Deciding the Isomorphism Problem in Classes of Unary
Automatic Structures

Jiamou Li#, Mia Minne?

aDepartment of Computer Science, University of Aucklandkiand, New Zealand
bDepartment of Mathematics, MIT, Cambridge, MA, USA

Abstract

We solve the isomorphism problem for certain classes ofyuaatomatic structures:

unary automatic equivalence relations, unary automateali orders, and unary auto-
matic trees. That is, we provide algorithms which decidetivbetwo given elements

of these classes are isomorphic. In doing so, we define nete figpresentations for

these structures which give normal forms.

Key words: Unary automatic structures, the isomorphism problem,lggap

1. Introduction

Theisomorphism problemwhich asks for a decision procedure to decide whether
two given members of a class of structures are isomorphixrigral in studying the
effective content of mathematical objects. Over finite stmegithe isomorphism prob-
lem has been one of the most challenging problems in compltheéory (it belongs
to NP but is neither known to be iR nor known to beNP-complete) [1]. Over com-
putable structures (those where the domain and atomidaetadf the structure are
computable), it is well-known that the isomorphism problsnundecidable; in fact,
it is complete forZ}, the first level of the analytical hierarchy [2]. In [3], Kheu
sainov and Nerode initiate a systematic studyaafomatic structurgsthose where
elements are encoded as strings over a finite alphabet angevatoonain and atomic
relations are represented by finite automata (precise defigiin Section 2). Auto-
matic structures form an intermediate class of structuetwéen the finite structures
and the computable structures. This paper focuses on theirphism problem for
unary automatic structureghe subclass of automatic structures (which still corgtain
all finite structures) of structures whose domains are eeat@d strings over a one letter
alphabet.

Email addressesjliu®36@ec.auckland.ac.nz (Jiamou Liu)minnes@math.mit.edu
(Mia Minnes)
1A related paper which focuses on time and space complexitthi&se unary automatic structures has
been submitted for publication by the authors elsewhere.

Preprint submitted to Elsevier December 8, 2010

1 INTRODUCTION 2

Automatic structures have decidable first-order theoBgdifi general, their mona-
dic second-order theories (where quantification over seietimitted) are undecidable,
see [4, 5, 6] for an overview of automatic structures. Siregdpplications for auto-
matic structures include modeling databases [7] and vagfgrograms [8], applying
the transitive closure operator is often desirable. Howeties operator is expressible
in monadic second-order logic but is not first-order definabtachability is undecid-
able for automatic structures in general. On the other hamaky automatic structures
have decidable monadic second-order theories.

The restriction to a unary alphabet is a natural special chaatomatic structures
because any automatic structure has an isomorphic copytteéinary alphabet [5].
Moreover, if we consider the intermediate class of striegwhose domain elements
are encoded as finite strings ovéR?, insuficient decidability strength results: since
the infinite grid can be coded automatically ovéR"land counter machines can be
coded into the grid, reachability is not decidable in thisssl of structures. Thus, the
class of unary automatic structures is a sensible contestenteachability is decidable.

The broad decidability of unary automatic structures camd@oited when they
are used to model streaming databases. Databases withsegicoded as strings of
1s are well-suited to situations in which provisional résuhust be updated on the fly
(using the tally representation) and computations areoped in real time.

In this paper, we study the isomorphism problem in classesnafy automatic
structures. These structures include unary automatio/algumice relations, linear or-
ders, and trees. We use (known and new) characterizationsmbers of these classes
to get normal forms and polynomial-time (in these normairfsy algorithms for the
isomorphism problem.

The isomorphism problem has been studied for other cadiestof graphs. For
automatic graphs, it Ei-complete [9]. On the other hand, the isomorphism problem is
decidable for equational graphs [10]. Any monadic secomtdoexpressible question
is decidable in the class of unary automatic graphs. How#weisomorphism problem
is not a priori expressible in this way and it is not known wiegtit is decidable. This
paper works towards a solution of this question by lookingecial subclasses of
unary automatic graphs.

Many natural graph problems (such as graph connectivityeachability) are ex-
pressible in monadic second-order logic and are hence ageidor unary automatic
graphs. Deciding these questions by a translation of morsstiond-order formu-
lae yields very slow algorithms (non-elementary compigxitKhoussainov, Liu and
Minnes [11] exploited structural properties of unary auddicgraphs with finite degree
to solve these questions in polynomial-time.

In general, understanding the structural properties ofaascbf unary automatic
structures leads to mordheient algorithms. Khoussainov and Rubin [12] and Blu-
mensath [4] characterized unary automatic graphs in tefmaelations between two
finite graphs. This led to characterizations of unary autantiaear orders and equiv-
alence structures as well (see Theorems 4.2 and 5.2). We proanalogous result for
unary automatic trees (see Theorem 6.3). We use thesewstlcharacterizations to
define concise finite representations of unary automaticttres. These representa-
tions lead to polynomial-time algorithms for the isomowgrhiproblem.

2 PRELIMINARIES 3

Paper Organization. Section 2 recalls the definitions of finite automata and aatam
structures. Section 3 discusses the special case of un@nyatic structures. Sections
4, 5, and 6 discuss equivalence structures, linear ordedstraes (respectively). We
give polynomial-time algorithms solving the isomorphismolglem for the class of
structures considered in each section. We conclude in@egtiand mention open
questions.

The authors would like to thank the anonymous referees fipfllecomments and
corrections.

2. Preliminaries

A finite automaton is a restricted Turing machine which hagedffinite bound on
its resources and is allowed only a single read pass ovenghg data. More formally,
afinite automatorA over a finite alphabét is a tuple §, ¢, A, F), whereS is a finite set
of states: € S is theinitial state, A : S x ¥ — S is thetransition functionandF c S
is the set offinal or acceptingstates. In this paper we requiteto be a well-defined
total function and hencéd is a completeand deterministicautomaton. Annput to
A is a finite string inX*; the empty string is denoted by A computationof A on
awordoio,...0n € X* is a sequence of states, sgy i, ..., 0, such thatgy = ¢
and @, oit1,G+1) € Aforalli € {0,1,...,n-1}. If g, € F then the computation is
successfuand the automatorl acceptghe word. As such, iff € F we say thag is
anacceptingstate. Thdanguageof A, L(A), is the set of all words accepted b¥.
In generalD c X* is FA recognizableor regular, if D is the language of some finite
automaton. IfA is a finite automaton over the unary alphat#tit is called aunary
automatorand its language is @anary automaticsubset of1}*.

