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ABSTRACT 

Security issues (e.g., data breaches, malicious applications, account hijacking, and insecure 
application programming interfaces) are obstacles in the adoption of Cloud Computing (CC) and 
Mobile Cloud Computing (MCC) technologies as the enormous data circulation through the Internet 
has attracted attackers to this environment. MCC inherits the security challenges faced by CC that 
affect the security and privacy of user information, such as multi-tenancy, data security, virtualization 
security, and application vulnerabilities. The highly distributed nature of MCC makes it vulnerable to 
attacks such as denial of service (DoS), distributed denial of services (DDoS), virtual machines to 
virtual machines attacks, man-in-the-middle attacks, cloud malware injection, covert channel, and 
others. These attacks spread to the Mobile Device (MD) layer of the MCC infrastructure, in which 
external access to MDs may enable the stealing of sensitive information. The exposure of the MD is 
due in part to vulnerabilities introduced by malicious applications downloaded by users from trusted, 
or untrusted sources. Despite the significant attack exposure level of the MD layer of the MCC 
architecture, it has received little research attention; most of the existing work reported in the extant 
literature targets the cloud infrastructure of the MCC environment. Although some researchers have 
offered security solutions for the MCC environment, these solutions are not comprehensive enough 
as they only provide countermeasures to a small number of known security threats. Hence the main 
research question: what security components are required in a framework that can be used to protect 
MCC resources against attacks and enhance the security of user data in this environment? To 
address the main research question, this study adopted a Design Science Research Methodology 
(DSRM) approach, to identify the security components needed and proposes a novel security 
framework that offers a comprehensive solution to a large number of the known security threats in 
the MCC domain. Based on the framework, a proof-of-concept prototype system, a novel hybrid 
intrusion detection and prevention system named MINDPRES (Mobile-Cloud Intrusion Detection 
and Prevention System) was designed and implemented. MINDPRES aims to protect the security of 
the MD layer of the MCC infrastructure, it combines a host-based Intrusion Detection System (IDS) 
and a network-based IDS using a Machine Learning (ML) model for the detection of malicious 
activities at the MD nodes of   the MCC environment. Android apk files from two repositories were 
collected and used to construct the datasets used in building an ensemble ML classification model 
that uses the permissions and intents demanded by apps to determine if an app is malicious or not. 
Using the prototype system (MINDPRES), MD users can evaluate all apps on their device; each app 
is assigned a risk score and risk category. The system also monitors the actual behaviour of the 
apps by analysing the API calls to detect malicious behaviour; the MD user is automatically alerted, 
and the activities of such apps are blocked. The results obtained from the experiments carried out in 
this study show that the prototype system is effective in tackling security issues caused by malicious 
apps in the user layer of the MCC environment. The energy consumption and intrusion detection 
performance evaluation results indicate that the prototype system is feasible for implementation in 
the resource-constrained MDs used in the MCC environment. In addition, the prototype system was 
evaluated by invited security experts who were given access to standalone MDs with MINDPRES 
pre-installed. The expert feedback was also positive, and they all agreed that the prototype system 
is highly effective in detecting and preventing malicious activities at the MD node of the MCC 
infrastructure. Despite the prototype implementation being limited to the Android mobile ecosystem, 
this study proposes a novel data security framework that detect and prevent the security issues 
caused by malicious applications in the MCC environment, by monitoring device behaviour using a 
hybrid analysis approach without root level access to the device resources. However, there is a need 
for further research to improve the proposed framework to manage security issues at other layers of 
the MCC architecture and the implementation of a cross-platform prototype system. 
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CHAPTER ONE 

INTRODUCTION 

This research identifies the security components that is required to tackle security issues faced by 

users of Mobile Cloud Computing (MCC) technology and proposes a novel data security framework 

that offers a better solution to known security threats in the MCC environment. Based on the 

proposed novel framework, this study implements a prototype system named MINDPRES (Mobile-

Cloud Intrusion Detection and Prevention System) for the security of the User Layer (UL) of the MCC 

infrastructure as a proof of concept. 

This chapter is organized as follows: A brief background of the study is presented in section 1.1; 

section 1.2 discusses the problem statement. The research goal, research questions and the 

objectives are presented in section 1.3. The overall thesis structure and the chapter conclusion are 

discussed in sections 1.4 and 1.5. respectively. 

1.1 BACKGROUND OF THE STUDY 

The evolution of Cloud Computing (CC) has witnessed rapid growth in the last decade. This rapid 

growth of the CC technology is a result of the invention of modern technology that depends on its 

infrastructure, for example, MCC, Internet of Things (IoT), Fifth and Sixth generation (5G and 6G) 

networks, and Software Defined Networks (SDN) (Kumar & Goyal, 2019). 

CC can be described as computing resources and Information Technology (IT) services, made 

available on-demand through internet technology, in a pay-as-you-go business model (Hazarika et 

al., 2014). Cloud Services Providers (CSP) offer various cloud services to enterprises that function 

as customers service. CC provides services and computing resources to its end-user through a 

highly computational network with remote servers managed by the CSP. CC offers a model for 

various end-users to use software applications(apps), storage, and processing capabilities without 

investing in infrastructure. CC allows its end-users to use infrastructure (for example, networks, 

servers, and storage), platforms (for example, operating systems and middleware services), and 

software example application programs) provided by CSP, for example, Amazon, Google, Microsoft, 

and Salesforce at an affordable rate. CC user may regularly update the data stored in the cloud. 

However, data in this environment may be vulnerable to unauthorized modification, disclosure, and 

replay attacks during data transmission and storage in the cloud infrastructure (Dinh et al., 2013). 

Data security during updates is essential to ensure storage accuracy in such a dynamic environment. 

To this end, it is necessary to ensure secure and reliable data transmissions between the cloud user 

and the cloud storage. CC has received significant attention from different researchers, and there is 

one important question that attracts serious attention. How do we complement the anytime access 

possibilities of the cloud with anywhere access? The answer to this question has focused on different 

research studies that proposed the Mobile Device (MD) as the cloud services consumption node. 
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The MD complements the CC infrastructure by offering access to enterprise information anywhere, 

anytime. However, a significant revolution that Mohiuddin et al. (2012) describe is "24x7x365 mobile 

access" since most MDs have reliable support for various networks connectivity between the cloud 

clusters and MDs via 3G, 4G, Wi-Fi, and Bluetooth (Meads et al. 2009). 

Mobile Computing (MC) is one of the leading business solutions in the IT industry. MDs are 

increasingly becoming the most efficient and convenient communication tool in human life, not 

confined by time and place. The number of mobile users is increasing due to continually improving 

these devices' user-friendly hardware and software (Ba et al., 2013; Chung et al., 2014). Dinh et al. 

(2013) stated that MD users acquire rich experience of various mobile apps services that run on the 

devices or remote servers via wireless communication networks. MC has failed to satisfy the high 

computational resources required by MD users for data processing. Also, the limited resources of 

MD significantly hinder the improvement of its service qualities. However, MCC solves the limited 

resources problem faced by MD user by offloading high computational tasks and storage to the CC 

infrastructure (Noor et al.,2018). 

MCC has attracted people's attention in business as a technology that lessens mobile services and 

applications running and development costs. MCC is the interconnection of CC, MC and wireless 

networks that provides powerful computational resources to MD users. Buyya et al.,2009; Mollah et 

al., 2012 stated that MCC is offered as a service of CC, which is used in either the mobile embedded 

environment or mobile phone environment. MC is well integrated with CC because of the vital 

attributes of the cloud model, such as on-demand self-service, resource pooling, measured services, 

rapid elasticity, and broad network access. MCC is a new model for mobile applications, in which 

data processing and storage are transferred from the device to robust and centralized computing 

platforms positioned in cloud. These applications are then accessed over the wireless network 

connection based on a thin local client or web browser (on the MD). MCC takes full advantage of 

CC infrastructure's availability, enabling MD users to offload computationally rigorously and high 

storage demanding tasks on available cloud resources using the wireless network. MCC as 

technology focuses on storing and processing data outside of the devices using the CC 

infrastructure. However, security and privacy remain critical issues of this technology.  

Sanaei et al. (2012) describe MCC as a valuable MC technology that leverages the centralized 

elastic resources of various clouds and network technologies towards complete functionality, 

storage, and mobility which serves a plenitude of MDs anywhere, anytime through the internet, 

regardless of various environments and platforms based on the pay-as-you-use policy. The general 

MCC architecture is shown in Figure 1.1. The architecture provides an access point at which MDs 

can request services in the cloud through the mobile internet. These services are delivered via the 

communication channel to the MD user. In this regard, the middleware allows for cross platforms of 
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different MDs to manage the service request and ensures easy access to other MDs users' cloud 

resources in the MCC environment. 

 

 

 

Figure 1.1 The General Architecture of MCC adapted from Dai et al. (2012) 

The development of apps that runs on the MD platforms in the MCC environment has increased in 

recent times. Mobile application categories such as social media, apps using location-based 

services, games, and email apps have also contributed to the wide user acceptance and adoption. 

However, MD resource constraints, for example, device processor, energy consumption, and 

storage capacity, have posed some design challenges to the mobile apps’ developer. MCC can be 

used to counter these challenges. Due to the new trend to use MCC technology for mobile apps 

development. MCC users can access the powerful cloud services anywhere, anytime on a pay as 

you use basis, even with the limited resources of their MDs. Using MCC can scale up or down rapidly 

to meet the MDs user demands as well as the MD capability (Noor et al., 2018). 

 

Noor et al. (2018) describes the three different layers in MCC architectures. These layers include 1. 

Mobile Cloud User layer (MCUL) 2. Mobile Network Communication Layer (MNCL) and 3. Mobile 

Cloud Services Provider layer (MCSPL) as shown in Figure 1.2. 
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Figure 1.2 Mobile Cloud Architecture Adapted from Noor et al. (2018) 

MCUL: This layer provides a platform in which users can gain access to the cloud resources using 

their MD through the MNCL. 

MNCL: This layer is made up of different mobile networks that provide internet services to MD users 

request through their base stations to the mobile cloud.  

MCSPL. This layer presents the MD user with the different CSP available, which they can use to 

store their information and deploy their cloud-based application. 

1.2 PROBLEM STATEMENT 

Security has become an obstacle in adopting CC and MCC technology even though the technologies 

can deliver a broad range of resources and services to its user (Sathye et al, 2022; Liang et al, 2021; 

Alghofaili et al, 2021; Tahirkheli et al,2021). The enormous data circulation through the internet has 

attracted attackers to this environment (Zkik et al., 2017). The mobile nature of the network nodes 

in MCC has raised numerous challenges related to data breaches, data loss, data replication, trust, 

security, and privacy (Zissis & Lekkas, 2012; Mollah et al., 2017, Dey et al., 2019). The security 

issues in MCC cut across the different models that make up its architecture (MCUL, MCNL and 

MCSPL). To protect this technology there is a need to develop a good security solution that provides 
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a strong defence against attacks on data which is beneficial to both the MCC users and the service 

provider.  

Kulkarni & Khanai (2015) stated that even though users of MCC enjoy benefits such as device 

independence, reduced maintenance, reliability, reduced cost, and scalability, there is a need for 

MCC resources such as user data to be protected from all kinds of attacks. MCC inherits the security 

challenges facing CC, such as multi-tenancy, data security, virtualization security, which affect the 

security and privacy of user information stored in both mobile and cloud infrastructure. The 

distributed nature of MCC infrastructure allows intruders the possibility of gaining unauthorized 

access to these mobile and cloud resources, intending to extract sensitive information. However, the 

cloud infrastructure of the MCC environment is much more powerful and reliable than the mobile 

environment but the security and privacy of user data still poses a major challenge in the MCC 

environment (Mollah et al., 2017). 

Furthermore, shared resources and virtualization features of the MCC environment have attracted 

cyber-attacks on the CC infrastructure such as a Denial of Services (DoS), Distributed Denial of 

Services (DDoS), virtual machines to virtual machine attacks, man-in-the-middle, cloud malware 

injection, covert channel, and so on. These attacks can spread to MDs and enable external access 

to MDs leading to the stealing of sensitive information of MD users (Inayat et al., 2017).  Therefore, 

it is necessary to apply defensive measures to detect and prevent these attacks. In addition, the 

popularity of the Android mobile Operating System (OS) which currently holds over 85% of the 

market share of MD users in the MCC environment. These devices currently generate a large 

amount of traffic that exceed personal computers and made MDs a prime target for cyber-attacks.  

The use of MD in the MCC environment gives room for many security and privacy issues in this 

environment. However, protecting these devices is a challenging task due to rapid changes in 

technology which makes the MCC environment more complex (Gupta et al., 2018). 

Nevertheless, the connectivity support for access points such as 2G/3G/4G/5G, Wi-Fi, Bluetooth and 

the open nature of the Android mobile OS exposes the MD to more sophisticated attacks that may 

affect the security requirements of the MCC environment. (Ribeiro et al.,2019).  To this end, the 2019 

Cloud Security Alliance (CSA) in 2019 mentions data breaches as the topmost threat in the CC 

domain. These raise concerns about user information security at the MD at the MCUL of the MCC 

environment. 

Nisha et al. (2020) stated that MCC users enjoy unlimited computational resources. This technology 

enables them to execute resource-demanding applications. However, offloaded content execution 

is done on the cloud or edge servers in the MCC environment instead of the MD. The activities of 

malicious apps on the end-user device when offloading content for execution on the cloud or edge 
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server may affect the confidentiality and integrity of data stored in the cloud. The inability of the MD 

user to validate the correctness of the offloaded data at the point of usage is a critical concern. The 

integration of malicious codes into the cloud-based apps leads to attacks on the MCC infrastructure. 

These attacks may affect the integrity of both data and applications in the MCC environment (Mollah 

et al., 2017). 

OS (2021) reported that malicious apps are amongst the most threatening security issues facing 

MCC users. This is because the malicious activities of such apps residing in this environment can 

affect both the MCUL and MCSPL of the MCC architecture. In addition, Mollah et al (2017) stated 

that malicious apps that reside on the user device and malicious insiders in the cloud network are 

major obstacles facing the security of user data in the MCC environment. The presence of malicious 

codes in MD during offloading affects the confidentiality and privacy of users in this domain. Kumar 

& Goyal (2019) affirmed that due to vulnerabilities in a software application that serves as the entry 

point to the cloud services using the internet affects the basic security requirements of the CC 

infrastructure which open doors to attacks. However, the conventional way of handling security 

attacks is not sufficient in the MCC environment. Therefore, it is necessary to develop a novel 

approach to handle threats causes by malicious apps in this domain and to provide a dependable 

MCC environment. 

In recent times, attackers have adopted the use of malicious apps to target MD users in the MCC 

domain. These categories of malicious apps especially are hard to detect by existing defensive 

techniques, for example, malicious apps that have been modified by adding malicious payload to the 

original benign version of an app that has been already vetted by the app store, and can be 

successfully published in the app store when the signature of the benign app is compromised (Qi.  

et al.,2014; Idrees & Muttukrishnan,2014; Hou et al., 2016; Hatcher et al,2016; Ribeiro, et al.,2019; 

Zhou, et al., 2019).  

In fact, traditional defensive mechanisms such as firewalls, access control, anti-spyware, anti-virus, 

and anti-malware, may not be strong enough to protect MDs in the MCC environment. Most of these 

defensive techniques require changing the kernel function of the mobile OS. Significant 

computational power is required for running the highly intensive computing security algorithms in the 

resource constrained MD. The need to shift these defensive mechanisms to the cloud end may have 

become necessary, as suggested by Inayat et al. (2017).  

MCC has received extensive research effort conducted by academia’s and research organizations 

to provide a more secure MCC environment and attract more consumers to use these services. 

However, security and privacy have been reported by researchers as a major challenge that hinders 

this technology (Chen & Wang, 2011; Huang et al.,2011; Khan et al,2013; Goyal & Krishna, 2015; 
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Mollah et al., 2017; Khatri & Vadi, 2017; Chean et al.,2018; Noor et al;2018; Agrawal & Tapaswi, 

2019; Dey et al., 2019). 

This research work focuses on identifying the security components required in a framework that 

provides a better solution to tackle security threats faced by MCC user. The proposed solution in this 

study enhances the MCC environment's security and provides adequate protection to user data. 

1.3 RESEARCH GOAL AND OBJECTIVES 

The main goal of this study is to develop and evaluate a novel solution to the data security issues in 

the MCC environment. Its main Research Question (RQ) and Research Sub Questions (RSQ) can 

be formulated as:  

 

Main RQ: What security components are required in a framework that can protect MCC resources 

against attacks and enhance the security of user data in the MCC environment? 

RSQ1: Which specific MCC resources require to be protected to enhance the security of this 

environment? 

RSQ2: What approach can be used to protect the identified MCC resources in RSQ1? 

RSQ3: What metrics can be used to evaluate the performance of the identified approach in 

RSQ2 and how can this approach be implemented to protect the resource identified in 

RSQ1? 

To address the main RQ, RSQs and meet the research goal, this study investigates the state-of-the-

art MCC data security solution landscape, develop and evaluate a novel framework for MCC data 

security.  

The following specific objectives will guide this study:  

Research objective 1: To investigate the current MCC data security solution scope in-depth. 

Research objective 2: To identify and analyze solutions that aim to detect, and protects MCC 

resources against, attacks on data. 

Research objective 3: To propose, develop and evaluate a novel framework that enhances MCC 

data security in the user layer. 

 

The main scope of this study covers the conceptualization of a novel framework to enhance data 

security issues in the MCC environment. The conceptualized enhanced framework includes different 

security technique across the three different architectural layers in the MCC environment. The study 

focuses on the development and Implementation of a prototype system that addresses security 

issues in the user layer of the MCC environment. The conceptualized enhanced framework 

implemented as a prototype system as a proof of concept in this study adopted the use of ensemble 

Machine Learning (ML) techniques with Intrusion Detection and Prevention System (IDPS) to detect 
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the security issues caused by malicious apps in the user layer of the MCC environment. Other 

security aspects such as digital forensic techniques are beyond the scope of this study and are 

reported as area of research for future studies. 

1.4 THESIS ORGANIZATION 

The thesis is organized as follows: Chapter two discusses the MCC security requirements and 

provides a threats analysis, followed by a detailed analysis of related works. The analysis of related 

works includes a comprehensive review of data security frameworks that propose security solutions 

in the MCC domain and a review of security frameworks that aims to detect and protect resources 

in CC, MC and MCC domains. The research gaps identified in the review of literature are presented 

at the end of chapter two. 

Chapter three presents the research methodology adopted for this study and discusses how the 

methodology is applied to the body of research work conducted in this study. The proposed 

framework and a brief description of the proposed prototype system are also presented. 

Chapter four discusses the methods involved in the processes of data collection and analysis, 

laboratory experiments of the ML Models, experimental evaluation and analysis of laboratory results 

are also presented. 

Chapter five discusses the design and implementation of the prototype system as a proof of concept 

with respect to the proposed framework. The prototype system address security issues that face the 

MCUL of the MCC infrastructure. The testing of the prototype system are presented in chapter five 

with various test case scenarios. 

Chapter six discusses the performance evaluation of the prototype system using real-life Android 

devices with popular Android mobile apps. The expert evaluation report presented in chapter six is 

based on the personal opinion of each invited security experts that participated in the evaluation of 

the prototype system implemented in this study. 

Chapter seven conclude the thesis by discussing answers to the research questions and identifies 

the contribution of this research to the body of knowledge. Chapter seven also discussed the 

challenges, limitations of the study and possible research directions for future work. 
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1.5 CHAPTER SUMMARY 

MCC inherits security challenges facing the CC, such as multi-tenancy, data security, virtualization 

security, and application vulnerabilities that affect the security and privacy of user information. The 

use of malicious apps targeting the MD of the MCUL in the MCC domain has raised security concerns 

that needs a better solution. The distributed nature of MCC has led to attacks in this environment 

such as Denial of Services (DoS), Distributed Denial of Services (DDoS), virtual machines to virtual 

machine attacks, man-in-the-middle attacks, cloud malware injection, covert channel attacks and 

others. When these attacks spread to the MCC infrastructure's user layer (MCUL), they may enable 

adversarial external access to MDs and the stealing of sensitive information from both device and 

cloud storage.  This chapter discusses the research goal and the objectives that are required to 

address the main research problem. The next chapter provides a comprehensive review of the 

literature and identifies the research gaps addressed in this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

The previous chapter provides insight into this work by discussing the background of the study, 

research problem, research goals and objectives, and how this thesis is organized. 

This chapter presents background studies in MCC technology. The security challenges, security 

threats, and requirements of the MCC environment are also discussed. A detailed analysis of data 

security frameworks proposed in extant literature that adopted intrusion detection and prevention 

security mechanisms and policies in MC, CC, and MCC environments is presented. The state-of-

the-art security in mobile devices is discussed alongside the research gaps identified in the entire 

literature. 

2.1 OVERVIEW OF MOBILE CLOUD COMPUTING 

The MCC paradigm combines several technologies, including CC, MC, and wireless networks (WN), 

to provide integrated services to users and organizations. MCC technology has grown in popularity 

over the years because of factors such as network mobility and dynamicity, MD independence, 

ubiquitous data access, and improved data communications (Moorthy et al, 2020). MCC entails the 

technological synchronization of the MDs' OS and the dynamic quality of cloud services. It is 

predicated on the fundamental characteristics of CC technology, for example, adaptability, elasticity, 

availability, scalability, and resource sharing (Dinh et al.,2013).  

MC is contingent upon the ability of MDs to access computer resources. Additionally, MC facilitates 

the performance of tasks that were previously performed by traditional desktop computers. In 

general, three fundamental concepts underpin MC: hardware, software, and communication (Dinh 

et al., 2011; Liu et al., 2010). Hardware refers to user-accessible gadgets (for example tablet PCs 

and cell phones). The software includes applications that are designed and developed to perform 

tasks in a mobile environment, while communication encompasses networks and protocols that 

enable mobile computers to communicate, such as Wireless Local Area Networks (WLAN), Long-

Term Evolution (4G LTE), and satellite networks. 

The following are supported by the MC environment. First, there is mobility, which enables mobile 

nodes or fixed nodes to communicate with other devices' nodes via Mobile Support Stations (MSS) 

(for example servers and access points). Second, diversity of network access types refers to mobile 

nodes that can communicate via a variety of different access networks, such as Long-Term Evolution 

4G LTE or Wireless Wide Area Network (WWAN), each of which has a unique communication 

bandwidth and overhead between the mobile nodes and the MSS. 
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Thirdly, frequent network disconnection indicates that mobile nodes are unable to maintain a 

continuous connection due to restricted resources such as battery energy and communication 

capacity. 

