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Importance sampling schemes for evidence

approximation in mixture models

Jeong Eun Lee ∗ and Christian P. Robert †

Abstract.

The marginal likelihood is a central tool for drawing Bayesian inference about
the number of components in mixture models. It is often approximated since the
exact form is unavailable. A bias in the approximation may be due to an incomplete
exploration by a simulated Markov chain (e.g., a Gibbs sequence) of the collection
of posterior modes, a phenomenon also known as lack of label switching, as all
possible label permutations must be simulated by a chain in order to converge
and hence overcome the bias. In an importance sampling approach, imposing
label switching to the importance function results an exponential increase of the
computational cost with the number of components. In this paper, two importance
sampling schemes are proposed through choices for the importance function; a
MLE proposal and a Rao–Blackwellised importance function. The second scheme
is called dual importance sampling. We demonstrate that this dual importance
sampling is a valid estimator of the evidence. To reduce the induced high demand
in computation, the original importance function is approximated but a suitable
approximation can produce an estimate with the same precision and with reduced
computational workload.

Keywords: Model evidence, Importance sampling, Mixture models, Marginal like-
lihood

1 Introduction

Consider a sample x = {x1, · · · , xnx
} that is a realisation of a random sample (univariate

or multivariate) from a finite mixture of k distributions

Xj ∼ fk(x|θ) =
k∑

i=1

λif(x|ξi) , j = 1, · · · , nx

where the component weights λ = {λi}ki=1 are non-negative and sum to 1. The collection
of the component-specific parameters is denoted ξ = {ξi}ki=1 and the collection of all
parameters by θ = {λ, ξ}. As is now standard (Marin et al. 2005) each observation xj

from the sample can be assumed to originate from a specific if unobserved component
of fk, denoted zi, and the mixture inference problem can then be analysed as a missing
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data model, with discrete missing data z = {z1, . . . , znx
}, such that

xj |z ∼ f(xj |ξzj ) , independently for j = 1, · · · , nx .

The conditional distribution of zj ∈ [1, . . . , k] is then given by

zj |x, θ ∼ M
(

λ1f(xj |ξ1)∑k
i=1 λif(xj |ξi)

, . . . ,
λkf(xj |ξk)∑k
i=1 λif(xj |ξi)

)
.

This interpretation of the mixture model leads to a natural clustering of the observations
according to their label and the cluster associated with the mixture component i provides
information about λi and ξ. In particular, when the full conditional distribution of the
parameter θ is available in closed form, conditional simulation from π(ξ,λ|x, z) becomes
straightforward (see Diebolt and Robert (1994)).

In a Bayesian mixture modelling setup, the goal is to perform inference on the parameter
θ and the posterior distribution π(θ|x) is usually approximated via MCMC methods.
The likelihood function pk(x|θ) is both available and invariant under permutations of
the component indices. If an exchangeable prior is chosen on (λ, ξ), the posterior den-
sity reproduces the likelihood invariance and component labels are not identifiable. This
phenomenon is called label switching and is well-studied in the literature (Celeux et al.
2000; Stephens 2000b; Jasra et al. 2005). From a simulation perspective, label switching
induces multimodality in the target and while it is desirable that a simulated Markov
chain targeting the posterior explores all of the k! symmetric modes of the posterior dis-
tribution, most samplers fail to switch between modes (Celeux et al. 2000). For instance,
when using a data augmentation scheme, which is a form of Gibbs sampler adapted to
missing data problems (Robert and Casella 2004), the Markov chain very slowly if ever
switches between the symmetric modes. Therefore, since the chain only explores a cer-
tain region of the support of the multimodal posterior, estimates based on the simulation
output are necessarily biased. When label switching is missing from the MCMC output,
it can be simulated by modifying the MCMC sample (see Frühwirth-Schnatter (2001);
Papastamoulis and Roberts (2008); Papastamoulis and Iliopoulos (2010)).

A different perspective on the label switching phenomenon is inferential. Indeed, point
estimates of the component-wise parameters are harder to produce when the Markov
chain moves freely between modes. To achieve component-specific inference and give a
meaning to each component, relabelling methods have been proposed in the literature
(see Richardson and Green (1997); Celeux et al. (2000); Stephens (2000b); Jasra et al.
(2005); Marin and Robert (2007); Geweke (2012); Rodriguez and Walker (2014) and
others). An R-package, label.switching (Papastamoulis 2013), incorporates some of
those label switching removing methods.

Evaluating the number of components k is a special case of model comparison, which can
be conducted by comparing the posterior probabilities of the models. Those probabilities
are in turn computed via the marginal likelihoods E(k), also known as model evidences
(Richardson and Green 1997)

E(k) =

∫

S

pk(x|θ)πk(θ) dθ ,
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where πk(θ) is the selected prior for the k-component mixture. (We assume here that
it is exchangeable wrt its components.) Recall that the ratio of evidences is a Bayes
factor and is properly scaled to be readily compared to 1 (Jeffreys 1939). When a
large collection of values of k is considered for model comparison, sophisticated MCMC
methods have been developed to bypass computing evidences (Richardson and Green
1997; Stephens 2000a), even though those are estimated as a byproduct of the methods.
Alternatively, estimating the number of components can also proceed from a Bayesian
nonparametric (BNP) modelling, which assumes an infinite number of components and
then evaluates the non-empty components implicitly through partitioning data, using
for instance the Chinese restaurant process (Antoniak 1974; Escobar and West 1995;
Rasmussen 2000). This however requires a modification of the prior modelling and we
will not cover it in this paper, which reassesses Monte Carlo ways of approximating the
evidence.

