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Abstract

The core focus of this research is at the development of novel information methods

and systems based on personalised modelling for genomic data analysis and biomed-

ical applications. It has presented a novel personalised modelling framework and

system for analysing the data from different sources and discovering the knowledge

through an evolving and adaptive way. The main idea of personalised modelling is

based on the assumption that every data sample has its unique pattern only being

represented by a certain number of similar samples with a small set of important fea-

tures. The proposed personalised modelling system (PMS) is an integrated computa-

tional system that combines different information processing techniques, applied at

different stages of the data analysis, e.g. feature selection, classification, discovering

the interaction of genes, outcome prediction, personalised profiling and visualisation,

etc.

In summary, this research has presented the main following contributions:

(1) This study has implemented the idea of personalised modelling framework (PMF)

introduced by Kasabov (2007b);

(2) This study has developed novel algorithms and methods for PMS, which are

described in Chapter 6;

(3) I have addressed the issuess in personalised modeling for data analysis and pro-

posed solutions in Chapter 5;

(4) I have analysed the proposed PMS on 6 types of cancer gene expression data in

Chapters 6, 7 and 8;



(5) This thesis has presented the case studies of 4 types of cancer gene expression

data analysis in Chapter 7

(6) This study proposed a method using a coevolutionary algorithm for personalised

modeling to select features and optimise relevant parameters for data analysis

in Chapter 8.

(7) I have applied the proposed PMS on a SNPs dataset for Crohn’s disease risk

evaluation in a real world case study in Chapter 9;

(8) The thesis gives the future research directions for personalised modelling study.

To construct a PMS for knowledge discovery, new algorithms and methods have been

developed in the course of this study: (1) personalised modelling based gene selection,

(2) increment search based approach for personalised modelling (iPM) , (3) genetic

algorithm search based approach for personalised modelling, (4) compact GA search

based personalised modelling, and (5) co-evolutionary algorithm based method for

gene selection and parameter optimisation in personalised modelling (cEAP) .

Using these developed algorithms and methods, I have implemented a personalised

modelling system for data analysis and knowledge discovery from a simple approach

to the more sophisticated approaches. The implemented PMS is illustrated on bench

mark data sets and applied on real data: gene expression data of 6 types of cancer;

SNPs data for Crohn’s disease risk analysis (from the UK Welcome Trust Reposi-

tory).

The experimental results from the proposed PMS have shown the improved perfor-

mance in terms of classification accuracy. More importantly, such a framework and

system create an optimal personalised model combining informative features (e.g.

genes) and optimised relevant parameters. The knowledge elicited from the created

personalised model allows us to profile every new input data sample, which is very

useful for the problems that need precise information for each individuals, e.g. the

design of tailored treatment for a cancer patient.

This study is a feasibility analysis for personalised modelling on different sources of

data, such as gene expression data, proteomic data and SNPs data. To the best of

my knowledge, it is the first comprehensive study of personalised modelling from the

xxiv
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point of view of computational intelligence. The findings from this study also encour-

age us to carry out in-depth study for solving open questions in future research. The

developed algorithms and models are generic which can be potentially incorporated

into a variety of applications for data analysis and knowledge discovery with certain

constraints, such as financial risk analysis, time series data prediction, to name only

a few.
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two B-cell lineage malignancies that have very different clinical presentations,

natural histories and response to therapy. However, FLs frequently evolve over

time and acquire the morphologic and clinical features of DLBCLs and some

subsets of DLBCLs have chromosomal translocations characteristic of FLs. The

biological objective of the analysis on this data is to distinguish between these

two type of lymphomas.

5. Lung cancer data (Gordon, Jensen, Hsiao, Hsiaox, & JE, 2002)

(available at http://www.chestsurg.org/microarray.htm)

This dataset is originally used for classification between malignant pleural

mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung cancer diag-

nosis. The complete dataset has 181 tissue samples (31 MPM vs. 150 ADCA)

and each sample is described by 12533 genes.

6. Ovarian cancer data (Petricoin et al., 2002)

(available at http://clinicalproteomics.steem.com/)

This dataset contains 253 samples in which 91 samples are labeled as healthy

and 162 are ovarian cancer. There are total 15154 proteins for identifying

tumor patterns.

7. Central Nervous System (CNS) cancer data (Pomeroy et al., 2002)

(available at http://www-genome.wi.mit.eud/mpr/CNS/)

The CNS cancer data used in this thesis is the dataset C in Pomeroy’s work

(Pomeroy et al., 2002). It consists of 60 patient samples, in which 39 are

medulloblastoma survivors (class 2) and 21 are treatment failures (class 1). The

learning objective of this gene expression data is to classify the patients who

survive after the treatment and those who are succumbed to central nervous

system cancer. Each sample is represented by 7,129 probes from 6,817 human

genes.

8. Single nucleotide polymorphisms (SNPs) data for Crohn’s disease risk predic-

tion

(available at http://www.wtccc.org.uk)

The data consists of three subsets:

Dataset A and B are the datasets for training. Dataset A contains 1049 samples

in which 561 samples are diseased and 488 are controls. Dataset B contains

1045 samples in which 560 samples are crohn’s disease cases, while 485 are
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controls. Dataset C is the testing set that includes 1062 samples (577 diseased
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CHAPTER 1

Introduction

“The beginning of knowledge is the discovery of something we do not understand.”

- Frank Herbert

1.1 Background: Contemporary Research in Life

Sciences

The scale and the techniques of life science research have been changed significantly

since human society entered genomics era in the mid 1980s. Microarrays have be-

come one of the most important technological breakthroughs in biological science

that enable scientists to understand difficult problems at a genomic level. For ex-

ample, microarrays offer a new approach to discover the biological mechanisms that

trigger normal genes to become cancerous. With the advancement of genomic tech-

nology and the support from computer and information science, system biology has

progressed into a new paradigm where the research is shifting from studying single-

variable (single-gene) to studying complex gene interactions.



1.1. Background: Contemporary Research in Life Sciences

Health informatics, clinical research and the widely-spread use of microarray technol-

ogy have all contributed to the generation and accumulations of vast amount of data.

This data comes from areas, such as functional genomics, proteomics, metabolomics,

patients’ clinical information, etc. The discovery of the hidden relationships and

patterns in the available data could provide researchers with new knowledge in a

variety of areas, e.g. new oncogenes discovery, disease diagnosis, therapeutic treat-

ment design, drug response prediction, to name but a few. There has been an

ever-increasing need for biological, medical and computer scientists to work together

for data retrieval, analysis, visualisation and knowledge discovery.

Computational intelligent techniques have been therefore put forward to bioinfor-

matics related tasks, such as modelling, diagnostic, learning and optimisation, with

applications in several areas. The application of computational intelligent techniques

in biomedical science is not as recent as we might think. In fact, the utilisation of

computational intelligent techniques in medical research can be tracked back to the

late 1970s. Many research projects attempted to use statistics and other simple tech-

niques to investigate the feasibility for analysing large clinical databases during the

1970s and 1980s (Breiman, Stone, Friedman, & Olshen, 1984). Some of these works

are: the project carried out at the Brighman and Women’ hospital, in Boston, USA,

to create decision trees using recursive partitioning methods in myocardial infarc-

tion for making clinical dicision (Goldman et al., 1988), and the study that created

methodology for developing clinical prediction rules (Wasson, Sox, Neff, & Goldman,

1985). However, researchers found that it was difficult to acquire knowledge from

medical expert systems in a specific domain using traditional statistical techniques

(Anderson, 2000). Researchers moved on to the utilisation of computational intel-

ligence methods such as machine learning techniques could be a new and effective

approach to discover knowledge from medical datasets (Maojo, 2004).

KARDIO system (Bratko, Mozetic, & Lavac, 1989) is a pioneering study in terms of

using computational intelligence for knowledge discovery in medical expert systems.

The system is designed for cardiological diagnosis and treatment, where an inductive

algorithm is used to extract rules from large clinical databases. Since that time,

computational intelligent techniques have been extensively used for medical data

analysis (Lavrac, Keravnou, & Zupan, 1997). The discovered knowledge can be used

for various purposes, such as diagnosis, prognosis, visualising, monitoring, treatment

decision supporting. Another study (Cooper et al., 1997) used several methods,

2



1.2. Why Personalised Modelling?

namely logistic regression, decision trees, Bayesian networks, neural networks and

K-nearest-neighbour (KNN) to discover clinical predictors in pneumonia mortality.

The emergence of microarray technology provides a new platform to study complex

diseases, such as cancer. The technology assists researchers to untangle the vast com-

plexity of the relationships among geneotypes, phenotypes development, environment

and evolution (Baldi & Hatfield, 2002). For clinical purposes, microarray technol-

ogy plays an important role in understanding the pathway of disease (especially

for cancer), for designing tailored diagnostic strategies and for creating personalised

molecular medicine.

The contemporary life sciences research requires integrated computational intelligent

models and systems for the study of medical problems related to diseases that kill

hundreds of thousands of people every year, such as cancer. Ideally, the models

should combine:

1. Different sources of information, such as gene expression microarray data, pro-

teomics data, human expertise knowledge, clinical data, etc.

2. Different information processing techniques, applied at different stages of the

data analysis, e.g., data pre-processing, feature selection, clustering, classifica-

tion, discovering the interaction of genes, outcome prediction, risk evaluation,

etc.

Despite the availability of large genetic and clinical databases and the enormous

human expertise related to diseases, there are very few specific information proces-

sion methods and systems that have been successfully used for gene expression data

modelling, for disease prognosis and for drug target discovery, specifically for new

individual patients who have complex disease, such as cancer.

1.2 Why Personalised Modelling?

In order to develop an understanding of personalised modelling for gene data anal-

ysis and biomedical applications, we must answer the question: why do we need

3
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personalised modelling for gene data analysis and for biomedical applications? Con-

temporary medical and other data analysis and decision support systems use pre-

dominantly inductive global models for the prediction of a person’s risk, or of the

likely outcome of a disease for an individual (Anderson et al., 2006; Levey et al.,

1999). In such models, features are pre-processed to minimise learning function’s

error (usually a classification error) in a global way to identify the patterns in large

databases. Pre-processing is performed to constrain the features used for training

global learning models. In general, global modelling is concerned with deriving a

global formula (e.g. a linear regression function, a “black box neural network”, or a

support vector machine) from a large group of data samples. Once an optimal global

model is trained, a set of features (variables) are selected and then applied to the

whole problem space (i.e. all samples in the given dataset). Thus, the assumption

is made that the global model is able to work properly on any new data sample. In

clinical research, therapeutic treatment designed to target a disease is assumed to be

useful for everybody who suffers from this disease. The drugs developed as a result

of this global approach have been successful in revolutionising medicine over the past

decades.

Statistic reports from the medical research community have shown that drugs devel-

oped by such global modelling methods are only effective for approximately 70% of

people who need treatment, leaving a relatively large number of patients who will

not benefit from the treatment at all (Shabo, 2007). Regarding aggressive diseases,

such as cancer, any ineffective treatment of a patient (e.g. either a patient not being

treated, or being incorrectly treated), can be the difference between life and death.

Such global modelling based medical treatment systems are not always applicable

to the individual patients, as the molecular profiling information is not taken into

account. The heterogeneity of diseases (e.g. cancer), means that there are different

disease progresses and different responses to the treatment, even when the patients

have similar remarkably morphologically tumours in the same organ. Thus, a more

effective approach is required that would use a patient’s unique information, such

as protein, gene or metabolite profile to design clinical treatment specific to the

individual patient.

The advance of molecular profiling technologies, including microarray messenger ri-

bonucleic acid (mRNA) gene expression data, proteomic profiling, and metabolomic

information make it possible to develop “personalised medicine” based on new molec-
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ular testing and traditional clinical information for treating individual patient. Ac-

cording to the United States Congress, the definition of personalised medicine is

given as “the application of genomic and molecular data to better target the de-

livery of health care, facilitate the discovery and clinical testing of new products,

and help determine a person’s predisposition to a particular disease or condition”

(Senate Health, Education, Labor, and Pensions, 2007). The personalised medicine

is expected to focus on the factors affecting each individual patient and for help

fight chronic diseases. More importantly, it could allow the development of medical

treatment tailored to an individual’s needs.

Motivated by the concept of personalised medicine and utilising transductive reason-

ing (Vapnik, 1998), personalised modelling was recently proposed as a new method

for knowledge discovery in biomedical applications. For the purpose of developing

medical decision support systems, it would be particularly useful to use the informa-

tion from a data sample related to a particular patient (e.g. blood sample, tissue,

clinical data and/or DNA) and tailor a medical treatment specifically for her/him.

This information can also be potentially useful for developing effective treatments

for another part of the patient population.

In a broader sense, personalised modelling offers a new and effective approach for

the study in pattern recognition and knowledge discovery. The created models are

more useful and informative for analysing and evaluating an individual data object

for a given problem. Such models are also expected to achieve a higher degree of

accuracy of prediction of outcome or classification than conventional systems and

methodologies (Kasabov, 2007b).

Personalised modelling has been reported as an efficient solution for clinical deci-

sion making systems (Song & Kasabov, 2006), because its focus is not simply on

the global problem space, but on the individual sample. For a new data vector,

the whole (global) space usually contains much noise information that presents the

learning algorithm working properly on this new data, though the same information

might be valuable for other data samples. With personalised modelling, the noise

(or redundant) information can be excluded within the local problem space that is

only created for the observed data sample. This characteristic of personalised mod-

elling makes it a more appropriate method for discovering more precise information

specifically for the individual data sample than conventional models and systems.
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1.3 Research Goal and Objectives

Evolving intelligent methods have been adopted as one of the major computational

tools for optimisation problems in bioinformatics research, e.g. for constructing

medical prediction models. In this research, evolving intelligent methods and systems

refer to the methods and systems that are able to evolve towards better solutions for

optimising tasks. Such methods and systems may include a variety of algorithms and

methods, such as evolutionary algorithms, swarm intelligence systems and evolving

connectionist systems (ECOS) (Kasabov, 2003, 2007a).

1.3.1 Research Goal and Objectives

The goal of this research is to develop novel information methods and systems for

personalised modelling (PM) and specifically for genomic data analysis and biomed-

ical applications. The main objective of this research is to investigate this new

and promising area, and build a generic modelling environment using Personalised

Modelling based Framework (PMF) for biomedical data analysis. This research will

approach the task in the following way: Creating a methodology for gene expres-

sion data and biomedical data modelling and knowledge discovery using evolving

intelligent computational techniques. This would involve gene expression data pre-

processing and feature selection, building a model based on the learning process (e.g.,

classifiers); model testing and validation; outcome visualisation and integration.

1.3.2 Specific Research objectives

More specifically, the research include the following objectives:

1. To critically analyse the problems related to PM.

Although plenty of computational intelligent models have been so far devel-

oped for genomic data analysis, there are few integrated systems that can be

successfully used for constructing medical decision support system. There are

still a variety of issues that have not been resolved. For example, identifying

which genes are informative in the microarray gene expression data.
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2. To develop a generic modelling environment based on the personalised mod-

elling framework and to analyse its performance under different scenarios.

3. To develop new methods for personalised feature selection and personalised

profiling.

Personalised modelling creates a unique model using a small number of in-

formative features that highly represent an individual data vector’s pattern.

Thus, feature selection is a fundamental step to create a personalised mod-

elling system (PMS) for analysing different data sources, such as microarray

gene expression data, protein data, single nucleotide polymorphisms (SNPs)

data, etc.

4. To develop a PMS for gene expression data modelling and classification.

One major task for bioinformatics research is to utilise gene expression data

for complex human disease study, such as cancer and diabetes. This study

aims to develop a PMS for gene expression data analysis and investigate its

performance over bench mark microarray gene expression datasets.

5. To develop a PMS for SNPs data modelling and classification.

This study will present a PMS for SNPs data modelling and risk of disease

evaluation. It is a feasibility analysis of personalised modelling on SNPs data

for clinical application.

In summary, the ultimate objective of this research is to develop new methods and

systems for personalised modelling that leads to improved classification performance

and personalised profiling. Such methods and systems integrate novel machine learn-

ing and modelling techniques for:

♦ feature selection;

♦ classification;

♦ adaptation to new data;

♦ knowledge discovery and model validation;

♦ data sample profiling and results visualisation.

7



1.4. Organisation of the Thesis

1.4 Organisation of the Thesis

The remainder of this thesis covers the development of a new proposed framework

and system for personalised modelling.

• Chapter 2 gives an introduction to genomic data analysis including gene ex-

pression data and SNPs data analysis. It also provides a literature review

covering the related biological background;

• Chapter 3 presents an overview of a range of computational intelligent tech-

niques that are relevant to this research. I provide a brief description of the

widely used techniques that have been used for genomic data analysis and

biomedical applications;

• Chapter 4 briefly reviews modelling approaches and techniques for data analysis

and knowledge discovery. It gives the description of three main modelling

approaches, namely global, local and personalised modelling. It also presents

a comparison study where the three modelling approaches are applied on a

benchmark gene expression dataset for a classification task.

• Chapter 5 presents a critical analysis of the problems related to PM. It ad-

dresses the issues related to PM and gives potential solutions for the problems;

• Chapter 6 gives a conceptual framework of PM. This framework is used for

the creation of five new algorithms to implement functional modules and for

the implementation of three personalised modelling systems for modelling and

knowledge discovery. Also, this chapter has presented a general strategy for

evaluating proposed algorithms and PMSs;

• In Chapter 7, a PMS is developed that can be used on cancer gene expression

data. A GA based PMS is applied on four benchmark genomic datasets for

cancer classification;

• Chapter 8 proposes a novel method and system for feature selection, neighbour-

hood selection and model optimisation. The new method uses a coevolutionary

algorithm for optimisation;

8
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• Chapter 9 describes a case study that uses a SNPs dataset for Crohn’s disease

(CD) risk prediction. This task is a real-world biomedical analysis problem

that presents challenges to personalised modelling. This case study has demon-

strated the strength of personalised modelling over global modelling when ap-

plied on specific SNPs data;

• Chapter 10 summarises the thesis and gives the conclusion followed by future

research directions.
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CHAPTER 2

Genomic Data Analysis

“Having a sequence of the human genome is good, but our ability to interpret it was

limited. ”

- Eric Lander

One major task for bioinformatics research is to analyse genome-wide transcription

from genomic data, such as microarray gene expression data and single nucleotide

polymorphisms (SNPs) data. Due to the inherently complex behavior of biological

systems, the genomic data analysis process normally consists of several stages. For

example, the analysis starts with data preprocessing, followed by feature selection to

find informative features (e.g. informative genes), then discriminates the classes of

given samples by using different techniques (e.g., classification or clustering). This

chapter gives a brief review of genomic data analysis and related biological back-

ground.

2.1 Gene Expression Data Analysis

This section presents some relevant biological knowledge relevant to the thesis, along

with a brief introduction of some terminology and problem definitions.



2.1. Gene Expression Data Analysis

2.1.1 Biological Background

In molecular biology, cells are the fundamental organisational units of all living

organism systems. The deoxyribonucleic acid (DNA) is the nucleic acid that contains

all the genetic instructions for functioning cells’ activities in all living systems. A

DNA module is a double-stranded polymer of basic molecular units called nucleotides.

Each nucleotide is made of a deoxyribose sugar, a phosphate group and one of the

four types of molecules called nitrogen bases. The four nitrogen bases found in

DNA are adenine(A), guanine(G), cytosine(C) and thymine(T). The halves of the

double helix structures are joined with the hydrogen bonds between nitrogen bases

through complementary base pairing (A bonds only to T, while C bonding to G).

For example, the occurrence of A on one strand must be coupled with the occurrence

of T on the other strand. Similarly, if there is a C on one strand, a G will be always

as a partner on the other. A double helical structure of DNA is illustrated in Figure

2.1.

DNA molecules play a main role of long-term information storage in all living or-

ganisms. A DNA sequence is a particular arrangement of the base pairs in a DNA

strand (e.g., ACAAGATGCC), with the capacity to carry the exact instructions

required to create a particular organism with its own unique characteristics. DNA is

often called the blueprints of all living organisms, since it contains all the information

required to construct and maintain the life from simple bacteria to complex human

beings (Lu & Han, 2003). The properties characterised by the double helix structure

of DNA molecules offer a special way to preserve and pass the information stored in

DNA from one cell to another and from parental generation to their offsprings.

A complete DNA sequence that characterises a living organism is called its genome.

The genome does not function as one genetic sequence, but is separated into a num-

ber of sections - genes. The size of genomes can be very different: the genome of

Candidatus Carsonella ruddii (an obligate endosymbiotic Gamma Proteobacteria)

contains only about 160, 000 base pairs of DNA, which is the smallest genome of

living creature discovered so far, while the haploid human genome is approximately

3 billion DNA base pairs long and and has about 20, 000 ∼ 25, 000 genes (Minkel,

2006; wikipedia, 2009).

In contemporary biology, a gene is defined as “a locatable region of genomic sequence,
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Figure 2.1: A double helical DNA
structure formed by base pairs attached
to a sugar-phosphate backbone (U.S. the
National Library of Medicine, 2009).

corresponding to a unit of inheritance, which is associated with regulatory regions,

transcribed regions, and/or other functional sequence regions” (Pearson, 2006). The

physical development and phenotype of organisms are generally considered a product

of genes interacting with each other. Taking into account complex patterns of regu-

lation and transcription, genic conservation and non-coding RNA genes, an updated

definition of a gene is thereby proposed by Gerstein et al. (2007): “A gene is a union

of genomic sequences encoding a coherent set of potentially overlapping functional

products”.

There are two general types of genes in the human genome:

1. protein-coding genes:

Protein-coding genes are the majority in the complete genome and are the

templates for generating molecules - proteins. They are expressed in two stages:

transcription and translation.

2. non-coding RNA (ribonucleic) genes:

Non-coding RNA genes represent only 2 ∼ 5% of the total number of genes

which provide the template for the synthesis for encoding functional RNA

molecules. A large proportion of RNAs are involved in the control of gene

expression, particularly protein synthesis.

An organised structure of DNA within a cell is a chromosome. Before cells dividing,

chromosomes are duplicated in a process called DNA replication (Russell, 2009).

12
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2.1.2 Gene Expression and DNA microarray Technology

DNA serves as a template not only for making copies of itself but also for producing

a blueprint of a RNA molecule. A genome provides templates for the synthesis of a

variety of types of Ribonucleic acids (RNAs) that may involve some most prominent

examples of non-coding RNAs, such as messenger RNA (mRNA), transfer RNA

(tRNA) and ribosomal RNA (rRNA) . RNA is a molecule consisting of a set of

nucleotide units, each nucleotide consisting of a nitrogenous base, a ribose sugar,

and a phosphate. Although RNA is very similar to DNA, the main differences are

in the important structural details:

• Within a cell, DNA is usually double-stranded. By contrast, RNA is usually

single-stranded;

• The sugar in DNA is deoxyribose, while the sugar in RNA is ribose that is the

same as deoxyribose but with one more oxygen-hydrogen atom.

• RNA molecules have a much greater variety of nucleic acid bases, while DNA

has only 4 different bases in most cases.

Over the last decades, a number of DNA array-based technologies have been devel-

oped for determining gene expression levels in living cells. There are a number of

types of DNA arrays currently available for gene expression profiling. Two popular

developed array technologies are summarised as follows:

• Oligonucleotide arrays:

The main proponent of this technology is Affymetrix whose GeneChip arrays

consist of small glass plates with a number of Oligonucleotide DNA probes

recorded on the surface. Using this approach, massive number of mRNAs can

be probed simultaneously. However, it is an expensive technology because

specific equipment is required to manufacture and access genechips. A repre-

sentative work using Oligonucleotide array data is presented by Golub et al.

(1999) where it is used to classify bone marrow samples for cancer diagnosis.

• complementary DNA (cDNA) microarray:

This is another solution for mRNA measurement developed by Stanford Uni-

versity, which is cheaper to manufacture and easy to read. Owing to the
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non-proprietary right of this technology, cDNA is currently the most prevalent

technology for microarray data analysis in academia. An important milestone

achieved by using this technology was when Alizadeh et al. (2000) revealed

a previously unknown sub-classification within diffuse large B-cell lymphoma

(DLBCL) based on the analysis of cDNA microarray data.

There are two stages in which the expression of the genetic information stored in

DNA molecule occurs: (Lu & Han, 2003):

1. transcription stage in which DNA molecule is transcribed into mRNA;

2. translation stage in which mRNA is translated into the amino acid sequences

of the proteins for creating cellular functions.

Hence, gene expression is defined as the process of transcribing a gene’s DNA se-

quence into RNA. During the transcribing, the information from genes is used in

the synthesis of functional gene products (usually proteins). Functional RNAs are

the products of transcribing non-protein coding genes, such as rRNA genes or tRNA

genes. A gene’s expression level indicates the approximate number of copies of the

observed gene’s RNA that are produced in a cell. Additionally, the level is in relation

with the amount of corresponding proteins produced.

The measurement of gene expression has become an important part of life sciences

research, owing to its ability to quantify the level at which a particular gene is

expressed within a cell or an organism. The analysis based on such information can

be a powerful tool for the study of the development in multicellular organisms and

the identification of protein functions in single cells.

Empirical research has shown that specific patterns of gene expression occurring at

different biological stages can cause response in tissues and cells (Russell, 2009).

Therefore, gene expression level could be used to gauge the activity of a gene under

specific biochemical conditions and can be very useful for:

• detecting virus infection in a cell;

• estimating the risk of an individual to develop cancer (oncogene expression);
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• evaluating the cell’s response to a drug.

Similarly, the analysis of the location of expression protein is a technical break-

through that allows the analysis to be performed on an organismic or cellular scale.

The measurement of localisation is particularly important for the development in

multicellular organisms and as an indicator of protein function in single cells.

Microarray technology has emerged as one of the most powerful tools for measuring

thousands of genome-wide expression levels simultaneously, especially in the realm

of complex disease research (Ehrenreich, 2006; Draghici, Khatri, Eklund, & Szallasi,

2006). Complex and aggressive diseases, such as cancer, is known to be reflected in

the mutation of certain genes. Normal cells can be mutated to malignant cancer cells

under certain circumstances, e.g., the mutation in genes that influence the cell cycle,

apoptosis, genome integrity, etc (Ben-Dor, Bruhn, Frideman, Schummer, & Yakhini,

2000).

Many microarray-based technologies have been developed for bioinformatics research

over the last decades. They make it possible to observe the complex interactions

among a large number of molecules, such as DNA, protein and combinatorial chem-

istry arrays, using a prespecified library of molecular probes (Baldi & Hatfield, 2002).

Specifically designed for determining the expression levels of genes in living cells,

DNA microarray (also known as DNA microarray chip) has taken a central stage in

bioinformatics research, since it gives a possibility to investigate complex biological

problems using some interdisciplinary approaches.

At a very basic level, a DNA microarray provides a snapshot of enormous amount

of genes in a tissue sample. DNA microarray can be simply defined as “orderly

arrangement of tens to hundreds of thousands of unique DNA molecules (probes) of

known sequence” (Baldi & Hatfield, 2002, p7). A DNA microarray chip is produced

by recording a large number of DNA segments (called probes) in spots arranged on a

solid surface, such as a glass slide, a quartz wafer or a nylon membrane. Each spot is

further labeled and hybridised to an array from a given objective interest, e.g., tumor

biopsy (Huber, Von Heydebreck, & Vingron, 2003). The value yielded by measuring

the labels of spots is then correlated to the abundance of the RNA transcript of the

given tissue sample. The commonly used DNA microarray manufacturing methods

for gene expression profiling include (Schena, 2000):
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1. In situ synthesised oligonucleotide arrays (e.g., Affymetrix Inc.);

2. Pre-synthesised DNA arrays (e.g., Brown laboratory at Stanford University,

Corning (NY, US) and Interactive (Ulm, Germany));

3. Filter-based DNA arrays (e.g., Clonetech.)

Although a variety of techniques have been proposed for analysing gene expression

data, the field is still evolving and the developed methods have not reached a matu-

rity level. Gene expression data can be analysed on three different levels (Baldi &

Hatfield, 2002):

1. Single gene level. On this level, the analysis technique aims to identify whether

each individual gene behave differently and isolatedly in an experiment;

2. Multiple gene level. Different clusters of genes are analysed to observe whether

there exist common functionalities, interactions, co-regulation, etc.

3. The third level analysis attempts to discover whether the underlying gene and

protein networks are responsible for observed patterns.

Many computational algorithms and models have been applied to gene expression

data analysis. The typical algorithms and models used for analysis include k-

means clustering, hierarchical clustering, principal component analysis (PCA) , self-

organizing maps (SOM), decision trees, Bayesain networks, neural networks and

support vector machine (SVM) , etc. There is no single method or algorithm that

favor different gene expression data analysis tasks, because each method or algo-

rithm has its own strength depending on the specific task and unique properties of

the data to be analysed. In addition, microarray gene expression data is inherently

high-dimensional, so that the outcome from data analysis is highly dependant on the

methods of dimensionality reduction (known as feature selection in machine learn-

ing). The dimensionality reduction methods is one of the core parts in this research,

and will be described in later chapters.
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2.1.3 Recent Research in Microarray Gene Expression Data

Analysis

Gene expression data analysis has become an indispensable part of system biology

research. Currently, the majority of gene expression data research is conducted in the

realm of cancer classification. Cancer diagnosis used to primarily rely on the histolog-

ical appearances of tumours, which has been proved unreliable and inaccurate. Now

the medical science community demands systematic and unbiased methods that are

able to successfully classify cancers. Microarray technology has been consequently

put forward as a new aid in treating various cancers and related complex diseases,

owing to its ability of profiling differential gene expressions of tissue samples.

Over the last two decades, the remarkable progress achieved in microarray technology

has helped researchers to further develop optimised treatment of cancer and other

complex diseases, as well as the evaluation of prognosis based on genetic knowledge.

Dozens of microarray research papers have shown that this technology is highly

sensitive and efficient for detection and prognosis. For example, cDNA microarray is

used to assess Parkinson disease samples and examine the drug intervention (Mandel,

Weinreb, & Youdim, 2003). Microarray gene expression data has been employed in

several studies of Alzheimer disease to predict different stages, including preclinical

and prognosis stages (Galvin & Ginsberg, 2004; Galvin et al., 2005).

With the advance of microarray technology, biological data is being created and

collected at a phenomenal rate (Beckers & Conrath, 2006). For example, the Gen-

Bank repository of nucleic acid sequences and the SWISSPROT database of protein

sequences are doubling in size every 15 months on average (Benson et al., 2002).

Contemporary bioinformatics research therefore needs assistance from computer sci-

ence to design and implement new systems for data collection, storage, retrieval,

analysis, etc. Nowadays, bioinformatics has become an integrated part of molecular

biology and computer science to discover information and knowledge from the anal-

ysis of large-scale data, such as gene expression, protein expression and clinical data

analysis (Luscombe, Greenbaum, & Gerstein, 2001).

Extensive studies have been carried out on classification problems related to complex

diseases, such as cancer, in the last decades. New methods and systems are devel-

oped by statistical, computer science and biological research communities. However,
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cancer classification using gene expression data is still a relatively new research area

that has encountered many challenges due to its unique nature, such as:

1. How to develop effective and efficient algorithms and modelling systems for

cancer classification?

2. How to exclude a large number of irrelevant features (genes) because the pres-

ence of these irrelevant genes can interfere with the discrimination power of

relevant genes?

3. How to remove the technical noise that could be introduced at the stage of

data collection or data pre-processing?

4. How to discover and interpret the important biological information with the

use of gene expression data analysis?

2.1.4 Cancer - a Disease of Genes

Cancer is the result of cumulative genetic mutations disrupting the biological path-

ways, which results in the uncontrolled cell replication. Simply, cancer originates

from a combination of an individual’s genetic factors and influences from the sur-

rounding environment and the personal history and lifestyle (DiChristina, 2008).

The mutations affect two groups of cancer genes (Gibbs, 2003). One group is known

as the tumor suppressors that normally restrain cells’ ability to divide. The mu-

tations may permanently disable these genes. The other group of genes are called

oncogenes that stimulate the cell division, i.e. they prompt the tumor cells’ growth.

Cancer arises because of “the accumulation of defects in certain classes of genes”

(Bartek & Lukas, 2001, p1001). In 2008, more than 1.4 million people were newly

diagnosed with cancer in the United States alone and cancer was the second leading

cause of death in the United States and moving towards number one (Cancer Facts

& Figures 2008 , 2008). The statistics show that more than 500,000 Americans lost

their lives to cancer in 2008, and almost one out of two men and one out of every

three women will be diagnosed with cancer during their lifetime (Reuters, 2009).

The advent of microarray technology has made it possible to monitor the expression

levels for thousands of genes simultaneously, which can help clinical decision making
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in complex disease diagnosis and prognosis, especially for cancer classification, and

for predicting the clinical outcomes in response to cancer treatment. Microarray

technology offers a powerful tool for monitoring cancer prophylaxis and for clinical

decision making (Kroczak et al., 2006).

A substantial number of methods and models for cancer diagnosis and risk man-

agement have been proposed. However, cancer is still thought of as an extremely

frightening disease, as some types of cancer are still incurable and inoperable, such as

epithelioid hemangioendothelioma (EHE) . The patients who have these type of in-

curable cancer are usually suggested “watch and wait” by doctors (Collins & Barker,

2008).

It is not a new idea that some specific gene mutations can increase the risk of a normal

to develop into a tumor cell. In the late 1970s, John M. Bishop and Harold Varmus

discovered that oncogenes existed in a wide variety of living organisms, including

humans. They were awarded the Nobel Prize in Physiology or Medicine in 1989

for their discovery of the cellular origin of retroviral oncogenes. By early 2007, 350

cancer-related genes had been identified and since then plenty of insights into this

disease have been reported (Collins & Barker, 2008). However, different genes cause

the disease in different people, thus there is the need for personalised modelling.

Following the discovery of these cancer genes, treatment strategies based on specific

gene mutations have been extensively studied in the medical research area. A num-

ber of new gene-based drugs have been invented for different types of cancers, e.g.,

Gleevec
TM

- the drug for complex malignancies treatment has been proved effective

against chronic myelogenous leukemia (Denis, 2008; Henkes, Kuip, & Aulitzky, 2008).

Another example of genetic information based personalised medicine is Iressa R©. It

can significantly benefit a small population of patients with non-small-cell lung cancer

who have not responded to other treatments with both platinum-based and docetaxel

chemotherapy (Tamura & Fukuoka, 2005). Genome-wide expression data analysis

using microarray technology has an important role to play for the better understand-

ing of complex human diseases, especially for cancer diagnosis and prognosis. The

knowledge discovered from gene expression data analysis experiments brings a new

paradigm for further developing new therapeutic approaches and identifying novel

diagnostic biomarkers.
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2.1.5 Microarray Data Analysis for Cancer Research

A substantial number of research studies have shown that microarray gene expres-

sion data analysis could be in some cases 100% sensitive and specific to detect cancer

and predict prognosis, such as the ovarian cancer study (Petricoin et al., 2002; Zhu

et al., 2003). Microarray technology is considered revolutionary for studying com-

plex human diseases and has been claimed that “all human illness can be studied

by microarray analysis, and the ultimate goal of this work is to develop effective

treatments of cures for every human disease by 2050” (Schena, 2002).

However, there is an increasing concern that many published research findings from

microarray gene expression data analysis experiments are not reproducible. This

issue has been addressed as as one of the most important bias problems in microar-

ray research (Ioannidis, 2005; Ransohoff, 2005a), and has become a big threat to

the reliability of contemporary bioinformatics research for cancer gene data analysis

(Ransohoff, 2005b; Eklund & Szallasi, 2008). Marshall (2004) disputed the reliabil-

ity of the outcomes of microarray experiments: “Thousands of papers have reported

results obtained using gene arrays, . . . But are these results reproducible?”.

Thus, reproducibility of microarray experiments becomes a big concern for microar-

ray gene expression data study for contemporary cancer research. One example is

the study of proteomic microarray data for ovarian cancer diagnosis: Petricoin et

al. (2002) and Zhu et al. (2003) claimed that their methods could accurately iden-

tify ovarian cancer using proteomic data. However, Baggerly, Morris, Edmonson,

and Coombes (2005) questioned their approaches because he and his colleagues were

unable to reproduce highly accurate results reported in the paper (Petricoin et al.,

2002). Regarding this issue, Petricoin suggested that other researchers should com-

municate the original data provider to correctly process data if they intended to have

a meaningful analysis of reproducibility.

Recently, the academic community has recognise that evaluation criteria must be

established to ensure researchers to choose proper methodologies leading to more

efficient and reliable outcomes. Consequently, plenty of literature has been so far

published focusing on the solution to improve the validity of microarray data analysis

experiment from different aspects, including estimating bias error, using unbiased

validation schemes and better laboratory controlling techniques (Eklund & Szallasi,

20



2.2. Single Nucleotide Polymorphisms (SNPs) Data Analysis

2008; Allison, Cui, Page, & Sabripour, 2006; M. Zhang et al., 2008; Varma & Simon,

2006; Shi, Perkins, Fang, & Tong, 2008).

2.2 Single Nucleotide Polymorphisms (SNPs) Data

Analysis

2.2.1 Single nucleotide polymorphisms - SNPs

SNPs genotypes are of great importance for understanding of the human genome,

and are the most common genetic variations between human beings. An example of

a SNP can be the alternation in the DNA segment AAGCCTA to AAGCTTA, where

the fifth nucleotide - ‘C’ in segment 1 is replaced with a ‘T’ in segment 2. Figure 2.2

demonstrates a SNP occurring in two DNA fragments from different individuals.

Figure 2.2: DNA molecule 1 differs from DNA molecule 2 at a single base-pair
location (a C/T polymorphism), copied from (Hall, 2007)

On average, SNPs occur in nucleotides at the rate of 3 ∼ 5%, which means there

are approximately 10 million SNPs in human genome. SNPs are found in the DNA
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among genes, and more of them have no effect on human health or disease devel-

opment. However, when SNPs occur within a gene or in a regulatory region near a

gene, they may have a direct impact on disease development through affecting genes

function. Therefore, some SNPs act as biomarkers that allow scientists to locate the

genes associated with disease.

Research has shown that some of these genetic variances are very important in the

study of human health (Kato, Kamoto, Hyuga, & Karube, 2007). The variations

in the human DNA sequences may paly an important role in disease development

by affecting genomic functions, e.g. influence the development of diseases and the

response to drugs, chemicals, pathogens, etc. Moreover, SNPs are thought to be a

key factor in understanding the concept of personalised medicine (Carlson, 2008).

At present, there is no effective way to measure how a patient will respond to a

particular drug treatment. In many cases, a treatment can be effective for a group

of patients, but is not effective for others at all. Findings related to SNPs can

help researchers build clinical decision support systems that predict an individual’s

response to certain drugs and environmental factors (e.g. toxins) and the risk of

particular disease development. Also, SNPs offer a new way to track the inheritance

of disease genes within societies, especially for studying complex diseases, such as

Coronary heart disease, cancer and diabetes.

It is generally agreed that the most efficient way to associate a SNP with phenotype

is through a genome-wide association (GWA) study. With GWA scans, hundreds of

thousands, or even millions can be screened using DNA microarray technology, also

known as SNP array. The first SNP array was developed in 1998, containing only

558 loci (Wang et al., 1998). The SNPs in the sample were amplified in a single

multiplex polymerase chain reaction that contained primer pairs for different loci

(Boyd, Mao, & Lu, 2009). Amplified DNA was then hybridised on a SNP array to

analyse the genotype of 558 SNPs. A challenge for information science is to develop

efficient methods for personal SNPs data analysis.
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2.3 Conclusion

This chapter has briefly reviewed genomic data analysis in bioinformatics study. It

has introduced biological background and some commonly used terminology related

to this research. It has also identified some issues in microarray data research, such

as the reproducibility of the microarray data experiments and bias issues occurring

in experiments. It has posed an open question to be discussed and answered in this

study:

• How to create an efficient framework and a system for developing efficient

clinical decision support system using personal genomic data?

To deal with this problem, the next chapter will discuss some computational intelli-

gent models and systems that will be used in this thesis.
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CHAPTER 3

Computational Intelligence: Methods and

Systems

“Intelligence is a basic property of life ”

- J. W. Atmar

This study focuses on the development of personalised modelling for gene data anal-

ysis and biomedical applications using evolving intelligent methods and systems.

We hereby give an introductory overview of some popular computational intelligent

methods and systems that will be used throughout the thesis. Computational intel-

ligence is a branch of computer science that develops methods and systems that are

considered to be in some sense, intelligent, for solving a variety of complex problems

in the areas of science and engineering area. The methods and systems of computa-

tional intelligence embrace the techniques from statistical methods, neural networks,

fuzzy systems, evolutionary computation, swarm intelligence, evolving connectionist

systems, etc.

In order to provide more precise information for data analysis, personalised mod-

elling creates a unique model for each data sample. This type of research problems

need the algorithms and models that are able to adapt to new data sample and
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evolve the structure of learning system. In literature, evolutionary computation and

evolving connection system are often suggested to be the good choices for solving

the problems that need adaptive and evolving learning, owing to their capability

of evolving candidate solutions towards optimal target (Michalewicz & Fogel, 2004;

Kasabov, 2007a). In computer science, evolutionary is an iterative progress related

to the development of populations of individual systems. Such process is usually

inspired by the biological mechanism of evolution. Evolving computation may in-

clude evolutionary process, because the evolutionary processes do require evolving

and adaptive development of single individuals. This chapter gives a brief review

of these two computational techniques and related algorithms that will be used for

personalised modelling in this thesis.

3.1 Evolutionary Computation

This section provides some insights into the applications of the most commonly used

algorithms and models in the field of evolutionary computation. The experiment

part demonstrates the implementation of some extensively studied algorithms of

evolutionary computation for solving a benchmark problem.

3.1.1 Introduction to Evolutionary Computation

Evolutionary computation is a subfield of artificial intelligence that usually involves

combinational optimisation problems. Basically, evolutionary computation uses iter-

ative progress where populations of individuals are evolved during the development.

Evolutionary computation is inspired by the biological mechanism of evolution, and

uses intelligent computational techniques to mimic Darwinian principles for solving

optimisation problems.

The understanding of evolution was advocated by Charles Darwin and Alfred Russel

Wallace in their joint publication (Darwin & Wallace, 1858) in which compelling

evidence was presented for the theory of evolution. The early attempts to use evo-

lutionary theory for automated problem solving date back to the 1950s. From the

observation of the famous Turing test, Turing commented on “an obvious connection

between the process (the test for artificial intelligence) and evolution” (Turing, 1950,
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p450). Friedman (1959) recognised that artificial intelligence (“thinking machines”)

can be fulfilled by a simulation of mutation and selection. The study carried out by

Friedberg and his colleagues (Friedberg, 1958; Friedberg, Dunham, & North, 1959)

was a pioneer trial to implement simulated evolution for finding solutions to opti-

misation problems. In their work they focused on the improvement of a machine

language computer program through an evolved learning strategy. However, the

limitation of this work lay in the difficulties of choosing highly interactive separate

program instructions. Another important work during the early stages of evolu-

tionary computation was the Bremermann’s experiment (Bremermann, 1958). He

indicated that the principle of evolution is “ most useful as a key to the understand-

ing of creative thinking and learning” (Babovic, 1996, p118) and conjectured that

evolution could be an efficient tool for solving optimisation problems.

