
Deciding the Isomorphism Problem in Classes of Unary
Automatic Structures

Jiamou Liua, Mia Minnesb

aDepartment of Computer Science, University of Auckland, Auckland, New Zealand
bDepartment of Mathematics, MIT, Cambridge, MA, USA

Abstract

We solve the isomorphism problem for certain classes of unary automatic structures:
unary automatic equivalence relations, unary automatic linear orders, and unary auto-
matic trees. That is, we provide algorithms which decide whether two given elements
of these classes are isomorphic. In doing so, we define new finite representations for
these structures which give normal forms.1

Key words: Unary automatic structures, the isomorphism problem, graphs

1. Introduction

The isomorphism problem, which asks for a decision procedure to decide whether
two given members of a class of structures are isomorphic, iscentral in studying the
effective content of mathematical objects. Over finite structures, the isomorphism prob-
lem has been one of the most challenging problems in complexity theory (it belongs
to NP but is neither known to be inP nor known to beNP-complete) [1]. Over com-
putable structures (those where the domain and atomic relations of the structure are
computable), it is well-known that the isomorphism problemis undecidable; in fact,
it is complete forΣ1

1, the first level of the analytical hierarchy [2]. In [3], Khous-
sainov and Nerode initiate a systematic study ofautomatic structures, those where
elements are encoded as strings over a finite alphabet and whose domain and atomic
relations are represented by finite automata (precise definitions in Section 2). Auto-
matic structures form an intermediate class of structures between the finite structures
and the computable structures. This paper focuses on the isomorphism problem for
unary automatic structures, the subclass of automatic structures (which still contains
all finite structures) of structures whose domains are encoded as strings over a one letter
alphabet.

Email addresses:jliu036@ec.auckland.ac.nz (Jiamou Liu),minnes@math.mit.edu
(Mia Minnes)

1A related paper which focuses on time and space complexity for these unary automatic structures has
been submitted for publication by the authors elsewhere.

Preprint submitted to Elsevier December 8, 2010

1 INTRODUCTION 2

Automatic structures have decidable first-order theories [3]. In general, their mona-
dic second-order theories (where quantification over sets is permitted) are undecidable,
see [4, 5, 6] for an overview of automatic structures. Since key applications for auto-
matic structures include modeling databases [7] and verifying programs [8], applying
the transitive closure operator is often desirable. However, this operator is expressible
in monadic second-order logic but is not first-order definable: reachability is undecid-
able for automatic structures in general. On the other hand,unary automatic structures
have decidable monadic second-order theories.

The restriction to a unary alphabet is a natural special caseof automatic structures
because any automatic structure has an isomorphic copy overthe binary alphabet [5].
Moreover, if we consider the intermediate class of structures whose domain elements
are encoded as finite strings over 1∗2∗, insufficient decidability strength results: since
the infinite grid can be coded automatically over 1∗2∗ and counter machines can be
coded into the grid, reachability is not decidable in this class of structures. Thus, the
class of unary automatic structures is a sensible context where reachability is decidable.

The broad decidability of unary automatic structures can beexploited when they
are used to model streaming databases. Databases with entries encoded as strings of
1s are well-suited to situations in which provisional results must be updated on the fly
(using the tally representation) and computations are performed in real time.

In this paper, we study the isomorphism problem in classes ofunary automatic
structures. These structures include unary automatic equivalence relations, linear or-
ders, and trees. We use (known and new) characterizations ofmembers of these classes
to get normal forms and polynomial-time (in these normal forms) algorithms for the
isomorphism problem.

The isomorphism problem has been studied for other collections of graphs. For
automatic graphs, it isΣ1

1-complete [9]. On the other hand, the isomorphism problem is
decidable for equational graphs [10]. Any monadic second-order expressible question
is decidable in the class of unary automatic graphs. However, the isomorphism problem
is not a priori expressible in this way and it is not known whether it is decidable. This
paper works towards a solution of this question by looking atspecial subclasses of
unary automatic graphs.

Many natural graph problems (such as graph connectivity andreachability) are ex-
pressible in monadic second-order logic and are hence decidable for unary automatic
graphs. Deciding these questions by a translation of monadic second-order formu-
lae yields very slow algorithms (non-elementary complexity). Khoussainov, Liu and
Minnes [11] exploited structural properties of unary automatic graphs with finite degree
to solve these questions in polynomial-time.

In general, understanding the structural properties of a class of unary automatic
structures leads to more efficient algorithms. Khoussainov and Rubin [12] and Blu-
mensath [4] characterized unary automatic graphs in terms of relations between two
finite graphs. This led to characterizations of unary automatic linear orders and equiv-
alence structures as well (see Theorems 4.2 and 5.2). We prove an analogous result for
unary automatic trees (see Theorem 6.3). We use these structural characterizations to
define concise finite representations of unary automatic structures. These representa-
tions lead to polynomial-time algorithms for the isomorphism problem.

2 PRELIMINARIES 3

Paper Organization.Section 2 recalls the definitions of finite automata and automatic
structures. Section 3 discusses the special case of unary automatic structures. Sections
4, 5, and 6 discuss equivalence structures, linear orders, and trees (respectively). We
give polynomial-time algorithms solving the isomorphism problem for the class of
structures considered in each section. We conclude in Section 7 and mention open
questions.

The authors would like to thank the anonymous referees for helpful comments and
corrections.

2. Preliminaries

A finite automaton is a restricted Turing machine which has a fixed finite bound on
its resources and is allowed only a single read pass over the input data. More formally,
afinite automatonA over a finite alphabetΣ is a tuple (S, ι,∆, F), whereS is a finite set
of states, ι ∈ S is theinitial state, ∆ : S × Σ→ S is thetransition function, andF ⊂ S
is the set offinal or acceptingstates. In this paper we require∆ to be a well-defined
total function and henceA is a completeanddeterministicautomaton. Aninput to
A is a finite string inΣ∗; the empty string is denoted byλ. A computationof A on
a wordσ1σ2 . . . σn ∈ Σ

∗ is a sequence of states, sayq0, q1, . . . , qn, such thatq0 = ι

and (qi, σi+1, qi+1) ∈ ∆ for all i ∈ {0, 1, . . . , n − 1}. If qn ∈ F then the computation is
successfuland the automatonA acceptsthe word. As such, ifq ∈ F we say thatq is
anacceptingstate. Thelanguageof A, L(A), is the set of all words accepted byA.
In general,D ⊂ Σ∗ is FA recognizable, or regular, if D is the language of some finite
automaton. IfA is a finite automaton over the unary alphabet{1} it is called aunary
automatonand its language is aunary automaticsubset of{1}∗.

A (relational)structureS consists of a countable domainD and atomic relations
on D. We focus on structures with a single binary relationS = (D; R). Synchronous 2-
tape automatarecognize binary relations. Such automata have two input tapes, each of
which contains one of the input words. Bits of the two input words are read in parallel
at the same rate until both input strings have been completely processed. Formally,
let Σ⋄ = Σ ∪ {⋄} where⋄ is a symbol not inΣ. Given a pair of wordsw1,w2 ∈ Σ

∗,
the convolutionof (w1,w2) is a word⊗(w1,w2) over the alphabet (Σ⋄)2 with length
max(|w1|, |w2|). Thekth symbol of⊗(w1,w2) is (σ1, σ2) whereσi is thekth symbol of
wi if k ≤ |wi |, and is⋄ otherwise. A binary relationR is FA recognizableif the set of
convolutions of all pairs (w1,w2) ∈ R is a regular subset of (Σ2

⋄)
∗.