A (relational) structureS consists of a countable domdihand atomic relations
on D. We focus on structures with a single binary relat®e (D; R). Synchronous 2-
tape automataecognize binary relations. Such automata have two inpestaeach of
which contains one of the input words. Bits of the two inputdsgare read in parallel
at the same rate until both input strings have been complptelcessed. Formally,
letX, = X U {0} whereo is a symbol not inz. Given a pair of wordsvy, w, € ¥,
the convolutionof (w;, w») is a word®(wi, w,) over the alphabets()? with length
max(wi/, Ws|). Thek™ symbol of@(wy, W) is (o1, 02) Whereo is thek™ symbol of
w; if k < |wi|, and is¢ otherwise. A binary relatioR is FA recognizabléf the set of
convolutions of all pairswi, w2) € Ris a regular subset oEf)*.

A structure is callechutomaticoverX if its domain is a regular subset &f and
each of its basic relations is FA recognizable. A structsieilledunary automatidf it
is automatic over the alphabidg. The structures]; S) and {; <) are both isomorphic
to unary automatic structures. On the other had <) and {; +) have isomorphic
copies which are automatic ovi, 1} but have no unary automatic isomorphic copies.
The structurelf; x) has no automatic isomorphic copy. For proofs of these faets
the survey papers [13, 14].

The class of languages recognizable by finite automata$edlander the rational
operations studied by Kleene. These operations paralleleddo set operations and
the first-order quantifiers. Consider the first-order logiteaded by3“ (there exist

3 UNARY AUTOMATIC STRUCTURES 4

Table 1: Deciding properties of binary relations in autamatructures.

| Property | First-order definition | Time complexity|
Reflexivity X (R(X, X)) O(mn)
Symmetry VX Y(R(XY) = R(Y, X)) o(n?)
Antisymmetry| YXYRXY) ARY,X) = x=Y) o(n?)
Totality VX, Y (R(% Y) V R(y, X)) o(nn?)
Transitivity ¥ Y, Z(RX,) AR(Y, 2 = R(X 2) o(nd)

infinitely many) andd™™ (there exish many modm, wheren andm are natural num-
bers) quantifiers. We denote this logicB® + 3 + 3™™. The following theorem from
[15, 3, 16, 5] connects this extended logic with automata ditomata corresponding
to formulas withn free variables are synchronongape automata, a natural extension
of the automata for binary relations above.

Theorem 2.1 (Blumensath, Gadel; 1999. Khoussainov, Rubin; 1999)For an au-
tomatic structureS there is an algorithm that, given a formulgX) in FO + 3 + 3",
produces an automaton whose language is those taplesn S that makep true.

The proof of Theorem 2.1 along with the fact that there is adirtime algorithm
which tests whether the language of a given automaton isyeyigid the following
corollaries.

Corollary 2.2. The O + 3« + A™™)-theory of an automatic structu® is decidable.

Corollary 2.3. Given deterministic automat#; (m states) andA, (n states), there
is an Qmn)-time algorithm to build the deterministic union or intecien automa-

ton (mn states) afl; and A, and an gm)-time algorithm to build the deterministic
complement automaton (m statesyf.

Let (D; R) be an automatic structure (oVEY, with Ra binary relation oveb. Sup-
poseAp (m states) andAg (n states) are deterministic finite automata recogniiing
andR, respectively. Some first-order definable properties odyimelations are listed
in Table 1. By Corollary 2.2, it is decidable wheth&r; R) satisfies these properties.
In particular, to check iR is reflexive, we construct an automaton far| (x, X) € R}
and check iffx | (x,X) € Rt n D = D. Similarly, to decide ifR is symmetric, we
construct an automatafi; recognizing the relatiof(y, x) | (x,y) € R} and check if
R = L(A1). For antisymmetry, we construct an automatonSot {(X,y) | X # y} and
determine whethdRN Ry N'S = 0. To decide ifRis total, it sufices to check whether
RU L(A;) = D2 Finally, to settle whetheR is transitive, we construct the automaton
{(x,y,2) | R(x,¥) A R(y, 2 A =R(X, 2)} and ask whether its language is empty. Note that
if D =X%*thenm= 1.

3. Unary Automatic Structures

This section explores unary automatic structures anddotres terminology and
notation used throughout the paper. Recall that a strugdureary automatidf it is

3 UNARY AUTOMATIC STRUCTURES 5

automatic over the alphabglt}. We usex to denote the string®andN for the set of
all such stringg1}*. The following lemma from [4] characterizes the regularsatb
of {1}*.

Lemma 3.1 (Blumensath; 1999).A set LC N is regular over the alphabét}* if and
only if there are numbers£ € N such that L= L; U L, with L; C {x: x < t}and L,
the finite union U {t+if+k;:ieN}wherek < ¢forall j.

j=0,1,...r-1

Proor. We describe the shape of an arbitrary deterministic 1-tapy automaton

A = (S,,,A,F). If n = |S]| there ard, ¢ < n so that the following holds. There is a
sequence of state®; = {qi, 0o, ..., 0} such thatA(,,1) = g; and forall 1< i < t,
A(Gi, 1) = gi+1. There is another sequence of stafes= {1, ..., G} such that for
allt < j <1, A(gj, 1) = gj+1, andA(q;, 1) = o1 Every final state irS; recognizes
exactly one word less thanand every final state i8, recognizes the set of all words
t+il +k, i € w, for some fixek < I. The language of such an automaton has the form
described in the statement of the lemma; giverLdrom the statement of the lemma
and its parametets¢, we can define the corresponding unary automaton. O

Synchronous 2-tape unary automata recognize binaryoekativeiN. The general
shape of these automata s given in Figure 1. We fix some tetagy. States reachable
from the initial state by reading inputs of type, (3 are called (11)-states The set
of (1,1)-states is a disjoint union of @il and aloop. We label the (11)-states as
dos--->0t- - -»Om Whereqp, . . ., gi—1 form the (1 1)-tail and there is a transition from
Om to q; to close the (11)-loop. States reachable from g {J-state by reading inputs
of type (1, o) are called (10)-states The set of (1¢)-states reachable from any given
i consist of a tail and a loop, called the ¢}-tail andloop from q;, respectively. The
(¢, 1)-tails andloopsare defined similarly.

(1,0)-loop (o, 1)-loop

(0.1)-tail

(1,1)-tail

Figure 1: General shape of a deterministic 2-tape unarynzatton.

Khoussainov and Rubin [12] and Blumensath [4] generalizztdina 3.1 and gave
a characterization of all binary relations dhwhich are recognized by some syn-
chronous 2-tape automaton. In particular, if we view sucklation as the edge re-
lation on the graph of nodes labelled by the characterization relates all the unary
automatic graphs to amnwindingor ladder of finite graphs. Let8 = (B, Eg) and

3 UNARY AUTOMATIC STRUCTURES 6

D = (D, Ep) be finite graphs. LeR;, R, be subsets ob x B, andRs, R4 be subsets
of B x B. Consider the grap® followed by countably infinitely many copies &,
ordered a8, 81, B2, We define the infinite graph unwind(D, R) as follows. Its
vertex setiD U B°U Bl U B?U... and its edge set contaifiy UECUE! U ... as well
as the following edges, for @l b e B,d € D, andi, j € w:

e (d,b% when @, b) € Ry, and @, b'*1) when @, b) € Ry,
e (a,b*Y) when @, b) € Rs, and @, b*2*)) when @, b) € Ry.