3.1.2 Main Methods and Techniques for Evolutionary Com-

putation

Although simulated evolution has a long history, it was only recently that the cur-

rent main techniques for evolutionary computation were formalised. Evolutionary

algorithm and swarm intelligence are probably the most popular and representative

techniques for evolutionary computation. Evolutionary algorithm is a population-

based optimisation algorithm firstly introduced by Fogel in 1960s (L. Fogel, Owens, &

Walsh, 1966). Candidate solutions to the target optimisation problem represent the

individuals in a population, and a fitness function evaluates the candidates and de-

termines which solutions will survive. Then the heuristic process evolves the above

steps until terminating conditions are reached. Distinguished by the implementa-

tion details and the target of particular applied problems, genetic algorithm (GA)

, evolution strategy and evolutionary programming are the three major methods

(techniques) used in evolutionary algorithms design.

3.1.3 Genetic Algorithm (GA)

GA might be the most popular technique that has been used for implementing evo-

lutionary algorithm. GA has been extensively explored for solving complex practical
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problems and as computational models for constructing natural evolutionary sys-

tems (M. Mitchell, 1996), since it was developed by Holland (1975) in the early

1970s. Most commonly, genetic algorithms are mainly adopted as an evolutionary

model for finding the exact or approximately best solutions to optimisation problems

in science and engineering.

The classical form of genetic algorithm involves three types of operators: selection,

crossover and mutation. Selection is an operator that selects individuals in the popu-

lation for reproduction. The higher the fitness of the individual is, the more chances

it has to be selected. The second operator is crossover that randomly determines

a locus at the parent individuals, and then swap the subsequences at the locus of

parents individuals to generate two offsprings. The third operator is mutation that

randomly flips some bits in an individual. The simplest mutation is one bit flipping,

e.g. the individual (chromosome) 10010101 might be mutated at the third position

to create an offspring 10110101. Mutations should occur with a very low probability

(e.g. 0.001), otherwise they will disrupt the fitness of the overall population. Figure

3.1 illustrates these two operators.

Genetic encoding

Encoding candidate solutions (individuals) is one of the major factors that impacts

a GA performance. The efficiency of a GA’s search usually depends very much

on the choice of an appropriate encoding way to the populations of chromosomes.

The simplest way to encode the chromosome is to employ binary bit-value. Binary

encoding uses a binary value (either 0 or 1) to represent the possible values of the

genes in the chromosome. Binary encoding is usually effective and works well in a

simple searching problem space. However, using binary encoding can be very difficult

when the optimisation involves complicated encoding, such as real values, category

data, etc. In addition, for some optimisation problems requiring domain knowledge,

binary encoding cannot be well adapted. Thus, other more sophisticated encoding

techniques have been developed for different types of optimisation problems, such as

permutation encoding, real-value encoding, tree encoding, etc.
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1 0 1 1 1 0 0 0

Parent A1

0 0 1 1 0 0 1 1

Parent B1

Crossover:

1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0

Offspring A2 Offspring B2

Before:

After:

1 0 1 1 1 0 0 0 Offspring A2

1 2 3 4 5 6 7 8

Mutation:

1 0 0 1 1 0 1 0 Offspring A2
*

Before:

After:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) crossover operator

(b) mutation operator

Figure 3.1: The illustration of crossover and mutation operators. (a) The
crossover operator chooses the 6th bit as the locus. Parents A1 and B1 swap three
bits’ value starting from bit6 to produce offsprings A2 and B2. (b) Mutation occurs
at the position of bit 3 and 7 in individual A2 where the bit value is flipped.

Selection

A common selection method in GAs is fitness-proportionate selection (M. Mitchell,

1996), which replicates the natural selection principle - “fittest to survive”, i.e., a

fitter individual will tend to have a higher probability of be selected to produce the

next generation. Roulette-wheel sampling (Goldberg, 1989) is one of the most popu-

lar methods for fitness-proportionate selection. The method offers each individual a

chance to be selected based on its chromosome string fitness value. Suppose we have

a randomly created generation of individuals (population size µ = 4) as follows:

Chromosome labelChromosome Fitness Percentage of Total(%)

A 000101 3 4

B 010001 17 24

C 001010 10 14
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D 101001 41 58

The fitness is measured by the sum of individual’s bit string. The concept of roulette-

wheel selecting method is illustrated in Figure 3.2.

Figure 3.2: The illustration of roulette-wheel selection based on fitness.

The number of times that the roulette wheel will be spun is equal to the population

size. Since in the example the population size is 4, the roulette wheel will spin 4

times. The first two spins might select individual B and C as the parents, and the

next two spins might select B and D. If the roulette wheel spins many times (usually

at least several hundreds), the selection is clearly biased towards fitter individuals.

Other selection methods include: Elitism method (De Jong, 1975) retains some of

the fittest individuals at each generation. Rank selection is a method that selects

the individuals based on their rank rather than their absolute fitness (Baker, 1985).

Steady-State selection is often used in evolving rule-based GA systems (J. Holland,

1986), where a small number of the most unfitted individuals are replaced by the

offsprings from GA operations of the fittest individuals.

A simple GA

Typically, a simple GA starts with a random population of encoded candidate in-

dividuals (also known as chromosomes). Chromosomes are encoded in binary bit-
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streams in which each bit is denoted by either 0 or 1. The evolution then starts with

a population of randomly generated chromosomes. In each generation, a fitness func-

tion evaluates all chromosomes in the population. Chromosomes are stochastically

selected from the current population based on their fitness and will be recombined

through crossover and mutation to form the offsprings for the next generation. The

new generation will be evolved in the iterative process that usually involves 1, 000

or several thousands iterations. A GA terminates when at least one of the following

conditions is met:

• the maximum number of generations has been produced

• a solution is found that satisfies the pre-specified fitness level

• a highest fitness level is reached

The pseudo code for a classical (simple) GA is given in Algorithm 5 in Appendix A.

Plenty of published work has shown that GAs are capable of solving difficult op-

timisation problems through an appropriate choice of candidate individuals in the

searching space and efficient operators (M. Mitchell, 1996). The successful practical

implementations of GAs found in literature include: applications in computer pro-

gramming and engineering optimisation problems (Forrest & Mayer-Kress, 1991; Kr-

ishnakumar & Goldberg, 1992), rule-based classification systems (Liepins, Hilliard,

Palmer, & Rangarajan, 1989), artificial life simulation (J. H. Holland, 1992), and

parallel computing (Muhlenbein, Bendisch, & Voigt, 1996; Lazarova, 2008).

3.1.4 Evolution Strategy

Evolution strategy was developed by Rechenberg (1973) and Schwefel (1974) for

evolving optimal shapes of minimal drag bodies in a wind tunnel using an evolution-

inspired principle. Evolution strategy can be applied for a variety of optimisation

problems, including continuous, discrete and combinatorial search spaces with or

without constraints (Schwefel, 1981, 1995). Since evolution strategy is mainly ap-

plied to parameter optimisation problems, real-valued encoding is usually employed

for representing candidate solutions (individuals/chromosomes). Each individual
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contains a number of strategy parameters that are used to control the behavior of

mutation operator during the evolution.

An optimisation problem can be presented as follows:

y∗ = argopt
y∈Y

F(y), (3.1)

where Y is a search space, and F is the function to be optimised. One typical example

of Y is a real-valued n-dimensional search space Rn.

Evolution strategy primarily applies mutation and selection to a population of in-

dividuals to evolve solutions iteratively. At the very beginning (generation gen=0),

evolution strategy randomly generates a population(µ) of individuals (α1, . . . , αµ).

To create the new generation, λ offsprings are bred from the set of parent individ-

uals (α1, . . . , αµ). The parental individuals are randomly selected, which means the

selection is independent of the parent objective function F. Each individual αi con-

sists of not only the objective function Fi = F(yi), but is usually defined by a few

parameters (known as endogenous strategy parameters) si:

αi = (yi, si, F(yi)) (3.2)

where i is the the individual’s index in the population.

The size of λ should be unequal to the size µ of the parent population. The offspring

population is generated by the method that can be mathematically formulated by:

(µ/ρ +, λ)− evolutionstrategy (3.3)

where ρ is the number of individuals to be involved in the offspring reproduction,

and the “+,” denotes two types of selection, plus selection and comma selection,

respectively. The strategy-specific parameters µ, λ and ρ are called “exogenous

strategy parameters” and are kept constant through the evolution process (Beyer &

Schwefel, 2002).

The selection in evolution strategy gives the evolution a direction in which only the

fittest individuals get the chance to reproduce. The parents are deterministically se-

lected (i.e., deterministic survivor selection) from the multi-set of either the offspring

referred to as comma-selection (µ < λ must hold), or both the parents and offspring,
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referred to as plus-selection. Two kinds of selection techniques - comma and plus

selection are commonly employed in evolution strategy depending on whether the

parental population is included or not during the selection process.

In the case of comma selection (µ, λ), the individuals of parent population are ex-

cluded for recombining the new generation even if they have higher fitness value than

all offsprings. The selection pool size here is λ. Such selection schema requires λ > µ

to drive the evolving process towards an optimal solution. If λ = µ, the evolution

would not work because all the offsprings would be selected as parents, which would

result in the selection providing no search-revelent information (Beyer & Schwefel,

2002).

In contrast to comma selection, plus selection(µ+λ) takes the parent individuals into

account. It selects the individuals for the new population not only from λ offsprings

but from µ parent individuals, i.e., the size of selection pool is λ + µ. Hence, there

is no restriction on the size of offspring population (λ). The special case of λ = 1 is

notated as “steady-state” evolution strategy. Plus selection promises the survival of

fittest individuals.

Each selection techniques is favoured for evolution strategy implementation in dif-

ferent application areas. Comma selection is suggested to search unbounded spaces

Y (Schwefel, 1987), while plus selection is recommended for searching discrete finite

problem spaces, especially for combinatorial optimisation problems (Herdy, 1992).

The prime genetic operator in evolution strategy is mutation. The design of muta-

tion operator is problem-dependent. It usually applies a normal distribution prob-

ability function to each component of an individual. The mutation process is often

controlled by some strategy parameters, e.g., the mutation strength parameter. A

simple evolution strategy algorithm is given in Algorithm 6 in Appendix B.

3.1.5 Evolutionary Programming

Evolutionary programming was originally developed by Fogel (1962) in a simulated

evolution for investigating artificial intelligence. The individuals in evolutionary pro-

gramming are often encoded by real numbers. The evolution is simply driven by the

mutation operator that commonly adopts a probability distribution function to op-
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timise objective variables. Evolutionary programming is principally applicable to all

areas where evolutionary algorithms can be implemented. Evolutionary program-

ming has been used in a range of combinatorial optimisation problems in different

areas, e.g., pharmaceutical design (Duncan & Olson, 1996), molecular docking anal-

ysis (Gehlhaar & Fogel, 1996), cancer diagnosis study (D. Fogel, Wasson, Boughton,

& Porto, 1997, 1998), control systems modelling (Jeon, Kim, & Koh, 1997) and

system identification (D. Fogel, Fogel, & Porto, 1990).

3.1.6 Comparison of Three Methods: GA, Evolutionary Strat-

egy and Evolutionary Programming

The three main types of evolutionary algorithms - GA, evolutionary strategy and

evolutionary programming are broadly similar in principle, though they have sig-

nificant differences in terms of implementation. The individuals of the population

are fixed-length-string based in all three algorithms. However, evolutionary strategy

and evolutionary programming commonly use real-valued encoding for individual

representation, while GA generally adopts binary bitstream encoding schema. The

prime genetic operator in GA is recombination (crossover), while mutation is the

main driving force for evolutionary strategy and evolutionary programming. Evolu-

tionary programming differs from GA and evolutionary strategy in that it does not

use recombination operator (crossover), and its evolution is entirely dependent on

mutation. The three algorithms also differ in the type of selection control: the selec-

tion in GA and evolutionary programming is probabilistic, while it is deterministic

in evolutionary strategy.

3.1.7 An Implementation of GA: Compact Genetic Algo-

rithm

Compact genetic algorithm (cGA) (Harik, Lobo, & Goldberg, 1999) is an optimi-

sation algorithm that represents the population as a probability distribution over a

set of solutions with a specified population size and selection rate. Compact genetic

algorithm can be an alternative GA solution for complex optimisation problems, be-

cause it requires much less computational power than a simple (classical) GA (sGA)
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. This algorithm will be used to construct the systems and models for personalised

modelling in this research. Therefore, below we explain the basic principle of cGA

and design an experiment to demonstrate the evolving process of cGA on a simple

benchmark problem in the following section.

The Principle of Compact Genetic Algorithm

In compact GA, the evolving process is driven by the iterated competitions between

two candidate individuals and tends to converge towards a near-best solution. The

algorithm starts with a randomly created probability vector to be used for generating

a population of individuals. Two individuals from the current population compete

with each other and the winner will survive. cGA then makes the decision to select

the winner from these two competitors according to their fitness evaluated by a fitness

function. The winner’s information will be used for producing the next generation,

and the process will repeat until the terminating criterion is reached.

Suppose there is a task pertaining to finding an optimal solution. Firstly, cGA

randomly creates a probability vector p with l bits where each bit represents the

probability that it will be selected or not. The bigger the bit value, the higher

probability the bit to be selected. From the very beginning, each bit must have the

equal probability of being selected or not, i.e. all bit values should be 0.5. Hence,

the probability vector p should look like: [0.5 0.5 0.5 . . . 0.5].

Two individuals A and B are randomly generated from the probability vector p, and

may look like: [0.41 0.63 0.52 0.50 . . . 0.82]. Each bit denotes the probability of the

gene to be selected or not, the larger the value, the higher the probability for the gene

to be selected. For example, bit 1 indicates less likely to be selected (0.41 < 0.5),

while bit 2 with value (0.63) indicates a higher probability to be selected. Based

on such assumptions, two individuals a and b are updated by comparing their bit

value with probability vector p. If a bit value is larger than 0.5, then it becomes 1,

otherwise 0. For example, bit 1 will be 0 after the comparison, while bit 2 will be 1.

So far, cGA has generated two individuals a and b with all bits either 1 or 0. Let A

and B compete, and cGA makes the decision which one is the winner according to

the evaluation by a fitness function. Probability vector p is then updated to produce

the next generation based on the competition result through the following updating

strategy: check whether winner(i) = loser(i)
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if they are same, then there is no need to update the ith bit in vector p;

otherwise do the following updating for p(i):

if winner(i)==1 then

p(i) = p(i) + 1
µ

else

p(i) = p(i)− 1
µ

end if

where µ is the population size. The probability vector p is checked whether it has

converged in each generation. It has converged when each bit value is either 1 or 0.

Once p is converged, it represents the optimal solution. Otherwise, cGA repeats the

process from the step of generating two new individuals. Algorithm 7 illustrates the

form of a cGA in Appendix C.

3.2 Evolving Connectionist Systems (ECOS)

Evolving computation is a general term that denotes several computational tech-

niques in relation with evolving process where a modelling system is able to adapt to

changes. The term ‘evolving’ is often thought to have the same meaning as the term

‘evolutionary’, and they do have quite a lot of overlap to some extent. However, they

should be distinguished in terms of designing different problem solutions. Evolving

process is a process that “is mainly concerned with the development of the struc-

ture and functionality of an individual system during its lifetime” (Kasabov, 2007a,

p3). Evolving process is further defined by Kasabov as “a process that is developing,

changing over time in a continuous manner” (Kasabov, 2003, p7). Evolutionary is

concerned with the development of a population of individual systems evolved over

generations (J. H. Holland, 1992; Kasabov, 2003).

Evolving intelligent system is an information system that “develops its structure,

functionality, and knowledge in a continuous, self-organized, adaptive, and interac-

tive way from incoming information, possibly from many sources, and performs in-

telligent tasks typical for humans thus improving its performance” (Kasabov, 2007a,

p9). The distinction of evolving intelligent system is that it emphasises the dynamic

and knowledge-based structure and adaptiveness to the new coming information.
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An evolving process is difficult to model because:

• There might be no prior knowledge for some parameters;

• Unexpected changes may happen at a certain stage during development

• The results may not be strictly predictable in long term

Hence, to model an evolving process is a challenging task that needs well designed

applications in life and computing sciences. The most typical example of an evolving

process is life. Modeling living systems require continuous and adaptive changes

and at the same time preserves some features and principles in a life long way. The

representative work for evolving modelling system is evolving connectionist systems

(ECOS) developed by Kasabov (1998).

3.2.1 Principles and Architectures of ECOS

Evolving connectionist systems (ECOS) are defined as “multi-modular connective

architectures that facilitate the modelling of evolving processes and knowledge dis-

covery” (Kasabov, 2003, p26). An evolving connectionist system consists of a col-

lection of neural networks (can be a single one) that work continuously and evolve

their structure and functionality through a dynamic interactions within the system

itself or with other systems. Generally, an evolving connection system involves the

following functional parts (Kasabov, 2003):

1. Data acquisition.

2. Data pre-processing and feature evaluation.

3. Connectionist modelling.

4. Knowledge discovery.

ECOS learn local models from data through a set of clusters, each being associated to

a local output function. The creation of clusters is based on the similarity between

data samples in the input space or in both input and output space. The former

36



3.2. Evolving Connectionist Systems (ECOS)

case is shown in some models of ECOS, such as the dynamic neuro-fuzzy inference

system DENFIS model (Kasabov & Song, 2002), and the latter is shown in the

model of evolving fuzzy neural network (EFuNN) (Kasabov, 2001). Let X = {x, y}
be a sample, and r = (ω1, ω2) be an existing rule node defined by two vectors of

connection weights - ω1 and ω2, thus the similarity between X and r can be measured

by a normalised Euclidean distance:

d(X, r) =

n∑
i=1

(xi − ω1(i))
2

n
(3.4)

where n is the number of input variables. Given a threshold Rmax, those samples

that have a distance to an existing cluster center (rule node) r less than Rmax are

allocated into the same cluster. New clusters are formed by the samples that fall

into the cluster r. Cluster centers are continuously adjusted and new clusters are

incrementally created when new data samples come.

ECOS learn from data and consequently create a local output function fc for each

cluster. For a given data vector x, the output function fc creates the local models

represented by a set of rules with clusters as:

if x ∈ r, then the output is calculated by fc

3.2.2 Evolving Fuzzy Neural Networks (EFuNN)

EFuNN (Kasabov, 2002) is a connectionist model with neuro-fuzzy inference systems

for implementing ECOS. EFuNNs are fuzzy neural network structures that evolve

based on ECOS principles. Fuzzy neural networks are connectionist structures that

can be interpreted by a set of fuzzy rules and a fuzzy inference system (Roger Jang,

1993; Lin & Lee, 1996). EFuNN has a five-layer structure in which all nodes rep-

resent membership functions (MF) and can be modified during learning. Figure 3.3

illustrates an example of an EFuNN with a short term memory and feedback con-

nections. The detailed algorithm for evolving EFuNNs from incoming data vectors

is illustrated in Appendix D.

The input layer is the first layer that contains input variables. The second layer is

a fuzzy input layer where each input variable is represented by a group of neurons.
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Figure 3.3: An example of an EFuNN with a short term memory and feedback
connections, adapted from Kasabov (2001)

These neurons denote the fuzzy quantisation of the input variable, e.g. three neu-

rons can be used to represent “best”, “good” and “bad” fuzzy values of a variable.

Different MFs can be attached to the neurons, such as triangular or Gaussian MF.

This layer aims to transfer the input variables into membership degrees to which

they belong to the corresponding MF. Within this layer, new neurons are created,

when the corresponding variable value of a given input vector does not belong to

any of the existing MFs. An optional short-term memory layer can be introduced

through feedback connections from the rule node layer.

Rule (case) layer is the third layer in EFuNN which contains rule nodes that evolve

through supervised or unsupervised learning. The rule nodes represent prototypes

of the associations between input and output data. Each rule node r is defined

by two vectors of connection weights: ω1(r) and ω2(r). The former is adjusted by

an unsupervised learning model based on the similarity measurement within a local

problem space, while the latter is adjusted by a supervised learning model based
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on the estimation of output error. The neurons in fourth layer represents the fuzzy

quantization for the output variables. Finally, the fifth layer gives the value of the

output variables.

Evolving classification function (ECF) is a simple implementation of ECOS that is

used in this study. The learning algorithm of ECF is described in Appendix E.

3.3 Support Vector Machine (SVM)

Support vector machine (SVM) is a popular algorithm used for the creation of learn-

ing models in machine learning. A SVM model consists of a set of vectors described

by a kernel function that separates the data samples belonging to different classes (the

vectors are called support vectors). SVM has been widely employed to build models

for machine learning problems (Vapnik, 1998; Shah, Oehmen, & Webb-Robertson,

2008; Q. Wu, 2009). In many cases, SVM models can be efficient classification models

and produce reliable results (Bozic, Zhang, & Brusic, 2005).
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Figure 3.4: An example of the linear separating hyperplanes in SVM. Note: the
support vectors are encircled

Support vector machine (SVM) was firstly introduced by Vapnik in the mid-1960s. It

has been successfully applied in different fields of computer science and engineering
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for classification and regression problems (Burges, 1998). Given a bi-class problem in

an m-dimensional space, a SVM builds a separating hyperplane in that space, which

aims to maximise the margin between the two groups of data sets. The training

data is given as X = {xi, yi}, i = 1, . . . , n, yi ∈ {−1, 1}, xi ∈ Rm, where xi is an m-

dimensional data vector, yi is the corresponding class label. Assume there exist some

hyperplanes that separate positive (label ‘+1’) and negative (label ‘-1’) samples. The

data points xi falling on such a hyperplane should satisfy:

w · xi + b = 0 (3.5)

where w is a normal vector perpendicular to the hyperplane, a parameter |b|/|w‖
specifies the perpendicular offset from the hyperplane to the origin, and ‖w‖ is an

Euclidean normal vector of w. The shortest distances from the separating hyperplane

to the closest positive and negative data points are denoted by d+ and d−, respec-

tively. Let d+ and d− be the “margin” of a separating hyperplane. Then, the given

problem is simplified by using a SVM algorithm to find the separating hyperplane

with the largest margin. If the training data are linearly separable, all the training

data samples should satisfy the following constraints:

xi · w + b ≥ +1,∀yi = +1 (3.6)

xi · w + b ≤ −1,∀yi = −1 (3.7)

They can be further combined and written as:

yi(xi · w + b)− 1 ≥ 0,∀i ∈ {1, 2, · · · , n} (3.8)

The data points satisfying the equality in Eq.3.6 will fall on the hyperplane H1 :

xi · w + b = +1, with vector w and perpendicular distance from the origin |1 −
b|/‖w‖. In the same way, the data points satisfying the equality in Eq.3.7 will

fall on the hyperplane H2 : xi · w + b = −1, with vector w and perpendicular

distance from the origin | − 1− b|/‖w‖. The margin can be calculated by 2/‖w‖, as

d+ = d− = 1/‖w‖. Thus two parallel hyperplanes H1 and H2 are constructed, and

there are no data points lying between them. Consequently, the pair of hyperplanes

giving the maximum margin through minimising ‖w‖2 will be found and subjected
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to Eq.3.8. Finally, an optimal separation can be achieved by the hyperplane that has

the greatest distance to the neighbouring data points of both classes, as is illustrated

in Figure 3.4. The data points are referred as support vectors, if they satisfy the

equality in Eq.3.6 or 3.7 and their removal would change the solution to the discovered

hyperplane. In Figure 3.4, support vectors are indicated by extra circles. Generally,

the larger the margin, the lower the generalisation error of the classifier (Burges,

1998).

For nonlinear classification problems, a kernel function is introduced into SVM to

find the maximum-margin hyperplane (Boser, Guyon, & Vapnik, 1992). The SVM

based classifiers can be mathematically formulated by:

y(x) = sign

[
n∑

i=1

aiyiΦ(x, xi) + b

]
(3.9)

where ai is a positive real constant and b is a real constant, Φ is a mapping function

used for SVM kernel function construction (Suykens & Vandewalle, 1999),which typi-

cally has the choices from linear, polynomial and radial basis function(RBF) function.

The solution to a nonlinear optimisation problem with inequality constraints is given

by the saddle point of the Lagrangian, which is computed by:

max
αi,υi

min
w,b,ξi

L(w, b, ξi; αi, υi) (3.10)

where L is the Lagrangian constructed by:

L(w, b, ξi; ai, υi) = J(w, ξi)−
n∑

i=1

ai{yi[w
T ϕ(xi) + b]− 1 + ξi} −

n∑
i=1

υiξi (3.11)

where ai ≥ 0, bi ≥ 0(i = 1, · · · , n) are Lagrange multipliers, J is the risk bound

minimized by:

min
w,ξi

J(w, ξi) =
1

2
wT w + c

n∑
i=1

ξi (3.12)

where the parameter ξi is introduced by:

yi[w
T ϕ(xi) + b] ≤ 1− ξi, i = 1, · · · , nξi ≤ 0 (3.13)

Although SVM has been extensively used for solving real world problems in different
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research areas, there are some issues that we have to consider if we would like to have

a successful implementation. One main limitation of SVM methods lies in the choice

of kernel for solving real world problems, which remains an open research question

in computer and engineering science. Another concern of SVM implementation for

real world problems is speed and size, especially during training stage. This issue

might make the learning process for a very large dataset (a large number of support

vectors) particularly difficult (Burges, 1998). Additionally, SVM is difficult to adapt

to new data and the knowledge discovered by it is very limited (Kasabov, 2007b).

3.4 Conclusion

The chapter has presented a brief review of intelligent computational methods, in-

cluding EA, ECOS and SVM. Genetic algorithms discussed here will be employed

into the proposed PMS in later chapters for optimisation problems.

Evolutionary computation and ECOS seem to be the very attractive techniques that

are applicable for optimising models and systems, owing to their ability to evolve the

structure and function of the created models. In addition, SVM is a robust and reli-

able algorithm widely used in the development of computational intelligent systems

for machine learning. Chapter 4 will propose a new modelling technique, namely

personalised modelling that comprises different computational intelligent methods

for data analysis and knowledge discovery.
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CHAPTER 4

Global, Local and Personalised Modelling

Approaches to Data Modelling and

Knowledge Discovery

“That is what learning is. You suddenly understand something you’ve understood

all your life, but in a new way.”

- Doris Lessing

4.1 Inductive vs. Transductive Reasoning

Knowledge discovery is the process using computer technology to search large vol-

umes of data for patterns that can be considered informative and useful. It offers

a powerful tool to transform data into information and knowledge that can be used

for a wide range of profiling practices, such as marketing, disease diagnosis, risk

evaluation and new scientific knowledge discovery.

Most of the learning models and systems in artificial intelligence that have been

developed and implemented are based on two approaches: inductive and transductive
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inference. The original theory of inductive inference proposed by Solomonoff (1964a,

1964b) in early 1960s was developed to predict the new data based on observations of

a series of given data. In the context of knowledge discovery, the inductive reasoning

approach is concerned with the construction of a function (a model) based on the

observations, e.g., predicting the next event (or data) based upon a series of historical

events (or data) (Bishop, 1995; Levey et al., 1999). Many of the statistical learning

methods, such as: SVM, Multi Layer Perceptron (MLP) and neural network models

have been developed and tested on inductive reasoning problems.

Inductive inference approach is widely used to build models and systems for data

analysis and pattern discovery in computer science and engineering. This approach

creates the models based upon known historical data vectors and applicable to the

entire problem space. However, the inductive learning and inference approach is only

efficient when the entire problem space (global space) is searched for the solution of

a new data vector. Inductive models generally neglect any information related to the

particular new data sample, which raises an issue about the suitability of a global

model for analysing new input data.

In contrast to inductive learning methods, transductive inference introduced by

Vapnik (1998) is a method that creates a model to test a specific data vector (a

testing data vector) based on the observation of a specific group of data vectors

(training data). The models and methods created from transductive reasoning fo-

cus on a single point of the space (the new data vector), rather than on the entire

problem space. Transductive inference systems emphasize the importance of the

utilisation of the additional information related to the new data point, which brings

more relevant information to suit the analysis of the new data. Within the same

given problem space, transductive inference methods may create different models,

each of them specific for testing every new data vector.

In a transductive inference system, for every new input vector xv to be processed for

a prognostic or classification task, the following steps are performed:

1. The Nv nearest neighbours derived from an existing dataset D will form a

subset Dx. If necessary, some data in Dx can also be generated by an exist-

ing model M (e.g. the information and knowledge retrieved from an existing

clinical model);
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2. A new model Mx is dynamically created based on these samples to approximate

the function in the locality of xv;

3. Model Mx is then specifically used to calculate the output value yv correspond-

ing to the input vector xv;

Transductive inference systems have been applied to a variety of classification prob-

lems, such as heart disease diagnostics (D. Wu, Bennett, Cristianini, & Shawe-taylor,

1999), promoter recognition in bioinformatics (Kasabov & Pang, 2004), microarray

gene expression data classification (West et al., 2001). Other examples using trans-

ductive reasoning systems include: evaluating the predicting reliability in regression

models (Bosnic, Kononenko, Robnik-Sikonja, & Kukar, 2003), providing additional

reliability measurement for medical diagnosis (Kukar, 2002), transductive SVM for

gene expression data analysis (Pang & Kasabov, 2004) and a transductive inference

based radial basis function (TWRBF) method for medical decision support system

and time series prediction (Song & Kasabov, 2004). Most of these experimental re-

sults have shown that transductive inference systems outperform inductive inference

systems, because the former have the ability to exploit the structural information of

unknown data.

Some more sophisticated transductive inference approaches have been developed in-

cluding: Transductive Neural Fuzzy Inference System with Weighted Data Normal-

ization - TWNFI (Song & Kasabov, 2006) and Transductive RBF Neural Network

with Weighted Data Normalization - TWRBF (Song & Kasabov, 2004). These meth-

ods create a learning model based on the neighbourhood of new data vector, and

then use the trained model to calculate the output.

Transductive inference approach seems to be more appropriate to build learning

models for clinical and medical applications, where the focus is not simply on the

model, but on the individual patient’s condition. Complex problems may require an

individual or a local model that best fits a new data vector, e.g. a patient to be

clinically treated; or a future time moment for a time-series data prediction, rather

than a global model that does not take into account any specific information from the

object data (Song & Kasabov, 2006). However, in order to implement transductive

modelling for data analysis problems, we must address some open questions, for

example:
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• How many variables should be used and what is their importance of them in

terms of modelling construction?

• How to measure the distance between the data points when finding the neigh-

bours in the given data set?

• What classification method to use?

These issues will be discussed in Chapter 5.

4.2 Global, Local and Personalised Modelling

Global, local and personalised modelling are currently the three main techniques for

modelling and pattern discovery in the machine learning area. These three types of

modelling techniques are derived from inductive and transductive inference and are

the most commonly used learning techniques for building the models and systems

for data analysis and patter recognition (Kasabov, 2007b, 2009). This section will

investigate these three techniques for data analysis and model design.

4.2.1 Definitions

• Global modelling creates a model from the data that covers the entire prob-

lem space. The model is represented by a single function, e.g. a regression

function, a radial basis function (RBF) , a MLP neural network, SVM, etc.

• Local modelling builds a set of local models from data, where each model

represents a sub-space (e.g. a cluster) of the whole problem space. These

models can be a set of rules or a set of local regressions, etc.

• Personalised modelling uses transductive reasoning to create a specific model

for each single data point (e.g. a data vector, a patient record) within a lo-

calised problem space.
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4.2.2 Experiment Setup

To illustrate the concepts of global, local and personalised modelling, we hereby

present a comparative study in which we have applied each type of model to a

benchmark gene expression dataset, namely colon cancer data (Alon et al., 1999) for

cancer classification.

The main objectives of this comparative study are:

1. To illustrate the differences among global, local and personalised modelling for

data analysis and knowledge discovery;

2. To present a brief review of several popular algorithms used for data modelling

and knowledge discovery;.

3. To investigate several popular algorithms that are used for global, local and

personalised modelling.

The data used in the comparative experiment originates from Colon cancer data

proposed by Alon et al. (1999). The dataset consists of 62 samples of colon epithelial

cells from colon cancer patients. 40 samples are collected from tumors and labeled

as “diseased”, and 22 samples are labeled “normal” and are collected from a healthy

part of the colon of the same patient. Each sample is represented by 2, 000 genes

selected out of total 6, 500 genes based on the confidence in measured expression

levels.

Since this experiment is mainly designed for demonstrating the difference of classifi-

cation performance of three modelling techniques, we simply select 15 out of 2,000

genes by a signal-noise-to-ratio (SNR) method according to their statical scores for

the purpose of reducing computational cost. SNR algorithm is later described in de-

tail in section 5.1.4. Thus, the preprocessed subset used in the experiment presented

in this chapter constitutes 62 samples. Each sample contains 15 top genes based on

their statistical SNR ranking scores. The subset is denoted by Dcolon15.

As our interest for this experiment is mainly in the comparison of the classification

performance obtained from three different modelling techniques, we have applied a

simple validation approach (Hold-out method) to the classification on data Dcolon15:
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the given data is split into training and testing data with a specified ratio, i.e. 70%

of samples are used for training and the remaining 30% for testing (classification

problem see also Section 5.3.

The experiment is carried out in Matlab environment, and some functional modules,

such as visualisation of Multiple linear regression (MLR) model and SVM model

are derived from NeuCom and Siftware (refer to http://www.theneucom.com).

NeuCom and Siftware are two generic intergraded systems for data analysis, mod-

elling, profiling and knowledge discovery developed by the Knowledge Engineering

and Discovery Research Institute - KEDRI, AUT (http://www.kedri.info). These

two systems consolidate a variety of statistical algorithms, artificial intelligent mod-

els and evolving intelligence methods, that can be used for solving complex data

analysis problems.

4.2.3 Global Modelling

Linear and logistic regression models might be the most popular global modelling

techniques. They have been implemented in a variety of global methods for modelling

gene expression data (T. Furey et al., 2000), and for modelling gene regulatory

networks (D’haeseleer, Liang, & Somogyi, 2000).

Multiple linear regression

MLR is a global modelling technique that is among the simplest of all statistical

learning algorithms. MLR analysis is a multivariate statistical technique that ex-

amines the linear correlations between a single dependent variable and two or more

independent variables. For multiple linear regression analysis, the independent vari-

able X is described by an m-dimensional vector: X = {x1, x2, · · · , xm}. Thus, we

can obtain a MLR model:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βmximεi, i = {1, 2, · · · , n} (4.1)

where:
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• β is an m-dimensional parameter vector called effects or (regression coeffi-

cients);

• ε is the “residual” representing the deviations of the observed values y from

their means y, which are normally distributed with mean 0 and variance;

• n is the number of observations.

For the purpose of investigating the global modelling for classification problems, an

MLR based approach is applied to the subset of colon cancer gene expression data

(Dcolon15). A global MLR-based classifier is created from the training data (70%)

analysis, which is given as:

Y = 0.1997 + 0.1354 ∗X1 + 0.70507 ∗X2 +−0.42572 ∗X3 − 0.19511 ∗X4

+0.0943 ∗X5 − 0.6967 ∗X6 − 1.0139 ∗X7 + 0.9246 ∗X8

+0.1550 ∗X9 + 0.6190 ∗X10 + 0.1793 ∗X11 + 1.123 ∗X12

−0.1615 ∗X13 − 0.4789 ∗X14 − 0.4910 ∗X15

(4.2)

where Y is an MLR model to predict the new input data vector (here is to predict

whether a patient sample is “diseased” or “normal”), and Xi, i = 1, 2, . . . , 15 denotes

each variable (feature).

Function 4.2 constitutes a global model to be used for evaluating the output for

any new data vector in the 15-dimensional space regardless of where it is located.

This global model extracts a ‘big’ picture for the whole problem space, but lacks

an individual profile (Kasabov, 2007b). It indicates to certain degree the genes’

importance: X6, X8 and X12 show strong correlation to the corresponding output,

while X5, X1, X9 are less important in terms of outcome prediction.

Figure 4.1 shows the prediction result from the global multi-linear regression model

over colon data with selected 15 genes. The results plotted in Figure 4.1 (a) and (b)

demonstrate the inconsistent issue in microarray gene expression data analysis: the

accuracy from testing data is significantly lower than that from training data - 95.3%

vs. 73.7%, when the threshold of disease distinction is set to 0.5. Such inconsistency

issue will be discussed in detail in Section 5.7.
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(a) The classification result using a global MLR model on Dcolon15 training
set (the training accuracy is 95.3%);
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(b) The classification result using a global MLR model on Dcolon15 testing
set (the testing accuracy is 73.7%).

Figure 4.1: An example of global modelling: the classification results from a
multi-linear regression model(MLR) over colon cancer gene data, where x axis is
the sample index, y axis represents the value of the actual class label and predicted
outcome for each sample. The red square points represent the actual class labels of
the samples, while the black circle points present the predicted outcome.
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A Global SVM Modelling

For comparison, we applied a global SVM classifier on the colon data Dcolon15, us-

ing the same sampling method (70% for training, 30% for testing). As described

in Chapter 3, SVM is a robust algorithm that can be implemented into different

modelling approaches. Here, the experiment uses a classical SVM to perform a clas-

sification on the given colon cancer data through a global modelling approach. The

experiment result is illustrated in Figure 4.2. The accuracy on the training set is

90.7% (39 out of 43 samples are successfully classified), while the accuracy on testing

set is still significantly lower - 79.0%.

4.2.4 Local Modelling

Unlike global models, local models are created to evaluate the output function espe-

cially within a sub-space of the entire problem space (e.g. a cluster of data). Multiple

local models can consist of the complete model across the entire problem space. Lo-

cal models are usually based on clustering techniques. A cluster is a group of similar

data samples, where similarity is measured predominantly as Euclidean distance

in an orthogonal problem space. Clustering techniques can be found in the litera-

ture: classical k-means (Lloyd, 1982), Self-Organising Maps (SOM) (Kohonen, 1982;

Graepel, Burger, & Obermayer, 1998), fuzzy c-means clustering (Bezdek, 1982), hier-

archical clustering for cancer data analysis (Alon et al., 1999), a simulated annealing

procedure based clustering algorithm for finding globally optimal solution for gene

expression data (Lukashin & Fuchs, 2001). Fuzzy clustering is a popular algorithm

used to implement local modelling for machine learning problems. The basic idea

behind it is that one sample may belong to several clusters to a certain membership

degree, and the sum of membership degree should be one.

Local learning models adapt to new data and discover local information and knowl-

edge, that provide provide a better explanation for individual cases. However, these

local modeling methods do not select specific subsets of features and precise neigh-

bourhood of samples for individual samples that require a personalised modelling in

the medical area. Evolving classification function (ECF) (Kasabov, 2002; Kasabov &

Song, 2002) is a representative technique for local modelling (the detailed algorithm

of ECF refers to Appendix E). The classification result from ECF local model over
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(a) The classification results of SVM model over Dcolon15 training set
(the training accuracy is 90.7%);
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(b) The classification results of SVM model over Dcolon15 testing set
(the testing accuracy is 79.0%).

Figure 4.2: An example of global modelling: the outcomes from a polynomial
SVM model, where x axis is the sample index, y axis represents the value of the
actual class label and predicted outcome for each sample. The green circle points
represent the actual class label of the sample, while the red squared points are the
predicted outcome.

dataset Dcolon15 is shown in Figure 4.3(a) and 4.3(b). The classification accuracy

from ECF model on the training set (70% of the whole data) appeared excellent -

100% accurate, but the classification result from the testing set (30%) is only 78.95%

(15 out of 19 samples are correctly classified). It seems that local modelling might
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not be an effective approach for analysing this particular gene expression dataset.

Moreover, it is difficult to optimise the parameters during the learning process.
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(a) A local modelling: the outcomes from ECF model on the training
set of colon cancer data (70%), the training accuracy is 100%.
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(b) A local modelling: the outcomes from ECF model on the testing
set of colon cancer data (30%), the testing accuracy is 79.0%.

Figure 4.3: An example of local modelling: the experimental results from a local
modelling method (ECF) on the training and testing set from data (Dcolon15),
respectively. Black solid line represents the actual label of the sample, while red
dotted line is the predicted outcome.

4.2.5 Personalised Modelling

In contrast to global and local modelling, personalised modelling creates a model for

every new input data vector based on the samples that are closest to the new data
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x1
x2

- a new data vector - a sample from D (the Entire problem space)

- a sample from M (can be an existing model)

D1
D2

D

Figure 4.4: An example of personalised space, where x1 and x2 represent two
new input vectors, D is the entire (global) problem space, D1 and D2 denote the
two personalised spaces for x1 and x2, respectively.

vector in the given dataset. Figure 4.4 gives an example for personalised problem

spaces. KNN method is probably the simplest techniques to use for personalised

modelling. In a KNN model, the K nearest samples for every new sample xi are

derived from the given dataset through a distance measurement (usually Euclidean

distance), and the class label for the new sample xi is assigned based on a voting

scheme (T. Mitchell, Keller, & Kedar-Cabelli, 1986). The classical KNN method

calculates the output value yi according to the determination made by the majority

vote of its neighbours, i.e. the new data vector is assigned to the class most common

amongst its k nearest neighbours.

KNN algorithm is one of the most popular algorithms in machine learning, because

it is simple to implement and works fast and effectively on many machine learning

problems. However, the parameter selection is a critical factor impacting on KNN

classifier’s performance, e.g., the choice of value for K. In general, more nearest neigh-

bours (K) used in KNN method can reduce the effect of noise over the classification,

but would make the boundaries between classes less distinct. If too few neighbours

are selected, there can be insufficient information for decision making. Also, the per-

formance of the KNN algorithm can be severely degraded by the presence of noisy

features which is a very common issue in biomedical data.
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Weighted Nearest Neighbour Algorithms for Personalised Modelling: WKNN

& WWKNN

In a weighted distance KNN algorithm (WKNN) , the output yi is calculated not

only based on the output values (e.g. class label) yj, but is also dependent on the

weight wj measured by the distance between the nearest neighbours and the new

data sample xi:

yi =

Ki∑
j=1

wj · yj

Ki∑
j=1

wj

(4.3)

where:

• yi is the predicted output for the new vector xi;

• yj is the class label of each sample in the neighbourhood of xi.

• Ki is the number of K nearest samples to xi;

• wj is the is the weight value calculated based on the distance from the new

input vector xj to its K nearest neighbours.

The weight wj can be calculated as follows:

wj =
max(d)− (dj −min(d))

max(d)
, j = 1, · · · , K (4.4)

where:

• the value of weights wj ranges from
min(d)
max(d)

to 1;

• d = [d1, d2, · · · , dK ] denotes the distance vector between the new input data di

and the its K nearest neighbouring samples;

• max(d) and min(d) are the maximum and minimum values for vector d.
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The distance vector d is computed as:

dj =

√√√√ m∑
l=1

(xi,l − xj,l)2, j = 1, · · · , K (4.5)

where m is the number of variables (features) representing the new input vector xi

within the problem space; xi,l and xj,l are the lth variable values corresponding to

the data vector xi and xj, respectively.

The output from a WKNN classifier for the new input vector xi is a “personalised

probability” that indicates the probability of vector xi belonging to a given class.

For a two-class classification problem, a WKNN classifier requires a threshold θ to

determine the class label of xi, i.e., if the output (personalised probability) is less

than the threshold θ, then xi is classified into the group with “small” class label,

otherwise into the group with “big” class label. For example, in a case of a two-class

problem, the output from WKNN model for sample#1 of data Dcolon15 is 0.1444,

so that this testing sample is classified into class 1 (“small” class label) when the

threshold θ is set to 0.5.