A structure is calledautomaticoverΣ if its domain is a regular subset ofΣ∗ and
each of its basic relations is FA recognizable. A structure is calledunary automaticif it
is automatic over the alphabet{1}. The structures (N; S) and (N;≤) are both isomorphic
to unary automatic structures. On the other hand, (Q;≤) and (N;+) have isomorphic
copies which are automatic over{0, 1} but have no unary automatic isomorphic copies.
The structure (N;×) has no automatic isomorphic copy. For proofs of these facts, see
the survey papers [13, 14].

The class of languages recognizable by finite automata is closed under the rational
operations studied by Kleene. These operations parallel Boolean set operations and
the first-order quantifiers. Consider the first-order logic extended by∃ω (there exist

3 UNARY AUTOMATIC STRUCTURES 4

Table 1: Deciding properties of binary relations in automatic structures.

Property First-order definition Time complexity

Reflexivity ∀x (R(x, x)) O(mn)
Symmetry ∀x, y (R(x, y) =⇒ R(y, x)) O(n2)
Antisymmetry ∀x, y (R(x, y) ∧R(y, x) =⇒ x = y) O(n2)
Totality ∀x, y (R(x, y) ∨ R(y, x)) O(m2n2)
Transitivity ∀x, y, z(R(x, y) ∧ R(y, z) =⇒ R(x, z)) O(n3)

infinitely many) and∃n,m (there existn many modm, wheren andm are natural num-
bers) quantifiers. We denote this logic byFO+∃ω +∃n,m. The following theorem from
[15, 3, 16, 5] connects this extended logic with automata. The automata corresponding
to formulas withn free variables are synchronousn-tape automata, a natural extension
of the automata for binary relations above.

Theorem 2.1 (Blumensath, Gr̈adel; 1999. Khoussainov, Rubin; 1999).For an au-
tomatic structureS there is an algorithm that, given a formulaϕ(x̄) in FO+ ∃ω + ∃n,m,
produces an automaton whose language is those tuplesā fromS that makeϕ true.

The proof of Theorem 2.1 along with the fact that there is a linear-time algorithm
which tests whether the language of a given automaton is empty yield the following
corollaries.

Corollary 2.2. The (FO + ∃ω + ∃n,m)-theory of an automatic structureS is decidable.

Corollary 2.3. Given deterministic automataA1 (m states) andA2 (n states), there
is an O(mn)-time algorithm to build the deterministic union or intersection automa-
ton (mn states) ofA1 andA2 and an O(m)-time algorithm to build the deterministic
complement automaton (m states) ofA1.

Let (D; R) be an automatic structure (overΣ), with Ra binary relation overD. Sup-
poseAD (m states) andAR (n states) are deterministic finite automata recognizingD
andR, respectively. Some first-order definable properties of binary relations are listed
in Table 1. By Corollary 2.2, it is decidable whether (D; R) satisfies these properties.
In particular, to check ifR is reflexive, we construct an automaton for{x | (x, x) ∈ R}
and check if{x | (x, x) ∈ R} ∩ D = D. Similarly, to decide ifR is symmetric, we
construct an automatonA1 recognizing the relation{(y, x) | (x, y) ∈ R} and check if
R = L(A1). For antisymmetry, we construct an automaton forS = {(x, y) | x , y} and
determine whetherR∩ R1 ∩ S = ∅. To decide ifR is total, it suffices to check whether
R∪ L(A1) = D2. Finally, to settle whetherR is transitive, we construct the automaton
{(x, y, z) | R(x, y) ∧ R(y, z) ∧ ¬R(x, z)} and ask whether its language is empty. Note that
if D = Σ∗ thenm= 1.

3. Unary Automatic Structures

This section explores unary automatic structures and introduces terminology and
notation used throughout the paper. Recall that a structureis unary automaticif it is

3 UNARY AUTOMATIC STRUCTURES 5

automatic over the alphabet{1}. We usex to denote the string 1x andN for the set of
all such strings{1}∗. The following lemma from [4] characterizes the regular subsets
of {1}∗.

Lemma 3.1 (Blumensath; 1999).A set L⊆ N is regular over the alphabet{1}∗ if and
only if there are numbers t, ℓ ∈ N such that L= L1 ∪ L2 with L1 ⊆ {x : x < t} and L2

the finite union
⋃

j=0,1,...,r−1

{t + iℓ + k j : i ∈ N} where kj < ℓ for all j.

P. We describe the shape of an arbitrary deterministic 1-tapeunary automaton
A = (S, ι,∆, F). If n = |S| there aret, ℓ ≤ n so that the following holds. There is a
sequence of statesS1 = {q1, q2, . . . , qt} such that∆(ι, 1) = q1 and for all 1≤ i < t,
∆(qi , 1) = qi+1. There is another sequence of statesS2 = {qt+1, ..., qt+l} such that for
all t ≤ j < l, ∆(q j , 1) = q j+1, and∆(ql , 1) = qt+1. Every final state inS1 recognizes
exactly one word less thant, and every final state inS2 recognizes the set of all words
t + il + k, i ∈ ω, for some fixedk < l. The language of such an automaton has the form
described in the statement of the lemma; given anL from the statement of the lemma
and its parameterst, ℓ, we can define the corresponding unary automaton. �

Synchronous 2-tape unary automata recognize binary relations overN. The general
shape of these automata is given in Figure 1. We fix some terminology. States reachable
from the initial state by reading inputs of type (1, 1) are called (1, 1)-states. The set
of (1, 1)-states is a disjoint union of atail and aloop. We label the (1, 1)-states as
q0, . . . , qt, . . . , qm whereq0, . . . , qt−1 form the (1, 1)-tail and there is a transition from
qm to qt to close the (1, 1)-loop. States reachable from a (1, 1)-state by reading inputs
of type (1, ⋄) are called (1, ⋄)-states. The set of (1, ⋄)-states reachable from any given
qi consist of a tail and a loop, called the (1, ⋄)-tail andloop from qi , respectively. The
(⋄, 1)-tails andloopsare defined similarly.

(1,1)-tail

(1,⋄)-loop

(1,⋄)-tail

(1,1)-loop

(⋄,1)-tail

(⋄,1)-loop

Figure 1: General shape of a deterministic 2-tape unary automaton.

Khoussainov and Rubin [12] and Blumensath [4] generalized Lemma 3.1 and gave
a characterization of all binary relations onN which are recognized by some syn-
chronous 2-tape automaton. In particular, if we view such a relation as the edge re-
lation on the graph of nodes labelled byN, the characterization relates all the unary
automatic graphs to anunwindingor ladder of finite graphs. LetB = (B,EB) and

3 UNARY AUTOMATIC STRUCTURES 6

D = (D,ED) be finite graphs. LetR1,R2 be subsets ofD × B, andR3,R4 be subsets
of B × B. Consider the graphD followed by countably infinitely many copies ofB,
ordered asB0,B1,B2, We define the infinite graph unwind(B,D,R) as follows. Its
vertex set isD∪ B0∪ B1∪ B2∪ . . . and its edge set containsED ∪ E0∪E1∪ . . . as well
as the following edges, for alla, b ∈ B, d ∈ D, andi, j ∈ ω:

• (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,

• (ai , bi+1) when (a, b) ∈ R3, and (ai, bi+2+ j) when (a, b) ∈ R4.

Lemma 3.2 (Blumensath; 1999. Khoussainov, Rubin; 2001).A graph is unary au-
tomatic if and only if it is isomorphic to unwind(B,D, R̄) for some finite graphsB,D
and relations on these graphs given byR̄.

P. Suppose a graph is unary automatic and its edge relation is recognized by a
synchronous 2-tape automatonA. Using the terminology from above, we define the
vertices ofD to be the states on the (1, 1)-tail ofA. The edges ofD are determined by
(some of) the accepting states on the (⋄, 1)- and (1, ⋄)-tails off the (1, 1)-tail. Similarly,
the vertices ofB are the states on the (1, 1)-loop ofA. TheRi relations are determined
by the appropriate accepting states on the (1, ⋄)- and (⋄, 1)- tails off the (1, 1) states of
A. Reversing this construction gives a synchronous 2-tape automaton recognizing the
edge relation of a graph isomorphic to a given unwinding. In Figure 2, we provide an
example of an automaton and unwinding pair to clarify the construction. �

D

B . . .