Lemma 3.2 (Blumensath; 1999. Khoussainov, Rubin; 2001)A graph is unary au-
tomatic if and only if it is isomorphic to unwig®, D, R) for some finite graph$, O
and relations on these graphs givenRy

Proor. Suppose a graph is unary automatic and its edge relatic@cognized by a
synchronous 2-tape automatgh Using the terminology from above, we define the
vertices ofD to be the states on the,(ll)-tail of A. The edges of> are determined by
(some of) the accepting states on thgl()- and (1 ¢)-tails of the (2, 1)-tail. Similarly,
the vertices of8 are the states on the,)-loop of A. TheR, relations are determined
by the appropriate accepting states on the)<land ¢, 1)- tails df the (1 1) states of
A. Reversing this construction gives a synchronous 2-tafmaaton recognizing the
edge relation of a graph isomorphic to a given unwinding. iuFe 2, we provide an
example of an automaton and unwinding pair to clarify thestation. O

Figure 2: An example of unwind, D, F?) and the synchronous 2-tape automaton for its edge reldfiore
label B = {a,b} andD = {0, 1,2} thenEp = {(0,1)}, Eg = 0, Ry = {(1,a), (2, b)}, R = {(2,b)}, Rs = {(a, @)},
andRy =0

In this paper we restrict our attention to (countably) irtérstructures. The follow-
ing lemma allows us to assume that the domain of each steud¥ (rather than a
regular subset dff) without increasing the size of the associated unary auimma

Lemma 3.3. Let (D; R) be a unary automatic structure with @ N. Suppose this
structure is presented bl andAg. There is a deterministig-tape unary automaton
Ar, Ar| < [Agl, such thai(N; L(Ar)) = (D; R).

Proor. Lett and¢ be as described in Lemma 3.1. We outline the proofin the chsaw
the parameter associated withD is 0. SinceR is a binary relation over the domain
D, Ar must satisfy the following requirements: the {})-tail has lengttc’¢ for some

constantt’; the (1, 1)-loop has lengtltf for some constart; the lengths of all loops

4 UNARY AUTOMATIC EQUIVALENCE RELATIONS 7

and tails containing accepting states are multiples;adnd, there are no accepting
states on any tail or loopdfoany (1 1)-states of the forng.., whereh # k; (where
k; is as defined in Lemma 3.1). The isomorphism betwBeandN will be given by
i€ + kj — ir + j. Therefore, defineAlr to have a (11)-tail of lengthc’r, a (1, 1)-loop
of lengthcr, and copy the information from the state+ j in Ag to stateir + j in
Ar (Modifying the lengths of4, 1)- and (1 ¢)- tails and loops appropriately). Then,
(N; L(Ar)) = (D; R) and since < ¢, Ar has no more states thafik. O

Algorithms on unary automatic binary relations have as irgpdeterministic syn-
chronous 2-tape unary automaton recognizing the relatiime size of the input is
defined to be the number of states in this automaton. We sag #yanchronous 2-tape
automaton isstandardif the lengths of all its loops and tails equal some numper
called theloop constantIf A is a standard automaton withstates and loop constant
p, thenn = 8p2.

Lemma 3.4. For each deterministi@-tape unary automaton with n states there is an
equivalent standard automaton with at mést" states.

Proor. Let p be the least common multiple of the lengths of all loops ailsléd.A. An
easy estimate shows thats no more tham”. One can transform# into an equivalent
standard automaton whose loop constant.idHence, there is a standard automaton
equivalent taA whose size is bounded above by'8 O

By Lemma 3.4, we assume all unary automatic structures asepted using stan-
dard automata. This assumption in general incurs a superextial cost in the state
space. However, the standard automata provide naturalahéonms for the structures
and allow smoother algorithms.

We fix some notation for a standard automa®mith loop constanp. The (1,1)-
states are labelleg, ..., 021 as described above. For9 j < 2p, letW; = {x €
N : A(Qo, (1,1)) = ;). ThenWy,..., W1 partitionN and we haven; = {j} for
0<j<pW={j+ip:ieN}forp<j<2p. Weenumerate the elementswf as
vl =j+ip.

4. Unary Automatic Equivalence Relations

This section explores unary automatic equivalence reiatié structuré& = (N; E)
is anequivalence structurd E is an equivalence relation (reflexive, symmetric, and
transitive). By Table 1, there is a(n°) time algorithm that decides whether a given
synchronous 2-tape unary automaton presents an equieaielation. The main theo-
rem of this section is the following.

Theorem 4.1. The isomorphism problem for unary automatic equivalenaggires
is decidable in linear time in the sizes of the input standartbmata.

Theheight h2, of an equivalence structuéeis a functionN U {co} — N'U {co} such

thathg(x) is the number oE-equivalence classes of sixeTwo equivalence structures

&1 and&; are isomorphic if and only iﬁg1 = hgz. By the following characterization

4 UNARY AUTOMATIC EQUIVALENCE RELATIONS 8

from [4, 12], heights of unary automatic equivalence stites are finitely nonzero
and hg(oo) # oo. If kis the size of the largest finite equivalence clasé‘,,dﬁg can be
encoded by the finite functiolmg with domaink + 2 such thatg(i) = hg(i) fori <k
andhg(k + 1) = h2(0).

Theorem 4.2 (Blumensath; 1999. Khoussainov, Rubin; 2001An equivalence struc-
ture has a unary automatic presentation if and only if it hagdly many infinite equiv-
alence classes and there is a finite bound on the sizes of tteedquivalence classes.

Let & be recognized by a standard automa#e: (S, ¢, A, F) with loop constanp
(and hence = |S| = 8p?). Recall the definitions af; andw; from Section 3. Observe
that since equivalence relations are symmetric, for agyj0< 2p, a state on the (b)-
tail or loop ofq; is accepting if and only if the corresponding state on thé)-tail or
loop is also accepting.

Lemma 4.3. For 0 < j < 2p, each element of Jbelongs to an infinite equivalence
class if and only if thg1, ¢)-loop from g has an accepting state. Moreover, in this
case, Wforms a subset of some equivalence class.

Proor. If the (1, o)-loop from q; contains an accepting state, then for eaca W;,
there exists infinitely many with (x,y) € E. Suppose further thgt> p (if j < pthen
W, = {j} so we're done). Ther,is equivalent toj + p(i + 1) + D forsome 0< D < p
and alli > 0. But, sinceqg; is on the (11)-loop, the accepting state on the {}-loop

of g; also gives thaj + p is equivalent tgj + p(i + 2) + D for the saméD and alli > 0.
Transitivity and symmetry then imply th@tj + p are equivalent, hence all members of
Wi; are equivalent. On the other hand, suppose the){lbop fromq; does not contain
any accepting states. Then, for eactihe equivalence class ¢f+ pi must be a subset
of {0,...,j+ p(i + 1) — 1}, afinite set. O

Lemma4.4. For 0 < j < 2p, if W; does not belong to an infinite equivalence class
thenitis in an equivalence class of size less than p.