Fourth, in terms of dependability and security, mobile node signals are susceptible to interference 

and eavesdropping in mobile networks, highlighting the growing importance of security in MC. 

Furthermore, the MCC paradigm evolved to combine the advantages of MC and CC to efficiently 

utilize data centre computing capabilities and distribute them as mobile services. MC refers to 

devices with limited hardware, software, and communication capabilities, with mobility as the primary 

criterion. CC is a method of delivering enormous computing resources as services through 

virtualization and service-oriented techniques to cut costs, increase performance, and enable remote 

access. MCC enables the delivery of powerful computing resources as services. This enables low-

resource mobile devices to do complicated computations that would otherwise require more powerful 

computer resources (Fernando et al., 2013). 

MCC is a cloud-based computing system that enables resource-constrained MDs to run 

computationally heavy applications and store their data in the cloud. MCC has greatly improved 

execution speed and energy usage by shifting resource-intensive applications from hosting devices 

to cloud-based resources. The evolution of MCC reduces MDs' heavy computational requirements 

in data processing because all data and sophisticated computations are managed remotely via 

cloud-based resources. MCC has transformed the landscape of traditional MC over the last few 

years by enabling on-demand, self-service, measurable, elastic, and broad access mobile services. 

MCC devices such as smartphones and tablets, are becoming an increasingly vital component of 

our modern and virtual lifestyles (Noor et al.,2018). 

Mobile application execution in the MC environment is computationally intensive, and as a result, 

MDs consume a significant amount of energy. The computational offloading technique was 

introduced to tackle the high demand for energy consumption by MDs in the MCC environment. In 

the MCC environment, computationally intensive applications and tasks are offloaded to the cloud 

for execution, and the results are returned to the MDs. Mollah et al. (2017) described the 

computational offloading steps in the MCC environment as partitioning, migration, and execution. 

However, the execution and processing tasks are shifted from the MDs environment to the cloud 

environment. The MDs retain control over how the tasks are executed and how much computation 

is offloaded to the cloud based on the available MCC resources. 

With the rapid growth of MDs, developers are creating a plethora of applications for them, many of 

which offer cloud-based services with a rich user experience (Bahrami, 2015). These applications 

enable MCC users to access cloud-based rich experiences and services, even on low-resource MDs. 
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These applications must instantly scale up or down to meet the requirements of MCC users and the 

capabilities of mobile devices. To cloud-deploy a mobile application, it must first be segmented into 

components based on its requirements. Components of an application that rely on locally available 

mobile resources, such as various sensors, do not require cloud offloading. However, components 

that consume many resources must be executed in the cloud. As a result, these applications can be 

classified as client-side, client-cloud-side, or cloud-based. Most of the application's execution occurs 

on the mobile device in a client-based model. A client-cloud model, on the other hand, partitions an 

application into components that are executed on both a mobile device and a remote cloud. Whereas 

in a cloud-based model, the cloud is an integral part of the application, acting as the execution, 

processing, and storage location (Mollah et al, 2017). 

Mobile virtualization is the most advanced feature emerging in today's world, and its applications for 

MDs are growing daily. The mobile user base continues to grow because it makes work easier and 

faster, provides cutting-edge technology, and enables users to access all apps via the network from 

anywhere in the world. Although MCC as a technology has a significant advantage in that it is 

extremely versatile, allowing us to access data and share information from anywhere in the world 

via the internet. It also offers cost-effectiveness, with usage and maintenance becoming relatively 

low, as well as real-time data availability, with all user information available in real-time on our MD 

when connected to the internet, from which we can update and share information. 

For a variety of reasons (for example, mobility, communication, and portability), CC has long been 

recognized as a viable alternative to MC (Al_Janabi & Hussein, 2019). The following additions 

demonstrate how the cloud can be utilized to circumvent barriers in MC, emphasizing the benefits of 

MCC. 

Extending battery lifetime: Battery life is a major problem when it comes to MDs. Numerous 

strategies have been proposed to improve CPU performance and to intelligently manage the disk 

and display to reduce power consumption. However, many solutions require structural changes to 

MDs or the inclusion of additional hardware, which adds to the cost and may not be practical for all 

MDs. This is also important form the perspective of security protection of the MD.  In   the MCC 

environment some of the security solution tasks required to protect the MDs can be offloaded to the 

cloud while some of its tasks that are not battery demanding can reside on the device to have real-

time access to malicious activities that occur on the devices and offload the heavy security 

computational tasks to the cloud for further processing whenever a malicious activity is detected. 

These security tasks on the devices need to be running in the background and thus have high power 

demands to prevent battery exhaustion attacks suffered by most MD user. 

Improving data storage capacity and processing power: MDs' storage capacity is also a 

constraint. MCC was created to enable mobile users to store and retrieve massive amounts of data 
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in the cloud using wireless networks. For instance, Amazon Simple Storage Service (Amazon S3) 

provides file storage capabilities. Another example is image exchange, which makes extensive use 

of cloud-based storage for mobile users. This is also important from the security perspective; as  MD 

user shave no control - whenever their data are offloaded there is no way they can verify the integrity 

of their outsourced data. Although in recent times, users have developed trust based on the services 

provided by CSPs. 

Increased reliability: Storing data or running applications in the cloud is an effective technique to 

increase reliability, as the data and apps are kept and backed up on a distributed network of 

computers. This significantly reduces the likelihood of data and application loss on mobile devices. 

Additionally, MCC may be used to create a comprehensive data security paradigm for service 

providers and end-users alike. For instance, the cloud can be utilized to safeguard protected digital 

content (e.g., videos, clips, and music) against exploitation and unauthorized distribution. However, 

the security of user data and applications is still questionable whenever there is security breach in 

the CSP area where there are possibilities of unauthorized distribution and exploitation. 

Dynamic provisioning: Dynamic on-demand provisioning of resources on a fine-grained, self-

service basis enables service providers and mobile users to operate apps without reserving 

resources in advance. This is also important from the perspective of security protection of the MD 

by constantly monitoring apps activities and reporting to the CSP of possible intrusion from a 

compromised MD node. 

Scalability: Due to flexible resource provisioning, mobile apps may be deployed and scaled to meet 

unforeseen user demands. Providers of services can simply add and extend applications and 

services with little or no constraint on resource utilization. This is also important to the security of the 

MCC environment to help with the investigation of security breaches (including digital forensics) that 

occur, by identifying malicious nodes that are compromised in a distributed network. User activities 

can be reviewed by analysing the resource usage of different apps and devices within a particular 

period. 

Multi-tenancy: Service providers (for example, network operators and data centre operators) can 

pool resources and prices to support a diverse set of applications and a large number of customers. 

The security impact of multi-tenancy on the user in the cloud environment includes data security, 

data loss and data theft. Access can be mistakenly given to an unauthorised individual by the 

database administrator. There are still security issues even though software and CC businesses 

claim that client data is safer than ever on their servers. 

Integration Ease: Multiple services from disparate sources can be readily integrated via the cloud 

and the Internet to suit consumers' requests. This also important to protect the MD as security 
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vulnerabilities associated with different services integrated into the CC environment to suit user 

demands can also result in security threats faced by users in this environment. 

Numerous mobile applications have incorporated some of MCC's benefits, such as mobile 

commerce, which is a business model for commerce conducted via mobile devices. Generally, 

mobile commerce applications perform certain functions that demand mobility (e.g., mobile 

transactions and payments, mobile messaging, and mobile ticketing). These apps confront a variety 

of obstacles (e.g., limited network speed, high complexity of mobile device setups, and security), 

which necessitate their integration into the MCC environment. Yang et al. (2010) presented a cloud-

based 3G e-commerce platform. This paradigm combines the benefits of 3G networks and CC to 

boost the speed and security of data processing using PKI (public key infrastructure) (Dai & Zhou, 

2010). To secure the privacy of the user's access to the outsourced data, the PKI mechanism 

employs encryption-based access control and over-encryption. 

Apart from the business and commercial implications of MCC across diverse applications, platforms, 

international trade regulations, and transnational information and money flows, one of the most 

significant fundamental disadvantages of MCC, as currently understood, is the entire area of safe 

and trusted computing, which encompasses critical aspects of security, privacy, identity 

management, audit, and digital forensics (Al_Janabi, 2020). While numerous modern scholars are 

addressing a number of these subjects and difficulties, it is a daunting obstacle that must be 

conquered by more advanced design and development of new frameworks, architectures, secure 

open system protocols and processes that are globally standardized. Success in these areas can 

result in massive dividends and payoffs across several technical verticals and horizontal enterprise 

and commercial sectors in the MCC environment. 

The last decade has seen numerous changes in our perception of computing and mobility. With the 

advent of CC and MCC, computing is increasingly being viewed as the fifth utility, alongside critical 

infrastructure utilities such as water, electricity, gas, and telecommunications, and it is already 

providing a basic level of computing service that is considered necessary to meet the general 

community's daily needs on a global scale and context. MCC is the most recent paradigm presented 

to realize this vision through the effective fusion of MC and CC, which has proven to be a viable 

solution for mobile computing for a variety of reasons (e.g., mobility, communication, portability, and 

availability). 
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2.1.1 MOBILE CLOUD COMPUTING SERVICE MODELS 

MCC's cloud services for its users are based on the following service models. 

A. Mobile Network as a Service (MNaaS): In this service model, service providers provide 

network infrastructure, allowing consumers to establish their networks, manage their traffic, 

and connect to servers. For instance, consider the OpenStack Networking Service 

(www.openstack.org). 

B. Mobile Cloud Infrastructure as a Service (MIaaS): Providers of this service model provide 

cloud infrastructure and storage to mobile users. iCloud (www.apple.com/icloud/) and Google 

Drive (www.google.com/mobile/drive/) are two examples. 

C. Mobile Data as a Service (MDaaS): In this service model, service providers provide 

database-related services to enable mobile users to manage their data, conduct transactions, 

and perform other data-related tasks. Oracle's mobile cloud data service 

(www.oracle.com/cloud/daas.html) and CloudDB are two such examples (Lei et al., 2015). 

D. Mobile App as a Service (MAppaaS): Users can access, use, and execute cloud-based 

mobile applications via a wireless network from anywhere and at any time with this service 

model. For instance, take a look at the Google Play Store (www.play.google.com/store/apps). 

E. Mobile Multimedia as a Service (MMaaS): Users can access and manage multimedia 

services such as watching movies or playing games via a wireless network equipped with 

powerful hardware, in (Zhu et al. (2011), the authors present an MMaaS service model. 

F. Mobile Community as a Service (MCaaS): In this service model, mobile users can create 

and manage a mobile social network or community to provide social networking or community 

services to other users. The following illustrates this type of service model (Kovachev et al., 

2010). 

2.1.2 MOBILE CLOUD COMPUTING CHALLENGES 

While MCC has several benefits for mobile users and CSPs, it also faces several challenges that 

make it more complicated than traditional CC. The following section discusses the challenges 

confronting MCC technology. 

A. Limited Resources of Mobile Devices: Although various aspects of mobile devices have 

improved, such as computational processing power, storage capacity, and battery life, there 

are still some limitations compared to a personal computer. As a result, running resource-

intensive applications on mobile devices is inconvenient. 

B. Heterogeneity: MCC is characterized by a high reliance on heterogeneous wireless 

mediums, which creates a more challenging environment than conventional cloud computing. 

This affects how wireless communications are managed, the quality of communications, the 

response time of applications, the delivery of services, the mobility of mobile devices, and 

http://www.play.google.com/store/apps
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security. Additionally, the heterogeneous environment created by diverse infrastructures, 

platforms, and application services creates interoperability and portability challenges in MCC. 

C. Elasticity: MCC services, like cloud computing services, must be elastic and scalable. When 

demand exceeds available resources, service providers must address the situation. The 

unavailability of resources and service interruptions create a problem for cloud services 

provided to privileged users. 

D. Application Services Issues: Due to MDs' limited resources and high energy consumption, 

specific data and computationally intensive applications cannot be deployed on them. As a 

result, to utilize cloud computing services on mobile devices, most computational processing 

must occur in the cloud. In contrast, a small amount of computational processing occurs on 

mobile devices. In this case, mobile users will experience delays in processing and service 

provision. 

E. Security, Privacy and Trust Challenges: The security, privacy, and trust issues that arise 

in an MCC environment are more volatile than in a traditional cloud computing environment. 

Additionally, the lack of computational processing capability necessary to execute complex 

algorithms makes it inconvenient to run computationally intensive anti-malware applications 

on MDs and personal computers. 

2.2 SECURITY AND PRIVACY ISSUES IN MOBILE CLOUD COMPUTING 

MCC uses various established and emerging technologies, including partitioning, offloading, 

virtualization, outsourced storage, and mobile-cloud-based applications. This section discusses 

security and privacy issues associated with the MCC environment.  

2.2.1 DATA SECURITY ISSUES 

The significant data security challenge arises from mobile users' data being stored and processed 

in clouds located at service providers' locations. Data loss, data breach, data recovery, data locality, 

and data privacy are all examples of data-related challenges. The loss of data and data breach 

violates two security requirements: integrity and confidentiality. Here, data loss refers to the state of 

users' data damaged or skipped due to physical means used during processing, transmission, or 

storage. In a data breach situation, users' data is stolen or copied by an unauthorized user. These 

two types of attacks can be carried out by both malicious insiders in the cloud environment or 

malicious applications that resides on the user device. 

Another issue to consider is data recovery. This is the process of recovering data from mobile users' 

data that has been damaged, failed, corrupted, or lost, or from physical storage devices. However, 

because users' data is stored on the service providers' premises, users require knowledge of the 

location or storage of their data, and thus data locality is a challenge. Additionally, users' data must 

be stored separately from other data. If one user's data is mixed, combined, or confounded with the 
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data of other users, it becomes significantly more vulnerable. When data is outsourced to cloud 

servers to increase storage capacity, mobile users simultaneously lose physical control of their data. 

Thus, in a cloud storage scenario, data accuracy becomes a concern for mobile users. Although 

cloud infrastructures are far more reliable and robust than mobile devices, they still face many threats 

to data integrity from both internal and external sources. 

2.2.2 PARTITIONING AND OFFLOADING SECURITY ISSUES 

Access to the cloud via wireless networks is required during the offloading process. Due to mobile 

users' lack of control and access over their offloading processes, there is a risk of unauthorised 

access to offloaded content. Additionally, because offloaded content is executed on cloud or edge 

servers rather than mobile devices, offloaded content's integrity and confidentiality are possibly 

violated. The integrity issue arises because, following the execution of offloaded content, mobile 

devices cannot easily verify the results' correctness if the result is incorrect or altered. Other 

difficulties, however, include attacks on availability and malicious content threats. Jamming attacks 

between data/application and mobile device during partitioning and between mobile device and cloud 

during offloading can jeopardise cloud service availability. Additionally, the presence of malicious 

content between the partitioning and offloading stages can jeopardise the confidentiality of users' 

data and violate mobile users' privacy. 

2.2.3 VIRTUALIZATION SECURITY ISSUES 

Cloud service providers in MCC provide cloud services to mobile users via virtualization techniques. 

At the cloud end, an image of the mobile device's virtual machine (VM) is pre-installed, and the 

mobile device's tasks are offloaded to the VM for processing. This virtual machine is also referred to 

as a thin VM or a phone clone. The primary purpose of virtualization is to enable multiple virtual 

machines (VMs) on a single physical machine or mobile device while keeping the VMs isolated from 

one another. An additional layer known as a hypervisor or VM Monitor, or Manager (VMM) is software 

that enables the creation, operation, and control of virtual machines (VMs) and their associated 

virtual subsystems. However, when applied to MCC, virtualization techniques introduce several 

security challenges (Sgandurra and Lupu, 2016), including security challenges within VMs, 

unauthorized access, VM-to-VM attack, communication security within the virtualized environment, 

security challenges within the Hypervisors, and data confidentiality. 
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2.2.4 MOBILE CLOUD APPLICATIONS SECURITY ISSUES 

As the number of MDs used in the MCC environment grows rapidly, developers are creating a wide 

range of mobile apps for these devices. Most of these apps offer cloud-based services with rich user 

experiences. With the help of these mobile apps, MCC users can access rich cloud-based services 

and experiences on even low-resource MDs. These apps must scale quickly to meet both the user 

requirements and device capabilities (Mollah et al, 2017).  

Attacks on cloud-based mobile applications can compromise the integrity and confidentiality of both 

data and applications through various strategies, including the integration of malware (Pokharel et 

al., 2017; Prokhorenko et al., 2016; Peng et al., 2016; Quick and Choo, 2016). Malware, viruses, 

worms, trojans, rootkits, and botnets (Arabo and Pranggono, 2013) are malicious, contrary, intrusive, 

and obstructive applications or programmed codes. This malware is designed to run maliciously on 

mobile devices or to attach to applications without the user's consent. As a result, mobile application 

functionality can be altered. An attacker will identify a target application, inject malicious code into it, 

and then republish it. A further discussion of the security solutions for mobile cloud application and 

data in the context of this study can be found in sections 2.5.1 and 2.8. 

2.2.5 MOBILE DEVICE SECURITY ISSUES 

Physical threats to mobile devices exist. If mobile devices are misplaced, lost, or stolen, data or 

applications may be lost, leaked, accessed, or unintentionally disclosed to unauthorised users 

(Milligan and Hutcheson, 2008). Although many mobile users have password or pattern-based lock 

features, many do not use them. Additionally, the identity module card within the mobile device can 

be removed and accessed by unauthorised individuals. Additionally, most MD lack a defence 

mechanism against threats. The attackers can attack by employing a variety of availability attack 

techniques, including sending a high volume of malicious traffic and sending large messages to 

target mobile devices to render them inactive or reduce their capability. Liu et al. (2009) investigate 

and identify several security mechanisms and critical flaws in security models for intelligent mobile 

devices. 

In addition, the authors demonstrate how to launch a distributed denial-of-service attack by exploiting 

the vulnerabilities. However, a battery power exhaustion attack is another type of availability attack 

in which the mobile device's battery power is rapidly depleted following the attack. This attack is 

unique to mobile devices because it exploits wireless network vulnerabilities, and mobile users are 

unaware of this type of attack. Racic et al. (2006) discusses this type of attack. They demonstrate 

here that this attack causes a mobile device's battery to drain up to 22 times faster than it usually 

does, rendering the device completely useless within a short period. Due to the increasing popularity 

of mobile devices and applications, malware authors and attackers focus their efforts here. As a 

result, malware poses a significant security risk to mobile users' privacy, applications, and data. 
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Additionally, the functionalities of contemporary mobile platforms are pretty similar to those of 

personal computers. However, they include additional features, and these platforms for mobile 

devices support a wide variety of applications. 

As a result, to maintain the confidentiality and integrity of these applications, it is necessary to secure 

the mobile platforms. Additionally, these mobile platforms are not malware-free. Typically, attackers 

gain root permissions on mobile devices and gain control of the device, after which they can directly 

affect the computational integrity of mobile platforms and applications. In mobile devices, three types 

of storage are available: on-device storage, plugged-in storage, and identity module storage. 

Generally, these storages are used to store users' data, applications, and other types of data. 

However, if a mobile user utilises cloud services, the user's data and applications are replicated in 

cloud storage. Thus, if a mobile device is stolen or lost, it becomes critical because attackers can 

access both the mobile device and the cloud. 

2.2.6 PRIVACY ISSUES 

Privacy is a significant issue because confidential data or applications of mobile users are processed 

and transferred from mobile devices to heterogeneous distributed cloud servers while utilising 

various cloud services. These servers are in various locations and are solely owned and maintained 

by the service providers. Because users cannot physically justify their data storage, data privacy and 

protection issues are left to service providers, and users are not held accountable for privacy 

breaches. Cloud storage and processing in multiple locations create privacy concerns. Service 

providers' cloud servers are in various regions and countries. For example, Google's cloud servers 

are spread globally, with seven locations in the Americas, two in Asia, and three in Europe.  

Additionally, it is critical for users to obtain information about the cloud hosting location, as laws vary 

by country. Numerous mobile applications may be unsafe due to their hideous functions, the 

unintentional collection of users' personal information such as hobbies and locations, and the 

potential for illegal distribution. Unwanted advertising emails, also known as junk emails, can infringe 

on users' privacy. 

Context awareness, enabled by sensors on mobile devices, is one of the primary characteristics that 

differentiate mobile applications from personal computers. The context informs service providers by 

providing context for users, allowing service providers to tailor their offerings to their specific needs. 

These location-aware applications and services raise concerns about mobile device privacy. These 

can be user-initiated or service provider-initiated and require the user's location to provide location-

based services. Additionally, many applications require and collect users' location data, which they 

can use to target clients directly based on their locations. As a result, location-based services present 

privacy concerns due to collecting, storing, and processing user data. 
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2.3 MOBILE CLOUD COMPUTING SECURITY VULNERABILITIES 

The NIST Security Glossary defines vulnerabilities as "weaknesses in an information system, system 

security procedures, internal controls, or implementation that could be exploited or triggered by a 

threat source." (Kissel,2011). Grobauer et al. (2010) demonstrated how flaws in enabling 

technologies lead to vulnerabilities in CC architectural components. Numerous researchers have 

researched the vulnerabilities in CC architecture components. For example, Fernandes et al. (2014) 

detailed the threats, vulnerabilities, and attacks against cloud infrastructure in their work. Hashizume 

et al. (2013) discussed various cloud system vulnerabilities and proposed associated 

countermeasures. The following subsections discuss some security vulnerabilities in the CC 

environment that are also present in the MCC environment. 

2.3.1 VULNERABILITIES IN APPLICATION AND INTERFACE LAYER 

This layer serves as the gateway to a cloud provider's services, typically accessed via the Internet. 

An MCC user typically accesses the cloud services via a web browser or mobile application on their 

MD. Therefore, this layer is as vulnerable as web technologies' flaws and weaknesses and security

issues in the MD environment, such as malicious apps installed on the user device and the Internet 

(Rittinghouse & Ransome, 2017; Jensen et al., 2009). 

Apart from confidentiality and privacy, one of the fundamental security requirements that this layer 

must meet is cloud user authentication and authorization. The Open Web Application Security 

Project's (OWASP) list of the ten most serious web application security threats also applies to the 

cloud computing environment (OWASP,2021). These include Broken Access Control, Cryptographic 

Failures, Injection, Insecure Design, Security Misconfiguration, Vulnerable and Outdated 

Components, Identification and Authentication Failures, Software and Data Integrity Failures, 

Security Logging and Monitoring Failures, and Server-Side Request Forgery. Due to the unique 

characteristics of CC, the conventional approach to addressing these vulnerabilities will be 

insufficient. A novel approach to addressing vulnerabilities associated with web technologies will 

need to be adopted. As PaaS and IaaS services require management interfaces and applications 

for users accessed via web services and interfaces, these management interfaces also have the 

same level of vulnerability as SaaS applications (Grobauer et al., 2010). 