The difficulty with approaches using E(k) is that the quantity often cannot directly and
reliably be derived from simulations from the posterior distribution π(θ|x) (Newton and Raftery
1994). The quantity has been approximated using dedicated methods such harmonic
means (Satagopan et al. 2000; Raftery et al. 2006), importance sampling (Rubin 1987,
1988; Gelman and Meng 1998), bridge sampling (Meng and Wong 1996; Meng and Schilling
2002), Laplace approximation (Tierney and Kadane 1986; DiCiccio et al. 1997), stochas-
tic substitution (Gelfand and Smith 1990; Chib 1995, 1996), nested sampling (Chopin and Robert
2010), Savage-Dickey representations (Verdinelli and Wasserman 1995; Marin and Robert
2010b) and erroneous implementations of the Carlin and Chib algorithm (Carlin and Chib
1995; Scott 2002; Congdon 2006; Robert and Marin 2008). Comparative studies of those
methods are found in Marin and Robert (2010a) and Ardia et al. (2012).

In the specific case of mixtures, the invariance of the posterior density under an arbitrary
relabelling of the mixture components must be exhibited by simulations and approxi-
mations to achieve a valid estimate of E(k) as discussed in Neal (1999); Berkhof et al.
(2003); Marin and Robert (2008). This often leads to computationally intensive steps
in approximation methods, especially when k is large, and it is the purpose of this paper
to provide a partial answer to this specific issue.

We consider here two estimators of E(k), both based on importance sampling (IS).
One is a version of Chib’s estimator and the second one a novel representation called
dual importance sampling. Our importance construction aims to better approximate
the posterior distribution both around a specific local mode and at the corresponding
(k! − 1) symmetric modes of the posterior distribution. A particular mode is first ap-
proximated based on (i) a point estimate and (ii) Rao–Blackwellisation from a Gibbs
sequence. Then, the corresponding local density approximate is permuted to reach
all modes. We demonstrate here that dual importance sampling is comparable to our
benchmark method, Chib’s approach. Taking advantage of the symmetry in the poste-
rior distribution, we show how to reduce computational demands by approximating our
importance function.

The paper starts with recalling the approximation techniques of Chib’s method and
bridge sampling in Section 2. In Section 3, importance sampling is considered, including
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our choices of importance functions. Our importance function approximate approach
is introduced in Section 4. Simulation studies using both simulated and benchmark
datasets, namely the galaxy and fishery datasets used in Richardson and Green (1997)
are reported in Section 5, and the paper concludes with a short discussion in Section 6.

2 Standard evidence estimators

2.1 Chib’s estimator and corrections

In this paper, the reference estimator of evidence is Chib’s(1995) method and is derived
from rewriting Bayes’ theorem

Ê(k) = mk(x) =
πk(θ

o)pk(x|θo)
πk(θo|x)

(1)

where θo is any plug-in value for θ. When πk(θ
o|x) is not available in closed form, the

Gibbs sampling decomposition allows a Rao–Blackwellised approximation (Gelfand and Smith
1990; Robert and Casella 2004)

π̂k(θ
o|x) = 1

T

T∑

t=1

πk(θ
o|x, zt) ,

where (zt)Tt=1 is a Markov chain with stationary distribution πk(z|x). The appeal of
this estimator, when available, is that it constitutes a non-parametric density estimator
converging at a regular parametric rate.

It is now an accepted fact that label switching is necessary for the above Rao–Blackwellised
π̂k(θ

o|x) to converge. When (z1, · · · , zT ) only explores part of the modes of the poste-
rior, this estimator is biased, generally missing the target quantity log(mk(x)) by a factor
of order O(log k!), with no simple correction factor (Neal 1999). Berkhof et al. (2003)
later suggested a generic correction by averaging π̂k(θ

o|x) over all possible permutations
of the labels, hence forcing “perfect” label switching. The resulting approximation is
expressed as

π̃k(θ
o|x) = 1

Tk!

∑

σ∈Sk

T∑

t=1

πk(θ
o|x, σ(zt)) ,

where Sk denotes the set of the k! permutations of {1, . . . , k} and σ is one of those
permutations. Note that the above correction can also be rewritten as

π̃k(θ
o|x) = 1

Tk!

∑

σ∈Sk

T∑

t=1

πk(σ(θ
o)|x, zt) , (2)

using a notational shortcut σ(θo) meaning that the components of θo are then switched
according to the permutation σ. This representation may induce computational gains
since only k! versions of σ(θo) need to be stored.
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While Chib’s representation has often been advocated as a highly stable solution
for computing the evidence in mixture models, which is why we selected it as our
reference, alternative solutions abound within the literature, including nested sam-
pling (Skilling 2007; Chopin and Robert 2010), reversible jump MCMC (Green 1995;
Richardson and Green 1997), and particle filtering (Chopin 2002).

