possible to use cognitive load as a 
measure of the TL process through which the learner applies 
relevant prior knowledge /expertise to a new task.  

Based on the above, we formulated the following research 

question: What is the relationship between prior knowledge 

and cognitive load in the context of learning a new 

programming language? We hypothesised that prior 

knowledge of computer programming would reduce cognitive 

load, thus leading to a better learning outcome and transfer 

performance. 

Electroencephalogram (EEG) data can provide evidence 

about WM performance; therefore, EEG data can be used to 

quantify cognitive workload [18]. According to [19], EEG can 

also provide data for the modelling learners’ mental state. The 

ratios between different frequency-based EEG data features 

are of specific significance for measuring cognitive load [20]-

[21].  Notably, it was found that the ratio between the Alpha 

power band (8-12 Hz) and the Theta power band (4-8 Hz) was 

particularly important [20].  The Alpha and Theta bands 

mainly reflect cognitive and memory performance; for 

example, an increase in Alpha and an accompanying decrease 

in Theta indicate ‘good’ WM performance (reduced cognitive 

load) [22]. 

B. Spiking Neural Networks for the  Study of  Transfer of 

Learning  based on EEG Data  

Spiking Neural Networks (SNNs) have proved to be one 
of the most successful approaches towards modelling the 
behaviour and learning potential of the brain [23].  SNNs are 
especially efficient in analysing STBD collected by  various 
imaging techniques, including  EEG and  fMRI [24]-[25]. 
SNNs are more biologically realistic than  other  artificial 
neural networks (ANNs) as they mimic more closely neurons’  
biological  activity, using discrete spikes to compute and 
transmit information dynamically. The computational method 
used in SNNs is inspired by natural neural network activities 
that are captured in STBD. Spikes across spiking neurons can 
encode both spatial and temporal information. SNNs process 
STBD after the data is encoded into spike trains (spike 
information processing) [24].   

Previous studies have produced promising results on 
analysing  STBD by using NeuCube  - a unique computational 
architecture  built on an SNN framework which allows to 
create brain-like computational models [26]. The architecture 
of NeuCube was introduced in [24] and then realised in 
various software implementations for the creation of 
application systems [27], [30].  To answer our research 
question, we use NeuCube to process STBD related to 
learning a computer programming language, and deploy 
NeuCube’s visualization functionality in order to observe and 
interpret the neural connections and connectivity patterns 
formed while processing STBD input.   

III. MATERIALS AND METHODS  

The experiment carried out in this study involved 
exploring   similarities and differences between brain 
activities of research participants using EEG as a data 
collection technique.  

A. Learning Tasks 

The design of the learning tasks was inspired in part by the 
work presented in [31]-[32].  Research participants were asked 
to complete 17 learning tasks: each task comprised a computer 
programming comprehension exercise followed by a four-
answer multi-choice question. The programming exercises 
were written for the C programming language. The learning 
tasks were arranged in order of increasing difficulty and were 
displayed on a laptop monitor, in the same order for all 
participants.  

The experiment starts by displaying an instruction page 
and an OK button.  Clicking the OK button takes the 
participant to the first programming exercise.  In order to 
prevent any unnecessary stress, a time limit was not set for 
answering each question.  After reading the multi-choice 
question, the participant needs to select one of the answers, 
using a mouse click.  After that, the participant is shown a 
screen displaying the word ‘Relax’. The next task is displayed 
automatically after two seconds. The process is repeated for 
all learning tasks.  

B. Research Participants 

Ethical approval was obtained from the authors’ 
institutional ethics committee. Potential participants were 
invited to volunteer through email invitations sent to all first-
year computer science students enrolled in a Bachelor’s 
program at the authors’ university.  Participants who 
expressed interest were asked to complete a screening 
questionnaire, providing information about the number of 



programming languages they already knew, their self-
estimated level of knowledge, and age and gender.   

All eight  recruited participants were male, between 18 and 
21 years old.  All of them were about to  start learning the C 
programming language in their introductory programming 
course. All knew at least one programming language 
(different from C), with the level of prior knowledge varying 
from beginner to average.  

C. Data Collection Method 

The OpenSesame software (https://osdoc.cogsci.nl/) was 
used to build and present the research participants’ learning 
tasks, interfacing it with the EEG device. The EEG device 
used for gathering participant brain activity data was Emotive 
Epoch X (https://www.emotiv.com/epoc-x/). It utilizes 14 
channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, AF4. The device was chosen as it was explicitly designed 
for scalable and contextual human brain research. In 
particular, the device is easily moved and easy to use, with a 
minimised set-up time). Even more importantly, the quality of 
the output is high (professional grade’ brain data). 