Weighted distance and weighted variables K-nearest neighbours (WWKNN) is a

personalised modelling algorithm introduced by Kasabov (2007b). The main idea

behind WWKNN algorithm is: the K nearest neighbour vectors are weighted based

on their distance to the new data vector xi, and also the contribution of each variable

is weighted according to their importance within the local area where the new vector

belongs (Kasabov, 2007b). In WWKNN, the assumption is made that the different

variables have different importance to classifying samples into different classes when

the variables are ranked in terms of their discriminative power of class samples over

the whole m-dimensional space. Therefore, it will be more likely that the variables

have different ranking scores if the discriminative power of the same variables is mea-

sured for a sub-space (localised space) of the entire problem space. The calculation of

Euclidean distance dj between a new vector xi and a neighbour xj is mathematically

formulated by:

dj =

√√√√ K∑
l=1

ci,l(xi,l − xj,l)2, j = 1, · · · , K (4.6)

where: ci,l is the coefficient weighing xl in relation with its neighbourhood of xi, and

K is the number of the nearest neighbours. The coefficient ci,l can be calculated
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Figure 4.5: The ex-
perimental results com-
puted by two personalised
models - WKNN and
WWKNN on the colon
cancer Dcolon15 testing set
(it contains 19 samples).
K = 15 and the classi-
fication threshold is 0.5.
The classification accu-
racies from WKNN and
WWKNN are 84.2% and
78.9%, respectively.

by a SNR function that ranks variables across all vectors in the neighbourhood set

Dnbr(xi):

ci,l = {ci,1, ci,2, · · · , ci,K}

ci,l =
|x̄l

class1 − x̄l
class2|

σclass1
l + σclass2

l

(4.7)

where:

• x̄l
classi, i = {1, 2}: the mean value of the lth feature belonging to class i

across the neighbourhood Dnbr(xi) of xj;

• σclassi
l , i = {1, 2}: the standard deviation of lth feature belonging to class

i across the neighbourhood Dnbr(xi) of xj.

Comparing to a conventional KNN algorithm, the contribution of WWKNN lies in

the new distance measurement: all variables are weighted according to their impor-

tance as discriminating factors in the neighbourhood area (personalised sub-space),

which might provide more precise information for classification or prediction of the

new data vector.

The experimental results from the classification of Dcolon15 data using WKNN and

WWKNN are summarised in Figure 4.5. It shows that WWKNN outperforms

WKNN (84.2% vs. 78.9%) for colon cancer data classification. Both WKNN and
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WWKNN can create an outcome vector indicating the testing sample’s probabil-

ity of being diseased, which provides the important information for clinical decision

making.

4.3 A Case Study of Comparing Global, Local and

Personalised Modelling Approaches

The previous section 4.2 provides a detailed description and comparative analysis

of the three modelling approaches. This section presents a case study where an in-

corporated personalised modelling approach is used for cancer diagnosis. The case

study mainly aims to investigate the classification performance obtained from dif-

ferent algorithms using global, local and personalised modelling techniques over a

benchmark gene expression datasets - the diffuse large B-cell lymphoma (DLBCL)

datasets (Shipp et al., 2002).

4.3.1 Experiment Setup

The objective of this experiment is to compare the global, local and personalised

models for lymphoma classification. Five classification models - MLR, KNN, SVM,

ECF, and WWKNN are applied to the cancer data analysis experiment.

Data

The diffuse large B-cell lymphoma (DLBCL) dataset contains genetic data of patients

with one of the two types of lymphoma - diffuse large B-cell lymphoma (DLBCL) and

Follicular lymphoma (FL). The dataset has 58 DLBCL samples and 19 FL samples,

and each sample contains 6,817 genes.

4.3.2 Results and Discussion

Each of the models used in this experiment was validated through a leave-one-out

cross validation (LOOCV) . Originally, to remove the noise and irrelevant genes,
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Shipp and her colleagues applied a SNR-based gene selection method on the whole

dataset and selected the top 30 genes (Shipp et al., 2002). We also used a SNR-based

method to select the top 30 genes based on their SNR ranking scores (i.e. we used

the same 30 genes as those selected in Shipp’s work), and applied different classifier

models on the lymphoma data.

The overall classification accuracy (in %) obtained by applying five models (global,

local and personalised) is presented in Table 4.1. In the last two columns, k is the

number of neighbours used in the WWKNN algorithm.

Table 4.1: The classification results obtained from 5 models on Shipp’s DLBCL
data using 30 genes

Model MLR KNN SVM ECF WWKNN WWKNN
(k=5) (k=15)

Number of selected genes 30 30 30 30 30 30
Overall accuracy 85.71% 84.42% 84.42% 88.31% 84.42% 89.61%

The 30 genes selected in our experiment can be found in the list of 50 biomarker genes

finally reported by Shipp et al. (2002) for distinguishing two types of lymphoma:

DLBCL and FL. However, comparing to Shipp’s biomarker gene list, the importance

of these 30 genes from our SNR method is different. For example, the top 2 genes we

selected - gene HG1980-HT2023 and M14328 are described as the two marker genes

ranked at the 8th and 2nd position based on their biological importance to DLBCL

(Shipp et al., 2002).

The best classification accuracy (89.61%) achieved on Shipp’s data is from the per-

sonalised WWKNN model - 69 out 77 samples are successfully classified. The local

model ECF performs better than other models (MLR, KNN and SVM). In the ex-

periment, it is found that the WWKNN performance is sensitive to the selection of

some parameters, e.g. the number of the nearest neighbours (k).

In the experiment, 12 genes always appear among the top 16 selected by the person-

alised modelling method WWKNN, across the whole sample population. In other

words, for every individual lymphoma sample, these 12 genes have a very high prob-

ability to be selected as the informative genes for distinguishing lymphoma types.

Also, the same 12 genes are found important and ranked among the top 20 in Shipp’s

experiment. Table 4.2 summarised these 12 genes with their biological information.
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Table 4.2: 12 selected genes from Shipp’s DLBCL data

Gene Index Biological description
HG1980−HT2023at Tubulin, Beta 2

M14328sat ENO1 Enolase 1,(alpha)
X56494at PKM2 Pyruvate kinase, muscle
X02152at LDHA Lactate dehydrogenase A
M57710at LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3)

L17131rna1at
High mobility group protein (HMG-I(Y)) gene exons 1-8

J03909at GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECUR-
SOR

HG417−HT417sat Cathepsin B
HG2279−HT2375at Triosephosphate Isomerase

M63138at CTSD Cathepsin D (lysosomal aspartyl protease)
D82348at 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoti de
M22382at HSPD1 Heat shock 60 kD protein 1 (chaperonin)

The DLBCL dataset has been studied extensively, and consequently many models

and approaches have been developed. Most of the studies are focused on the per-

formance in terms of computational results. However, it is generally agreed that

currently no model or approach can always perform well on different gene expression

data for cancer diagnosis and prognosis. In many cases, the performance of pre-

diction can not be the only factor to judge whether a model is superb than others.

Other factors, such as the consistency of prediction performance, and reproducibility

of the experimental results should be taken into account.

In this case study, we are more interested in what knowledge can be discovered by

these three different modelling techniques and which one is more appropriate for

cancer gene expression data analysis. For example, one of our findings is that the

12 selected genes are among the most important genes reported by other published

paper, which means these genes should be further studied to evaluate whether they

are contributive to other cancer diagnosis and prognosis.

In Shipp’s work, the best accuracy they achieved is 92.2% using a weighted voting

algorithm with 30 selected genes based on cross-validation testing, which is slightly

better than the result from our WWKNN model (89.61%). However, regarding their

data sampling and validation approaches, there exist some open questions, e.g. how

many genes are best fit for the classification over DLBCL data, because their method

does not involve parameter optimisation.
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4.4 Conclusion and Open Problems

In order to describe the notion of personalised modelling, this chapter has presented

a brief review of inductive and transductive reasoning method for data analysis in

machine learning. It also discusses a preliminary study through a comparison of

three major modelling approaches, namely global, local and personalised modelling

for microarray data analysis.

Global models reveal the trend in data that is valid for the whole problem space,

while local models capture local patterns from the clusters of data. Both global and

local models can discover some useful information and knowledge from the analysis

of available data. Local models are also adaptive to new input data through forming

new clusters and applying new functions to capture data patterns (Kasabov, 2007b).

In short, these two modelling approaches assume a fixed set of variables, which makes

it difficult to modify and accommodate the new variables along with new input data.

Personalised modelling approach can be a solution to the issues raised by global

and local modelling, since it spontaneously creates the models that accommodate

any new variables to fit the new data. The experiment results also show that the

strength of personalised modelling is not only providing a competitive way for data

analysis.

This chapter has discussed the issues of personalised modelling for data analysis.

The personalised modelling construction is a complex process that requires evolving

and adaptive computational techniques. The chapter raises the questions and open

problems that need to be discussed and solved in the rest of this thesis:

1. How to determine the appropriate personalised problem space for a new input

data sample? For example, how many samples (K ) should be included in the

neighbourhood (personalised problem space), and which samples are best to

represent the pattern of object sample?

2. How to find the best combination of parameters for the learning functions (e.g.

a classifier)?

3. How many and which features are highly differentially expressed between dif-

ferent samples and are of benefit to assessing the outcome for the new input
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data sample?

4. How to build the profile from the analysis on different data sources, such as

gene expression data, protein data, clinical data, SNPs data, etc?

5. How to effectively visualise the outcomes and results to help understand the

information discovered from data analysis?

In fact, the above issues and open questions motivate us to find better solutions

to personalised modelling for genomic data analysis. Chapter 5 gives a detailed

discussion of these issues and questions.
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CHAPTER 5

Critical Analysis of Problems Related to

Personalised Modelling

“Knowledge is power. Rather, knowledge is happiness, because to have knowledge –

broad, deep knowledge – is to know true ends from false, and lofty things from low.”

- Helen Adams Keller

Despite the increasing interest in the concept of personalised modelling, especially for

biomedical applications, the methods and systems are still far away from their mature

stage. There are issues related to personalised modelling that are of significant

concern to researchers. These issues can be related to the types of data, biological

relevance of features, data classification problems, parameters tuning, overfitting,

etc. I believe that in order to develop efficient personalised modelling framework

and systems for data analysis and modelling, it is necessary to study and acquire an

in-depth understanding of the problems and the related issues.
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5.1 Feature Selection - a Critical Step in Person-

alised Modelling

5.1.1 Introduction

In this thesis, a main application of the proposed personalised modelling is for the

development of disease prediction system that uses microarray gene expression data.

Owing to the ability to observe thousands of gene expression levels simultaneously,

microarray data technology is a scientific breakthrough in the realm of complex dis-

ease research, and provides a powerful way to study life science at genomic level. Over

the last two decades, microarray gene expression data has been extensively studied

in medical research, especially for the diagnosis and prognosis of complex diseases,

such as cancer. Many research studies have claimed excellent results achieved using

microarray data, especially for cancer diagnosis and prognosis (Alizadeh et al., 2000;

Asyali, Colak, Demirkaya, & Inan, 2006; Cho & Won, 2003). However, some concerns

about the reliability of microarray experiments have been raised recently, because

many published impressive experimental results are found difficult to replicate in

other laboratories.

Empirical research has revealed that the issue is mainly caused by the extremely

imbalanced structure of microarray datasets (Chuang et al., 2004; Pawitan et al.,

2005; Li & Yang, 2002). In a typical microarray dataset, each row represents a tissue

sample, and each column represents a gene’s expression level. The number of samples

to be analysed is very small comparing to the number of the genes on the chip. In

most real microarray datasets, the number of genes (usually thousands or tens of

thousands) far exceeds the number of samples (usually tens or several hundreds).

For example, there are 78 samples vs. 24,482 genes in the breast cancer dataset

proposed by van’t Veer (2002). Figure 5.1 shows an example of a typical microarray

gene expression dataset.

In machine learning research, in order to get a satisfactory classification accuracy,

the sample size of a dataset should be sufficiently large comparing to the number

of features (Ambroise & McLachlan, 2002; Glymour, Madigan, Preigbon, & Smyth,

1996; Hosking, Pednault, & Sudan, 1997; Varma & Simon, 2006). A good classifica-
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Figure 5.1: An example of the typical imbalanced structure of a microarray gene
expression dataset (m-by-n, m� n)

tion model usually comes from a dataset with a balanced structure, i.e. the sample

size should be appropriate to the number of features (Raudys, 1976). Generally,

the generalisation error in machine learning area decreases when the sample size

increases (Hamamoto, Uchimura, & Tomita, 1996).

However, it is difficult to get a microarray dataset with reasonably large sample

size, compared to the number of features (genes). At present, microarray data is

still expensive to collect and manufacture, due to the issues of intellectual property

protection and the huge quantity of data points recorded into a microarray chip (a

high throughput dataset usually includes more than one million data points). In most

microarray datasets, only a very small proportion of features (genes) contribute to

computational models (e.g. a classifier), while the rest of genes are noise genes that

confuse learning models. The amount of relevant genes is typically small, as “the

majority of the active cellular mRNA is not affected by the biological differences”

(Wolf, Shashua, & Mukherjee, 2004, p1).

Previous disease classification work on microarray datasets has demonstrated that

using a small number of informative genes can successfully discriminate the patterns

of tissue samples, e.g. diseased or normal (Dudoit, Fridlyand, & Speed, 2000; Golub

et al., 1999; Hu, 2008). Feature selection is thus proposed to eliminate the influence

of noise genes, and to find the informative genes related to a disease.
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5.1.2 Feature Selection

Identifying the features that are informative for the classification is a critical issue

for understanding the biology behind the classification and for achieving promising

and reliable experimental results. Feature selection is concerned with discovering a

small number of most informative features that can represent the objective patterns.

Gene selection is the application of feature selection in microarray gene expression

data analysis research. There are plenty of reasons to employ feature selection in

contemporary bioinformatics, especially for cancer classification. The main benefits

of using feature selection are summarised as follows:

• Enhance the reproducibility of gene expression data analysis experiment. Gene

selection will extract a compact subset of genes so that most noise genes will be

eliminated. Hence, the computational models can work more properly on gene

expression data, and will be more likely to produce better experiment results;

• Ease the computational burden for gene expression data analysis. It is much

cheaper to focus on a small number of informative genes that can differentiate

express the patterns of disease from the whole gene set.

• Improve data understanding and model interpretability. Gene selection can as-

sist the system to reveal and visualise data more precisely in a less dimensional

space.

The problem of a typical feature selection method in bioinformatics can be briefly

described as follows: given a microarray gene expression dataset D = {X, Y }, where

X = {xi, | i = 1, · · · , n}, Y = {yi, | i = 1, · · · , n}. Each sample is characterised

by a vector of expression levels of m genes xi = {xi1, xi2, · · · , xim}, and has a label

yi = {0, 1} indicating which class it belongs to, e.g. “normal” vs. “diseased” (Note:

here we use a two-class classification just for simplicity and convenience in terms

of description). Each gene is a vector of their expression values across the samples

and is denoted by G = {gj, | i = 1, · · · , m}. The goal is to find a subset of genes

S = {si | i = 1, · · · , l} that leads to the best and reliable analysis performance. Let

S∗ be the optimal subset with l genes (S∗ ∈ G). A learning function F (a classifier

or other computation models) evaluates the selected genes (candidate genes) and
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computes a generalisation error pe. The smaller the pe, the more informative the

selected gene set S∗:

∃S∗ ∈ X : min (pe) = (F, S,X) (5.1)

The most straightforward method of gene selection is the exhaustive search in the

whole problem space:

1. Examine all the possible combination of genes;

2. Select a subset of genes (S∗) when the smallest pe is achieved.

However, the exhaustive search in Step 1 becomes impracticable when the number

of features becomes very large.

Selecting informative genes, as a critical step for cancer classification, has been imple-

mented using a diversity of techniques and algorithms. Simple gene selection methods

come from statistical models, such as t-statistics, Fisher’s linear discriminate crite-

rion and PCA (Ding & Peng, 2003; T. Furey et al., 2000; Jaeger, Sengupta, & Ruzzo,

2003; Tusher, Tibshirani, & Ghu, 2001). Statistical methods select genes by evaluat-

ing and ranking their contribution or redundancy to classification (C. Zhang, Lu, &

Zhang, 2006), and are able to filter out informative genes very quickly. This type of

methods usually run quickly and may achieve acceptable classification performance

in some cases.

More sophisticated algorithms are also available, such as noise sampling method

(Draghici et al., 2003), Bayesian model based approach (Efron, Tibshirani, Storey, &

Tusher, 2001; Lee, Sha, Dougherty, Vannucci, & Mallick, 2003), significance analysis

of microarrays (SAM) (Tibshirani, 2006), artificial neural networks based approach

(N.Kasabov, Middlemiss, & Lane, 2003), and rough sets based approach (L. Sun,

Miao, & Zhang, 2008). All these methods define a loss function, e.g. a classifier or

cluster, to evaluate the goodness of candidate gene sets. Most of them claim to be

capable of extracting out a set of highly relevant genes (Wolf et al., 2004), however

their computational cost is much higher than that of statistical methods.
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5.1.3 Main Approaches for Feature Selection: Filter, Wrap-

per and Embedded methods

Feature selection methods in bioinformatics literature basically fall into three cate-

gories - filter, wrapper and embedded methods, depending on whether the learning

algorithm is used as a part of the selection criteria (Guyon & Elisseeff, 2006). The

three types of feature selection methods are illustrated in Figure 5.2. The three types

All genes Filter Gene Set Learning
Function

All genes

Wrapper

Learning
Function

Multiple 
Candidate Gene 

Sets

Filter 
Method:

Wrapper 
Method:

All genes
Embedded 
Methods

Gene Sets

Learning
Function

Embedded  
Method:

Figure 5.2: The illustration of three feature selection approaches: filter, wrapper
and embedded methods.

of feature selection methods are discussed in the next three sections.

5.1.4 Filter Methods

Filter methods follow the methodologies of statistical models, such as t-test and SNR,

as the measuring criterion to examine the intrinsic characteristics of genes. In filter

methods, the feature selection procedure is independent to the prediction process,

i.e. filter methods select and evaluate genes only based on their statistical scores.
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A typical filter feature selection method ranks all genes according to their individual

relevance. For example, the Pearson correlation coefficient can be used as the statis-

tical relevance scores for ranking genes individually. Let xi,j represent the ith sample

(vector) with the values of the jth gene from a training dataset D (n-by-m), and y is

the n dimensional vector with the values of target objectives (e.g. the desired class

labels in classification problems). The Pearson correlation coefficient rxy for gene

ranking is thus defined as:

rxy =

∣∣∣∣ n∑
i=1

(xi,j − x̄j) · (yi − ȳ)

∣∣∣∣√
n∑

i=1

(xi,j − x̄j)2 ·
n∑

i=1

(yi − ȳ)2

(5.2)

where x̄j and ȳ represent the mean of vectors xj and y, respectively.

T-test is another popular choice to implement filter feature selection methods. T-test

based feature selection methods evaluate to what extent each gene in a sample is in

relation with a particular gene in other samples. The relationship is evaluated by a

t-test algorithm and each gene is assigned a t-test statistic score calculated by:

Ti =
x̄i − ȳi√
1

nx
+ 1

ny
· σi

(5.3)

where Ti is the t-test statistic value of the ith gene in D, x̄i, ȳi denote the mean value

of the ith gene corresponding to each classes(e.g. class 0 and class 1) respectively,

na and nb are the number of samples of two classes, and σi is the pooled standard

deviation for the ith gene:

σi =

√
(na − 1) · σ2

a + (nb − 1) · σ2
b

df
(5.4)

where σ2
a and σ2

b is the variance of two subsets, each corresponding to one of two

different classes, and df is the degree of freedom of the t-distribution under null

hypothesis, which is calculated by:

df = na + nb − 2 (5.5)

Hence, a small number of genes with high ranking scores (t-test statistic scores) are

69



5.1. Feature Selection - a Critical Step in Personalised Modelling

considered highly informative to classification problems.

One thing to bear in mind when using t-test method for feature selection is that it

works well only when the data is normally distributed and the population variances

are equal for the two classes. If variances are unequal in a two-class problems, the

degrees of freedom (df) can be computed by a different version of T-test algorithm -

Welch’s T-test (Welch, 1938). The value of degrees of freedom obtained by Welch’s

T-test is usually smaller than that calculated by Eq.5.5.

One notable application of t-test algorithm for feature selection was presented by

Dudoit, Yang, Callow, and Speed (2002). The method was based on a two-sample t-

test which made the assumption that the samples in the given dataset were randomly

selected from normally distributed population with equal variances. Firstly, the

differentially expressed genes were evaluated by the T-statistic value (Eq. 5.3). The

method also takes into account the absolute expression level of a gene (ωi):

ω̄i =

n∑
j=1

log2

√
R ·G

n
(5.6)

where R and G are the intensity measurements for each gene spotted in a single-slide

cDNA microarray chip, n denotes the number of hybridisations performed. Other

different versions of t-test can be found in literature, such as Levene’s test (Levene,

1960) and Bartlett’s test (Snedecor & Cochran, 1989). Both of them are two sensitive

methods when the samples have equal variances (homogeneity of variances).

T-test based feature selection methods are often found in preliminary studies as a

benchmark to compare with newly developed methods, as t-test is an extensively

studied algorithm and easy to implement. One of its major advantages is the sim-

plicity and robustness, which leads to a fast computation process for feature selection.

T-test based feature selection algorithms usually make the assumption that two

samples have equal variances and the genes are independent. These assumptions can

have a significant negative impact on real microarray datasets, because the inter-

action among genes are neglected. Empirical studies have indicated that the genes

selected by simple T-test based algorithms are not reliable in terms of expressing

disease patterns, and are more likely to be generated by chance. For example, even

if the P-value (a probability associated with a test statistic) is significantly small
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(0.01) in a microarray experiment with 10,000 genes, 100 genes might be identified

by chance.

Another widely used statistical algorithm, SNR is often adopted to conduct a search

for discovering informative genes. This approach starts with the evaluation of a single

gene and iteratively searches the candidate genes in the rest of dataset based on a

statistical criterion. SNR, as a simple algorithm, is usually found generally effective

to identify the difference between two normal distributed samples (Lai, Reinders, &

Wessels, 2004; Veer et al., 2002). Let x̄i and ȳi denote the mean values of the ith gene

in the samples in class 1 and class 2 respectively, σxi and σyi are the corresponding

standard deviations. The SNR score of each gene can be calculated by:

SNR(i) =
|x̄i − ȳi|
σxi + σyi

, i = 1, 2, · · · , m (5.7)

where m is the number of genes in the given dataset. The greater the SNR value,

the more informative the gene.

SNR based algorithms for feature selection have been widely used. Examples in-

clude a univariate ranking method (Lai et al., 2004), and a weighted-voting (WV)

algorithm combined with SNR method (Iwao-Koizumi, Matoba, Ueno, Kim, & al.,

2005) for selecting genes in a study of human breast cancer. SNR-based feature

selection usually ranks the correlated genes in the dataset according to their dis-

criminative levels towards the classes. The genes with high SNR scores are selected

as the informative variables of each class.

Filter methods can be a good choice for selecting genes when the number of genes

is very large. They are usually fast and effective. Filter feature selection meth-

ods can be found in many published works: A Noise sampling method based on an

ANOVA approach (Draghici et al., 2003), minimum redundancy - maximum rele-

vance (MRMR) gene selection method (Ding & Peng, 2003), Self Organizing Maps

(SOM) based method (Tamayo et al., 1999), a Singular Value Decomposition (SVD)

based method (Alter, Brown, & Botstein, 2000), a.k.a gene shaving method (Hastie

et al., 2000), max-surprise method (Ben-Dor, Friedman, & Yakhini, 2001), etc.

The main limitation of filter selection methods is that they ignore the possible in-

teractions among genes. Most techniques used in filter methods are univariate. The

genes are considered separately so that the interactions among genes are not taken
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into account. The combination of selected genes may not follow the performance of

the genes evaluated individually. Another issue is the number of the selected genes

is subjectively determined by trial-and-error, since the gene ranking is based on a

univariate scoring metric and the genes are selected independently from the learning

function. Such schema may worsen classification performance compared to other

feature selection methods.

5.1.5 Wrapper Methods

To avoid the weakness of filter methods, wrapper methods define a loss function,

such as a classification model, to recursively evaluate the goodness of candidate gene

subsets. The final learning function for data analysis consolidates a compact set of

selected features and an optimal classifier. Figure 5.3 illustrates a simple flowchart

of a wrapper feature selection method.

Select candidate gene 
subsets

Gene evaluation

Induction algorithm

Gene subset Hypothesis

Gene subset Performance 
evaluate

Induction 
algorithm

Final evaluation

Training set

Gene subset
Training set

Testing set

Estimated 
performance

Figure 5.3: A flowchart of a wrapper feature selection method, adapted from
Kohavi and John (1997)

The procedure of a typical wrapper feature selection method is roughly summarized

as follows: for a given training dataset D = {xi, yi | xi ∈ X, yi ∈ Y, i = 1, · · · , n}, the

objective of feature selection (as generally understood) is to find a subset of genes

that are able to assist a computational model to minimise the generalisation error.

In other words, an optimal computational model using a small number of selected
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genes should give a prediction as accurate as possible, and maximise the correctness

of the mapping of an input set X to the output set Y . Thus, the generalisation error

pe in Eq. 5.1 is replaced with a wrap feature selection with the expecting risk R:

R(fσ) =

∫
L(y, fσ(σ · x))dP (x, y) (5.8)

where:

1. L is a loos function;

2. fσ is a family of functions that can be a set of classifiers or regression models;

3. σi is an indicator vector indicating whether the gene i (i = 1, 2, · · · , m) is

selected (σi = 1) or not (σi = 0);

4. P is a measurement function over training data D(X, Y ).

A constraint function s is introduced to evaluate the sparsity of σ. Therefore, a

feature selection problem with a wrapper method can be rewritten as:

min R(f ∗, σ,X, Y )←

s(σ) ≤ σ0

f ∗ = fl(fσ, σ,X, Y )
(5.9)

where:

1. R is the risk value measured by a learning function f ∗, e.g. a classification or

regression function. The smaller the R value, the better the performance;

2. σ0 is a pre-specified parameter denoting the desired sparsity of σ;

3. f ∗ is the optimal function learned from the training over data D(X, Y ).

From Eq.5.9, it is easy to elucidate that a wrapper feature selection method is ac-

tually used to seek an appropriate criterion to drive the optimisation task of feature

selection.
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If R is allowed to be dependent on the learning model fl and on the parameters of

f ∗, Eq.5.9 can further be reformulated by:

min R(α∗, fl, σ,X, Y )←

s(σ) ≤ σ0

α∗ = fl(σ, X, Y )
(5.10)

where α∗ is a function for evaluating the learning model fl directly and can be defined

as:

α∗ = argmin fl(α, σ, X, Y ) (5.11)

In the past years, wrapper methods have become a popular choice for feature se-

lection. Some of the works include: a GA/SBM method (Huerta, Duval, & Hao,

2006), a sequential search wrapper approache for feature selection in microarray

cancer class prediction (Inza, Sierra, Blanco, & Larranaga, 2002), the FR-Wrapper

approach for discovering biomarker genes for cancer classification (Peng, Li, & Liu,

2006), etc. One representative work of wrapper method for feature selection is SVM-

RFE (Guyon, Weston, Barnhill, & Vapnik, 2002). This method uses a linear SVM

to classify samples and ranks the contribution of the features in the classifier by their

squared weights.

5.1.6 Embedded Methods

In contrast to filter and wrapper methods, embedded methods process feature se-

lection inside the training procedure and are specific to a particular induction algo-

rithm. The features that are finally selected by embedded methods can be seen as a

by-product of the classifier training. One recently developed embedded method for

feature selection can be found in my previous work - a bootstrapping consistency

method for feature selection (Hu, 2008; Pang, Havukala, Hu, & Kasabov, 2007). Us-

ing this method, the candidate gene subsets are selected and evaluated by a GA based

learning model based on their consistent performance through generations (usually

several thousands). In each generation, the consistency is measured via a comparison

between two subsets from resampled training datasets. The informative genes are

finally selected when a criterion is satisfied (a balanced ratio of a consistency value

to classification accuracy is achieved).
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5.1.7 Discussion

Personalised modelling, especially for gene expression data analysis and biomedical

applications requires efficient feature selection. The feature selection is a fundamental

step towards the construction of personalised modelling, because a compact set of

informative features will significantly benefit the testing performance.

Filter feature selection methods are simple and fast, but the selected features are usu-

ally only based on their statistical importance and are not evaluated by the learning

model. Consequently, the selected features cannot be informative for an individ-

ual data sample and may lead to unsatisfactory classification performance. Wrapper

and embedded feature selection methods are favoured in many works, since generally

they can yield better classification accuracy than filter methods. A recursive search-

ing schema for wrapper and embedded methods is usually involved to identify the

optimal gene subsets. However, the good performance from wrapper and embedded

methods always comes with expensive computational cost when the dataset has a

high dimensionality (Kohavi & John, 1997; Guyon & Elisseeff, 2006; Saeys, Inza, &

Larranaga, 2007).

In this study, to balance the computational complexity and classification perfor-

mance, I have applied a combined method to select features for building person-

alised models. The method has two main steps: (1). use filter method to exclude

the features that are significantly statistically irrelevant; (2). use wrapper method

to find the informative feature from the rest. The selection process is optimised by a

learning function (e.g. a classifier). The details of the implementation of a combined

feature selection method will be described in Chapter 6.

5.2 Imbalanced Data Class Distribution Problem

The imbalanced class distribution problem is a critical concern for the data min-

ing community, since it is encountered in many domains, such as in the analysis

of clinical, environmental and financial data. The imbalanced class problem corre-

sponds to the objective domains in which one class (the majority class) is repre-

sented by a significant large portion of samples, while the other (the minority class)
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is represented by a very small portion of samples. For example, the SCOPE data

(http://www.scopestudy.net/) used for predicting diseases in early pregnancy only

contains around 5 ∼ 10% samples from the diseased group (class 2), while leaving

most samples from normal (healthy) group (class 1). The imbalanced class issue

poses a bottleneck regarding the prediction performance attainable by traditional

learning algorithms that assume the objective dataset having a balanced sample

class distribution.

5.2.1 Imbalanced Class Distribution Issue in Personalised

Modelling

Previous studies have shown that the imbalanced class distribution issue often causes

poor performance from standard classification models in many applications (Japkowicz

& Stephen, 2002; Japkowicz, 2000). These standard classification models usually cre-

ate classifiers that maximise the overall classification accuracy. When dealing with

an imbalanced class distribution dataset, standard classification models usually lead

to the training completely ignoring the minority class samples, i.e. the training is

performed on all samples from the majority class. In this case, the classification over

majority class samples can be very successful, while it may fail over the minority

class samples. To construct a system for personalised modelling, it is crucial to find

an appropriate neighbourhood of a new data vector to train candidate personalised

models. However, it is often found that most or all the samples in the neighbourhood

(personalised problem space) are from the majority class, especially for building the

model for a sample belonging to majority class. Hence, finding a personalised prob-

lem space with reasonably balanced class distribution is of crucial importance for

constructing personalised models in our study.

5.2.2 Previous Attempts at Dealing with the Imbalanced

Class Distribution Problem

There have been some attempts at dealing with the imbalanced class distribution

problem. Robert, Holte, Acker, and Porter (1989) reported various approaches to the

problem with small disjuncts and proposed an approach based on a bias difference
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evaluation. Y. Sun (2006) developed a cost-sensitive boosting algorithm for a multi-

class classification problem over imbalanced data. Japkowicz (2000) addressed the

imbalanced class issue for classification tasks and presented different solutions in her

work.

Generally, there are three types of methods that are mainly employed for tackling

the imbalanced class distribution problem:

1. Methods that use over-sampling of the minority class samples to match the size

of majority class samples. One method can be found in the work presented by

Ling, , Ling, and Li (1998).

2. Methods that use down-sizing the majority class samples to match the size of

minority class samples. Kubat and Matwin (1997) applied a simple technique

called one-sided selection of examples for the classification over imbalanced

data.

3. Methods that use a recognition-based learning scheme. Such methods may

ignore one of the two classes and the learning is often from the minority class.

This scheme has been applied for different classification tasks over imbalanced

datasets (Japkowicz, Myers, & Gluck, 1995; Kubat, Holte, Matwin, Kohavi,

& Provost, 1998). This type of method is inspired by the auto-association

based classification approach proposed by Japkowicz et al. (1995). The training

process involves a MLP neural network to reconstruct its input at the output

layer. After training, an auto-associator is used for classification based on the

idea that the network can reconstruct the input at the output layer accurately,

i.e. if MLP can create a novel instance, then the instance must belong to the

class that was used for training; otherwise, if the instance creation fails, then

the instance must belong to the other class.

Although this issue of the classification with imbalanced class distribution data has

been known for a long time, it is still an open research question. There is no universal

method that can work for the classification on all different imbalanced class distribu-

tion datasets. Down-sizing methods work efficiently in large problem spaces, while

over-sampling method may perform well in small problem space. Recognition-based

methods have been reported to be a better alternative in some cases (Japkowicz &
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Stephen, 2002). The solution to imbalanced data classification problem depends on

each given task and the object dataset.

In the context of a personalised modelling study, we have designed a simple schema

to balance the class distribution for neighbourhood construction. The ratio between

majority class samples and minority class samples is pre-specified. In short, the

schema checks the class distribution of the neighbourhood for every candidate solu-

tion. It will extend the neighbourhood size, if there are not enough minority class

samples included. Chapter 7 will use this schema to implement the proposed PMS.

5.3 Classification Models

Classification is of critical importance in PM. A number of classification algorithms

have been developed in the past, such as artificial neural network based algorithms,

decision tree methods, Naive-bayes classifier, nearest neighbour based algorithm,

Bayesian statistics, SVM, etc.

5.3.1 Classification Models in Medical Applications

This section gives a review of some representative classification methods used for

medical applications.

Correlation based Classification Method

The weighted voting method is proposed by Golub et al. (1999) for classifying DLBCL

data and is known as GS method. This method is one of the pioneer studies in

microarray gene expression research, and is based on the correlation evaluation.

GS method assigns the class for the testing sample based on the weighted voting

calculated by the expression values of a subset of informative genes from the testing

pool.

The informative genes are selected based on their correlation values with class labels.

Let the expression values of a gene in n training samples be represented by a vector
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g = (x1, x2, /cdots, xn), where xi is the expression value of gene i. Another vector

y = (y1, y2, /cdots, yn) is the class label vector responding to each sample. Let

µ1(g), σ1(g) and µ2(g), σ2(g) be the mean and standard deviation of the log10 of the

value of g in class 1 and class 2, respectively. Thus, the correlation - r(g, y) between

the expression values of gene g and the class label y is calculated by SNR function

as follows:

r(g, y) =
µ1(g)− µ2(g)

σ1(g) + σ2(g)
(5.12)

The value of | r(g, y) | is proportional to the correlation between g and y. The

correlation r(g, y) identifies to which class the gene g is more correlated. The larger

the weight, the stronger the correlation.

GS method selects L/2 genes with the highest positive r values and L/2 genes with

the highest negative values to consolidate a set of informative genes, where L is a

pre-specified value.

Then, the class label of a testing sample xγ is determined by a voting schema:

for each informative gene ginf in the testing sample xγ, the value of ginf is normalised

by log10 and denoted as gnor = log10((xinf − µ)/σ), where xinf denotes the value of

an informative gene of a testing sample. The vote from gene ginf is given as:

vg = r(ginf , yγ)(gnor − µ1(ginf )− µ2(ginf )) (5.13)

where the sign of the vote indicates the class.

Therefore, informative genes will create a “weighted vote” vector for one class. The

final vote is calculated by:

Ds =
Vwin − Vlose

Vwin + Vlose

(5.14)

where Vwin is the number of votes of the winning class (i.e. the class that has the

higher number of votes), while Vlose is the number of votes for the losing class, Ds

denotes the degree of prediction strength.

To calculate the final prediction result, a threshold θγ for classification is specified for

determining class to which the testing sample belongs. If Ds ≥ θγ, then the testing

sample xγ is assigned the winning class label. Otherwise, the weighted voting is

thought to be not strong enough to make a decision, thus the class label of testing
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sample remains uncertain.

Probabilistic Based Classification Method - Naive Bayes Method

Naive bayes Classifier employs probabilistic learning to classify the testing samples.

Assume that a data vector X = (f1, f2, · · · , fm), where fi is the features to represent

the data xγ and all of them are conditionally independent of one another. Y is the

class label responding to X. Thus, the probability model for a classifier is formulated

as:

P (f1, f1, f2, · · · , fm) | Y ) =
m∏

i=1

P (fi | Y ) (5.15)

For each new data sample xγ to be classified, the prediction class label yγ is deter-

mined by:

yγ = argmax
yk

P (Y = yk)
∏

i

P (Xi | Y = yk), i = 1, 2, · · · , m (5.16)

where yk denotes class k. Keller, Schummer, Hood, and Ruzzo (2000) used Naive

bayes algorithm for DNA array expression data analysis, where the class was modeled

by a Gaussian probability function.

The main limitation of Naive bayes classifier is that it neglects the relationship

among features, because the algorithm of bayes rule is made by the assumption that

all features are conditionally independent. Such issue may cause the testing accuracy

from a Naive bayes classifier to be inconsistent with the training accuracy over some

difficult datasets.

Nearest Neighbour Based Classification Method - KNN

The main idea of this category of classification methods is based on the similarity

measurement for the testing and training samples. KNN is probably the most well-

known algorithm for classification. Using KNN classifier, the class labels of the

testing samples are assigned by the majority vote from K samples from the training

set which are most similar to the testing sample according to the distance (usually

an Euclidean distance) measurement.
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It is obvious that the value of K impacts the classification performance. How to

determine the best value of K for KNN classifier is still an open research question.

The potential solution for optimising K in KNN will be discussed in later sections.

Max-Margin based Methods

Max-Margin based classification methods aim to find an hyperplane that is able to

separate the problem space into different groups according to the number of classes.

The margin of the hyperplane is defined as the distance from the hyperplane to the

closet groups of data points. The larger the margin, the better the hyperplane. Thus,

if a classifier is able to separate the data points with a maximized margin, it can be

less subjective to overfitting and gain better classification results (Lu & Han, 2003).

Max-Margin based classifiers can be a good choice for dealing with microarray gene

expression data that has very sparse data points in a large dimensional space (Smola

et al., 1999; Freund & Schapire, 1998). Here we give an introduction to Support

Vector Machine algorithm - a popular Max-Margin based classifier.

Suppose for a data set pertaining to a binary classification task, each data point

is represented by X = (f1, f2, · · · , fm), fi is the features, and Y is the class label

corresponding to X, Y ∈ 1,−1. For small training data set with large feature space,

SVM classifier constructs a hyperplane with maximum margin that is able to separate

the positive data points from the negative ones. The classification performed by a

SVM classifier on a new testing sample xγ is given by:

Cls(xγ) = sign(yγ(〈ω0, φ(xγ)〉 − b0) (5.17)

where ω0 and b0 represent the vector and scalar in SVM (refer to description of

SVM algorithm in Chapter 3). If the calculated sign is positive, it means yγ is

correctly classified, otherwise is misclassified. A number of SVM based algorithms

have been proposed for classification problems. Such works include Soft margin and

margin-distribution classification method developed by Shawe-taylor and Cristianini

(1999), and the classification method for ovarian cancer gene expression data analysis

(T. S. Furey, Cristianini, Duffy, W, & Haussler, 2000).
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5.3.2 The Challenges of Classification for Personalised Mod-

elling

Classification problems have been extensively studied in the research community of

statistical, machine learning and data mining. However, the application of classifi-

cation in personalised modelling poses new challenges due to its unique nature.

The first challenge comes from the structure of microarray gene expression data. As

we have already discussed in Section 5.1, the unique structure of cDNA microarray

gene expression data prevents traditional classification algorithms working properly.

In most available gene expression datasets, the sample size if very limited, while the

dimensionality of features (genes) is enormous. Traditional classification algorithms

are not designed to deal with this kind of datasets. Such a characteristic of sparseness

and large dimensionality becomes a big challenge for most existing classification

algorithms. The large dimensionality of features often introduces an overfitting issue,

which may result in increase of the validation error while the training error steadily

decreases. The small size of samples makes the situation worse.

The second challenge involves the improvement of the effectiveness and efficiency of

classicalism algorithms. Within the scope of personalised modelling system (PMS),

every new data vector will have its own unique model that usually contains a classi-

fier. Such scenario makes the computation very costly if the classifier is not efficiently

designed. The performance from the classifier is another critical factor for predicting

new coming data vectors.

The third challenge arises from the application domain of classification. Accuracy

is generally considered most important for classification problems, but it is not the

only goal to achieve in personalised modelling study. For medical purposes, biological

relevancy is a critical factor, because any biological information discovered during

the learning can be used for further study, including tailored treatment for individual

patients, designing new drug based on the findings, etc. Useful information might

be gained from the classification process, e.g. the identification of a group of genes

working together in determining the cancerous tissues or cells (Lu & Han, 2003). All

the information would assist researchers in gaining deeper insight about the genes

and how they interact with each other. Therefore, biological or medical researchers

are often more interested in those classifiers that not only yield high classification
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accuracy but reveal important biological information.

One way to overcome the first two challenges is to incorporate feature selection

methods to identify a compact set of informative features (e.g. highly differentially

expressed genes). The classifiers can be built based on these informative features,

which will significantly improve the classification accuracy and reduce the computa-

tional difficulty.

Regarding the third challenge, personalised modelling can produce a good platform

for classifiers to discover important biological information, along with the classi-

fication accuracy measurement scheme. The proposed PMS creates a model that

comprises a classifier and relevant parameters, and contains useful information for

the testing data sample, such as the potential improvement of gene expression level,

the most important features for disease diagnosis specifically for the patient to be

tested, etc.

A number of classification models have been developed for different types of clas-

sification tasks. Lu and Han (2003) have summarised some popular classification

algorithms in Table 5.1.

Table 5.1: The summary of some commonly-used classification algorithms.
Adapted from Lu and Han (2003)

Classification algo-
rithm

Category Multi-
class

Biological
meaningful

Scalability

GS (Weighted voting) Correlation
based

No Yes Fair

Naive Bayes Probability Yes No Fair
SVM Max-Margin No No Good
KNN Similarity Yes No Not Scalable
Decision Tree Entropy

Function
Yes Yes Good

Neural Network Perceptrons Yes No Fair

Nevertheless, one thing we need to bear in mind is that there is no single classifier

that can be always superior over others. Some classifiers work efficiently over well-

balanced structured datasets, while others may perform properly on datasets with

high dimensionality and small sample size. Therefore, to construct personalised

models, the classifier needs to be specifically designed for the given problem.
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5.4 Model Parameter Optimisation

It is a big challenge to optimise parameters for the development of personalised

modelling. As described in Chapter 4, a global model builds a model that is expected

to perform well on any given data with same scenario of analysis problems. Once

relevant parameters are optimised for a trained model, such as the coefficients of

a regression function, the maximum and minimum radius for a cluster, etc, there

is no need to optimise these parameters again. However, unlike global modelling,

personalised modelling builds a specific model for each individual data sample. To

obtain an efficient and reliable personalised model, the relevant parameters should

be optimised specifically for each individual data sample, i.e. the parameters used

for different personalised models can be significantly different, even the models are

built for the same classification problem (e.g. for same type of disease diagnosis from

the same dataset).

5.4.1 Selecting the Appropriate Neighbourhood and Classi-

fication Threshold

The proposed personalised modelling framework and system (PMFS) require a set of

parameters to be used for building personalised models. One important step for the

creation of personalised models is to find an appropriate personalised problem space,

i.e. the most appropriate number of nearest neighbouring samples (Kx) that can

represent the pattern of the given testing sample. Also, some thresholds need to be

optimised to suit the creation of personalised models. They can be the threshold for

classification, the threshold in relation with clustering, etc. In traditional models, a

threshold is usually specified before the learning process starts, and then is optimised

by an optimising function. Once the optimal solution is obtained, the thresholds will

be used for testing any new samples in the same problem category.