Web services and interface vulnerabilities can result in data leakage and unauthorised access to 

resources. Grobauer et al. (2010) identified cross-site scripting, command injection, and SQL 

injection as mechanisms for manipulating service requests to exploit the vulnerability in web services 

interfaces. Additionally, they stated that a malicious agent is likely to steal the credentials of a web 

service requester due to a faulty implementation of the session handler, which results in session 

hijacking and session riding. 
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Access to read and modify web browser components during transactions between client applications 

of a cloud user and the cloud provider's web application server results in client-side data 

manipulation vulnerabilities. When attacks are launched against this class of vulnerabilities, 

information confidentiality and integrity are jeopardised. The injection is ranked as the top three 

security risk in OWASP's Top 10 Application Security Risks - 2021, indicating that data manipulation 

vulnerabilities at the web client are the primary weakness in providing a secure CC and MCC 

environment. 

The most common method of exploiting the injection vulnerability is SQL injection, which is 

accomplished by injecting a valid parsing string with malicious intent into the web client's original 

legitimate SQL query request to the web application server via the provided application interface. 

The HTTP hidden fields, which are typically used to store a web user's login information via web 

forms, are another source of data manipulation vulnerabilities, as attackers can steal user credentials 

via a watering hole attack (falling for a duplicate or fake, fraudulent website). The growing popularity 

of social networking sites exposes the user's browser to self-installing malware. It is a significant 

source of data manipulation vulnerabilities for web browsers due to the possibility of exploiting user 

credentials entered by users. 

The cloud's on-demand nature and multi-tenancy make identity management, authentication, and 

authorization processes vulnerable. Identity management (IDM) is a broad term that refers to the 

process of identifying entities, including cloud objects, and enforcing policies that restrict access to 

resources. Authentication vulnerabilities occur due to insecure user behaviours such as using weak 

passwords, reusing credentials, relying on one-factor authentication, and having a poor credential 

life cycle management process. Inadequate authorization checks and a lack of control over user 

privileges result in authorization vulnerabilities. Fernandes et al. (2014) noted in their survey that 

even graphical, biometric, and three-dimensional passwords have limitations. Numerous studies 

have identified flaws in authentication and authorization protocols. OpenID Connect, like OAuth2.0, 

is widely used by web applications as a single sign-on (SISO) mechanism for end-user 

authentication. 

2.3.2 VULNERABILITIES IN PLATFORM LAYER 

The platform layer provides development and deployment tools, middleware, and operating systems 

to enable PaaS offerings to cloud users to develop and deploy their custom applications. The 

vulnerabilities determine the layer's security level in custom software and the operating system. Real-

time software applications must pass functional and security checks before they are used to enhance 

security of this layer (Fernandes et al., 2014). 

The quality of the software is highly dependent on the software development framework used by 

programmers throughout the software development lifecycle. Frequently, fundamental design and 
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development practices are undermined in the name of project time constraints. Vulnerabilities occur 

due to insufficient and incomplete verification and validation of the software deployed at the platform 

layer. Often, security concerns are overlooked or ignored during the software development life cycle 

(Rittinghouse & Ransome,2009). 

Security issues in a software application are typically caused by vulnerable programming codes, 

which explains why exploitation has increased. Programmers who violate the best coding practices 

and guidelines introduce vulnerabilities into their code (Rittinghouse & Ransome,2009). Rodero-

Merino et al. (2012) raised security concerns about the Java and.NET platform development 

environments in instances of unsafe thread termination and violation of memory zone isolation. 

When untrusted third-party software, primarily open-source code, is deployed on a cloud platform, 

the platform becomes vulnerable to various security attacks (Fernandes et al.,2014). The cloud 

application's back-end server code is susceptible to malicious masked code injection (such as SQL 

injection) via a request from the front-end, such as a web browser. 

Through system calls, operating systems installed in a virtual machine facilitate communication 

between applications and hardware. As a result, it has access to all data within a virtual machine. 

As a result, any malicious services that run in the background could result in data leakage. A 

malicious system administrator can bring the entire operating system software to a halt. 

Inappropriate resource allocation and monitoring have a detrimental effect on the performance and 

availability of the system. Inadequate memory isolation can result in data leakage. Incomplete and 

insufficient monitoring of the operating system results in unnoticed malicious actions (Babu & Bhanu, 

2015). 

2.3.3 VULNERABILITIES IN INFRASTRUCTURE LAYER 

The communication within a cloud network can be classified into external and internal (Ali et 

al.,2015). External communication occurs outside of the cloud, i.e. between cloud components and 

user, via the Internet. Internal communication occurs between cloud components and virtual 

machines via virtual network communication channels. Thus, the cloud network infrastructure is 

inherently vulnerable to protocols and technologies associated with the Internet and virtual networks 

(Fernandes et al., 2014). 

These are security flaws inherent in the network communication protocol and technology used to 

access cloud services. Protocols based on the TCP/IP stack, such as DHCP, IP, and DNS, are 

vulnerable to IP spoofing, DNS cache poisoning, and DNS spoofing and may result in cross-tenant 

attacks (Almorsy et al.,2016). When a malicious website is visited, an attacker may alter the DNS 

settings on the user's broadband network router. Inadequate implementation of session 

management techniques to deal with HTTP statelessness may result in session riding or hijacking 

(Grobauer et al., 2010). When HTTPS and HTTP are used in conjunction with cloud services, 
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communication between web clients and cloud services becomes insecure (Prandini et al., 2010). 

According to Jensen et al. (2009), flooding attacks pose a real threat to the cloud, resulting in direct 

DoS, indirect DoS, and accountability issues. 

Online storage services are fascinating due to their large storage capacity, high availability, and 

stable performance. At the same time, it introduces security risks due to a lack of transparency and 

direct control over data stored in a cloud environment (Aguiar et al.,2014). Additionally, cloud-specific 

characteristics such as virtualization and multi-tenancy create inherent security challenges for cloud-

based data storage (Ali et al., 2015). Chen and Zhao (2012) discussed various vulnerabilities related 

to the data lifecycle in a cloud environment. Singh et al. (2016) discussed storage security concerns 

regarding cryptography, data persistence, data sanitization, data leakage, malware snooping, and 

availability. 

Data storage is vulnerable to security attacks due to poor key management, faulty, insecure, and 

obsolete encryption algorithms (Grobauer et al.,2010). Modi et al. (2013) survey identifies a poor 

encryption technique as the primary risk. Data stored in a cloud environment is perpetually 

vulnerable to tampering by outsiders and insiders (Sood,2012). Due to the shared environment, 

compromised keys, and application vulnerabilities, data stored in cloud storage (data-in-rest) is 

vulnerable to unauthorised access (Modi et al.,2013). 

The CC environment is generally distributed across multiple geographical locations to maximize 

cost-effectiveness, scalability, redundancy, and disaster recovery. Local legal and regulatory policies 

impact the security and privacy of user data. Cloud users are concerned about the physical location 

vulnerability of the data centre that houses the storage and its backup. Unauthorized access and 

tampering are possible with a backup storage. While the cloud's resource pooling and elasticity 

characteristics enable dynamic resource allocation and sharing, they also present a unique security 

challenge regarding data recovery vulnerabilities exploited by the newly allocated user. Cloud 

storage is not immune to backup data recovery (Modi et al.,2013). 

2.4 MOBILE CLOUD COMPUTING SECURITY REQUIREMENTS AND THREATS 

Solving security issues in MCC requires identifying the security requirements and associated threats 

resulting from vulnerabilities in the MCC environment that can lead to possible attacks on its 

resources. The NIST in 2011 stated that confidentiality, integrity, and availability are the basic 

security requirements of CC, just like in any other information security system (Liu et al., 2011). CSA, 

one of the top organizations providing security guidance to the CC community, adds another four 

security requirements (authentication, authorization, accountability, and privacy) to the three basic 

ones as shown in Table 2.1 (Mogull et al.,2017). These seven basic requirements are also applicable 

to the MCC environment.  
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The NIST security glossary defines a threat as ‘‘Any circumstance or event with the potential to 

adversely impact organizational operations (including mission, functions, image, or reputation), 

organizational assets, individuals, other organizations, or the Nation through an information system 

via unauthorized access, destruction, disclosure, modification of information, and denial of 

service’’(Kissel, 2011). CSA has adopted these definitions in their threat analysis concerning the 

cloud ecosystem and the proposed security solution guideline reported between 2010 and 2019. 

Taking account of Kumar & Goyal (2019), their study uses “The Treacherous Twelve top threat in 

cloud security” as a baseline to identify vulnerabilities in the cloud architectural framework. In this 

study, the egregious eleven top threats in cloud security reported by the CSA in 2019 is adopted to 

analyze existing data security frameworks in the review of related works. The CC security threat 

analysis reported by the CSA between 2010 to 2019 is presented in Table 2.2. The description of 

the egregious eleven cloud security threats used to investigate existing data security frameworks in 

MCC is shown in Table 2.3. 

Table 2.1. The Seven Basic MCC Security Requirements 

ID Security Requirement Description 

R1 Confidentiality Sensitive data of users should be kept secret and not 
accessible by an unauthorized user. 

R2 Integrity Protection of MCC user data from modification or 
deletion without authorization. 

R3 Availability MCC user data and services should be available for 
access at any time whenever the user demands. 

R4 Authentication Every user in the MCC environment needs to have their 
identity verified before accessing cloud services. 

R5 Authorization Access control rights to each MCC resource must be 
properly defined for each user. 

R6 Accountability CSP must establish all-action administered in its cloud 
environment to a single entity either to the cloud user, 
the process, or the mobile device must be done in a 
legitimate fashion. 

R7 Privacy CSP must ensure that MCC user data are not used for 
any purpose without the authorization of the data owner. 
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Table 2.2. The evolution of the CC security threats 

Rank 2010 2013 2016 2019 

1 Abuse of Cloud 
Services 

Data breaches Data breaches Data breaches 

2 Insecure APIs Data loss Weak identity, 
credential, and Access 
management 

Misconfiguration 
and Inadequate Change 
Control 

3 Malicious 
insiders 

Account 
hijacking 

Insecure APIs Lack of Cloud 
Security Architecture and 
Strategy 

4 Shared 
Technology 
vulnerabilities 

Insecure APIs System and Application 
Vulnerabilities 

Insufficient 
Identity, Credential, 
Access 
and Key Management 

5 Data 
loss/Leakage 

Denial of 
Service 

Account hijacking Account hijacking 

6 Account, 
Service & 
Traffic hijacking 

Malicious 
Insiders 

Malicious Insiders Malicious Insiders 

7 Unknown Risk 
Profile 

Abuse of Cloud 
Services 

Advanced Persistent 
Threats (APTs) 

Insecure APIs 

8 Insufficient Due 
Diligence 

Data loss Weak Control Plane 

9 
Shared 
Technology 
Issues 

Insufficient Due 
Diligence 

Metastructure and 
Applistructure Failures 

10 Abuse of Cloud 
Services 

Limited Cloud Usage 
Visibility 

11 Denial of Service Abuse of Cloud Services 

12 Shared Technology 
Issues 
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Table 2.3. The Egregious eleven CC Threats 

ID Threat Name Threat Description 

T1 Data breaches This is an incident that results in a release, access, stolen or use 
of protected sensitive information by an unauthorized user. 

T2 Misconfiguration 
and Inadequate 
Change Control 

The absence of effective change control in the CC environment 
leads to a misconfiguration of cloud resources which makes 
them vulnerable to malicious activities and data breach. 

T3 Lack of Cloud 
Security 
Architecture and 
Strategy 

Inadequate understanding of shared security responsibilities 
during the migration of IT services to the public cloud without an 
effective security architecture to withstand cyber-attacks. 

T4 Insufficient 
Identity, 
Credential, Access 
and Key 
Management 

This consist of tools and policy that allow the organization to 
manage, monitor and secure resources within their 
infrastructure. Incident usually occurs if either party (CSP and 
cloud user) comprise their security as a result of weak credential 
protection, lack of scalable identity and credential access 
management, failure to use multi-factor authentication and 
strong password policy. 

T5 Account hijacking Loss of device or unauthorized access to device credentials can 
be used to hijack user account, which leads to illegal access to 
cloud resources of the mobile user. 

T6 Malicious Insiders An authorized user of the cloud services can intentionally lunch 
attacks against the cloud resources through legitimate access to 
these resources. 

T7 Insecure APIs APIs allows third-party agents to interact with the cloud services; 
vulnerabilities in these APIs expose these resources to the 
external world and malicious attacker for possible attacks. 

T8 Weak Control 
Plane 

This Incident results in data corruption, unavailability, or leakage 
due to the weak nature of the control plane for data duplication, 
migration strategy and storage, especially when migrating to a 
multi-cloud infrastructure. This weak nature of the control plane 
makes the person in charge not have full control of data 
infrastructure logic, security, and verification. 

T9 Metastructure and 
Applistructure 
Failures 

 

Poor APIs authentication designed by the CSP enables 
malicious attackers an opportunity to comprise the security of 
the CC resources. This is because API calls disclose sensitive 
information, which is incorporated in the Metastructure, which is 
a line of demarcation between the CSP and the cloud user. 

T10 Limited Cloud 
Usage Visibility 

This is a type of threat that occurs when an organization cannot 
analyze the existing cloud-based application used within its 
organization to determine if the application is safe or not. Such 
an employee using an application without the permission of the 
IT security personnel can compromise organization CC services 
which can result in credential theft, Structured Query Language 
(SQL) Injection, domain name system attacks e.t.c 

T11 Abuse of Cloud 
Services 

This kind of threat to the CC environment enables an attacker to 
exploit vulnerabilities in the cloud deployment strategy such as 
poor security policy and lunch attacks such as email spamming, 
phishing campaigns, and denial of services attacks against the 
cloud resources. 
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2.4.1 MCC THREAT TREND ANALYSIS 

There has been a great change in the CC threat trends in recent times, as shown in Table 2.2 and 

Table 2.3. The recent report, as published by CSA in 2019, took a new direction, as new threats 

emerge (i.e., Misconfiguration and Inadequate Change Control, Lack of Cloud Security Architecture 

and Strategy, Weak Control Plane, Metastructure and Applistructure Failures and Limited Cloud 

Usage Visibility). There is a shift from a focus on traditional information security threat focus to a 

focus on CC Infrastructure configuration and authentication issues, as shown in Figure 2.1. 

Figure 2.1 CC Threat Ranking Change Spectrum 

Figure 2.1 shows the ranking of different threats from 2010 to 2019. In 2013, three new threats were 

added while the unknown profile risk was removed. Similarly, in 2016 three new threats: Weak 

Identity, Credential and Access Management, System and Application Vulnerabilities and Advanced 

Persistent Threats (APTs) were reported. The recent report released by CSA in 2019 show a new 

ranking of Abuse of Cloud Services: it was placed at the top of the list in 2010 but was ranked 11th 

in 2019. These changes also indicate that, despite the wide acceptance of CC in recent years, the 

CC infrastructure credibility and the trust in its use have been questioned. For example, data 

breaches have been ranked as the topmost threat in three consecutive times (i.e., 2013, 2016 and 

2019).  

2.4.2 THE EGREGIOUS CC THREAT ANALYSIS MAPPING USING THE STRIDE MODEL  

Scandariato et al. (2015) describes the threat modelling tool (STRIDE) as reported by Microsoft in 

2009. The STRIDE model reported by the study conducted by Scandariato et al. in 2015 evaluated 

an Information System's security weakness using a descriptive approach. Similarly, this study 

adopted the STRIDE threat modelling method to investigate the existing data security frameworks 

in the MCC environment in the subsequent section of the literature review and presented the threat 

analysis report using the STRIDE model reported by the CSA in 2019, as shown in Table 2.4. The 
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STRIDE model allows security experts to identify and develop solutions to CC and MCC security 

issues. The STRIDE model includes six threat categories that are briefly described as follows: 

A. Spoofing Identity (S): This threat category describes the use of stolen credentials to gain 

unauthorized access to an information system or cloud resources. This threat category 

affects the Authentication (R4) basic security requirements in CC and MCC environments. 

B. Tampering with Data(T): This threat category describes the malicious modification of data 

during transmission and at rest by an unauthorized user. This specific threat category affects 

the integrity of user data(R2) in both CC and MCC environments. 

C. Repudiation (R): This threat category describes a denial of malicious activities carried out by 

the user without any means of verifying the actual user that carried out such illegal activities 

in both the CC and MCC environment. This threat category affects the accountabilities(R6) 

basic security requirements of this environment. 

D. Information Disclosure(I): This threat category describes the exposure of user information or 

access to user store data by an unauthorized user. This threat category affects both 

confidentiality(R1) and privacy(R7) of user data in CC and MCC environments. 

E. Denial of Service (D):  This threat category affects the availability (R3) of cloud resources to 

the legitimate user by denying the user access to critical cloud resources at the time of their 

request. 

F. Elevation of Privilege(E): This threat category grants excessive privilege gain by the user 

without authorization. This threat category affects the Authorization (R5) basic security 

requirements of both the CC and MCC environments. 

 

Table 2.4: STRIDE Threat Analysis using the Egregious CC Threats 

Threat ID S    T R I D E 

T1       ✓      

T2   ✓  ✓  ✓  ✓    

T3 ✓  ✓  ✓  ✓  ✓  ✓  

T4 ✓  ✓  ✓  ✓  ✓  ✓  

T5 ✓  ✓  ✓  ✓  ✓  ✓  

T6 ✓  ✓    ✓    ✓  

T7   ✓  ✓  ✓    ✓  

T8   ✓    ✓    ✓  

T9 ✓  ✓  ✓  ✓  ✓  ✓  

T10 ✓  ✓  ✓  ✓  ✓  ✓  

T11 ✓  ✓  ✓  ✓  ✓  ✓  

✓ Indicates that the threat affects the threat category of the STRIDE model  

 Indicates that the threat does not affects the threat category of the STRIDE 
model 
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2.5 ANALYSIS OF CURRENT MCC DATA SECURITY FRAMEWORKS 

To address the main research question and its sub research questions, following the specific 

research objectives defined in chapter one, section 1.3. This section of the thesis addresses the first 

research objectives by analysing data security frameworks proposed and used in recent MCC 

security research. The search for relevant data security frameworks was conducted across four 

electronic databases (IEEE, Science Direct, ACM, and Springer) from 2010 to 2021. To investigate 

the current MCC data security solution scope in-depth, only relevant security frameworks that 

address core data security issues in the MCC domain were selected. This study selected and 

analysed thirty-five (35) peer-reviewed articles published in conferences and journals between 2010 

and 2021 to address the first research objective.  

The selected MCC data security framework presented in Table 2.5 was analyse using the following 

predefined set of dimensions:  

Domain (D1):  This dimension describes the proposed security framework's architectural 

layers (MCUL, MNCL, and MCSPL). 

Threats (D2):  This dimension describes the threats that the proposed framework addresses 

using the eleven threats (T1 to T11) presented in Table 2.3. 

Security Requirements (D3): This dimension describes the security requirements that the 

proposed framework addresses, as presented in Table 2.1. 

Security Approach (D4): This dimension describes the proposed framework's techniques to 

protect user data (such as encryption, biometrics, access control, activity monitoring, and 

intrusion detection). 

Cloud Level Trust (D5): This dimension identifies the MCC components that are trusted by 

the framework. This study assumes that using a trusted third party within a proposed 

framework shows that the cloud infrastructure is not trustworthy. Similarly, if there is no third-

party component in the proposed framework, the cloud infrastructure is assumed to be 

trusted. 