Relevant event markers were configured in both the EEG 
device software system and the presentation software. The 
headset electrodes were placed on participants’ scalps 
following the 10-20 international system to record the brain’s 
electrical activity resulting from the brain cells’ neuronal 
firing. The sampling rate was configured as 256 Hz.   

IV. COMPUTATIONAL MODELLING IN NEUCUBE AND  

ANALYSIS OF B RESULTS 

 At the pre-processing stage, the experimental dataset was 
reorganised in order to meet NeuCube input requirements. 
The data analysis process comprised two stages:  first, the data 
were analysed in order to determine which parts of the 
participant's brain were more activated during the 
programming tasks, by identifying the most active channels.  
Subsequently, the data were analysed to identify the 
relationships between the wavebands occurring   during the 
programming task and, more specifically, finding the 
relationship between the Alpha and Theta frequencies. The 
results of the two analyses are discussed further below.   

A. Data Pre-Processing  

 The output produced by the EEG device was a file of raw 
data in EDF format which for further processing, it was 
converted to a CSV data file. Next, the basic filtering and 
individual component analysis (ICA) from MATLAB’s 
EEGLAB toolbox were performed to remove noise from the 
data. These two techniques are commonly used to reduce the 
noise level without losing meaningful information from the 
dataset.  

Considering the study’s research  question, the wavebands  
were particularly important features for analysis; therefore the 
entire spectrum of frequencies was needed to be acquired from 
the recorded signals. However, those parts of the participant’s 
brain that were most active during the programming tasks 
performance was needed to be identified before this process. 
To accomplish this, NeuCube was used to build a 3D brain-
like model to visualise the neural interactions and the spike 
connectivity among the EEG channels. 

As described earlier, the dataset in this study was collected 
from eight individuals while they were completing  17 
learning tasks related to computer programming. Two event 

markers were created for each task (trial), indicating the start 
and the end of the task (the end of the task was signalled when 
the participant clicked the selected answer to the multi-choice 
question). The event markers were saved in the CSV dataset 
file as an individual column.  

To feed the dataset into the NeuCube, the dataset was 
organised as individual spatio-temporal samples. 17 
independent trials of 3.5 seconds duration were extracted from 
each original dataset belonging to each participant. The 
second marker index was used as the time point to separate the 
17 trials as individual samples. Each sample consisted of 1250 
rows of ordered times (temporal features) and 14 columns of 
spatial features corresponding to 14 EEG channels.   

B. The First Stage of the Analysis  

A NeuCube model comprises an encoding module, a 3D 
SNN cube (SNNc), an eSNN classifier, and an optimization 
module [26]. The SNNc is structured according to a brain 
template (in this case, the Talairach template) with 1471 
spiking neurons; each represents a small area from the 
template and the brain. This allows for a trained SNNc to be 
interpreted in terms of functional connectivity related to the 
brain areas that are measured in STBD (e.g., an EEG dataset).   

For the analysis,  participants were divided into two groups 
based on their self-reported level of prior programming 
knowledge. Those at level average and above were labeled as 
‘with sufficient prior knowledge’ (SPK), while participants at 
level beginner or below average were labeled as  ‘insufficient 
prior knowledge’ (IPK). 

 Each individual’s participant dataset was loaded into the 
input encoding module of NeuCube. At this step, the 
continuous data stream is converted into discrete spike trains 
using a threshold base encoding algorithm suitable for 
processing in an SNN cube [27]. The model is initialised by 
mapping the input variables onto the spatially located spike 
neurons in the SNNc.   

Next, the model is trained on the data in the SNNc, 
deploying in a two-stage learning process. At the first stage 
(unsupervised learning), the data's hidden (spatio-)temporal 
relationships were encoded as neuronal connection weights; 
this results in SNNc learning (spatio-)temporal relations from 
input data.  SNNc is trained by using the spike-timing-
dependent synaptic plasticity (STDP) learning rule. 
According to the  rule,  if neuron j fires before neuron i,  the 
weight of the connection  from neuron j to neuron i  will 
increase;  if the order reverses, the weight of the  connection 
from neuron i to neuron j will decrease [29]. The STDP rule 
extends  the Hebbian learning rule, according to which  the 
constant interaction between two neurons  strengthens their 
connection [33].  

