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Abstract—Intricate webs of interlinked critical infrastructures 
such as electrical grid, telecommunication, and transportation 
are essential for the minimal functioning of contemporary 
societies and economies. Advances in Information and 
Communication Technology (ICT) underpin the increasing 
interconnectivity of these systems which created new 
vulnerabilities that can be seriously affected by hardware failure, 
link cut, human error, natural disaster, physical-attacks and 
cyber-attacks. Failure of a fraction on nodes may lead to failure 
of dependent nodes in the other networks. Therefore, the main 
objective of this paper is to investigate the cascades phenomena 
caused by load shedding between two interconnected networks 
using Bak-Tang-Wiesenfeld sandpile modeling. We have found 
that, large avalanche occurred when node degree 
and/interconnectivity link become dense. In addition, the coupled 
random-regular networks have been found to be more robust 
than the coupled Erdös-Rényi  networks. However, coupled 
random-regular networks are vulnerable to random attack and 
coupled Erdös-Rényi  networks are vulnerable to target attack 
due to the degree distribution. 

Keywords-cascading effects; interdependence; coupled 
networks; network robustness; complex networks; Sandpile 
modelling. 

I.  INTRODUCTION 
The emphasis of cascading failures phenomena in complex 

networks has become an important aspect in trying to 
understand the fragility of the network or networks, so as to 
make the networks more robust and secure. Real-world 
examples of complex network are the Internet, electrical power 
grids, social networks, and telecommunication network [1-3]. 
Most of critical infrastructures todays are interconnected which 
capable of sharing information, load, and capacity. 
Interconnectivity allows building sophisticated network of 
networks; however, the complexity of these networks is arising 
which creates vulnerability against cascading failures. An 
example of some critical infrastructures is electrical Smart Grid 
network. Failures in electrical system can cause major 
disruption to the Internet, transportation, and our day to day 
life. A series of failure or blackout of an entire network can 
causes by failure of a small fraction of the network. Real-world 
events with series of blackout have already happened in the 
past and continuing to happen today. On July and August 1996, 
two power blackout events in west America which led to 11 

states out of power [4]. The largest blackout in the history of 
the United State happened in August 2003, the event triggered 
in the power grid of the U.S. and Canada [5]. On the 20th 
February 1998, a major blackout in Auckland CBD caused by 
failures of four power lines which left the entire city without 
power [6]. April 2012, a power outage at the KiwiRail Train 
Control Centre in Wellington caused by failure of the 
uninterrupted power supply system led to a shutdown of 
railway systems in Auckland during rush hours [7]. These 
events exhibit the phenomena of failures triggered by an event 
and cascade to other interconnected networks. In this study we 
investigate cascading phenomena in coupled interactive 
networks in term of load shedding from one node to another 
node and eventually cascades to the neighboring interconnected 
network. 

This paper is organized as follows. In section II, we review 
the related work in this area. In section III, the system model is 
introduced by presenting an overview of sandpile dynamics 
model and the interactive network topology. The extensive 
results from simulation are analyzed and discussed in Section 
IV. The final conclusions are drawn in session V and also the 
future works are identified. 

II. LITERATURE REVIEW 
In interconnected networks, failures of a fraction of nodes 

may lead to a series of failures cascade throughout the entire 
network. A framework was developed by Buldyrev et al. [8] to 
understand the resiliency of interdependent networks subjected 
to failures cascade from one network to another. This 
framework contains a model consists of two identical networks 
interconnected by dependency links. Nodes are randomly 
connected and the degree distributions are, 𝑃𝐴(𝑘) and 𝑃𝐵(𝑘). 
Percolation method was adopted in identifying the existence of 
giant connected component. The results show the recursive 
process of cascading failures happened when a critical portion 
of the nodes in one network failed, which leads the system to 
undertakes first order phase transition.  

Buldyrev et al. [9] introduced a new model known as 
correspondently coupled network (CCNs). This model consists 
of two mutually dependent networks with identical number of 
nodes and degree distributions. Mutual percolation framework 
was used in identifying the strongest possible relationship 
between the two networks and investigating the broadness of 



                                                                                        
 

the degree distribution. Results show that if the second instant 
of the degree distribution is limited, CCNs disintegrate in a 
cascade of failures via a first-order transition. In addition, if the 
degree distribution becomes broader, CCNs becomes more 
robust. Parshani, et al. [10] proposed another model of two 
networks where only a fraction of nodes in one network 
depends on a fraction of nodes in the other network. This 
model was formalized based on a real Smart Grid network. 
This model is limiting to a condition that all nodes in each 
network are randomly connected with degree distribution 𝑃(𝑘). 
Percolation framework again used to identify phase change in 
percolation transitions after reducing the coupling strength in 
interdependent networks. Simulations were conducted on two 
different types of coupled network, Scale-Free (SF) networks 
and Erdös-Rényi (ER) networks. 