R1

R1

R3 R3 R3

R2 R2 R2

(1,1) (1,1) (1,1)

(1,1)

(1,1)

(⋄,1) (⋄,1)

(⋄,1)

(⋄,1) (⋄,1)

(⋄,1) (⋄,1)(⋄,1) (⋄,1)

Figure 2: An example of unwind(B,D, R̄) and the synchronous 2-tape automaton for its edge relation. If we
labelB = {a,b} andD = {0,1, 2} thenED = {(0,1)}, EB = ∅, R1 = {(1, a), (2, b)}, R2 = {(2, b)}, R3 = {(a, a)},
andR4 = ∅

In this paper we restrict our attention to (countably) infinite structures. The follow-
ing lemma allows us to assume that the domain of each structure isN (rather than a
regular subset ofN) without increasing the size of the associated unary automaton.

Lemma 3.3. Let (D; R) be a unary automatic structure with D⊂ N. Suppose this
structure is presented byAD andAR. There is a deterministic2-tape unary automaton
AR′ , |AR′ | ≤ |AR|, such that(N; L(AR′)) � (D; R).

P. Let t andℓ be as described in Lemma 3.1. We outline the proof in the case when
the parametert associated withD is 0. SinceR is a binary relation over the domain
D, AR must satisfy the following requirements: the (1, 1)-tail has lengthc′ℓ for some
constantc′; the (1, 1)-loop has lengthcℓ for some constantc; the lengths of all loops

4 UNARY AUTOMATIC EQUIVALENCE RELATIONS 7

and tails containing accepting states are multiples ofℓ; and, there are no accepting
states on any tail or loops off any (1, 1)-states of the formqiℓ+h whereh , k j (where
k j is as defined in Lemma 3.1). The isomorphism betweenD andN will be given by
iℓ + k j 7→ ir + j. Therefore, defineAR′ to have a (1, 1)-tail of lengthc′r, a (1, 1)-loop
of lengthcr, and copy the information from the stateiℓ + j in AR to stateir + j in
AR′ (modifying the lengths of (⋄, 1)- and (1, ⋄)- tails and loops appropriately). Then,
(N; L(AR′)) � (D; R) and sincer ≤ ℓ,AR′ has no more states thanAR. �

Algorithms on unary automatic binary relations have as input a deterministic syn-
chronous 2-tape unary automaton recognizing the relation.The sizeof the input is
defined to be the number of states in this automaton. We say that a synchronous 2-tape
automaton isstandardif the lengths of all its loops and tails equal some numberp,
called theloop constant. If A is a standard automaton withn states and loop constant
p, thenn = 8p2.

Lemma 3.4. For each deterministic2-tape unary automaton with n states there is an
equivalent standard automaton with at most8n2n states.

P. Let p be the least common multiple of the lengths of all loops and tails ofA. An
easy estimate shows thatp is no more thannn. One can transformA into an equivalent
standard automaton whose loop constant isp. Hence, there is a standard automaton
equivalent toA whose size is bounded above by 8n2n. �

By Lemma 3.4, we assume all unary automatic structures are presented using stan-
dard automata. This assumption in general incurs a super-exponential cost in the state
space. However, the standard automata provide natural normal forms for the structures
and allow smoother algorithms.

We fix some notation for a standard automatonA with loop constantp. The (1,1)-
states are labelledq0, . . . , q2p−1 as described above. For 0≤ j < 2p, let Wj = {x ∈
N : ∆(q0, (1, 1)x) = q j}. ThenW0, . . . ,W2p−1 partitionN and we haveWj = { j} for
0 ≤ j < p, Wj = { j + ip : i ∈ N} for p ≤ j < 2p. We enumerate the elements ofWj as
v j

i = j + ip.

4. Unary Automatic Equivalence Relations

This section explores unary automatic equivalence relations. A structureE = (N; E)
is anequivalence structureif E is an equivalence relation (reflexive, symmetric, and
transitive). By Table 1, there is anO(n3) time algorithm that decides whether a given
synchronous 2-tape unary automaton presents an equivalence relation. The main theo-
rem of this section is the following.

Theorem 4.1. The isomorphism problem for unary automatic equivalence structures
is decidable in linear time in the sizes of the input standardautomata.

Theheight, h0
E
, of an equivalence structureE is a functionN∪{∞} → N∪{∞} such

thath0
E
(x) is the number ofE-equivalence classes of sizex. Two equivalence structures

E1 andE2 are isomorphic if and only ifh0
E1
= h0

E2
. By the following characterization

4 UNARY AUTOMATIC EQUIVALENCE RELATIONS 8

from [4, 12], heights of unary automatic equivalence structures are finitely nonzero
andh0

E
(∞) , ∞. If k is the size of the largest finite equivalence class ofE, h0

E
can be

encoded by the finite functionhE with domaink + 2 such thathE(i) = h0
E
(i) for i ≤ k

andhE(k+ 1) = h0
E
(∞).

Theorem 4.2 (Blumensath; 1999. Khoussainov, Rubin; 2001).An equivalence struc-
ture has a unary automatic presentation if and only if it has finitely many infinite equiv-
alence classes and there is a finite bound on the sizes of the finite equivalence classes.

Let E be recognized by a standard automatonA = (S, ι,∆, F) with loop constantp
(and hencen = |S| = 8p2). Recall the definitions ofq j andWj from Section 3. Observe
that since equivalence relations are symmetric, for any 0≤ j < 2p, a state on the (1, ⋄)-
tail or loop ofq j is accepting if and only if the corresponding state on the (⋄, 1)-tail or
loop is also accepting.

Lemma 4.3. For 0 ≤ j < 2p, each element of Wj belongs to an infinite equivalence
class if and only if the(1, ⋄)-loop from qj has an accepting state. Moreover, in this
case, Wj forms a subset of some equivalence class.

P. If the (1, ⋄)-loop from q j contains an accepting state, then for eachx ∈ Wj ,
there exists infinitely manyy with (x, y) ∈ E. Suppose further thatj ≥ p (if j < p then
Wj = { j} so we’re done). Then,j is equivalent toj + p(i + 1)+ D for some 0≤ D < p
and alli > 0. But, sinceq j is on the (1, 1)-loop, the accepting state on the (1, ⋄)-loop
of q j also gives thatj + p is equivalent toj + p(i + 2)+ D for the sameD and alli > 0.
Transitivity and symmetry then imply thatj, j + p are equivalent, hence all members of
Wj are equivalent. On the other hand, suppose the (1, ⋄)-loop fromq j does not contain
any accepting states. Then, for eachi, the equivalence class ofj + pi must be a subset
of {0, . . . , j + p(i + 1)− 1}, a finite set. �

Lemma 4.4. For 0 ≤ j < 2p, if Wj does not belong to an infinite equivalence class
then it is in an equivalence class of size less than p.

P. Supposeq j has no accepting state on its (1, ⋄)-loop. Define j0 to be the least
number in the (finite) equivalence class containingj. The size of the equivalence class
of eachx ∈Wj is the number of accepting states on the (1, ⋄)-tail from q j0. �

Lemma 4.5. GivenA, Algorithm 1 computes the graph of hE in time O(n).