2.2 Bridge Sampling

Meng and Wong (1996) proposed a sample–based method to compute a ratio of nor-
malizing constants of two densities with common support. The method is well-suited to
estimate the marginal likelihood (Frühwirth-Schnatter 2001, 2004) and used as a point
posterior estimate for Chib’s method (Mira and Nicholls 2004). Considering a nor-
malised density q and the unnormalized posterior distribution π∗

k(θ|x) = πk(θ)pk(x|θ),
the bridge sampling identity is given by

Ê(k) =
Eq(θ)[α(θ)π

∗
k(θ|x)]

Eπk(θ|x)[α(θ)q(θ)]
,

for an arbitrary function α (provided all expectations are well-defined, Chen et al. 2000).
The (formally) optimal choice for α (Meng and Wong 1996) leads to the following iter-
ative estimator

Ê
(t)(k) = Ê

(t−1)(k)

M−1
1

M1∑

l=1

π̂t−1(θ̃
l|x)/M1q(θ̃

l)+M2π̂t−1(θ̃
l|x)

M−1
2

M2∑

m=1

q(θ̂m)/M1q(θ̂
m)+M2π̂t−1(θ̂

m|x)

(3)

where π̂t−1(θ|x) = π∗
k(θ|x)/Ê(t−1)(k). Here, (θ̃1, . . . , θ̃M1) and (θ̂1, . . . , θ̂M2) are samples

from q(θ) and πk(θ|x) respectively.
The convergence of bridge sampling (with the above optimal α) is trivial when π∗

k(θ|x)
and q(θ) share a sufficiently large portion of their supports. If the support intersection
is too small, the resulting bridge sampling estimator may end up with an infinite vari-
ance (Voter 1985; Servidea 2002). Improvements of the algorithm, like path sampling
(Gelman and Meng 1998), a simple location shift of the proposal distribution (Voter
1985), and a warp bridge sampling (Meng and Schilling 2002), have been proposed.

In the specific case of the mixture posterior distribution, the parameter θ can be split
in λ and k further blocks ξ1, . . . , ξk in the Gibbs sampling steps. The output sam-
ples from the Gibbs sampler are denoted by {θ(j), z(j)}J1

j=1, where the z(j)’s are the
component allocation vectors associated with the observations x. For bridge sampling,
Frühwirth-Schnatter (2004) suggested using a Rao–Blackwellised function q(θ) = q(λ, ξ)
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of the form

q(θ) =
1

J1

J1∑

j=1

πk(θ|θ(j), z(j),x) (4)

=
1

J1

J1∑

j=1

p(λ|z(j))
k∏

i=1

p(ξi|ξ(j), z(j),x)

assuming {θ(j), z(j)}J1

j=1 is well-mixed, followed by switching the labels of the simula-
tions from the posterior distribution (Frühwirth-Schnatter 2001). Frühwirth-Schnatter
(2004) demonstrated that the iterative bridge sampling estimator (3), using (4) as q(·),
converges relatively quickly, in about t = 10 iterations, even with different starting
values.

3 New importance sampling estimators

If q(θ) is an importance function with support Sq, generating a sample θ = (θ(1), . . . , θ(T ))
from q(θ) leads to the evidence approximation

Ê(k) =
1

T

T∑

t=1

πk(θ
(t))pk(x|θ(t))
q(θ(t))

def
=

1

T

T∑

t=1

ω(θ(t)) . (5)

To provide a good approximation, the support of q(θ) must overlap the support of the
posterior distribution, which is both symmetric under permutations and multimodal. In
this sense, a Rao–Blackwellised estimate like (4) is a natural solution for the choice of q,
despite the drawback that J1 increases “factorially” fast with k due to the permutations
over {θ(j), z(j)}J1

j=1 (Frühwirth-Schnatter 2004; Frühwirth-Schnatter 2006).

In the following sections, the parameter θ is decomposed into (k + 1) blocks θ =
(λ, ξ1, . . . , ξk). Note that ξi is a component-wise block, most often a vector. Two types
of importance functions, based on the product of marginal posterior distributions, will
be considered. The usefulness and details of the product of block marginal posterior
distributions are well summarised in Perrakie et al. (2014).

3.1 A plug-in proposal

Using a very simple Rao–Blackwell argument inspired from Chib’s representation, a
natural importance function is

q(θ) = πk(θ|zo, θo,x).

Samples are generated from the posterior distribution conditional on a given completion
vector zo, which is usually taken equal the MAP (maximum a posteriori) or the marginal
MAP estimate of z derived from MCMC simulations. Taking the full permutation of
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component labels of zo and θo (inspired by Berkhof et al. (2003) and Marin and Robert
(2008)), we thus propose a symmetrised version of a MAP proposal

q(θ) =
1

k!

∑

σ∈Sk

πk(θ|σ(θo, zo),x) (6)

=
1

k!

∑

σ∈Sk

p(λ|σ(zo))
k∏

i=1

p(ξi|σ(ξo), σ(zo),x) .

This proposal is equivalent to generating θ from πk(θ|θo, zo,x) and then operating a
random permutation on the components of θ. The computational cost of producing
ω(θ) in (5), hence Ê(k), is then multiplied by k! under the provision that the support
of (6) is sufficiently wide. If the tails of samples generated from (6) are deemed to be
too narrow, as signalled by the effective sample size, additional selected (and thinned)
simulations z1, . . . , zt taken from the Gibbs output can be included to make the proposal
more robust.

While this estimator is theoretically valid, providing an unbiased estimator of Ê(k), it
may face difficulties in practice by missing wide regions of the parameter space when
simulating from πk(θ|x, zo). This is indeed the practical version of simulating from an
importance function with a support that is smaller than the support of the integrand a
setting that leads to an erroneous approximation of the corresponding integral. In the
current situation, since πk(θ|x, zo) is everywhere positive, this is not a theoretical issue.
However, in practice, the conditional density is numerically equal to zero around the
alternative modes.

3.2 Dual importance sampling

A dual exploitation of the above Rao–Blackwellisation argument produces an alter-
native importance sampling proposal, based on MCMC draws {θ(j), z(j)}Jj=1 from the
unconstrained posterior distribution. The new importance function is expressed as

q(θ) =
1

Jk!