Shao, et al. [11] proposed a model based on multiple 
support-dependence relations. Two networks interconnected 
and each node in one network is depending on multiple nodes 
in the other network. This model was defined in accordance to 
two conditions such that, for a node in one network to be 
functional it must (i) have at least a functional support node 
from the other network and also (ii) it must belong to the giant 
component of functional nodes within its own network. 
Numerical simulations have been conducted thoroughly on 
Erdös-Rényi  (ER) and Scale-Free (SF) networks using 
percolation method. The result shows that, multi support-
dependent relations model disintegrated at the first order phase 
transition. Gao, et al. [12] proposed a new theory known as a 
network of networks, which developed based on percolation 
approach which is a general analytical framework in the study 
of percolation of 𝑛  interdependent networks. This model 
consists of more than two interdependent networks, known as 
network of networks (NONs). The result shows that, of any 
network size starting from n ≥ 2, the phase transition becomes 
first-order transition and cascade of failures is as expected 
become visible for strong coupling. 

The literatures above were focusing on the cascading 
failures in interdependent networks in the cases of node and 
links failures. However, our target in this study is to investigate 
the cascading failures phenomena in coupled networks caused 
by load shedding when a node becomes unstable. If a node 
becomes unstable, its load will shed to the neighboring nodes.  

III. THE MODELS FOR DYNAMIC LOAD SHEDDING 
In this section we introduce the related mathematical 

models used in this study to quantify the cascades. We used 
BTW sandpile dynamics to model load shedding phenomena 
and apply this model to coupled networks model which will be 
constructed using random-regular networks and Erdos Renyi 
networks. These models help to evaluate the behavior of load 
shedding in coupled interactive networks based on avalanche 
size and probability of avalanche size distribution. Details of 
models and avalanche size distribution are described below.  

A. BTW Sandpile Dynamics Model 
In 1987 and 1988, Bak, et al. introduced a model known as 

Bak-Tang-Wiesenfeld (BTW) sandpile dynamics which named 
after the three authors. This model was realized from their 
studies in self-organized criticality in dynamical systems. BTW 
is a well-known model which has been used in many studies of 
cascades phenomena that exhibit self-organized criticality [13, 

14]. In this study we adopted this model for the purpose of 
validating the property of load shedding and the avalanche size 
distribution among two interacting networks. The concept of 
this model was derived from real sand pile behavior. In this 
study we adopted the 2-dimensional lattices concept and the 
process of this model is introduced by dropping grains of sand 
uniformly at random on network nodes each of which has an 
individual threshold. Throughout this process, when a node 
exceeds its capacity or threshold, this node will begin to topple 
or shed gains of sand to its neighboring nodes. At this stage if 
the neighboring nodes become unstable or failure, again grains 
of sand will start to topple or shed to the other neighboring 
nodes until load does not exceed any other node capacity. 
However, upon dropping another grain of sand, the toppling or 
shedding process might begin again. 

In this study, we assume that grains of sand represent as 
load and threshold represented as degree or capacities of each 
node. What we are interesting is the probability of avalanche 
size distribution, which is the chance that the load might topple 
large number of network nodes. In 2-dimensional finite lattices 
with open boundaries condition, some sands are lost when 
arriving at the boundaries which are naturally equivalent to 
delete grains of sand independently with probability f . The 
probability f is also known as dissipation rate [15]. Consider 
sandpile model of 2-dimentional finite 𝐿 × 𝐿 networks, every 
node in each network is denoted by 𝑍𝑖 where: 

𝑍𝑖 = Z(x, y) = 0, 1, 2, 3, …  𝑥,𝑦 = 1, 2, … . . , 𝐿. 

At initial state 𝑍𝑖 ≪  K, when there is no grain of sand 
being dropped. 𝐾  is the threshold of every node. Upon 
dropping grains of sand uniformly at random, at some stages 
when a grain of sand is added to a node with the capacity 
equal to its threshold  𝑍𝑖 = 𝐾 , a toppling event occur that 
might leads to a whole series of topplings. A toppling event is 
represented by Zi→Zi + 1, when Zi=K. The toppling events will 
continue until it reaches a stable state, where there is no other 
node topple. 