The most straightforward way to optimise different parameters is the exhaustive

search, in which all the possible combinations of parameters will be assessed. How-

ever, this becomes a formidable challenge in practice, because the parameter op-

timisation brings huge computational complexity during the development of each

personalised model. Hence, finding an efficient solution to the parameter optimisa-
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tion is a fundamental step towards the successful implementation of PMS.

5.4.2 Discussion and Possible Solution

Heuristic learning can be a solution for parameter optimisation in the development of

personalised models. It uses the reinforcement learning to seek an automate solution

for determining a proper search direction when an optimisation task is given. The

learning occurs while a search algorithm is solving an instance of a given problem.

In order to build a proper model, we have proposed a solution for parameter opti-

misation within the scope of personalised modelling study. It starts with a set of

pre-specified parameters that can be obtained from historical experimental results

or suggestions from literature. Then, these parameters will be tuned by a learning

function within the training process. GA can be a good tool to use if the search

algorithm and terminating criteria are carefully designed. Principally, GA-based ap-

proaches for parameter optimisation are able to find the optimal or near optimal

solution for the parameters in relation with personalised modelling.

5.5 Data Sampling

When analysing microarray data, selection of a data sampling method is important

for the verification of final experimental results (Allison et al., 2006; Braga-Neto,

Hashimoto, Dougherty, Nguyen, & Carroll, 2004), because an improper sampling

method often leads to biased and unreplicapable results (Zhu et al., 2003). A num-

ber of published studies claimed that they achieved a very high accuracy (close to

100%) from classification over different cancer gene expression datasets, such as the

breast cancer study presented by Ramaswamy and Perou (2003), and the analysis on

ovarian cancer data by Zhu et al. (2003). However many of them are reported un-

replicapable by other laboratories. Ransohoff (2004) reported that these tests failed

to be reproduced because the process of validation (i.e. the sampling method ) was

not well developed.

In the machine learning literature, several sampling methods are recognised as un-

biased verification methods, such as resubstitution, cross-validation, and bootstrap
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(Efron, 1979). A brief review of two popular sampling techniques, namely K-fold

cross-validation and bootstrap is presented below. These two methods are discussed

in terms of disadvantages and advantages.

5.5.1 Cross-validation

Cross-validation is a sampling technique extensively used in micorarray data analysis

(Ambroise & McLachlan, 2002; Qiu, Xiao, Gordon, & Yakovlev, 2006). According to

Ransohoff (2004), cross-validation is “a technique used in multivariable analysis that

is intended to reduce the possibility of overfitting and of non-reproducible results.

The method involves sequentially leaving out parts of the original sample (‘split-

sample’) and conducting a multivariable analysis; the process is repeated until the

entire sample has been assessed. The results are combined into a final model that is

the product of the training step” (p. 312).

The advantage of cross-validation is that all the data can be used for cross training

and testing, and the validation is totally independent of the training process. In

the context of microarray data analysis, for cross-validation purposes, the dataset is

randomly partitioned into two subsets, training and testing set. Indeed, the goal of

implementing cross-validation is to evaluate whether the result is replicable or just

caused by chance.

Cross-validation can be generally performed in two ways: K-fold cross-validation

and leave-one-out cross-validation (LOOCV). In K-fold cross-validation, samples are

randomly divided into K mutually exclusive subsets of approximately equal size.

The validation process will be repeated for K rounds, where for each round, K-1

subsets are used for training (e.g. classifier training), and the remaining one subset

for testing. For small dataset analysis (e.g. microarray gene expression data), 5 or 10

folds are generally suggested for cross-validation in literature (Breiman & Spector,

1992; Kohavi, 1995). LOOCV eventually is a K-fold cross-validation, where K equals

the number of samples (N) in given dataset. In LOOCV, all the samples are separated

N rounds, where for each round, all samples are used for training except one is left

for testing. The final result is the average performance over N testing sets.

For many years, LOOCV has been suggested for evaluating classification performance

over data with a very small number of samples, as it is a nearly unbiased method
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and works well for estimating bias error, such as the mean squared error. However,

Breiman and Spector (1992) have demonstrated that a high variance of LOOCV rises

when the prediction rule of the method under verification is unstable. This is mainly

because LOOCV sampling makes the training set very similar to the whole dataset.

5.5.2 Bootstrap Resampling

Bootstrap, first introduced by (Efron, 1979), is a sampling method for small sample

size dataset. Empirical studies have shown that bootstrap is particularly effective

for estimating bias error for very small sample size, such as microarray data (Efron,

1983). More recently many bootstrap estimators have been proposed, among which

e0 and the .632 bootstrap are two popular methods that can yield good results when

sampling in classification problems.

The principle of bootstrap method is data sampling with replacement. Suppose a

dataset contains only 5 samples labeled A, B, C, D and E. The bootstrap sampling

with replacement can be simply described as follows:

1. Randomly draw out one of 5 samples and record its label.

2. Put the sample back to the dataset.

3. Repeat Step 1-2 N times (N is a constant integer) to have N labels in a

sequence.

4. Randomly select a subsequence of 5 labels from the sequence obtained in Step

3, and extract the corresponding samples as the training set (the first round).

5. Repeat Step 1-4, to construct the testing set.

5.5.3 Comparison of Cross-validation and Bootstrap Meth-

ods

Cross-validation has a disadvantage that the training lacks sufficient information

due to small size of the dataset. Therefore, in the case of partitioning a microar-

ray dataset, cross-validation technique may increase the risk of overfitting. Critical

87



5.6. Error Measuring Methods

scientific issues are raised in literature in relation to the use of cross-validation for

generalisation error estimation (Braga-Neto et al., 2004). However, cross-validation

is still considered a robust and unbiased technique in microarray data analysis, if

experiments are well designed and organised (Asyali et al., 2006).

Bootstrap uses a replacement resampling approach, and constructs training and test-

ing sets with the exact same size as the whole dataset, while in cross-validation, both

training and testing sets use only a subset of the whole dataset. Thus, the bootstrap

method has an advantage of modelling the impacts of the actual sample size. The

disadvantage is that the bootstrap method yields a good result only after hundreds

of iterations, which makes it more computationally costly than cross-validation. In

this study, cross-validation is employed as a validating method, due to its efficiency

and robustness.

5.5.4 An Unbiased Validation Schema

An unbiased verification approach for microarray analysis should guarantee that

generalisation errors occur in either feature selection or classification procedures as

little as possible. To this end, an efficient data sampling method should be used in

the two procedures to maximally decrease the generalisation error. In other words,

the reliability and generalisability of the informative features should be evaluated on

independent testing subsets, and then these features can be used for classification.

The classification also needs to employ verification methods to estimate the bias

error. Such procedure is shown in Figure 5.4(b). For comparison, a simple example

of biased validation schema is demonstrated in Figure 5.4(a).

5.6 Error Measuring Methods

There are three commonly used error measuring methods to estimate the testing

error in models related to classification problems:

• The classification error (the number or percent of the samples misclassified).

This is probably the most straightforward and best-known method for validat-
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Figure 5.4: The comparison between a biased and an unbiased verification
scheme, where Dtrn and Dtst are the training and testing set, Dtrns and Dtsts are
the training and testing set with selected genes, respectively. In case (a) (biased
verification scheme), the testing set is used twice in gene selection and classifier
training procedure, which introduces a bias error from the gene selection stage into
the final classification step. Whereas in case (b) (the unbiased scheme), the testing
set is only used in the final classification(validation) stage, i.e. the testing set is
independent all through gene selection and classifier training procedures.

ing classification models. It is simple and easy to interpret and has been widely

accepted for classification experiments.

• Root-mean-square-error (RMSE) . The RMSE error for a testing data set can

be calculated as follows:

rmse(θ) =

√∑n
i=1 e2

i

n
(5.18)

where ei is the difference between the outcome and observed data, n is the num-

ber of cases. The RMSE error is used to characterise the posterior probability

vector miscalculation.

• Receiver operating characteristic (ROC) curve is a technique used for visualis-

ing and selecting classifiers based on their performance.
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Root-mean-square error (RMSE) is the mean square error of an estimator which

quantifies the difference between the predicted value of a model (an estimator) and

the actual value of the sample being estimated. Simply, RMSE is a risk evaluation

function that corresponds to the observed value of the root squared error loss. RMSE

is widely used to evaluate the performance of regression models, which allows to

aggregate all variances between predicted value and actual values of observed samples

into a single measure of predictive power.

5.6.1 ROC Curve: a Performance based Measuring Tech-

nique

ROC curve is a technique used for visualising and selecting classifiers based on their

performance. It has long been used for evaluating classifier performance in signal

detection (J. A. Swets, Dawes, & Monahan, 2000) and for visualising and analysing

the behaviours of classification performance in diagnostic systems (J. Swets, 1988).

Recently, ROC analysis has received extensive attention from the medical decision

making community for diagnostic testing (Fawcett, 2004).
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Figure 5.5: An example of roc curve
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A ROC curve is plotted in a two-dimensional space in which true positive rate (TPR)

is on the y axis while false positive rate (FPR) is on the x axis. ROC curve method

is used to decide the shape and position of the line that separates the groups of

‘normal’ and ‘abnormal’ data samples. In the medical area, ROC curve is proposed

to help clinicians make decisions for the calculation of the sensitivity and specificity

of the test at different cut-off points. The definition of sensitivity and specificity is

given as follows:

• Sensitivity: The proportion of people with the disease that the test successfully

identifies as positive.

• Specificity: The proportion of people without the disease that the test success-

fully identifies as negative.

Figure 5.5 gives an example of ROC curve for a classification task, where the blue

line with stars is a computed ROC curve, and the red solid line represents the perfect

prediction.

It is clear that an easy decision can be made if all the control values are higher (or

lower) than all the patient values. However, the overlap of two distributions makes

the situation not so easy. If the threshold is high, many people who do not have the

disease can be correctly diagnosed, but some of the people who have the disease are

more likely to be misclassified into a healthy group. On the contrary, if the threshold

is low, most of the people with the disease will be successfully identified, but more

healthy people may be mistakenly diagnosed as diseased.

Based on ROC curve, researchers can calculate the sensitivity and specificity using

each value in the data as the cutoff value. A number of pairs of sensitivity and

specificity can be investigated. For example, with a high threshold, the specificity of

a test is increased, while sensitivity is decreased. Similarly, the lower threshold may

bring the issue of increases of sensitivity but decreases specificity.

The area under a ROC curve quantifies the overall ability of the test to discriminate

between the diseased individuals and the healthy people. A truly useless test (one

no better at identifying true positives than flipping a coin) has an area of 0.5. A

perfect test has an area of 1.00, which means it has zero false positives and zero false

negatives. Generally, a test will have an area between those two values.
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5.6.2 Discussion

Classification accuracy is most commonly used in error measurement, owing to its

simplicity and robustness. The comparison result based on accuracy is straightfor-

ward and easy to interpret. The limitation of this technique is that it may ignore the

information from domain knowledge, e.g. biological reference, if the learning model

is not carefully designed.

RMSE may be an inappropriate technique to measure generalisation error in person-

alised modelling study under some scenarios. Here is an example:

Suppose there are two models Mα and Mβ, and a sample xγ = 0.35 (from a healthy

group) is given to be classified. The threshold for determining the class is set to

0.5 (if the predicted risk is less than 0.5, then the sample is classified as healthy,

otherwise it is classified as diseased.). With two models Mα and Mβ, the prediction

risk of xγ calculated by Mα is 0.6 (RMSEα = 0.2) , while the risk computed by Mβ

is 0.1 (RMSEβ = 0.3). In this case, it is incorrect to conclude that Mα performs

better because of the smaller RMSE. On the contrary, model Mβ correctly gives the

prediction to sample xγ, though it creates a large RMSE.

Although it is obvious that the area under a ROC curve indicates the overall testing

ability to successfully discriminate between normal and abnormal samples, the inter-

pretation of the area itself can be very intuitive. For example, if patients have higher

test values than control threshold, then the area represents the probability that a

randomly selected patient will have a higher test result than a randomly selected

control, and vice vesa. If the area equals 0.75, a patient will have a more diseased

test result than 75% of the controls on average (i.e. a higher diseased diagnosis prob-

ability). If the test is perfect, every patient will have a more abnormal test result and

the area would be 1.00. If the test is useless (i.e. no better than the identification

of normal versus diseased samples by chance), then the patient will have the equal

possibility to be found diseased or healthy. Thus, the area under the curve would be

0.5. If the area is calculated less than 0.50, the definition of abnormal from a higher

test value to a lower test value can be reversed. This adjustment will result in an

area under the curve greater than 0.50.

In this research, mainly classification accuracy and ROC curve are used as error mea-

suring methods during personalised modelling construction, due to their simplicity
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and efficiency.

5.7 Inconsistency Problem and Local Accuracy

The reproducibility of microarray gene expression data analysis is a critical factor

for determining the quality of cancer gene expression data experiment. For many

cancer gene expression data analysis, the results of operations (such as clustering,

classification, etc.) on the training dataset (a subset of a complete cancer microarray

dataset), have been found often very different from those of the same operations on

the testing dataset (another subset of the complete cancer microarray dataset). This

is defined as the inconsistency issue. In practice, this inconsistent response becomes

a critical issue for evaluating the reliability of cancer gene expression data experiment

results.

In the context of PMS, we introduce another accuracy - local accuracy. Local ac-

curacy is defined as the accuracy calculated by a classifier within the personalised

problem space during training process. In this study, it is incorporated into the

learning function to optimise candidate personalised models within training process.

The local accuracy is different from the training accuracy. The latter is calculated

based on the classification on all training samples and is usually significantly higher

than the testing accuracy. The local accuracy is calculated based on the samples

in the personalised problem space that can more precisely represent the patterns of

new testing sample. Thus, local accuracy should be more likely to be close to the

testing accuracy.

Being used for evaluating the candidate personalised models, local accuracy should

be more consistent in relation to the testing accuracy. However, the inconsistency

issue between local accuracy and testing accuracy still exists in our experiments,

though it is less significant than that between training and testing accuracy. This

issue has been demonstrated in the experiments in Chapter 4.

To deal with the inconsistency issue between local and testing accuracy, we need to

find the appropriate personalised space for the testing sample, i.e. the space where

the samples used for learning can highly represent the testing sample’s pattern.

Moreover, the appropriate size of personalised space need to be identified. Too few
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data samples may not include sufficient information, while too many samples may

introduce a lot of noise information that will confuse the classifiers. Therefore, how to

choose the number of samples and which ones should be included in the personalised

space are two fundamental factors for personalised model construction. One way

to handle this problem is to incorporate an automate schema to find an optimal

personalised space.

5.8 Profiling and Visualisation

Personalised profile is a major contribution that the personalised modelling approach

offers. The profile comprises the information that may need to be modified for the

design of personal scenarios improved that can be used for potential applications,

such as personalised medicine, personalised drug design for complex diseases (e.g.

cancer, diabetes and brain disease), finance risk evaluation, etc. The information

may include: number of variables (features), which variables (features) are important

for the given analysis problem; the predicting risk for the new testing data vector;

the difference between the actual value and the desired value of important variables.
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Figure 5.6: The neighbourhood of sample 1 of colon cancer data visualised in a
3-D space (3 genes: gene 249, 267 and 1674), where blue circle points are the new
input data sample, green up-triangle points are the normal neighbouring samples,
and red down-triangle points represent the diseased neighbouring samples

94



5.9. Conclusion

It is not an easy task to interpret the new data vector’s profile that involves high

diversity of variables and sparsity of data vectors. So far, there is no PM methods

that offer profiling. This study attempts to develop some methods for PM profiling.

In the proposed PMS, visualisation creates a paradigm shift in the interpretation of

important variables (features) to profile the new input data vector. Using the most

informative variables, a created personalised profile allows to visualise the compari-

son of new data vector’s important features against those associated with a desired

outcome. For simplicity of interpretation, the visualisation is designed to be plotted

in a 2-D or 3-D space. Figure 5.6 gives a 3D demo of the neighbourhood of a sample

from a Colon cancer dataset using three features (genes).

The visualisation includes profiling the personalised space corresponding to the new

input vector. The visualisation shows the distribution of new data vector’s neigh-

bouring samples. A scenario of potential improvement for new data can also be

shown by the visualisation. The details will be described in Chapters 7 and 8.

5.9 Conclusion

In this chapter, we have addressed several issues that have arisen during the devel-

opment of personalised modelling based framework. These issues can arise due to

different factors, including the unique nature of the data structure, the optimisation

of parameters, classification problems, to name but a few. In order to ensure a suc-

cessful construction of personalised modelling for a given analysis task, it is necessary

to study and understand these issues.

With the aim to find potential solutions for the issues raised by the study of per-

sonalised modelling, this chapter has reviewed the areas of feature selection, classi-

fication, data sampling, error measuring, etc. It has also explored and discussed a

variety of algorithms and models in relation to this study. The next chapter will

propose a personalised modelling system for data analysis and knowledge discovery,

and will discuss a few case studies where this framework has been implemented.
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CHAPTER 6

A Personalised Modelling Framework

(PMF) and A Methodology for

Implementing Personalised Modelling

Systems (PMS)

“When solving a problem of interest, do not solve a more general problem as an

intermediate step. Try to get the answer that you really need but not a more general

one”

- Vladimir N. Vapnik

This chapter presents the methodology to build an integrated framework for person-

alised modelling and illustrate the data analysis and knowledge discovery on some

particular benchmark data. In the previous chapters, I have addressed the issues

that global models cannot provide precise and sufficient information for analysing a

new incoming data vector under different circumstances, and the selected features

are not informative enough to lead to a successful classification. Moreover, it is diffi-

cult to incorporate previously developed models and existing knowledge into global

modelling methods. In order to find a more effective approach for analysing new data
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vectors, this chapter proposes a personalised modelling framework (PMF) and the

methodology for implementing a personalised modelling system (PMS). This PMF

comprises several functional modules, such as feature selection, classification mod-

els, optimisation modules, etc. The chapter also gives an example to implement a

PMS using a simple approach for knowledge discovery using biomedical data. The

proposed PMS is applied on three case studies for cancer diagnosis using benchmark

cancer gene expression datasets.

6.1 The PMF

The concept of personalised medicine has been promoted widely in recent years

through the collection of personalised databases, establishment of new journals and

new societies and publications in international journals. Despite the furor of interest

in this area, there are at present no adequate data analysis methods and systems

that can create highly accurate and informative personalised models from data.

The methods and systems particularly related to personalised data analysis and

decision support system are based on the use of an individual’s information, including

gene expression level, proteomics patterns, clinical and cognitive data, etc. The

methods are adaptive and evolving through incremental addition of new data for

an adaptive learning. The method can be applied on different types of problems,

such as cancer diagnosis and prognosis using benchmark microarray gene expression,

proteomics pattern data analysis, and other types of data analysis. The framework

comprises applications in computer science, mathematical modelling, profiling and

prognostic systems to predict outcomes and evaluate risks for new data based on the

information discovered from historic data.

The philosophy behind the proposed PMF is the realisation that every person is

different, and preferably each individual should have their own personalised models

and tailored treatment. In the context of medical research, it has become possible to

utilise individual data for a person with the advance of technology, e.g., DNA, RNA,

protein expression, clinical tests, inheritance, foods and drugs intake, diseases. Such

data is more readily obtainable nowadays, and is easily measurable and storable in

electronic data repositories with less cost.
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With a transductive approach, each individual data vector that represents a patient

in any given medical area obtains a customised, local model that best fits the new

data. This is contrary to using a global modeling approach where new data is

matched to a model (function) averaged for the entire dataset. A global model may

fail to take into account the specific information particular to individual data samples.

Moreover, there are no efficient methods for identifying important features that assist

complex disease classification, e.g. which genes, SNPs, proteins and other clinical

information contribute to the disease diagnosis. Hence, a transductive approach

seems to be a step in the right direction when looking to devise personalised modelling

useful for analysing individual data sample, e.g. disease diagnosis, drug design, etc.

KNN is a simple classical transductive inference method that calculates the output

for a new data vector based on the average output values of its K-nearest samples

from the given data set. Some more sophisticated transductive reasoning methods

TWNFI (Song & Kasabov, 2006) (see Appendix F) and TWRBF (Song & Kasabov,

2004) have been proposed for solving the problems requiring individual modelling

analysis. These methods create a learning model based on the neighbourhood of

new data vector, and then apply the trained model on the new data to calculate the

output. However, this type of methods cannot select features and related parameters,

such as what is the appropriate number of neighbors and how many features will be

best fit for the classification problems. Also, there is no existing methodology to

yield the information necessary for designing individual patients’ treatment.

Inspired by the concept of genomic personalised medicine (Ginsburg & McCarthy,

2001; Shastry, 2006; Anderson et al., 2006), a personalised modelling based frame-

work was introduced by Kasabov (2007b, 2007a) for data analysis and knowledge

discovery. The concept of personalised medicine has been intensely researched in

recent years (Kasabov, Hu, & Liang, 2009; Gurwitz, Lunshof, & Altman, 2006; Gar-

rison & Austin, 2007). Pharmacogenomics research is currently conducted for the

medical application of human genetic data for personalised drug development. The

idea of personalised treatment is that an individually designed drug can significantly

benefit by using a person’s genetic information, and might not benefit other people

having the same disease. Such approach brings the potential to improve drug ef-

fectiveness and reduce drug side-effects. Nevins et al. (2003) developed integrated

clinico-genomic models for designing personalised medicine for breast cancer out-

comes prediction. Their models used the information from the combination of gene
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expression levels and clinical factors, which provided a more effective mechanism

to characterise individual patients in terms of the performance of clinical outcomes

prediction.

Here an outline of personalised modelling framework (PMF) is depicted in Figure

6.1.

Feature 
selection

New input data 
vector xv

Personalised profiling and 
knowledge discovery

Calculate the 
personalised 

problems space Dpers

for xv

Create a candidate 
personalised model Mx

for xb

based on training data

Evaluate the 
performance of the 

model Mx

Not satisfied

satisfied

Output the optimised 
personalised model 
Mx

* and test it on xv

Evolve a personalised model Mx

Data D 
(global data set)

Outcome visualisation

Figure 6.1: A PMF for data analysis and knowledge discovery.

This framework is initially designed for medical data analysis and knowledge discov-

ery. However, PMF can be extended for various types of data analysis problems that

require personalised modelling. PMF can be briefly described as follows:

1. Apply feature selection on the object data D (the global problem space) to

identify which features are important to a new input vector xv. The selected

features are grouped into a candidate gene pool;

2. Select Kv nearest samples for xv from D to form a local (personalised) problem

space Dpers;

3. Create a personalised model candidate Mx specifically for xv, which includes a

learning function (usually a classifier or a clustering function) denoted by f;

4. Evaluate the candidate feature subset S by a learning function f based on their

performance within the personalised problem space Dpers;
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5. Optimising model Mx through an evolving approach until termination condi-

tions are met. The output is the optimal or near-optimal solution to vector xv.

The solution includes an optimal personalised model M∗
x and a selected feature

subset S∗;

6. Use the model M∗
x to test the new vector xv and calculate the outcome yv;

7. Create a personalised profile for the input vector xv, visualize the outcome with

the selected important features S∗, and provide an improvement scenario for

data vector xv for a given problem if it is possible.

6.2 A Methodology for Using the PMF to build a

PMS

The core task of a PMS is to create a personalised model for each new input data

sample using its unique information. Given a dataset D pertaining to a bioinfor-

matics problem, D = {xij, yi, i = 1, · · · , n, j = 1, · · · , m}, where x is a data sample,

y is the responding outcome, n is the number of samples, m denotes the number of

features (variables). The proposed method aims to optimise a model Mx suitable for

analysing data, specific to every new input data vector xv, e.g. to calculate yv - the

outcome of xv. Data xv contains a number of features that are related to the same

scenario as the data samples in the global data D.

In order to obtain the optimal or near optimal personalised model M∗
x specifically

for a new data sample xv, the proposed method aims to find the solutions to the

following objectives:

1. Determine how many and which features (variables) S are most suitable for

building the model M∗
x that is able to successfully predict the outcome for the

new data vector xv;

2. Determine the appropriate number Kv for the neighbourhood of xv to form a

personalised problem space Dpers;
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3. Identify Kv samples from the global data set D which have the pattern most

similar to the data xv, and use these Kv samples to form the neighbourhood

(a personalised problem space Dpers);

4. Calculate the importance of selected features S within the personalised problem

space Dpers), based on their contribution to the outcome prediction of the data

vectors in Dpers. Compute a weight vector wv for all selected features S;

5. Create the optimal personalised model M∗
x with the optimised parameters ob-

tained in Steps 1∼4;

6. Validate the obtained model M∗
x by calculating the outcome yv for the new

data xv;

7. Profile the new input data xv within its neighbourhood Dpers using the most

important features associated with a desired outcome;

8. If possible, provide the scenarios for improving the outcome for the new data

vector xv, which can be helpful for clinical use.

This is a method for determining a profile of a subject (new input vector xv) using

an optimal personalised model M∗
x , and for recommending the possible changes to

the profile in relation to a scenario of interest in order to improve the outcome for

xv. The method comprises the following steps:

• Create a personalised profile for a new data vector xv;

• Compare each important feature of input data vector xv to the average value

of important features of samples having the desired outcome;

• Determine which important features of input vector xv can be altered in order

to improve the outcome.

Principally, the decision of which variables should be changed will be based on the

observation of the weight vector Wx of features (i.e. the contribution of the features

to the classification). The term “personalised profile” used here refers to an input

vector xv and to its predicted outcome and related information, such as the size of

its neighbourhood, its most important features specifically, etc.
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Within the scope of PMS, the proposed method for building an optimal model Mx

require the following functional modules:

• A module for selecting most relevant Vv features (variables) S∗ and ranking

their weighter wx by importance for xv;

• the module for the selection of a number Kv of neighbouring samples of xv and

for the selection of neighbouring samples Dpers;

• A module for creating a prediction model Mx, defined by the a set of parameters

Pv, such as Kv, Vv, Dpers which were derived in the previous modules;

• A module for calculating the final output yv responding to the new data xv

• A module for the creation of personalised profile and the design of scenarios

for potential improvement.

6.3 A Simple Method for PM - An Incremental

Search-based PMS (iPM)

The proposed method and system for PMS construction can be implemented in dif-

ferent ways. In this section, a simple approach for implementing a PMS is presented.

This approach is based on incremental search and denoted as iPM method. The

presented iPM has been applied on several benchmark datasets related to 3 types of

cancer for disease classification.

The iPM method is developed for searching a combination of features and parameters

to build optimal personalised model M∗
x :

1. Find an appropriate neighbourhood (the personalised problem space) for new

input data sample xv;

2. Generate a candidate personalised model Mx along with a set of features and

relevant parameters S∗, Kv within the scope of the created personalised prob-

lem space in Step 1;
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3. Evaluate the created model Mx to determine whether to remove or keep the

candidate features depending on the evaluation performance;

4. Iterate the above process until all the features are evaluated or termination

conditions are reached.

The optimal personalised model M∗
x is expected to be obtained when all features have

been investigated or the termination criteria are reached (e.g. the best performance

is obtained or all the features are evaluated).

The method of iPM searches new candidate features in the following way:

1. Update candidate gene set gi by inserting a gene g′ from the candidate gene

pool gρ;

2. Evaluate the classification performance using the updated candidate genes.

3. if the performance is improved, then the gene g′ will be kept in the candidate

gene set for the next round evaluation.

4. if the performance is not improved, then append a gene that has the next

highest ranking score from the rest of gρ and create a new candidate gene set.

(a) evaluate the classification performance of newly updated gene set.

(b) if the performance is improved, then keep this gene in the candidate

set gi, else discard it;

(c) repeat Step 4, if the performance cannot be improved with gene g′ during

the last a times (a is a specified constant value), then discard gene g′.

5. Iterate the process until all genes in the gene pool are investigated.

6.3.1 The Illustration of the Proposed iPM on Three Gene

Datasets

This experiment uses the proposed iPM on three benchmark gene expression datasets,

namely colon cancer, DLBCL (lymphoma) and central nervous system cancer data.
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Three classification models SVM, WKNN and WWKNN are investigated for a com-

parative study.

The new proposed iPM method is applied on three benchmark cancer gene expres-

sion datasets: Lymphoma data (Alizadeh et al., 2000), Colon cancer data (Alon et

al., 1999) and Central Nervous System (CNS) cancer data (Pomeroy et al., 2002).

These gene expression datasets produced by DNA microarray technology are pub-

licly available and widely used for cancer classification studies. All the experiments

presented in this chapter are conducted using Matlab 2008 on a personal computer

with Intel Core Duo 2.66GHZ CPU and 2G RAM.

Three classification models are incorporated into the proposed iPM for cancer gene

expression data analysis. In this experiment, the SVM classifier is based on a poly-

nomial kernel function and is derived from the libSVM model (Chang & Lin, 2001).

The parameters used in iPM are summarised in Table 6.1.

Table 6.1: The parameter setup for iPM experiment

Parameter Definition Value
K the number of nearest neighbours (K) in WKNN, WWKNN 15
θ the classification threshold 0.5
rγ the balanced ratio between two classes 3
ρ the pre-defined number of genes to be selected by SNR filter 200

The number of nearest neighbours is set to 15, which is based on the findings from

our previous experiments of gene expression data analysis. The number of genes

to be selected by a SNR filter (200) is based on our previous experiments and sug-

gestions from literature. The selection of too few genes may result in the loss of

information, while too many genes will make the learning process very time consum-

ing. The literature on microarray research has indicated that using a few dozens to

a few hundreds genes is sufficient to discriminate between different patterns in most

microarray experiments (Li & Yang, 2002). Hence, the number of genes to be used

for constructing a candidate gene pool is 200.
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6.3.2 Case Study 1: Colon Cancer Data Analysis

This colon cancer dataset (Alon et al., 1999) consists of 62 samples of colon epithelial

cells from colon cancer patients, in which 40 samples are collected from tumors and

labeled as “diseased (class 2)”, and 22 “normal (class 1)” labeled samples are collected

from healthy part of the colons from the same patients. Each sample is represented

by 2, 000 genes selected out of total 6, 500 genes based on the confidence in measured

expression levels.

The experimental result of iPM on colon cancer data is shown in Table 6.2, for

referencing, true positive (TP) , true negative (TN), false positive (FP) and false

negative (FN) are also summarised in this table.

Table 6.2: The classification results of iPM method for colon cancer data. The
results are presented by the best LOOCV testing accuracy with TP, TN, FP and
FN

Classifier model TP TN FP FN Classification Accuracy(%)
WKNN 13 34 6 9 75.81

WWKNN 9 35 5 13 70.97
SV M 9 34 6 13 69.35

Figure 6.2 illustrates the experimental results for the iPM method for colon cancer

data, in which different classification algorithms are investigated and compared. In

Figure 6.2 also shows that the local classification accuracy from training data is sig-

nificantly higher than that from testing data. The local accuracy is defined as the

average accuracy obtained in the training process within the personalised problem

space. For example, suppose the personalised space for sample 5 (Dpers(5)) contain-

ing 13 samples, the local accuracy for this sample is the accuracy obtained from a

classifier over these 13 samples during the training stage. In the case of WKNN

classifier, Figure 6.2(a) and 6.2(b) show the local accuracy for most data samples in

colon data is above 90%, which is significantly higher than the accuracy obtained

from the LOOCV testing set (75.81%).

Similarly, most local accuracy obtained by WWKNN classifier from training stage

is above 80%, which is clearly higher than the testing accuracy (70.97%). This

inconsistent issue occurs in the experiment of SVM classifier on colon cancer data.
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(b) WKNN classifier
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(c) WWKNN classifier
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(d) WWKNN classifier
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(e) SVM classifier
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(f) SVM classifier

Figure 6.2: The result of iPM on colon cancer data. Figure (a), (c) and (e)
present the LOOCV accuracy using different classification threshold and ROC
curve computed by the three classifiers through iPM method. Figure (b),(d),(f)
plot the local accuracy obtained within the personalised problem space, and the
number of selected genes for each testing sample.
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Figure 6.3: A comparison of local accuracy from iPM method on colon cancer
data using three classification models: WKNN, WWKNN and SVM

With the personalised modelling based gene selection on colon cancer data, the num-

ber of genes selected for each testing sample is different. However, it is interesting to

find that using three classifiers, including WKNN, WWKNN and SVM, the number

of selected genes for each testing sample ranges from 5 to 20 (refer to Figure 6.2(b),

6.2(d) and 6.2(f)). (Note: in the case of classification accuracy measurement, x axis

represents the classification threshold, y axis represents the classification accuracy;

in the case of ROC curve, x axis denotes false positive rate (1-specificity), and y axis

denotes true positive rate (sensitivity). The experiment results show, obviously, that

several or several tens informative genes are able to give an optimum result, at least

for this particular colon cancer gene expression dataset.

Figure 6.3 shows a comparison between the local accuracy obtained by iPM using

the three different classifiers: WKNN, WWKNN and SVM. The results from the

training stage are excellent, since the average local accuracy achieved by all three

different classifiers is higher than 82%. However, the performance of iPM on testing

colon cancer dataset is not very encouraging.

In Figure 6.2, the appropriate classification threshold for colon cancer classification is

in the range from 0.3 to 0.5, which leads to the best cancer classification performance.

The experiment also shows that each individual sample needs different number of

informative genes for colon cancer disease distinction in order to achieve acceptable

classification accuracy. The detailed testing report for each sample of colon cancer
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data is shown in Appendix G.

6.3.3 Case Study 2: Lymphoma Data Analysis

This Lymphoma dataset (Alizadeh et al., 2000) contains the expression levels of

4, 026 genes in 96 samples in lymphoma patients. Among them, 42 samples belong

to Diffused large B cell lymphoma (DLBCL) group (class 1) while 54 are from other

types (class 2). The objective of the study is to discriminate between DLBCL and

other types of lymphoma.

Table 6.3: The classification results of iPM method for lymphoma lymphoma
data. The results are presented by the best LOOCV testing accuracy with TP, TN,
FP and FN

Classifier model TP TN FP FN Classification Accuracy(%)
WKNN 52 41 1 2 96.88

WWKNN 52 39 3 2 94.79
SV M 52 41 1 2 96.88

The experimental results for the lymphoma dataset using iPM is presented in Figure

6.4. The LOOCV classification accuracy from three classifier models using iPM is

summarized in Table 6.3. All three classifiers have achieved very good classification

accuracy (around 95% accuracy). The accuracy for the testing and training set is

consistently high, which shows the data having a good inherent consistency charac-

teristic. Figure 6.5 shows a comparison between the local accuracy obtained from

the three classifiers on lymphoma data.

For this particular lymphoma data, WKNN and SVM slightly outperform WWKNN

in terms of the classification accuracy for lymphoma distinction problem (96.88% vs.

94% accuracy). All three classification models yield satisfactory testing accuracy,

mainly because of the contribution from the successful local training (i.e. all of

these three classification models have very high local classification accuracy during

the training process). During the training stage, all local classification accuracy is

higher than 90%. In addition, in most cases only a small number of genes (mostly

fewer than 10) are selected for each testing sample, and lead to a successful prediction

outcome.
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(b) WKNN classifier
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(c) WWKNN classifier
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(d) WWKNN classifier
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(e) SVM classifier
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(f) SVM classifier

Figure 6.4: The result of iPM on lymphoma data. Figure (a), (c) and (e) present
the accuracy and ROC curve computed by the three classifiers through iPM method.
Figure (b),(d),(f) plot the local accuracy obtained within the personalised problem
space, and the number of selected genes for each testing sample.
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Figure 6.5: A comparison of local accuracy from iPM method on lymphoma data
using three classification models: WKNN, WWKNN and SVM

6.3.4 Case Study 3: CNS Data Analysis

CNS cancer data used in this thesis is the dataset C in Pomeroy’s work (Pomeroy

et al., 2002). It consists of 60 patient samples, in which 39 are medulloblastoma

survivors (class 2) and 21 are treatment failures (class 1). The learning objective was

to classify the patients who survived after the treatment and those who succumbed

to CNS cancer. Each sample is represented by 7,129 probes from 6,817 human genes.

Table 6.4 summarises the classification results of iPM on CNS cancer data. None of

the classification models perform well on this data. WKNN classifier yields 66.67%

accuracy, which is slightly better than the results obtained by WKNN and SVM

classifiers (both of them provide 65% accuracy).

Table 6.4: The classification results obtained using iPM for CNS cancer data

Classifier model TP TN FP FN Classification Accuracy(%)
WKNN 31 8 13 8 65.0

WWKNN 30 10 11 9 66.67
SV M 28 11 10 11 65.0

Figure 6.6 gives the ROC curves and the classification accuracy obtained by the

three different classification models. Additionally, the relationship between testing

accuracy and the local accuracy for CNS cancer data is also investigated and shown

110



6.3. A Simple Method for PM - An Incremental Search-based PMS (iPM)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

CNS data − Area under Curve: 0.30281

 

 

ROC Curve
Overall Accuracy
Class 1 Accuracy
Class 2 Accuracy

(a) WKNN classifier

0 10 20 30 40 50 60
0.7

0.8

0.9

1

1.1

sample No.

lo
ca

l a
cc

ur
ac

y

0 10 20 30 40 50 60
0

20

40

60

80

100

index of gene

nu
m

 o
f s

el
ec

te
d 

ge
ne

s

(b) WKNN classifier
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(c) WWKNN classifier
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(d) WWKNN classifier
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(e) SVM classifier
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(f) SVM classifier

Figure 6.6: The result of iPM on CNS data. Figure (a), (c) and (e) present the
accuracy and ROC curve computed by the three classifiers through iPM method.
Figure (b),(d),(f) plot the local accuracy obtained within the personalised problem
space, and the number of selected genes for each testing sample.
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Figure 6.7: A comparison of local accuracy from iPM method on CNS cancer
data using three classification models: WKNN, WWKNN and SVM

in Figure 6.6. For the sake of simplicity, the original ROC curve is shown in the

figure, even thought its area is less than 0.5. The area under the curve calculated

by each of the three classification models is less than 0.5. As we have mentioned

earlier, the lowest test value can be reversed to the highest test value, so that the

area under curve can be larger than 0.5. Figure 6.7 gives a comparison of local

accuracy computed at the training stage by the three classifiers. The local accuracy

varies significantly, which is probably the main reason that iPM does not perform

well on this CNS data.

6.3.5 Discussion

The proposed iPM gives a simple approach to implement a personalised modelling

system (PMS) for gene expression data analysis. It can be seen as a linear regression

based approach, which mainly focuses on the statistical importance of each gene,

though the quality of candidate genes is evaluated by a classifier model through an

iterative learning process. However, these experiments do not show the strength of

personalised modelling for gene expression data analysis, as the experimental results

obtained from lymphoma, colon cancer and CNS data are not consistently good.

One interesting finding from iPM experiments is that the classification performance

obtained from different classification models using iPM method is similar. This ex-
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periment has investigated three classification models, namely WKNN, WWKNN and

SVM for a comparison under similar experimental settings. All three classification

models perform similarly on three gene expression datasets. The experiment has

shown that the quality of selected genes and parameters tuning seems to be more

critical to the success of analysis. Better optimised parameters (e.g. the size of neigh-

bourhood) and more informative features (genes) contribute more than classification

algorithms, in terms of improving classification performance.

This experimental study has demonstrated that the proposed iPM can extract some

useful and important information from gene expression data analysis. The classifi-

cation performance is not satisfying in some cases. This implementation of a PMS

selects and evaluates features based on a univariate analysis in which the complex

relationship among features is not sufficiently evaluated. Also, it must specify the

relevant parameters of the personalised model at the very beginning of the experi-

ment according to suggestions from literature or from experience. Moreover, there

are no modules in iPM that can automatically optimise parameters. Such issues may

significantly degrade the prediction performance of the personalised model M∗
x on

some difficult gene expression datasets. Thus, in the next section I will introduce a

new approach to implement PMS in a more effective and robust way.

6.4 Novel Methods and Algorithms for Person-

alised Modelling

The previous section has shown that one main difficulty in the PMS development

lies in the evaluation of candidate genes during the training process. In the proposed

iPM, the relationship among genes is measured to some extent, but it is not suffi-

ciently evaluated. With iPM method, the candidate genes always include the genes

with top statistical ranking scores. Therefore, whether other genes to be selected

highly depends on they working together with these elite genes. However, it might

be unfair because some genes do not have the chance to consolidate a candidate gene

set, even though they can contribute to classification models in conjunction with

other genes. For example, assume that gene#5 is ranked by a statistical model as

one of the top genes. Gene#5 will be included in most cases and other genes have to

work with it to form a new candidate gene set. If the performance from a candidate
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gene (gene#7) with gene#5 is not good, the new inserted gene#7 will be excluded

from candidate gene list even though it can be combined with other candidate genes

(e.g. gene#20) to greatly benefit the given classification problem.

Such issue often results in an insufficiently trained personalised model, which pro-

duces an unsatisfactory prediction outcome. For the purpose to explore more com-

binations of candidate genes, a more sophisticated solution for constructing PMS is

presented in the rest of this chapter, in which the search of candidate genes is driven

by a model of evolutionary algorithm - genetic algorithm.

6.4.1 The Principle of PMS for Data Analysis and Knowl-

edge Discovery

The proposed PMS creates a model specifically for every new input data sample.

The method of PMS for gene expression data analysis is given as follows:

1. Use a statistical algorithm (e.g. SNR) to rank all the features in training data

D, and remove the irrelevant features with very low ranking scores. The left

features form to a pool of candidate features (gρ).

2. Create a personalised problem space (Dpers) specifically for the new data sample

xv through the calculation of an appropriate number of nearest neighbouring

samples. The neighbourhood is calculated through an Euclidean distance based

measurement.

3. Select a set of candidate features gi from the pool gρ based on certain criteria,

e.g. select several or several tens of top ranked features.

4. Create a candidate personalised model Mi consisting of candidate features gi

and related parameters (e.g. Kv - the number of neighbouring samples).

5. Evaluate the classification accuracy P (gi) using model Mi for each sample

across the personalised space Dpers.

6. If the stoping criteria are NOT reached, update the candidate feature set gi.

7. Iterate the process until the stoping criteria are met, output the current model

as the optimal personalised model M∗
x for xv.
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8. Calculate the outcome of xv using the optimal personalised model M∗
x .

Note: the updating of candidate features gi in step 6 can be performed in different

ways, which will be described in the following sections

In step 2, there is a concern that all the samples in the personalised problem space

(Dpers) of xv may fall into one class only. Under such circumstance, the constructed

personalised model Mx is not sensitive to discriminate between diseased and normal

samples, because the information either related to diseased pattern or normal pattern

can be missing. Such issue is the imbalanced class distribution problem that we have

discussed in Chapter 5.

To deal with this problem, a simple method is proposed to balance the sample

distribution of both classes within the personalised problem space. A ratio rγ is

introduced in the construction of personalised problem space (Dpers) to ensure that

the samples from both classes can be included. The ratio rγ is defined in the following

way:

Suppose a personalised problem space Dpers contains nα samples from a majority

class Cmax and nβ from a minority class Cmin, where nα ≤ nβ. A ratio to balance

the majority and minority class in the personalised problems space is calculated as:

nα = rγ · nβ, | rγ ∈ (0, 1] (6.1)

where rγ is a pre-specified constant value (e.g. 0.3).

If the sample distribution of Dpers does not satisfy Eq.6.1, Dpers will extend its space

to include the next closet neighbour of xv. Moreover, the ratio rγ is not a fixed value.

It is dependent to the optimal size of Kv. The neighbourhood will not extend if the

number of nearest samples reaches to the maximum value.