Comprehensiveness (D6): This dimension is used to measure the number of threats a 

framework addresses. A framework is considered more comprehensive in this study if it 

addresses five or more threats; otherwise, it is less comprehensive. 
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Table 2.5: Analysis Summary of the Selected Data Security Frameworks 

ID Source  D1 D2 D3 D4 D5 D6 

F1 Itani et al, 
2010 

MCUL/ MCSPL T1 R2 
DE,DV 

NT  

F2 Huang et al. , 
2010 

MCUL/ 
MCSPL/MNCL 

T1-T4,T11, R1,R4,R5 
TM 

T   

F3 Jia et al., 
2011 

MCUL/ MCSPL T1-T2,T4 R1,R4,R5,R6,R7 
DE,DV 

T  

F4 Huang et 
al.,2011 

MCUL/ 
MCSPL/MNCL 

T1,T2,T4 R1,R4,R7 
TM 

NT  

F5 Chen & 
Wang, 2011 

MCUL/ MCSPL T1,T4,T8 R1,R3,R4,R7 
LBS 

NT  

F6 Lin,2011  MCUL/MCSPL T1,T3,T4,T8,T10 R1,R3,R4,R5,R7 DM  NT * 

F7 Lu et al., 2012 MCUL/ MCSPL T1,T4 R1 DE NT  

F8 Omri et al., 
2013 

MCUL/ MCSPL T1,T4-T5 R1,R4,R5,R7 
BM,DE 

NT  

F9 Khan et al., 
2013 

MCUL/ MCSPL T1,T4 R1,R4,R5,R7 
TM,DE 

T   

F10 Zhang et al., 
2013 

MCUL/ MCSPL T1,T5,T8 R1,R3,R7 
TM 

NT  

F11 Khan et al., 
2014 

MCUL/ MCSPL T1,T4 R1,R4,R5 
DE 

T   

F12 Dey et al., 
2015 

MCUL/ MNCL T1,T3-T4,T7-
T9,T11 

R1,R3,R4,R7 
IDS,DE 

T  * 

F13 Shi et al., 
2015 

MCUL T1,T3-T8,10,T11 R1,R3,R4,R7 
IDS,DE 

T * 

F14 Goyal & 
Krishna, 2015  

MCUL/ MCSPL T1,T4,T5, R1,R4,R5,R7 
DE 

T  

F15 Shiny et al., 
2015 

MCUL/ MCSPL T1,T4,T5 R1,R4 
DE 

T  

F16 Benabied et 
al.,2015 

MCUL/ MCSPL T1,T3-T6,T8,T11 R1,R3,R4,R7 
TM 

NT * 

F17 Thumar & 
Vekariya, 
2016 

MCUL/ MCSPL T1 R1,R7 
DE 

T   

F18 Zhang & 
Wen, 2016 

MCUL/ MCSPL T1,T5,T11 R1,R4,R7 
DE 

NT  

F19 Cushman et 
al., 2017 

MCUL T1,T7,T9 R1,R7 
DV 

T   

F20 Lin et al. 
,2017 

MCUL/ MCSPL T1,T7,T9 R1,R2,R7 
DE 

NT  

F21 Arvind & 
Manimegalai, 
2017 

MCUL/ MCSPL T1 R1,R2,R7 
DE 

NT  

F22 Khatri & Vadi, 
2017 

MCUL/ MCSPL T1,T4,T5 R1,R4,R7 
BM 

NT  

F23 Sajjad et al., 
2017 

MCUL/ MCSPL T1 R1,R7 
DE,ST 

NT  

F24 Li et al., 2017 MCUL/ MCSPL T1,T4,T5 R1,R4,R7 DE  NT  

F25 Chean et al , 
2018 

MCUL/ MCSPL T1,T4,T5 R1,R4,R7 
DE,TM 

NT  

F26 Nguyen et al., 
2018 

MCUL/ MCSPL T1,T3,T5,T7-T9 R1,R3,R7 
IDS 

T  * 

F27 Sukumaran & 
Mohammed , 
2021 

MCUL/ MCSPL T1,T4,T5 R1,R2,R4,R7 
DE 

T  
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ID Source D1 D2 D3 D4 D5 D6 

F28 Dey et al. , 
2019 

MCUL/ MCSPL T1,T3,T5,T7-
T9,T11 

R1,R4,R7 
IDS 

NT * 

F29 Agrawal & 
Tapaswi , 
2019 

MCUL/ MCSPL T1,T4,T5 R1,R4,R7 
DE 

T 

F30 Nguyen et al., 
2019 

MCUL/ MCSPL T1,T4,T5,T8,T11 R1,R2,R4,R5,R7 
BC 

T * 

F31 Khedr et al., 
2020 

MCSPL T1,T4,T5 R1,R4 
DV 

T 

F32 Irshad et al., 
2020 

MCSPL T1,T4,T5,T6 R1,R3,R4 
DE,DV 

T 

F33 Derhab et al., 
2020 

MCUL/ MCSPL T1,T2,T4,T5,T11 R1,R4,R7 
DV 

T * 

F34 Li et al.,2020 MCSPL T1,T4,T5 R1,R4,R7 DE NT 

F35 Shabbir et 
al.,2021 

MCSPL T1,T4,T5,T6 R1,R4,R7 
DE 

T 

Note: DE- data encryption; DV – data verification, Block Chain, BM – Biometric; IDS – intrusion 
detection system, TM- trust management, DM- data mining, LBS-location based services,  
ST-steganography (*) - “more comprehensive” (T) –“Trusted”  (NT) –“Not Trusted” 

2.5.1 REVIEW OF THE MCC DATA SECURITY FRAMEWORKS 

The description of each of the MCC data security frameworks used for the analysis in this review are 

discuss as follow: 

The framework proposed in F1 uses an incremental message authentication code to guarantee data 

storage integrity in the MCC environment. The framework protects MCC user data while subduing 

the device's energy consumption level and efficiently supporting dynamic data operations using 

trusted computing. The model proposed in F1 comprises three entities: 1) mobile client, 2) cloud 

service provider, and 3) trusted third party. The model allows the offloading of the verification job to 

a coprocessor on the cloud end to reduce the processing overhead from the MD layer. The integrity 

of mobile data is achieved by generating an incremental authentication code using a shared key 

before uploading data to the cloud. The code is stored locally on the MD, and the data is offloaded 

to the cloud. For data processing operations to be carried out on the offloaded data or files, there is 

a need to perform an integrity check for the file using the message authentication code. 

The proposed framework (MobiCloud) in F2 addresses trust management, risk, and secure routing 

in ad hoc networks. This framework converts traditional mobile ad hoc networks into a new service-

oriented communication structure in which each MD is handled as a service node (SN). The device 

produces different copies of extended semi-shadow images (ESSIs) in the cloud, which provide a 

solution to an MD's communication and computation requirements. Data received from the MD 

requires users to trust the service provider of the cloud infrastructure for the security of the data. 

The authors in F3 proposed a secure data service mechanism (SDSM) that gives MCC users the 

tool to enjoy secure data outsourcing in a trusted mode. This framework allows users to benefit from 
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minimized overheads associated with security management in the MCC environment. The 

framework (F3) comprises two models, namely the network and security models. The network model 

protects data leakage from a third party because the data owner uploads encrypted files on the cloud 

server for use. The data owner must provide authorization for other cloud users, such as data 

sharers, to access the files of the data owner. The authorization permission granted by the data 

owner allows the data sharer to decrypt the specific files in the MCC environment. The security model 

employs a proxy re-encryption scheme and a bi-linear mapping of an identity-based encryption 

model to protect data from malicious sharers in the data sharing process in the cloud environment. 

The framework in F3 also addresses the collusion attack of malicious data sharers that might affect 

the secrecy of the data owner's secret key. This framework's security model was used to realize 

strong data access control, low overhead processing, and flexibility to operate in a highly scalable 

environment. 

The authors in F4 address the privacy and security issues of MobiCloud by proposing a framework 

for data processing for mobile cloud users using trust management, multi-tenant secure data 

management, and the ESSI processing model. The framework isolates private data using a trust 

management approach. The framework consists of three components: 1) the cloud mobile and 

sensing domain, 2) the cloud as the trusted domain, and 3) the cloud public service and storage 

domain. The Framework (F4) also supports the virtualization of each mobile device in a specific 

application domain. Their virtualization techniques in this framework address a mobile device's 

communication and computation issues and help improve security and privacy protections. The 

FocusDrive project was designed as a prototype to demonstrate the security and privacy protection 

techniques as proposed in their framework(F4). 

The proposed security framework in F5 enhances the privacy and authentication of mobile device 

users using location-based services in the cloud environment. The framework (F5) uses distributed 

storage and international mobile subscriber identity to improve the security of user data. The result 

evaluation of this framework shows that the network coding scheme has improved performance. 

This framework (F5) enhances the security issues caused by multiple tenants and multiple replicas 

of mobile user data in the cloud environment. 

The MCC security frameworks in F6 investigate state-of-the-art technology in mobile security in CC 

environment. The authors' results in F6 show that most of the existing mobile security frameworks 

allow files to be sent to the cloud for processing due to the resource constraint of the MDs. This 

approach faces critical issues such as compromised user data security and privacy, high network 

load, high time consumption in processing, low connectivity, and bandwidth in securing MD files. To 

provide a solution, the author proposed a new "Private Cloud and File Characteristics" (PCFC) 

framework that has three (3) components: mobile client, private cloud, and PCFC protocol. The 
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mobile client is a lightweight application that runs on the MD that uses a specific extraction algorithm 

to extract specific data from a suspicious file for processing in the cloud. The proposed framework 

in F6 helps to solve some of the issues some of the existing frameworks faced. The private cloud 

uses a scoring process to effectively identify files with malicious data and apply appropriate 

measures to such a file using the protocol.  

The framework in F7 proposed a dynamical data protection framework for off-trade between security 

and resource consumption using a service access gateway. The model has a database of security 

policies, and mobile users get assignments of data protection services for each requesting terminal. 

In this framework (F7), different data protections are applied to data depending on the services policy 

request by the mobile terminal that initiates the request. 

The authors of F8 propose a framework that uses handwritten password recognition services to 

authenticate users in the mobile cloud environment. The model implements an application that 

creates an interface between the mobile device and the cloud, which captures handwritten 

passwords from the mobile device as biometric data, encrypts the handwritten password data, and 

transfers it to the cloud using the mobile device touch screen. Biometric data encryption enhances 

the security and privacy of data access in the mobile cloud environment. The cloud end contains a 

database of encrypted handwritten templates of cloud users to perform authentication. The authors 

of F8 use K-nearest neighbour and an artificial neural network classifier for the handwritten 

recognition of user passwords. The Framework authenticates the user based on the password and 

biometric features using handwritten password techniques. The classifier algorithm uses a parallel 

classifier combination method to obtain satisfying recognition and error rate precision. 

F9 proposed a lightweight security framework to safeguard the mobile user's identity with dynamic 

credentials to enable the identification of users in the mobile cloud environment. The framework 

offloads the regularly occurring dynamic credential generation services into a trusted environment to 

reduce the processing overhead, delay in communication, and loss of energy on the mobile device. 

The system model used in this framework has the following components: 1) cloud service provider, 

2) mobile users, and 3) trusted entity. Computational and storage services are offered to mobile

users by the cloud services provider. Mobile users employ those services to improve their MDs' 

processing and storage inclinations. The trusted entity is responsible for generating cloud secrets, 

mobile secrets, and credentials for the mobile user under the control of the client organization. The 

trusted entity securely hands over the prevailing dynamic secrets to the cloud service provider and 

mobile device to identify mobile users in a cloud environment. The trusted entity also shares each 

mobile user's private and public keys and the CSP. The results obtained from the experiment 

performed for this framework show a significant improvement in energy consumption on mobile 

devices compared with other frameworks. The framework (F9) works in an untrusted environment, 
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reducing the possibility of a man-in-the-middle attack. The framework verifies the reliability of the 

credentials of mobile users with the help of the received signature, and the user credentials are 

encrypted with the mobile user's public key that ensures confidentiality. 

The authors of F10 proposed a framework that uses a decentralized data aggregation approach for 

securing cloud user data. The framework allows distributed computing among mobile devices, 

personal clouds, and public clouds. In this framework, user data is stored in a private cloud in which 

the user has full control. Data widget applications were introduced for the user to manage sensing 

data. The framework (F10) addresses the privacy issues of mobile sensing systems by using a 

trusted third-party certificate to monitor the behaviour of applications developed by cloud users. 

These trusted party security techniques minimized the issue of publishing malware in the cloud 

computing environment. 

The proposed framework in F11 provides an incremental proxy re-encryption scheme to improve file 

modification while maintaining the security of the offloaded file in the cloud infrastructure. The 

framework enhances processing overhead and communication delay. The scheme uses bi-linear 

mapping for randomly generated parameters for encryption, decryption, and re-encryption of data. 

Key generation in this scheme uses a trusted entity called a proxy to create key pairs for various 

authorized group members of the data partition for cloud storage. The incremental version of the 

proxy re-encryption framework presents significant enhancement in results while implementing file 

modification operations using the insufficient processing ability of mobile devices in the CC 

environment.   

F12 presented a context-aware security framework for a mobile cloud that requires deployment at 

the cloud end to mitigate against attacks on user data as an extra security layer to the existing mobile 

cloud security infrastructure. The framework analyses incoming traffic using a cognitive learning 

model to identify patterns from previous attacks. The probabilistic model evaluates the packets 

received from the network traffic to detect possible attacks on the infrastructure. A self-healing 

network is used to deter denial of service attacks on the cloud side. Authentication ensures mutual 

authentication between two communication parties using the message digest and location-based 

services. 

F13 presented a cloudlet mesh-based security framework that improves sensitive data protection on 

mobile devices against malicious activities using intrusion detection techniques in a trusted 

environment. With the aid of the cloud, the cloudlets update their malware database. Furthermore, 

a trusted connection is placed among MD, cloudlets, and the remote cloud, and an inter-cloudlets 

protocol is added to facilitate distributed malware detection. The framework (F13) provides 

authentication between the cloudlet mesh and the mobile device using a multi-party authentication 

protocol (MAP). The MAP process requests MD to access the cloudlet mesh. The cloudlet with the 
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highest signal strength is used for the connection. The MAP process authentication between the 

mobile device and the cloudlet mesh in a multi-way by scanning only the smaller incoming message 

using anti-virus software. In comparison, much larger incoming messages are offloaded to the 

distance cloud for scanning to remove viruses or spam from the request. The multi-party 

authentication used in this framework is a single sign-on in the cloudlet mesh. The Framework (F13) 

uses a Trusted Cloud Transfer Protocol (TCTP) to encrypt messages offloaded to the distance cloud. 

The authors in F14 presented a security framework that uses encryption technology to secure data 

transmission. The proposed framework by the authors in F14 uses the identification numbers of the 

MD to check an intruder whose device is not registered in a central database to enhance data access 

security using the location-based services model. 

The authors in F15 presented a framework that employs digital signature concepts for authentication 

of received data and encryption for data storage. The framework comprises three phases: 1) key 

generation, 2) signature generation, and 3) signature verification. The public and private keys used 

for signing the packets and verifying the packets during encryption and decryption are generated 

randomly during the key generation phase. Hashing and key generation phase means generating 

both the public key and private key. The private key is used to sign the packets in the encryption 

process, and the public key is used to verify the packets in the decryption process. A hashing 

algorithm is used to produce a hash code. This hash code is obtained from the encryption of the 

previous operation and the private sender key during the signature generation phase. The signature 

process is verified after the document has been signed successfully. 

The security framework proposed by the authors in F16 presents a two-level security model for the 

continuous examination of trust degrees. A trust model is used to calculate each user's trust degree 

and monitor his behaviour and activities. This framework (F16) works with a mobile and a trusted 

agent. The security of the cloud user and the service provider is considered in this framework to 

avoid a man-in-the-middle attack against the cloud user data while in transit. 

F17 presented a framework that mitigates the security issues cloud users face while maintaining the 

data in the cloud server and relocating data from the cloud. The framework provides a solution that 

enables mobile users to store data securely so that the privacy of their data is preserved. The 

information on the MDs is protected from unauthorized access using a modified RSA encryption 

technique in which each message is mapped to an integer for preserving data before offloading the 

data to the CSP storage infrastructure from the MD. This framework provides a software interface 

for cloud users to perform encryption and decryption. In the first place, the user data is encrypted 

with the receiver’s public key. After that, the decryption process can be done with the corresponding 

key pair only. 



36 

The authors in F18 presented a framework based on the bilinear pairing cryptosystem and random 

number theory. It performs user anonymity, mutual authentication, user intractability, and key 

exchange. In this framework, the cloud service provider is unable to obtain the user's identity. The 

user's identity is hidden by using a random number to secure sensitive information. The mobile cloud 

environment is assumed to be supported by a trusted, smart card generator (SCG) service. The 

SCG is responsible for generating public and private parameters for both cloud service providers 

and cloud users, respectively. This framework (F18) has four phases: the system setup phase, 

registration phase, authentication phase, and the passive user phase. 

F19 presented a framework that protects data when offloading it from a mobile device to the cloud 

by verifying if the data to be offloaded has security concerns or not. The security concern is using a 

mobile API to classify the data into a security class. Once the data classification process is 

completed, the Mobile API stores and processes data according to rules defined for the data 

category at hand. The framework uses simulation-based software. The machines used in the 

framework implementation run on Ubuntu Server 14.04 and have OpenStack cloud software installed 

to store and provision virtual machines. In the proposed framework reported in F19, the lead node 

is used as the controller, which manages the communication among the g database storage, 

software, and permissions among the nodes. The server system uses Ubuntu Metal as a Service 

(MAAS) to configure software and updates. The framework is scalable and contains nodes that run 

the necessary software in the cloud environment. 

Lin et al. (2017) in F20 presented a mobile provable data possession framework that supports data 

dynamics operations via verification, outsourcing, block verification, and stateless verification by a 

trusted third party. A Hash tree structure and a Boneh-Lynn-Shacham (BLS) short signature were 

used in their scheme to support data dynamics operations.  Data owners, CSPs, trusted third parties, 

and storage service providers are the four entities used in this framework. 

Arvind & Manimegalai (2017), in F21, presented a secure data storage classification architecture 

(SDSCA) that protects data from illegal access. The framework consists of four components: 1) user 

agent, 2) mobile user, 3) CSP, and 4) broker. Data are captured from the mobile user are received 

by the user agent. The agent classifies this data into distinct levels, such as high, medium, and low. 

The data classification uses a superior naive technique made up of different algorithms (Naive-Bayes 

and K-Nearest Neighbor). This framework uses two-step methods to classify the data. The statistical 

features of the data are used to select the neighbouring data of the new data. When the data 

classification phase is completed, the Advanced Encryption Standard (AES) protects the data. The 

Homomorphic Encryption algorithm prevents the integrity of the data from being compromised. In 

the framework reported in F21, the security methods proposed allow the CSP and the mobile user 

to process the data without necessarily decrypting the data. 
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The authors in F22 presented a framework that uses a multimodal biometric system for 

authentication and access control to secure data in the mobile cloud environment. In this framework 

reported in F22, a fingertip image is obtained from the mobile user using the fingerprint sensors on 

their device. The image of the iris scan is captured using a high-definition image camera present in 

today's smartphones. This biometric information is stored in the cloud database and used to verify 

users in the mobile cloud environment. The framework (F22) provides an additional backup code 

that can be automatically generated and sent to the user's cloud profile for authentication with either 

biometric mean to enhance data security in the cloud server. 

The authors of F23 proposed a framework that uses the steganography technique to enhance 

security in the MCC environment. The framework preserves embedded data unrevealed to the cloud, 

hence assuring the security of sensitive medical data when it's outsourced for encryption. The 

framework (F23) uses data preparation, outsourcing encryption, and data distribution to send 

classified medical images securely. In the data preparation stage, medical image detection is the 

salient object considered an important region of interest (ROI). The edge-directed data hiding 

method embeds the medical image into the host image. The selective encryption algorithm is used 

to encrypt the outsourced steganography image, and the result of the encryption is sent to the 

concerned user. 

The authors in F24 presented a framework that adopts the Ciphertext-Policy Attribute-Based 

Encryption (CP-ABE) for data security where data is encrypted. A lightweight data sharing scheme 

moves high-computationally intensive access from the MD to the cloud environment. The framework 

reduces user revocation costs by introducing property description fields to realize lazy revocation, a 

complex problem in program-based CP-ABE systems. A semi-trusted server enables cloud users to 

encrypt and decrypt data to reduce overhead in data processing using proxy encryption and 

decryption techniques. 

The authors in F25 presented a framework that uses a trusted third party to provide a unique 

authentication for the mobile user for data access in the MCC environment. The trusted third party 

reduces identity theft risk since the user's identity information is contained in a secure identity 

management server (IDM). The IDM uses a homomorphic encryption and signature scheme to 

authenticate users on the cloud to grant access to their cloud resources. This framework provides 

privacy for the client's cloud service provider, but the risk of capturing the identity stolen through 

information interchange between mobile user and authenticator is not eliminated. 

The framework reported in F26 presents a model to detect and isolate cyber-attacks that will severely 

impact the MCC environment using the deep learning technique. The authors of F26 claim that their 

model can achieve up to a 97.11% accuracy rate in detecting attacks in the MCC environment. The 

model proposed in F26 provides an attack detection module used to classify an incoming packet 
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request on the existing trained deep learning model. This framework trains the model in the offline 

mode used to detect malicious requests. The Attack module performs three basic duties: data 

collection and processing, attack recognition, and request processing. The deep learning model used 

in this framework has two phases: the learning process and feature analysis. The model uses the 

Principal Component Analysis (PCA) method for dimension reduction and the termination of optimal 

features. The learning phase of this model takes a long time and needs the pre-processing of data 

and features, which leads to an increase in the running cost. The pre-learning process of this model 

uses the Gaussian Binary Restricted Boltzmann Machine (GRBM) method to transform real values 

received from the input layer into binary codes used in the hidden layers. 

The authors in F27 presented a framework that applies the concept of polymerase chain reaction 

and primer generation to ensure data confidentiality and integrity in the MCC environment. In this 

framework (F27), data is encoded in deoxyribonucleic acid (DNA) by converting the data into ASCII 

and binary form before converting it to the DNA format using the AGCT. The resultant DNA sequence 

is encrypted using symmetric encryption. This process is divided into different phases, including pre-

processing data into numerical form, premier generation of keys from DNA sequences, the 

polymerase chain reaction encryption phase, and data integrity verification using the DNA Signature. 

The authors in F28 presented a framework that uses a multi-layer intrusion detection technique to 

analyze incoming traffic and a decision-based approach to select a virtual machine. The scheme can 

best be described as a cognitive system consisting of a pattern matching engine and a knowledge 

base for profile-based traffic filtration analysis. The system employs unsupervised learning methods 

due to the multifaceted nature of incoming traffic and uses location information as a client's profile. 

Agrawal & Tapaswi (2019) in F29 presented a framework that uses an agent-based multiple authority 

attribute-based encryption access control technique in the mobile cloud computing environment. The 

use of static and dynamic attributes in data encryption models is used to assure the security of data 

uploaded by the owners. To access data in the cloud, they must satisfy these attributes used in the 

encryption process. The proposed framework in F29 uses the mobile agent to deal with the loss of 

connectivity between the data owner and the cloud storage service provider. The framework reported 

in F29 also uses anonymous key issuing rules to manage encryption keys in their security 

framework. 

The framework reported in F30 applies blockchain technology to tackle security and privacy issues 

in the MCC environment. The proposed framework focuses on a trust-based model to handle patient 

health records when information is exchanged by the MDs used by the patients and the healthcare 

provider's cloud storage and processing system. They implemented a prototype system as a proof 

of concept using Ethereum blockchain technology in real-time data sharing using Amazon CC 

services as their cloud storage provider. The performance evaluation carried out in their study was 
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reported to provide low network latency while maintaining a high level of security and privacy of user 

data during data exchange in the MCC environment. 

The solution proposed in F31 enhances the quality of services MCC users enjoy by addressing 

undesirable delays MCC users encounter during user authentication and man in the middle attack 

during data transmission. They proposed a framework that provides a solution to the handover 

authentication issues in the MCC environment. The framework reported by the authors in F31 uses 

IEEE 802.11/LTE protocol to manage user’s authentication while reducing the delay time. 

The authors in F32 proposed a framework that tackles authentication issues in the MCC environment 

by applying a free pairing system to handle multi-server authentication problems faced by the MCC 

environment. The proposed framework eliminates the use of servers’ storage for user verification by 

adopting a free pairing system that maintains user-oriented verifiers. They apply an elliptic curve 

cryptographical approach to secure user data during user authentication in the MCC environment. 

The framework reported in F33 combat security issues associated with SMS-based authentication. 

The proposed framework applies offloading techniques to enhance the security of both the mobile 

and the cloud environment. The offload the two-factor authentication mechanism to the cloud and 

only grant access to a user if the authentication information sent by the user and the results of the 

cloud-based mutual authentication is valid. They use virtual smart card technology to authenticate 

each user request. The performance evaluation results reported by the authors show an 

improvement in tackling security issues regarding user authentication in the MCC environment. 

The authors in F34 proposed a lightweight data sharing scheme that outsources high mobile device 

computational tasks to the cloud server. They used attribute-based encryption techniques to 

transform the data owner's plain text into ciphertext and upload the ciphertext to the cloud server. 

The framework reported in F34 outsources the key management tasks to a key generation centre 

third-party system. The third-party system manages both the private and public keys used for 

encryption and decryption. The framework allows the MCC users to obtain the decryption key without 

revealing it to another user using a secure channel. They reported that the performance evaluation 

of their proposed framework outperforms related works in literature.   