P. By Lemma 4.3, the size of finite equivalence classes is bounded by the size
of (1, ⋄)-tails, henceh0

E
(n) = 0 for anyn > p. By Lemma 4.4, for allx, if h0

E
(x) is

finite thenh0
E
(x) ≤ p. Algorithm 1 exploits the transitivity of the equivalence relation

to reduce the number of states of the automaton which must be visited. Moreover,
for each j that is considered, the algorithm must check whether at most4p states are
accepting. Thus, the runtime of Algorithm 1 isO(p2) = O(n). �

P ( T 4.1). LetA1 (n states) andA2 (m states) be standard automata
recognizing equivalence relationsE1,E2 ⊆ N

2. By Lemma 4.5, extractinghE1 andhE2

takes timeO(max{m, n}). By Lemma 4.3, dom(hE1) ∪ dom(hE2) ⊆ max{m+ 1, n+ 1}.
Therefore, checking ifhE1 = hE2 takesO(max{m, n}). �

5 UNARY AUTOMATIC LINEAR ORDERS 9

Algorithm 1 Equivalence Relation Height
1: Initialize arrayh[0 . . . p+ 1] to 0. Create listL = 0, . . . , 2p− 1.
2: while L , ∅ do
3: Let j = least inL.
4: if the (1, ⋄)-loop fromq j contains no accepting statesthen
5: if j < p then
6: Add 1 toh(number of accepting states on (1, ⋄)-tail from q j).
7: else
8: Seth(number of accepting states on (1, ⋄)-tail from q j) to p+ 1.
9: end if

10: Remove the indices of all these accepting states fromL.
11: else
12: Incrementh(p+ 1) by 1.
13: Remove the indices of all accepting states on (1, ⋄)-tail and loop fromL.
14: end if
15: end while

5. Unary Automatic Linear Orders

This section studies unary automatic linear orders. Alinear orderis total, reflexive,
anti-symmetric, and transitive. By Table 1, checking if a binary relation recognized
by ann-state unary automaton is a linear order takesO(n3). We prove the following
theorem.

Theorem 5.1. The isomorphism problem for unary automatic linear orders is decid-
able in linear time in the sizes of the input standard automata.

The following theorem from [4, 12] describes which linear orders have unary au-
tomatic presentations. We useω to denote the order type of the natural numbers,ω⋆

to denote the order type of the negative integers, and1 to denote the singleton linear
order.

Theorem 5.2 (Blumensath; 1999. Khoussainov, Rubin; 2001).A linear orderL =
(L;≤L) is unary automatic if and only if it is isomorphic to a finite sum of linear orders
of typeω,ω⋆ or 1.

By Theorem 5.2, each unary automatic linear orderL can be written as a finite word
u0u1 . . .uk over the alphabet{1, ω, ω⋆}2. Thecanonical word, wL, of L is the minimal
such word; 1ω andω⋆1 do not appear as substrings ofwL. Two unary automatic linear
ordersL1 andL2 are isomorphic if and only ifwL1 = wL2. LetL = (N;≤L) be a linear
order recognized by a standard unary automatonA with loop constantp. Recall the
definitions ofq j andWj from Section 3.

The following lemmas describe the possible relationships betweenWj andWk for
j < k. It will be convenient to assign names toall states on the (⋄, 1)-tails and loops;

2This word denotes the linear orderu0 + u1 + · · · + uk

5 UNARY AUTOMATIC LINEAR ORDERS 10

these names will be suggestive of the respective relationships. Note that since the linear
order is total, whether states on the (1, ⋄)-tails and loops are accepting or rejecting is
completely determined by the (⋄, 1)-tails and loops.

For 0≤ j < k < p, q j<k ≔ ∆(q j, (⋄, 1)k− j).

For 0≤ j < p andp ≤ k < p+ j, qt
j<k ≔ ∆(q j, (⋄, 1)k− j),

qℓj<k ≔ ∆(q j, (⋄, 1)p+k− j).

For 0≤ j < p andp+ j ≤ k < 2p, qℓj<k ≔ ∆(q j, (⋄, 1)k− j).

For p ≤ j < k < 2p, qt
j<k ≔ ∆(q j, (⋄, 1)k− j),

qℓj<k ≔ ∆(q j, (⋄, 1)p+k− j).

For p ≤ j < k < 2p, qt
k< j ≔ ∆(q j, (⋄, 1)p−k+ j),

qℓk< j ≔ ∆(q j, (⋄, 1)2p−k+ j).

For p ≤ j < 2p, qωj ≔ ∆(q j, (⋄, 1)p).

Lemma 5.3. For p ≤ j < 2p, Wj either forms an infinite increasing chain or an infinite
decreasing chain.

P. If qωj ∈ F then for all i ∈ N, v j
i <L v j

i+1. Thus, the sequencev j
0, v

j
1, v

j
2, . . . is

an infinite increasing chain. If not, thenqωj < F implies that∆(q j , (1, ⋄)p) ∈ F. Thus,

v j
0, v

j
1, v

j
2, . . . is an infinite decreasing chain. �

Hence, there is anO(n) test checking if a givenWj is an increasing chain or a
decreasing chain.

Lemma 5.4. For p ≤ j < 2p, Wj is a subset of one copy ofω or one copy ofω⋆ in L.

P. By Lemma 5.3, it is sufficient to prove that any two elements inWj are sepa-
rated by at most finitely many elements ofL. Considerv j

i , v
j
i′ with i < i′. Suppose

v j
i ≤L 2 j + s+ p(i + i′ + r) ≤L v j

i′

for somer ≥ 1 ands ≥ 0. By the first inequality,∆(q j, (⋄, 1)(r+i′)p+s+ j) ∈ F. By the
second inequality,∆(q j , (1, ⋄)(r+i)p+s+ j) ∈ F. This contradicts the anti-symmetry ofL.
Therefore, anyz such thatv j

i ≤L z ≤L v j
i′ must satisfyz < 2 j + (i + i′ + 1)p; there are

only finitely many suchz. �

Lemma 5.5. Let p≤ j < k < 2p. If qℓj<k ∈ F ∧ qℓk< j < F then Wj precedesWk:

∀x ∈Wj ∀y ∈Wk (x <L y) .

Similarly, if qℓj<k < F ∧ qℓk< j ∈ F then Wk precedesWj :

∀x ∈Wj ∀y ∈Wk (y <L x) .

5 UNARY AUTOMATIC LINEAR ORDERS 11

P. Supposeqℓj<k ∈ F andqℓk< j < F. We first show it must be the case thatqt
j<k ∈ F

andqt
k< j < F. Assume for a contradiction thatqt

j<k < F. Then (for anyi)

v j
i+2 <L vk

i <L v j
i <L vk

i+2

but also,vk
i+2 <L v j

i+2, contradicting antisymmetry. Similarly, assume for a contradic-
tion thatqt

k< j ∈ F. Then (for anyi)

v j
i+3 <L vk

i <L v j
i+1 <L vk

i+2

andvk
i+2 <L v j

i+3, a contradiction. Thusv j
i <L vk

i+r andv j
i+r <L vk

i for any i, r. Hence,
Wj precedesWk.

An analogous argument shows that if we assume thatqℓj<k < F ∧ qℓk< j ∈ F then
qt

j>k ∈ F andqt
k< j ∈ F. Thus, in this case,Wk precedesWj . �

Lemma 5.6. Let p≤ j < k < 2p. If qℓj<k ∈ F ∧ qℓk< j ∈ F then Wj and Wk interleave

within the same copy ofω in L. If qℓj<k < F ∧ qℓk< j < F then Wj and Wk interleave
within the same copy ofω⋆ in L.

P. Supposeqℓj<k ∈ F andqℓk< j ∈ F. Then for alli, vk
i <L v j

i+2 <L vk
i+3 <L v j

i+5. In
particular, this impliesWj andWk are both increasing. Moreover, there are constants
C, d ∈ Z (depending on which ofqt

j<k andqt
k< j are final) such thatv j

i <L vk
i+d <L v j

i+1
for all i ≥ C. Using Lemma 5.4, we conclude thatWj andWk are in the same copy of
ω in L. Symmetrically, ifqℓj>k ∈ F andqℓk> j ∈ F thenWj andWk are both decreasing
and they are in the same copy ofω⋆ in L. �

The proof in Lemma 5.6 can be slightly generalized to see thatfor p ≤ h < j < k <
2p, if Wh,Wj interleave andWj ,Wk interleave thenWh,Wk interleave.