Proor. Suppose; has no accepting state on its ¢)-loop. Definejo to be the least
number in the (finite) equivalence class containjnghe size of the equivalence class
of eachx € W is the number of accepting states on thesfitail from g;,. O

Lemma 4.5. GivenA, Algorithm 1 computes the graph of In time Q(n).

Proor. By Lemma 4.3, the size of finite equivalence classes is bedity the size
of (1, ¢)-tails, hencehl(n) = O for anyn > p. By Lemma 4.4, for allx, if h2(x) is
finite thenhg(x) < p. Algorithm 1 exploits the transitivity of the equivalencdation
to reduce the number of states of the automaton which mustsited: Moreover,
for eachj that is considered, the algorithm must check whether at dpstates are
accepting. Thus, the runtime of Algorithm 1@%p?) = O(n). O

Proor (oF Tueorem 4.1). LetA; (n states) andA, (m states) be standard automata
recognizing equivalence relatiofs, E, € N2. By Lemma 4.5, extractings, andhg,
takes timeO(maxm, n}). By Lemma 4.3, donifs,) U domfg,) € maxm+ 1,n+ 1}.
Therefore, checking ifig, = hg, takesO(maxm, n}). O

5 UNARY AUTOMATIC LINEAR ORDERS 9

Algorithm 1 Equivalence Relation Height
1: Initialize arrayh[0...p+ 1] to 0. Create list. =0,...,2p— 1.
2: while L # 0 do
3. Letj=leastinL.

4. if the (1 o)-loop fromq; contains no accepting staté®n
5: if j < pthen
6: Add 1 toh(number of accepting states on ¢)-tail from q;).
7 else
8: Seth(number of accepting states on ¢}-tail fromg;) to p + 1.
9: end if
10: Remove the indices of all these accepting states ftom
1. else
12: Incremenh(p + 1) by 1.
13: Remove the indices of all accepting states arJtail and loop fromL.
14: endif
15: end while

5. Unary Automatic Linear Orders

This section studies unary automatic linear ordernéar orderis total, reflexive,
anti-symmetric, and transitive. By Table 1, checking if adry relation recognized
by ann-state unary automaton is a linear order ta@¢s®). We prove the following
theorem.

Theorem 5.1. The isomorphism problem for unary automatic linear ordersiécid-
able in linear time in the sizes of the input standard autamat

The following theorem from [4, 12] describes which lineaders have unary au-
tomatic presentations. We ugeto denote the order type of the natural numbers,
to denote the order type of the negative integers, htaldenote the singleton linear
order.

Theorem 5.2 (Blumensath; 1999. Khoussainov, Rubin; 20014 linear order £ =
(L; <4) is unary automatic if and only if it is isomorphic to a finitenswf linear orders
of typew, w* or 1.

By Theorem 5.2, each unary automatic linear otlean be written as a finite word
UoUy . . . Uy over the alphabédfl, w, w*}2. Thecanonical wordw,, of £ is the minimal
such word; L andw*1 do not appear as substrings/f. Two unary automatic linear
orders£; and£, are isomorphic if and only ifv,, = w,,. Let £ = (N; <.) be alinear
order recognized by a standard unary automafiowith loop constanp. Recall the
definitions ofg; andW; from Section 3.

The following lemmas describe the possible relationshigsvbenw; andW for
j < k. It will be convenient to assign namesadb states on thee(1)-tails and loops;

2This word denotes the linear orday + ug + - - - + U

5 UNARY AUTOMATIC LINEAR ORDERS 10

these names will be suggestive of the respective relatipasNote that since the linear
order is total, whether states on the {}ttails and loops are accepting or rejecting is
completely determined by the,(1)-tails and loops.
ForO<j<k<p, Qj<k = A(q), (o, 1)),
ForO<j<pandp<k<p+]j, qf o = AQ). (0, 1)),
o = AQ). (o, 1P,
ForO<j<pandp+j<k<2p, = A (e, 1))

Forp<j<k<2p, qtj<k = A, (o, 1)k—j),
Ok = A, (0, D)PHY).

Forp<j<k<2p, Q|t<<j = Aq;, (o, 1)p—k+j),
O = A (o, 1)PPD).

Forp<j<2p, chu = A, (o, 1)P).

Lemma 5.3. For p < j < 2p, W, either forms an infinite increasing chain or an infinite
decreasing chain.

Proor. If ¥ € F then for alli € N, vij <r vij+1. Thus, the sequenc%, v‘lvé is

an infinite increasing chain. If not, the]‘}r ¢ F implies thatA(q;, (1, ©)P) € F. Thus,
v("),v{,v;, ...Is an infinite decreasing chain. O

Hence, there is a®(n) test checking if a giveW; is an increasing chain or a
decreasing chain.

Lemma 5.4. For p < j < 2p, W is a subset of one copy afor one copy ofv* in L.

Proor. By Lemma 5.3, it is sfficient to prove that any two elements\ are sepa-
rated by at most finitely many elements £6f Considervi‘,vi’, with i < i’. Suppose

j - " j
Vi<g2j+s+pi+i"+1) <V,

for somer > 1 ands > 0. By the first inequalityA(q;, (¢, 1)*P+stl) € F. By the
second inequalityA(q;, (1, 0)"*)P*$t)) € F. This contradicts the anti-symmetry 4t
Therefore, any such thalvi' <rzZ<y vi‘, must satisfyz < 2j + (i + i’ + 1)p; there are
only finitely many suctz. O

Lemma5.5. Let p< j <k<2p. If q]Qk eF A q,iq. ¢ F then W preceded\i:
YxeW; Yy e We (X< y).
Similarly, if q‘j’<k ¢F A qﬁq. € F then W, precedeV;:

Vxe W, Vye W (y <z X).

5 UNARY AUTOMATIC LINEAR ORDERS 11

PROOF. Suppose.qf<k eF andqﬁ<j ¢ F. We first show it must be the case thﬁ\;k eF
andq}«j ¢ F. Assume for a contradiction tthk ¢ F. Then (for anyi)

i i
Vipo <z Vr <cVi <z V:(+2
put also,v{ﬁr2 <r vij+2, contradic.ting antisymmetry. Similarly, assume for a cadic-
tion thatq}<<j € F. Then (for anyi)

i i
Vies <L V{(<L Viy <z V:(+2

andv , <, v/ ., a contradiction. Thus! <, V& andv!, <, V for anyi,r. Hence,
W, precede$V.
An analogous argument shows that if we assumeqf@tez F A qﬁ<j € F then

di.y € F andq,_; € F. Thus, in this casél precededV;. mi

r

Lemmab5.6.Letp< j <k< 2p. If qf(k eF A qﬁq. € F then W and VW, interleave
within the same copy @b in £. If q‘j’<k ¢F A qﬁq. ¢ F then W and W, interleave
within the same copy @* in L.