The framework proposed in F35 uses a modular encryption approach to secure user data. The 

framework focuses on the security of patient health information by identifying and classifying each 

patient data's sensitivity and determining the required level of encryption needed to protect the data. 

The focus of the framework reported in F35 is on the security of user data at the cloud server to 

ensure that patient's health information is protected. They also provide a secured data sharing 

scheme between patients and medical doctors using the modular encryption standard. They reported 
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that their model competes favourably with the existing solution while maintaining a high standard of 

security of patient information. 

2.5.2 SUMMARY OF THE REVIEW  

The review frameworks can see a trend toward developing comprehensive frameworks (i.e., 

addressing multiple threats). In contrast, only one out of the eleven frameworks proposed between 

2010 and 2014 managed more than five threat types, while in the period 2015 to 2021, the number 

was seven out of twenty-four. None of the frameworks addressed all the security threat types. All 

frameworks addressed threat type T1 (data breaches), which is concerned with preserving data 

confidentiality and privacy. Twenty-five frameworks also addressed threat type T4 (Insufficient 

Identity, Credential, Access, and Key Management an intrusion facilitator and thus, a precursor to 

threat T1). Nineteen of these frameworks were concerned with another data breach precursor, threat 

type T5 (account hijacking). The analysis of the review frameworks shows that frameworks proposed 

between 2015 and 2021 address more threats than those proposed between 2010 and 2014 

(according to my findings, such frameworks can be categorized as more comprehensive). 

The review analysis regarding the MCC security requirements addressed by each framework shows 

no specific trend regarding the number of fundamental MCC security requirements addressed. 

However, there was a slight increase in the number of frameworks addressing data integrity as an 

MCC security requirement, rising from one framework (F1) in the first half of the reviewed period to 

four frameworks (F20, F21, F27, and F30) in the second half of the review.  

Furthermore, no frameworks addressed data confidentiality, integrity, and availability, which are the 

three basic security requirements of an information system (Table 2.5, column five). In addition, none 

of the frameworks addressed all seven fundamental security requirements. All frameworks 

addressed data confidentiality except one. Authentication focused on twenty-six frameworks, while 

five and eight frameworks addressed data integrity and availability. Most frameworks handle at least 

three security requirements, with data confidentiality and authentication being the most prevalent 

combination. Figures 2.2 and 2.3 show the graphical representation of the number of threats and 

security requirements addressed by all the thirty-five (35) frameworks used in this review. The 

analysis so far indicates that the frameworks that include IDS and apply ML approaches can offer 

more comprehensive MCC data security solutions. 

Finally, the review demonstrates that various security approaches have been proposed to improve 

the security of user data in the MCC environment. Data protection approaches via encryption and 

access control via identity and trust management were the most prevalent. However, several 

frameworks focused on identifying threats to data confidentiality, such as those that occur within the 

"live" MCC environment, such as live monitoring and intrusion detection techniques. According to 
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the analysis of existing works carried in this study, shows that frameworks that incorporate IDS and 

utilize cognitive approaches can provide a more comprehensive MCC data security solutions. 

Additionally, due to the requirement to address security threats across the MCC environment's 

various layers, a comprehensive security solution may need to integrate and coordinate the use of 

multiple security controls such as stored data protection, access control, intelligent activities 

monitoring, and intrusion detection. This study adopted IDS techniques to create a more secure 

MCC data security environment and provide a more comprehensive solution to data security issues 

in MCC. This study reviews existing IDS frameworks in both mobile and cloud environments to 

understand this security technique in-depth, as discussed in the subsequent section. 

Figure 2.2. Summary of the Address Threats by Existing Frameworks 

35

4 7

25

19

4 6 8 5 2 6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

N
u

m
b

e
r 

o
f 

Fr
am

e
w

o
rk

s

MCC Threat Category

Summary of Address Threats by Existing 
Data Security Frameworks



42 

Figure 2.3. Summary of the Address Security Requirements by Existing Frameworks 
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content or modifies the environment's security. It can potentially alter the configuration of other 

security controls designed to thwart an attack, such as network reconfiguration of a device that 

prevents the attacker or the victim from gaining access to the system. IPS incorrectly classifies a 

legitimate non-intrusive surveillance system's normal activity as malicious and takes appropriate 

action in response to that detection.  

2.6.1 INTRUSION IN THE MOBILE DEVICES  

In MCC, intrusion can occur at the MD and in the cloud infrastructure. MDs have an architecture 

similar to personal computers (PCs), making them vulnerable to the same class of intrusions or 

malicious activities. Nowadays, MD users want to download apps for various purposes from app 

markets, including social networking, playing new games, and photography. In general, they are 

unconcerned about malicious apps and will download them regardless of whether they are infected 

with malware or not. Additionally, they will install and run these apps on their devices. As a result of 

these factors, the number of smartphones infected with malware and adware applications is rapidly 

increasing. 

Kaspersky Lab reported the prevention of over 9 million malware, adware, and riskware attacks on 

MDs in 2021. Most of the detected attacks are associated with RiskTool apps. In addition, Kaspersky 

also reported the detection of 12,097 malicious apps that belong to mobile banking categories and 

6,157 belonging to the mobile ransomware malware category. However, Android has some 

fundamental mechanisms for controlling app permissions, and the critical point is that a large number 

of unexpected (or unknown) attacks target smart gadgets. Users must employ a robust security 

solution to mitigate those attacks at the MD user layer in the MCC environment. 

Mobile malicious application (MMA) is a type of hidden malware that operates in the background of 

the victim's device, completely undetected by the user. It can also execute or connect to other 

networks to obtain new instructions. Additionally, the MMA can manipulate the victim's device, 

resulting in specific results, such as abusing sensitive account specifications and information. For 

instance, an MMA can send a message to a particular phone number or reveal the user's location 

without the user's knowledge (Marforio et al., 2016).  

In other words, the current version of MMAs is becoming increasingly sophisticated with malware 

that can run under the guise of legitimate apps, undetected by users and even anti-malware, and 

then perform some trick activities under the control of malicious users. The next generation of MMAs 

is expected to be even more intelligent, with botnet-like characteristics capable of controlling and 

hijacking victim devices (Karbab et al., 2016). 

Malware is a type of malicious software that can steal information from users' devices, and, 

additionally, anti-malware programs can predict its behaviour. Numerous malicious apps provide 
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vulnerable entry points for malicious attacks on a user device in the MCC environment. The following 

are some of the categories of intrusions in MD (Inayat et al., 2017). 

A. Virus: A virus is a malicious app capable of imitating itself, and its various imitations can infect

other applications, the boot sector, or files by attaching (or adding) themselves. The MD user must 

download and execute the malicious app to infect the device (La Polla et al., 2012). 

B. Spyware: Spyware is malware that monitors the victim's device to monitor and control user

activities such as location, contacts, calls, texting, and emailing. In some cases, it can transmit such 

data to another location via available networks (or email, SMS, etc.) and take control of a device 

without the user's knowledge (Inayat et al., 2017).  

C. Bot Process: A mobile botnet is a collection of infected MDs remotely controlled by a

botmaster (e.g., an individual who disrupts normal network traffic flow) without the users' knowledge. 

In other words, it creates a flaw within the intended app that allows attackers to gain complete control 

of the victim's device. It then begins communicating with it and receiving new instructions from 

specific servers. From a hacker's perspective, botnets are one of the most dangerous types of 

attacks because they can be used and controlled for various malicious purposes (most frequently, 

DDoS (Distributed Denial of Service) or spam attacks) (Alomari et al., 2012). 

D. Phishing apps: A phishing app is a type of malware designed to look exactly like a legitimate

application (for example, a mobile banking app, a market app, etc.) to steal sensitive information 

such as usernames, passwords, credit card specifications, and so on. Technically, these bogus apps 

impersonate legitimate apps on the victim's device by masquerading as trusted apps. Phishing apps 

can compromise the confidentiality of user input to hijack login authentication (Chaudhry et al, 2016). 

For example, a phishing app may mimic a mobile banking login screen to steal the user's account 

information (e.g., username and password). It is typically used to steal confidential information under 

the guise of fake mobile banking apps, which have become a recurring threat due to several reported 

incidents. According to Kaspersky Lab's malware analysis, a total of 12,097 mobile banking Trojans 

were discovered in 2021 that used phishing to steal users' account information (Kaspersky, 2021). 

E. Trojan: A Trojan is a type of malware that allows unauthorized access to the victim's sensitive

interactions, such as purchase transactions, premium rate calls, and so on. As a result, the goal of 

these malicious apps is to transmit under the guise of legitimate apps or file devices (La Polla et al., 

2012). 

F. RootKit: A rootkit is a hidden process that can run in the background of a victim's device and

create malicious flaws for malware writers by infecting the operating system. In practice, this malware 

attempts to disable firewalls and anti-malware software or hide malicious user-space processes used 

to install Trojans (La Polla et al., 2012). 

G. Man-In-The-Middle Attack: A Man-In-The-Middle (MITM) is a stealthy fraud that entails

eavesdropping data transmissions between two communication devices. For example, the attacker 
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establishes a new connection between the target device and the server during a banking transaction. 

The hacker uses various techniques to split the direct connection into two new lines. The first 

connection is between the hacker and the server; the second is between the hacker and the victim's 

smartphone. This attack is one of the most effective threats since the TCP and HTTP protocols are 

based on the Unicode or ASCII standard. As a result, MITM attackers can decode and manipulate 

data streams as they pass through the target network. 

2.6.2 INTRUSION IN THE CLOUD-INFRASTRUCTURE 

CC environments are also vulnerable to intrusions that target the security of technology itself. 

Confidential information that users of cloud resources may store may become the target of an attack. 

Through obtaining unauthorized access, attackers may violate the privacy and confidentiality of cloud 

users' data stored in the cloud. Amongst others, the types of intrusion attacks prevalent in the CC 

infrastructure include insider attacks, flooding attacks, Denial of Service (DoS) attacks, user to root 

attacks, port scanning, Virtual Machine (VM) attacks, and covert-channel attacks. Such intrusion 

attacks are dangerous since they affect both the MD users and the CSP. Moreover, it is the 

responsibility of CSPs to provide adequate security protection of user information (Inayat et al., 

2017). The following are types of intrusions in the CC environment. 

A. Insider attacks: This type of attack allows a legitimate user of the cloud infrastructure to

misuse unauthorized privileges by performing malicious activities in the cloud environment,

thereby accessing, or modifying another user's information without authorization (Modi et al.,

2013).

B. Flooding attacks: In this attack, intruders send many packets from an innocent host in the

network, thereby making them not respond to legitimate traffic. In MCC, the user can access

virtual machines when connected to the internet, which an attacker can use to cause DoS

via the innocent host. Flooding attacks affect the availability of services to an authorized user

when an intruder attacks servers that provide services to a user. It involves the availability of

services offered by such servers in the MCC environment (Modi et al., 2013).

C. User to root attacks: In this type of intrusion, attacker gains access to a legitimate user's

account by sniffing passwords. As a result, they can exploit vulnerabilities to gain root-level

access to the system. Buffer overflows, for example, are used to generate root shells from a

process that is running as a root. It occurs when the application program's code exceeds the

size of the static buffer. Frequently targeted are the mechanisms used to secure the

authentication process. There are no universally accepted security mechanisms for

preventing security risks such as insecure password recovery workflows, phishing attacks,

and keyloggers. In the case of CC, the attacker gains access to valid user instances, allowing

them to gain root-level access to VMs or hosts (Inayat, et al, 2017).
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D. Port scanning: In this type of intrusion, the intruder attempts to locate and access an open

port on the cloud network to launch attacks against cloud resources. This attack can reveal

network-related information such as IP addresses, MAC addresses, routers, gateway filtering,

and firewall rules. Some of the various port scanning techniques are CP scanning, UDP

scanning, SYN scanning, FIN scanning, ACK scanning, and Window scanning. In a cloud

scenario, an attacker can attack offered services by scanning for open ports where these

services are provided (Modi et al., 2013).

E. Attacks on Virtual Machine (VM): In this type of intrusion, an attacker can gain control of

installed VMs by compromising the lower layer hypervisor. Hackers may compromise the

installed hypervisor and gain control of the host via these attacks. New vulnerabilities,

including zero-day attacks, are discovered in VMs, attracting an attacker's attention, and

allowing them to access the hypervisor or other installed VMs. Attackers use zero-day

exploits before the target software's developer is aware of the vulnerability. A zero-day

vulnerability in the Hyper VM virtualization application was exploited, resulting in the demise

of numerous virtual server-based websites. (Inayat, et al, 2017).

F. Covert-channel attacks: In this type of attacks, the intruder exploits the weakness in the

isolation of shared resources and use hidden part to steal confidential information. A passive

attack enables the hacker to gain remote access to the infected node, thereby jeopardizing

user confidentiality. Using backdoor channels, the hacker can take control of the victim's

resources and turn them into zombies to launch a DDoS attack. Additionally, it reveals the

victim's confidential information. As a result, the compromised system has difficulty

performing routine tasks. In a cloud environment, an attacker can gain access to and control

the resources of a cloud user via a backdoor channel and turn a VM into a zombie to launch

a DoS/DDoS attack. A firewall (in the cloud) may be a standard solution for preventing some

of the aforementioned attacks. Flooding and backdoor channel attacks can be detected using

either signature-based or anomaly-based intrusion detection techniques (Wu et al., 2014).

2.6.3 TYPES OF INTRUSION DETECTION SYSTEM 

There are four major types of intrusion detection systems (IDS) used in the CC environment: host-

based intrusion detection systems (HIDS), network-based intrusion detection systems (NIDS), 

hypervisor-based intrusion detection systems, and distributed intrusion detection systems (DIDS). 

A. HIDS: This type of IDS detect intrusion by analysing the information received from a host

machine. The HIDS collects and analyses data from a specific host machine. HIDS monitors

the machine for intrusions by collecting information such as the file system being used,

network events, and system calls. HIDS monitors host kernel, file system, and program

behaviour changes. When the system detects a deviation from expected behaviour, it alerts
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the user to the presence of an attack. The effectiveness of HIDS is contingent upon the 

system characteristics being monitored. In the CC environment, HIDS is installed either on a 

host machine, VM, or hypervisor to monitor and analyze log files, security access control 

policies, and user login information to detect intrusive behaviour. If it's installed on a VM, the 

cloud user is responsible for its monitoring. Similarly, if installed on a hypervisor, the CSP is 

accountable for monitoring (Inayat, et al, 2017). 

B. NIDS: This type of IDS detect intrusion by analysing the network packets to detect malicious 

activities in the network.  NIDS can detect intruder by comparing the current network 

behaviour with previously observed behaviour (Modi et al.,2013). NIDS monitors network 

traffic to detect malicious activity such as denial-of-service attacks, port scans, and even 

attempted computer hacking. For intrusion detection, network data is compared to known 

attacks. NIDS employs a more robust detection mechanism to identify network intruders in 

real-time by comparing current behaviour to previously observed behaviour. NIDS is primarily 

concerned with monitoring individual packets' IP and transport layer headers to detect 

intrusion activity. NIDS employs intrusion detection techniques based on signatures and 

anomalies. NIDS has only a minimal view of the host machines. If network traffic is encrypted, 

the NIDS cannot decrypt it. Al-Hemairy et al. (2009) surveyed the security solutions used to 

detect ARP spoofing attacks. They concluded that the XArp 2 tool is an effective, 

commercially available security solution that accurately detects ARP spoofing attacks. 

C. Hypervisor based IDS(Hy-IDS):  This type of IDS allows users to monitor communication 

protocols among VMs and analyses the behaviour of these communications to detect 

possible intrusion (Modi et al.,2013). A hypervisor is a software platform that enables the 

execution of virtual machines. An IDS based on hypervisors is running at the hypervisor layer. 

It enables users to monitor and analyze communications between virtual machines (VMs), 

between hypervisors, and within hypervisor-based virtual networks. One of the advantages 

of hypervisor-based IDS is the availability of information.VM introspection-based IDS(VMI-

IDS) is one type of hypervisor-based IDS.  

 

Hypervisor-based IDS is a critical technique for detecting intrusions in virtual environments, 

particularly CC environments. VMI-IDS differs from traditional HIDS in that it directly observes 

the host's hardware states, events, and software states, providing a complete picture of the 

system than HIDS. The virtual machine monitor (VMM) manages hardware virtualization and 

provides isolation, monitoring, and interposition capabilities. VMI-IDS has access to the VMM 

so that code running in the monitored VM does not communicates with VMM via the VMM 

interface, enabling VMI-IDS to obtain VM state information, monitor specific events, and 

control VMs. This VMM interface comprises Unix sockets that allow you to send commands 

to and receive responses from VMM. Additionally, it enables physical memory access to the 
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monitored VM. The OS interface library translates VMM's low-level machine states into a 

higher-level OS structure. A policy engine is included for performing high-level queries on the 

monitored host's operating system. Even if the system is compromised, the policy engine 

responds appropriately (Modi et al.,2013). 

D. DIDS: DIDS is a collection of IDS (for example, HIDS, NIDS, e.t.c.) distributed across a large

network, all of which communicate with one another or with a central server that enables

network monitoring. The intrusion detection components gather system information and

format it for transmission to the central analyser. A foremost analyser is a computer that

collects and analyses data from multiple IDS. The analysis employs a combination of

anomaly and signature-based detection approaches. DIDS can be used to detect both known

and unknown attacks because it combines the benefits of NIDS and HIDS (Modi et al.,2013).

2.6.4 INTRUSION  DETECTION METHODS 

In the CC environment, the following detection method are used in the design of cloud-based 

detection system: These methods are briefly described as follows: 

A. Signature-based IDS: This detection method tries to define a set of rules or signatures used

to predict and detect the consequently known patterns of an attack. This method usually

achieves high accuracy in detection with minimal false positives in recognizing intrusions in

a specific environment. This method is used to identify a known attack in a cloud-based

system. The positioning of the IDS in the cloud network is significant and determines the

categories of external or internal attacks it can effectively detect. If an IDS that uses the

signature-based method is placed at the front end of the cloud network, it can detect known

external attacks but not detect internal intrusion, but if placed at the back end, it can detect

both internal and external attacks (Patel et al., 2013).

B. Anomaly-based IDS: This detection method is concerned with identifying a malicious attack

that seems anomalous concerning normal behaviour in a cloud network. Different techniques

are used in this type of detection, such as data mining, statistical modelling, and ML. This

approach involves collecting data relating to the behaviour of authorized users over some

time and then applying statistical tests to the preserved behaviour to determine whether that

behaviour is legal or not. It has the advantage of identifying attacks that have not been found

previously. This method applies to the cloud-based infrastructure for detecting unknown

attacks at different levels. Modi et al. (2013) reported that the adoption of soft computing

techniques is used to improve the accuracy and efficiency of intrusion detection using

anomaly-based detection methods. Some of these soft computing techniques used in

anomaly-based intrusion detection are Artificial Neural Network (ANN), Fuzzy logic,

Association rule mining, Support Vector Machine (SVM), Genetic Algorithm (GA), and so on.
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C. Hybrid IDS: In these IDS, the capabilities of an existing IDS are enhanced by combining the

two methods (signature-based and anomaly-based) to detect both known attacks and

unknown attacks (Patel et al., 2013).

2.7 ANALYSIS OF CURRENT IDS FRAMEWORKS IN CC, MD AND MCC ENVIRONMENT 

Following up on the summary presented in section 2.6.2, this analysis of the current IDS frameworks 

in the CC, MD, and MCC environments addresses the second research objective stated in chapter 

one, section 1.3. The search for the articles across the different databases (IEEE, Science Direct, 

ACM, and Springer Link) resulted in 412 articles published between 2010 and 2020. The search 

string used the Boolean OR and AND to construct the keyword expression used in the search: 

(intrusion AND detection AND ((Mobile Cloud) OR MCC)) OR (anomaly AND detection AND ((Mobile 

Cloud) OR MCC)) OR (signature AND detection AND ((Mobile Cloud) OR MCC)) OR (internal AND 

attack AND ((Mobile Cloud) OR MCC)).  

This study selected sixty-five peer-reviewed articles for journals and conferences written in English. 

The selected articles proposed an IDS framework targeting the CC, MD, or MCC environment. The 

selection of this relevant articles outside the MCC domain was limited since only a few works that 

use IDS have been proposed in the MCC environment. Analysing the existing IDS frameworks that 

target either the CC, MD, or MCC environment reveals possible research gaps and addresses 

research objectives 2 in chapter one, section 1.3. The articles were analysed (Table 2.6) using the 

following predefined set of dimensions: 

IDS Type(D7): This dimension specifies the type of IDS proposed in a specific framework 

(for example, HIDS, NIDS, DIDS, or Hy-IDS). 

Detection Method(D8): This dimension identifies the method of intrusion detection used in 

the proposed framework (for example, Signature-based (SB), Anomaly-based (AB) and 

Hybrid (HB)). 

Target Environment(D9): This dimension specifies the environment the framework was built 

to work in, such as MD, CC, or MCC. 

Machine Learning (ML) Component(D10): This dimension indicates whether or not the 

framework incorporates any ML process or algorithm for intrusion detection. 