Lemma 5.7. For 0 ≤ j < p and p≤ k < 2p, { j} interleaves with Wk if and only if
p ≤ k < p+ j and

qt
j<k ∈ F ⇐⇒ qℓj<k < F.

P. It is only possible for{ j} to interleave withWk if it is ordered in a different
way with respect tovk

0 than with respect tovk
i for i > 0. If p + j ≤ k < 2p then

all elements ofWk are represented on the (⋄, 1)-loop off q j and so the ordering ofj
with respect toall of them is determined byqℓj<k. So, we supposep ≤ k < p + j. If

(qt
j<k ∈ F) ⇐⇒ (qℓj<k ∈ F), then eitherj <L vk

i for all i or vk
i <L j for all i. Thus, in

this case, there is no interleave. Finally, consider the case whereqt
j<k ∈ F butqℓj<k < F.

Then, for alli > 0,
vk

i <L j <L vk
0.

By Lemma 5.3, this implies thatWk is part of anω⋆ chain, and thatj is interleaved in
this chain. The symmetric case (qt

j<k < F butqℓj<k ∈ F) is analogous. �

Lemma 5.8. Algorithm 2 extracts wL fromA in time O(n).

6 UNARY AUTOMATIC TREES 12

P. Informally, the algorithm works from least to greatest elements inL, checking
whether relevant states inA are accepting or rejecting to build upwL. More pre-
cisely, we define and use sets Left(i) to indicate whichWj preceedWi . We notice that
Lemma 5.6 allows us to partition{p, . . . , 2p− 1} into sets each of which correspond to
a single copy ofω orω⋆ in wL. Using Lemma 5.7, we add to these sets some elements
in {0, . . . , p − 1} which fall inside these chains. In Algorithm 2, the resulting sets are
labelledVℓ. The computation of the sets Left(i),Vℓ requires visiting each (⋄, 1)-state at
most once. Once these sets have been computed the algorithm must check whether at
mostp many states are inF. Thus, the algorithm runs inO(n+ p2) = O(n). �

P ( T 5.1). Given two standard automataA1 (with n states) andA2 (with
mstates) recognizing linear orders≤L1,≤L2⊆ N

2, Lemma 5.8 giveswL1 andwL2 in time
O(max{m, n}). �

6. Unary Automatic Trees

We now turn to unary automatic trees. A structureT = (T;≤T) is a tree if ≤T is a
partial order onT (reflexive, antisymmetric, and transitive) with a root (least element)
and such that for all nodesx ∈ T, the set{y : y ≤T x} is a finite linear order. Table 1 lists
efficient tests for most of the requirements for being a tree. However, checking if≤T
has a root requires verifying the first-order sentence∃x∀y (x ≤T y). The alternation
of quantifiers implies an exponential-time decision procedure for general automatic
binary relations [17]. This can be improved for unary automatic binary relations.

Lemma 6.1. If (N; R) is a partial order where R is recognized by a unary automaton
(not necessarily standard) with n states, there is an O(n) time algorithm which checks
for an R-least element.

P. Let m be the number of (1, 1)-states inA. If there is anR-least elementx,
then x < m. Indeed, ifx ≥ m, there isy < m such that∆(ι, (1, 1)x) = ∆(ι, (1, 1)y).
Let q = ∆(ι, (1, 1)x). Becausex is an R-least element we have thatR(x, y) and so
∆(q, (1, ⋄)x−y) ∈ F; similarly, R(x, 2x − y) implies that∆(q, (⋄, 1)x−y) ∈ F. However,
this means thatR(y, x), a contradiction with anti-symmetry ofR.

TheR-least elementx (if it exists), must satisfy that for allz< x < y

∆(qx, (⋄, 1)y−x) ∈ F and ∆(qz, (1, ⋄)x−z) ∈ F.

Reading each (⋄, 1) and (1, ⋄) state at most once is sufficient to find such anR-least
element or decide that one doesn’t exist. (Note that we are using our assumption from
Section 1 that the given unary automaton is complete.) In particular, Algorithm 3 does
this and runs inO(n). �

Combining Lemma 6.1 with Table 1 gives the following theorem.

Theorem 6.2. There exists an O(n4) time algorithm that decides if a unary automatic
binary structure is a tree.

6 UNARY AUTOMATIC TREES 13

Algorithm 2 Linear order canonical word
1: Initialize B = ∅, w = λ. Create listL = 0, . . . , 2p− 1.
2: Initialize each Left(i) = ∅. Initialize an array of setsVℓ all to be empty.
3: for each (⋄, 1)-state given by pairj < k do
4: if 0 ≤ j < k < p then
5: If q j<k ∈ F, put j ∈ Left(k);
6: if q j<k < F, putk ∈ Left(j).
7: else if0 ≤ j < p, p ≤ k < p+ j then
8: If qt

j<k ∈ F, qℓj<k ∈ F, put j ∈ Left(k);

9: if qt
j<k < F, qℓj<k < F, putk ∈ Left(j);

10: if qt
j<k ∈ F, qℓj<k < F, removej from L and ensure{ j, k} ⊂ Vℓ for someℓ;

11: if qt
j<k < F, qℓj<k ∈ F, removej from L and ensure{ j, k} ⊂ Vℓ for someℓ.

12: else if0 ≤ j < p, p+ j ≤ k < 2p then
13: If qℓj<k ∈ F, put j ∈ Left(k);

14: if qℓj<k < F, putk ∈ Left(j).
15: else if p ≤ j < k < 2p then
16: If qℓj<k ∈ F, qℓk< j < F put j ∈ Left(k);

17: if qℓj<k < F, qℓk< j ∈ F putk ∈ Left(j);

18: if qℓj<k ∈ F, qℓk< j ∈ F removek from L and ensure{ j, k} ⊂ Vℓ for someℓ;

19: if qℓj<k < F, qℓk< j < F removek from L and ensure{ j, k} ⊂ Vℓ for someℓ.
20: end if
21: end for
22: while L , ∅ do
23: Let i be least inL such that Left(i) = B
24: if i < p then
25: PutB = B∪ {i} andw = w · 1. Removei from L.
26: else
27: Let j be least such thati, j ∈ Vℓ for someℓ.
28: if Wj forms an increasing chainthen
29: PutB = B∪ Vℓ andw = w · ω. Fork ∈ Vℓ, removek from L.
30: else
31: PutB = B∪ Vℓ andw = w · ω⋆. Fork ∈ Vℓ, removek from L.
32: end if
33: end if
34: end while
35: In w, combine any 1· ω toω and anyω⋆ · 1 toω⋆.

6 UNARY AUTOMATIC TREES 14

Algorithm 3 R-least element
1: Initialize the listL = 0, . . . ,m− 1.
2: while L , ∅ do
3: Let j be the first element inL.
4: if all (⋄, 1)-states out ofq j are acceptingthen
5: j is theR-least element; returntrue.
6: else
7: deletej from L.
8: for k ∈ L do
9: if ∆(q j , (⋄, 1)k− j) ∈ F then deletek from L.