There is a possibility that all the nearest samples in the personalised space for xv

are from one class only. In this case, the proposed PMS will produce the predicting

outcome with 100% confidence, as the new sample’s pattern is completely described

by the samples from one class only.
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An Unbiased Validation for PMS

To avoid the bias introduced by feature selection, Figure 6.8 illustrates an unbiased

validation approach in the development of PMS. Within this approach, both gene

selection and candidate models are only performed on the training dataset and no

information from new data sample will be included during the training process.

Training Data 

Dtrn

A statistical model frnk 

to evaluate features

Create a feature set 

gρ based on their 

ranking scores

Select a subset of 

features gi from gρ 

A learning Function fcls

(a classifier)

Evaluate classification 

performance

Output the final selected 

informative features gsel

satisified

unsatisified

Validating  

vector xν

The personalised 

problem space 

(Dpers) of xν

Construct the optimal 

personalised model Mx

Output Result

A new vector xν 

(Classlabel yν 

keeps unknown)

Figure 6.8: An unbiased validation approach for PMS

6.4.2 Evolutionary Algorithm based Approach for PMS

Evolutionary algorithm is a powerful algorithm based on generic population for solv-

ing optimisation problems. It is inspired by biological evolution, such as crossover,

mutation, recombination, and selection to evolve the individuals (candidate solu-

tions) based on the principle of “fitness to survival”. Owing to its ability of driving

116



6.4. Novel Methods and Algorithms for Personalised Modelling

candidate solutions towards the target optimisation problem, evolutionary algorithm

is able to explore the combination of features and related parameters, and principally

able to converge to an optimal solution.

Being the most popular technique of evolutionary algorithm, GA can be applied to

feature selection for model optimisation. The features can be encoded into different

ways, such as binary encoding, real-value encoding, etc. Although GAs have been

used in some previously developed methods for model optimisation, e.g. parameter

and feature optimisation for local modelling in NeuCom (www.theneucom.com), the

model and parameter optimisation for building global models (Sureka & Indukuri,

2008), GA and the other evolutionary optimisation techniques have never been used

for the integrated optimisation of features, feature weights Wx, number of nearest

neighbours Kv, models Mx and their parameters Px related to personalised modelling.

The proposed general method using evolutionary algorithm based implementation

for construction PMS works in the following way:

1. Select a number (Kv) of nearest neighbouring samples;

2. Iteratively select important features (Vx), and rank them through a weight

vector (Wx) for the person in relation to a target problem;

3. Create a candidate personalised prognostic model Mx with the parameters (Pv)

using the selected variables and nearest samples.

4. Evaluate the candidate model Mx according to its fitness computed by a learn-

ing function (a classifier);

5. Reselect features and optimise the parameters (Vx, Wx, Kv, Px) together

through an evolving way.

6. Iterate the selection and optimisation process until the termination conditions

are reached.

The final optimal personalised model M∗
x may lead to the best or near best perfor-

mance from the personalised prognosis.

The approach suggests a major novelty - a personalised profiling procedure in terms

of defining variables that may need to be modified for the design of personal improve-

ment scenarios afterwards, depending on the problem and the available resources.
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With the optimal model M∗
x , the proposed PMS has discovered a compact set of fea-

tures and relevant parameters which may bring the new insight to the given problem

(complex human disease). This approach also allows for an adaptation, monitoring

and improvement of the personalised model for a new input sample.

6.4.3 A Novel Gene Selection Method for Personalised Mod-

elling

As explained in early chapters, feature selection is a fundamental step towards a

successful development of PMS. In the context of biomedical data analysis, the se-

lected features (genes) are of great importance for clinical decision support system,

personalised drug design, etc. This section proposes a new feature selection method

for identifying most important features for creating personalised models in PMS.

For clarity, the new gene (feature) selection method is called personalised modelling

based gene selection. Ideally, for the new sample xv that is represented by a set of

genes (G), the final selected set of informative genes gsel(xv) and noise genes gnoise(xv)

should satisfy the following criterion:

[gsel(xv), gnoise(xv)] =

{
gsel(xv) ∩ gnoise(xv) = Φ

gsel(xv) ∪ gnoise(xv) = G
(6.2)

It is impractical to evaluate the relationship of all genes in an exhaustive way when

the number of genes is huge. Empirical studies have shown that most genes are

redundant but only a small number of genes can benefit classification task. In liter-

ature, it is generally agreed that the good experimental results occur when several

tens of genes are selected for a specific disease classification problem (Li & Yang,

2002). Hence, using univariate hypothesis tests, the proposed gene selection applies

a filter method to eliminate most irreverent genes. Such method can be the classical

statistical algorithms, e.g. t-test, SNR, etc.

Personalised modelling based gene selection is a hybrid approach that mainly consists

of two steps:

1. Filter out the genes that are significantly irrelevant to the given scenario (e.g.

disease distinction);
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2. Use a wrapper method to discover informative genes from the rest of genes (a

candidate gene pool).

In this thesis, personalised modelling based gene selection firstly uses SNR algorithm

to rank all genes based on their univariate SNR scores, and then removes those genes

having very low ranking scores. The left genes (usually several hundreds) form into a

candidate gene pool to be further evaluated by a wrapper method in Step 2. SNR is

used as a filter here because it is simple and fast, and outperforms another classical

algorithm - T-test in terms of the classification accuracy in our experiments.

In the second step, the proposed gene selection uses a wrapper based approach to

evaluate candidate genes, and employs a classifier as a learning function to evaluate

the goodness of these genes within a personalised problem space. Principally, the

learning function can be any classifier models. However, for a wrapper gene selection

method, we need to take into account the computational cost introduced by the

classifier. An appropriate classifier used in the personalised modelling method should

be not only highly sensitive to the prediction results but efficient as well. Otherwise,

the method may become impracticable if the classifier requires intensive computation.

The pseudo code of personalised modelling based gene selection is given in Algorithm

1.

6.4.4 GA Search based PMS

This section presents an implementation for personalised modelling on gene expres-

sion data analysis using evolutionary algorithm search based approach. This ap-

proach incorporates the proposed personalised modelling based gene selection, which

takes into account the interaction among genes for gene selection, and expects to have

an improved classification performance and to extract more precise information and

knowledge from microarray gene expression data.

To explore candidate genes, GA search based PMS takes into account the relationship

among genes. The method for constructing an optimal model for a testing data vector

xv is briefly outlined in Algorithm 2.

Algorithm 2 gives a general solution using GA based search to construct a PMS for

cancer gene expression data analysis. A cGA is used to replace the general GA search
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Algorithm 1 Personalised Modelling based Gene Selection

Input: a new data vector xv and a training dataset D(n-by-m):
1: Normalized xv and D
2: //Filter out the irrelevant genes

G = frnk(D)
3: create a candidate gene pool gρ from the gene set G obtained in step 2
4: //find the personalised problem space for xv

Dpers = fpers(xv, D), Dpers = {xi, yi}, i = 1, · · · , q, q ≤ n
5: search a candidate gene set

gsel = fsel(gρ, Dpers)
6: p = fcls(gsel, Dpers train(xv))
7: if stopping criterion is reached then
8: output gsel

break;
9: else

10: go to Step 5 to reselect candidate genes
11: end if
12: //Evaluate the selected genes gsel on the testing data vector xv

p(xv) = fcls(gsel, xv)

where:
� frnk: a statistical function (e.g. SNR or T-test) for ranking all genes;
� ρ : a pre-specified value (usually several hundreds);
� fpers: a function to search an appropriate personalised space for xv;
� fsel : a function for selecting candidate genes;
� p : classification performance;
� fcls : a classification function;

part in Step 3 in Algorithm 2. Algorithm 3 presents cGA based PMS (cGAPM) .

The detailed description of cGA refers to section 3.1.7 in Chapter 3.

The main idea behind cGAPM method is that the candidate genes are selected based

on a probability vector p. With the evolution of vector p driven by a cGA based

algorithm, an optimal solution to construct a personalised model Mx is expected to

achieve after a number of generations. Firstly, cGAPM randomly creates a probabil-

ity vector p with l bits. Each bit is set to 0.5, which identifies that every bit has the

equal probability to be 0 or 1. The chromosome (individual) encoding is illustrated

in Figure 6.9.

Then, a probability generator function creates two individuals with the same length

of bits to represent a set of candidate genes. Each bit’s value is randomly created
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Algorithm 2 GA search based PMS

Input: a new data vector xv and a training dataset D(n-by-m):
1: Use a statistical model (SNR) to filter out irrelevant genes.
2: Create a candidate gene pool of ρ genes from the genes selected in Step 1.
3: Initialize a population of µ individuals (chromosomes):

P (gen) = fGA(q, Dpers)
P (gen) is a population created by a GA based function fGA, each individual has
q bits and each bit identifies a gene being selected (1) or not (0).

4: Select a population of candidate genes from P (gen)
g(gen) = fsel(P (gen))

5: p(gen) = fcls(g(gen), Dpers)
p denotes the performance from a classifier fcls using selected candidate genes
g(gen), Dpers is the personalised problem space of xv.

6: repeat
7: gen ++;
8: S(gen) = select(Pgen−1, µ/2); //select µ/2 pairs of fittest individuals.
9: O(gen) = crossover(S(gen), µ/2); //perform crossover

10: O(gen) = mutate(S(gen); //perform mutation
11: P (gen) = S(gen) + O(gen); //form a new generation
12: g(gen) = select(P (gen))
13: p(gen) = fcls(g(gen), Dpers)
14: until Stopping criterion is met
15: Output the optimal personalised model Mx with the final selected genes g(gen)∗

16: p(xv) = fval(Mx, xv)

(ranges from 0 to 1), representing the probability whether the gene is to be selected

or not. For example, if the value of bit 5 is 0.35 in Figure 6.9, the probability of

this gene to be selected is 35%, i.e. this gene has a high probability (65%) to be

unselected.

0.5 0 0.32 0.9 0.35 0.7 0.4 1…...Probability vector p:

The value of each bit identifies the probability of the gene 
to be selected or not

l bits

Figure 6.9: The illustration of probability vector in cGAPM
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Algorithm 3 Compact GA (cGA) search based PM (cGAPM)

1: Use a statistical model (SNR) to filter out irrelevant genes.
2: Select ρ genes as a candidate gene pool from the genes left in Step 1.
3: Initialization: generate a probability vector p

p(i) = 0.5; i = 1, . . . , l;
4: Generate two individuals a and b based on the comparison with p:

a(gen) = generate(p);
b(gen) = generate(p);

5: Compete a and b based on their classification performance over Dpers:
winner, loser = compete(a,b)

6: Update the probability vector p towards the winner:
if winner(i) 6= loser(i) then

if winner(i) == 1
then p(i) = p(i) + 1

µ
;

else p(i) = p(i)− 1
µ
;

7: Check wether any of the following terminating conditions are reached:
(1) the probability vector p has converged or,
(2) a maximum number of generations has been produced or,
(3) a highest classification performance is reached.

8: if no then go to Step 2;
9: if yes, then output the optimal personalised model M∗

x .
Mx contains the vector p that identifies which genes should be selected based on
their performance from local training process, and the classifier model.

10: Validate the obtained model Mx on the testing data xv:
p(xv) = fval(M

∗
x , xv)

After the first generation of two individuals are created, a classification model is

applied on individual a and b, within the personalised problem space of new testing

data xv, respectively. According to the classification performance, there will be a

winner between these two individuals. If the performance from individual a and b

is same (i.e. no winner), cGAPM then randomly chooses one as the winner. The

probability vector p is updated towards the winner to produce the next generation

in the way as follows:

1. Based on the competition between individual a and b according to their con-

tribution to the classification, cGAPM finds the winner and the loser.

2. Check whether every bit of winner and loser has the same value.

3. If they are same, no need to update this bit in the probability vector p.
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4. Otherwise the ith bit of probability vector p is updated by increasing 1/µ if the

ith bit of winner is 1, or by decreasing 1/µ if the ith bit of winner is 0. Here, µ

is a virtual population size, usually from several hundreds to several thousands

depending on the length of individual.

5. If there is no winner from the competition, randomly select one individual as

the winner and update the probability vector p using the same way described

above.

6. Repeat the updating process, until the probability vector is converged (every

bit’s value is either 0 or 1), or the pre-specified stopping criterion is met, e.g.

100% classification accuracy or the maximum number of generations.

6.5 Conclusion

This chapter has introduced a PMF for data analysis and knowledge discovery. It

has also presented novel methodologies and algorithms for developing PMSs. The

presented methods for constructing a PMS have applications in information science,

mathematical modelling, personalised medicine, profiling and prognostic systems for

evaluating disease risks, using the information from a dataset in relation with the

past outcomes for a given scenario.

The first method introduced for implementing a PMS is a simple method - iPM.

It has been applied on three particular benchmark gene expression datasets. As an

preliminary study, the experiment has shown that iPM approach is able to discover

some useful information and knowledge from gene expression data. However, it does

not perform effectively in some cases of difficult datasets for classification problems,

mainly because it evaluates features based on univariate analysis and lacks optimi-

sation of relevant parameters for building personalised models.

A more sophisticated methodology for implementing a GA search based PMS is pro-

posed in this chapter. At the same time, a novel gene selection method - personalised

modelling based gene selection method is developed for identifying most important

genes (features) for each individual data sample, e.g. a patient’s sample for cancer

diagnosis and prognosis. All these algorithms and methods are genetic, and can be
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used for other types of data analysis. The next chapter will apply these algorithms

and methods on benchmark datasets for disease diagnosis and knowledge discovery.

For ease of reference, the presented PMS are primarily discussed in relation with

bioinformatics research and its applications, such as disease diagnosis, disease risk

evaluation, psychological profiling, etc. In the context of bioinformatics research,

the features of the testing data may be any data from the collected samples, e.g.

a person’s tissue sample. All the collected samples from to a global dataset are

considered to be related to a scenario of interest. Nevertheless, the presented method

and system have shown the feasibility to be useful for personalised data modelling

and profiling. The implementation is not limited to biomedical applications, but

could be used in other data analysis areas, e.g. credit risk analysis in finance and

economics.
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CHAPTER 7

Personalised Modelling System for

Cancer Diagnosis and Prognosis Based on

Gene Expression Data

“A journey of a thousand miles begins with a single step.”

- Confucius

Cancer diagnosis primarily relies on the histopathological appearances of the tumors,

which has been proved unreliable and inaccurate in literature (Beart, 1995). Tumors

sharing similar histopathological appearance can follow significantly different can-

cer courses and show different disease progressions and prognosis. The molecular

heterogeneity of cancer has prevented inductive global models working efficiently on

microarray gene expression data for cancer research. Contemporary cancer research

demands the methodologies and systems which are able to create the useful and

informative models specifically for assessing an individual cancer patient. Such cir-

cumstances motivate us to develop personalised modelling system (PMS) for cancer

research using microarray gene expression data.



7.1. Cancer Diagnosis and Prognosis with cGAPM using Gene Expression Data

As an implementation of the personalised model Mx described in Figure 6.1 in Chap-

ter 6, the proposed method here is to search for a solution to the following research

problems:

1. Identify the informative features (genes) that will be used to construct person-

alised models for cancer classification.

2. Discover the information and knowledge from the analysis of gene expression

data through personalised modelling based approaches. Such information and

knowledge can be used for clinical decision system, such as risk evaluation,

personalised profile visualisation, tailored personalised treatment design, etc.

The new method combines several functional modules, including a novel gene se-

lection method, personalised space searching, outcome evaluation and personalised

profile visualisation. I have applied this method to different benchmark microarray

gene expression datasets, and presented the results through a comparative study in

the rest of this chapter.

Many evaluation methods have been investigated for small-sample error estimation.

Typically, a microarray experiment provides a dataset of small size, and as a result

the most commonly used method for error estimation is leave-one-out cross validation

(LOOCV). The LOOCV error rate estimator is often suggested in literature to be

a straightforward technique for estimating generalization error in machine learning

tasks and usually gives an almost unbiased performance estimation result (Breiman

& Spector, 1992; Kohavi, 1995). Therefore, LOOCV classification error estimator is

employed here for evaluating the performance of the proposed algorithms and models

for personalised modelling.

7.1 Cancer Diagnosis and Prognosis with cGAPM

using Gene Expression Data

Colon and CNS cancer gene expression datasets are used in the experiment of

cGAPM for cancer classification. The validation in the experiment is followed by

an unbiased validation schema illustrated in Figure 6.8, which ensures testing data
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is independent to the training process. LOOCV is used for validating the quality of

the optimised classifier with the final selected most important genes. Several widely

used algorithms for classification problem are used to produce the gold standard for

comparing the classification performance, namely MLR, MLP, SVM and ECF.

Table 7.1 summarizes the classification result for colon cancer diagnosis obtained

by the proposed PMS with cGAPM algorithm. The result is reproducible and is

carried out in an unbiased way. The results clearly show that the proposed cGAPM

outperforms these widely used algorithms in terms of classification accuracy, if the

unbiased validation approach is used. For colon cancer data analysis, Alon (1999)

used 50 genes in his paper. Different number of features (20, 50 and 15) are used for

global modeling algorithms in this comparison experiment.

Table 7.2 shows the classification performance of colon cancer data using a biased

feature selection approach. Under this scenario, features are selected on the combi-

nation of training and testing data. It shows that using a biased feature selection

method, statical methods can easily achieve better results than that from the mod-

els with unbiased feature selection. However, the good results cannot replaced when

new coming data arrive.

Additionally, how many features should be selected for a specific data is a challeng-

ing problem for data analysis, as we don’t know the outcome in advance for data

predication in real world. Thus, it is arbitrary to pre-specify the number of features

to be selected for data analysis.

Similarly, Table 7.3 and 7.4 give the comparison results of CNS data between cGAPM

and other widely used methods in two different ways: biased and unbiased approach.

The benchmark result reported in the original paper is included as well.

Again, it is easy to elucidate that the proposed cGAPM can produce better results

in an unbiased way. Using a biased feature selection method, all the statistical

algorithms can yield better results than the result reported in the original work.

The experiment results of colon and CNS cancer data are encouraging. The classifi-

cation accuracy from colon and CNS cancer data using cGAPM method is noticeably

improved compared to that from iPM method (refer to Chapter 6). The result from

WKNN classifier of colcon cancer data is superior to the originally published result

(refer to Table 7.1). The proposed cGAPM with WKNN classifier achieves the same
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Table 7.1: The comparison of classification results obtained by cGAPM and other
widely used methods on Colon cancer gene expression data (benchmark result∗

refer to the result reported in the original paper). For all the models used in this
experiment (except the reported results), the features are selected only based on
training data. The feature selection used in original paper is on both training and
testing data, which is biased. The number of selected features is based on the
suggestion in literature and previous work.

Data Set Colon cancer data
Method Overall

Acc(%)
Class 1/2 (%) No. of

selected
Features

Validation
Method

cGAPM 87.10 92.50 / 77.27 automatically
optimised

LOOCV

MLR 83.87 95.00 / 63.64 20 LOOCV
MLR 72.58 75.00 / 68.18 50 LOOCV
MLR 80.65 95.00 / 54.55 15 LOOCV
MLP 80.65 87.50 / 68.18 20 LOOCV
MLP 80.65 87.50 / 68.18 50 LOOCV
MLP 75.81 80.00 / 68.18 15 LOOCV
SVM 85.48 87.50 / 81.82 20 LOOCV
SVM 85.48 87.50 / 81.82 50 LOOCV
SVM 85.48 90.00 / 77.27 15 LOOCV
ECF 82.26 87.50 / 72.73 20 LOOCV
ECF 85.48 87.50 / 81.82 50 LOOCV
ECF 79.03 87.50 / 63.64 15 LOOCV
Benchmark
result∗

87.0 N/A 20 holdout

Table 7.2: The comparison of classification results obtained by different meth-
ods on Colon cancer gene expression data in a biased way. Features are selected
based on the whole data (training + testing), which is the same approach used in
the experiment in original work. The number of selected features is based on the
suggestion in literature and previous work.

Data Set Colon cancer data
Method (biased) Overall

Acc(%)
Class 1/2 (%) No. of

selected
Features

Validation
Method

SVM 88.71 90.00 / 86.36 50 LOOCV
SVM 88.71 90.00 / 86.36 20 LOOCV
ECF 87.10 90.00 / 81.82 50 LOOCV
ECF 83.87 90.00 / 72.73 20 LOOCV
Benchmark
result∗

87.0 N/A 20 holdout
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Table 7.3: The comparison of classification results obtained by cGAPM and other
widely used methods on CNS cancer gene expression data (benchmark result∗ refer
to the result reported in the original paper). For all the models used in this exper-
iment (except the reported results), the features are selected only based on training
data.

Data Set CNS data
Method Overall

Acc(%)
Class 1/2 (%) No. of

selected
Features

Validation
Method

cGAPM 78.33 71.43 / 82.05 automatically
optimised

LOOCV

MLR 58.33 52.38 / 61.54 100 LOOCV
MLR 56.67 42.86 / 64.10 50 LOOCV
MLR 48.33 42.86 / 51.28 20 LOOCV
MLP 65.00 23.81 / 87.18 100 LOOCV
MLP 75.00 47.62 / 89.75 50 LOOCV
MLP 45.00 28.57 / 53.85 20 LOOCV
SVM 71.67 57.14 / 79.49 100 LOOCV
SVM 73.33 57.14 / 82.05 50 LOOCV
SVM 55.00 38.10 / 64.10 20 LOOCV
ECF 73.33 42.86 / 89.74 100 LOOCV
ECF 76.67 52.83 / 89.74 50 LOOCV
ECF 55.00 47.62 / 58.97 20 LOOCV
Benchmark
result∗

78.33 N/A 20 holdout

Table 7.4: The comparison of classification results obtained by widely used meth-
ods on CNS cancer gene expression data in a biased way. Features are selected
based on the whole data (training + testing), which is the same approach used in
the experiment in original work.

Data Set CNS data
Method (bi-
ased)

Overall
Acc(%)

Class 1/2 (%) No. of se-
lected Fea-
tures

Validation
Method

SVM 83.33 66.67 / 92.31 100 LOOCV
SVM 85.00 71.43 / 92.31 20 LOOCV
ECF 85.00 66.67 / 94.87 100 LOOCV
ECF 86.67 80.95 / 89.74 20 LOOCV
Benchmark
result∗

78.33 N/A N/A holdout
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overall accuracy as originally published result. With WKNN classifier, cGAPM iden-

tifies a compact set of important genes that are frequently selected through LOOCV.

∗ For colon cancer classification, the 15 most frequently selected genes are: gene 66,

1423, 286, 897, 245, 267, 1771, 698, 187, 377, 571, 765, 415, 365, 780.

∗ For CNS classification, the top 10 frequently selected genes are: gene 6252, 5812,

1352, 2496, 2474, 2996, 6064, 4576, 844, 5871.

As mentioned in previous section, the focus of developing PMS method is to discover

the useful information for each sample (a patient tissue sample), rather than simply

to compare the classification accuracy from different algorithms. For this purpose,

PMS is able to give a detailed profile for the new testing data sample. Here we

give an example to demonstrate how PMS visualises the analysis result from a data

sample.

Let us look at the sample 51 in colon data (sample 51 is randomly selected), cGAPM

method selects 24 genes and the classifier successfully predicts that sample 51 belongs

to diseased class. At the same time, cGAPM creates a personalised model specifically

for colon sample 51, which comprises:

1. The personalised problem space (the neighbourhood) Dpers(x51) contains 11

neighbours: sample 29, 31, 61, 57, 26, 54, 49, 6, 40, 19 and 32 ;

2. A subset of informative genes: 24 genes are selected specifically for sample 51.

Table 7.5 and 7.6 list the top 5 selected genes and their information. The full

list of 24 genes are given in Appendix H;

3. A personalised model M∗
x is created and its local accuracy (83.82%) is evaluated

on the 11 samples in Dpers(x51);

4. A scenario for the improvement of sample 51 (a person) in terms of required

changes in the gene expression values of each feature (gene), which is shown in

Figure 7.1-b.

130



7.1. Cancer Diagnosis and Prognosis with cGAPM using Gene Expression Data

Table 7.5: Top 3 genes selected for a colon cancer patient (sample 51)

Gene Index Gene EST
Number

Gene Description (from GenBank)

377 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor
249 M63391 Human desmin gene, complete cds.
765 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
513 M22382 Human mitochondrial matrix protein P1 (nuclear encoded) mRNA, com-

plete cds.
286 H64489 yu67a12.s1 Weizmann Olfactory Epithelium Homo sapiens cDNA clone

IMAGE:238846 3-, mRNA sequence.
· · · · · · · · ·

Table 7.6: An example: a scenario of the potential improvement for a colon
cancer patient (sample 51)

Index of
Gene

Gene EST
Number

Actual value Desired aver-
age profile

Desired Improve-
ment

Weighted
importance

G377 Z50753 686.6330 233.8870 -452.7460 0.0659
G249 M63391 1765.1850 597.1193 -1168.0657 0.0625
G765 M76378 449.3950 260.3002 -189.0948 0.0555
G513 M22382 577.2560 1142.2057 564.9497 0.0533
G286 H64489 4474.7640 1225.8794 -3248.8846 0.0504
· · · · · · · · · · · · · · · · · ·

The weighted distance between the object sample and the average class profiles for

each of the two classes is calculated by:

dstw(x) =
l∑
i

| dstcls(i) ∗ σw| (7.1)

where l is the number of selected features (genes), σw is the weighted importance

of each gene (here is the SNR value), dstcls(i) is the distance between the testing

sample’s actual value and average profile of each of i class over each gene expression

level, which is formulated by:

dstcls(i) = avg(cls(i))− gx(i), i = 1, · · · , l (7.2)

where avg(cls(i)) is the average profile of each of two classes, and gx(i) is the gene

expression level value of gene i. The weighted distance calculated for sample 51 is

as follows:

Weighted distance from class 1 profile: dstcls(1) = 470.2062

Weighted distance from class 2 profile: dstcls(2) = 301.9498
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The above distance shows that sample 51 is closer to class 2 (diseased group). Also,

the predicting output (1.72) for sample 51 is calculated by a WKNN classifier in the

created personalised model M∗
x . Thus, sample 51 is correctly predicted as diseased

(classification threshold for sample 51 is 0.4 that is determined based on the local

accuracy during the training process).

To help visualise the result, we have plotted 11 neighbours of sample 51 of colon data

in a 3-D space of the top 3 genes in Figure 7.1-a. It is easy to elucidate that sample

51 is more likely to be in the diseased group, since most of its nearest neighbours

belong to diseased group. Figure 7.1-b illustrates a scenario of the gene expression

level improvement for a patient (here is sample 51 of colon cancer data), where x

axis represents the gene index number and y axis represents the gene expression level

value.

In order to recover from the disease, the patient should receive a personalised medi-

cal treatment tailored for him/her. Figure 7.1-b and Table 7.6 give an example for

designing a personalised medical treatment for a colon cancer patient (data sample

51) using PM model, Table 7.6 gives an improvement scenario for a person (sample

51), which can be interpreted in the following way:

To improve the outcome from patient 51 towards a good outcome (survival), some

genes need to change their expression levels through drug intervention or other

means. Hence, gene 377 (EST: Z50753), 249 (EST: M63391) and 765 (EST: M76378)

should be suppressed for a lower expression level, e.g. the expression level of gene

377 should be suppressed from 686.6330 to 233.8870. (Note: EST is the Expressed

Sequence Tag of a gene, which is a unique index that is used retrieving genes from a

NIH genetic sequence database GenBank).

For CNS data experiment, similarly, a personalised model is created for a person

(sample 31 is randomly selected), which includes:

1. The personalised problem space (the neighbourhood) Dpers(x31) contains 21

neighbours: sample 48, 21, 20, 43, 26, 29, 41, 39, 8, 28, 45, 27, 30, 50, 7, 24,

13, 18, 54, 47 and 53;

2. A subset of informative genes: 23 genes are selected specifically for sample 31.

The detailed list of these 23 genes are summarized in Appendix 3;
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3. A personalised model M∗
x is created and its local accuracy (95.84%) is evaluated

on the 21 samples in Dpers(x31);

4. A scenario for the improvement of sample 31 (a person) in terms of required

changes in the gene expression values of each feature (gene), which is shown in

Figure 7.1-b.

Figure 7.2 gives the visualisation of the experiment result over CNS sample 31.

The weighted distance calculated for sample 31 is as follows:

Weighted distance from class 1 profile: dstcls(1) = 410.9195

Weighted distance from class 2 profile: dstcls(2) = 405.5403

The weighted distance dstcls(1) and dstcls(1) is very close, which means the testing

sample 31 is relatively difficult to classify in the personalised problem space. Al-

though sample 31 is correctly predicted as diseased (class 2), a predicting risk (0.69)

created by a Fuzzy KNN classifier represents the predicting result is not sufficiently

confident (0.5 is the threshold for classification).

7.2 Conclusion

This chapter has presented a study to create a personalised modelling system (PMS)

for cancer gene expression data analysis. The new developed personalised modelling

based method offers an efficient way to construct a clinical decision support system for

new coming patient samples. It has the significant potential for clinical practitioners

to design tailored treatment for a patient.

The contribution of the proposed PMS is that it has introduced a new idea - selecting

genes based on personalised modelling. PMS is able to discover the information from

the given data and extracts a detailed profile specifically for a data sample based

on the selected most informative features (genes or proteins). Such information can

be used for further medical research, e.g. tailored disease treatment, personalised

medicine design, drug response prediction, etc.
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In addition, the research question - how to efficiently optimise the relevant param-

eters of personalised modelling in conjunction with feature selection, has not been

solved. Some parameters in relation with personalised model construction, such as

classification threshold θ and number (K) of the samples in the personalised problem

space (the appropriate neighbourhood), are not sufficiently optimised. The method

cGAPM does not take into account the relationship between candidate feature sets

and the parameters, i.e. they are optimised separately. Such issue could be a main

reason that prevents cGAPM being superior to other models in practice. This re-

search question motivates us to develop a new method to select features and optimise

related parameters simultaneously for personalised modelling.
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CHAPTER 8

A Co-evolutionary Approach to

Integrated Feature Selection,

Neighbourhood Selection and Model

Parameter Optimisation

“Imagination is more important than knowledge. Knowledge is limited.

Imagination encircles the world.”

- Albert Einstein

The classification of tissue samples for cancer patients is a main biomedical applica-

tion in cancer research and of great importance in cancer diagnosis and potential drug

discovery. However, the construction of an effective classifier involves gene selection

and parameter optimisation, which poses a big challenge to bioinformatics research.

This chapter presents an integrative (coevolutionary algorithm based) personalised

modelling method (cEAP) for gene selection and parameter optimisation simultane-

ously in microarray data analysis. We apply cEAP method on four benchmark gene

expression datasets to find the most important features and appropriate parameter

combinations for personalised modelling.



8.1. Introduction and Motivation

8.1 Introduction and Motivation

In order to construct the personalised models for cancer diagnosis and prognosis us-

ing genomic data, it is critical to discover which genes (features) are most important

for a specific individual patient, and find the best fit parameters for model construc-

tion. Much research effort has been put into selecting or scaling features to improve

classification. A particularly popular approach is the use of evolutionary algorithms

to optimise feature scaling. Another popular approach is to scale features by the

mutual information of the training data with the training classes.

Another main difficulty for personalised modelling construction lies in the parameter

optimisation. In the development of personalised models, the relevant parameters

can be the decisive factors for: the creation of personalised problem space (the

neighbourhood highly represents the pattern of new data sample), the determination

of the threshold for classification and the suitable number of selected features for the

specific new data. Moreover, these parameters need to be optimised along with

feature selection, because their setting can be significantly influenced by different

selected feature sets.

Evolutionary algorithms have been applied to a variety of research fields to search for

the optimal solution in large and complex problem space. Evolutionary algorithms

often have the advantage over many traditional search heuristic methods when search

spaces are discontinuous, or highly constrained. However, in some cases conventional

evolutionary algorithms may perform poorly. One such situation occurs when prob-

lems have very large search domains, interacting subspaces (Wiegand, 2003a). For

example, this is often the case when we would like to evolve some functional elements

along with their input data. The search space can be infinite in the extreme case. It

is found in previous personalised modelling experiments that the optimal solution is

hard to converge to use traditional evolutionary algorithms (refer to cGAPM method

in Chapter 7).

To improve the performance of the personalised modelling for gene expression data

analysis, the candidate solutions require different representations rather than one

simple representation, i.e. the optimisation problem should be represented in dif-

ferent ways: the task of gene selection can be represented by binary bit flipping

(either selected or not), while the solution to find the most appropriate parameters
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for individual patient testing should be real-value encoded. Therefore, we need to

find a better solution to the optimisation task of gene selection and parameter tun-

ing simultaneously. Coevolutionary algorithms seem particularly desirable to solve

this optimisation problem, since they are capable of dealing with a set of candidate

solutions in parallel.

8.1.1 Coevolutionary Algorithm

Coevolutionary algorithms (CEAs) have attracted significant attentions as an en-

hancement and extension of conventional evolutionary algorithms (EAs) for solving

complex computational problems. In the literature of evolutionary computation for

optimisation problems, coevolutionary is defined as a change in the genetic compo-

sition of a species (or group of species) responding to a genetic change of another

one (Coello, Lamont, & Veldhuizen, 2007; Potter & De Jong, 1994). A general claim

of coevolutionary algorithms is an evolutionary algorithm in which the individuals

from two or more populations are assigned fitness values based on their interactions

with the individuals from the other populations (Wiegand, 2003b). An candidate

solution is formed by a group of individuals in which every one is selected from each

species.

CEAs are primarily distinguished from conventional EAs by the evaluation process

in which an individual can only be evaluated by having its interaction with evolv-

ing individuals (interaction partners). These interaction partners come from the

members of the same population or different populations depending on the search

spaces (S. G. Ficici, 2004). In special cases, CEAs can be used for single-population

evolution (Sims, 1994).

Conventional EAs are not always adequate for solving complex optimisation prob-

lems that are often in relation with problem decomposition. Consider a problem

for optimising a function of m independent variables. A reasonable solution could

decompose the problem into m subtasks, with each assigned to an optimisation for

a single variable. In the case of personalised modelling, we do not know beforehand

what is the appropriate number of the samples in the neighbourhood for a new test-

ing data sample and which features are useful for classification. The greedy search

is not a good solution for determining these factors. It seem that problem decompo-
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sition consists of multiple optimisation tasks could be a more appropriate approach

for solving this type of problems.

CEAs have been developed based on the premise that too few species in the problem

nature may stagnate the evolution (Potter & De Jong, 2000). CEA initialises the

species and evaluates its individuals in terms of the overall fitness of the given prob-

lem. It adds a new species to the problem nature if stagnation occurs. If a species

can find a niche where it can benefit to the fitness evaluation, it will tend to exploit

the problem nature. Within a CEA based model, species are evolved in their own

populations, which can eliminate destructive cross-species mating that may make

the offsprings not survive or be sterile (Smith, 1989).

Generally, a simple CEA starts with decomposing the problem space into multiple

subcomponents. Each subcomponent is assigned to a subpopulation and then evolved

by EAs. The evolution for each subcomponent is independent, except for the fitness

evaluation. Since the candidate individuals from one subpopulation only represent a

subcomponent of the problem space, the fitness function needs to have collaborators

to recombine all individuals from different subcomponents for evaluation. Thus,

based on the evaluated fitness value, a best combined individuals will be selected

as a survivor. CEAs then proceed the selection towards the next generation and

the process will be iterated until the terminating criteria are fulfilled, such as an

optimal (or a near-optimal) solution is converged, or the maximum generation is

reached. Coevolutionary algorithms have been implemented into a variety of artificial

intelligent models for solving optimising problems, such as a neural network based

coevolution model (Juille & Pollak, 1996; Potter & De Jong, 2000) and a simple GA

based coevolution (S. Ficici & Pllack, 2000). They have been reported successful and

efficient for finding optimal solutions to many benchmark evolutionary problems.

A basic coevolutionary model is illustrated in Figure 8.1. Although this model can

be extended to multi-objective optimisation (known as species in literature), Figure

8.1 only demonstrates the problem with two species for simplicity. Each species

(optimising task) is evolved within its own subcomponent space, .e.g., in Figure8.1

the evolution of species 1 is proceeded in its own population 1 through an application

GA. The candidate individuals 1 and 2 from two species interact in a domain model

and further combine into a whole individual for fitness evaluation. Based on the

fitness value, the new generations will be created in both species 1 and 2 and the
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process will be iterated until the terminating conditions are satisfied.

GA

Population 1

Species 1
(Task 1)

ES

Population 2

Species 2
(Task 2)

Representatives 2Representatives 1

A domain 
model

Fitness function

Individuals 1 Individuals 2

Figure 8.1: The sample of a simple 2-species coevolutionary model. Task1 and
task2 represent two subcomponent search space ( species), respectively, the domain
model can be a fitness function with existed domain knowledge. GA and ES are
the evolutionary algorithms used for evolving objects in two subcomponent space,
respectively

8.1.2 Previous Work

There have been efforts using CEAs for solving complex computational problems.

One of the earliest extensions to the conventional EA model for solving the optimi-

sation in multi-components is the classifier system proposed by J. Holland (1986).

The classifier system is a rule based system that evolves a population of stimulus-

response rules through a GA. All individual rules in the population work together

to consolidate a complete solution to a target problem. An algorithm called bucket

brigade assigns the credits to the rules in a model to handle the interactions be-

tween population members. Such dynamical complexity of the model results in the

problem decomposition and the preservation of diversity. Hillis (1991) has presented

a method of coevolving sorting networks in which each individual of a population

represented a potential sorting network. The sorting network is given a fitness score

based on its contribution to an opponent data set working with the other population.

Potter and De Jong (1994) opened a door for cooperative CEAs research by introduc-

ing a general framework for cooperative CEA models. They applied the framework

to static function optimisation and extened to neural network learning (Potter &

De Jong, 2000). In their model, each population contains individuals representing
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a component of a solution. The evolution of these populations occurred almost in-

dependently, in which interaction was performed to obtain fitness scores. Such a

process could be:

(1) static, if the divisions for the separate components is decided beforehand and

never altered, or:

(2) dynamically, if the populations of components may be added or removed as the

learning approaches (Wiegand, 2003a).

There has been very few implementations of CEAs in bioinformatics research for

solving complex optimisation problems so far. I propose a coevolutionary algorithm

based personalised modelling (cEAP) for solving the challenge that involves gene

selection and parameter optimisation.

8.2 Methodology

The prime goal of this chapter is to develop a new algorithm for gene selection

and parameter optimisation which can be incorporated into personalised modelling

systems.

8.2.1 The Proposed cEAP Algorithm

Given a general objective optimisation problem f(x) to minimize (or maximize), f(x)

is subject to two constraints gi(x) and hj(x). A candidate solution is to minimize the

objective function f(x) where x represents a n-dimensional decision (or optimisation)

variable vector X = {xi | i = 1, · · · , n} from the sample space Ω. The two constraints

describe the dependence between decision variables and parameters involved in the

problem, and must be satisfied in order to optimise f(x). The constraints gi(x)

and hj(x) are denoted as inequalities and equalities respectively and mathematically

formulated as:

gi(x) ≤ 0 | i = 1, . . . , n (8.1)

hj(x) = 0 | j = 1, . . . , p (8.2)
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The number of degrees of freedom is calculated by n−p. Note the number of equality

constraints must be smaller than the number of decision variables (i.e. p < n). The

overconstrained issue, occurs when p ≥ n, because there is no degrees of freedom left

for optimising objective function.

The method is to find the optimal solution to an objective function. Given an

objective function f(x): for x ∈ Ω, Ω 6= ∅, a global minimum of the objective problem

f(x) can be mathematically defined as f ∗ , f(x∗) > −∞, only if

∀x ∈ Ω : f(x∗) ≤ f(x) (8.3)

where x∗ denotes the minimum solution, Ω is the sample universe of x.

I hereby propose cEAP algorithm for selecting genes and optimising the parameters

of learning functions (a classifier threshold θ and the number of neighbours kv) si-

multaneously. The basic idea underlying cEAP algorithm is to coevolve the search

in multiple search spaces (here is for gene selection and parameter optimisation). I

employ a compact genetic algorithm(cGA) as an evolutionary model to search the

subcomponent of gene selection, and use evolutionary strategy for parameter opti-

misation.

Regarding personalised modelling for gene expression data analysis, the whole opti-

misation problem space can be decomposed into three subcomponents as follows:

1. Subcomponent Ω(1) for gene selection that is encoded into a binary bit string,

in which each bit denotes wether this gene is selected (1) or not (0);

2. Subcomponent Ω(2) for finding the appropriate number of samples K in the

personalised problem space, which is real-value encoded;

3. Subcomponent Ω(3) for determining the classification threshold θ to best fit

individual patient sample, which is real-value encoded.

The decomposed problem space consisting of three subcomponents for gene selection

and parameter optimisation is shown in Figure 8.2

The objective of this study is to build personalised models for data analysis and

knowledge discovery, which are able to minimise the prediction accuracy of disease

143



8.2. Methodology

Ω(3) threshold 
optimization

Ω(1) for gene selection
Ω(2) for finding 

appropriate number 
of neighbours

1 0 0 1 0 0 1 1…...Ω = + K θ+

Figure 8.2: The combined individual consisting of 3 subindividuals from subcom-
ponent Ω(1), Ω(2) and Ω(3), respectively.

distinction and create a personalised profile for individual patient. Given a gene

expression data D = {X, Y } | X = xij, Y = yi, i = 1 . . . n, j = 1 . . . m, the objective

is therefore defined to optimise a classifier that involves the selected genes and related

parameters:

f(s∗) ≤ f(s) (8.4)

where f is a classification function, and s denotes an independent variables set.

As s can be represented by the data vector X, Y with selected genes and related

parameters, Eq.8.4 is rewritten as follows:

f(X, Y, ζ∗l ) ≤ f(X, Y, ζl), |ζ ∈ Ω, l = {1, 2, 3}. (8.5)

where ζl denotes the candidate solution from l different subcomponents. The final

solution is obtained when Eq.8.4 is fulfilled, i.e. ζ∗l is taken as the desired solution

to the problem of gene selection and parameter optimisation when the classification

error is less or equal to the value at any other conditions.

The proposed cEAP method employs a compact genetic algorithm (cGA) based

model for gene selection, and incorporates an evolutionary strategy to search the so-

lution in the subcomponent of parameters optimisation. To construct a personalised

model for a given dataset D pertaining to the task of cancer diagnosis and prognosis,

cEAP algorithm starts with the creation of the populations of three subcomponents:

gene selection in Ω(1), number of samples (K) in Ω(2) and the disease classification

threshold (θ) in Ω(3).

The population in gene selection subcomponent is generated based on a probability

vector p with l bits (l ≤ n). Each bit in p is initialized to 0.5, representing the equal

probability of this bit(gene) being selected or not. Within the subcomponent Ω(1),

cGA randomly creates two vectors a and b, and compares them with the probability
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vector p in order to generate two bit string individuals Ga and Gb. The bit string

individual is created based on the comparison result, e.g. if the value of bit i in a is

larger than that of bit i in p, bit i in Ga is set to 1, otherwise 0.

Simultaneously, in the subcomponent Ω(2), a probability function (e.g. a gaussian

distribution function) creates a pair of individuals Ka and Kb randomly based on

certain domain knowledge. Another probability function creates individuals θa and

θb in the same way in subcomponent Ω(3), respectively. Then, subindividuals Ga, Ka

and θa recombines into a whole individual α that will be evaluated by a fitness func-

tion z. Similarly, another combination of subindividuals Gb, Kb and θb consolidates

a candidate individual β.

The proposed cEAP algorithm lets individuals α and β compete to produce new

generations. The evolution in gene selection subcomponent is through updating the

property vector p based on the competition result. The updating scheme for p is to

check each bit’s value of the winner and the loser as follows:

if they are same, then there is no need to update the ith bit value in vector p,

otherwise it is updated by 1/µ probability of increase or decrease.

where µ is the population size.