J∑

j=1

∑

σ∈Sk

πk(θ|σ(θ(j) , z(j)),x) (7)

=
1

Jk!

J∑

j=1

∑

σ∈Sk

p(λ|σ(z(j)))
k∏

i=1

p(ξi|σ(ξ(j)), σ(z(j)),x) .

Here, πk(θ|σ(θ(j) , z(j)),x) is a product of full conditional densities on each parameter in
a Gibbs sampler representation and {θ(j), z(j)}Jj=1 is the original albeit not necessarily
well-mixed simulation outcome. Label switching is imposed upon those J conditional
densities through all k! permutations and conversely the average of J well-selected
conditional densities should approximate the posterior around any of the k! symmetric
modes of this posterior.
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If we now assume that the component labels of the terms {θ(j), z(j)}Jj=1 in (7) have
not been permuted and that any label switching occurence has been removed from
the simulations by a recentering method (Celeux et al. 2000), we denote the resulting
transforms by {ϕ(j)}Jj=1. They can be interpreted as hyperparameters of q. The density
(7) then satisfies

q(θ) =
1

Jk!

J∑

j=1

k!∑

i=1

π(θ|σi(ϕ
(j)),x)

ef
=

1

k!

k!∑

i=1

hσi
(θ) (8)

where hσi
(θ) =

1

J

J∑

j=1

π(θ|σi(ϕ
(j)),x). Each of the densities hσ1

, · · · , hσk!
has a support–

i.e., a domain where it takes non-negligible values– denoted by Sσ1
, · · · , Sσk!

and Sq =⋃k!
i=1 Sσi

. Note that an estimator using (8) is equivalent to an estimator using (7).

From a computational perspective, an artificial label switching step is necessary in
computing q(θ) but not in generating a proposal θ from q. For arbitrary permutation
representations σm, σc, σi ∈ Sk = {σ1, . . . , σk!} acting on both θ and ϕ, the following
holds for (7)

π(σc(θ)|σi(ϕ),x) = π(σmσc(θ)|σmσi(ϕ),x) ,

where σmσc(θ) = σm(σc(θ)). The full permutation representation set is invariant over
an additional permutation representation σm (e.g., Sk = {σmσ1, · · · , σmσk!}), q(σc(θ))
and q(σmσc(θ)) are equal. Thus the standard estimator using q in (7) is equivalent
(from a computational viewpoint) to an estimator such that (i) proposals are generated
from a particular term hσc

(θ) of (8) and (ii) importance weights are computed according
to (8). This makes a proposal generating step easier by ignoring label switching even
though all the hσ(θ)’s need be evaluated to compute q(θ).

3.3 Importance function based on marginal posterior densities

Importance functions found in (4) and (8) have the same underlying motivation of a
better approximation of the joint posterior distribution and the resulting estimate of
(5) should therefore be more efficient. Both are designed to cover the k! clusters, which
are created by either symmetrizing the labels of hyperparameter set {θ(j), z(j)}Jj=1 as in

(8) or by randomly permuting the label of each {θ(j), z(j)}J1

j=1 as in (4). Once k! clus-
ters of hyperparameters are thus constructed, the corresponding conditional densities
constitute clusters for q.

Consider κ ∈ {1, . . . , k!}, a cluster index of q. Associating the cluster component func-
tion qκ(·|x) with a support Sκ, the importance function q is expressed as

q(θ|x) =
k!∑

κ=1

p(κ)qκ(θ|x) (9)

where p(κ) is the proportion of those conditional densities that are associated with the

cluster κ and
∑k!

κ=1 p(κ) = 1. The importance function representation (8) is thus a
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special case of (9) with (κ = 1, . . . , k!)

Sσκ
= Sκ , hσκ

(θ) = qκ(θ|x) and p(κ) = 1/k! .

By contrast, the density (4) does not achieve perfect symmetry, which means κ is not
uniformly distributed, although p(κ) → 1/k! as J1 → ∞.

A marginal likelihood estimate using q(θ) as in (9) follows by a standard importance
sampling identity

E(k) =

∫

Sq

π(θ)pk(x|θ)
q(θ|x)

(
k!∑

κ=1

p(κ)qκ(θ|x)
)
dθ

=
k!∑

κ=1

∫

Sκ

π(θ)pk(x|θ)
q(θ|x) p(κ)qκ(θ|x)dθ = Ep(θ,κ)[ω(θ)] (10)

leading to

Ê(k) =
1

T

T∑

t=1

ω(θ(t)) ,

where ω(θ) = π(θ)pk(x|θ)
/
q(θ|x), namely a weighted sum of integrals over the Sκ’s

(κ = 1, . . . , k!).

Due to the perfect symmetry in the clusters of (8), the integrals of ωqκ with respect to
θ over Sκ for κ = 1, · · · , k! are equal. Given an arbitrary cluster, κo, the evidence is

E(k) =

k!∑

κ=1

p(κ)

(∫

Sκ

ω(θ)qκ(θ|x)dθ
)

=

∫

Sκo

ω(θ)qκo(θ|x)dθ = Eqκo (θ|x)[ω(θ)] . (11)

Note that the corresponding estimator (Monte Carlo approximation based on T draws)
for the above is exactly in the same form to the estimator for (10).