10: if ∆(q j , (1, ⋄)k− j) < F then deletek from L.
11: end for
12: end if
13: end while
14: returnfalse

Theorem 6.3 is a characterization of unary automatic trees which will lead to an
efficient algorithm for the isomorphism problem. This theorem is similar in spirit to
the unwinding description of unary automatic graphs in [12,4] that was discussed as
Lemma 3.2. Aparameter setΓ is a tuple (T0,T1, . . . ,Tm, σ,X) whereT0,T1, . . . ,Tm

are finite trees,σ : {1, . . . ,m} → T0, and X : {1, . . . ,m} → {∅} ∪
⋃

i Ti such that
X(i) ∈ Ti ∪ {∅}. A tree-unfoldingof a parameter setΓ is a treeUF(Γ) that contains
one copy ofT0 and infinitely many copies ofTi for eachi ∈ {1, . . . ,m} connected as
follows. The root ofUF(Γ) is the root ofT0. For i ∈ {1, . . . ,m}, if X(i) , ∅, the root of
the first copy ofTi is an immediate descendent ofσ(i) and the root of each subsequent
copy ofTi is an immediate descendent of the copy ofX(i) in the previous copy ofTi .
Otherwise, ifX(i) = ∅, the root of each copy ofTi is an immediate descendent ofσ(i).

Theorem 6.3. A treeT = (N,≤T) is unary automatic if and only if there is a parameter
setΓ = (T0,T1, . . . ,Tm, σ,X) such thatT � UF(Γ).

We will need a few definitions and lemmas to prove this theorem. Suppose≤T is
recognized by a standard automatonA with loop constantp. Recall from Section 5 the
definition ofWj and the labels of states ofA. In particular, we will use the notations
qt

j<k andqℓj<k. However, since≤T is a partial (rather than linear) order, the (1, ⋄) states

are not determined by their (⋄, 1) counterparts. Hence, we useqt
j>k andqℓj>k to denote

the appropriate (1, ⋄) states. Two nodesx, y ∈ T areincomparable, x|T y, if x �T y and
y �T x. For p ≤ j < 2p, Wj is achainif v j

0 <T v j
1 <T . . .; Wj is ananti-chainif v j

i |T v j
k

for all i , k.

Lemma 6.4. For p ≤ j < 2p, Wj is a chain or an anti-chain. Also, Wj is a chain if
and only if for each x∈Wj , the set{y : x <T y} is infinite.

P. Let p ≤ j < 2p. Supposeqωj ∈ F. Thenv j
i <T v j

i+1 <T v j
i+2 for all i. Hence,Wj

is a chain and for anyx ∈Wj , the set{y : x <T y} is infinite.

6 UNARY AUTOMATIC TREES 15

T0

T1

. . .

T2
. . .

T3
. . .

T4
. . .

σ

σ

σ

σ σ σ σ

x1 x1 x1

x2 x2 x2

x3 x3 x3

Figure 3: An example of a tree-unfolding.

On the other hand, supposeqωj < F. SinceT is a tree, there are no infinite<T -

descending chains. Hence,∆(q j , (1, ⋄)p) < F. Therefore, for anyr, v j
i ≮T v j

i+r and
v j

i+r ≮T v j
i andWj is an anti-chain. Assume for a contradiction that there is somei such

that {y : v j
i <T y} is infinite. In particular, there is somek such that{vk

s : v j
i <T vk

s} is
infinite and soqℓj<k ∈ F. Hence,v j

i , v
j
i+1 <T vk

i+2. Since the set of<T predecessors of

vk
i+2 is linearly ordered,v j

i <T v j
i+1 or v j

i+1 <T v j
i , a contradiction. �

Prima facie, there are 210 many possibilities for the interactions betweenWj andWk

in the tree order since each interaction is determined by whether each of the following
states is accepting or not:

qωj , q
ω
k , q

t
j<k, q

ℓ
j<k, q

t
j>k, q

ℓ
j>k, q

t
k< j, q

ℓ
k< j, q

t
k> j, q

ℓ
k> j.

However, we can use the fact thatA recognizes a tree partial order to eliminate the
possibilities dramatically. The following lemma collectsthe requisite observations; it
is proved using properties of trees, such as that the set of predecessors of any tree
element is finite and linearly ordered.

Lemma 6.5. Let p≤ j < k < 2p.

1. qℓj>k < F ∧ qℓk> j < F.

2. ¬
(

qt
j<k ∈ F ∧ qt

j>k ∈ F
)

. ¬
(

qt
k< j ∈ F ∧ qt

k> j ∈ F
)

.

3. ¬
(

qt
j>k ∈ F ∧ qt

k> j ∈ F
)

. ¬
(

qt
j<k ∈ F ∧ qt

k< j ∈ F
)

.

4. If qωj < F, then qℓj<k < F. If qωk < F, then qℓk< j < F.

5. If qωj ∈ F, then¬
(

qt
j<k < F ∧ qt

k> j ∈ F
)

. If qωk ∈ F, then¬
(

qt
j>k ∈ F ∧ qt

k< j < F
)

.

6. If qωj ∈ F, then¬
(

qt
j<k ∈ F ∧ qℓj<k < F

)

. If qωk ∈ F, then¬
(

qt
k< j ∈ F ∧ qℓk< j < F

)

.

7. If qωj ∈ F and qωk < F, then qtk< j < F ∧ qt
j>k < F.

If qωj < F and qωk ∈ F, then qtj<k < F ∧ qt
k> j < F.

6 UNARY AUTOMATIC TREES 16

8. If qωj ∈ F and qωk ∈ F, then¬
(

qℓj<k ∈ F ∧ qℓk< j < F
)

.
9. If qωj ∈ F and qωk ∈ F, then

qt
j<k < F ∧ qt

j>k < F =⇒
[

qℓj<k < F ∧ qt
k< j < F ∧ qℓk< j < F

]

.

Lemma 6.5 allows us to conclude that if bothWj andWk are antichains thenqℓj<k <

F andqℓk< j < F and at most one ofqt
j<k, q

t
j>k, q

t
k< j, q

t
k> j is in F. If both Wj andWk are

increasing chains then Lemma 6.5 shows that whetherqt
j<k, q

t
j>k andqt

k> j are accepting
or rejecting completely determines the values of the other variables. In the case where
Wj is an increasing chain butWk is an antichain, we see thatqt

j>k, q
t
k< j, andqℓk< j can

not be inF. Moreover, the value ofqt
j<k determines eitherqℓj<k or qt

k> j. The situation in
the case whereWj is an antichain andWk is increasing is similar. Table 2 summarizes
the interactions betweenWj andWk in T based on this information. The first eight
columns denote whether key states are accepting (the value 1denotes membership in
F; 0 denotes nonmembership inF). The next column gives a representative diagram
of the<T order of typical elements inWj andWk.

Lemma 6.6. Any unary automatic tree is isomorphic to the tree-unfolding UF(Γ) of
some parameter setΓ = (T0,T1, . . . ,Tm, σ,X).

P. Let T = (N;≤T) be a tree recognized by a standard unary automatonA =

(S, I ,∆, F) with loop constantp. The set{y : y < p} is a forest under≤T . We define
an equivalence relation∼ on {y : y ≥ p} by x ∼ y if and only if there arej, k such
that x ∈ Wj , y ∈ Wk andWj ,Wk are not incomparable (see Table 2). There are finitely
many∼-equivalence classesM1, . . . ,Ms. EachMi is a forest under≤T . If i , i′ and
x ∈ Mi , y ∈ Mi′ , thenx|T y.