Prevention Component(D11): This dimension indicates whether or not the framework 

provides an intrusion prevention mechanism in addition to the intrusion detection ones. 
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Table 2.6. Analysis of IDS Frameworks 

ID. Source D7 D8 D9 D10 D11 

F36 Dhage et al., 2011 DIDS AB CC Yes No 

F37 Houmansadr et al., 2011 HIDS SB CC No Yes 

F38 Ulltveit-Moe et al., 2011 HIDS AB MD No No 

F39 Modi et al., 2012 NIDS HB CC Yes No 

F40 Khune & Thangakumar, 2012 HIDS SB CC No Yes 

F41 Yan, 2012 NIDS AB CC Yes No 

F42 Yassin et al., 2012 NIDS SB CC No No 

F43 Ficco et al., 2012 DIDS SB CC No No 

F44 Man & Huh, 2012 NIDS SB CC No No 

F45 Patel et al, 2012 NIDS HB CC Yes Yes 

F46 Roshandel et al., 2013 DIDS HB MD Yes Yes 

F47 Dolgikh et al., 2013 NIDS AB CC No No 

F48 Yazji et al., 2014 HIDS AB MD Yes Yes 

F49 Milosevic et al., 2014 HIDS AB MD Yes No 

F50 Li et al., 2014 NIDS AB MD Yes No 

F51 Idrees & Muttukrishnan, 2014 NIDS AB CC Yes No 

F52 Moorthy & Masillamani, 2014 DIDS HB CC Yes No 

F53 Pandian & Kumar, 2014 NIDS AB CC Yes Yes 

F54 Qi et al., 2014 NIDS AB MD Yes No 

F55 Kumar & Hanumanthappa, 2015 NIDS SB CC No No 

F56 Marengereke & Sornalakshmi, 2015 NIDS SB CC No Yes 

F57 Shi et al., 2015 DIDS AB MCC No Yes 

F58 
Mehmood et al., 2015 Hy-

IDS 
SB CC No No 

F59 Toumi et al., 2015 DIDS AB CC Yes No 

F60 
Fischer et al., 2015 Hy-

IDS 
AB CC Yes No 

F61 Modi, 2015 NIDS HB CC Yes Yes 

F62 Singh et al, 2016 NIDS AB CC No No 

F63 Hou et al., 2016 HIDS AB MD Yes No 

F64 Hatcher et al., 2016 HIDS AB MD Yes No 

F65 Dbouk et al., 2016 NIDS SB CC No No 

F66 Kholidy et al., 2016 DIDS HB CC No Yes 

F67 
Pandeeswari & Kumar, 2016 Hy-

IDS 
AB CC Yes No 

F68 Nagar et al., 2017 DIDS HB CC No Yes 

F69 Tong & Yan, 2017 HIDS HB MD No No 

F70 
Nezarat, 2017 Hy-

IDS 
AB CC No No 

F71 Moloja & Mpekoa, 2017 NIDS SB CC No Yes 

F72 Balamurugan & Saravanan, 2017 NIDS AB CC No Yes 

F73 Idrissi et al., 2017 DIDS SB CC No Yes 

F74 
Nezarat & Shams, 2017 Hy-

IDS 
AB CC No No 

F75 Raja & Ramaiah, 2017 NIDS AB CC Yes No 

F76 Velliangiri & Premalatha, 2017 NIDS AB CC Yes No 

F77 Sohal et al., 2018 NIDS AB CC Yes Yes 

F78 Li et al, 2018 NIDS AB CC No Yes 

F79 Ghribi et al., 2018 NIDS AB CC No No 

F80 Nguyen et al., 2018 NIDS AB MCC Yes No 
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ID. Source D7 D8 D9 D10 D11 

F81 Ravji & Ali, 2018 NIDS HB CC No Yes 

F82 Qin et al., 2018 HIDS AB CC Yes No 

F83 Achbarou et al., 2018 DIDS HB CC No No 

F84 Besharati et al., 2018 HIDS AB CC Yes No 

F85 Kim et al., 2018 NIDS AB CC Yes No 

F86 Modi & Patel, 2018  NIDS HB CC Yes No 

F87 Peng et al., 2018 NIDS AB MCC Yes No 

F88 Rajendran et al., 2018 NIDS AB CC Yes No 

F89 Ribeiro et al., 2018 HIDS AB MD Yes No 

F90 Dey et al., 2019 DIDS AB MCC Yes No 

F91 Weng & Liu, 2019 NIDS AB CC Yes No 

F92 Ribeiro et al., 2019 HIDS AB MD Yes No 

F93 Zhou et al., 2019 HIDS AB MD Yes No 

F94 Mugabo & Zhang, 2020 NIDS AB MCC Yes No 

F95 Kim et al.,2020 NIDS AB MD Yes No 

F96 Lima et al.,2020 HIDS AB MD Yes No 

F97 Barbhuiya et al., 2020 NIDS AB MD Yes No 

F98 Manikanthan et al., 2020 HIDS AB MD Yes No 

F99 Subramaniam, 2020 DIDS SB MCC No No 

F100 Gaharwar & Gupta,2020 NIDS AB MD No Yes 

Note: D7-IDS Type, D8-Detection Method, D9-Target Environment, D10-ML 
Component, D11-IPS Component 

   

2.7.1 REVIEW OF IDS FRAMEWORKS THAT TARGETS CC INFRASTRUCTURE 

This review shows that 65% of the selected frameworks target IDS implementation in the CC 

environment. The frameworks proposed in F37, F40, F82, and F84 are HIDS types that target the 

CC environment. The frameworks presented by the authors in F37 and F40 use an SB detection 

approach and proxy servers for in-depth forensic analysis of files stored locally on the device for 

intrusion detection in the CC environment. The proposed frameworks reported by the authors in F82 

and F84 use the AB detection approach with ML techniques. F82 uses a mobile agent to collect data 

from each host for its detection process automatically. However, F84 focuses on protecting the VMs 

in the CC environment. In this review, the NIDS proposed solution that uses the SB detection method 

has the detection engine located on the cloud server. The analysis of the reviews shows that only 

two frameworks that use the SB detection method proposed by the authors in F56 and F71 

incorporate the IPS component to mitigate malicious activities detected in the CC environment. The 

framework presented in F44 uses correlated alerts for its detection process. Some solutions that 

target the CC environments shift the detection engine to the MD node, as reported by the authors in 

F55 and F65. The solution presented in F42 enhances the SB detection method by automatically 

updating a new signature.  

The NIDS frameworks that use the AB detection method for analysing network traffic apply various 

ML techniques to detect intrusions in the CC environment. F76 and F88 were concerned with 

detecting DoS attacks in the CC infrastructure. Framework F91 provides a novel approach for 
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anomaly detection using statistical time series features. F85 applies both supervised and 

unsupervised ML techniques to improve the detection and classification of attacks in the CC 

environment. The security approach presented in F78 incorporated mobile immune agents, while 

F79 uses the correlation of alerts to detect malicious activities in a network. The frameworks 

presented in F62, F75, and F77 use ML techniques. The solution in F77 was concerned with 

predicting the malicious devices in the cloud network. At the same time, F62 relies on identifying 

network paths where disruption occurs as a result of longer transmission times and reduced speed 

in transmission for intrusion detection. 

The NIDS solutions presented in F72 and F53 address security issues concerning communication 

using cloudlet controllers and virtual private networks (VPNs), respectively. However, the 

frameworks presented in F47, F41, and F51 analyze system calls and model the device's behaviour 

to enable the IDS to identify attacks. The NIDS frameworks presented in F39, F45, F61, F81, and 

F86 apply the HB detection method to identify intrusions in the CC environment. Most of these 

solutions combine SNORT with ML algorithms. However, the framework proposed by the authors of 

F81 uses honeypot technology to produce an early warning about possible threats and attacks. 

The frameworks presented by the authors in F58, F60, F67, F70, and F74 are Hy-IDS. Only F58 

uses the SB detection method, while F60, F67, F70, and F74 use the AB detection method in their 

detection engines located at the CC infrastructure. However, none of the Hy-IDS uses a hybrid 

detection method. Mobile agents are common in these frameworks reported by the various authors 

mentioned above. These mobile agents carry intrusion alerts from each virtual machine in the cloud 

to a management server for analysis to detect distributed intrusions at the hypervisor layer. The 

solutions presented in F73, F43, F36, F59, F52, F66, F68 and F83 are DIDS. The authors in F43 

and F73 use the SB detection method to design their proposed frameworks. In addition, the HB 

detection method was applied to F52, F66, F68, and F83. The framework reported in F36 and F59 

uses the AB detection method for managing intrusions in the CC environment. 

  2.7.2 REVIEW OF IDS FRAMEWORKS THAT TARGETS MD INFRASTRUCTURE 

The frameworks proposed by the authors in F38, F48, F49, F63, F64, F69, F89, F92, F93, F96, and 

F98 are HIDS types that target the MD environment. The detection engine for these frameworks was 

located at the device level, except for F48 and F49. The framework reported by the authors in F48 

focuses on device resource optimization and places its detection engine in the cloud, while F49 

places its detection engine on the device. HB detection was applied in the framework presented in 

F69, while the other frameworks adopted the AB detection method. However, none of the HIDS 

types targeting the MD environment uses the SB detection method. The dynamic and static analysis 

of malicious apps in the MD node using system calls was used in the proposed framework in F69. 

Similarly, the framework proposed in F63 extracts system calls from the applications that reside on 



53 

the devices and constructs a weighted direct graph. It applies a deep learning algorithm to detect 

new attacks. Using ML techniques, the framework proposed by the authors in F89 presents an 

autonomous detection of malicious activities (known and unknown attacks).  

The frameworks presented in F38 and F48 use location-based services to detect intrusions at the 

MD node. F49 runs a local malware detection algorithm at the MD node to check for a known 

malware family. The security solution presented in F93 and F92 analyses system calls and system 

log files respectively to determine if a given app is malicious or not. The security techniques in F64 

use the Google Cloud Messaging service in malware detection. The NIDS frameworks targeting the 

MD environment in this review are seen in F50, F54, F95, F97, and F100. The NIDS based 

frameworks that target the detection of malicious activities at the MD node use the AB detection 

method. The detection engine in F50 resides in the cloud, while F54, F95, FF97, and F100 reside 

on the device. The framework presented in F46 uses the DIDS and the HB detection approach. The 

detection engine in F46 resides on both the device and the cloud. 

2.7.3 REVIEW OF IDS FRAMEWORKS THAT TARGETS MCC INFRASTRUCTURE 

The authors of F57, F80, F87, and F90 proposed frameworks that target the MCC environment. F57, 

F90, and F99 are DIDS types, while F80, F87, and F94 are NIDS types. All the frameworks that 

target the MCC environment presented in this review apply the AB detection approach with ML 

techniques, except for the framework reported by the authors in F99, which uses the SB detection 

method. F57 has the only prevention module. In the framework presented in F80, the attack detection 

module analyses incoming requests and classifies each request as normal or suspicious based on 

the trained deep learning model. The security techniques used in F87 apply balanced iterative 

reducing and clustering using hierarchies with principal component analysis for simulation 

experiments to demonstrate intrusion in the MCC environment. The framework in F90 presents an 

ML-based IDS that secures the data collected and data fusion in a distributed environment. This

framework (F90) uses a multi-layer intrusion detection technique to analyze incoming traffic and a 

decision-based technique to select a virtual machine. 

2.7.4 SUMMARY OF THE REVIEW  

The analysis of articles shows that most of the proposed IDS frameworks target the CC environment, 

as shown in Figure 2.4. The result of the analysis presented in Figure 2.4 shows that the MCC 

environment has the least framework. The analysis of the reviews shows that 9% of the selected 

IDS frameworks target the MCC environment, while 26% and 65% of the selected IDS frameworks 

target the MD and CC environments, respectively.  

As shown in the preceding subsections, most of the proposed IDS frameworks do not provide a 

prevention technique once an intrusion is detected. The results in Figure 2.5 show that, out of forty-

two frameworks that target the CC environment, only fourteen frameworks proposed a prevention 
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technique to handle intrusions detected in this environment. Similarly, only one (F57) out of six 

frameworks proposed a prevention technique in the MCC environment. In addition, three (F46, F48, 

and F100) out of seventeen frameworks have a prevention module in their detection engines that 

targets the MD environment. It was observed that some of the frameworks that have a prevention 

feature only deploy a passive prevention method, which requires the user or administrator to take 

appropriate action to mitigate suspected attacks. This is a challenge that needs to be addressed. A 

good prevention technique that requires a fast response to intrusion without the user or administrator 

taking any necessary action will help to enhance security in this environment. 

The review of existing IDS shows that only a few frameworks incorporate ML in the detection of 

intrusion, as shown in Figure 2.5. The use of a hybrid ML technique, which includes a supervised, 

semi-supervised, or unsupervised learning model, will help to improve security in this environment. 

The result of the analysis of existing IDS solutions in the review shows that the majority of the existing 

IDS frameworks use the AB detection method. The AB detection method is associated with a high 

rate of false alarms and required a lot of training time and computational resources. The HB detection 

method is reported to be better because it has a higher degree of accuracy in its detection process 

since it combines both the SB and AB detection methods. A good security framework that produces 

better accuracy in detection and low false alarms is required to enhance the security of the MCC 

environment.  

Several dimensions adopted in this study to analysed existing data security frameworks and existing 

IDS and IDPS frameworks(F1-F100) and models together with the validation metrics used in the 

evaluation of existing IDPS model proposed in extant literature are summarized in Table 2.7 and 

Table 2.8, respectively. 
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Figure 2.4. Analysis of IDS Frameworks and their Target Environment 

Figure 2.5. Analysis of IDS Frameworks for ML & IPS Components 
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Table 2.7. Dimensions Adopted in this Study for Framework Analysis  

ID Dimension Name Description 

D1 Domain This dimension describes the proposed security framework's 
architectural layers (MCUL, MNCL, and MCSPL). 

D2 Threats This dimension describes the threats that the existing data security 
framework in literature addresses using the eleven threats (T1 to T11) 
presented in Table 2.3. 

D3 Security 
Requirements 

This dimension describes the security requirements that the existing 
data security framework in literature addresses, as presented in Table 
2.1. 

D4 Security Approach This dimension describes the proposed framework's techniques to 
protect user data (such as encryption, biometrics, access control, activity 
monitoring, and intrusion detection). 

D5 Cloud Level Trust This dimension identifies the MCC components that are trusted by the 
framework. This study assumes that using a trusted third party within a 
proposed framework shows that the cloud infrastructure is not 
trustworthy. Similarly, if there is no third-party component in the 
proposed framework, the cloud infrastructure is assumed to be trusted. 

D6 Comprehensiveness This dimension is used to measure the number of threats a framework 
addresses. A framework is considered more comprehensive in this study 
if it addresses five or more threats; otherwise, it is less comprehensive. 

D7 IDS Type This dimension specifies the type of IDS proposed in a specific 
framework (for example, HIDS, NIDS, DIDS, or Hy-IDS). 

D8 Detection Method This dimension identifies the method of intrusion detection used in the 
proposed framework (for example, Signature-based (SB), Anomaly-
based (AB) and Hybrid (HB)). 

D9 Target Environment This dimension specifies the environment the framework was built to 
work in, such as MD, CC, or MCC. 

D10 Machine Learning 
(ML) Component 

This dimension indicates whether or not the framework incorporates any 
ML process or algorithm for intrusion detection. 

D11 Prevention 
Component 

This dimension indicates whether or not the framework provides an 
intrusion prevention mechanism in addition to the intrusion detection 
ones 
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Table 2.8 Existing Validation Metrics Used for the Evaluation of Existing IDS and IDPS 

S/N Metrics Description Calculating Function 

1 Classification 
Accuracy 
(CA) 

This is the total percentage of the correctly 
classified malicious and benign apps in any 
given sample dataset. 

𝐶𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100  

2 Error Rate 
(ER) 

This is the total percentage of all wrongly 
classified benign and malicious apps in the entire 
dataset. 

𝐸𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100 

3 Precision 
Rate (PR) 

This is the total percentage of correctly classified 
results of all malicious apps that belongs to the 
benign labelled in the dataset 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

4 Recall Rate 
(RC) 

This is the total percentage of malicious apps 
that are correctly predicted as malicious apps in 
the dataset. 

𝑅𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  

5 False 
Positive Rate 
(FPR) 

This is the total percentage ratio of malicious 
apps classified wrongly to the actual numbers of 
the malicious samples in the dataset 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100 

6 False 
Negative 
Rate (FNR) 

This is the total percentage ratio of benign apps 
classified wrongly to the actual number of 
samples in the dataset. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
× 100 

7 False Alarm 
Rate (FAR) 

This is the total percentage average ration of 
malicious and benign apps that are misclassified. 

𝐹𝐴𝑅 =
𝐹𝑃𝑅 + 𝐹𝑁𝑅

2

8 F-Measure
(FM)

This is the harmonic mean of the proposed 
classifier which is obtainable from the value of 
both PR and RC 

𝐹𝑀 = 2 ×
𝑃𝑅 × 𝑅𝐶

𝑃𝑅 + 𝑅𝐶

Note True Positive 
(TP) 

The total number of malicious apps that were classified correctly 

True 
Negative 
(TN) 

The total number of benign apps that were classified correctly 

False 
Negative 
(FN) 

The total number of malicious apps that were incorrectly classified as benign apps. 

False 
Positive (FP) 

The total numbers of benign apps that were incorrectly classified as malicious apps. 

2.8 STATE OF SECURITY FOR MOBILE DEVICES IN THE MCC ENVIRONMENT 

Attacks on the MD layer (MCUL) of the MCC infrastructure have increased in recent times due to 

the technique adopted by hackers. These attacks are different from those on desktops or enterprise 

information systems that are application-specific attacks such as port scanning or SQL injection 

attacks. The recent attacks on the MCUL in the MCC environment are in the form of users installing 

apps on their devices that require more than the usual number of permissions in order to perform 

malicious activities without user consent. Most of the user-installed apps in the MCC environment 

utilize more permissions, which enables the apps to retrieve privacy-related data that can be 

exploited by hackers for financial gain. In addition, the process of injecting malicious codes into 

legitimate apps by hackers has raised security concerns about the safety of user data stored locally 
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on both the device and the cloud infrastructure in the MCC environment. Such apps in the MCUL 

can serve as a point of entry for possible intrusion into the cloud services in the MCC environment.  

The popularity of Android devices amongst MCC users has motivated malware developers to target 

Android-based devices in this environment. One of the major contributing factors explaining why this 

platform has been targeted so easily is the open application publication policy, which allows its users 

to install apps from both official and non-official market stores. The relatively low cost of acquiring 

Android devices has been one of the reasons why the number of users of the platform has increased 

significantly. These devices are part of our daily lives as we use them to access sensitive resources 

that are business or work specifically. The increased reliance on these devices for our daily activities 

such as financial transactions, shopping, communication, and storing of private data has made them 

a prime target for malware developers. The recent trend by malware developers targeting mobile 

users, especially those on the Android platforms, has raised concerns with regards to the security of 

the user layer of the MCC environment. 

The end-users of the MC technology are exposed to risk through a number of different vulnerabilities. 

Different techniques have been proposed to solve the problem of MD users downloading malware 

mobile apps, focusing on mobile app security characteristics such as permissions, intent, API calls, 

system calls, kernel operation, and resource usage. For example, 

Alazab et al. (2020) proposed a malware detection model that uses permission and API calls. They 

proposed three different strategies for selecting relevant API calls that will improve the chances of 

detecting a malicious app. Using statistical and ML approaches, Idrees et al. (2017) proposed a 

novel malware detection system that uses a combination of permissions and intent to identify 

malicious apps. The model reported in their work was evaluated using 1,745 Android apps, and the 

authors reported a classification accuracy of 99.80%. However, the model was not implemented in 

a real-life Android device. The authors only reported their experimental work conducted on their 

personal computers. 

Hou et al. (2016) proposed a framework named Deep4MalDroid that could detect malicious apps 

using deep learning techniques. The framework proposed in their work applies the concept of weight 

graph for feature extraction of system calls. They propose a novel approach that uses dynamic 

analysis called component traversal to execute code routines in each given Android application to 

extract the Linux kernel system calls of the apps running on the devices. The model reported by 

these authors uses a dataset of 3,000 Android apps for both training and testing of their proposed 

system. 
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Qi et al. (2014) proposed a network behaviour-based malware detection for Android devices, which 

is made up of a network behaviour monitoring module, a network behaviour analysing module, and 

a storage module. The monitoring module is used for extracting features of network behaviour. A 

feature vector of the network behaviour characteristic was constructed based on the impact of 

malware on Android devices. The vector contains the process ID, the start and end time of the 

network connection, up/downflow, source/destination IP address, protocol type, and 

source/destination port number. They evaluate their model using 1260 malware apps. 

 

The security model proposed by Hatcher et al. (2016) detects malicious activities in Android OS 

mobile devices in which the detection process of these activities utilizes both static and dynamic 

analysis approaches, simultaneously providing rapid and intuitive security with predictive 

capabilities. The system is centred around four primary components, the Android App, the Security 

Server, Google Cloud Messaging (GCM) service, and the Analysis Module. The authors reported 

using 241 malware and 241 benign apps for the detection based on permissions in their experiment. 

Similarly, the authors use 91 malware and 95 benign apps for the detection based on system call 

data.  

Ribeiro et al. (2020) proposed a system that dynamically analyses device behaviour by monitoring 

deviations in device behaviour characteristics of certain features such as total CPU usage, memory 

consumption, total outgoing and incoming network traffic, battery usage, and so on using machine 

learning and statistical algorithms to classify it as either benign or malicious. 

Zhou et al. (2019) proposed a model for malicious attack detection using dynamic features extraction 

of mobile apps constrained in 166 dimensions and applied a novel ML classifier to identify malware 

apps by triggering an alarm. In their experimental work, system calls from both benign and malicious 

Android-based apps were collected. The detection engine reported in their proposed model acquires 

runtime system calls from unknown Android apps and forms the feature vector table, which is fed to 

the detection model to evaluate the behaviour of the unknown app. The behavioural analysis of the 

system calls enables their model to identify apps that are performing malicious activities on the user 

device. 

Feizollah et al. (2017) proposed a model named Androdialysis. The proposed system in their work 

uses Android intent as a feature for identifying malicious apps. The experimental work carried out by 

the authors used both permissions and intent to detect malicious apps. They achieve better accuracy 

using intent as compared to permission. They use a total of 7,406 apps, with an overall detection 

rate of 91% using intent and 83% using permissions. 
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Arp et al. (2014) proposed a lightweight approach (DREBIN) for detecting malicious apps using 

permissions, hardware components, restricted API calls, and network addresses. The proposed 

system was evaluated using 123,453 benign apps and 5,560 malware apps. The authors reported 

an overall classification accuracy of about 94%. Similarly, Saracino et al. (2016) presented a model 

called MADAM. MADAM analyses apps at four distinct levels: kernel, application, user, and package 

to detect malicious activities in apps. They tested their model with 2,800 apps and got an overall 

classification accuracy of 96%. 

Li et al. (2018) presented a model called SigPID, which uses permission to identify malicious apps. 

These models apply the concept of selecting significant permissions that are relevant to 

distinguishing malicious apps from benign apps. They identify 22 permissions that are significant in 

identifying a malicious app. The overall classification accuracy reported in their work is 93.62%. 

2.9 MOBILE APPLICATION RISK FACTORS AND ASSESSMENT  

Today's mobile internet is so popular that using mobile apps has become a crucial component of our 

daily lives. These mobile apps offer fantastic features like file sharing, email services, and 

entertainment, among others. Due to the extensive permissions that modern apps require, there is 

a significant risk that they could gain confidential data from MD users in the MCC infrastructure. 

Users in the MCC environment download applications via app stores like the Apple App Store and 

the Google Play Store (Feng et al., 2019). 

These apps are installed on their devices with permissions provided to allow access to their contacts, 

photo gallery, and location data, etc. While some of the apps may not be malicious, they can 

undermine user privacy by giving others access to personal information and sensitive data. The 

Internet of Things (IoT), a developing technology that enables everything in our daily lives to be 

connected, relies heavily on MCC devices like smartphones as end user interface. However, 

exchanging data between devices poses potential security risks. Due to a malicious programme that 

lives on a specific connected device, there is a chance that linked devices in the IoT environment 

could also become infected. These dangers are related to the vulnerability of mobile apps, 

particularly for users of the Android mobile operating system (Kim et al, 2020). 