Both (10) and (11) are thus importance sampling estimators using (4) and (8) respec-
tively. Hence standard convergence result hold: by the Law of Large Numbers, both
estimates a.s. converge to E(k), and the Central Limit theorem also holds

√
T

{
1

T

T∑

t=1

ω(θ(t))− E(k)

}
−→
T→∞

N (0, V1) ,
√
T

{
1

T

T∑

t=1

ω(θ(t))− E(k)

}
−→
T→∞

N (0, V2)

where V1 = varp(θ,κ|x)(ω(θ)) and V2 = varqκo (θ|x)(ω(θ)). The perfect symmetry in the
clusters of (8) does not guarantee a better efficiency in estimation and those variances
are rather highly related to how well the importance functions approximate the joint
posterior distribution. If J1 = Jk! and both importance functions provide a good
approximation, V1 ≈ V2 is expected.
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4 Importance function approximation

Both estimators (10) and (11) suffer from massive computational demands when k is
large. In this section, we show how to approximate (7) and increase the computational
efficiency (i.e., computing time) as a result.

It was shown in Section 3.2 that q as in (7) is invariant under a permutation of the
labels of θ and that proposals can be generated from a particular term hσc

(θ) of (8)
without any loss of statistical efficiency. Given (θ(1), . . . , θ(T )) ∼ hσc

(θ), it is natural
to consider whether or not all terms in {hσ1

(θ(t)), . . . , hσk!
(θ(t))} are different from zero

for t = 1, . . . , T . In the case some are not, it is obviously computationally relevant to
determine which ones among them are likely to be insignificant (i.e., almost zero). This
perspective motivates the following section.

4.1 Dual importance sampling using an approximation

Given a proposal θ generated from a particular hσc
(θ), θ ∈ Sσc

, the importance function
at θ is an average of all hσ(θ)’s and the relative contribution of each term is

ησi
(θ) = hσi

(θ)
/
k!q(θ) = hσi

(θ)
/ k!∑

l=1

hσl
(θ) , i = 1, . . . , k! .

If ησi
(θ) is close to zero, hσi

(θ) is negligible within q(θ) and on the opposite ησi
(θ) ≈ 1

indicates a high contribution of hσi
(θ). The expected relative contribution of hσi

(θ)

Ehσc
[ησi

(θ)] =

∫

Sσc

ησi
(θ)hσc

(θ) dθ

is estimated by

Êhσc
[ησi

(θ)] =
1

M

M∑

l=1

ησi
(θ(l)) , θ(l) ∼ hσc

(θ) . (12)

After an appropriate permutation of the indices, we obtain that Êhσc
[ησ1

(θ)] ≥ · · · ≥
Êhσc

[ησk!
(θ)], namely that the corresponding hσ1

, · · · , hσk!
are in decreasing order of

expected contributions. The importance function q(θ) can then be approximated by
using only the n most important hσ’s (1 ≤ n ≤ k!), leading to the approximation

q̃n(θ) =
1

k!

n∑

i=1

hσi
(θ) , (13)

and the mean absolute difference from q(θ) is approximated by

φ̂n =
1

M

M∑

l=1

∣∣∣q̃n(θ(l))− q(θ(l))
∣∣∣ , θ(l) ∼ hσc

(θ) . (14)
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When this mean absolute difference is below a certain threshold, τ , q̃n is considered
to be an appropriate approximation for q. We define the corresponding approximate
set A(k) ⊆ Sk to be made of {σ1, · · · , σn}, n being defined as the smallest size that

satisfies the condition φ̂n < τ . With this truncation, the computational efficiency
obviously improves.

Note that the set A(k) is determined under the assumption that all proposals (θ(t)) are
generated from hσc

since the quality of the approximation is only guaranteed under this
assumption. Due to the perfect symmetry of q(θ) over the k! permutations, the choice
of σc is obviously irrelevant for the computational gains. The evidence estimate using
such an approximation is detailed in the following algorithm:

Algorithm 1: Dual importance sampling algorithm with approximation

1 Randomly select {z(j), θ(j)}Jj=1 from Gibbs sample and remove label switching by an
appropriate method. Then, construct q(θ) as in (8).

2 Derive the corresponding term hσc
(θ) and generate particles {θ(t)}Tt=1 ∼ hσc

(θ).

3 Construct an approximation, q̃(θ), using the first M terms in {θ(t)}Tt=1:

3.1 Compute (hσ1
(θ(t)), . . . , hσk!

(θ(t)), ησ1
(θ(t)), . . . , ησk!

(θ(t))) for t = 1, . . . ,M

and Êhσc
[ησ1

(θ)], · · · , Êhσc
[ησk!

(θ)] as in (12).

3.2 Reorder the σ’s so that Êhσc
[ησ1

(θ)] ≥ · · · ≥ Êhσc
[ησk!

(θ)].

3.3 Initialise n = 1 and compute q̃n(θ
(1)), · · · , q̃n(θ(M)) as in (13) and φ̂n as in

(14). If φ̂n=1 < τ , go to Step 4. Otherwise increase n = n + 1 and update

q̃n(θ) and φ̂n(θ) until φ̂n < τ .

4 Calculate q̃n(θ
(M+1)), . . . , q̃n(θ

(T )) and replace q(θ(1)), . . . , q(θ(T )) with

q̃(θ(1)), . . . , q̃(θ(T )) in (5) to estimate Ê.

In Step 1., we used the method by Jasra et al. (2005), even though alternatives im-
plemented in the label.switching package of Papastamoulis and Iliopoulos (2010) or in
Rodriguez and Walker (2014) could be implemented as well. The total number of h
values that are computed is Tk! in the standard dual importance sampling scheme but
decreases to (Mk!) + |A(k)|(T − M) when using q̃(θ). The relative gain in the total
number of terms is thus

∆(A(k)) =
(Mk!) + |A(k)|(T −M)

Tk!
=

M

T

(
1− |A(k)|

k!