The parameter set forT has finite treesT0,T1, . . . ,Ts. For i > 0, Ti is a subtree
of Mi and a distinguished nodexi connects one copy ofTi to the root of the next copy.
We extract the pairs (Ti , xi) fromA as follows. For each 1≤ i ≤ s, let Ci = { j : Wj ⊆

Mi ∧ Wj is a chain} andDi = { j : Wj ⊆ Mi ∧ Wj is an anti-chain}. The finite treeTi

has|Ci | + |Di | many nodes, each representing a uniqueWj . The union of all nodes in
the representative ordering of (Wj ,Wk) for j, k ∈ Ci (from Table 2) forms a linear order
under<T . Letci

1 <T . . . <T ci
|Ci |

be the|Ci |-many<T -greatest nodes in this finite linear
order, and setxi = ci

|Ci |
. Note that eachci

j belongs to a differentWj . For 1≤ j ≤ |Di |, let
d j be the<T -least node inWj satisfyingci

1 <T d j . DefineTi to be the finite tree under
<T with domain{ci

1, . . . , c
i
|Ci |
} ∪ {di

1, . . . , d
i
|Di |
}. Thenci

1 is the root ofTi . Let T0 be the
finite tree formed by nodes in{y : y < p}∪

⋃

1≤i≤s{x ∈ Mi : x <T ci
1 ∨ x|T ci

1}. Note that
we must include the possibility thatx|T ci

1: for example, in the seventh line of Table 2,
vk

0 will be incomparable to the root ofc1
i (whereWk ⊆ Mi). T0 may be computed by

examining whether (⋄, 1)- and (1, ⋄)-states are accepting and by using the case analysis
in Table 2. To conclude the definition ofΓ, for 1 ≤ i < s, setσ(i) = x such thatx ∈ T0

andx <T cr
1 and∀y ∈ T0 (y <T ci

1→ y <T x). �

Lemma 6.7. If Γ = (T0,T1, . . . ,Tm, σ,X) is a parameter set,UF(Γ) is a unary auto-
matic treeT .

6 UNARY AUTOMATIC TREES 17

Table 2: Relationship betweenWj andWk in treeT , based onF inA

qωj qωk qt
j<k qℓj<k qt

j>k qt
k< j qℓk< j qt

k> j Ordering

1 1 1 1 0 0 1 1 v j
0 v j

1
vk

0 v j
2

vk
i v j

i+2
vk

i+1
· · ·

1 1 1 1 0 1 1 0 v j
0

vk
0 v j

1
vk

1 v j
i

vk
i v j

i+1
· · ·

1 1 0 1 1 1 1 0 vk
0 v j

0
vk

1 v j
1

vk
i v j

i
vk

i+1
· · ·

1 1 0 0 0 0 0 0 incomparable

1 0 1 1 0 0 0 1 v j
0

vk
0

v j
1

vk
1

v j
2 v j

i

vk
i

v j
i+1

· · ·

1 0 1 1 0 0 0 0 v j
0

vk
0

v j
1

vk
1

v j
2 v j

i

vk
i

v j
i+1

· · ·

1 0 0 1 0 0 0 0 v j
0

vk
0

v j
1

vk
1

v j
2

vk
2

v j
i

vk
i+1

v j
i+1

· · ·

1 0 0 0 0 0 0 0 incomparable

0 1 0 0 0 1 1 0 vk
0

v j
0

vk
1

v j
1

vk
2

v j
2

vk
i

v j
i+1

vk
i+1

· · ·

0 1 0 0 0 0 1 0 vk
0

v j
0

v j
1

vk
1

v j
2

vk
2

v j
3

vk
i

v j
i+2

vk
i+1

· · ·

0 1 0 0 0 0 0 0 incomparable

0 0 1 0 0 0 0 0

v j
0

vk
0

v j
i

vk
i

...

0 0 0 0 1 0 0 0

vk
0 v j

0

vk
i v j

i

...

0 0 0 0 0 1 0 0

v j
0

vk
0 v j

1

vk
i v j

i+1

...

0 0 0 0 0 0 0 1

v j
0

v j
1

vk
0

v j
i+1 vk

i

...

0 0 0 0 0 0 0 0 incomparable

6 UNARY AUTOMATIC TREES 18

P. Let t = |T0|, ℓ =
∑m

r=1 |Tr |, andαr =
∑r−1

i=1 |Ti | for r = 1, . . . ,m. GivenΓ, we
consider the isomorphic copy (N;≤T) � UF(Γ) whereT0 7→ {0, . . . , t − 1}, and thejth

copy of Tr maps to{t + (j − 1)ℓ + αr , . . . , t + (j − 1)ℓ + αr+1 − 1}. The appropriate
unary automaton for≤T will have a (1, 1)-tail of lengtht and a (1, 1)-loop of length
ℓ. The states on the (1, 1)-tail are{q0, . . . , qt−1} and the states on the (1, 1)-loop are
{qt, . . . , qt+ℓ−1}; ι = q0. Eachq j on the (1, 1)-tail (so 0≤ j < t) has (⋄, 1)- and (1, ⋄)-
tails of lengtht, and a (⋄, 1)-loop of lengthℓ. Eachq j on the (1, 1)-loop (sot ≤ j < t+ℓ)
has a (⋄, 1)-tail and (⋄, 1)-loop, each of lengthℓ. All (1 , 1)-states are accepting. Let the
bijectionϕ0 : T0 → {0, . . . , t − 1} satisfyϕ0(x) < ϕ0(y) wheneverx <T0 y. For each
j < k < t, we make

• ∆(q j , (⋄, 1)k− j) accepting ifϕ−1
0 (j) <T0 ϕ

−1
0 (k), and

• ∆(q j , (1, ⋄)k− j) accepting ifϕ−1
0 (k) <T0 ϕ

−1
0 (j).

Let the bijectionϕr : Tr → {t + αr , . . . , t + αr+1 − 1} satisfyϕr (x) < ϕr (y) whenever
x <Tr y. An analogous (but slightly more complicated) construction usesϕ1, . . . , ϕm

andσ,X from the parameter set to specify those state in (⋄, 1)-loops off the (1, 1)-tail
and in (⋄, 1)-tails and loops off the (1, 1) loop that are accepting. Then (N; L(A)) �
UF(Γ). �

P ( T 6.3). Lemmas 6.6 and 6.7 give the characterization. �

Corollary 6.8. If T is recognized by a standard automaton with n states, an O(n)
algorithm gives a parameter setΓ whereT = UF(Γ).

P. The construction outlined in the proof of Lemma 6.6 uses finitely many table
lookups in Table 2 and a single traversal of the transition diagram of the automaton
recognizingT . �

Corollary 6.9. If Γ is a parameter set with t= |T0| and ℓ =
∑m

i=1 |Ti | then there is a
standard unary automatonA with O(t2ℓ2) states such thatUF(Γ) � (N; L(A)).

We now show that the isomorphism problem for unary automatictrees is decidable.
Observe that two tree-unfoldings may be isomorphic even if the associated parameter
sets are not isomorphic term-by-term. Ideally, we are looking for an isomorphism
invariant which does not have this flaw. To obtain one, we begin by fixing a computable
linear order≺ on the set of finite trees. We assume that the finite trees can beefficiently
encoded as natural numbers such that asking if one is≺-below another takes constant
time. We define thecanonical representationof a unary automatic treeT = (N;≤T)
to be the minimal parameter setΓ = (T0,T1, . . . ,Tm, σ,X) with UF(Γ) � T , where
minimality is defined as follows.

• As finite trees,T1 � · · · � Tm.

• EachTi (1 ≤ i ≤ m) is minimal in that, for ally1, y2, if y1 <T y2 <T xi then
the subtree with domain{z : y1 ≤T z, y2 �T z} is not isomorphic to the subtree
with domain{z : y2 ≤T z, xi �T z}. Also, if ti is the root of the first copy ofTi

(1 ≤ i ≤ m) then there is noy ∈ T0 such thaty <T σ(i) and the subtree with
domain{z : y ≤T z, ti �T z} is isomorphic toTi .

6 UNARY AUTOMATIC TREES 19

• The canonical representation is then the parameter set which satisfies the above
conditions and in whichT0 has the fewest nodes.

Lemma 6.10. SupposeT ,T ′ are unary automatic trees with canonical representa-
tionsΓ, Γ′. Then,T � T ′ if and only ifΓ, Γ′ have the same number (m) of finite trees,
(T0, σ) � (T′0, σ

′), and for1 ≤ i ≤ m, (Ti , xi) � (T′i , x
′
i).