Hence, the new generation created by the updated probability vector p will be more

fitted to the fitness function z.

The basic selection scheme in cEAP for creating a new generation is:

Firstly, cEAP selects the winner from the competition of individuals α and β ac-

cording to their fitness values. Then cEAP updates the probability vector p based

on the comparison between the winner and loser in the gene selection subcomponent

Ω(1). cEAP uses the similar strategy of cGA for updating vector p:

check whether winner(i) = loser(i), i ∈ [1, l],

if they are same, then there is no need to update the ith bit of vector p, otherwise

updating p(i) in the following way:

if winner(i) = 1

then p(i) = p(i) + 1
N

else

p(i) = p(i)− 1
N

endif

where N is the population of size (a pre-defined constant value, usually several tens
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or hundreds). After the updating, the probability of the alleles being either 1 or 0

in the gene selection subcomponent will increase 1/N in the next generation. For

example, suppose individual α is the winner, if the value of bit3 in winner individual

α is 1, then the value of bit3 (e.g. 0.5) in probability vector p will increase 1/N

(0.5 + 1/N). Hence, the value of bit3 in new offsprings will have more chance to be

1 than their parents.

At the same time, evolutionary strategy is applied to evolve the new generation in

the other subcomponents - K and θ optimisation. A probability generating function

is adopted to create a new pair of subindividuals for K and θ using the result from

the competition between α and β: if the winner’s K and θ are larger than the loser’s,

then their offsprings should have a higher probability to be larger than their parental

pair in the loser. The existing domain knowledge can be utilised for parameters

initialization, e.g., the most common value for classification threshold θ is 0.5, and

parameter K can be initialized by a ratio - n/ω (ω is a weight value and n is the

sample size of given data).

Once all the subcomponents have their new generations, cEAP will continue the

coevolution and iterate the process until the terminating condition is reached. For

clarity, Algorithm 4 gives the pseudo code of cEAP.

8.3 Cancer Gene Expression Data Classification

This case study presents a comparison experiment on four microarray cancer gene

expression datasets with proposed cEAP method, SVM method and a consistency

based method. SVM is generally considered as a reliable and efficient statistical

method for classification. The SVM classifier used in this experiment is derived from

the libSVM toolbox (Chang & Lin, 2001) developed by Chang and his colleagues

in National Taiwan University. The consistency based method is our previously

published model using consistency based gene selection algorithm (CAGSC) (Pang,

Havukkala, Hu, & Kasabov, 2008). This method is developed based on a conventional

GA, which is capable of achieving consistently good classification performance on

gene expression datasets (Hu, 2008).
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Algorithm 4 cEAP algorithm

1: initialize the subindividuals in the subcomponent for gene selection:
generate a probability vector p with l bits, pi = 0.5, where i ∈ 1, · · · , l,

2: generate two subindividuals from the vector p, respectively:
(Ga, Gb) = generate(p);

3: generate a pair of subindividuals Ka, Kb by a probability function fp;
4: generate a pair of subindividuals: θa and θb using a probability function f ′

p;
5: recombine the above subindividuals from three subcomponents into two individ-

uals:
α = Ga + Ka + θa;
β = Gb + Kb + θb;

6: evaluate individuals α and β by a fitness function z, respectively;
7: compete individual α and β:

winner, loser = compete(α, β)
8: create new populations in three subcomponents:

(i) use cGA to create the new generation for gene selection subcomponent
if Ga(i) 6= Gb(i)
if winner(i) = 1 then pi = pi + 1

µ

else pi = pi − 1
µ

(ii) use ES to create the new generation for K and θ in the other subcomponents:
Keep the winner of K and θ to form the offsprings K

′
a and θ

′
a; the other

offsprings K
′

b and θ
′

b are generated through a mutation performed by probability
functions fp and f ′

p.
9: check wether the termination criteria are reached:

if yes, then the winner individual represents the final solution ζ∗, including
the selected genes G∗ and optimised parameters K∗ and θ∗

otherwise iterate the process from step 2.

8.3.1 Data

Four benchmark cancer gene (protein) expression datasets ares used in this study:

colon cancer data (Alon et al., 1999), Leukaemia data (Golub et al., 1999), Lung

cancer data (Gordon et al., 2002) and Ovarian cancer data (Petricoin et al., 2002)

8.3.2 Experiment Setup

The parameter setting is summarised as follows: the initial value of θ is 0.5 that is

the most commonly used threshold for binary classification problem, and K = n/ω,
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where n is the sample size of the given data, and ω ≈ 2.5. The suggested initial

value is based on our previous experimental results for personalised modelling.

Leave-one-out cross validation (LOOCV) is a widely used technique for performance

evaluation on small sample size data and gives an almost unbiased validation result.

The sample size in a typical microarray dataset is small, and as a result we take

LOOCV classification error estimation as a straightforward approach to evaluate the

performance of cEAP method for personalised modelling. For the given data(n-by-

m), all samples are divided n times, where in each time all samples except one are

used for training and the withheld sample (known as the left out sample) is used for

testing.

8.3.3 Experiment Results

The experimental results using cEAP method over four benchmark gene datasets

are applausable in terms of LOOCV classification accuracy. A comparison of clas-

sification performance from cEAP, SVM and CAGSC are summarised in Table 8.1,

along with the results reported in the original study of these datasets. Figure 8.3,

8.4, 8.5 and 8.6 show the LOOCV classification results of cEAP on leukaemia, colon

cancer, lung cancer and ovarian cancer data, respectively. For reference, Table J.1

summarises the results obtained by cEAP on colon cancer data through LOOCV

classification in Appendix J.

This proposed method allows for the creation of an optimal personalised diagnostic

and prognostic model for a new patient, which includes the prediction of outcome or

risk evaluation. The method can also assist to design a tailored personal improvement

scenario.

Here, I used two examples to demonstrate the profiling ability of proposed PMS. I

randomly select one sample from colon cancer data and leukaemia data, respectively.

They are sample#57 from colon cancer data and sample#65 from leukaemia data.

In the case of colon sample#57, cEAP selects 11 out of 2,000 genes that are most

informative for colon cancer classification. Along with these selected genes, two pa-

rameters - classification threshold θ and the number of neighbouring samples (K)

are optimised specifically for sample#57. Figure 8.7 presents a profile for colon sam-
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Figure 8.3: The LOOCV classification accuracy of cEAP on colon cancer data,
where in the case of classification accuracy measurement, x axis represents the
classification threshold and y axis is the classification accuracy; in the case of
ROC curve, x axis represents false positive rate (1-specificity), while y axis is true
positive rate (sensitivity)

Table 8.1: The classification accuracy of different methods on all datasets. The
classification accuracy of cEAP is presented by overall accuracy and class 1/class
2 accuracy

Dataset cEAP[%] CAGSC[%] SVM[%] original publication[%]
Colon 87.10 (90.00/81.82) 82.26 87 87(Alon et al., 1999)
Leukaemia 100 (100/100) 95.84 93.75 85(Golub et al., 1999)
Lung 98.90 (93.55/100) 91.28 95.30 90(Gordon et al., 2002)
Ovarian 99.60 (100/99.38) 98.38 92.49 97(Petricoin et al., 2002)

ple#57, in which Fig.8.7.(a) shows the personalised modelling space (a neighbour-

hood with an appropriate size) of sample#57 using top 3 selected genes (gene 249,

377, 267). The neighbourhood contains 24 samples who are most close to sample#57

in terms of similarity measurement. In Fig. 8.7.(a), the personalised modelling space

clearly shows that sample#57 is surrounded by the samples from diseased class (the

red downward triangle points) much more than the samples from healthy class (the

green upward triangle points). Thus, sample#57 is more likely to be a diseased

sample based on the above observation. This assumption is afterwards proofed by
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Figure 8.4: The LOOCV classification accuracy of cEAP on leukaemia data,
where in the case of classification accuracy measurement, x axis represents the
classification threshold and y axis is the classification accuracy; in the case of
ROC curve, x axis represents false positive rate (1-specificity), while y axis is true
positive rate (sensitivity)

the prediction result obtained using cEAP method.

A personalised model is created by cEAP method for classifying colon sample#57

as follows:

• K = 24 neighbours of sample#57;

• neighbouring samples in the personalised space of sample#57:

Dpers(57) = 51, 31, 28, 55, 8, 32, 49, 14, 47, 61, 12, 29, 54, 22, 27, 30, 59, 6,

15, 1, 38, 26, 36, 41

• The optimised classification threshold θ for sample#57 is 0.55;

• 11 genes are selected as the informative genes for sample#57 and weighted

through SNR for the personalised space Dpers:
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Figure 8.5: The LOOCV classification accuracy of cEAP on lung cancer data,
where in the case of classification accuracy measurement, x axis represents the
classification threshold and y axis is the classification accuracy; in the case of
ROC curve, x axis represents false positive rate (1-specificity), while y axis is true
positive rate (sensitivity)

Gene Index Weighted SNR value Gene Index Weighted SNR value

G249 0.1241 G1982 0.0854
G377 0.1218 G1582 0.0797
G267 0.0970 G662 0.0745
G419 0.0942 G1870 0.0735
G1674 0.0914 G43 0.0681
G548 0.0903

Table 8.2 lists these 11 genes with Genbank accession number and their bio-

logical descriptions.

• The best local accuracy calculated by a WKNN classifier in Dpers(57) over the

24 nearest neighbouring samples is 82.58%.

• The predicted outcome for sample#57 is 1.65, so that it is classified as a diseases

sample (the threshold is 0.55). Moreover, the outcome shows the certainty (risk

probability) to determine which class this sample belongs. In this case, the

interval between the predicted outcome and threshold is small (0.65-0.55=0.1),

which shows an average certainty of the predicted outcome.

151



8.3. Cancer Gene Expression Data Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold / 1−specificity

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

/ s
en

si
tiv

ity

Ovarian cancer data − Area under Curve: 0.99383

 

 

ROC Curve
Overall Accuracy
Class 1 Accuracy
Class 2 Accuracy

Figure 8.6: The LOOCV classification accuracy of cEAP on ovarian cancer
data, where in the case of classification accuracy measurement, x axis represents
the classification threshold and y axis is the classification accuracy; in the case of
ROC curve, x axis represents false positive rate (1-specificity), while y axis is true
positive rate (sensitivity)

• A profile of sample#57 is designed and shown in Table 8.3.

Table 8.2: The 11 selected genes for colon sample#57

Index of
Gene

GenBank
Accession
Number

Description of the Gene (from GenBank)

G249 M63391 Homo sapiens desmin gene, complete cds
G377 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor
G267 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6
G419 R44418 NUCLEAR PROTEIN (Epstein-barr virus)
G1674 T67077 SODIUM/POTASSIUM-TRANSPORTING ATPASE GAMMA

CHAIN (Ovis aries) cds
G548 T40645 Human Wiskott-Aldrich syndrome (WAS) mRNA, complete cds.
G1982 T89666 INTERLEUKIN-6 RECEPTOR BETA CHAIN PRECURSOR

(Homo sapiens)
G1582 X63629 H.sapiens mRNA for p cadherin.
G662 X68277 H.sapiens CL 100 mRNA for protein tyrosine phosphatase
G1870 H55916 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHON-

DRIAL PRECURSOR(HUMAN)
G43 T57619 40S RIBOSOMAL PROTEIN S6 (Nicotiana tabacum)

Note: the detailed experimental result of cEAP on for colon cancer sample#57 is

included in the Appendix K.
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(b) A scenario of potential genome improvement for sample#57

Figure 8.7: The personalised profile of sample#57 from colon cancer data

In addition, cEAP has created a scenario of potential genome improvement for sam-

ple#57, which is illustrated in Table 8.3. In Table 8.3, the actual value represents the

actual gene expression level of a gene from sample#57. Desired average profile is the

average gene expression level from healthy samples group and desired improvement

value identifies the change of the gene expression level that this patient (sample#57)

should follow in order to recover from the disease. For example, the distance between

M63391 gene expression level of sample#57 and the average class profile for class 1

(normal class) and class 2 (diseased class) is:
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Table 8.3: An example: a scenario of the potential improvement for colon sam-
ple#57

Index of
Gene

GenBank Ac-
cession Num-
ber

Actual value Desired average
profile

Desired Im-
provement

Weighted
importance

G249 M63391 411.6240 597.1193 185.4953 0.1241
G377 Z50753 179.9090 233.8870 53.9780 0.1218
G267 M76378 397.7460 490.9205 93.1746 0.0970
G419 R44418 1370.3900 249.8221 -1120.5679 0.0942
G1674 T67077 98.2440 56.9415 -41.3025 0.0914
G548 T40645 717.0060 288.2512 -428.7548 0.0903
G1982 T89666 215.9140 43.2651 -172.6489 0.0854
G1582 X63629 151.1990 154.7945 3.5955 0.0797
G662 X68277 262.8410 428.0565 165.2155 0.0745
G1870 H55916 90.0480 142.6591 52.6111 0.0735
G43 T57619 2997.3980 2623.7725 -373.6255 0.0681

Table 8.4: The 16 selected genes for leukaemia sample#65

Index of
Gene

GenBank
Accession
Number

Description of the Gene (from GenBank)

G5772 U22376 C-myb gene extracted from Human (c-myb) gene, complete
primary cds, and five complete alternatively spliced cds

G2111 M62762 ATP6C Vacuolar H+ ATPase proton channel subunit
G461 D49950 Homo sapiens mRNA for interferon-gamma inducing fac-

tor(IGIF),complete cds
G2354 M92287 Homo sapiens cyclin D3 (CCND3) mRNA, complete cds
G2759 U12471 Homo sapiens thrombospondin gene, partial cds, alternatively

spliced
G6974 M28170 Human cell surface protein CD19 (CD19) gene, complete cds
G2242 M80254 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITO-

CHONDRIAL PRECURSOR
G2546 S82470 BB1=malignant cell expression-enhanced gene/tumor

progression-enhanced gene [human, UM-UC-9 bladder
carcinoma cell line, mRNA, 1897 nt]

G3056 U32944 Human cytoplasmic dynein light chain 1 (hdlc1) mRNA, com-
plete cds

G1829 M22960 Human protective protein mRNA, complete cds
G4951 Y07604 H.sapiens mRNA for nucleoside-diphosphate kinase
G6225 M84371 Human CD19 gene, complete cds
G1144 J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRNA, com-

plete cds
G5348 M61853 Human cytochrome P4502C18 (CYP2C18) mRNA, clone 6b
G6990 U21689 SAT Spermidine/spermine N1-acetyltransferase
G6847 M13485 Human metallothionein I-B gene, exon 3

185.4953 (for class 1)

1851.8648 (for class 2)

i.e. if patient (sample#57) wants to be recovered from colon cancer, a potential solu-

tion can be given for increasing his/her M63391 gene expression level from 411.6240

to 597.1193. Table 8.3 also summarizes the importance of each selected genes in

terms of the contribution to disease prediction. Larger the importance value, more
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Figure 8.8: The personalised profile of sample#65 from leukaemia data

informative the gene. The information concluded by this improvement scenario can

be used for designing personalised treatment for cancer patient.

It is interesting to find that gene 249 (M63391) and 377 (Z50753) are selected as

top 2 genes by cEAP and cGAPM (ref Chapter 7). It may conclude that these two

genes are highly contributive to colon cancer diagnosis.

Similarly, this study presents the experimental result from Leukaemia data using
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cEAP method. Table 8.4 summarizes the selected 16 informative genes with their

GenBank accession number and biological descriptions.

The experimental findings above we have discussed for colon sample#57 is mainly

from the computational prospective. Since an important objective of this study is

to identify some potential marker genes for cancer classification, I have compared

the selected genes by cEAP with those reported in Golub’s famous work (Golub

et al., 1999). Golub and his colleagues selected 50 genes (see fig.3 in their paper

(Golub et al., 1999)) for building classification model. Among Golub’s 50 top genes,

four genes (gene U22376, M62762, M92287, U32944) are also selected out by cEAP

method. Gene U22376 is consistently identified as the most informative one for

disease classification by both methods. This gene can be considered as a biomarker

genes for distinguishing leukaemia types.

8.4 Gene Marker Discovery

The proposed cEAP has been so far applied on four genomic datasets for cancer

classification. The prediction accuracy has been improved compared with previously

published benchmark results. In order to find a smaller number of genes, as global

markers that can be applied to the whole population of the given problem, all genes

selected for every sample in the dataset are ranked based on their likelihood to be

used for all samples. The top l genes (most frequently used for every individual

models) are selected as a set of potential markers for cancer diagnosis across the

whole population.

The approach used here for selecting potential marker genes is as follows:

1. Calculate the frequency of the features selected by cEAP on the given data

(refer to section 8.3.3);

2. Use the most frequently selected l features as the marker genes (Gmk), which

is a global selection based on PM;

3. Apply LOOCV on the data with the marker genes (Gmk) for classification;

4. Use different number of neighbours (K) for evaluating the performance of cancer

classification.
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In this experiment, colon cancer gene expression data is used for demonstrating the

above approach. Based on the result obtained by cEAP in previous section, the

frequency of genes selected for each sample in colon cancer data has been computed.

As Alon reported in their study that 20 genes selected by t-test could lead to good

result (Alon et al., 1999), I selected the same number of genes according to the

selecting frequency obtained using cEAP. Table 8.5 lists these 20 selected genes.

Figure 8.9 shows the frequency of the 20 genes selected by cEAP across the global

problem space - colon cancer data.

Table 8.5: The 20 most frequently selected genes (potential marker genes) for
colon cancer gene data

Index of
Gene

GenBank
Accession
Number

Description of the Gene (from GenBank)

G377 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor
G1058 M80815 H.sapiens a-L-fucosidase gene, exon 7 and 8, and complete

cds.
G1423 J02854 Myosin regulatory light chain 2, smooth muscle ISOFORM

(HUMAN)
G66 T71025 Human (HUMAN)
G493 R87126 Myosin heavy chain, nonuscle (Gallus gallus)
G1042 R36977 P03001 Transcription factor IIIA
G1772 H08393 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
G765 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
G399 U30825 Human splicing factor SRp30c mRNA, complete cds.
G1325 T47377 S-100P PROTEIN (HUMAN).
G1870 H55916 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITO-

CHONDRIAL PRECURSOR (HUMAN)
G245 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
G286 H64489 Leukocyte Antigen CD37 (Homo sapiens)
G419 R44418 Nuclear protein (Epstein-barr virus)
G1060 U09564 Human serine kinase mRNA, complete cds.
G187 T51023 Heat shock protein HSP 90-BETA (HUMAN)
G1924 H64807 Placental folate transporter (Homo sapiens)
G391 D31885 Human mRNA (KIAA0069) for ORF (novel proetin), partial

cds.
G1582 X63629 H.sapiens mRNA for p cadherin.
G548 T40645 Human Wiskott-Aldrich syndrome (WAS) mRNA, complete

cds.

The objective of this experiment is to investigate whether utilising these 20 poten-

tial marker genes can lead to improved colon cancer classification accuracy. Thus,

four classification models are used for comparison, including WKNN, MLR, SVM

and transductive neuro fuzzy inference system with weighted data normalisation for

personalised modelling (TWNFI) (Song & Kasabov, 2006). Personalised MLR and

SVM are used as the golden standard in this comparison experiment.

TWNFI is a dynamic neuro-fuzzy inference system in which a local model is created
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Figure 8.9: The 20 most frequently selected genes by cEAP across colon cancer
data, where x axis represents the index of genes in the data, y axis is the selected
frequency of a gene.

for analysing each new data vector xv. TWNFI introduces a local generalisation

approach, in which the Zadeh-Mamdani type fuzzy inference engine (Zadeh, 1988)

is applied. The local generalisation creates a model in a sub-space (local area) of

the whole problem space. This created model performs generalisation in this specific

local area. In the TWNFI model, Gaussian fuzzy membership functions are used

in each fuzzy rule for both antecedent and consequent parts. A steepest descent

(back-propagation) learning algorithm is applied for optimising the parameters of

the fuzzy membership functions (Song & Kasabov, 2006).

TWNFI usually performs a better local generalisation over new data. Comparing

with weighted distance nearest neighbour algorithms, TWNFI creates an individual

model for each data vector and takes into account the location of the new input vector

in the space. In this sense, TWNFI is an adaptive model in which the input-output

pairs of data vectors can be added to the dataset continuously and available for

transductive inference of local models. The detailed learning algorithm of TWNFI

is described in Appendix F.

These PM based algorithms are applied on colon cancer data with 20 potential maker

genes for cancer classification. In this experiment, MLR and SVM are implemented

for personalised modelling. They are called personalised MLR and SVM, because

they create a unique neighbourhood for each testing sample. All the algorithms are

validated based on LOOCV across the whole dataset. Since the main objective is to
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validate the importance of 20 selected genes for cancer classification from a global

viewpoint, each testing sample has a fixed neighbourhood size. However, each sample

has its own neighbourhood (different neighbours). The experiment also evaluates

the results obtained using different number of neighbours. Figure 8.10 shows the

results obtained using four algorithms with different size of neighbourhood. Table

8.6 summarises the classification results obtained using four personalised algorithms

using 20 potential marker genes selected by cEAP.
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Figure 8.10: The comparison of classification results obtained by 4 classifica-
tion algorithms employed for PM, using 20 potential maker genes, where x axis
represents the size of neighbourhood, y axis is the classification accuracy, k is the
number of nearest neighbours.

Figure 8.11 and 8.12 give the visualisation for the colon cancer data in different

condidtions. The former figure demonstrates the data with all features (genes) in

the original space and in a PCA space, while the latter shows the data with 20

marker genes in the original space and in a PCA space. Different colours of the data

points represent the different classes. Using PM selected marker genes, the samples

are clearly separated in the PCA space. It is clear that personalised modelling is able

to identify important features, which can lead to better classification performance.
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Table 8.6: The best classification accuracy obtained by four algorithms on colon
cancer data with 20 potential maker genes. Overall - overall accuracy; Class 1 -
class 1 accuracy; Class 2 - class 2 accuracy;

Classifier Overal[%] Class 1[%] Class 2[%] Neighbourhood
size

MLR (Personalised) 82.3 90.0 68.2 3
SVM (Personalised) 90.3 95.0 81.8 12
WKNN (Person-
alised)

90.3 95.0 81.8 6

TWNFI (Person-
alised)

91.9 95.0 85.4 20

Original publication
(Alon et al., 1999)

87.1 - - -
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Figure 8.11: The visualisation of colon cancer data with all genes, whereas in
(a), all samples are plotted by first two variables (genes) in the original space,
while in (b), all samples are plotted by two PCA variables in a PCA space.

The experiment results illustrate that the 20 potential marker genes selected by

personalised modelling system (cEAP) can lead to improved classification accuracy.

These potential marker genes might be very helpful for diagnosing colon cancer

through a global way, which shows the potential for drug and treatment design.

Also, this experiment depicts that personalised modelling based algorithms are able

to produce improved results for colon cancer classification with the globally selected

features. Personalised SVM and WKNN have yielded the same classification accu-

racy. As a more sophisticated PM classifier, TWNFI has produced the best result

(91.9% accuracy) in this experiment, which significantly improves the classification
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Figure 8.12: The visualisation of colon cancer data with 20 selected marker
genes, whereas in (a), all samples are plotted by first two variables (genes) in the
original space, while in (b), all samples are plotted by two PCA variables in a PCA
space.

accuracy comparing with the benchmark result (87.1%) reported in Alon’s work

(Alon et al., 1999).

8.5 Conclusion

In this study, we have presented a new integrative method (cEAP) using the con-

cept of coevolutionary algorithm for gene selection and parameter optimisation for

gene expression data analysis. Along with the proposed PMS, I have applied cEAP

method on four benchmark cancer gene and protein expression datasets and com-

pared the experimental results obtained by cEAP with other reported results in

literature. Compared with the other three methods in Table 8.1, cEAP consistently

produces better classification performance. More importantly, cEAP creates the

personalised models, including selected genes and optimal disease classification pa-

rameters specifically for the observed patient sample, which are helpful to construct

the clinical decision support systems for cancer diagnosis and prognosis.

To validate cEAP method from biology perspective, I have compared the selected

genes by cEAP method with the biomarker genes reported in Golub’s work(Golub

et al., 1999). To distinguish between acute myeloid leukemia (AML) and acute
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lymphoblastic leukemia (ALL), there are 16 genes most commonly selected by cEAP

for each sample. These selected genes have shown the agreement with reported

biomarker genes: 4 of the 16 genes - U22376, M62762,M92287, U32944 are identified

informative in both cEAP and Golub’s method. The difference can be accounted

by the fact that I have used personalised modelling for testing each patient sample

while Golub and his colleagues apply a global modelling approach for gene selection.

Another interesting finding is that gene U22376 is consistently identified as the most

informative for disease classification by both methods. Additionally, this study also

concludes that the selected genes for each sample in the same cancer data are not

identical, i.e., the importance of genes for each cancer patient could be varied sig-

nificantly, even though the genes are known to discriminate between diseased and

normal samples.

In the case of colon cancer data analysis, the top 3 selected informative genes for

colon sample#57 by cEAP are also marked as top genes by cGAPM. Thus, we may

conclude that these three genes are more likely to be the cancer genes for diagnosing

colon cancer.

The experimental results have shown that cEAP can be a good solution to complex

optimisation problems, which allows to build a personalised model for different types

of applications. Applications may involve a variety of modelling systems in the areas

of medicine, ecology, business intelligence, finance, nutrigenomics, etc.

In the discussion section, a comparison experiment is given to demonstrate the ef-

fectiveness of selected potential marker genes for colon cancer diagnosis. The exper-

iment results have shown that PM based classifiers can effectively work with these

globally selected genes (based on their selecting frequency) for cancer classification.

Such type of genes (potential maker genes) can be very useful for drug and treatment

design.

The limitation here is that the optimal personalised model is not created from a

global optimisation. To find an optimal solution with GA, each personalised model

should be created from a global optimisation, i.e. a final created personalised model

should be carried out some runs to ensure the optimal solution is not randomly

reached. However, due to time and resource limitations, global optimisation for each

model seems impractical for our experiment. GA based optimisation algorithms
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are generally thought as the least efficient optimisation algorithms (Bhattacharyya

et al., 2009; Solomatine, 1998), even though they may achieve the best solution

for the target problems. In the proposed cEAP method, the personalised model

is built through generations in one run. Instead of applying global optimisation,

the frequency of each feature selected as informative ones has been summarized for

further investigation.

Moreover, there is another open question that needs to be answered in personalised

modelling: whether different parameters of the learning function (e.g. a classifier)

will significantly affect the performance of created personalised model? The next

chapter will discuss this problem and present a case study for a real world problem

- Crohn’s disease risk prediction using SNPs data.
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CHAPTER 9

A Personalised Modelling Method and

System for Disease Risk Evaluation Based

on SNPs Data

“We can only see a short distance ahead, but we can see plenty there that needs to

be done.”

- Alan Turing

This chapter presents a case study for Crohn’s disease classification using the pro-

posed personalised modelling system - cEAP. The main goal of this case study is to

design a preliminary experiment for the research project of predicting Crohn’s dis-

ease using single nucleotide polymorphisms (SNPs) data. The classification problem

investigated here, is a real world problem, which makes the use of SNPs data for

predicting Crohn’s disease risk. It is expected to elicit more information and knowl-

edge through the analysis over selected features (SNPs in this case study). Also, I

will focus on investigating the feasibility whether personalised modelling (PM) can

work properly on real world biomedical data. This study will demonstrate how PM

method improves the prediction outcome using different approaches, starting from

the approach of using simple parameter optimisation to the approach of employing

cEAP method for parameter optimisation and feature selection.



9.1. Background and Motivation

9.1 Background and Motivation

Being able to accurately predict an individual’s disease risk or drug response and us-

ing such information for personalised treatment is a major goal of clinical medicine in

the 21st century (Jorgensen, 2008). For many common conditions a patient’s health

outcome is influenced by the complex interplay of genetic, clinical and environmental

factors (Nevins et al., 2003). With the advancement of microarray technologies col-

lecting personalised genetic data on a genome-wide (or genomic) scale has become

quicker and cheaper (McCarthy & Hirschhorn, 2008; Hindorff et al., 2009). Such

personalised genomic data may include: DNA sequence data (e.g. Single Nucleotide

Polymorphisms (SNPs), gene and protein expression data. Many world-wide projects

have already collected and published a vast amount of such personalised data. For

example, Genome-wide Association Scan (GWAS) projects have so far been pub-

lished for over 100 human traits and diseases and many have made data available for

thousands of people (http://www.genome.gov/gwastudies).

The datasets available in UK WTCCC data bank (http://www.wtccc.org.uk) will

be used in this study, which includes multivariate personalised data of DNA SNPs,

genomic, clinical, environmental and nutritional variables. If this case study is suc-

cessful, this approach will be used for the development of a prognostic system to

accurately predict clinical outcomes and appropriate treatment of CD patients in

New Zealand and will be further applied for other diseases.

9.1.1 Crohn’s Disease

Crohn’s disease (CD) is a chronic and debilitating autoimmune disorder of the gas-

trointestinal tract. It is a major subtype of inflammatory bowel disease (IBD) which

is diagnosed endoscopically and characterized by recurring episodes of abdominal

pain, diarrhoea and weight loss. The aetiology of CD is complex and unclear but is

generally thought to involve abnormal immune response to intestinal microorganisms

in genetically predisposed individuals (Sartor, 1997). As a consequence of ongoing

inflammatory “flares”, a large number of CD patients will develop strictures and

fistulae during the course of disease which can seriously impact the quality of life

and often requires surgery (Vermeire, Van Assche, & Rutgeerts, 2007).
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The incidence of CD is increasing dramatically in industrialized countries worldwide,

including New Zealand (Loftus, 2004; Eason, Lee, & Tasman-Jones, 1982; Gearry &

Day, 2008). As part of the “Canterbury IBD Project”, Gearry and his colleagues

(2006) conducted a comprehensive population-based survey of IBD in the Canterbury

region and showed that rates of CD were amongst the highest reported worldwide

- incidence: 17/100000 and prevalence: 155/100000. The age of diagnosis of CD in

this cohort peaked at around 30 years. This study especially, indicates that CD is

a mounting public health problem in New Zealand and requires research attention

aimed at reducing personal and societal burden.

Unfortunately, there is currently no completely effective clinical strategy for treat-

ing Crohn’s disease. Pharmacological treatment usually involves the trail of anti-

inflammatory drugs (e.g. corticosteroids), immunomodulators (e.g. suppressants

like Azathioprine), and biological (e.g. anti-tumor necrosis factor agents like Inflix-

imab). Current treatment paradigms used in the clinic are the so-called “step-up”

and “top-down” approaches. Step-up refers to the more classical approach that uses

progressively intense treatment as disease severity increases, usually starting with

lighter anti-inflammatory drugs. The top-down approach refers to early, more ag-

gressive treatment with biological and immunosuppressants to prevent disease com-

plications, for the purpose to improve the quality of life (Hommes et al., 2005; Baert,

Caprilli, & Angelucci, 2007). The top-down approach can be highly effective but can

increase risk of serious adverse reactions causing infection or cancer (Bongartz et al.,

2006).

Whether or not a patient should be given step-up or top-down treatment for IBD

is a controversial topic in clinical gastroenterology. The main issue is that it is

difficult to accurately predict which of the two approaches will provide the most

favorable outcome for an individual patient. It is increasingly believed that patients

at high risk of developing CD complications will benefit more from top-down therapy.

The inheritance risk probability of Crohn disease is unclear, because a variety of

genetic and environmental factors are reported to be involved in literature. For

example, people who smoke have are a higher risk to develop Crohn’s disease than

nonsmokers. Therefore, using accurate predictive tools to identify high-risk patients

and personalised treatment is a major goal for clinicians.
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9.1.2 SNPs Data for Crohn’s Disease Risk Evaluation

The SNPs data used for Crohn’s disease (CD) prediction is accessible from a UK’s

public data bank - Wellcome Trust Case Control Consortium (WTCCC) . The raw

SNPs data is originally used in genome-wide association (GWA) studies of 14,000

cases of 7 major diseases and a shared set of 3,000 controls (WTCCC, 2007). An

Affymetrix GeneChip mapping array set is used to record approximately 500,000

SNPs. However, the data size is extremely huge (more than 10GB) and in a unique

format (ped file), which makes it difficult to be analysed by traditional computa-

tional models on PC. Therefore, the raw SNPs data needs to be preprocessed in an

effectively way for further analysis.

Data Preprocessing

Unlike gene expression data is represented by continuous numerical value, SNPs data

is described by categorical value which brings a challenge to conventional computa-

tional models for finding hidden patterns from the data. There have been some

attempts to analyse categorical SNPs data in the literature. For example, Park

(2007) and his colleagues employed a nearest shrunken centroid method to build a

SNPs database - SNP@Ethnos. In their work, the categorical value of genotypes were

coded by numerical values directly, and then the data were analysed by the NSCM

of the R package pamr. Interestingly, same as gene selection playing an important

role in gene expression data analysis, it has been found that only a small number

of SNPs (known as relevant) have the genotype patterns highly in association with

the object group of individuals (Liu, Li, Cheung, Sham, & Ng, 2009). Therefore,

the enormous irrelevant SNPs should be excluded before the SNPs data is further

exploited for modelling construction.

In this case study, the SNPs data was partially preprocessed and provided by Rod

Lea and his research team at Environmental Science & Research (ESR) institute.

Lea and his research team developed a Multi-factor Data Reduction (MDR) ap-

proach to identify the most important SNPs for predicting Crohn’s disease (CD)

risk. With their MDR method, the whole dataset was separated into 3 subsets:

dataset A and B were used as the training sets, and dataset C was used as the

testing data for validating the selected important features (SNPs) for CD predic-
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tion. They used the whole genome association analysis tool set - PLINK (http://

pngu.mgh.harvard.edu/~purcell/plink/index.shtml) for data propressing and

analysis. Their MDR method finally selected 42 SNPs as the biomarkers for CD

prediction based on the evaluation over two training datasets A and B. The training

accuracy obtained by their MDR method was approximately 72% while the testing

accuracy on validation dataset C was about 65%.

Based on Lea’s work, I have used their preprocessed SNPs data in which each sample

is represented by 42 SNPs (selected by their MDR method) in conjunction with 2

clinical factors (age and gender). All the samples for Crohn’s disease prediction are

randomly grouped into 3 subsets:

1. Set A contains 1049 samples in which 561 samples are diseased and 488 are

controlled.

2. Set B contains 1045 samples in which 560 samples are Crohn’s disease cases,

while 485 are controlled.

3. Set C is an independent dataset that contains 106 samples (57 diseased cases

vs. 49 controlled).

where the values for each SNP are relative risk values.

The proportion of missing values across the whole given SNPs data is 7.89%. I have

replaced them by the major value of each feature (SNP). In this SNPs data, most

features’ values vary from 0 to 3, except the value of feature Age ranging from 1 to

10 (category value, the actual age is the product of the age multiplied by 10). Most

SNPs have only 2 or 3 unique values, e.g. feature 3 (SNP X2065477 A) has two risk

values 0.92 and 2.14. To create a personalised problem space for each testing sample,

a PMS uses Euclidean distance to measure the similarity between the samples across

the feature space. However, the value of feature Age is out of the range that most

feature values fall in, which significantly affects the distance measurement. Hence, I

have normalised the feature Age into the range between 0 and 1.
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9.2 Method

This study has approached the experiment into the following 7 steps:

1. Apply a global SVM model on training data (A+B), train the model and

optimise the related parameters. Validate the trained global SVM model on

testing subset Dx; This is an experiment for acquiring gold standard to compare

the results from the proposed PM.

2. Use all features (42 SNPs + 2 clinical factors), and optimise the parameter Kv

within the personalised problem space (neighbourhood) for each sample from

testing subset Dx; Compute the classification accuracy using the model with

optimised parameter Kv;

3. Optimise the parameters for each testing sample of Dx by using all features.

Such parameters include: (1) Kv for the personalised problem space and, (2) c

and γ for the kernel function of SVM model;

4. Optimise all related parameters, including Kv, c and γ. Also, select features

(S∗) for each testing sample of Dx. Then, used the optimised PM model (with

selected features (S∗) and optimised parameters (Kv, c and γ) to classifiy the

testing dataset Dx;

5. Validation - Use the optimised PM model obtained in Step 4 to do the classi-

fication on the independent testing set C.

6. Evaluate the reliability of personalised modelling - The above Step 5 is re-

peated on a random sample from data C 20 times. The outcome is used for

investigating the frequency of features selected in the 20 runs, and the local

accuracies as well.

7. Create a globally optimised personalised model and profile for one sample,

according to the finding and knowledge discovered in Step 6. Re-test the model

for the given sample.

The experiment starts with the creation of a testing set that contains 10 randomly

selected samples from dataset C. For the purpose to provide a fair comparison, these
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10 random samples will be used all through the experiment in this case study, and

are denoted as Dx:

Sample : 392 408 269 458 120 857 1011 791 834 572

Five samples are from controlled group (class -1) while the other five samples are

from diseased group (class 1). Each sample is represented by 44 features (42 SNPs

plus 2 clinical factors).

The same SVM algorithm is used in this case study as the classifier for a fair com-

parison. The SVM model is derived from the well-known LibSVM package (Chang

& Lin, 2001).

9.3 Experiment

In this case study, all the experiments are carried out on a PC with Matlab environ-

ment.

9.3.1 Step 1 - Global SVM Modelling

This section presents the experiment of global SVM modelling on SNPs data for

Crohn’s disease (CD) risk prediction. In order to find appropriate parameters for

SVM, such as γ and c for the kernel function of SVM model, 5-fold cross-validation

is employed for training datasets A and B. Then the trained SVM model is applied

on the testing set C to perform the CD risk prediction. In this experiment, there is

no feature selection, and we use all 44 features that are reported important for CD

prediction in Lea’s experiment.

Table 9.1 gives the experiment result of global SVM model on SNPs data for CD

classification. The parameters for SVM kernel function are c (the cost) and γ that

are optimised through 5-fold cross validation during the training stage. The overall

accuracy for CD classification here is 0.70, which is not satisfactory for a test on 10

randomly selected samples. Moreover, there is no further information and knowl-

edge that we can discover from this global SVM modelling experiment for designing

170



9.3. Experiment

Table 9.1: The experiment result of a global SVM model on the Dx of the SNPs
data for CD classification, where class 1 accuracy is the classification accuracy of
controlled samples (class label -1), while class 2 is the classification accuracy of
diseased samples (class label 1).

Sample ID: 392 408 269 458 120 857 1011 791 834 572
Actual -1 -1 -1 -1 -1 1 1 1 1 1
Predicted -1 1 -1 -1 1 1 -1 1 1 1
Parameters for SVM: -c 200 -g 0.01
Overall Accuracy: 70%
Class 1 Accuracy: 60% Class 2 Accuracy 80%

medical treatment. In the next section, we will investigate the size of personalised

problem space for CD risk evaluation using the proposed method - cEAP.

9.3.2 Step 2 - Personalised Modelling (Optimise Kv)

This experiment uses the same 10 random samples that are used in the global SVM

modelling experiment. The learning function for CD prediction is still the LibSVM

classifier. We implement PMS in a very simple way in which there is no feature

selection. This approach only searches the optimal number of samples (Kv) for

each sample xv from the subset Dx of SNPs data. It evaluates different number of

neighbouring samples (Kv) according to the classification performance of SVM.

The experiment result of this implementation of personalised modelling on Dx is

illustrated in Table 9.2

Table 9.2: The experiment result of a personalised modelling on the Dx of the
SNPs data for CD classification (only optimise Kv), where local acc is the local
accuracy that is defined as the accuracy of each given sample calculated on the its
personalised problem space Dpers.

Sample ID: 392 408 269 458 120 857 1011 791 834 572
Actual -1 -1 -1 -1 -1 1 1 1 1 1
Predicted -1 1 -1 1 -1 1 1 -1 1 1
Local Acc 0.75 0.68 0.63 0.67 0.78 0.77 0.75 0.60 0.79 0.61
Kv 51 38 33 34 19 32 38 39 43 19
Parameters for SVM: -c 200 -g 0.01
Overall Accuracy: 70%
Class 1 Accuracy: 60% Class 2 Accuracy 80%
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In this case, the personalised modelling method has optimised one parameter Kv

and give the local accuracy for each testing sample. Although the performance

of personalised modelling based method for classify CD samples is not improved in

terms of accuracy, the result from personalised modelling brings us some information

that may reveal the reason why it is not effective in this case. One possible reason is

that the low training accuracy results in the misclassification. It is easy to elucidate

from experiment results that in general, most samples with high local accuracy are

successfully classified, except sample 572 that has a very low local accuracy (0.61).

For example, sample 408 belongs to the controlled class, but is misclassified into

diseased group. Its local accuracy across the personalised problem space (38 nearest

neighbouring samples) is quite low - 68%. Similarly, the local accuracies of sample

458 and 791 are 0.67, and 0.60, which are not satisfactory in terms of classification

performance, so that both of them are misclassified.

This experiment raises some open questions that need to be solved:

� How can we improve the local accuracy for a testing sample?

� Whether local accuracy will significantly affect the classification performance for

testing new coming samples?

The next section will investigate these problems through another approach of per-

sonalised modelling.

9.3.3 Step 3 - Personalised Modelling (Optimise Kv and the

Parameters of Learning Function)

In order to improve the local accuracy for the new testing sample, a new approach is

proposed in this section for SNPs data analysis. Three parameters are optimised for

building more efficient personalised, including the number of samples (Kv) and the

parameters for SVM classifier (c and γ). The optimisation is evolved by a evolution

strategy based algorithm, which is described in the method of cEAP in Chapter 8.

In this experiment, only two samples are misclassified: sample 408 and 458. The

classification accuracy is slightly improved, but the local accuracy of each testing
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Table 9.3: The experiment result of a personalised modelling on the Dx of the
SNPs data for CD classification (optimise Kv, c and γ), where c and γ are two
parameters for SVM classifier

.

Sample ID: 392 408 269 458 120 857 1011 791 834 572
Actual -1 -1 -1 -1 -1 1 1 1 1 1
Predicted -1 1 -1 1 -1 1 1 1 1 1
Local Acc 0.76 0.62 0.75 0.69 0.78 0.76 0.71 0.52 0.81 0.76
Kv 44 32 33 34 19 26 19 22 38 31
c(SVM) 233 236 233 244 387 232 244 235 352 371
γ(SVM) 0.0037 0.0042 0.0036 0.0056 0.0295 0.0034 0.0056 0.0040 0.0235 0.0269
Overall Accuracy: 80%
Class 1 Accuracy: 60% Class 2 Accuracy 100%

samples is still unsatisfactory. The local accuracy of sample 408 and 458 is 0.62

and 0.69 calculated based on the personalised space of 32 samples and 34 samples,

respectively. Such low local accuracy results in the misclassification, even though the

parameters of SVM classifier is optimised for each testing sample. The experiment

result is reported in Table 9.3.

Although this approach has optimised all the parameters relevant to the personalised

modelling for SNP data analysis, the low local accuracy prevents the created per-

sonalised model working well on new testing data. Also, the question raised in last

section that whether local accuracy will affect the performance of personalised mod-

elling is not well answered here and still keeps uncertain. Additionally, this section

has raised another open question that need to solved in this study:

� what other issues need to be considered in terms of improving the performance of

personalised modelling for SNPs data analysis?