)
+

|A(k)|
k!

. (15)

The gain will thus depend on how small |A(k)| is, when compared with k!, hence ulti-
mately on the acceptable mean absolute difference τ .
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5 Simulation study

Two simulated mixture datasets and two real datasets are used to examine the perfor-
mance of seven marginal likelihood estimators. The simulated datasets, D1 and D2,
are;

• D1 : x1, . . . , x60 ∼ 0.3N(−1, 1) + 0.7N(5, 22)

• D2 : x1, . . . , x80 ∼ 0.15N(−5, 1) + 0.65N(1, 22) + 0.2N(6, 1)

where N(5, 22) denotes a normal distribution with a mean of 5 and a standard deviation
of 2. Two real datasets, called galaxy and fishery datasets respectively, are shown in
Figure 1. They have been frequently used in the literature as benchmarks (see, e.g.
Chib 1995; Frühwirth-Schnatter 2006; Jasra et al. 2005; Richardson and Green 1997;
Stephens 2000b).

Gaussian and Dirichlet priors are used for the means {µi}ki=1 and proportions λ,

{µi}ki=1 ∼ N(0, 102) and (λ1, . . . , λk) ∼ Dir(1, . . . , 1) .

For the variance parameters {σ2
i }ki=1, inverse Gamma distributions with two sets of

hyperparameters, IG(2, 3) and IG(2, 15), are considered. With the second calibration,
label switching naturally occurred in Gibbs sequences in our simulation experiments.
Removing the first 5000 Gibbs simulations as burn-ins, 104 Gibbs simulations are used
to approximate E(k).

Firstly, a sensitivity analysis is conducted about the expected relative contribution of
hσi

to q(θ) with respect to M . Then we set the values for both M and τ . In Section 5.2,
the performance of seven estimators for E(k) are compared through a large simulation

study, which confirms that the asymptotic variance of Ê(k) based on (7) is smaller than
when based on (4).
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(a (b

Figure 1: Histogram of the data against estimated six- and four- Gaussian mixture
densities (solid line) for (a) the Galaxy dataset and (b) the fishery dataset, respectively.
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5.1 Determining M and τ

The approximation set is constructed in two steps. First, we compute Êhσc
[ησ1(θ)], . . .,

Êhσc
[ησk!(θ)], based on reduced samples of size M as in (12). Second, we derive which

terms are negligible when compared with the threshold τ . In our experiments, we chose
τ conservatively so that all zero terms are identified. In MatLab, 10−324 is rounded
down to 0 thus τ = 10−324 was chosen for the following simulation studies.

The expected relative contribution measures for D1 and D2 are given in Tables 1 and
2, respectively. For J = 102 initial Gibbs simulations, significantly contributing clusters
are easily identified by {Êhσ1

[ησi
(θ)]}k!i=1 and both |A(k)| and φ̂ are relatively stable

against M . Under a natural lack of label switching, q(θ) seems to be well approximated
using only hσ1

(θ), as seen in Table 1. Even when some label switching occurs in a Gibbs
sequence corresponding to a Gaussian mixture model with three components, only two
terms, hσ1

(θ) and hσ2
(θ), significantly contribute to q(θ), as seen in Table 2. For the

subsequent analyses in this paper, we chose J = 102, M = 103 and τ = 10−324.

M {Êhσ1
[ησi

(θ)]}k!i=1 |A(k)| φ̂

102 [1, 1.89 × 10−102] 1 0
103 [1, 5.25 × 10−90] 1 0
104 [1, 4.62 × 10−91] 1 0
105 [1, 3.56 × 10−80] 1 0

Table 1: Estimates for {Êhσ1
[ησi

]}k!i=1, |A(k)| and φ̂ against M for D1 (k = 2). The
prior for a variance parameter is IG(2, 3). Note that due to rounding errors, the sum
of the contribution ratios does not equal one.

M {Êhσ1
[ησi

]}k!i=1 |A(k)| φ̂

102 [3.56 × 10−16, 9.53× 10−160, 5.05 × 10−55, 8.27× 10−144, 1.0, 4.64× 10−65] 2 0
103 [1.22 × 10−8, 1.11 × 10−144, 3.01 × 10−49, 3.08 × 10−125, 1.0, 2.27 × 10−53] 2 0
104 [2.03 × 10−8, 8.31× 10−136, 1.76 × 10−43, 2.61× 10−95, 1.0, 4.87 × 10−49] 2 0
105 [1.04 × 10−5, 1.56× 10−122, 1.51 × 10−44, 4.30× 10−87, 1.0, 2.27 × 10−39] 2 0

Table 2: Estimates for {Êhσ1
[ηi]}k!i=1, |A(k)| and φ̂ with respect to M for D2 (k = 3).

The prior for a variance parameter is IG(2, 15). Note that due to rounding errors, the
sum of the contribution ratios does not equal one.
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5.2 Simulation results

The following seven marginal likelihood estimators using an equal number of proposals
are compared;

Ê∗
Ch : Chib’s method (2) using T = 104 samples and multiplying by k! to compensate

for a lack of label switching;

ÊCh : Chib’s method with density estimate (2), using T = 104 randomly permuted
Gibbs samples;

ÊIS : Importance sampling using q as in (6), with a maximum likelihood estimate for
zo1 , . . . , z

o
n and T = 104 particles;

ÊDS : Dual importance sampling using q as in (7), with T = 104 particles and J = 100
Gibbs samples in q(θ);

ÊA
DS : Dual importance sampling using an approximation as in (13), with T = 104

particles, J = 100 and M = 103;

ÊJ1
: Importance sampling using q as in (4), with T = 104 particles. When k < 6,
J1 = 100k! and otherwise J1 = 5000;

ÊBS : Bridge sampling (3), using M1 = M2 = 6 × 103 samples and q(θ) as in (4) via
10 iterations. For q, it is set as J1 = 4000 and label switching is imposed in
hyperparameters {θ(j), z(j)}J1

j=1.