1) Avalanche size distribution: In this study, we focus on 
the probability of avalanche size distribution  D(s) , where 
D(s) is the chance that an avalanche begun in either network 
A or network B causing s  number of nodes to topple. The 
avalanche size distribution can be derived from the following 
probability distribution of branching process 𝑃(𝑠, 𝑝) [16]. 
Let 𝑓(𝑥, 𝑝) be the generating function of P(𝑠, 𝑝), we have:  

𝑓(𝑥, 𝑝) = ∑ 𝑃(𝑠, 𝑝)𝑥𝑠𝑠   (1) 

By taking derivative of equation (1), we have: 

𝑃(𝑠, 𝑝) = 1
𝑠!
𝜕𝑠𝑓(𝑥,𝑝)
𝜕𝑥𝑠

�
𝑥=0

,𝑛, 𝑝 are fixed. (2) 

The equation (1) can be simplified as follow: 

𝑓(𝑥, 𝑝) = 𝑥(1 − 𝑝) + 𝑥𝑝𝑓2(𝑥, 𝑝) = 1−�(1−4𝑥2𝑝(1−𝑝))
2𝑥𝑝

  (3) 

Equation (3) can be solved in the power of 𝑥2for s and k: 
1
𝑝

[4𝑝(1 − 𝑝)]𝑘 (𝑥2)𝑘

𝑥
= 1

𝑝
[4𝑝(1 − 𝑝)]𝑘𝑥2𝑘−1  (4) 

Equation (4) is correlated to equation (2), which we get: 
𝑠 = 2𝑘 − 1 and 𝑘 = 𝑠+1

2
  (5) 



                                                                                        
 

In this case:  

𝑃(𝑠, 𝑝) ~ 
1
𝑝�4𝑝(1 − 𝑝)[4𝑝(1 − 𝑝)]𝑠/2 ~ 𝑒−𝑠/𝑠𝑐(𝑝) 

𝑎
𝑠
2 = 𝑒ln�𝑎

𝑠
2� = 𝑒−𝑠(ln(𝑎)

−2 ),      𝑎 = 4𝑝(1 − 𝑝), 

𝑠𝑐(𝑝) =
−2

ln [4𝑝(1 − 𝑝)] ,      lim
𝑝→1/2

𝑠𝑐(𝑝) → ∞. 

When 𝑝 = 1
2

, 4𝑝(1 − 𝑝) = 1, 𝑓(𝑥, 𝑝) = 1−�(1−𝑥2)
2𝑥𝑝

 

�1− 𝑥2 = �
1
2 �

1
2 − 1� �1

2 − 2�… �1
2 − 𝑘 + 1�

𝑘! (−𝑥2)𝑘
∞

𝑘=0

 

𝑃𝑐(𝑘) = 𝑃 �𝑠 = 2𝑘 − 1,𝑝 =
1
2�                                             

=
1
2 �

1
2 − 1� �1

2 − 2�… �1
2 − 𝑘 + 1�

𝑘! (−1)𝑘    

Thus 𝑃𝑐(𝐾 + 1) =
1
2
−𝑘

𝑘+1
(−1)𝑃𝑐(𝑘) = 1−1/(2𝑘)

1+1/𝑘
𝑃𝑐(𝑘) 

In the limit of large 𝑘, we have 𝑘 = (𝑠 + 1)/2,  
where 1/(1 + 1/𝑘)  =  1/1 − 𝑘, 

𝑃𝑐(𝑘 + 1) ≈ �1 −
1

2𝑘� �1 −
1
𝑘�𝑃𝑐

(𝑘) ≈ [1 −
3

2𝑘]𝑃𝑐(𝑘) 

This asymptotic relation leads to  
𝑃𝑐(𝑘 + 1) − 𝑃𝑐(𝑘)

1 =
−3
2𝑘 𝑃𝑐

(𝑘),        
𝜕𝑃𝑐(𝑘)
𝜕𝑘 =

−3
2𝑘 𝑃𝑐

(𝑘) 

Thus, we have the solution 
𝑃𝑐(𝑘)~𝑘−3/2,         𝐷(𝑠) = 𝑃𝑐(𝑠)~𝑠−3/2,         𝛼𝑠 = 3/2 

for large 𝑘, 𝑠, since 𝑠 = 2𝑘 − 1 

B. Topologies of Coupled Networks  
This study focused on two interconnected networks labeled 

as A and B. Both networks are constructed based on two graph 
models. In the first model, the network topology is constructed 
using random-regular graphs. These two networks are sparsely 
interconnected at random using Bernoulli-coupling model [15]. 
Nodes in each network are randomly connected based on a 
given node degree. In the second model, Edös Rényi random 
graph is used to construct the network topology with the same 
configuration as in the first model. Nodes in each network are 
randomly connected based on a given values of node degrees. 
Fig. 1 shows an example of the topology of interacting 
networks.  