The second training stage is supervised learning which 
trains the model with regard to the target output class 
associated with each (spatio-)temporal sample. As the aim 
was to identify the patterns underlying neuronal connectivity 
and spike activity for each individual participant’s dataset, the 
supervised training stage was not relevant to the analysis.  

NeuCube provides different techniques for network 
analysis, such as clustering according to spike activity or 
connection weight, and graphical representation of cluster 
interaction showing information exchange [30].  After 
unsupervised training, we applied clustering according to the 
spiking activity method for all 14 input features and then 



extracted an average input interaction to visualise the 
interaction between features. 

C. Results of  the First  Stage of the Analysis 

The diagrams in Fig.1  represent one-to-one interaction 
between the input neurons and their surrounding clusters 
based on average spike  exchange over the time of duration of 
the EEG signals. In each figure, 14 input neuron clusters 
belong to the 14 features (channels) of the EEG device. The 
lines represent the interaction between features. Thicker lines 
demonstrate more interaction between the features. In Fig.1, 
the lines representing the interaction between the cluster 
neuron of channels T7 and F7 of the EEG device showed the 
highest amount of interaction for both groups (SPK) and 
(IPK). Channel T7  is located in the temporal lobe of the left 
hemisphere of the brain, approximately at the ear level of the 
skull. This part of the brain is the first area responsible for 
interpreting the information in the form of sounds from the 
ear. Channel F7  is located in the frontal lobe of the left 
hemisphere of the brain.  This part of the brain also creates and 
controls spoken and written language output and is 
responsible for attention gaining,  WM memory and decision 
making. Considering the primary functionalities of these two 
brain areas and the purpose of this study which is related to 
prior learning, WM and programming languages, we selected 
channel F7 to further test our hypothesis. 

D. The Second Stage of the Analysis 

At this stage of analysis, the power spectrum of channel 
F7 was obtained using the Fast Fourier Transform (FFT) 
method (in MATLAB).  The frequency bands extracted by this 
method are commonly used to study different mental states 
and learning processes [34]. The six frequency bands 
extracted in this stage are known as; Delta (0.5-4Hz), Alpha(8-
12Hz), Theta (4-8 Hz), Beta High (16-25), Beta Low (12-16) 
and Gamma (25-45 Hz). 

NeuCube was used to investigate the relationships 
between these features/frequency bands.  Seventeen samples 
were extracted from  each one of the datasets. Each sample 
consisted of 125  rows of ordered time (temporal)  features 
and six columns of waveband features (Delta, Alpha, Theta, 
Beta H, Beta L, Gamma). The NeuCube encoding, 
initialization, and unsupervised training  processes were  
deployed in the same way as at the first stage of the analysis.  
However, after clustering the input data based on the spike 
communication, we used the neuronal proportion graph  to 
represent the relative percentage of neurons out of the total 
number of neurons in the SNNc. Neuronal proportion 
represents the strength of neuronal interaction between the 
wavebands  in terms of the percentage of neurons in the cube 
that belongs to an input neuron cluster.  

E. Results of the Second Stage of the Analysis 

The diagrams in Fig. 2 represent the percentage of six 
features (wavebands) in the trained SNNc out of the total 
number of neurons in the cube. For each participant, we 
compared the percentage of neurons between the features, 
specifically Theta and Alpha (which are the waves of interest 
in this study), to find information regarding the relationship 
between them. As a result, for participants labeled as SPK, the 
neuron proportion related to the Alpha band is higher than the 
neuron proportion for the Theta band, while for the 
participants labeled as IPK, the neuron proportion for the 
Theta band is higher when compared to the Alpha band (Fig. 
2). For the ease of comparison for each individual and 

subsequently, as a group, the bar graph (Fig. 3) was created 
which displays the neuron proportion in percentage (vertical 
axis) related to the Alpha and Theta band features for each of 
the eight participants (horizontal axis). The first set of four bar 
pairs represent participants of type IPK, while the second set 
of four bar pairs represent the SPK participants. 

V. DSICUSSION 

Overall, the findings of this research demonstrated that 
modelling and analysing the STBD related to TL by using a 
brain-inspired SNN approach, specifically NeuCube, can 
reveal meaningful brain activity patterns manifesting the 
relationship between prior knowledge and cognitive load. The 
study results confirm  the hypothesis that prior knowledge of 
computer programming  reduces cognitive load, thus leading 
to a better learning outcome and transfer performance.   