The marginal likelihood estimates (in log scales) and the effective sample size (ESS)
ratios, R = ESS/T , are summarized in Figures 2 and 3 by boxplots, based on 50 repli-

cates. Subscripts of Ê and R denote the estimating technique. Note that a modified
ESS, provided by equation (35) in Doucet et al. (2000), is used here for numerical sta-
bility. All estimators are based on 104 proposals, as in Table 3, where summing up the
second and third columns leads to a fixed total number of function evaluations. Within
our setup, ÊIS is the least demanding in terms of computational workload while the
remaining importance estimators require the same computing time, except for ÊA

DS .

Simulated mixture dataset

Mixture models of two and three components are fitted to D1 and D2 respectively.
Regardless of the presence or not of label switching in the resulting Gibbs sequences,
all estimates based on importance sampling except ÊIS coincide with ÊCh, albeit with
smaller Monte Carlo variations as seen in Figures 2 and 3. When a suitable approximate
for q(θ) is used for the dual importance sampling, no significant difference in the esti-

mates log(Ê(k)) and in the effective sample sizes are observed. The mean sizes of A(k)
in Table 4 are always smaller than k! and it shows that E(k) can be estimated with
a lesser computational workload. When posterior modes are very well separated (no
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Estimate Number of posterior Number of marginal posterior Number of proposals
evaluations density evaluations in q

ÊIS T Tk! T

ÊDS T TJk! T

ÊA
DS T (M + (T −M)|A(k)|/k!)Jk! T

ÊJ1
T TJ1 T

ÊBS M1 (M1 +M2)J1 M1 +M2

Table 3: Computation steps required by different evidence estimation approaches. Note
that the required computation for ÊBS is given per iteration.

natural label switching ever present in Gibb sequences), the number of evaluations in q
is reduced almost by the maximal factor of 1/k!. In Table 5, the least computational
demand is observed for the chib’s methods while the bridge sampling costs more than
100 times. When A(k) < k!, some reduction in CPU time for Ê(k)ADS is observed due
to ignoring zero function evaluation.

Disagreement in the values of ÊIS versus ÊCh shows that an importance function may
fail to properly approximate pk(x|θ)π(θ), resulting in an unreliable estimate with large
variation. Significantly small effective sample sizes (i.e., very small values for RIS) back

this observation. In our simulation experiments, we observed that ÊBS is correctly
calibrated for a large value of J1 (i.e., a large number of conditional densities in q).
When label switching naturally occurs, as in the Gibbs sequence under the variance
prior IG(2, 15), Ê∗

Ch disagrees with the other estimates, see Figure 3. Unsurprisingly,
this indicates that the simplistic correction through a multiplication by k! is of no use,
as reported in Neal (1999), Frühwirth-Schnatter (2006) and Marin and Robert (2008).

D k k! |A1(k)| ∆(A1) |A2(k)| ∆(A2)
D1 2 2 1.00 (0.00) 0.55 (2.26× 10−16) 1.73 (0.45) 0.88 (0.20)
D2 3 6 1.02 (0.14) 0.25 (0.02) 2.18 (0.60) 0.43 (0.09)

Table 4: Mean and standard deviation (values in brackets) estimates for the approxi-
mation set size, |A(k)|, and the reduction rate of a number of evaluated h-terms, ∆(A),
as in (15) for D1 and D2. Subscripts 1 and 2 indicate the results using the priors
σ2 ∼ IG(2, 3) and σ2 ∼ IG(2, 15), respectively.
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Figure 2: Boxplots of evidence estimates in log scale (left, middle) and effective sample
sizes ratios (right). Mixture models with two and three Gaussian components are fitted
to (top) D1 and (bottom) D2, respectively. The prior for {σ2

i }ki=1 is IG(2, 3) and label

switching did not occur in Gibbs samples. One outlier of ÊIS in the top-left panel is
discarded.
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to (top) D1 and (bottom) D2, respectively. The prior for {σ2

i }ki=1 is IG(2, 15) and label

switching naturally occurred in Gibbs samples. Two outliers for Ê∗
Ch in the top-left

panel are discarded.

Galaxy and fishery dataset

The priors suggested by Richardson and Green (1997) are used for our simulation study:

µ1, . . . , µk ∼ N(x̄, r2/4)
σ2
1 , . . . , σ

2
k ∼ IG(2, β)
β ∼ G(0.2, 10/r2)

λ1, . . . , λk ∼ Dirichlet(1, . . . , 1)
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Estimator D1 D2

CPU1 CPU2 CPU1 CPU2

Ê∗
Ch 0.80 0.76 1.17 1.39

ÊCh 0.79 0.81 1.32 1.36

ÊIS 2.54 2.65 3.35 3.35

ÊDS 3.07 2.96 6.12 6.02

ÊA
DS 2.87 3.07 3.77 5.47

ÊJ1
2.42 3.34 6.02 6.88

ÊBS 1.18× 103 1.19× 103 2.78× 103 3.37× 103

Table 5: Elapsed CPU time in seconds for evidences approximation of mixture models
for D1 and D2. Subscripts 1 and 2 of CPU indicate the results using the priors σ2 ∼
IG(2, 3) and σ2 ∼ IG(2, 15), respectively.