9.3.4 Step 4 - Personalised Modelling (Integrated Feature

Selection, Neighbourhood Optimisation Kv and Pa-

rameter of Learning Function Optimisation)

It is shown in last section that the approach of personalised modelling has slightly

improved the classification performance for CD prediction through optimizing rele-

vant parameters Kv, c and γ. However, the experiment has not sufficiently proved

the strength of personalised modelling over global modelling for a classification prob-

lem using SNPs data. Therefore, this section aims to answer the questions raised in
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Figure 9.1: The combined chromosome consists of 4 subcomponents Ω(1), Ω(2),
Ω(3) and Ω(4), respectively.

last section and give the solution.

In this case study, I have so far proposed three approaches to develop personalised

modelling systems for CD risk evaluation using SNPs data. However, using only 10

randomly selected samples, the experiment has not achieved applausable results in

terms of classification performance, even though a set of parameters in relation with

the construction of personalised models have been optimised.

As discussed in early chapters, feature selection is a critical part in the construction

of personalised models. The above three experiments are carried out based on the as-

sumption that all 44 features are important to CD risk prediction. With personalised

modelling, features are of different importance to different testing samples regarding

to a biological problem. Therefore, feature selection should be applied on the SNPs

data for CD classification, along with the parameter optimisation.

In this experiment, cEAP method is employed for feature selection and optimise

parameters simultaneously. The problem space is decomposed into four subcompo-

nents, which are shown in Figure 9.1. The subindividual of gene selection is binary-

string encoded, while the rest subdividuals for parameter optimisation (Kv, c, γ) are

real value encoded. The detailed description of cEAP method refers to Chapter 8.

Table 9.4 reports the classification result that lists all the features optimised by

cEAP method. Also, the selected genes for each testing sample of subset Dx are

summarised as follows:

Sample 392: 13 selected features;

Feature List: 1, 7, 11, 15, 19, 20, 21, 24, 25, 26, 37, 38, 40;

Sample 408: 17 selected features;

Feature List: 1, 3, 4, 6, 11, 15, 19, 21, 23, 28, 31, 32, 33, 37, 38, 39, 42;
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Table 9.4: The experimental results of a personalised modelling on the Dx of
the SNPs data for CD classification (include feature selection and parameter op-
timisation for Kv, c and γ), where Num of features shows how many features are
selected for testing a specific sample from Dx.

Sample ID: 392 408 269 458 120 857 1011 791 834 572
Actual -1 -1 -1 -1 -1 1 1 1 1 1
Predicted -1 1 -1 -1 -1 1 1 1 1 1
Local Acc 0.84 0.77 0.76 0.79 0.73 0.80 0.75 0.83 0.82 0.80
Kv 53 50 33 31 27 48 18 50 38 44
c(SVM) 312 345 335 308 257 300 299 349 291 293
γ(SVM) 0.0183 0.0265 0.0240 0.0173 0.0051 0.0153 0.0152 0.0274 0.0134 0.0138
Num of Features 13 17 22 23 18 21 17 22 29 19
Overall Accuracy: 90%
Class 1 Accuracy: 80% Class 2 Accuracy 100%

Sample 269: 22 selected features;

Feature List: 1, 3, 4, 6, 7, 8, 10, 13, 15, 16, 17, 18, 20, 23, 28, 29, 31, 35, 37, 39, 42, 44;

Sample 458: 23 selected features;

Feature List: 1, 2, 5, 6, 8, 9, 10, 16, 18, 20, 21, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 42, 44;

Sample 120: 18 selected features;

Feature List: 1, 3, 6, 7, 9, 13, 15, 16, 17, 19, 20, 23, 27, 29, 30, 37, 39, 44;

Sample 857: 21 selected features;

Feature List: 1, 2, 3, 4, 5, 6, 7, 11, 17, 21, 24, 26, 28, 31, 32, 33, 38, 39, 40, 43, 44;

Sample 1011: 17 selected features;

Feature List: 1, 5, 6, 7, 9, 10, 13, 15, 16, 20, 27, 29, 37, 38, 40, 41, 44;

Sample 791: 22 selected features;

Feature List: 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 26, 38, 39, 42;

Sample 834: 29 selected features;

Feature List: 1, 2, 5, 6, 8, 9, 12, 14, 15, 16, 17, 19, 20, 22, 23, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37,

39, 41, 42, 44;

Sample 572: 19 selected features;

Feature List: 1, 3, 5, 7, 8, 10, 16, 18, 19, 20, 21, 23, 26, 29, 36, 38, 41, 42, 44;

It is obvious that this approach for personalised modelling has improved the perfor-

mance in terms of classification accuracy. Only one controlled case (sample 408) is

misclassified as diseased. This approach has achieved high local accuracy achieved

across all testing samples (all of them are higher than 0.73), which could be the

main reason that leads to the better performance of personalised modelling for CD

prediction. This could be the main reason why the classification performance is
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significantly better than that from global modelling and the insufficiently learned

personalised model presented in the above experiments. It seems that a well de-

signed personalised model is a competitive method for biomedical data analysis. At

the same time, the experiment has clearly demonstrated the importance of feature

selection and parameter optimisation in personalised modelling for a real world data

analysis problem. Additionally, the selected features (SNPs) are of great importance

for each individual patient sample for medical applications, such as personalised clinal

treatment, personalised drug design and drug response. Global modelling approaches

are not able to offer such information for building clinical decision systems.

Although I have so far demonstrated the superior classification performance of per-

sonalised modelling based method over global modelling on a real world SNPs dataset,

the number of samples used in the above experiments is very small which is mainly

for principle proofing. The good classification accuracy (90%) achieved in Step 4

using personalised modelling method might be created by chance, because of the

limited number of testing samples. The next experiment will test more samples for

the validation of the proposed methods for personalised modelling.

9.3.5 Step 5 - Validation

In this experiment, dataset C is used for validating the personalised model created

in Step 4. The experiment consists of two modelling techniques for SNPs data

analysis: (1) global SVM modelling; (2) personalised modelling (cEAP). The per-

sonalised modelling based method creates a better classification accuracy than the

global model (73% vs. 70%), and provides a unique model for each testing sample.

The classification accuracy of global SVM modelling on the testing data C 70% (class

1: 63%, class 2: 75%). The parameters for SVM model are: c=200, γ = 0.01. The

method of personalised modelling (combining feature selection and all parameters)

outperforms global SVM on this data. It yields 73% classification accuracy (class 1:

76%, class 2: 70%). The detailed experimental results is in Appendix L.

It is clear that using PM can extract some useful information and knowledge from

the experiment over this SNPs testing dataset:

1. The average number of selected features is around 17;
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2. The average size of personalised problem space (neighbourhood) is 70;

3. There are five most important features for predicting Crohn’s disease. One

is a clinical factor - Age. The others are 4 SNPs: X10210302 C, X17045918 C,

X2960920 A and X7970701 G.

The discovered information and knowledge are of great importance to create a profile

for each patient sample, and can be helpful for tailored treatment design and drug

response and unknown types of disease diagnosis.

9.3.6 Step 6 - Reproducibility Evaluation

The main goal of the experiment in this section is to evaluate the reproducibility

of personalised modelling based method proposed in Step 4. We are interested in

whether the proposed personalised modelling based method is capable of producing

highly consistent outcome for one sample? More specifically, this experiment is

aiming to answer the questions:

1. What is the performance of proposed personalised modelling based method

using global optimisation?

2. What is the variance of the local accuracy calculated from the global optimi-

sation?

3. What is the frequency of each features to be selected during this experiment

in 20 runs?

4. How many features should be selected for a successful prediction in general?

A sample (#392) is randomly selected and evaluated through 20 runs. The detailed

experiment results are in Appendix M. Personalised modelling creates an applausable

prediction accuracy: the prediction for sample 392 is always correct through all 20

runs. The average local accuracy for this sample through 20 runs is 82.45%. In

addition, the personalised modelling method seems to work effectively on sample

392, as the computed local accuracy through 20 runs is very stable - the highest one

is 83% and the lowest is 81%.
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Figure 9.2 illustrates the selecting frequency of each feature for testing sample 392

during 20 runs. Here Age is again the most important feature for CD prediction, as

it has been always selected during 20 runs. The next top 5 selected features are:

Feature Id SNP Id Selecting frequency(/20times)

20 X4252400 T 19

24 X2155777 T 18

12 X7683921 A 14

9 X2270308 T 13

23 X10883359 G 13
It seems that SNP X4252400 T and X2155777 T are two decisive factors for predict-

ing CD risk specifically for sample 392.

Figure 9.3 summarizes the number of selected features in each run. It is easy to elicit

that using approximately 12 ∼ 16 SNPs plus the feature of Age could lead to the

successful prediction for sample 329. This finding is in agreement with the previous

outcome in the experiment in Step 5.
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Figure 9.2: The frequency of each feature to be selected from 20 runs for sample
392 of SNPs data for CD risk evaluation

Personalised modelling based method works consistently well on a sample for CD risk

prediction. The prediction outcome is reliable and the local accuracy is reproducible.

The training procedure within the personalised problem space is stable through a

number of runs (such process can be thought as a global optimisation). However, the

selected SNPs is dependent on the parameter combination, such as the parameters
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Figure 9.3: The number of selected features for sample 392 in each of the 20
runs of the PM procedure

of learning function. For personalised medical treatment design, this study suggests

that the proposed PM method should run several times over the testing sample,

to find the most informative features (SNPs) through different runs, i.e. the most

commonly selected features in different testing runs.

9.3.7 Step 7 - Personalised Profiling

The goal of this step is to use the information and knowledge discovered from above

steps to create a globally optimised profile for a new testing sample. As described

in Step 6, personalised modelling method employs evolutionary computation to op-

timise the parameters and select features, which may create different personalised

models for a new testing sample from different runs. The method for this experiment

is as follows:

1. Take one random sample (e.g. here is sample 392) as the testing sample;

2. select a set of features S∗ based on their selecting frequency during 20 runs in

the experiment of Step 6;

3. Create a model on the training data A and B using the selected features, and

compute the local accuracy;
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4. Test the training model over sample 392, and provide a profile for the sample.

The assumption made for selecting features is that more frequently the selected

features through a global optimisation process, more important the features for the

given task. In this experiment, a threshold of selecting frequency is introduced to

determine whether the feature is selected or not, i.e. whether the feature is selected

more than half of all runs (10 out of 20 runs). There are 8 features selected more

than 10 times during 20 runs shown in Figure 9.2. Thus, these 8 features are selected

for building a personalised model:

1 (Age), 20 (X4252400 T), 24 (X2155777 T), 12 (X7683921 A), 9 (X2270308 T), 23

(X10883359 G), 3 (X2065477 A), 33 (X17221417 G).

The local training accuracy obtained on the training data (data A and B) is 100%

accurate. The parameters used in the final optimal personalised model for sample

392 are suggested as:

the appropriate neighbourhood size is 51, and the parameters for SVM classifier are

c = 235, γ = 0.0284.

With this global optimised personalised model, sample 392 is successfully classified.

From this experiment, it is easy to conclude that feature selection is more likely to

be the most decisive factor for CD risk prediction. With a subset of most frequently

selected features, a personalised modelling system is able to provide an accurate

prediction for a new testing sample. Moreover, this experiment reveals that the local

accuracy within the personalised problem space plays an important role for disease

risk prediction. The good local accuracy is more likely to lead to a satisfactory testing

performance. Therefore, how to improve the local accuracy within the personalised

problem space under different situations will be an interesting research question in

future study.

9.4 Discussion and Conclusion

Unlike synthetic problem simply focused on theoretical approval, the real world prob-

lem usually brings big challenges coming from different aspects, such as data collec-

tion, data preprocess (e.g. missing value and data scaling), etc. This chapter has

addressed and discussed these issues in this chapter.
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This chapter has presented a comparison experiment in which I have used global SVM

modelling and different approaches of personalised modelling for Crohn’s disease

(CD) risk evaluation. To build a personalised model for each testing sample, I

have approached the personalised modelling in four steps, from simple optimisation

(only optimise one parameter: Kv) to the method of optimising a set of parameters

and selecting features simultaneously. It shows that the approach only based on

parameter optimisation may not be able to find an optimal personalised model for

a particular data point, even though it may perform slightly better than global

modelling approaches. To build an effective personalised models, a PMS should

comprise the function modules for optimising relevant parameters optimisation and

feature selection.

The main contribution of this case study is that it has theoretical proved the feasi-

bility that personalised modelling is able to produce improved classification perfor-

mance for real world biomedical data analysis. It has also demonstrated the strength

of personalised modelling over global modelling for the classification over this spe-

cific SNPs data. Personalised modelling approach allows each individual patient to

have a detailed unique profile, which is very useful for personalised clinical decision

system.

This chapter also raises some open research problems that need to be investigated

in my future study:

• How to find a suitable approach to visualize the profile in SNPs data analysis?

SNPs data are generally category data, which brings a big challenge to visualise

the profile in a PMS. It is not appropriate to employ the visualisation schema

used for gene expression data analysis, because the change between different

category values does not reveal any useful information for clinical decision

making system. Hence, In order to effectively visualise the results from SNPs

data analysis, it is critical to have in-depth biological understanding of SNPs

data.

• How to balance the computational complexity and disease prediction accuracy?

Personalised modelling usually needs intensive computation due to the creation

of personalised model for each individual testing sample. GA based searching

scheme brings more computational complexity, though it often comes with

better performance.
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• How to provide a more efficient way to measure the similarity of samples to

create the personalised problem space (an appropriate neighbourhood)? In this

study, Euclidean distance is used for calculating the neighbourhood. However,

for SNPs data with categorical values, Euclidean distance may not the best

option for similarity measurement.

These questions will be discussed in the next chapter as part of the future research.
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CHAPTER 10

Conclusion and Future Study

“Our imagination is the only limit to what we can hope to have in the future.”

- Charles F. Kettering

This research has presented a novel conceptual personalised modelling framework

(PMF) for data analysis and knowledge discovery. To the best of my knowledge, this

study is the first comprehensive study of personalised modelling (PM) from the point

of view of computational intelligence. It is a feasibility analysis of PM for genomic

data analysis and for possible clinical applications. Five novel methods have been de-

veloped during this course of study: (1) personalised modelling based gene selection,

(2) increment search based approach for personalised modelling (iPM), (3) genetic

algorithm search based approach for personalised modelling (gaPM), (4) compact

GA search based personalised modelling (cGAPM), and (5) co-evolutionary algo-

rithm based method for gene selection and parameter optimisation in personalised

modelling (cEAP). These PM methods and systems have been applied on different

benchmark gene expression datasets, a proteomic dataset and a SNPs dataset for

disease classification. This research is not the end, but just a beginning to explore

the filed of personalised modelling for knowledge discovery.



10.1. Summary of the Thesis

10.1 Summary of the Thesis

Every research endeavor starts with the objectives that guide the direction of the re-

search. The ultimate objective of this research is to develop novel information meth-

ods and systems for PM and specifically for genomic data analysis and biomedical

applications. In brief, this thesis has presented the following main contributions

for personalised modelling study:

1. Analysed the problems related to PM and proposed potential solutions;

2. Developed five novel algorithms and methods for PM, including personalised

feature selection and personalised profiling;

3. Developed two PMSs, specifically for different gene expression data analysis;

4. Developed one PMS for SNPs data analysis;

5. Gave the research direction for the future study.

The proposed personalised modelling system is the platform and system that in-

tegrates novel machine learning and modelling techniques for the specific research

problems:

X feature selection;

X classification;

X disease outcome prediction;

X adaptation to new data;

X knowledge discovery and model validation;

X data sample profiling and results visualisation.

As an important part in PMS, Chapter 7 has proposed a novel feature (gene) selection

method. It is a hybrid method comprising two feature selection techniques: filter and

wrapper selection. In brief, PMGS applies filter on the objective data to measure
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features’ importance based on the calculated statistical scores and remove a large

number of irrelevant features that have very low ranking scores. Wrapper selection

works together with a learning function (a classifier) to evaluate the rest features

through an evolving way.

This thesis has presented a critical analysis of problems related to PM. Such issues

and challenges include: feature selection, imbalanced data structure, data sampling,

the optimisation of relevant parameters, error measuring methods, inconsistency

problem, profiling, etc. To solve these problems, this research has proposed a va-

riety of algorithms and models in the development of personalised modelling. The

proposed methods and systems for personalised modelling are evolving through in-

cremental addition of new data to adaptive learning.

This study has investigated a variety classification models during the development

of PMS. Such algorithms and models include KNN, WKNN, WWKNN, SVM, ECF,

MLR, Naive Bayes classifier, TWNFI, etc. One interesting finding is that the ex-

perimental results have shown that classification models are important, but not the

decisive factor for PMS construction. Feature selection and the quality of person-

alised problem space are two more critical factors that directly affect the classifica-

tion/prediction performance of personalised modelling methods. The experimental

outcomes have shown that a simple classifier works efficiently and is able to create

satisfactory results in many cases, such as KNN, WKNN, and SVM. Some sophisti-

cated algorithms for classification may yield good results in some difficult cases, but

introduces huge computational burden.

This study has presented two approaches for implementing PMS: incremental search

based approach (iPM) and GA search based approach. These two approaches are

used for solving PM problems under different situations. Incremental search based

approach works fast on large datasets and is able to produce good results in some

cases of the classification on simple data. However, its performance is usually not as

competitive as that from other more sophisticated methods, such as gaPM, because

iPM only evaluates features individually and neglects their complex interactions.

GA search based personalised modelling system usually yields improved results than

the from iPM, as it takes into account the relationship between features during

feature selection. However, the proposed GA search based PM raises a problem: how

to optimize the relevant parameters in conjunction with feature selection for building
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a PMS? The experimental results of GA based PMS show that it does not outperform

other modelling techniques in some cases of difficult prediction tasks. It does not take

into account the relationship between candidate feature sets and the parameters, i.e.

feature selection and relevant parameters are evaluated separately so that they may

not be sufficiently optimised. To solve this problem, this thesis has proposed a novel

method - an integrative (coevolutionary algorithm) based personalised modelling

method (cEAP) for gene selection and parameter optimisation simultaneously.

In Chapter 8, cEAP method has been applied on four dataset - colon cancer data,

leukaemia cancer data (Golub et al., 1999), lung cancer data (Gordon et al., 2002)

and ovarian cancer data (Petricoin et al., 2002). cEAP consistently outperforms other

methods for cancer classification, and discovers more useful information, including

selected informative genes and optimal disease classification parameters specifically

for the observed patient sample, which are helpful to construct the clinical deci-

sion support systems for cancer diagnosis and prognosis. For biological reference,

some of experimental findings are proofed in the literature, e.g. the selected genes

of leukaemia data by cEAP are reported as biomarkers in other published papers.

Chapter 9 has theoretically proofed the strength of cEAP method that is superior to

other global modelling techniques on a challenging real-world problem - using SNPs

data for crohn’s disease risk prediction.

In summary, personalised modelling offers a novel and integrated methodology that

comprises different computational techniques for data analysis and knowledge dis-

covery. Compared with the results obtained by other published methods, the new

algorithms and methods based on PM have produced improved outcomes in terms

of prediction accuracy and discovered more useful knowledge, because they take into

account the location of new input sample in a subspace. The subspace (person-

alised space) excludes noise data samples and provides more precise information for

analysing new input data sample.

PM is an adaptive and evolving technique, in which new data sample can be con-

tinuously added to the training dataset and subsequently contribute the learning

process of personalised modelling. More importantly, the technique of personalised

modelling offers a new tool to give a profile for each new individual data sample.

Such characteristic makes personalised modelling based methods are promising for

medical decision support systems, especially for complex human disease diagnosis
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and prognosis, such as cancer and brain disease.

However, as a PMS creates a unique (personalised) model for each testing data

sample, it requires more computational power and performance time than traditional

global modelling methods, especially to train the models on large data sets. The

proposed methods have shown the great potential for solving the problems that

require individual testing. This study is the first step in this research direction and

needs more in-depth understanding in bioinformatics for validating the experimental

findings and knowledge discovery.

10.2 Directions of Future Research

This section presents some promising future direction for the development of the

methods and systems in personalised modelling. However, the problems in bioinfor-

matics are in principle very challenging and difficult due to the inconsistency in data

and the lack of efficient methods. Although this study has proposed new algorithms

and methods for personalised modelling in data analysis and biomedical problems,

there are limitations and open research problems need to be investigated and solved

in future research.

10.2.1 How to Deal with Variability in Data and Achieve

Consistent Results

In this study, evolutionary computation has been applied in the proposed methods

and algorithms for PM, the near optimal results can be different. This may affect the

determination of choosing the markers (important features) for medical applications.

Some partial solutions are proposed in the thesis (refer. Chap 9), e.g. applying

multiple runs to ensure the consistent outcomes.

To verify the experimental results presented in this study, some of them have been

discussed with the experts in related research fields. Some new findings will be

reported in academic papers and will be applied to new biomedical applications,

such as the new coming project of functional outcomes prediction using stroke data.
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10.2.2 Similarity Measurement

In order to find a personalised problem space (an appropriate neighbourhood) for a

new input data sample, there must be an effective model to measure the the similar-

ity of the objective samples. In the proposed PMSs, the similarity measurement is

computed by a Euclidean distance based method. Euclidean distance is a straight-

forward geometric distance that simply calculates the difference in each dimension

(feature). It is widely used in data mining and pattern recognition tasks that involve

calculating abstract “distances” between data points. However, Euclidean distance

measurement has a main limitation: it is strongly sensitive to the scales of the ob-

jective variables (features). Personalised modelling problems are involved at dealing

with different data which may have the variables with very different scales, such as

age, gender, weight, blood pressure, etc. Using simple Euclidean distance might not

be an appropriate solution to measure the similarity of this type of data. Moreover,

Euclidean distance does not taken into account the correlation among variables.

As mentioned in early chapters, building an appropriate neighbourhood (personalised

problem space) is a critical step in the personalised modelling for knowledge discov-

ery. Different types of data need suitable methods for similarity measurement. In

this sense, how to design an appropriate method to calculate the ’distance’ between

variables in different types of data will be one of the future research directions.

10.2.3 Optimisation Strategies

In this thesis, evolutionary computation has been used as the technique to evolve

the candidate solutions of personalised models. Genetic algorithm and evolutionary

strategy are two major algorithms incorporated in the optimizers for feature selection

and parameter optimisation. However, GA based algorithm is often criticized by its

high computational cost, which results in the difficulty of testing large dataset (e.g.

CD’s SNPs data).

Population-based incremental learning (PBIL) (Baluja, 1994) is able to produce a

satisfactory performance with less computational cost in many cases (Rastegar &

Hariri, 2006). It might be a good option to incorporate it as the optimising module

into PMS to improve the computational efficiency.
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10.2.4 Spiking Neural Network Models for Personalised Mod-

elling

Spiking Neural Network (SNN) is a biologically plausible model of a spiking neuron

that includes a dynamic network of genome items, such as genes and proteins. The

interactions of genes in neurons affect the whole network that leads to the change of

a gene expression function (Kasabov, Benuskova, & Wysoski, 2005). Recently, there

are some attempts to apply SNN on benchmark datasets for classification problems

(Belatreche, Maguire, & McGinnity, 2007; Kasabov et al., 2005; Ponulak & Kasiński,

2010). It seems that SNN could be potentially a powerful tool to be employed in the

PMS for more complex problems of patter recognition and knowledge discovery.

10.2.5 Biomedical Applications Using PMS

The personal data, such as gene expression data, SNPs data and clinical data are

collected and accumulated massively these days. Such circumstance makes the data

more accessible for analysis. However, it is always a big challenge to convert the

data to precious knowledge that can benefit scientific community. The methods and

system for PM developed in this research are expected to be explored more datasets

and applied new biomedical applications.

The potential project using personalised modeling is to develop knowledge engineer-

ing and knowledge discovery methods and systems to enable personalised prediction

of outcomes after brain injury (BI). Reliable prediction of BI risk and outcomes for

the individual is likely to enable personalised rehabilitation, management and pre-

vention. New knowledge and better understanding of environmental, clinical and

genetic interplays are expected to be achieved and directed towards practical use.
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APPENDIX A

sGA - the Pseudo Code of a Simple

Genetic Algorithm

Algorithm 5 Pseudo code for a classical GA
1: gen = 0;
2: P (gen) = Fp(µ); {creates a random population}
3: fitness(gen) = Fevl(P (gen)); {Fevl is a fitness function}
4: while fitness(gen) < ζ do
5: gen++;
6: S(gen) = Fsel(P (gen− 1), µ/2); {select µ/2 pairs of fittest individuals}
7: O(gen) = crossover(S(gen), µ/2, pc); {perform crossover on the µ/2 pairs}
8: O(gen) = mutate(O(gen), pm); {perform mutation}
9: P (gen) = S(gen) + O(gen); {form a new generation}

10: fitness(gen) = Fevl(P (gen));
11: end while

Note:
ζ: the desired optimal level;
µ: population size(the number of individuals in each generation);
pc: the crossover probability(e.g.,0.7);
pm: the mutation probability(e.g.,0.001);



APPENDIX B

Pseudo Code of a Simple Evolutionary

Strategy Algorithm

Algorithm 6 A simple evolutionary strategy algorithm

1: Initialization: randomly generate a parent population with µ individuals Pµ =
{a1, . . . , aµ}.

2: Generate λ offsprings α̃ to form an offspring population P̃λ = {α̃1, . . . , α̃λ},
where each offspring α̃i is generated by:

(1).Randomly select ρ parents(Pρ) from Pµ (if ρ = µ all parental individuals
are selected).

(2).Recombine the selected parents Pρ to form a new offspring population ßo.
(3).Mutate the endogenous strategy parameters s.
(4).Mutate the objective parameter set y of ßo using the mutated endogenous

strategy parameters
3: Each individual in ßo is evaluated by a fitness function z
4: Select new parent population P∗

µ using either:

(1) comma selection - (µ, λ) from the selection pool of offspring population P̃λ ,
or
(2) plus selection - (µ+λ) from the selection pool of offspring P̃λ and parent Pµ

population.
5: The new population P∗

µ becomes the current population Pµ(gen + 1).
6: Terminate if the stopping criterion is fulfilled, otherwise go to step 2.



APPENDIX C

Pseudo Code of a Compact Genetic

Algorithm (cGA)

Algorithm 7 A compact genetic algorithm (cGA)

1: Initialization: generate a probability vector p
p(i) = 0.5, i = 1, . . . , l;

2: Generate two individuals a and b based on the comparison with p:
a(gen) = generate(p);
b(gen) = generate(p);

3: Competition between a and b:
winner, loser = compete(a, b)

4: Update the probability vector p towards the winner:
if winner(i) 6= loser(i) then

if winner(i) == 1 | i = 1 : l
then p(i) = p(i) + 1

µ
;

else p(i) = p(i)− 1
µ
;

end
end

5: Check whether the probability vector p has converged:
if no then go to step 2;

6: p is the optimal solution;



APPENDIX D

EFuNN - Evolving Fuzzy Neural

Networks

The algorithm for evolving EFuNNs from incoming data vectors can be described as follows:

1. Initialization: create an EFuNN structure with maximum number of neurons without

any connections. If no rule nodes exists, then create the first node ri = 1 to represent

the first data vector X1 and assign its connection weight vectors of input weight

vector ω1(ri) and output ω2(ri) as follows:

ω1(ri) = EX
ω2(ri) = TE

(D.1)

where EX is the the fuzzy input vector of the current data vector Xi, and TE denotes

the fuzzy output vector Xi.

2. if new variables from incoming data vectors appear in the current data vector (Xi)

and are absent in the previous data, then create new input and/or output nodes

with their corresponding membership functions.

3. Compute the normalised fuzzy local distance between the fuzzy input vector EX
and the stored patterns (prototypes) in the rule (case) nodes rj(j = 1, 2, · · · , n) as

follows:

d(EX, rj) =
∑ |EX−ω1(j)|

2∑
ω1(j)

(D.2)



where d is the distance.

4. Find the activation A1(rj) of the rule rj , j = 1, 2, ...n. A1(rj) can be calculated

through two ways: radial basis (fradbas) or a saturated linear (fsatlin) function:

A1(rj) = fradbas(d(EX, rj)), or

A1(rj) = fsatlin(1− d(EX, rj))
(D.3)

The former is more appropriate for function approximate tasks, while the latter is

usually used for classification tasks (Kasabov, 2002).

5. Update the pruning parameter value for the rule nodes which are pre-specified in

EFuNN neurons.

6. Find all rule nodes rj with an activation value A1(rj) greater than a sensitivity

threshold θs.

7. if no such rule nodes exists, then create a new rule node from step 1.

else , find the rule node rmax with the maximum activation value γmaxa1.

8. Two modes of EFuNNs:

(1) one-of-n mode: propagate the maximum activation value of the rule node rmax

to the fuzzy output neurons:

A2 = fsatlin(A1(rmax) ∗ ω2(rmax)) (D.4)

(2) many-of-n mode: the activation values of all rule nodes that above an activation

threshold θa are propagated to the next neural layer. Find the winner of fuzzy output

neuron rmax2 with its activation γmaxa2.

9. Find the desired winner fuzzy output neuron rmaxt2 and its activation γmaxt2.

10. Calculate the fuzzy output error: Errout = A2 − TE.

11. if rmax2 <> rmaxt2 ‖ d(A2, TE) > θerr, then go to step 1 to create a new rule

node.

else , update parameters, including A, θs, γmax, etc, for rule node rmax2.

12. if necessary, prune rule nodes rj and connections by the following fuzzy rules:

if a rule node rj is OLD AND average activation A1av(rj) is LOW AND the

density of the neighbourhood of neurons is HIGH or MODERATE ; then rule node

rj has a high probability to be pruned.

Here OLD, MODERATE and HIGH are pre-defined fuzzy concepts, e.g. a node is
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considered OLD if it has existed during an EFuNN evolving process for more than

500 samples.

13. Aggregate rule nodes.

14. Iterate the process from step 2 for a new presentation of the same input data sample.
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APPENDIX E

ECF - Evolving Classification Function



Algorithm 8 The algorithm of ECF - a local learning model (Kasabov, 2003)

Learning algorithm of the ECF model :

1: Input a vector from the incoming dataset and calculate the distance between it
and all rule nodes already created using a distance measurement function (e.g.
Euclidean distance). If all nodes are created, create the first one that has the
coordinates of the first input vector attached as input connection weights.

2: if all calculated distances between the new input vector and the existing rule
nodes are greater than a max-radius parameter (Rmax), a new rule node is cre-
ated. The position of the new rule node is the same as the current vector in
the input data space and the radius of its receptive field is set to the min-radius
(Rmin); the algorithm goes to step 1;
else it goes to the next step.

3: if there is a rule node with a distance to the current input vector less than
or equal to its radius, and its class is the same as the class of the new vector,
nothing will be changed; go to Step 1;
otherwise : go to next step.

4: if there is a rule node with a distance to the input vector less than or equal to
its radius and its class is different from those of the input vector, its influence
field should be reduced. The radius of the new field is set to the larger of the
two numbers: (distance − Rmin) and Rmin. a New node is created as in step 2
to represent the new data vector.

5: if there is a rule node with a distance to the input vector less than or equal
to the max-radius, and its class is the same as of the input vectors, enlarge the
influence field by taking the distance as a new radius if only such enlarged field
does not cover any other rule nodes that belong to a different class;
otherwise : create a new rule node in the same way as in step 2, and go to
step 2.

Recall procedure (classification of a new input vector) in a trained
ECF :

6: Input a new vector in the ECF trained system. If the new input vector exists
within the field of one or more rule nodes associated with one class, the vector
is classified in this class;

7: If the input vector is within the fields of two or more rule nodes associated with
different classes, the vector should belong to the class corresponding to the closest
rule node.

8: If the input vector does not lie within any field, then take m highest activated by
the new vector rule nodes, and calculate the average distances from the vector to
the nodes with the same class; the vector is assigned to the class corresponding
to the smallest average distance.
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APPENDIX F

TWNFI - a Transductive Neuro-fuzzy

Inference System with Weighted Data

Normalisation for Personalised Modelling

F.1 The Principle of TWNFI

TWNFI (Song & Kasabov, 2006) is a dynamic neuro-fuzzy inference system in which a

local model is created for analysing each new data vector xv. A basic block diagram of

TWNFI is illustrated in Figure F.1.

Giving a training dataset X, for each new data vector xv, TWNFI creates a unique model

with the application of the following steps (Song & Kasabov, 2006):

1. Normalisation:

• Normalise the training data X and the new data vector xv (values range from

0 to 1);

• Initialise the weights of every input variables (features) to 1;

2. Identifying an appropriate neighbourhood (Dv) for xv;

Find Nv samples from training data that are closest to xv based on the weighted



F.1. The Principle of TWNFI

Data normalisation

A new date vector x_v

Is the neighbourhood 

as same as that selected in 

the previous iteration?

Fuzzy model creation

Nearest neighbours 

selection

Parameters & variable 

weights optimisation

No

Output the 

prediction y_v

Yes

Figure F.1: A basic block diagram of TWNFI, adapted from (Song & Kasabov,
2006)

normalised Euclidean distance calculated as:

‖x− y‖ =

√√√√√ P∑
j=1

wj(xj − yj)2

P
(F.1)

where xj and yj are two vectors in the given problem space, N is the number of

samples, and w is a weight vector.

3. Calculate the distance di, i = 1, · · · , Nv using Eq.F.1. di is the distance between

each sample in Dq and xv. Each sample’s weight is calculated as:

vi = 1− (di −min(d)), i = 1, 2, · · · , Nv,

where min(d) is the minimum number of elements in the distance vector d =

[d1, d2, · · · , dNv ];

4. Cluster and partition the input subspace that consists of Nv selected training sam-
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F.1. The Principle of TWNFI

ples; Create fuzzy rules and set their initial parameter values based on the clustering

results. Every fuzzy rule is created as:

the centroid of a cluster is the center of the fuzzy membership function (e.g. a

Gaussian membership function) and the cluster radius is taken as the width;

5. Apply the steepest descent approach (back-propagation) to optimise the weights and

the parameters of the fuzzy rules in a local model Mv;

6. Find a new set of Nv samples (D∗
v) nearest to xv (Step 2 ):

if the same samples are found as in the last search, the algorithm goes to the next

step;

otherwise, it repeats from Step 3.

7. Output the prediction yv for the new data vector xv using fuzzy inference on the set

of fuzzy rules that constitute the local model Mv;

The weight and parameters can be optimised as follows: Consider a system having P

inputs, one output and M fuzzy rules initially defined by a clustering algorithm, and the

lth rule is formed as:

Rl: if xl is Fl1 and x2 is Fl2 and · · · xp is Flp, then y is Gl,

where Flj are the fuzzy sets defined by the following Gaussian membership function:

Gaussian MF = α exp(−(x−m)2

2σ2
) (F.2)

and Gl can be defined as:

Gaussian MF = exp(−(y − n)2

2δ2
) (F.3)

Thus, the output of the system for an input vector xi = [x1, x2, · · · , xp] can be calculated

by a modified centre average defuzzification function as:

f(xi) =

M∑
l=1

nl

δ2
l

P∏
j=1

αlj exp[−w2
j (xij−mlj)2

2σ2
lj

]

M∑
l=1

1
δ2
l

P∏
j=1

αlj exp[−w2
j (xij−mlj)2

2σ2
lj

]
(F.4)

where, wj is the current weight vector for the input variables and nl is the point having

maximum membership value in the lth output set.
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APPENDIX G

Experimental results obtained using iPM

with WKNN classifier for colon cancer

gene data



The result obtained by iPM with WKNN classifier over colon cancer gene data 
 

---------------- Data:  colon.txt ------------  

================  Result Part 1 ======================== 

 Num of samples: 62          Num of features: 2000  

 Classification threshold : 0.50 

 

*** Overall Accuracy of LOO Cross validation:  75.81% *** 

     Class 1 Overall Accuracy: 85.00% 

     Class 2 Overall Accuracy: 59.09% 

 
==================== Result Part 2 ===================== 

Sample ID    num of Features    output    predicted    actual    local accuracy 

     1                11            1.08           1            1            95.24% 

     2                3              1.78           2            2            81.48% 

     3                43            1.08           1            1            92.43% 

     4                10              1.93           2           2            91.53% 

     5                4              1.00           1            1            93.60% 

     6                7              1.31           1            1            91.42% 

     7                3              1.85           2            2            80.77% 

     8                28              1.15           1            1            91.42% 

     9                14              1.16           1            2            91.70%       * 

     10                3              1.16           1            1            91.32% 

     11                24              1.16           1            2            91.40%       * 

     12                6              1.85           2            2            93.20% 

     13                95              1.15           1            1            95.35% 

     14                5              1.08           1            1            91.32% 

     15                5              1.15           1            1            90.91% 

     16                3              1.00           1            1            81.82% 

     17                18              1.00           1            1            95.16% 

     18                16              1.08           1            1            91.14% 

     19                10              1.15           1            1            91.86% 

     20                3              1.00           1            1            81.82% 

     21                20              1.00           1            1            94.22% 

     22                3              1.15           1            1            86.36% 

     23                3              1.23           1            2            92.00%       * 

     24                15              1.00           1            1            95.26% 

     25                14              1.00           1            1            95.29% 

     26                12              1.93           2            1            90.91%       * 

     27                3              1.08           1            2            91.72%       * 

     28                15              1.00           1            1            94.33% 

     29                3              1.85           2            1            90.91%       * 

     30                3              1.69           2            1            92.00%       * 

     31               4              1.63           2            2            90.82% 

     32                4              1.24           1            2            91.45%       * 

     33                7              1.62           2            1            90.97%       * 

     34                3              1.08           1            2            87.50%       * 

     35                5              1.31           1            1            90.80% 

     36                4              1.85           2            2            90.87% 

     37                3              1.00           1            1            91.50% 

     38                3              1.85           2            2            86.36% 

     39                3              1.31           1            1            86.96% 

     40                7              1.62           2            2            91.01% 

     41                5              1.08           1            1            92.95% 

     42                4              1.08           1            2            91.96%       * 

     43                4              1.00           1            1            91.27% 

     44                4              1.23           1            1            92.23% 

     45                5              1.08           1            1            90.95% 

     46                3              1.47           1            1            94.21% 

     47                6              1.00           1            1            92.36% 

     48                3              1.08           1            1            92.76% 

     49                7              1.77           2            2            91.34% 

     50                3              1.39           1            1            81.82% 

     51                17              1.77           2            2            92.12% 

     52                50              1.93           2            1            95.77%       * 



     53                83              1.00           1            1            91.33% 

     54                43              1.62           2            2            93.49% 

     55                4              1.08           1            2            90.95%       * 

     56                4              1.00           1            1            92.25% 

     57                4              1.70           2            2            91.24% 

     58                19              1.00           1            2            92.00%       * 

     59                4              1.77           2            1            91.76%       * 

     60                3              1.31           1            1            82.61% 

     61                4              1.55           2            2            91.52% 

     62                21              1.15           1            1            92.30% 

 ======================== 

Note: the genes selected less 30 times are removed from the above list 

 

the union of selected features:   

1772  1582  249  493  391  964  1406  1423  1648  1067  1153  513  652  1002  1414  1060  1808  1058  399  625  1263  

43  1325  765  1042  1771  377  66  1334  1730  1346  1943   

 

the frequency of each feature selected in LOOCV process:  

Feature Index      Frequency  

  1772                 47 

  1582                 46 

    249                 44 

    493                 42 

    391                 41 

    964                 41 

  1406                 41 

  1423                 41 

  1648                 41 

  1067                 40 

  1153                 40 

    513                 39 

    652                 39 

  1002                 39 

  1414                 39 

  1060                 38 

  1808                 38 

  1058                 37 

   399                 36 

   625                 36 

  1263                 36 

     43                 35 

  1325                 35 

   765                 34 

  1042                 34 

  1771                 34 

    377                 33 

     66                 32 

  1334                 32 

  1730                 32 

  1346                 31 

  1943                 31 

 

   

----------------- Confusion Table --------------- 

                              Class2        Class1   (Actual Class) 

(Predicted Class): Class2     13             6   

(Predicted Class): Class1      9            34   

 



APPENDIX H

Experimental results obtained using

cGAPM for sample 51 of colon cancer

gene data



The result of cGAPM method on colon cancer data (sample 51) 

 

-------------- Data:  colon.txt ------------ 

  Num of training samples: 61          Num of features: 2000  

  Parameter Setting : 

  Classification threshold :  0.40 

  Evaluation model: WKNN 

 

  

===================  Result ==================== 

  Sample: 51  

 

------  11 neighbours of sample 51 ------ 

 --- Neighbour list:   

  Sample :  29   31   61   57   26   54   49   6   40   19   32   

 

--- Best local accuracy on training data: 83.82%      

  
 ***      24 features are selected: 

Feature Id   EST number   Weighted SNR value 

     377          Z50753              0.0659      

     249          M63391             0.0625      

     765          M76378             0.0555      

     513          M22382             0.0533      

     286          H64489             0.0504      

    1884         R44301             0.0483      

    1623         T94993             0.0446      

     625          X12671             0.0442      

     137          D25217             0.0440      

    1582         X63629             0.0389      

    1208         H72965             0.0383      

     826          H22948             0.0366      

    1416         M28882             0.0365      

    1924         H64807             0.0362      

    1018         M14764             0.0352      

    1135         R44887             0.0349      

     689          X73358             0.0347      

     708          H17969             0.0346      

    1832         X15943             0.0345      

    1286         D16294             0.0343      

    1767         H73943             0.0343      

     437          H41129             0.0342      

     961          H91274             0.0342      

       43          T57619             0.0340      

 

 ------ Summary of testing data ------ 

Feature ID    Mean Value(Cls1)          Mean Value(Cls2)       Sample 51's Value 

 377             233.8870              436.2061             686.6330 

 249             597.1193             2328.7151            1765.1850 

 765             260.3002              1081.0925            449.3950 

 513             1142.2057             396.9826             577.2560 

 286             1225.8794             2198.1646            4474.7640 

 1884             50.0862              99.6487               66.5650 

 1623             159.9953             247.2340             238.7980 

 625             850.5172              336.3976             267.5090 

 137             550.1411              693.1135             1508.0380 

 1582             154.7945             57.0313             64.0260 

 1208             200.6386             87.6992             168.3580 

 826             295.3520              343.5308             370.3840 

 1416             135.2856             210.2490             267.0030 

 1924             66.9099              90.9279             140.9940 

 1018             267.3680             265.9585             445.8060 

 1135             142.2807             155.5733             185.5830 

 689             389.9839              458.5370             451.5690 

 708             302.4763              299.7358             149.0090 



 1832             66.9631              76.7587             82.0760 

 1286             236.4929             304.1668             637.2730 

 1767             99.3440              117.4830             81.9690 

 437             453.5585              795.1633             479.3280 

 961             134.1740              133.2503             229.5440 

 43             2623.7725              1460.3710             1406.2030 

  

------ Weighted distance between sample 51 and the average class profile  ------ 

   Cls1             Cls2 

 470.2062         301.9498 

 

 ------ testing ------ 

 sample ID   output   predicted cls    actual cls  

    51            1.72         2                  2      

 

 

    ------- A scenario of the improvement for a person ------ 

 

Feature ID      Actual value   Desired average profile    Desired Improvement   Weighted importance 

---------------------------------------------------------------------------------------- 

Feature_377      686.6330                233.8870                  -452.7460                   0.0659 

Feature_249      1765.1850               597.1193                -1168.0657                   0.0625 

Feature_765      449.3950                260.3002                  -189.0948                   0.0555 

Feature_513      577.2560                1142.2057                  564.9497                   0.0533 

Feature_286     4474.7640              1225.8794               -3248.8846                   0.0504 

Feature_1884       66.5650                    50.0862                  -16.4788                   0.0483 

Feature_1623      238.7980                159.9953                  -78.8027                   0.0446 

Feature_625      267.5090                  850.5172                  583.0082                   0.0442 

Feature_137      1508.0380                550.1411                 -957.8969                   0.0440 