The goal of the risk assessment is to offer a quantitative estimate of the likelihood that a resource 

accessed by an app would harm users. Particularly in the MCC environment, the risk assessment of 

mobile apps has not drawn much attention. However, as discussed in the preceding section, the 

majority of related research efforts focus on the capacity to distinguish between malicious and benign 

apps in the mobile environment.  For example, the work reported in Feng et al. (2019) uses app 

permissions and descriptions to determine the risk level of an app. Similarly, Wang et al. (2013) 

proposed a framework that uses apps permission and quantitative analysis to determine the 

riskiness of an app. 
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A risk assessment approach called XDroid was reported by Rashidi et al. (2019) to monitor the 

resource utilisation of Android devices based on the permissions requested. For the purpose of 

providing an adaptive risk assessment of the apps that are installed on the device, they adopted the 

use of the hidden Markov model and an online learning technique. Users of the model described in 

their work can create a unique profile of the resources they want to track. Based on the user-

approved device resources specified by the user, the model proposed by Rashidi et al. (2019) utilises 

a probabilistic method to model app behaviour and inform the user of suspicious actions. However, 

their work suffers from relying solely on the user to decide which resources should be monitored 

without considering the user's capability to recognise the proper resources to be watched. 

A model called PUREDroid was introduced by Alshehri et al. (2019) that assesses the security risk 

of Android apps based on the user's consented authorization. The model put forth by Alshehri et al. 

(2019) calculates the extent of the harm that could result from users of Android devices granting too 

many permissions. The requested and non-requested permissions of each mobile apps are 

represented using two orthonormal states vectors by PUREDroid, which calculates the risk score of 

each app based on the app category. According to PUREDroid, each app's risk score is calculated 

based on how frequently both good apps and malicious apps have asked for this permission. 

However, their algorithm ignores the fact that some malicious apps request a disproportionate 

number of permissions and only assigns a high-risk score to the dangerous apps. However, they do 

not use any kind of ML techniques in their work to enhance the performance of their model. 

A model named RISKMON was proposed by Jing et al (2014) to assist users in understanding and 

reducing security risks related to mobile apps, particularly in the Android mobile environment. The 

approach adopted by their model combines user expectations with runtime behaviour of trusted apps 

to create a baseline risk score. The risk score baseline results are applied to model an app's real-

world behaviour. When an app tries to access sensitive or important device resources, RISKMON 

assigns a score, and based on the risk baseline score, generates cumulative scores. By assuming 

that user assets can only be accessed with protected permission, the research presented in 

RISKMON analyses permission-protected only systems. They did, however, propose an automated 

permission revocation without considering the user's agreement, which might have an impact on the 

user's actions while utilising certain of the services that an app requests. 

In addition, the work reported by Son et al (2021) applies app static analysis approach to assess the 

risk of apps that resides on user devices. The work of Son et al (2021) focus on how each mobile 

app requests personal data and how the pattern of each request. The model proposed in their work, 

analyse personal data that most apps with the same commercial objective (such as social networks, 

commerce, sports, etc.) demand in order to define the "regular behaviour." Following that, they 



62 

determine how much the target app's signature deviates from the typical access pattern of the 

associated set of apps to estimate the risk of an app. 

In summary, several works in literature have used different risk assessment models to determine the 

risk poses by different apps in the mobile environment. Some of the existing work in the literature 

adopted the permission-based model, app description-based model, user review-based model and 

API-based model to determine the risk of an app running on the user device. Nonetheless, majority 

of the work in literature have failed to clearly state the risk factors associated with their proposed 

model. However, the work reported by Sharma and Gupta (2018) defines the risk factors that can 

used in the design of a risk assessment model. The proposed prototype system implemented in this 

study adopted the risk factors defined by Sharma and Gupta (2018) and improved categorization of 

each app risk level using an ensemble ML technique. The risk factor defined by Sharma and Gupta 

(2018) are briefly described as follows: 

High Risk Factor: In this category, the risk factor only applies to the permissions found in the sample 

of malicious apps and not in benign apps. 

Medium Risk Factor: In this category, the risk factor is determined if the percentage of permissions 

in malicious apps is greater than or equal to the percentage of permissions in benign apps, this 

category has a medium risk factor. 

Low Risk Factor: In this category, the risk factor is determined If the percentage of permissions in 

malicious apps in this category is lower than the percentage of permissions in benign apps in this 

category, then it is low risk. 

No Risk Factor: In this category, the risk factor only applies to the permissions found in the sample 

of benign apps and not in malicious apps. 

2.10 RESEARCH GAPS 

Following the outcomes of the analysis of the literature presented in this chapter, it can be concluded 

that most of the proposed security solutions in the MCC environment are not sufficiently 

comprehensive as they only provide countermeasures to a few of the known security threats. In 

addition, and to the best of my knowledge, none of the existing security solutions proposed in the 

literature addresses all MCC's known security threats and requirements; the majority of the solutions 

only focus on user authentication and data storage, applying biometric and cryptographical 

approaches as a means of providing a secure MCC environment.  

Furthermore, the analysis of the literature shows that activity monitoring using IDS techniques has 

the potential to address a wider spectrum of the threats that are faced by the MCC environment 

when compared to the more popular approaches such as user authentication and data storage 
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protection. While some of the current research in MCC security has investigated the application of 

ML methods in activity monitoring using IDS, the reported results still show a high rate of false alarms 

when detecting anomalous behaviour in MDs. In addition, the security algorithms employed by most 

existing ML techniques require significantly high computational resources, which makes their 

implementation infeasible at the MD level. The relatively high ML training time also affects the 

performance of these techniques.  

Nevertheless, only a few studies have proposed a prevention system for managing intrusions in the 

MCC environment. However, these prevention techniques are passive (i.e., user attention is 

required). The need for an active prevention approach that requires an automatic response without 

user attention is still an open area for further research.  

Overall, security issues affecting the MD node as part of the MCC environment, and the 

communication channels used by MDs have not received much attention in the extant research. 

However, attackers do focus their attention on the MD node as it is relatively more exposed (due in 

part to the lack of security awareness amongst MD users). Attackers target the MD node using 

malicious apps, code obfuscation, and repackaging of popular and legitimate apps with malicious 

payloads; these are difficult to detect by the defensive techniques currently available to MD users. 

As shown in the literature review, existing defensive techniques such as anti-virus and anti-malwares 

commonly used to protect the MD node in the MCC environments apply predominantly an SB 

detection approach, which cannot detect zero-day attacks on these devices. As already highlighted 

above, the security solution offering malware detection using ML techniques at the device level (i.e., 

without considering the other layers of the MCC architecture) may be computationally heavy and 

thus not feasible, given the resource constraints of the MDs. It was also observed that most of the 

existing solutions also require a constant connection between an online server and the MD 

consumption node for effective protection. However, it was shown earlier that in the MCC 

environment, the MD node is highly exposed, and, therefore, the security solution gaps identified 

above need to be addressed. Thus, the focus of this research is on the security needs and 

requirements of the MD node as part of the MCC environment. It aims to propose an implementable 

solution that offers better protection of the MD node in the MCC environment. 
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2.11 CHAPTER SUMMARY 

In this chapter, detailed background studies are discussed in the CC, MC, and MCC environments. 

The service models for both CC and MCC technology were briefly discussed. The CC deployment 

model, together with the benefits and challenges of both the CC and MCC technologies, was 

presented. This chapter also discusses in detail the security issues facing MCC by highlighting the 

security requirements, vulnerabilities, and threats associated with the MCC technology. The analysis 

of the STRIDE model using the MCC threats category was also presented in this chapter. General 

background on intrusion detection in both mobile and cloud-based environments was also discussed 

in this chapter. The state-of-the-art in security and the current proposed solution that addresses 

security issues at the MD node of the MCC infrastructure were discussed in this chapter. In addition, 

data security frameworks and IDS proposed and developed for the CC, MC, and MCC environments 

were discussed and analysed. The results of the literature survey analysis were used to identify 

existing research gaps that determine the focus of this study. A solution that addresses the identified 

gaps are discussed in subsequent chapters. 
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CHAPTER THREE 

DESIGN SCIENCE RESEARCH METHODOLOGY 

The previous chapter presents a detailed review of the literature on data security frameworks and 

intrusion detection systems in the mobile and cloud environment. The detailed analysis of the 

literature highlighted that none of the existing frameworks addresses all the known security threats 

in the MCC environment. The literature also shows that the user layer is relatively more exposed to 

attacks than other MCC architecture layers. Therefore, improving the user layer's security in the 

MCC architecture is critical. This research addresses the user layer security issues by proposing a 

comprehensive framework that protect against the top security threats relevant to the MCC 

environment. The framework is used in the development of a proof-of-concept IDPS prototype 

system that significantly enhances the security of the user layer of the MCC environment.  

This chapter presents the research methodology and research questions adopted for this study. The 

research question's solution was discussed in line with the research methodology, outlining the 

various steps required to complete each research phase. The proposed framework prototype system 

to enhance the security of the user layer of the MCC was also presented in this chapter. 

3.1 RESEARCH METHODOLOGY 

The Design Science Research Methodology (DSRM) was adopted as the research methodology 

required to conduct this study.  This study aims to develop a prototype system as a proof of concept, 

as outlined in research objective three, in chapter one, section 1.3. Similarly, the study that focuses 

on the design and evaluation of an artifact, such as the proposed prototype system that is 

implemented as a proof of concept in this study, has used the following research methodology 

reported in the following works, for example, Hevner et al. (2004), Peffers et al. (2007), and 

Offermann et al. (2009). Therefore, the choice of this methodology in this study.  

 

Peffers et al. (2007) stated that the DSRM is the framework that includes guidelines, practices, and 

procedures required to perform specific research that leads to the design of artifacts. The importance 

of this methodological approach is that it provides guidelines for the design and improvement of an 

artifact through continuous testing and iteration (Offermann et al., 2009). Hevner et al. (2004) 

introduced the DSRM in information systems (IS), which supports complex, artificial and purposefully 

designed systems. This methodology uniquely addresses the research problem by solving IS issues 

more efficiently. This research approach focuses on developing and evaluating artifacts for a specific 

research problem. The DSRM also highlights the researchers' contributions to the body of knowledge 

by analysing relevant literature and addressing issues raised in the gaps identified in this study. 

In IS, to accomplish a better understanding of and application of DSRM as a research methodology, 

Hevner et al. (2004) suggest that design is both a “process” (i.e., a set of activities that are acted 
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upon by the world) and a “product” (i.e., an artifact that is sensed by the world). The DSRM supports 

a problem-solving concept that shifts perspective between design procedures and designed 

solutions continuously for solving complex problems in IS research. The process involved in the 

DSRM consists of a sequence of expert activities that produce an innovative design artifact. The 

evaluation stage of this method provides feedback information and a better understanding of a given 

research problem, which hence improves both the design process and the quality of the final product. 

There is a series of iterations between the distinct phases of this methodology before a final artifact 

is produced. 

Hevner et al. (2004) mentioned four types of artifacts, i.e., constructs, models, methods, and 

instantiations. Most artifacts are designed to address unsolved problems, and their evaluation is 

based on their utility in solving those problems. Constructs provide the language used in defining the 

problem and solution. A model represents an instance of a real-world problem. Methods define the 

processes involved in solving a problem and provide guidelines on how the problems are solved. An 

instantiation shows the implementation of constructs, models, and methods in a working system. 

Based on the DSRM proposed by Hevner et al. (2004), instantiation is one of the most important 

artifacts to assess whether a solution or a prototype works since it adopts the implementation of 

constructs, models, and methods in solving the problem.  

As the research involves building a software artifact., other potentially suitable software development 

methodology was also considered among them, prototyping, adaptive software development and 

model-driven engineering (Saeed, et al, 2019). However, these approaches are concerned to a 

significant degree with identifying user requirements and tailoring the artefact to meet these. The 

focus of this research was the development of a framework, with the software artefact representing 

an instance of the framework that demonstrated the feasibility of the framework's implementation. 

Adopting DSRM as thus study’s methodology allowed to both model the real-world threat 

environment as relevant to the context of the research, and to design "new means to...change and 

improve reality” (Venable et al, 2017).   

This study applies the process mentioned in the DSRM by Offermann et al. (2009), as shown in 

Figure 3.1, to develop and implement a novel framework as a proof of concept to enhance data 

security in the user layer of the MCC architecture. The DSRM consists of rigorous steps required to 

design artifacts to solve a given problem, contribute to the body of knowledge, and provide a means 

to evaluate the proposed solution, as shown in Figure 3.1. The DSRM consists of three main phases 

(i.e., problem identification, solution design, and evaluation). Each of these phases is broken into 

different sequential steps that often refer to each other. The most crucial stage of the DSRM is 

designing an artifact that addresses the problems identified in the research.  
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Figure 3.1: Research Process Followed in this Study 
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3.2 PROBLEM IDENTIFICATION PHASE 

This study first reviews the existing data security framework to establish the MCC environment's 

state-of-the-art data security solution landscape. Second, a review of the IDS frameworks in the 

cloud-based environment to identify issues related to existing intrusion detection methods. The 

problems identified were then analysed to meet the research objectives. At the end of the problem 

identification phase, research gaps are identified, leading to the formulation of the research question. 

Main Research Question: What security components are required in a framework that can protect 

MCC resources against attacks and enhance the security of user data in the MCC environment? 

To address the main research question and meet the research goal stated in chapter one, section 

1.3, this study provides answers to the main research question and formulates possible research 

sub-questions. Hence, the first research sub-question (RSQ) is formulated as:  

RSQ1: Which specific MCC resources require to be protected to enhance the security of this 

environment? 

From the evidence shown in the literature analysis, existing research paid less attention to the user 

layer of the MCC infrastructure. The vulnerabilities associated with malicious apps can easily find 

their way into the devices used in the MCC environment because MCC Android users are allowed 

to download and install apps from official and unofficial app stores. The compromization of the user 

layer by malicious apps can serve as an entry point into the MCC environment, directly or indirectly 

affecting other MCC architecture layers. This study addresses these security issues by focusing on 

the mobile device as a resource that needs adequate protection in the MCC environment. 

RSQ2: What approach can be used to protect the identified MCC resources in RSQ1? 

In the literature review, different approaches have been reported to protect MCC resources against 

attacks. The most dominant approach used in protecting MCC resources such as user data is the 

biometric and cryptographic approach. It was evident in the analyses of literature that these 

approaches are widely used in protecting MCC resources, although they only protect the MCC 

resources against few numbers of known security threats in this environment. A protection approach 

that offers more comprehensive protection to these resources is required. Therefore, this study 

adopted the use of the Intrusion Detection and Prevention System (IDPS) approach using ensemble 

ML technique. The IDPS when combines with ML approach offers protection to a wide spectrum of 

threat as reported in the literature review and can protect MCC resources against both known and 

unknown attacks.   

RSQ3: What metrics can be used to evaluate the performance of the identified approach in 

RSQ2 and how can this approach be implemented to protect the resource identified in 

RSQ1? 
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Based on the detailed analysis of the literature reported in chapter two, several metrics were 

reported, this study adopted the classification accuracy of an attack, precision rate, recall rate, false 

alarm rate and energy consumption as metrics that can be used for the evaluation of the prototype 

system.  

3.3 SOLUTION DESIGN PHASE 

The second phase of the DSRM focuses on the proposed solution design to address the problems 

identified in this study. The proposed framework and the prototype that will be implemented as a 

proof of concept are discussed as follows: 

3.3.1 THE PROPOSED MCC DATA SECURITY FRAMEWORK 

The solution designed in DSRM provides support for the design of artifacts that guide the design 

objectives. Evidence from the literature analysis suggests that an MCC data security framework that 

aims to offer a comprehensive security solution should address threats across the different layers of 

the MCC architecture. This study suggested that a comprehensive framework should address at 

least five or more known security threats that cut across the different layers of the MCC architecture. 

Therefore, this study recommends that these threat types T1, T4, T5, T7, T9, and T10 should be 

addressed at the MCUL layer, threat types T1, T2, and T8 at the MNCL layer, and threat types T1, 

T2, T3, T4, T5, T6, T7, T10, and T11 at the MCSPL layer.  

This study proposes a comprehensive data security framework that protect MCC resources' 

confidentiality, integrity, and availability to their users, as shown in Figure 3.2. The proposed 

framework contains security management models that handle data security at rest and during 

transmissions across the three layers (MCUL, MNCL, and MCSPL) that make up the MCC 

architecture. The proposed framework adopts different existing security approaches to build the 

security management models across all three layers of the MCC infrastructure.  

A. MCUL Security Model: The security management model at the user layer applies both

static and dynamic analysis of mobile devices by monitoring the behaviour of apps that

reside on the device using an ensemble ML technique to detect malicious activities at the

MCUL layer. The security management at the user layer uses an IDPS approach to

handle the detection of malicious activities and the Attribute-Base Encryption (ABE)

technique to protect the data stored at the user layer in the MCC environment.

B. MNCL Security Model: The security management model at the MNCL of the proposed

framework applies an ML approach to monitor the user network requests coming from

the devices in the MCC environment and automatically stops all malicious requests

detected from the MCC user devices. The intelligent model deployed at the MNCL
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reduces the number of external attacks on the MCC resources located in the cloud 

infrastructure. 

C.  MCSPL Security Model: The security management model that resides on the MCSPL 

applies two levels of protection to tackle attacks coming from an external source using 

an Identity Management System (IdMS) and an ensemble ML-based IDPS position on 

the cloud network. The IdMS handles all the user authentication and authorization 

requests to manage user access to MCC resources at the MCSPL. The ensemble ML-

based IDPS stops all malicious activities that go undetected at the MNCL to protect MCC 

resources at the service provider layer. The proposed framework provides an ensemble 

ML-based IDPS deployed on each virtual machine and a hypervisor-based IDPS to 

protect the cloud infrastructure against insider attacks. The proposed IDPS position on 

the service provider layer is complemented with malware/spyware software to detect 

malicious cloud-based applications on the MCSPL. The proposed framework provides an 

ABE component to handle data encryption at rest as a last line of defence. 
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Figure 3.2: The Proposed MCC Data Security Framework. 
 

3.3.2 THE PROPOSED PROTOTYPE SYSTEM 

Based on the proposed framework in Figure 3.2, this study proposed implementing a prototype 

system as a proof of concept that offers a better security solution to the user layer of the MCC 

architecture. The proposed prototype system is a host-based Mobile-Cloud Intrusion Detection 

and Prevention System named MINDPRES, shown in Figure 3.3. The proposed prototype system 

(MINDPRES) aims to analyze the behaviour of different apps that reside on the MD by monitoring 

the app activities both when the user is using the device and when the device is idle. MINDPRES 

has an application evaluator that evaluates an application's risk to determine its risk level. When 

MINDPRES is installed on a device for the first time, it analyses each user-installed app, computes 

their risk score value, and determines each app's risk category. MINDPRES placed the list of apps 

that fall into high and medium risk categories into the app watchlist to constantly monitor each app's 

network activities within and outside the devices. The installation of a new app on the MCC user 

device triggers MINDPRES to read the content of the manifest file of the newly installed app and 

offload the requested permissions and intent by the app to the cloud server for preliminary risk 
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assessment. The risk level of the app is evaluated by an ensemble ML model using the number of 

dangerous permissions, intents, and hardware components required by the app for its basic 

functionality. The cloud-based app evaluation uses a static approach to determine the app's risk 

level, assign a risk score value (i.e., high, medium, and low), and send a response to the device 

based on the app's assessment results. The prototype system prioritizes monitoring apps behaviour 

with high and medium risk levels at the device level. 

Furthermore, MINDPRES uses a Host-Based-IDPS to safeguard the device by analysing suspicious 

API calls made by its apps. The information extracted by the Host-Based IDPS at runtime is used to 

monitor the device for malicious behaviour. The prototype system applies a hybrid detection method 

to monitor apps network activities (i.e., Internet usage, requested URL, upBytes, DownBytes, etc.). 

The prototype system monitors the device activities when the user is active (using the device) and 

when the user is not active (not using the device). 

Figure 3.3 The Proposed Prototype System (MINDPRES) 
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The proposed prototype system also applies an efficient ML feature selection (FS) technique, which 

removes features that are not important for the classification of malicious apps for improved 

performance. The FS approach removes features that are not important in distinguishing between 

malicious and benign apps. The process also involves selecting features (such as the required 

permissions, required intent, and required hardware used) common to malicious and benign apps. 

The statistical analysis of these feature sets alongside the ML FS algorithm identifies the feature 

sets that are important for use in the training of the ML model. 

Legitimate apps repackaged with malicious payloads by an attacker, when installed on the user 

devices are hard to detect by existing security solution in extant literature. The proposed prototype 

system monitors the apps' activities at runtime, both when used and when not used. The proposed 

prototype system includes an automatic intrusion prevention module to block detected malicious 

network traffic. However, MINDPRES gives users the flexibility to either execute such an app if the 

user feels the app is safe for her device due to the possibility of false alarms. In this study, the issues 

associated with the infeasibility of running an advanced security system using ML algorithms at the 

device level are mitigated by training the ML model at the cloud end and deploying the trained model 

to the device. Secondly, the application evaluator assesses each mobile app's risk level at the device 

end. This addresses the MD resource constraints, and these devices enjoy the benefits of ML. This 

study also applies the ML algorithm, requiring less computation resources for the actual detection at 

the device level, even though a highly secure algorithm has been used at the cloud end. This 

technique, adopted by this study, solves the problem of constant connection to the cloud server for 

actual device protection, as offered by the majority of the existing solutions in the CC and MC 

environments. 

3.4 EVALUATION AND COMMUNICATION PHASE 

The last stage of the DSRM involves the evaluation of the artifact, which is the prototype system. 

The evaluation phase applies standard security policy benchmarks to determine the system's 

effectiveness. The evaluation procedure requires laboratory experiments and evaluation of the 

prototype system using Android mobile apps on real-life devices. System testing includes continuous 

iterations to meet the requirements of the specified artifact as contained in the solution design stage.  

The effectiveness of the proposed prototype system was evaluated with a testbed of over 1000 

mobile applications that was collected from Google Play Store and Android malware repository. The 

evaluation of the prototype system involves real life experiment (five Android devices) and simulation 

experiment with Android device emulators by installing the prototype system (MINDPRES) in the 

various devices. The experiment was carried out for two weeks on using five real-life devices and 

twenty devices’ emulators. 
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The applications installed in each of the devices were tested on VirusTotal engine to ascertain 

whether the app is benign or malicious. The power consumption was also recorded for each stage 

of this experiment. The power consumption recorded during the experiment represent the battery 

usage when MINDPRES was installed on a real-life device. 