where x̄ and r are the median and the range of x, respectively. Normal mixture models
are fitted to both datasets and estimates of log(E(k)) and R are summarized in Figures

4 and 5. In general, a similar behaviour of log(Ê(k)) and R between the methods is

observed. For all cases, the dual importance sampling schemes (ÊDS and ÊA
DS) and

ÊJ1
agree with Chib’s approach (ÊCh). Unless modes of the joint posterior distribu-

tions are clearly separated (e.g., |A(k)| ≈ 1), log(Ê∗
Ch) is biased due to an improper

permutation correction. When a poor q(θ) is used for importance sampling, inaccu-

rate approximations result and the range of ÊIS estimates is much off from the other
estimates.

Symptoms of the “curse of dimensionality” can be observed. As k increases, the effective
sample size decreases exponentially fast and the variation in the estimates increases.
Given the complex shape of the posterior distribution, the support common to q(θ) and

π∗
k(θ|z) gets progressively smaller and ÊBS becomes less accurate, as shown in both

figures. When k = 6, the variation in the values of ÊCh is much larger than those of
the estimate by dual importance sampling. When J1 ≪ Jk!, q does not provide a good
approximation of the joint posterior and log(EJ1

) is then biased. Due to a fast increase
of k!, fast increasing in CPU times is seen for all estimators in Table 7.

The reduction in the number of evaluated terms used to approximate Ê(k) varies case
by case, as shown in Table 6. When k = 4 and k = 6, components of the posterior
distribution for the galaxy data tend to have long flat tails and thus have higher chance
to overlap each other. Consequently, the workload reduction is of lesser magnitude than
for a model with a smaller number of components. Provided that some functions are
neglected for ÊA

DS , there is some gain in computational efficiency as can be seen in Table
6.
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k k! |A(k)| ∆(A)
3 6 1.00 (0.00) 0.25 (0.00)
4 24 2.10 (0.76) 0.18 (0.03)

(a) Fishery data

k k! |A(k)| ∆(A)
3 6 1.06 (0.24) 0.26 (0.04)
4 24 13.34 (5.35) 0.60 (0.20)
6 720 176.78 (75.31) 0.32 (0.09)

(b) Galaxy data

Table 6: Mean and standard deviation (values in brackets) of approximate set sizes,
|A(k)|, and the reduction rate of a number of evaluated h-terms ∆(A) as in (15) for (a)
fishery and (b) galaxy datasets.

Estimator Fishery data Galaxy data
k = 3 k = 4 k = 3 k = 4 k = 6

Ê∗
Ch 1.71 1.71 1.20 1.88 2.89

ÊCh 1.40 2.30 1.56 2.18 26.86

ÊIS 12.23 14.60 13.47 14.83 48.74

ÊDS 27.75 86.98 27.00 85.27 3.10× 103

ÊA
DS 18.14 30.45 18.28 52.49 1.33× 103

ÊJ1
28.19 90.11 26.75 87.19 244.10

ÊBS 4.92× 103 6.71× 103 4.21× 103 3.14× 103 7.32× 103

Table 7: Elapsed CPU time in seconds for evidences approximation of mixture models
for fishery and galaxy datasets.
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are discarded.
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6 Discussion

This paper considered evidence approximations by importance sampling for mixture
models and re-evaluated some of the known challenges resulting from high multimodal-
ity in the posterior density. Importance sampling requires that the support of an impor-
tance function encompasses the support of the posterior density to perform properly.
In the specific case on mixture models, missing some of the invariance under permuta-
tion function is likely to produce an unsuitable support hence, a poor estimate of the
evidence.

In our study, exchangeable priors are used, which implies that the posterior and marginal
posterior densities exhibit k! symmetrical terms. Two marginal likelihood estimators
are proposed here and tested against other existing estimators. The first approach
exploits the permutation invariance of π(·|x, zo) with a pointwise MLE, zo, to create an
importance function. However, due to a poor resulting support, this approach performs
quite poorly in our simulation studies. Another poor estimate is derived from Chib’s
method when the invariance by permutation is not reproduced in the sample (Neal
2001).
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A second importance function is constructed by double Rao–Blackwellisation, hence the
denomination of dual importance sampling. We demonstrate both methodologically
and practically that this solution fits the demands of mixture estimation. Moreover,
introducing a suitable and implementable approximation scheme, we show how to avoid
the exponential increase in k of the computational workload. The idea at the core of
this approximation is to bypass negligible elements in the approximation thanks to the
perfect symmetry of the posterior density. When posterior modes are well-separated,
the gain is of a larger magnitude than when those modes strongly overlap.

Borrowing from the original approach in Chib (1996), dual importance sampling can be
extended to cases when conditional Gibbs sampling densities are not available in closed
form. However, this solution suffers from the curse of dimensionality, just like any other
importance sampling estimator.

Alternative evidence approximation techniques could be considered for this problem,
as exemplified in Friel and Wyse (2012). For instance, ensemble Monte Carlo samples
from local ensembles that are extensions or compositions of the original, e.g., using
parallel tempering Monte Carlo methods. Extending this idea, Bayes factor approx-
imations were proposed using annealed importance sampling (Neal 2001) and power
posteriors (Friel and Pettitt 2008). Further investigation is needed to characterize the
performances of those alternative solutions in the setting of mixture models and label
switching.
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