 
Figure 1. Example of a coupled networks topology. 

In each network, the connectivity between nodes is based 
on given values of node degree ( 𝐼𝑎 = 𝐼𝑏 = {3, 4, 5} ). The 
yellow links represented as the interconnectivity between the 

two networks based on Bernoulli-Coupling model. In this case, 
the p value in the graph represents as interconnectivity for both 
networks. Each network has probability of degree distribution 
denoted by Pa(Ia, p), Pa(Ia,1- p) and Pb(p, Ia), Pb�1-p, Ia� for 
network A and  for network B respectively. 

1) Random-Regular Graph: is a graph model represents by 
G(n,m), where n is the number of vertices which can be label 
as n={1, 2, 3,….,n} and m is the degree (number of edge) for 
every vertex. The average degree of RR network is < 𝑘 >=
2𝑚/𝑛 [17]. 

2) Erdös Rényi  (ER) Graph: is also known as Poisson 
random graph which was first studied by Edos̈ and Rényi [3]. 
ER random graph is represented by G(n,p) where 𝑛  is the 
number of vertices and p is the probability of having edges 
between vertices. An important property of ER random graph 
is the degree distribution represented by 𝑃(𝑘) the probability 
of a node being connected to exactly 𝑘 other nodes [18].  

𝑃(𝑘) = �𝑛−1𝑘 �𝑝𝑘(1− 𝑝)𝑛−1−𝑘 = 𝑒−𝑐 〈𝑘〉
𝑘

𝑘!
  (6) 

Equaiton (6) shows that ER has Poisson degree distribution. 

IV. SIMULATION STUDIES 
To understand cascade effects in coupled ER and RR 

networks, we simulated the effects of load shedding where 
number of nodes and node degree in each network are 
identical. As mentioned in section III above, two different 
graph models will be used in constructing coupled networks 
models. The simulation is divided in two different sets. In the 
first set, random-regular graph model is being used and ER 
random graph model is being used in the second set. The 
simulation results will be analyzed in the discussion sections 
below. From the results, we are most interested in the 
probability of avalanche size distribution D(s) and the 
avalanche size s. This simulation study is conducted by 
applying BTW sandpile dynamics model into python based 
NetworkX tool [19]. The parameters in the simulation are 
number of nodes (set to 500) of each network, fix dissipation 
rate f = 0.1, interconnectivity p = {0.1, 0.2, 0.3,…,0.9} and 
node degree 𝐼𝑎 = 𝐼𝑏 = {3, 4, 5}). 

A. Impact of Degree Distribution in RR and ER Coupled 
Networks Models 

In this section, we will be discussing the probability degree 
distributions gathered from the simulation. First of all, coupled 
random-regular (RR) networks will be discussed. In term of 
degree distribution, Fig. 2 shows the distribution of node 
degree with given node degree𝐼𝑎 = 𝐼𝑏 = {3, 5} and Bernoulli-
Coupling of interconnectivity link. Referring to Fig. 2A and 
Fig. 2B, each node in RR networks model has almost identical 
number of node degree. However, the maximum degree 
obtained from the simulation is greater than the given node 
degree. This is due to the fact that, some nodes in one network 
have an additional interconnectivity link to another network. 
In this case the probability distribution of network A is 
denoted by the joint probabilities Pa(Ia, p) − a node has an 
interconnectivity link and  Pa(Ia,1- p) −  a node has no 
interconnectivity link. Analogously, the same probability 
distribution applies to network B. This method is known as 



                                                                                        
 

Bernoulli-Coupling. As shown in Fig. 2A and Fig. 2B, when p 
increases to 0.9, almost every node has the degree of 4, which 
means almost every node has an interconnectivity link. 