ProoF. Supppsq‘j’<k_e Fandg/_; € F. Then for alli, W<Vl <oV, <. vij+5. In

particular, this impliesV; andW are both increasing. Moreover, there are constants
C.d € Z (depending on which of,_, andg;_; are final) such tha_\ti' <gVWy<cv,
foralli > C. Using Lemma 5.4, we conclude that andW are in the same copy of
win £. Symmetrically, ifq‘j’>k eF andqﬁ>j € F thenW; andW are both decreasing

and they are in the same copy®f in L. O

The proof in Lemma 5.6 can be slightly generalized to seefthai < h < j <k <
2p, it Wh, W interleave andV;, Wy interleave the\,, W interleave.

Lemmab.7.For0 < j < pand p< k < 2p, {j} interleaves with Wif and only if
p<k<p+jand
dieF = g ¢F

Proor. It is only possible for{j} to interleave withW if it is ordered in a diferent
way with respect tof than with respect to¥ fori > 0. If p+ j < k < 2p then
all elements o are represented on the, (1)-loop df g; and so the ordering of
with respect taall of them is determined byfd(. So, we supposp < k< p+j. If

(dj € F) = (o €F) theneitherj <, Vi foralli orv < jforalli. Thus, in
this case, there is no interleave. Finally, consider the wiaereqtj(k eF butqf<k ¢F.
Then, for alli > 0,

Vi < <o v

By Lemma 5.3, this implies thatj is part of anw* chain, and thaf is interleaved in
this chain. The symmetric casufjgk ¢F butq‘j’<k € F) is analogous. O

Lemma 5.8. Algorithm 2 extracts w from A in time Q(n).

6 UNARY AUTOMATIC TREES 12

Proor. Informally, the algorithm works from least to greatesinedats in£, checking
whether relevant states il are accepting or rejecting to build wp,. More pre-
cisely, we define and use sets L8ftp indicate whichw; preceedV,. We notice that
Lemma 5.6 allows us to partitidmp, . . ., 2p — 1} into sets each of which correspond to

a single copy ofv or w* in w,. Using Lemma 5.7, we add to these sets some elements
in {0,..., p— 1} which fall inside these chains. In Algorithm 2, the resudtsets are
labelledV,. The computation of the sets Lajt(V, requires visiting eache(1)-state at
most once. Once these sets have been computed the algoritehtiheck whether at
mostp many states are iR. Thus, the algorithm runs i®(n + p?) = O(n). O

Proor (or THeOREM 5.1). Given two standard automafh (with n states) ancA, (with
mstates) recognizing linear orders,, <,,C N?, Lemma 5.8 gives/,, andw,, in time
O(maxm, n}). O

6. Unary Automatic Trees

We now turn to unary automatic trees. A structire= (T; <) is atreeif <+ isa
partial order orT (reflexive, antisymmetric, and transitive) with a root @ealement)
and such that for all nodese T, the sety : y <+ x} is afinite linear order. Table 1 lists
efficient tests for most of the requirements for being a tree. é¥aw checking ik+
has a root requires verifying the first-order sentedgey (x <4 y). The alternation
of quantifiers implies an exponential-time decision pragedfor general automatic
binary relations [17]. This can be improved for unary autbolinary relations.

Lemma 6.1. If (N; R) is a partial order where R is recognized by a unary automaton
(not necessarily standard) with n states, there is gn)@me algorithm which checks
for an R-least element.

Proor. Let m be the number of (I1)-states inA. If there is anR-least elemenk,
thenx < m. Indeed, ifx > m, there isy < m such thatA(s, (1, 1)) = A(, (1, 1)%).
Letg = A(, (1,1)9). Becausex is anR-least element we have thR{(x,y) and so
A(Q, (1, 0)*Y) € F; similarly, R(x, 2x — y) implies thatA(qg, (¢, 1)*Y) € F. However,
this means thaR(y, x), a contradiction with anti-symmetry &

TheR-least elemenx (if it exists), must satisfy that forall < x < 'y

Ay, (0, 1Y) e F and Ay, (1,0)) e F.

Reading eache(1) and (1¢) state at most once is ficient to find such amR-least
element or decide that one doesn’t exist. (Note that we ang usir assumption from
Section 1 that the given unary automaton is complete.) Itiquaar, Algorithm 3 does
this and runs irQ(n). O

Combining Lemma 6.1 with Table 1 gives the following theorem

Theorem 6.2. There exists an (*) time algorithm that decides if a unary automatic
binary structure is a tree.

6 UNARY AUTOMATIC TREES 13

Algorithm 2 Linear order canonical word
1: Initialize B= 0, w = A. Create list. =0,...,2p- 1.
2: Initialize each Left{) = 0. Initialize an array of set¥, all to be empty.
3: for each ¢, 1)-state given by paif < kdo

4. if 0<j<k< pthen

5: If gj« € F, putj € Left(k);

6: if gj<k ¢ F, putk e Left(j).

7. elseif0<j<p, p<k<p+jthen

8: If o, € F, q‘j’<k e F, putj € Left(k);

9: if o, ¢ F, q‘j’<k ¢ F, putk € Left(j);

10: if qtj<k eF, q‘j’<k ¢ F, removej from L and ensur¢j, k} c V, for some;
11: if qF<k ¢F, q‘j’<k € F, removej from L and ensur¢j, k} c V, for somer.
12: elsei#03j<p,p+jsk<2pthen

13: If of, € F, put] € Left(K);

14: if g, ¢ F, putk € Left(j).

15. else igp < j<k<2pthen

16: If q]Qk eF, qﬁ<j ¢ F putj € Left(k);

17: if qf<k ¢ F, qﬁ<j € F putk € Left(j);

18: if qf<k eF, qﬁ<j € F removek from L and ensur¢j, k} c V, for somet;
19: if qf<k ¢ F, qﬁ<j ¢ F removek from L and ensur¢j, k} c V, for somet.
20. endif

21: end for

22: while L # 0 do
23: Leti beleastin_ such that Lefi() = B
24: if i < pthen

25: PutB = BuU {i} andw = w- 1. Remova from L.

26: else

27: Let j be least such thatj € V, for somer.

28: if W; forms an increasing chathen

29: PutB = BU V, andw = w- w. Fork € V;, removek from L.
30: else

31: PutB = BU V, andw = w- w*. Fork € V,, removek from L.
32: end if

33 endif

34: end while
35: In w, combine any 1w to w and anyw* - 1 tow*.

6 UNARY AUTOMATIC TREES 14

Algorithm 3 R-least element
1: Initialize the listL = 0,...,m— 1.
2: whileL # 0 do
3: Let | be the first elementib.