Feature_1582        64.0260                154.7945                    90.7685                   0.0389 

Feature_1208      168.3580                200.6386                    32.2806                   0.0383 

Feature_826        370.3840                295.3520                   -75.0320                   0.0366 

Feature_1416      267.0030                135.2856                  -131.7174                   0.0365 

Feature_1924      140.9940                 66.9099                     -74.0841                   0.0362 

Feature_1018      445.8060                267.3680                  -178.4380                   0.0352 

Feature_1135      185.5830                142.2807                   -43.3023                   0.0349 

Feature_689        451.5690                389.9839                   -61.5851                   0.0347 

Feature_708        149.0090                302.4763                  153.4673                   0.0346 

Feature_1832       82.0760                   66.9631                   -15.1129                   0.0345 

Feature_1286      637.2730                236.4929                 -400.7801                   0.0343 

Feature_1767        81.9690                  99.3440                     17.3750                   0.0343 

Feature_437        479.3280                453.5585                    -25.7695                   0.0342 

Feature_961        229.5440                134.1740                    -95.3700                   0.0342 

Feature_43        1406.2030               2623.7725                1217.5695                   0.0340 



APPENDIX I

Experiment results obtained using

cGAPM for sample 31 of CNS cancer

gene data



The experiment result obtained by cGAPM for sample 31 in CNS data 

-------------- Data:  CNS.txt ------------ 

  Num of training samples:  60          Num of features:  7129  

  Parameter Setting : 

  Classification threshold :  0.50 

  Classification model:   FuzzyKNN 

  

===================  Result ==================== 

Sample: 31  

  

------  21 neighbours of sample 31 ------ 
--- Neighbour list:   

Sample : 48   21  20  43   26   29   41   39   8   28   45   27   30   50   7   24   13   18   54   47  53   

  

 

--- Best local accuracy on training data: 98.54%      

  
 ***      23 features are selected: 

  Feature Idx          Weighted SNR value 

    3469                       0.0550      

     245                       0.0546      

    7033                       0.0527      

    1988                       0.0479      

    2593                       0.0471      

    4799                       0.0453      

     942                       0.0445      

    4348                       0.0443      

    5396                       0.0438      

    1926                       0.0429      

    6983                       0.0416      

    5709                       0.0407      

     786                       0.0406      

    4214                       0.0406      

    2380                       0.0405      

    1370                       0.0403      

    1462                       0.0401      

     360                       0.0398      

    2316                       0.0398      

    3420                       0.0396      

     540                       0.0394      

    1683                       0.0393      

    4936                       0.0393      

  

 ------ Summary of testing data ------ 

Feature ID      Mean Value(Cls1)     Mean Value(Cls2)    Sample 31's Value 

  3469              169.6667           229.9211             246.0000 

   245              -10.7619            -8.1053             36.0000 

  7033             2842.1429          2911.1316             2259.0000 

  1988              490.1905            871.1579             914.0000 

  2593              525.4286            423.6579            -383.0000 

  4799               -5.1429            29.8684               5.0000 

   942             3773.3810          4695.2632             1907.0000 

  4348               -5.3333            110.6316             21.0000 

  5396              -2.8095             70.8158              -10.0000 

  1926              81.6667            101.6316              162.0000 

  6983             142.5714            227.0789              520.0000 

  5709             22.2857               3.7368              204.0000 

   786             -21.8571            -39.8421             -168.0000 

  4214             263.0476            217.2105               47.0000 



  2380             -87.1905            -42.7895            -1113.0000 

  1370            4448.8095           3816.6316             3121.0000 

  1462             215.5238            335.5526              514.0000 

   360             117.1429            258.5526              231.0000 

  2316             156.6190            222.0000              851.0000 

  3420             87.3333               7.1053              236.0000 

   540             168.7619            159.9737              168.0000 

  1683            1414.9048           1830.0263              809.0000 

  4936            2929.2381           3165.1316              3310.0000 

  

------ Weighted distance between sample 31 and the average class profile ------ 

   Cls1             Cls2 

 410.9195           405.5403 

  

 ------ testing ------ 

 sample ID   output risk   predicted cls    actual cls  

   31        0.69         2             2      

  

  

    ------- A scenario of the improvement for a person ------ 

  

Feature ID       Actual value   Desired average profile     Desired Improvement    Weighted importance 

Feature_3469      246.0000       229.9211      -16.0789              0.0550 

Feature_245        36.0000        -8.1053                    -44.1053               0.0546 

Feature_7033      2259.0000      2911.1316                   652.1316               0.0527 

Feature_1988      914.0000        871.1579      -42.8421      0.0479 

Feature_2593      -383.0000       423.6579                   806.6579            0.0471 

Feature_4799         5.0000       29.8684                    24.8684      0.0453 

Feature_942      1907.0000       4695.2632               2788.2630      0.0445 

Feature_4348      21.0000         110.6316                  89.6316               0.0443 

Feature_5396      -10.0000         70.8158                  80.8158               0.0438 

Feature_1926      162.0000        101.6316                   -60.3684                0.0429 

Feature_6983      520.0000        227.0789                  -292.9211       0.0416 

Feature_5709      204.0000          3.7368                 -200.2630       0.0407 

Feature_786      -168.0000        -39.8421                128.1579           0.0406 

Feature_4214      47.0000         217.2105                    170.2105       0.0406 

Feature_2380      -1113.0000      -42.7895                   1070.2105      0.0405 

Feature_1370      3121.0000      3816.6316                 695.6316      0.0403 

Feature_1462      514.0000        335.5526                 -178.4474      0.0401 

Feature_360       231.0000        258.5526                    27.5526         0.0398 

Feature_2316      851.0000        222.0000                 -629.0000      0.0398 

Feature_3420      236.0000          7.1053                  -228.8947      0.0396 

Feature_540       168.0000       159.9737                   -8.0263      0.0394 

Feature_1683      809.0000      1830.0263                 1021.0263      0.0393 

Feature_4936     3310.0000      3165.1316                 -144.8684              0.0393 



APPENDIX J

Experimental results obtained using

cEAP on colon cancer gene data through

LOOCV



Table J.1: The experiment result obtained by cEAP on colon cancer gene data
through LOOCV

Sample
ID

No. of selected fea-
tures

No. of selected
neighbours

Local accuracy
(%)

Outcome Predict (T - Correct; F
- Wrong)

1 29 12 84.27 1.08 T
2 23 8 88.28 1.75 T
3 28 16 85.14 1.12 T
4 29 7 84.03 1.86 T
5 29 6 90.46 1.00 T
6 24 16 94.20 1.06 T
7 38 19 87.49 1.74 T
8 37 5 86.42 1.21 T
9 29 7 84.69 1.57 T
10 31 10 83.46 1.20 T
11 32 6 83.78 1.51 T
12 14 19 85.93 1.64 T
13 29 21 89.45 1.24 T
14∗ 23 4 89.13 1.25 F
15 19 3 90.05 1 T
16 25 10 87.15 1 T
17 17 12 83.84 1.33 T
18 26 5 88.73 1 T
19 29 4 94.70 1 T
20 22 21 88.19 1.14 T
21 21 12 88.44 1 T
22 27 8 85.24 1 T
23 26 7 86.90 1.85 T
24 31 26 88.23 1.07 T
25 21 21 87.15 1 T
26∗ 35 3 90.79 1.66 F
27∗ 27 12 90.65 1 F
28 24 15 82.66 1.07 T
29∗ 25 8 92.37 1.75 F
30 30 8 83.28 1.12 T
31 28 6 90.35 1.66 T
32 30 3 86.47 2 T
33 23 5 95.72 1.81 T
34 36 22 87.80 1.31 T
35 34 8 91.71 1 T
36 31 5 91.60 1.8 T
37 29 24 88.54 1.04 T
38 23 10 86.81 1.9 T
39 27 20 88.68 1.15 T
40 29 7 86.23 1.86 T
41 27 21 83.45 1.14 T
42∗ 29 5 85.82 1.2 F
43 13 9 89.00 1.11 T
44 29 7 91.29 1 T
45 18 17 87.30 1 T
46 21 7 88.59 1.14 T
47 26 19 90.77 1.1 T
48 22 16 87.16 1.12 T
49 24 13 86.87 1.55 T
50 27 4 87.84 1 T
51 18 6 86.04 1.49 T
52∗ 20 5 87.54 2 F
53 20 10 87.96 1 T
54∗ 26 8 89.60 1.52 F
55 29 3 85.75 2 T
56 19 13 91.08 1.15 T
57 24 13 83.20 1.85 T
58∗ 24 6 91.75 1 F
59 28 4 85.52 1 T
60 25 10 92.50 1 T
61 23 18 85.21 1.45 T
62 30 19 86.60 1.11 T231



APPENDIX K

Experimental results obtained using

cEAP for sample 57 of colon cancer data



The experiment result obtained by cEAP for colon sample 57 

 

-------------- Data:  colonc.txt ------------ 

  Num of training samples: 61          Num of features: 2000  

  Parameter Setting: 

  Classification threshold: 0.55 

  Classification function:  WKNN 

 

 ===================  Result ==================== 

  Sample: 57  

 

------  24 neighbors of sample 57 ------ 

 --- Neighbor list:   

Sample :  51   31   28   55   8   32   49   14   47   61   12   29   54   22   27   30   59   6   15   

1   38   26   36   41   

 

--- Best local accuracy on training data: 82.58%      

 ***      11 features are selected: 

  Feature Idx          Weighted SNR value 

     249                       0.1241      

     377                       0.1218      

     267                       0.0970      

     419                       0.0942      

    1674                       0.0914      

     548                       0.0903      

    1982                       0.0854      

    1582                       0.0797      

     662                       0.0745      

    1870                       0.0735      

      43                       0.0681      

 

 ------ Summary of testing data ------ 

Feature ID    Mean Value(Cls1)     Mean Value(Cls2)  Sample 57's Value 

 249             597.1193            2263.4888            411.6240 

 377             233.8870            451.8635             179.9090 

 267             490.9205            1258.6685            397.7460 

 419             249.8221            351.9843             1370.3900 

 1674             56.9415            103.2970             98.2440 

 548             288.2512            371.3105             717.0060 

 1982             43.2651            57.9870              215.9140 

 1582             154.7945            59.4295             151.1990 

 662             428.0565            756.0929             262.8410 

 1870             142.6591            73.8150              90.0480 

 43             2623.7725            1432.3778             2997.3980 

  



 ------ testing ------ 

 sample ID   output   predicted cls    actual cls  

    57        1.65        2                 2      

 

    ------- A scenario of the potential improvement for a person ------ 

Feature ID   Actual value  Desired average profile  Desired Improvement   Weighted importance 

Feature_249     411.6240        597.1193                185.4953               0.1241 

Feature_377     179.9090        233.8870                 53.9780               0.1218 

Feature_267     397.7460        490.9205                 93.1746               0.0970 

Feature_419    1370.3900        249.8221              -1120.5679               0.0942 

Feature_1674     98.2440         56.9415                -41.3025               0.0914 

Feature_548     717.0060        288.2512               -428.7548               0.0903 

Feature_1982    215.9140         43.2651               -172.6489               0.0854 

Feature_1582    151.1990        154.7945                  3.5955               0.0797 

Feature_662     262.8410        428.0565                165.2155               0.0745 

Feature_1870     90.0480        142.6591                 52.6111               0.0735 

Feature_43     2997.3980        2623.7725              -373.6255               0.0681 



APPENDIX L

Experiment results for CD risk evaluation

using SNPs testing data C



=== SNPs data for CD classification (106 samples) === 

 

Global SVM modelling:  

Number of testing samples:   106 

  Overall Acc: 0.70 

  Class 1 Acc: 0.63    Class 2 Acc: 0.75 

 

 

Personalized modelling (feature selection,  parameter optimization)  

Number of testing samples:   106 

Sample Id:   52    98   266   243   186    16   112    83   432   352   433   381   457   447   168   336   166   

224   258   219   206   218   163   216   307   422   338   261   401   263   109   386   365   359   214   329   

108   129   136   424   170    20   282   230    43    65    79   385   360   708   533   752   915   982   563   

855   918   738   832   961   956   989   838   958   886   803   873   919   682   525  1010   950   667   503   

583  1000   798   744   912   979   865   706   868   641   934   506   729   595   571   924   691   828   807   

611   762   907   676   815   853   497   794   988   826   841   696   938  

 ======================== 

Actual:     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

0  0  0  0  0  0  0  0  0  0  0  0   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

1   1  

Predicted:  0  0  0  0  0   1   1  0  0  0   1  0  0  0  0  0  0   1   1  0   1  0   1   1   1  0   1  0  0  0   1  0  0   1   

1  0  0   1  0  0  0  0   1  0   1  0   1  0   1   1   1   1  0   1  0  0   1   1  0   1   1   1   1   1   1   1  0   1  0   1  

0   1   1   1   1   1   1   1   1   1   1   1   1   1   1  0   1  0   1   1   1   1   1   1   1   1  0  0  0   1   1   1   1  0  

0   1  

 

 Local Acc:  0.75 , 0.79 , 0.81 , 0.81 , 0.87 , 0.83 , 0.82 , 0.77 , 0.87 , 0.83 , 0.81 , 0.81 , 0.81 , 0.78 , 0.82 , 

0.77 , 0.88 , 0.78 , 0.83 , 0.76 , 0.81 , 0.75 , 0.76 , 0.82 , 0.82 , 0.75 , 0.75 , 0.83 , 0.77 , 0.79 , 0.80 , 0.75 , 

0.71 , 0.82 , 0.76 , 0.79 , 0.75 , 0.75 , 0.84 , 0.80 , 0.80 , 0.86 , 0.75 , 0.82 , 0.72 , 0.77 , 0.80 , 0.80 , 0.79 , 

0.79 , 0.71 , 0.82 , 0.82 , 0.81 , 0.75 , 0.79 , 0.74 , 0.75 , 0.78 , 0.71 , 0.80 , 0.79 , 0.78 , 0.79 , 0.91 , 0.78 , 

0.76 , 0.79 , 0.83 , 0.80 , 0.80 , 0.78 , 0.78 , 0.82 , 0.86 , 0.85 , 0.81 , 0.82 , 0.75 , 0.75 , 0.81 , 0.83 , 0.79 , 

0.80 , 0.78 , 0.81 , 0.78 , 0.76 , 0.79 , 0.84 , 0.81 , 0.81 , 0.82 , 0.82 , 0.77 , 0.73 , 0.81 , 0.71 , 0.78 , 0.80 , 

0.77 , 0.75 , 0.75 , 0.80 , 0.77 , 0.77  

 K neighbour:    64 ,   64 ,   64 ,   64 ,  135 ,   64 ,  102 ,   64 ,   80 ,   64 ,   72 ,   64 ,   88 ,   67 ,   74 ,   

64 ,   67 ,   64 ,   96 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   72 ,   64 ,   94 ,   64 ,   64 ,   64 ,   64 ,   64 ,   

68 ,   64 ,   64 ,   64 ,   64 ,  108 ,   64 ,   76 ,  105 ,   64 ,   77 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   

83 ,   64 ,   87 ,   64 ,   64 ,   64 ,   64 ,   71 ,   66 ,   64 ,   68 ,   64 ,  102 ,   39 ,   64 ,   68 ,   64 ,   91 ,   

64 ,   64 ,   93 ,   66 ,   67 ,  125 ,   90 ,   64 ,   77 ,   64 ,   64 ,   64 ,   92 ,   67 ,   64 ,   70 ,   74 ,   64 ,   

64 ,   78 ,   99 ,   64 ,   64 ,   88 ,   82 ,   64 ,   73 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   64 ,   

64  

 c (SVM)  :   209 ,  197 ,  183 ,  226 ,  223 ,  185 ,  212 ,  216 ,  201 ,  197 ,  168 ,  195 ,  224 ,  212 ,  195 ,  

224 ,  206 ,  196 ,  222 ,  236 ,  190 ,  172 ,  227 ,  219 ,  206 ,  225 ,  231 ,  213 ,  233 ,  223 ,  217 ,  205 ,  

191 ,  221 ,  188 ,  173 ,  199 ,  202 ,  210 ,  222 ,  221 ,  173 ,  238 ,  232 ,  217 ,  218 ,  216 ,  212 ,  196 ,  

217 ,  195 ,  181 ,  190 ,  219 ,  216 ,  179 ,  195 ,  193 ,  223 ,  167 ,  184 ,  220 ,  212 ,  174 ,  174 ,  215 ,  

187 ,  215 ,  201 ,  196 ,  221 ,  187 ,  215 ,  214 ,  186 ,  181 ,  218 ,  196 ,  220 ,  231 ,  230 ,  201 ,  237 ,  

231 ,  235 ,  221 ,  223 ,  185 ,  187 ,  238 ,  183 ,  181 ,  184 ,  198 ,  175 ,  205 ,  222 ,  228 ,  219 ,  207 ,  

222 ,  218 ,  208 ,  201 ,  212 ,  239  

 gamma(SVM):   0.0187 , 0.0142 , 0.0091 , 0.0250 , 0.0238 , 0.0100 , 0.0197 , 0.0211 , 0.0157 , 0.0141 , 

0.0038 , 0.0135 , 0.0243 , 0.0198 , 0.0136 , 0.0240 , 0.0174 , 0.0138 , 0.0236 , 0.0284 , 0.0118 , 0.0050 , 

0.0254 , 0.0224 , 0.0174 , 0.0247 , 0.0266 , 0.0203 , 0.0276 , 0.0239 , 0.0217 , 0.0174 , 0.0122 , 0.0232 , 

0.0111 , 0.0056 , 0.0151 , 0.0160 , 0.0191 , 0.0235 , 0.0232 , 0.0056 , 0.0294 , 0.0271 , 0.0216 , 0.0219 , 

0.0211 , 0.0197 , 0.0138 , 0.0216 , 0.0135 , 0.0085 , 0.0116 , 0.0222 , 0.0213 , 0.0075 , 0.0137 , 0.0129 , 

0.0237 , 0.0035 , 0.0095 , 0.0228 , 0.0197 , 0.0059 , 0.0059 , 0.0208 , 0.0106 , 0.0209 , 0.0158 , 0.0138 , 

0.0231 , 0.0105 , 0.0210 , 0.0203 , 0.0104 , 0.0084 , 0.0221 , 0.0138 , 0.0226 , 0.0267 , 0.0264 , 0.0157 , 

0.0291 , 0.0268 , 0.0281 , 0.0231 , 0.0239 , 0.0099 , 0.0106 , 0.0293 , 0.0090 , 0.0086 , 0.0094 , 0.0146 , 

0.0064 , 0.0173 , 0.0234 , 0.0255 , 0.0224 , 0.0181 , 0.0233 , 0.0221 , 0.0183 , 0.0159 , 0.0199 , 0.0297  

 

 Overall Acc:  0.73 

 Class 1  Acc:  0.76       Class 2 Acc:  0.70 



 

The selected feature list: 

 Sample   52:    17 selected features  

   Feature List:  1,    3,    5,   13,   15,   16,   21,   23,   24,   26,   31,   32,   34,   36,   37,   41,   44,    

 Sample   98:    25 selected features  

   Feature List:  1,    2,    5,    9,  10,  11,  13,  14,  15,  18,  20,  21,  23,  24,  27,  28,  29,  33,  34,  35,   

36,   38,   42,   43,   44,    

 Sample  266:    19 selected features  

   Feature List:  1,    2,    3,    4,    7,    8,   9,  13,  21,  29,   30,   32,   35,   37,   38,   39,   40,   42,   44,    

 Sample  243:    12 selected features  

   Feature List:  1,    2,    3,   11,   16,   18,   23,   26,   30,   39,   41,   44,    

 Sample  186:    18 selected features  

   Feature List:  1,    3,    5,    9,   10,   11,   13,   17,   20,   22,   31,   33,   36,   37,   38,   39,   43,   44,    

 Sample   16:    18 selected features  

   Feature List:  1,    5,    6,    7,    8,    9,   11,   13,   16,   19,   21,   23,   24,   25,   26,   28,   31,   42,    

 Sample  112:    16 selected features  

   Feature List:  2,    6,    7,    8,    9,   11,   14,   15,   17,   28,   30,   36,   40,   41,   43,   44,    

 Sample   83:    18 selected features  

   Feature List:  1,    2,    3,    6,   10,   11,   13,   14,   15,   19,   21,   23,   25,   28,   30,   38,   39,   43,    

 Sample  432:    22 selected features  

   Feature List:  3,    5,    6,    8,   11,   12,   14,   18,   24,   27,   28,   29,   30,   34,   35,   36,   37,   39,   

40,   41,   43,   44,    

 Sample  352:    19 selected features  

   Feature List:  1,    3,    5,    8,   9,  11,  12,  13,  16,  20,   21,   22,   25,   31,   32,   36,   38,   41,   43,    

 Sample  433:    27 selected features  

   Feature List:  1,    2,    3,    4,    5,    9,   10,   11,   12,   13,   14,   16,   17,   18,   19,   21,   23,   26,   

28,   29,   30,   32,   33,   36,   40,   41,   43,    

 Sample  381:    14 selected features  

   Feature List:  1,    3,    5,   11,   18,   19,   31,   35,   36,   38,   39,   40,   41,   42,    

 Sample  457:    14 selected features  

   Feature List:  1,    2,    6,    8,   13,   18,   19,   20,   22,   25,   33,   39,   40,   42,    

 Sample  447:    14 selected features  

   Feature List:  1,    2,    6,   12,   14,   15,   17,   21,   24,   25,   34,   35,   38,   39,    

 Sample  168:    19 selected features  

   Feature List:  1,    4,    5,    6,    8,   10,   12,   16,   19,   24,   31,   33,   34,   37,   38,   39,   40,   42,   

43,    

 Sample  336:    25 selected features  

   Feature List:  1,    4,    5,    6,    7,    8,    9,   10,   11,   12,   13,   16,   21,   23,   26,   30,   31,   32,   

33,   37,   38,   39,   40,   43,   44,    

 Sample  166:    20 selected features  

   Feature List:  2,    4,    7,   10,   11,   13,   14,   15,   17,   24,   26,   27,   30,   31,   32,   33,   34,   40,   

41,   44,    

 Sample  224:    16 selected features  

   Feature List:  1,    2,    9,   11,   13,   17,   18,   20,   23,   26,   30,   34,   36,   37,   39,   42,    

 Sample  258:    18 selected features  

   Feature List:  1,    3,    5,    6,    8,    9,   10,   11,   15,   20,   22,   26,   28,   31,   32,   33,   36,   39,    

 Sample  219:    15 selected features  

   Feature List:  1,    3,    5,    7,   15,   16,   17,   18,   20,   24,   25,   39,   40,   41,   44,    

 Sample  206:    13 selected features  

   Feature List:  1,    3,    4,    9,   13,   14,   22,   25,   32,   36,   38,   39,   43,    

 Sample  218:    17 selected features  

   Feature List:  1,    6,    7,    8,   10,   11,   14,   15,   16,   19,   21,   31,   33,   39,   40,   42,   44,    

 Sample  163:    13 selected features  

   Feature List:  1,    6,   10,   14,   15,   16,   17,   19,   26,   28,   32,   39,   40,    

 Sample  216:    12 selected features  

   Feature List:  1,    5,    8,   10,   16,   18,   22,   23,   26,   27,   29,   36,    

 Sample  307:    15 selected features  

   Feature List:  1,    4,    5,    6,   12,   13,   14,   19,   20,   21,   29,   37,   39,   40,   44,    

 Sample  422:    14 selected features  



   Feature List:  1,    2,    4,   10,   13,   18,   20,   23,   26,   32,   37,   39,   42,   43,    

 Sample  338:    23 selected features  

   Feature List:  1,    2,    3,    4,    7,   12,   15,   16,   17,   18,   20,   22,   26,   27,   28,   31,   32,   36,   

39,   41,   42,   43,   44,    

 Sample  261:    14 selected features  

   Feature List:  1,    2,    6,    8,   13,   14,   15,   24,   28,   30,   33,   39,   43,   44,    

 Sample  401:    19 selected features  

   Feature List:  1,    3,    5,    6,    9,   17,   18,   19,   22,   23,   24,   27,   30,   33,   35,   36,   38,   41,   

42,    

 Sample  263:    16 selected features  

   Feature List:  1,    6,    7,   12,   14,   18,   19,   21,   24,   27,   29,   30,   31,   32,   36,   39,    

 Sample  109:    19 selected features  

   Feature List:  1,    5,    9,   12,   14,   15,   16,   18,   19,   20,   24,   25,   26,   29,   31,   32,   33,   39,   

44,    

 Sample  386:    14 selected features  

   Feature List:  1,    3,    4,    5,   12,   15,   16,   22,   25,   29,   31,   35,   42,   44,    

 Sample  365:    15 selected features  

   Feature List:  1,    5,    6,   10,   14,   18,   20,   22,   23,   24,   25,   26,   29,   31,   37,    

 Sample  359:    19 selected features  

   Feature List:  1,    4,    5,    7,    9,   11,   12,   15,   16,   18,   22,   25,   26,   27,   28,   29,   31,   34,   

38,    

 Sample  214:    15 selected features  

   Feature List:  1,    2,    3,    5,    6,    9,   13,   15,   19,   21,   28,   29,   33,   40,   44,    

 Sample  329:    24 selected features  

   Feature List:  1,    2,    6,    8,    9,   10,   12,   13,   14,   19,   20,   21,   23,   24,   25,   26,   27,   28,   

34,   35,   36,   37,   42,   43,    

 Sample  108:    17 selected features  

   Feature List:  1,    2,    6,   11,   12,   14,   16,   18,   22,   23,   26,   27,   28,   34,   36,   40,   43,    

 Sample  129:    11 selected features  

   Feature List:  1,    4,   10,   12,   24,   31,   34,   38,   40,   42,   44,    

 Sample  136:    22 selected features  

   Feature List:  1,    2,    3,    4,    6,    7,    8,   11,   12,   13,   16,   22,   27,   28,   31,   33,   36,   37,   

39,   41,   42,   44,    

 Sample  424:    18 selected features  

   Feature List:  1,    6,    7,    8,   12,   14,   15,   17,   18,   24,   25,   26,   30,   31,   32,   34,   41,   43,    

 Sample  170:    21 selected features  

   Feature List:  1,    6,    8,    9,   11,   12,   13,   14,   15,   17,   19,   22,   25,   28,   31,   32,   33,   34,   

35,   36,   38,    

 Sample   20:    19 selected features  

   Feature List:  1,    3,    4,    5,    6,    8,   10,   12,   15,   17,   20,   22,   23,   28,   31,   36,   39,   42,   

44,    

 Sample  282:    21 selected features  

   Feature List:  1,    2,    3,    9,   10,   12,   13,   15,   17,   18,   19,   29,   31,   33,   34,   36,   37,   38,   

40,   41,   44,    

 Sample  230:    16 selected features  

   Feature List:  1,    4,    6,    9,   11,   12,   13,   14,   18,   19,   25,   26,   27,   38,   39,   44,    

 Sample   43:    16 selected features  

   Feature List:  1,    5,    8,   10,   12,   15,   20,   21,   22,   24,   29,   31,   34,   38,   39,   44,    

 Sample   65:    15 selected features  

   Feature List:  1,    2,    4,    6,    7,   13,   17,   20,   27,   28,   34,   36,   37,   42,   44,    

 Sample   79:    18 selected features  

   Feature List:  1,    4,    5,    6,    7,    8,   10,   14,   15,   16,   17,   22,   35,   36,   38,   39,   42,   44,    

 Sample  385:    22 selected features  

   Feature List:  1,    6,    7,    8,    9,   10,   11,   12,   15,   16,   20,   21,   24,   26,   28,   29,   34,   37,   

39,   41,   43,   44,    

 Sample  360:    14 selected features  

   Feature List:  1,    2,    5,    6,   11,   12,   13,   25,   30,   31,   36,   37,   41,   44,    

 Sample  708:    15 selected features  

   Feature List:  1,    4,    5,    8,   10,   13,   14,   15,   19,   24,   28,   29,   33,   37,   38,    



 Sample  533:     8 selected features  

   Feature List:  1,    4,   23,   25,   26,   34,   35,   40,    

 Sample  752:    18 selected features  

   Feature List:  1,    5,    6,    7,    8,   10,   11,   12,   13,   14,   19,   20,   22,   24,   25,   26,   38,   42,    

 Sample  915:    15 selected features  

   Feature List:  1,    3,    6,    7,    9,   18,   21,   27,   30,   32,   33,   36,   37,   39,   41,    

 Sample  982:    20 selected features  

   Feature List:  1,    3,    4,   13,   14,   15,   16,   19,   21,   23,   26,   27,   28,   29,   32,   33,   34,   38,   

40,   41,    

 Sample  563:    15 selected features  

   Feature List:  1,    5,    7,    8,   13,   18,   22,   23,   25,   27,   33,   36,   37,   42,   44,    

 Sample  855:    16 selected features  

   Feature List:  1,    2,   14,   15,   16,   19,   22,   25,   26,   27,   28,   29,   35,   37,   38,   43,    

 Sample  918:    21 selected features  

   Feature List:  1,    3,    6,    7,    9,   10,   11,   13,   15,   16,   22,   23,   24,   26,   27,   30,   31,   32,   

36,   38,   41,    

 Sample  738:    18 selected features  

   Feature List:  1,    5,    7,   11,   12,   14,   17,   19,   22,   24,   25,   27,   28,   29,   33,   34,   40,   42,    

 Sample  832:    17 selected features  

   Feature List:  1,    2,    3,    4,    8,   10,   15,   16,   18,   21,   22,   25,   26,   28,   31,   32,   36,    

 Sample  961:    13 selected features  

   Feature List:  3,    5,    7,    9,   11,   12,   16,   19,   22,   25,   26,   34,   36,    

 Sample  956:    23 selected features  

   Feature List:  1,    7,    9,   10,   13,   14,   15,   16,   18,   20,   22,   24,   25,   27,   29,   30,   32,   33,   

34,   36,   38,   40,   42,    

 Sample  989:    14 selected features  

   Feature List:  1,    5,    6,    7,    8,   11,   12,   13,   15,   17,   28,   32,   34,   35,    

 Sample  838:    19 selected features  

   Feature List:  1,    2,    3,    4,    5,    6,   12,   13,   15,   19,   22,   24,   25,   26,   30,   31,   35,   37,   

44,    

 Sample  958:     8 selected features  

   Feature List:  5,   17,   19,   21,   25,   30,   33,   35,    

 Sample  886:    27 selected features  

   Feature List:  1,    3,    5,    6,    7,    9,   10,   12,   13,   14,   15,   18,   19,   20,   21,   24,   25,   27,   

30,   31,   32,   33,   34,   35,   38,   39,   43,    

 Sample  803:    20 selected features  

   Feature List:  2,    4,    5,    6,   13,   17,   22,   26,   27,   28,   30,   31,   36,   37,   38,   39,   40,   41,   

42,   44,    

 Sample  873:    15 selected features  

   Feature List:  1,    6,    7,   11,   15,   17,   18,   19,   21,   24,   25,   28,   29,   41,   42,    

 Sample  919:    17 selected features  

   Feature List:  1,    2,    3,    9,   10,   11,   13,   16,   18,   21,   25,   29,   30,   31,   32,   40,   42,    

 Sample  682:    18 selected features  

   Feature List:  1,    2,    3,    4,   11,   12,   14,   15,   17,   19,   21,   25,   28,   29,   30,   33,   36,   42,    

 Sample  525:    15 selected features  

   Feature List:  1,    5,   10,   11,   15,   16,   18,   19,   20,   30,   31,   32,   34,   38,   41,    

 Sample 1010:    22 selected features  

   Feature List:  1,    2,    4,    5,   11,   12,   14,   15,   17,   23,   24,   28,   29,   30,   31,   32,   34,   35,   

36,   37,   41,   44,    

 Sample  950:    14 selected features  

   Feature List:  3,    9,   17,   19,   21,   28,   29,   30,   35,   39,   41,   42,   43,   44,    

 Sample  667:    21 selected features  

   Feature List:  1,    2,    3,    6,    7,    8,   10,   11,   18,   19,   23,   26,   29,   30,   34,   35,   38,   40,   

41,   42,   44,    

 Sample  503:    11 selected features  

   Feature List:  1,    2,    6,    8,   23,   25,   27,   30,   33,   34,   36,    

 Sample  583:    19 selected features  

   Feature List:  1,    2,    4,    6,    7,   11,   15,   16,   19,   20,   23,   26,   27,   30,   34,   36,   39,   40,   

41,    



 Sample 1000:    16 selected features  

   Feature List:  1,    5,    8,    9,   10,   12,   13,   22,   23,   26,   28,   29,   31,   32,   39,   42,    

 Sample  798:    26 selected features  

   Feature List:  1,    2,    3,    4,   10,   11,   14,   16,   17,   20,   22,   23,   24,   26,   28,   29,   30,   32,   

34,   37,   38,   39,   40,   41,   42,   44,    

 Sample  744:    22 selected features  

   Feature List:  1,    2,    3,   11,   12,   13,   18,   23,   24,   26,   28,   30,   31,   32,   34,   35,   36,   37,   

38,   39,   40,   42,    

 Sample  912:    16 selected features  

   Feature List:  1,    2,    4,   12,   15,   21,   22,   23,   25,   26,   29,   30,   34,   36,   40,   44,    

 Sample  979:    22 selected features  

   Feature List:  1,    3,    9,   10,   12,   13,   14,   15,   17,   19,   21,   24,   25,   26,   27,   32,   33,   34,   

35,   36,   38,   41,    

 Sample  865:    11 selected features  

   Feature List:  1,    2,    3,    5,   15,   16,   18,   19,   29,   33,   44,    

 Sample  706:    14 selected features  

   Feature List:  1,    4,    8,    9,   15,   23,   26,   28,   31,   32,   34,   35,   38,   40,    

 Sample  868:    21 selected features  

   Feature List:  1,    3,    4,    5,    6,   10,   11,   14,   15,   17,   18,   23,   24,   26,   32,   35,   36,   39,   

41,   43,   44,    

 Sample  641:    15 selected features  

   Feature List:  1,    6,    7,    8,   17,   19,   23,   26,   28,   34,   36,   37,   39,   40,   42,    

 Sample  934:    18 selected features  

   Feature List:  1,    8,   10,   11,   16,   22,   23,   24,   28,   32,   33,   34,   35,   37,   39,   40,   42,   44,    

 Sample  506:    17 selected features  

   Feature List:  1,    6,   11,   12,   13,   14,   15,   16,   17,   19,   20,   23,   30,   32,   36,   39,   41,    

 Sample  729:    21 selected features  

   Feature List:  1,    2,    5,    7,    9,   10,   11,   13,   14,   15,   16,   18,   21,   23,   24,   26,   30,   31,   

32,   35,   43,    

 Sample  595:    18 selected features  

   Feature List:  1,    8,   10,   17,   19,   21,   23,   24,   27,   28,   29,   32,   33,   34,   36,   37,   39,   40,    

 Sample  571:    20 selected features  

   Feature List:  1,    2,    5,   11,   15,   17,   18,   19,   20,   22,   24,   25,   29,   30,   31,   33,   34,   38,   

39,   41,    

 Sample  924:    16 selected features  

   Feature List:  1,    2,    3,    5,   13,   14,   26,   27,   29,   30,   38,   40,   41,   42,   43,   44,    

 Sample  691:    14 selected features  

   Feature List:  1,    4,    9,   10,   11,   19,   26,   27,   28,   29,   34,   35,   40,   43,    

 Sample  828:    22 selected features  

   Feature List:  1,    3,    6,    7,    9,   10,   11,   14,   16,   17,   18,   19,   21,   27,   28,   29,   33,   35,   

38,   41,   42,   44,    

 Sample  807:    26 selected features  

   Feature List:  1,    2,    4,    5,    6,   10,   12,   13,   14,   15,   17,   18,   19,   22,   23,   24,   25,   26,   

27,   28,   30,   38,   41,   42,   43,   44,    

 Sample  611:    18 selected features  

   Feature List:  1,    3,    4,    5,    8,   11,   12,   17,   19,   20,   23,   24,   25,   30,   31,   38,   39,   40,    

 Sample  762:    21 selected features  

   Feature List:  1,    2,    3,    4,    5,    6,    7,   13,   16,   18,   19,   20,   22,   23,   24,   25,   26,   29,   

31,   40,   44,    

 Sample  907:    18 selected features  

   Feature List:  1,    2,    4,   14,   15,   19,   20,   21,   22,   27,   29,   30,   32,   36,   37,   39,   40,   42,    

 Sample  676:    14 selected features  

   Feature List:  1,    2,    4,    5,    9,   10,   11,   14,   20,   22,   25,   26,   28,   39,    

 Sample  815:    16 selected features  

   Feature List:  1,    2,    5,    8,   13,   14,   15,   18,   19,   26,   31,   32,   37,   40,   42,   43,    

 Sample  853:    20 selected features  

   Feature List:  1,    2,    4,    6,    7,    9,   11,   13,   16,   17,   23,   24,   25,   26,   34,   35,   37,   40,   

41,   44,    

 Sample  497:    22 selected features  



   Feature List:  1,    2,    3,    5,    6,    8,   10,   11,   12,   13,   15,   16,   21,   25,   26,   29,   34,   35,   

37,   40,   42,   44,    

 Sample  794:    16 selected features  

   Feature List:  1,    8,   12,   16,   17,   18,   19,   21,   22,   25,   28,   29,   32,   38,   43,   44,    

 Sample  988:    16 selected features  

   Feature List:  3,    4,    7,   11,   14,   17,   19,   23,   26,   29,   31,   33,   35,   36,   38,   41,    

 Sample  826:    17 selected features  

   Feature List:  1,    8,    9,   11,   12,   18,   19,   22,   24,   25,   26,   27,   30,   31,   32,   35,   42,    

 Sample  841:    16 selected features  

   Feature List:  1,    6,    8,    9,   13,   14,   25,   27,   31,   32,   33,   37,   39,   40,   42,   44,    

 Sample  696:    15 selected features  

   Feature List:  1,    2,    6,    9,   10,   11,   15,   19,   22,   27,   28,   30,   33,   38,   43,    

 Sample  938:    17 selected features  

   Feature List:  1,    3,   12,   14,   17,   19,   21,   23,   29,   32,   33,   34,   35,   37,   39,   40,  42 

 

The frequency of selected features: 

  Feature ID:         1   11    15    19    26     6      5    13    39    44     2    14    36   12    25    28     

  Selected times:  98    50    50    50    50    49    48   47    47    46    45    44    44   43    43    43     

 

  Feature ID:        31     3    10    34    40    42    29    30    32    18   23    24    38    22     4     8    

Selected times:     43    42    42    42    42    42    41    41    41    40   40    40    40   39    38    38 

 

  Feature ID:         9    16    17    33    41    21    27   37     7    35    20    43 

Selected times:     38    38    38    36    36    34    34   34    33   32    29    28  



APPENDIX M

Validation results of SNPs data sample

392 for CD risk evaluation using



The personalized modeling based method over sample 392 of SNPs data  

for CD risk prediction 

 

 Sample Id:  392  

 ======================== 

Run 1 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     207  

 gamma(SVM) 0.0178  

 Sample  392;    20 selected features  

   Feature List:  1  2  4  5  8  9  10  11  12  16  20  22  23  24  27  28  33  37  40  43   

 

 ======================== 

Run 2 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     235  

 gamma(SVM) 0.0283  

 Sample  392;    17 selected features  

   Feature List:  1   3   4   8   9  10  11  12  16  20  22  24  25  27  28  33  37   

 

 ======================== 

Run 3  

actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     216  

 gamma(SVM) 0.0214  

 Sample  392;    16 selected features  

   Feature List:  1   3   6   7   8   9  11  14  15  20  23  24  31  33  39  40   

 

 ======================== 

Run 4 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     230  

 gamma(SVM) 0.0262  



 Sample  392;    16 selected features  

   Feature List:  1   3  10  11  13  15  17  18  19  20  24  25  26  27  32  36   

 

 ======================== 

Run 5 

 actual       -1  

 predicted    -1  

 local Acc  0.81  

 K neighbor   83  

 c (SVM)     193  

 gamma(SVM) 0.0127  

 Sample  392;    11 selected features  

   Feature List:  1   3   6  12  20  22  23  24  25  27  30   

 

 ======================== 

Run 6 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     180  

 gamma(SVM) 0.0082  

 Sample  392;    10 selected features  

   Feature List:  1   3   6   9  12  15  20  23  33  39   

 

 ======================== 

Run 7 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     230  

 gamma(SVM) 0.0263  

 Sample  392;    14 selected features  

   Feature List:  1   4   5   6   8  11  12  20  24  28  33  36  38  43   

 

 ======================== 

Run 8 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     240  

 gamma(SVM) 0.0299  

 Sample  392;    13 selected features  



   Feature List:  1   2   4  12  18  20  23  24  25  27  31  39  42   

 

 ======================== 

Run 9 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     233  

 gamma(SVM) 0.0273  

 Sample  392;    14 selected features  

   Feature List:  1   5   9  11  20  22  23  24  28  30  33  36  38  42   

 

 ======================== 

Run 10 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     237  

 gamma(SVM) 0.0288  

 Sample  392;    13 selected features  

   Feature List:  1   3   7  10  12  15  18  20  24  25  33  37  40   

 

 ======================== 

Run 11 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     225  

 gamma(SVM) 0.0247  

 Sample  392;    18 selected features  

   Feature List:  1   2   3   4   7   9  11  12  20  23  24  26  27  28  32  33  37  40   

 

 ======================== 

Run 12 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     203  

 gamma(SVM) 0.0166  

 Sample  392;    16 selected features  

   Feature List:  1   3   4   6   9  10  11  18  20  23  24  30  32  33  37  42   



 

 ======================== 

Run 13 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     216  

 gamma(SVM) 0.0214  

 Sample  392;    15 selected features  

   Feature List:  1   3   4   9  10  15  18  19  20  28  30  31  32  34  42   

 

 ======================== 

Run 14 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     234  

 gamma(SVM) 0.0279  

 Sample  392;    13 selected features  

   Feature List:  1   3   6  12  15  18  20  24  25  36  38  43  44   

 

 ======================== 

Run 15 

 actual       -1  

 predicted    -1  

 local Acc  0.83  

 K neighbor   83  

 c (SVM)     211  

 gamma(SVM) 0.0193  

 Sample  392;    15 selected features  

   Feature List:  1   4   9  10  11  12  20  22  23  24  28  33  37  38  40   

 

 ======================== 

Run 16 

 actual       -1  

 predicted    -1  

 local Acc  0.84  

 K neighbor   83  

 c (SVM)     216  

 gamma(SVM) 0.0212  

 Sample  392;    17 selected features  

   Feature List:  1   3   6   7   9  10  11  12  18  20  23  24  26  31  33  37  38   

 



 ======================== 

Run 17 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     221  

 gamma(SVM) 0.0230  

 Sample  392;    17 selected features  

   Feature List:  1   2   4   9  10  12  20  22  23  24  25  27  28  33  35  40  42   

 

 ======================== 

Run 18 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     231  

 gamma(SVM) 0.0268  

 Sample  392;    13 selected features  

   Feature List:  1   3   8   9  10  12  18  20  23  24  26  37  39   

 

 ======================== 

Run 19 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     214  

 gamma(SVM) 0.0204  

 Sample  392;    13 selected features  

   Feature List:  1   4   8   9  16  22  24  25  27  28  32  40  41   

 

 ======================== 

Run 20 

 actual       -1  

 predicted    -1  

 local Acc  0.82  

 K neighbor   83  

 c (SVM)     208  

 gamma(SVM) 0.0184  

 Sample  392;    13 selected features  

   Feature List:  1   5  12  20  22  23  24  25  26  27  28  31  36   
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