 
Figure 2. RR and ER Networks with I𝑎 =  I𝑏 = 3, p = {0.1, 0.9} 

The degree distribution in RR network is uniformly 
distributed based on a given number of node degree. On the 
other hand, the degree distribution in ER networks is 
distributed based on the probability of having edges between a 
given numbers of nodes. Fig. 2C and Fig. 2D show the degree 
distribution of ER networks with given node degree of 3 and 
interconnectivity values of 0.1 and 0.9 respectively. In 
comparison to the degree in RR networks, the maximum 
degree in ER is greater than RR and the degree of most nodes 
are not identical.  

B. Impact of Average Node Degree and Interconnectivity 
on Avalanche Size in RR Networks 

In this section we conducted simulations on two identical 
RR networks with fix values of node degree ( 𝐼𝑎 = 𝐼𝑏 =
{3, 4, 5}) and increasing interconnectivity degree from p = {0.1, 
0.5, 0.9} for every fix value of 𝐼𝑎and 𝐼𝑏  accordingly.  

(A) 

 (B) 

(C) 
Figure 3. Fix node degree of 3, 4, and 5 respectively 

According to Fig. 3(A), Fig. 3(B), and Fig. 3(C), the 
diagrams show exponentially decrease in all three cases which 
indicated that the probability of avalanche size D(s) decreases 
when avalanche size s increases. When p increased in the range 
of {0.1, 0.5, 0.9}, the avalanche size increased significantly. 
The smallest avalanche size occurred at p = 0.1 and as p 
increases to 0.9, large avalanche size occurred. However, the 
chance of this large avalanche size to happen is lower than at 
p=0.1.  

 In the next comparative analysis, the value of 𝐼𝑎  and 𝐼𝑏will 
be changing in the range of {3, 4, 5} with fix values of 
interconnectivity p = {0.1 and 0.9}.  

(A) 

(B) 
Figure 4. Fix interconnectivity degree of p  = {0.1 and 0.9} respectively 

The diagrams in Fig. 4(A) and Fig. 4(B) show 
exponentially decrease in both cases. By increasing the value of 
𝐼𝑎  and 𝐼𝑏 , the probability of avalanche size distribution D(s) 
decreased exponentially. However, the avalanche size s 
increases significantly. The event of small avalanche occurred 
when node degree 𝐼𝑎 = 𝐼𝑏 = 3 for every p value and the largest 
avalanche occurred when the node degree becomes dense for 
every p value. This indicated that, increases in average node 
degree can enforce avalanche size to also increase. In addition, 
when the node degree is increasingly dense, the probability of 
avalanche size distribution D(s) has the highest value. In other 
word, the chance of having large avalanche size is increasing. 

The results above indicated that, by coupling more links 
between the two networks, the avalanche will be cascading 
across the entire network and the chance of having large 



                                                                                        
 

avalanche is very low; however, a significant number of nodes 
will fail if this is to happen. On the other hand, by coupling 
more links within each network, the avalanche is increasing as 
well as the chance of having large avalanche. The reason 
behind this phenomena is the degree distribution. When the 
interconnectivity between the two networks becomes dense, 
both networks become completely integrated because almost 
every node in one network is connected to almost every other 
node in the neighbouring network. On the other hand, when 
the degree within each network becomes dense, the chance of 
load topple significant number of nodes in one network and 
quickly cascade to the other network is increasing. In addition, 
node degree in RR coupled networks is uniformly distributed 
which mean every node has almost identical degree. So in this 
case, every node are identically important to the network in 
term of degree distribution. 

C. Impact of Average Node Degree and Interconnectivity 
on Avalanche Size in ER Networks 

We conducted the second set of simulations using coupled 
ER networks model with fix node degree (𝐼𝑎=𝐼𝑏 = {3, 4, 5}) 
and changing the interconnectivity p = {0.1, 0.5, 0.9}. The 
graphs in Fig. 5(A), Fig. 5(B), and Fig. 5(C), show 
exponentially decrease in all three cases. Thus, the probability 
of avalanche size distribution D(s) decreases with the increase 
in avalanche size. 

(A) 

(B) 

(C) 

Figure 5. Fix node degree of 3, 4, and 5 respectively 

When interconnectivity increases with the values of p = 
{0.1, 0.5, 0.9}, the avalanche shows significantly increases in 

size. However, there is an exception in Fig. 5(C), when average 
node degree becomes dense, the largest avalanche occurred for 
every p value. The lowest probability of avalanche size 
distribution occurred only at p = 0.9. From these three cases, 
the simulation results exhibited an interesting behaviour when 
node degree becomes dense. In this case, increasing 
interconnectivity does not increase the avalanche size when 
node degree becomes dense. Increasing node degree with the 
values of  𝐼𝑎 = 𝐼𝑏 = {3, 4, 5}  at each fix average external 
degree of p = {0.1, 0.9} is presenting next. The diagrams in 
Fig. 6(A) and Fig. 6(B), again show exponentially decrease for 
all two cases.  