4. if all (o, 1)-states out off; are acceptinghen
5: j is theR-least element; returimue.

6: else

7 deletej from L.

8: forke Ldo

9: if A(Qj, (o, 1)<)) € F then deletek from L.
10: if A(Qj, (1, 0)<)) ¢ F then deletek from L.
11 end for

12: endif

13: end while
14: returnfalse

Theorem 6.3 is a characterization of unary automatic trd@shwill lead to an
efficient algorithm for the isomorphism problem. This theorensimilar in spirit to
the unwinding description of unary automatic graphs in dj2zhat was discussed as
Lemma 3.2. Aparameter sef is a tuple To, T1,..., Tm, o, X) whereTo, Ty, ..., T
are finite treesg- : {1,...,m} - To, andX : {1,...,m} — {0} U |; T; such that
X(i) € Ti U {0}. A tree-unfoldingof a parameter sdt is a treeUF (') that contains
one copy ofTy and infinitely many copies of; for eachi € {1,..., m} connected as
follows. The root ofUF(T) is the root ofTo. Fori € {1,...,m}, if X(i) # 0, the root of
the first copy ofT; is an immediate descendent®fi) and the root of each subsequent
copy of Tj is an immediate descendent of the copyXdff) in the previous copy of;.
Otherwise, ifX(i) = 0, the root of each copy dff; is an immediate descendentcafi).

Theorem 6.3. Atree7 = (N, <1) is unary automatic if and only if there is a parameter
setl’ = (To, T1,. .., Tm, 0, X) such that/” = UF(T).

We will need a few definitions and lemmas to prove this theor€uppose<s is
recognized by a standard automaté@nvith loop constanp. Recall from Section 5 the
definition of W; and the labels of states &1. In particular, we will use the notations
qtj<k andq‘j’<k. However, sinces- is a partial (rather than linear) order, the €1 states

are not determined by theis (1) counterparts. Hence, we uq‘]gk andq‘.’>k to denote
the appropriate (k) states. Two nodes y € 7~ areincomparablex|+y, ii‘ X £ yand
y £7 X. Forp < j < 2p, W; is achainif v} <7 vj <7 ...; Wj is ananti-chainif v/|v,

foralli # k.

Lemma6.4. For p < j < 2p, Wj is a chain or an anti-chain. Also, Js a chain if
and only if for each x Wj, the setly : x < y} is infinite.

Proor. Letp < j < 2p. Supposaqf eF. Thenvij <7 Vij+1 <7 vi"Jr2 for all i. Hence W;
is a chain and for any € W, the sefly : X <7 y} is infinite.

6 UNARY AUTOMATIC TREES 15

Figure 3: An example of a tree-unfolding.

On the other hand, supposg ¢ F. Since7 is a tree, there are no infinite,-
descending chains. Henc&(q;, (1,0)P) ¢ F. Therefore, for any, vij £ vin and
vi"+r £ vij andWi is an anti-chain. Assume for a contradiction that theremsesicsuch
that{y : vij <y} is infinite. In particular, there is somesuch thatV : vij <7 W} is
infinite and soq‘j’<k e F. Hence,vi",vij+l <r \/{‘+2. Since the set oks predecessors of

orv!

th is linearly orderedy; <V, o1

) <7 V!, a contradiction. m

Prima facie, there aré"2many possibilities for the interactions betwa#nandw
in the tree order since each interaction is determined bythveln@ach of the following
states is accepting or not:

W ~w b 4 t 4 t ¢ t 4
0j> %> i<t j<ieo Ajsko Ajoko Ao Ok o G 2 O -

However, we can use the fact th@t recognizes a tree partial order to eliminate the
possibilities dramatically. The following lemma colletk® requisite observations; it
is proved using properties of trees, such as that the seteafepessors of any tree
element s finite and linearly ordered.

Lemma6.5. Let p< j < k< 2p.

1, ¢F Aq. ¢F.
ﬂ(qtj<k eF A qtj>k eF). —|(q}(<j eF A q}(>j € F).
ﬂ(qtpk eF A q}(>j e F). —|(qtj<k eF A q}Ki e F).
Ifqy ¢ F,thend_, ¢ F. Ifqy ¢ F,thendq_; ¢ F.
Ifqy e F, thenﬂ(qtj<k ¢F A q}oj €F). IfgyeF, thenﬂ(qtj>k eFA q}«j ¢ F).
Ifqy € F, then—(qj_, € F A q‘j’<k ¢ F). Ifqy € F,then-(q_; € F A qﬁ<j ¢ F).
IqueFandqfeF,then(Lj gF A qtj>k¢F.
IqueFandqfeF,thenqd(eF A q}(>j¢F.

N abkowbd

6 UNARY AUTOMATIC TREES 16

8.Ifg¥ eFandq €F, then—|(qu<k eFA qli<j ¢ F).
9. Iqu eFandd €F, then

due¢FAd,¢F = [d,¢F Ad¢F A ¢F|.

Lemma 6.5 allows us to conclude that if bath andW are antichains thetqu’<k ¢
F andqy_; ¢ F and at most one aff_, dj_ . Gj_;, G ; is in F. If both W; andW are
increasing chains then Lemma 6.5 shows that wh grq K andqk> are accepting
or rejecting completely determines the values of the otheables In the case where
W, is an increasing chain b is an antichain, we see thqﬁk, qkq, anqu<J can

not be inF. Moreover, the value af;_, determines eithey;_, or gj_;. The situation in
the case wher®/, is an antichain aan is increasing is S|m|Iar 'Il'able 2 summarizes
the interactions betweew; andW in 7~ based on this information. The first eight
columns denote whether key states are accepting (the valeadtes membership in
F; 0 denotes nonmembershipk). The next column gives a representative diagram
of the <4 order of typical elements iW; andW.

Lemma 6.6. Any unary automatic tree is isomorphic to the tree-unfajdii~(I') of
some parameter s€t= (To, Ty, ..., Tm, 0, X).

Proor. Let7 = (N;<s) be a tree recognized by a standard unary automatoa

(S, 1, A, F) with loop constanp. The setly : y < p} is a forest undegs. We define

an equivalence relation on{y : y > p} by x ~ yif and only if there arej, k such
thatx € Wj, y € Wi andW;, Wi are not incomparable (see Table 2). There are finitely
many ~-equivalence classéd;, ..., Ms. EachM; is a forest undegs. If i # i’ and

X € Mj,y € My, thenx|+y.