P. It is easy to see that ifT andT ′ have term-by-term isomorphic canonical rep-
resentation they are isomorphic. Conversely, supposeT � T ′ and have canonical rep-
resentations (T0, ...,Tm, σ,X) and (T′0, ...,T

′
m, σ

′,X′), respectively. Each infinite subtree
of the form ({y : σ(i) ≤ y};≤T), 1≤ i ≤ m, which contains infinitely many copies ofTi ,
embeds into a subtree ofT ′. By the minimality condition onTi ,T′i and by the ordering
of the finite trees in each parameter set, the subtree ofT containing infinitely many
copies ofTi can embed into the subtree ofT ′ containing infinitely many copies ofT′i
for all 1 ≤ i ≤ mand vice versa. By minimality ofT0,T′0, ∀1 ≤ i ≤ m (Ti, xi) � (T′i , x

′
i).

Let ti be the root of the first copy ofTi in T , let t′i be the root of the first copy ofT′i in
T ′.

(T0, σ) � ({y : y ∈ T0 ∧ ∀1 ≤ i ≤ m¬ti ≤T y};≤T)

� ({y : y ∈ T′0 ∧ ∀1 ≤ i ≤ m¬t′i ≤T ′ y};≤T ′) � (T′0, σ
′)

�

Suppose we can compute the canonical representation of a tree from a unary au-
tomaton. Given two unary automatic trees, we could use Lemma6.10 and a decision
procedure for isomorphism of finite trees to solve the isomorphism problem on unary
automatic trees.

Lemma 6.11. Given a tree-unfoldingUF(Γ) with n the sum of the sizes of all finite
trees inΓ, there is an O(n2) algorithm that computes the canonical representation of
UF(Γ).

P. SupposeΓ = (T0,T1, . . . ,Tm, σ,X). For each 1≤ i ≤ m, look for y1, y2 ∈ Ti

such thaty1 <T y2 <T xi , and the subtree ofTi with domain{z : y1 ≤T z, y2 �T z}
is isomorphic to the subtree with domain{z : y2 ≤T z, xi �T z}. If suchy1, y2 exist,
remove allz ≥Ti y1 from Ti . Thus, eachTi satisfies the minimality condition for the
canonical representation. Since the isomorphism problem for finite trees is decidable
in linear time [18], this step can be done in timeO(m|Ti |

2).
For each 1≤ i ≤ m, let ti be the root of the first copy ofTi . Look for x ∈ T0 such

that x <T σ(i), and the subtree ofT0 with domain{y : x ≤T y, ti �T y} is isomorphic
to Ti . If such anx exists, remove ally ≥T0 x from T0. Now T0 satisfies the minimality
condition. This step can be done in timeO(m|Ti |

2).
For each 1≤ i ≤ m, search for the<T0-leastx such that the subtree ofT0 with

domain{z ∈ T0 : x ≤T0 z} is isomorphic to a subtree ofTi with domain{z ∈ Ti : y ≤Ti z}
for somey <Ti xi . If such anx exists, remove ally ≥T0 x from T0. This step ensures that
T0 has the fewest possible nodes with respect toTi ; it can be done in timeO(m|Ti |

2).
The last step in transforming our parameter set to the canonical presentation is to

order the finite trees in increasing≺-order. By assumption on the complexity of≺,

7 CONCLUSION AND FUTURE WORK 20

Table 3: Summary of Results on Unary Automatic Structures

Problems Equivalence Structures Linear Orders Trees

Membership Problem O(n3) O(n3) O(n4)
Isomorphism Problem O(max{n1, n2}) O(max{n1, n2}) O(max{n2

1, n
2
2})

applying a sorting algorithm onm finite trees takesO(mlogm). Sincen = |T1| + . . . +

|Tm|, the algorithm takes timeO(n2). �

Theorem 6.12. If T1,T2 are unary automatic trees presented by standard automata
A1 (n1 states) andA2 (n2 states), an O(max{n2

1, n
2
2})-time algorithm decides ifT1 � T2.

P. By Corollary 6.8 and Lemma 6.11, we can convert the standardautomata pre-
sentingT1 andT2 to canonical representations of the trees. Then, the isomorphism
problem reduces to checking finitely many isomorphisms of finite trees. The sum of
sizes of finite trees in each parameter set is bounded byni . Hence, it takesO(n2

i) to
compute each canonical representation and then check if they are equal. �

7. Conclusion and Future Work

We described algorithms deciding the isomorphism problemsfor unary automatic
equivalence structures, linear orders, and trees. This settled the question of whether
such algorithms existed. Moreover, we considered a normal form for the automata in-
volved, with respect to which the time-complexity of the algorithms was polynomial
The membership problem for each of these classes was also shown to take polynomial-
time with respect to any input unary automaton. It is still open whether the isomor-
phism problem for unary automatic graphs is decidable, and if so, what complexity
class it lies in.

References

[1] A. Aho, J. Hopcroft, D. Jeffrey, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.

[2] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill Book Company, 1967.

[3] B. Khoussainov, A. Nerode, Automatic presentations of structures, in: D. Leivant
(Ed.), International Workshop on Logic and Computational Complexity, Vol. 960
of LNCS, Springer-Verlag, 1995, pp. 367–392.

[4] A. Blumensath, Automatic structures, Diploma thesis, RWTH Aachen (October
1999).

[5] S. Rubin, Automatic structures, PhD thesis, Universityof Auckland (2004).

[6] M. Minnes, Computability and complexity properties of automatic structures and
their applications, PhD thesis, Cornell University (2008).

REFERENCES 21

[7] M. Vardi, Model checking for database theoreticians, in: Proc. 10th International
Conference on Database Theory, 2005.

[8] B. Khoussainov, M. Minnes, Model theoretic complexity of automatic structures
(extended abstract), in: M. A. et al. (Ed.), Proc. 5th TAMC, Vol. 4978 of LNCS,
Springer-Verlag, 2008, pp. 520–531.

[9] B. Khoussainov, A. Nies, S. Rubin, F. Stephan, Automaticstructures: Richness
and limitations, in: Proc. 19th LICS, IEEE Computer Society, 2004, pp. 44–53.

[10] B. Courcelle, The monadic second-order logic of graphsiv: Definability proper-
ties of equational graphs, Annals of Pure and Applied Logic 49 (1990) 193–255.

[11] B. Khoussainov, J. Liu, M. Minnes, Unary automatic graphs: An algorithmic
perspective, in: M. A. et al. (Ed.), Proc. 5th TAMC, Vol. 4978of LNCS, Springer-
Verlag, 2008, pp. 548–559.

[12] B. Khoussainov, S. Rubin, Graphs with automatic presentations over a unary al-
phabet, Journal of Automata, Languages and Combinatorics 6(4) (2001) 467–
480.

[13] S. Rubin, Automata presenting structures: A survey of the finite string case, Bul-
letin of Symbolic Logic 14 (2) (2008) 169–209.

[14] B. Khoussainov, M. Minnes, Three lectures on automaticstructures, in: Proceed-
ings of Logic Colloquium 2007, Cambridge University Press,2008.

[15] B. Hodgson, On direct products of automaton decidable theories, Theoretical
Computer Science 19 (1982) 331–335.

[16] A. Blumensath, E. Grädel, Automatic structures, in: Proc. 15th LICS, IEEE Com-
puter Society, 2000, pp. 51–62.

[17] B. Khoussainov, A. Nerode, Automata Theory and its Applications, Birkhauser,
Boston, Massachusetts, 2001.

[18] J. Hopcroft, J. Wong, Linear time algorithm form isomorphism of planar graphs
(preliminary report), in: Proc. 6th STOC, 1974, pp. 172–184.