The results from the cluster analysis based on average 
input interaction demonstrated a broad interaction and spike 
activity among neurons in the frontal lobe (6 channels located 
in the frontal lobe) and temporal lobe of the brain (T7, T8). 
However, the highest neuronal interaction among all 
participants were registered at F7 and T7, both located in the 
left hemisphere, frontal and temporal lobe respectively.   

Considering the above results, we can conclude that the 
TL during performing a programming task favours the left 
hemisphere of the brain in the frontal and temporal lobes. This 
finding is in line with a recent study using fMRI scan, where 
the left hemisphere of the brain is found to correspond with 
solving the programming tasks. More interestingly, this area 
also correlates with language processing [11]. 

In the second stage of the analysis, results from neuronal 
interaction based on the neuron proportion metric of NeuCube 
showed an increase in the Theta band feature but a decrease in 
the Alpha band feature for the dataset of IPK participants 
(Fig.2). In contrast, the same analysis for the dataset of the 
SPK participants showed a decrease in the Theta and an 
increase in the Alpha band feature. 

We can conclude that the insufficiency in prior knowledge 
was demonstrated by an increase in Theta and a decrease in 
Alpha, while having sufficient prior knowledge in 
programming can decrease Theta and increase Alpha band.  
These results also indicate that the cognitive load of the IPK 
participants was high, indicating a poor learning outcome and 
low transfer performance due to the decreased WM efficiency. 
Indeed, these participants’ scores were poor and their prior 
knowledge of programming was insufficient. The self-
reported information of mentioned participants also was in 
line with the result of the experiment which confirmed 
insufficiency of their prior knowledge.  

The results for the SPK participants indicate a low 
cognitive load that allows WM to work with greater 
efficiency, potentially leading to better learning outcomes and 
transfer performance. Indeed, the data in these datasets were 
gathered from participants with sufficient prior knowledge as 
their self-reported result confirmed the higher level of 
knowledge compared to participants from another group 
(IPK). The scores of these participants were higher than 
another group in terms of correct answers. 

The findings of the reverse correlation of these bands are 
aligned with results reported in previous studies about the 
relationships between the Theta and Alpha wavebands with 
regards to cognitive load and performance [22], [18], [16].  



 

Fig. 1. SNNc visualisation:  Average input interaction in terms of spike 

communication between clusters of input neurons which correspond to 

the  14 channels used for EEG data collection. SPK: sufficient prior 

knowledge; IPK:  insufficient  prior knowledge.              

VI. CONCLUSION 

 To explore the relationship between prior knowledge and 
cognitive load, this research used STBD and the brain-
inspired SNN computational architecture of NeuCube to study 
the neuronal connectivity and spike activities underlying the 
brain activities occurring when individuals learn a new 
programming language.  Inferences about cognitive load were  
drawn from  data about  the change patterns in the  Alpha  and 
Theta frequencies.  During the experiment, participants with 
sufficient prior knowledge of computer programming  
performed better in their learning tasks  compared to  
participants with insufficient prior knowledge. The  analyses 
of the outputs  of the SNN model demonstrated that during the 
experiment, the cognitive load  of participants  with prior 
knowledge of computing  was reduced compared to the 
cognitive  load of participants with  insufficient prior 
knowledge.  

 

 

 

Fig. 2. SNNc visualisation: Neuron proportion in terms of spike 

communication between clusters of input neurons which correspond to 
six frequency bands. SPK:  sufficient prior knowledge; IPK:  

insufficient prior knowledge. 

Even though  the participant sample EEG data was small, 
the results allow us to conclude that  cognitive load and the 
associated Theta and Alpha frequencies can be used as a 
measure of the TL process. More specifically, it was 
demonstrated that the neuronal connectivity and spike activity 
patterns visualised in the NeuCube model can be used to 
understand and interpret brain activities occurring during the 
TL process.  Further research may include the  investigation 
of the effect of  learners’ prior knowledge on cognitive  load 
considering other EEG channels such as T7 (located in the 
temporal lobe) and the identification of other patterns of 
change in  the  Theta and Alpha frequencies. 
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Fig. 3. Comparison of Alpha (A) and  Theta (T) features  in terms of 

neuronal proportion (in percentage),  for all participants (SPK and 

IPK). 

A team including researchers from Auckland University 
of Technology, Dr. Enmei Tu from Shanghai Jiao Tong 
University and the team of Prof. Hou from the CASIA Beijing 
developed the MATLAB version of NeuCube.  
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