The parameter set fof has finite tree§o, T1,..., Ts. Fori > 0, T; is a subtree
of M; and a distinguished nodeg connects one copy df to the root of the next copy.
We extract the pairsT, x;) from A as follows. Foreach ¥ i < s, letC; = {j : W, C
Mi A WjisachainandD; = {j : W; € M; A W, is an anti-chaih The finite tre€T;
has|Ci| + |Di| many nodes, each representing a unig¢je The union of all nodes in
the representative ordenng M, W) for j, k € Cj (from Table 2) forms a linear order
under<s. Letc1 <q ...<g CIC. be thelCi|-many<s-greatest nodes in this finite linear

order, and set; = C;CI Note that eachi belongs to a dferentW;. For 1< j < |Djl, let
d; be the<s-least node |rWJ satlsfylngc' <g d;. DefineT; to be the finite tree under
< With domaln{c' .. \C| } {d' .. d\lDl} Thenc' is the root ofT;. Let T be the
finite tree formed by nodes v:y<pl UU1<i<stX € Mi 1 X <q c1 Y x|¢c' }. Note that

we must include the possibility tha;rc' for example, in the seventh I|ne of Table 2,

v§ will be incomparable to the root cnf (whereW, € M;). To may be computed by
examlnlng whethers, 1)- and (1 ¢)-states are accepting and by using the case analysis
in Table 2. To conclude the definition bf for 1 < i < s, seto(i) = x such thatx € Tg

andx <¢ ¢ andVy € To (y <7 €} = Y <7 X). O

Lemma6.7. If T = (To, Ty,..., Tm, 0, X) is a parameter setJF(I') is a unary auto-
matic tree7".

6 UNARY AUTOMATIC TREES

17

Table 2: Relationship betweéft; andW in tree 7", based orF in A

9 G G 9ac 9 G G Gy Ordering
1 1 1 1 0 0 1 1 Vo=V —=V%—=V, Vv,V
1 1 1 1 0 1 1 0 V%% vV Vv,
1 1 0 1 1 1 1 0 % VorVi—v M v W
1 1 0 0 0 0 0 0 incomparable
A A
AN AN
1 0 1 1 0 0 0 o "1V, Vi Vi
Yo M Vi
AN IR
1 0 1 1 0 0 0 0 Vo "Vi—V, Vi Vi
o Vs }/\4/:<+1
1.0 0 1 0 0 0 0 VorviV, W,
1 0 O 0 0 0 0 0 - incomparable
zé/)/i Vé Vil+1
A
0o 1 0 0 0 1 1 0 q*V‘i*V‘é"Vi’/LVhl
Vi
V(])\//%,l/vé Vi]+2
o1 0 0 0 0 1 0 S e I e o
0 1 0 0 0 0 0 0 incomparable
Y6
0o 0 1 0 0 0 0 0 v~ v
VoV
©o 0 0 0 1 0 0 O v~
Vo
VoV
o0 0o 0 0 1 0 O Vi v
"
i
0o 0 0 0 0 o0 0 1 Vi U
0O O 0 0 0 0 0 0 incomparable

6 UNARY AUTOMATIC TREES 18

Proor. Lett = [Tol, £ = X, [T¢l, anda; = Y1 [Til forr = 1,...,m. GivenT, we
consider the isomorphic copy{(<s) = UF(I') whereTg - {0,...,t — 1}, and thej"
copy of T, maps tof{t + (j — 1) + ar,...,t + (j — 1) + ar41 — 1}. The appropriate
unary automaton fogs will have a (1 1)-tail of lengtht and a (11)-loop of length

{. The states on the (1)-tail are{qo,..., -1} and the states on the,)-loop are
{O, ..., Oere-1); ¢ = Oo. Eachg; on the (11)-tail (so 0< j < t) has ¢, 1)- and (1¢)-
tails of lengtht, and a ¢, 1)-loop of lengthY. Eachq; on the (11)-loop (sat < j < t+¢)
has a ¢, 1)-tail and ¢, 1)-loop, each of length. All (1, 1)-states are accepting. Let the
bijectiongg : To — {0,...,t — 1} satisfypo(X) < ¢o(y) wheneverx <1, y. For each

j < k<t, we make

e A(gj, (o, 1)) accepting ifip;2(j) <7, ¢5(K), and

o A(qj, (1, 0))) accepting ifpg* (k) <1, ¢5"(J).

Let the bijectiong; : Ty — {t + a;,...,t + ary1 — 1} satisfy g (X) < ¢ (y) whenever
X <7, ¥. An analogous (but slightly more complicated) construttisesys, .. ., ¢m
ando, X from the parameter set to specify those staterii)f-loops df the (1 1)-tail
and in f, 1)-tails and loops the (1, 1) loop that are accepting. TheN;(L(A)) =
UF().

[mEll

Proor (or Tueorem 6.3). Lemmas 6.6 and 6.7 give the characterization. O

Corollary 6.8. If 7 is recognized by a standard automaton with n states, &m O
algorithm gives a parameter sEtwhere7” = UF(I').

Proor. The construction outlined in the proof of Lemma 6.6 usesdipimany table
lookups in Table 2 and a single traversal of the transitiagim of the automaton
recognizingr . O

Corollary 6.9. If I' is a parameter set with £ [Tl and¢ = Y Ti| then there is a
standard unary automataf with O(t2¢?) states such thatF(I') = (I; L(A)).

We now show that the isomorphism problem for unary autontises is decidable.
Observe that two tree-unfoldings may be isomorphic evelnefassociated parameter
sets are not isomorphic term-by-term. Ideally, we are Ingkior an isomorphism
invariant which does not have this flaw. To obtain one, wembgifixing a computable
linear order< on the set of finite trees. We assume that the finite trees ceffitiently
encoded as natural numbers such that asking if orelislow another takes constant
time. We define theanonical representationf a unary automatic treg = (N; <)
to be the minimal parameter sBt= (To, T1,..., Tm, o, X) with UF(T") = 7, where
minimality is defined as follows.

o Asfinite treesTy < --- < Tp,

e EachT; (1 < i < m)is minimal in that, for allys, y», if y1 <7 Y2 <7+ X then
the subtree with domaifz : y1 <+ zy> £7 2z} is not isomorphic to the subtree
with domain{z : y, <7 z X £7 Z}. Also, if tj is the root of the first copy of;

(1 < i £ m) then there is ny € Tp such thaty <7 o (i) and the subtree with
domain{z:y < z tj £+ 2} is isomorphic tar;.

6 UNARY AUTOMATIC TREES 19

e The canonical representation is then the parameter sehwhicsfies the above
conditions and in whicf g has the fewest nodes.

Lemma 6.10. Suppose/, 7’ are unary automatic trees with canonical representa-
tionsT,I”. Then,7 = 7 if and only ifT,I” have the same number (m) of finite trees,
(To,0) = (T, 07"), and forl < i <m, (T, x) = (T, x)).