(A) 

(B) 

Figure 6. Fix interconnectivity degree of p  = {0.1 and 0.9} respectively 

Fig. 6(A) above shows, at p = 0.1 when node degree 
increasing from𝐼𝑎 = 𝐼𝑏 = {3, 4, 5}, the avalanche size increases 
significantly. This indicated that, the largest avalanche size 
occurred when node degree increases. However, Fig. 6(B) 
shows an interesting result at which the largest avalanche 
occurred for every given values of node degree when p = 0.9. 
This indicated that, the increasing in node degree does not 
increase the avalanche size when the interconnectivity becomes 
dense. The probability of avalanche size distribution is small 
when 𝐼𝑎 = 𝐼𝑏 = 5. 

From the above two cases, the avalanche size shows 
significant increase only when the node degree is less than 5. 
However, when interconnectivity degree becomes dense, the 
avalanche sizes shows identically large even with small node 
degree. In this case, by coupling more links either between 
both network or in each individual network, the avalanche size 
is increasing and the probability of avalanche size distribution 
is decreasing. Again the reason behind this phenomena is the 
degree distribution. Node degree in ER coupled networks is 
random distributed which mean some nodes have higher 
degree than other nodes. So in this case, the nodes with higher 
degree can be identified as the hubs of the network which is 
very critical if these nodes fail. If the hubs of the network fail, 
the number of topple nodes is also high because load on failed 
nodes will shed to every neighbouring nodes which might 
again cause the neighboring nodes to topple. 



                                                                                        
 

D. Comparison between RR and ER coupled networks 
In previous sections, we analyzed RR and ER individually. 

To understand the different behaviors between RR and ER 
networks, we will be comparing the avalanche size and the 
probability of avalanche size distribution between these two 
types of networks and we will also identify the vulnerability of 
these networks toward random and target attacks. 

(A) 

(B) 
Figure 7. Compare RR and ER with small and large degree respectively 

When nodes in each network and between the networks are 
sparsely connected, Fig. 7(A) shows that, ER exhibit larger 
avalanche size than RR networks. This indicated that, at small 
average degree RR is more robust than ER networks. As the 
degree become dense, Fig. 7(B) shows an interesting 
behaviour. In this case, both networks are completely 
integrated into one network. From Fig. 7(B), both RR and ER 
coupled networks have identically large avalanche size. 
However, the chance of having this large avalanche size in RR 
networks is slightly smaller than ER networks. In correlation 
to the degree distribution every node in RR networks is almost 
equally important which lead to vulnerability against random 
attack. On the other hand, some nodes in ER networks are the 
hubs of the networks. So if the attack is targeted on those 
hubs, large avalanche size will occur.  

V. CONCLUSION 
In this paper we investigated load shedding phenomena in 

interacting networks by applying Bak-Tang-Wiesenfeld 
sandpile model in the simulation with two cases of random-
regular (RR) networks and Edös Rényi  (ER) networks. Our 
main focus is to study the correlation between the degree 
distribution, the avalanche size, and the probability of 
avalanche size distribution. We have found that, RR coupled 
networks undergone large avalanche when increased either 
node degree or interconnectivity. By increasing 
interconnectivity, the probability of avalanche size distribution 
is decreasing. However, when increasing node degree, the 
probability of avalanche size distribution is also increasing. 

On the other hand, increasing node degree or interconnectivity 
in coupled ER networks, the probability of avalanche size 
distribution is decreasing but the networks undergone large 
cascade.  In term of vulnerability of coupled random-regular 
network and coupled Erdös-Rényi  networks, we have 
identified that coupled ER networks are more vulnerable to 
target attack and coupled RR networks are more vulnerable to 
random attack. 

In future work, we are targeting to analytically model more 
complex coupled networks such as scale-free networks from 
the reality. In addition, we need to identify the sensitive 
network structural factors which have significant impact on 
the cascade effects which can be used to quantify and control 
the cascades, so as to further develop new solutions to tackle 
the challenging robustness problems in coupled networks. 
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