Proor. It is easy to see that # and7 have term-by-term isomorphic canonical rep-
resentation they are isomorphic. Conversely, supffose7’ and have canonical rep-
resentationslo, ..., Tm, o, X) and (T, ..., T}, o7, X’), respectively. Each infinite subtree
ofthe form (y : o(i) < y}; <7), 1 <i < m, which contains infinitely many copies ®f,
embeds into a subtree 6. By the minimality condition ofT;, T/ and by the ordering
of the finite trees in each parameter set, the subtreg obntaining infinitely many
copies ofT; can embed into the subtreedf containing infinitely many copies daf/
forall 1 <i < mand vice versa. By minimality ofp, T}, Y1 < i < m(T;, x) = (T/, X).
Lett; be the root of the first copy of; in 77, lett/ be the root of the first copy af; in
T

(To,o) = ({y:yeToAVLI<i<m-t <7V} <y)
= (fy:yeTiavVi<i<m-t <¢ Y} <) = (Th o)

O

Suppose we can compute the canonical representation of &ror@ a unary au-
tomaton. Given two unary automatic trees, we could use LeBut@and a decision
procedure for isomorphism of finite trees to solve the isqgyhimm problem on unary
automatic trees.

Lemma 6.11. Given a tree-unfoldindyF(I') with n the sum of the sizes of all finite
trees inT", there is an @n?) algorithm that computes the canonical representation of
UF(D).

Proor. Supposd” = (To, Tq,..., Tm 0, X). For each 1< i < m, look foryy,y, € T;
such thaty; <4+ y» <4 X, and the subtree df; with domain{z : y1 <7 2V, £+ Z
is isomorphic to the subtree with domdn: vy, <7 z X £ z. If suchyy, y, exist,
remove allz >1, y; from T;. Thus, eaclT; satisfies the minimality condition for the
canonical representation. Since the isomorphism probterfirfite trees is decidable
in linear time [18], this step can be done in ti®&M T;|?).

For each 1< i < m, lett; be the root of the first copy of;. Look for x € Tg such
thatx < o(i), and the subtree dfy with domain{y : x <7 y,t; £+ y} is isomorphic
to T;. If such anx exists, remove a§ >, x from To. Now Ty satisfies the minimality
condition. This step can be done in tir@¢mT;|?).

For each 1< i < m, search for the<r,-leastx such that the subtree % with
domain{z e T : X <1, 2} is isomorphic to a subtree @f with domain{ze T; : y <7, Z}
for somey <t, x. If such anx exists, remove alf >1, xfrom Ty. This step ensures that
To has the fewest possible nodes with respedt tit can be done in tim©(mT;|?).

The last step in transforming our parameter set to the caabpiesentation is to
order the finite trees in increasingorder. By assumption on the complexity of

7 CONCLUSION AND FUTURE WORK 20

Table 3: Summary of Results on Unary Automatic Structures

| Problems | Equivalence Structuref Linear Orders]| Trees |
Membership Problemn] o(n°) o(n°) o(n%)
Isomorphism Problen O(maxny, ny}) O(maxny, o)) | O(maxng, n3})

applying a sorting algorithm om finite trees take®(mlogm). Sincen = |Tq| + ... +
|Tnl, the algorithm takes tim&(n?). i

Theorem 6.12.1f 71, 7>, are unary automatic trees presented by standard automata
A (n, states) andA, (n states), an @maxn?, ng})-time algorithm decidesif; = 7>.

Proor. By Corollary 6.8 and Lemma 6.11, we can convert the standatoimata pre-
senting71 and 7> to canonical representations of the trees. Then, the iqom®m
problem reduces to checking finitely many isomorphisms dfefittees. The sum of
sizes of finite trees in each parameter set is bounded.bience, it take:O(niz) to
compute each canonical representation and then checlyibtlesequal. O

7. Conclusion and Future Work

We described algorithms deciding the isomorphism problEmanary automatic
equivalence structures, linear orders, and trees. Thiedehe question of whether
such algorithms existed. Moreover, we considered a noranai for the automata in-
volved, with respect to which the time-complexity of the @ithms was polynomial
The membership problem for each of these classes was alsm $hdake polynomial-
time with respect to any input unary automaton. It is stileopvhether the isomor-
phism problem for unary automatic graphs is decidable, &sd,iwhat complexity
classitliesin.

References

[1] A. Aho, J. Hopcroft, D. Jrey, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.

[2] H. Rogers, Jr., Theory of Recursive Functions ange&ive Computability,
McGraw-Hill Book Company, 1967.

[3] B. Khoussainov, A. Nerode, Automatic presentationgnfctures, in: D. Leivant
(Ed.), International Workshop on Logic and Computationatrplexity, Vol. 960
of LNCS, Springer-Verlag, 1995, pp. 367-392.

[4] A. Blumensath, Automatic structures, Diploma thesig8/RH Aachen (October
1999).

[5] S. Rubin, Automatic structures, PhD thesis, Universitiuckland (2004).

[6] M. Minnes, Computability and complexity properties aftamatic structures and
their applications, PhD thesis, Cornell University (2008)

REFERENCES 21

[7]1 M. Vardi, Model checking for database theoreticians,#noc. 10th International
Conference on Database Theory, 2005.

[8] B. Khoussainov, M. Minnes, Model theoretic complexifyamtomatic structures
(extended abstract), in: M. A. et al. (Ed.), Proc. 5th TAM®@).\978 of LNCS,
Springer-Verlag, 2008, pp. 520-531.

[9] B. Khoussainov, A. Nies, S. Rubin, F. Stephan, Automatiactures: Richness
and limitations, in: Proc. 19th LICS, IEEE Computer Soci@ty04, pp. 44-53.

[10] B. Courcelle, The monadic second-order logic of gragh®efinability proper-
ties of equational graphs, Annals of Pure and Applied Lo§i¢¥®90) 193—-255.

[11] B. Khoussainov, J. Liu, M. Minnes, Unary automatic grap An algorithmic
perspective, in: M. A. etal. (Ed.), Proc. 5th TAMC, Vol. 4998LNCS, Springer-
Verlag, 2008, pp. 548-559.

[12] B. Khoussainov, S. Rubin, Graphs with automatic prés@ms over a unary al-
phabet, Journal of Automata, Languages and Combinator{d$ 001) 467—
480.

[13] S. Rubin, Automata presenting structures: A surveyefftnite string case, Bul-
letin of Symbolic Logic 14 (2) (2008) 169—-209.

[14] B. Khoussainov, M. Minnes, Three lectures on automsttiactures, in: Proceed-
ings of Logic Colloquium 2007, Cambridge University PreX308.

[15] B. Hodgson, On direct products of automaton decidabéoties, Theoretical
Computer Science 19 (1982) 331-335.

[16] A.Blumensath, E. Gradel, Automatic structures, irod® 15th LICS, IEEE Com-
puter Society, 2000, pp. 51-62.

[17] B. Khoussainov, A. Nerode, Automata Theory and its Agations, Birkhauser,
Boston, Massachusetts, 2001.

[18] J. Hopcroft, J. Wong, Linear time algorithm form isorpbism of planar graphs
(preliminary report), in: Proc. 6th STOC, 1974, pp. 172-184