After completing the testing of the proposed system, the evaluation of the prototype system follows. 

The evaluation plans include experiments with both real-life devices and device emulators to check 

for the effectiveness and efficiency of the prototype system.  

Finally, a performance evaluation is conducted using Android mobile apps on real-life devices. This 

study uses the classification accuracy of an attack, precision rate, recall rate, false alarm rate, and 

energy consumption metrics to evaluate the performance of the prototype system. The evaluation 

results are compared with other related works in the literature. The proposed prototype system is 

evaluated by invited industry experts working in IT security roles. 

3.5 CHAPTER SUMMARY 

This chapter discusses the DSRM methodology and process adopted for this research. The DSRM 

guidelines for the conduct of this research were also discussed and applied to each of the stages. 

The solution design stage of the DSRM in this study discusses the proposed framework and a 

detailed description of the prototype system. The chapter also briefly discusses the prototype design 

plan and how the system will be implemented and evaluated. 
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND LABORATORY EXPERIMENTS 

The previous chapter discusses the research methodology adopted for this study. The research 

questions formulated were also addressed to align with the proposed framework and prototype 

system. The design, implementation, and evaluation plan of the proposed prototype system that will 

be implemented as a proof of concept were described. 

This chapter presents a brief description of Android OS's security system and a detailed description 

of the dataset used in this study. The data collection and analysis of the retrieved apps metadata 

(permissions and intents) from the dataset is presented in this chapter. The metadata analysis of the 

dataset shows the permissions and intent that are commonly used by both malicious and benign 

apps. The analysis of the permissions and intents also reveals some specific permissions and intent 

that can be used in ML algorithms as features to differentiate between the two app categories. This 

chapter also describes the feature selection techniques used in related studies and how these 

techniques can be used to reduce dataset dimensionality. Furthermore, this chapter proposes a 

filter-based feature section method that identifies the set of features needed for successful detection 

of malicious apps. The proposed filter was applied to the dataset constructed in this study and used 

to inform the dynamic app feature extraction process that provided the input to the ML detection 

model.  

In addition, a detailed description of the classification algorithms used in the experimental work and 

the evaluation metrics used to evaluate the performance of the proposed machine learning models 

is also provided. This chapter also reports the experimental work carried out to extract the dynamic 

behaviours of apps. The extracted data were used in the experiment, proposing two different 

machine learning models that use both static and dynamic feature analysis approaches. This chapter 

also presents the analysis of the collected data and the three laboratory experiments conducted. 

The results of the three experiments are also presented and discussed. 

4.1 ANDROID OPERATING SYSTEM SECURITY DESCRIPTION 

The choice of Android Operating System (OS) as a target environment for the implementation of the 

prototype system in this study is based on the very large market share currently occupied by this OS 

in the mobile market (statcounter, 2022). The statcounter (2022) has reported that the Android OS 

occupies over 71% of the current mobile market of MD users. The vulnerabilities introduced into the 

MCUL of the MCC environment, when Android user download apps from outside the official mobile 

app store which turn out to be malicious, makes this mobile operating system (OS) platform a prime 

target considering the large market share of devices running in this environment.  However, the core 

security component of the Android OS comprises different layers that enable developers to build 

secure applications. The Android OS provides a secure system such that no app can perform 
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activities that may affect other apps on the device, using the application sandbox and permission-

based access control system. Android uses Linux's user-based protection to identify and isolate 

application resources. The sandbox isolates applications and protects both the applications and the 

system from malicious applications. In the Android mobile OS environment, each application is 

assigned a unique user ID (UUID) and runs in a separate sandbox. Since the application sandbox is 

embedded in the OS kernel, this security model applies to native code and operating system 

applications. The application sandbox contains all software above the kernel, such as OS libraries, 

application frameworks, application runtimes, etc. Specific platforms restrict developers to a 

particular development framework, set of APIs, or language. On Android, there are no restrictions 

on the way an application may be written that are necessary to enforce security; native code is just 

as sandboxed as interpreted code in this regard (Android, 2021). 

The current permission-based access control model adopted by the Android OS plays a vital role in 

the Android security system and provides a secure environment. It handles access control to 

sensitive device resources such as user data and the device's functionalities. The permission-based 

access control model feature of the Android OS is used to invoke API calls for various functionalities 

in the mobile ecosystem. A complete list of all the different permissions required by the app is 

declared and stored in the manifest file before installation (Idrees et al., 2017). Any app that requests 

communication with another app or access to sensitive device resources must have adequate 

permission to perform such tasks. However, the effectiveness of this security model depends on the 

mobile user's ability to judge the permissions that need to be granted to a specific application. The 

granting of permissions by the user to apps whose developers' intention is maliciously unknown to 

the user can expose the device to an attack and possible leakage of sensitive information from such 

devices (Rai, 2013; Alshehri et al., 2019). 

Android permissions are classified into four categories based on their degree of protection: normal, 

dangerous, signature, and signature or system. Android includes an access mechanism that checks 

applications' permissions and determines whether they are authorized to access protected 

resources. Normal permissions are granted to apps without the user's intervention because they are 

not deemed harmful. For example, the user does not get any notification to authorize INTERNET 

permission since it falls under normal permission. The Android OS handles the authorization without 

user intervention. The dangerous permission requires user approval due to the risk of privacy leaks 

and access to sensitive API calls. Dangerous permissions are higher-risk permissions (such as 

READ CALENDAR) that grant requesting applications access to private user data or device control, 

negatively impacting the user. Malware developers can easily exploit these sets of dangerous 

permissions to target the end-users of this mobile environment. Signature permissions are granted 

only to apps that are signed with the same certificate that defines the permission. Preinstalled apps 
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or those signed with the device manufacturer's certificate are granted signature or system 

permissions, and third-party apps cannot access these permissions (Idrees et al., 2017; Feng et al., 

2019). 

 

The Android permission-based access control system requires users to grant requested permissions 

in two different ways (install-time permission requests and runtime permission requests). The older 

versions of the Android OS (Android 5.1.1 and below) enforce install-time permission requests, while 

the newer versions (Android 6.0 and above) apply runtime permission requests. The install-time 

request requires the user to grant all requested dangerous permissions before installing the app on 

the device. The install-time permission request restricts access to system resources and private 

data. This version of the permission-based security system is more vulnerable to attacks since the 

user had no choice but to grant the app all requested dangerous permissions during installation; 

otherwise, the installation process would terminate abnormally. Similarly, some developers 

attempted to enlist the required permissions for users' consideration when using the apps. Still, users 

are not likely to judge better because they do not understand the inner workings and implications of 

the app. These increased the risk of possible attacks due to security risks incurred from breached 

apps (Feng et al., 2019). 

The run-time permission request model of Android 6.0 and above requires the user to either grant 

or deny an app some specific dangerous permission when the request is made for the first time. One 

of the issues associated with this permission request is that an app can be granted overprivileged 

permissions because some single dangerous permission handles different sets of APIs. For 

example, an app might request access to READ SMS permissions. Granting such permission to the 

app will result in overprivileged access because the READ SMS permissions belong to the SMS-

related group permission. The approval of an app to use SMS permissions will automatically allow 

the app to use other SMS related permissions (such as SEND SMS and RECEIVED SMS) without 

requiring the user to either grant or deny the requested permission. In addition, an app might request 

the READ PHONE STATE permission if such permission is granted to the app. The app can access 

different types of information, such as the IMEI, SIM card serial number, SIM card operator, and 

device ID. These overprivileged issues associated with the run-time permission requests allow an 

app to access more resources than anticipated (Alshehri et al., 2019). 

 

Android uses Intents to enable applications to communicate with one another in a loosely coupled 

fashion. Android Intent is a security mechanism for inter-component communication within the OS. 

Intent handles app access control to the resources of other apps on a device. Intent works with 

Android's permission-based access control system, preventing an app from gaining direct access to 

other apps' data without having appropriate authorization. The Intent communicates the intention of 
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an app to perform a specific action. The intent filter defined in the app manifest file communicates 

the type of Intent an app can receive. Intent are of two types: explicit and implicit. The explicit Intent 

requires launching a specified component when such a request is processed. In contrast, implicit 

intents allow the system to look for an appropriate component by looking at the various intent filters 

(Idrees et al., 2017). 

The Android intent handles all the inter and intra- app messages securely. Intra-app communication 

takes place between different activities within the app domain. For example, an app might consist of 

different pages; users move from one activity to another, i.e., from one page to another. Also, an 

activity might involve a different page element on a single page, such as a button, textbox, etc. The 

Android intent allows developers to perform communication or interactions amongst these activities. 

In a more precise term, the intent is used to push data between different activities and carry the 

results at the end of a specific activity to another activity (Feizollah et al., 2017). Inter-app 

communication requires sending messages or data to other apps with the same intent. In this regard, 

the app must have declared an appropriate intent and granted the necessary permission to share 

data between various apps. An app must define what type of intent it can accept in the intent filter 

section of the app manifest file. The binder makes communication between various apps possible in 

the Android security system. The binder is responsible for all inter-process communication within the 

OS (Feizollah et al., 2017). 

4.2 DATA COLLECTION 

This study requires data collected from the manifest files of Android Package Kit (APK) installation 

files of Android apps to build an ML model. The ML model was used to develop the proposed 

prototype system (MINDPRES) to tackle the data security issues caused by malicious apps on MCC 

user devices. To construct the required dataset needed to develop the ML models, benign and 

malicious apps were downloaded from AndroZoo and RmvDroid repositories (Allix et al., 

2016; Wang et al., 2019).  

AndroZoo is one of the research community's largest repositories of Android apps. It contains over 

three million apps that belong to different app stores. The AndroZoo repository includes benign and 

malware apps drawn from the following app stores: Google Play Store, App China Store, Anzhi, 

AnGeeks, 1mobile, torrents, Fdroid, HiApk, Genome, Proandroid, Apk_bang, and Slideme. The apps 

in the AndroZoo repository were labelled based on the results of over 50 different anti-virus engines 

as either malware or benign apps using the VirusTotal service. The VirusTotal service 

(https://www.virustotal.com) is an online tool that contains tens of anti-virus engines. This service is 

utilized to scan files to determine if a file contains malicious code or not. The APKs in the AndroZoo 

repositories were classified as malicious if any of the anti-virus engines (at least one anti-virus 

https://www.virustotal.com/
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engine) in the VirusTotal service used for scanning the APK detected any malicious codes or 

malware samples. This approach resulted in the labelling of over 22% of apps collected from the 

official Android market store “Google Play Store” as malicious. In addition, using the results obtained 

from at least ten anti-virus engine results as criteria to determine if an app should be classified as 

malicious shows that 1% of Google app stores have malicious content or malware. The official 

market store has its own inbuilt security to analyze apps before uploading them to the store for the 

public to use. However, malware developers have developed new techniques to bypass the security 

checks of the official Android app store, which resulted in 1% (Google Play Store) of the apps being 

reported as malicious in AndroZoo repository.  

The apps in the RmvDroid repository contain over 9,000 malware samples that belong to 56 malware 

families. However, the malware families of the malicious APK samples obtained from the AndroZoo 

repositories were not reported. The APKs contained in the RmvDroid repository were collected 

based on the results of the maintenance report of the Google Play Store for four years. Each year, 

a snapshot of the Google Play Store is created; the metadata for each app includes the name, 

description, developer name, number of user installs, user rating, and the app API. RmvDroid 

reported having crawled over 1.5 million apps in four years. The malicious APKs were determined 

by the list of apps removed from the Google Play Store by comparing each snapshot. The removed 

apps' APKs were scanned using the VirusTotal services to ascertain how many of such apps' APKS 

have been flagged by various antivirus engines as malicious and used the AVClass to assign each 

app APK a malware family label (Sebastián et al., 2016). 

The collection of app APKs from the two repositories requires the authors' authorization to download 

the APKs because the APKs are not publicly available. The authors provided the authorization key 

to download the apps' APK from their repositories (AndroZoo and RmvDroid) using a C# console 

app design in this study. The APK files were automatically downloaded and stored on the university's 

remote server allocated for this research for further processing. Due to the size of the APK files, the 

APK files collection stage consumes a lot of time and requires a lot of storage space. Between June 

1st and July 31st, 2020, over 40,000 unaltered app APKs were downloaded from both repositories. 

This research uses the VirusTotal services to ascertain the cleanliness of the collected APKs. The 

APK files were scanned using the VirusTotal service engine to categorize each file as a benign or 

malicious app. In this study, each app APK is labelled “benign” if none of the anti-virus engines in 

the VirusTotal service flagged the APK file as malicious. In contrast, an app is labelled “malicious” if 

at least 15 VirusTotal anti-virus engines flag it as malicious. However, most research work in the 

literature has based their work on using 1 to 10 anti-virus engines as a criterion to determine if an 

app is malicious. This work adopted at least 15 “malicious” outcomes from the different anti-virus 

engines to classify an app as malicious to build a more reliable dataset. The reason for this required 
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number of anti-virus engines in the VirusTotal service (at least 15 anti-virus engines flagging an app 

as malicious) is to remove uncertainty and build a more reliable ML model. Although some of these 

apps might not be malicious, they might contain codes that perform some activities that compromise 

data security at the device level.  

In this study, most of the benign apps labelled based were originally collected from the official 

Android app store, “Google Play Store,” as reported in AndroZoo. Most of the malicious apps that 

were labelled for the construction of the dataset were collected initially from the App China store in 

AndroZoo repository. After completing the scanning and labelling of the collected APK files, a total 

of 28,306 apps, 9,879 benign and 18,427 malicious apps APK, were labelled, while the remaining 

apps APK were discarded. In particular, the sampled malicious apps used in this study contain apps 

that use the Joker malware; the Joker malware is known to be quite pervasive and has affected 

several apps available in the Google app store. The distribution of the app APK source market used 

in constructing the dataset in this study is shown in Table 4.1. 
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Table 4.1 Apps Apk Source Market Distribution. 

App Type App Market Total 

Benign  play.google.com 9879 

Malicious 

play.google.com 2121 

angeeks 53 

angeeks|appchina 1 

anzhi 2403 

anzhi|appchina 1 

anzhi|mi.com|appchina 7 

appchina 12453 

appchina|mi.com 1 

appchina|play.google.com|PlayDrone 2 

appchina|VirusShare 2 

mi.com 5 

play.google.com 671 

1mobile 35 

play.google.com|appchina|PlayDrone 1 

play.google.com|PlayDrone 39 

play.google.com|PlayDrone|mi.com 1 

play.google.com|PlayDrone|VirusShare 1 

PlayDrone 93 

PlayDrone|play.google.com 49 

PlayDrone|play.google.com|appchina 1 

PlayDrone|VirusShare|play.google.com 1 

praguard 46 

slideme 22 

VirusShare 629 

Total  28,306 

 

4.2.1 DATASET CONSTRUCTION 

The manifest file contains essential information (such as the required permissions and intents) about 

the app functionality.  To construct the feature datasets required for the laboratory experiments 

conducted in this study, the collected app APK files were first pre-processed to extract the 

permissions and intents used by each app. The sets of unique permissions and intents used by the 

apps are shown in Appendix A, Tables 1 and 2). The various steps used in the pre-processing of 

app APKs in this research are presented in Figure 4.1. The APK of each label app was decompiled 

using the APK Easy tool. The APK Easy tool is a software utility tool use for decomiplation of an APK 

file. The APK Easy tool applies the reverse software engineering techniques to decompile the APK 

file and extract its manifest file. The Apk Easy Tool is a lightweight application that provides an 

excellent user interface that allows easy decomiplation of each apk file. The manifest file of each 
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app was extracted using a customized console program after completing the decomiplation process 

of each app's APK.  

 

 

Figure 4.1 Data Pre-processing and Features Extraction Stages 

The manifest file contains essential information (such as the required permissions and intents) about 

the app functionality. The three feature datasets used in the experiment (a feature set representing 

the permissions used by the apps, a feature set representing the intents used by the apps and 

combine feature set representing both the intents and permissions used by the apps) were 

constructed as explained below. In each dataset, the value of one represents that the app requires 

that specific permission or intent, and the value of zero indicates that the app does not require such 

permission or intent for its functionality. The final column in each dataset is the output column, which 

contains one or zero values. The value of one in the output column of the datasets indicates that the 

app with the corresponding permissions and/or intent features belongs to the malicious app category. 

The value of zero in the output column of the dataset indicates that the app belongs to the benign 

app category. The constructed dataset also contained the total number of permissions and/or intents 

required by each app and the hash value of the apk name, as shown in Table 4.2., Table 4.3 and 

Table 4.4. 

The first dataset was constructed from the list of unique permissions in Table 1 in appendix A. using 

a binary vector.  Such that  Pi= {P1, P2, P3, ……., Pn} where n = 132 is the total number of unique 

permissions in the entire datasets.   
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Each app APK in the first dataset was represented using the binary vector of permissions required 

by an app as contained in the manifest file i.e., APPi   where 

𝐴𝑝𝑝(𝑖) {
1  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

The second dataset was constructed from the list of unique intents in Table 2 in appendix A. using 

a binary vector.  Such that  Ii= {I1, I2, I3, ……., In} where n = 131 is the total number of unique intents 

in the entire datasets.  

Each app APK in the second dataset was represented using the binary vector of intents required by 

an app as contained in the manifest file i.e., APPi   where 

𝐴𝑝𝑝(𝑖) {
1  𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

Finally, the third dataset was constructed by combining dataset 1 and dataset 2. The third dataset 

consists of  unique permissions and intents in Table 1 and Table 2 in appendix A respectively using 

a  binary vector.  Such that  PIi= {PI1, PI2, PI3, ……., PIn} where n = 236 is the total number of  unique 

permissions and intents in the entire datasets.  

Each app APK in the third dataset was represented using the binary vector of permissions or intent 

required by an app as contained in the manifest file i.e., APPi   where 

𝐴𝑝𝑝(𝑖) {
1  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡  𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

Table 4.2 Sample Structure of the Constructed Dataset 1(Permissions) 

S/N Apk P1 P2 P3 P4 . . P132 Total Permission Used App Type 

1 XXX 0 1 1 1 1 4 (1) Malware

2 YYY 0 0 1 1 0 2 (0) Benign

3 ZZZ 0 1 0 0 0 1 (0) Benign

4 TTT 1 0 1 0 1 3 (1) Malware

. 

. 

. 

28,306 WWW 0 1 0 1 0 1 (1) Malware

Table 4.3 Sample Structure of the Constructed Dataset 2(Intents) 

S/N Apk I1 I2 I3 I4 . . I131 Total Intent Used App Type 

1 XXX 0 1 1 1 1 4 (1) Malware

2 YYY 0 0 1 1 0 2 (0) Benign

3 ZZZ 0 1 0 0 0 1 (0) Benign

4 TTT 1 0 1 0 1 3 (1) Malware

. 

. 

. 

28,306 WWW 0 1 0 1 0 1 (1) Malware
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Table 4.4 Sample Structure of the Constructed Dataset 3 (Permissions and Intents) 

S/N Apk  PI1 PI2 PI3 PI4 . . PI263  Total Permission/Intent Used App Type 

1 XXX 0 1 1 1   1 4 (1) Malware 

2 YYY 0 0 1 1   0 2 (0) Benign 

3 ZZZ 0 1 0 0   0 1 (0) Benign 

4 TTT 1 0 1 0   1 3 (1) Malware 

.           

.           

.           

28,306 WWW 0 1 0 1   0 1 (1) Malware 

 

Overall, the extracted metadata from the manifest files of all apps APK used to construct the datasets 

consists of 291,863 permissions and 112,022 intents. There were 132 unique permissions and 131 

unique intents used in the dataset’s construction. The number of apps APK that uses demanded 

each permission and intents as contained in the data retrieved from each manifest file are shown in 

Table 1 and Table 2 in appendix A. 

 

4.2.2 PERMISSION AND INTENT USAGE ANALYSIS 

This section discusses the analysis of the pre-processed data used to construct the dataset. The 

analysis of the dataset reveals how malicious apps utilize certain permissions and intents to steal 

sensitive information from the Android devices used in the MCC environment. First, the number of 

apps that use each permission and intent was computed. This computation shows the usage pattern 

amongst the two categories of app types (benign and malicious apps). As shown in Table 4.5, 

malware apps were seen to use more dangerous permissions than benign apps. The analysis of the 

dataset shows that out of the 132 unique permissions used by the entire set of apps, 110 of those 

permissions were common to both malicious and benign apps. The dataset analysis also reveals 

that most benign apps use fewer permissions than malicious apps. The dataset results show that 

benign apps use an average of 7 permissions, while malicious apps use an average of 13 

permissions. However, some benign apps use more permissions like malicious apps. The results 

also reveal that the top ten benign apps use 36 to 64 permissions while malicious apps use 68 to 

89.  After analysing the results of the usage patterns of the permissions and intents demanded by 

apps in the dataset, the overall usage patterns of permissions and intents in the dataset analysis 

reveal frequently used permissions and intents amongst the collected apps in the dataset. Tables 

4.5 and 4.6 show the top 25 permissions and intents commonly used by benign and malicious apps. 
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Table 4.5 Permissions Usage Analysis 

ID  Permission Name Category 
Benign 
Usage 

(%) 

Malicious 
Usage (%) 

P1 WRITE_EXTERNAL_STORAGE Dangerous 63.61 91.47 

P2 READ_PHONE_STATE Dangerous 25.84 96.52 

P3 ACCESS_COARSE_LOCATION Dangerous 24.95 68.20 

P4 ACCESS_FINE_LOCATION Dangerous 26.72 59.53 

P5 GET_TASKS Dangerous 6.49 50.17 

P6 READ_EXTERNAL_STORAGE Dangerous 30.58 33.42 

P7 SYSTEM_ALERT_WINDOW Dangerous 7.78 29.47 

P8 READ_LOGS Dangerous 1.85 30.57 

P9 MOUNT_UNMOUNT_FILESYSTEMS Dangerous 1.52 30.57 

P10 CAMERA Dangerous 19.34 19.70 

P11 RECORD_AUDIO Dangerous 8.31 20.18 

P12 GET_ACCOUNTS Dangerous 19.41 14.14 

P13 CALL_PHONE Dangerous 7.62 18.81 

P14 WRITE_SETTINGS Dangerous 5.70 16.50 

P15 SEND_SMS Dangerous 2.08 17.36 

P16 INTERNET Normal 98.80 99.89 

P17 ACCESS_NETWORK_STATE Normal 93.09 97.88 

P18 ACCESS_WIFI_STATE Normal 35.59 83.36 

P19 WAKE_LOCK Normal 58.29 45.16 

P20 VIBRATE Normal 34.04 50.92 

P21 RECEIVE_BOOT_COMPLETED Normal 23.30 38.22 

P22 CHANGE_WIFI_STATE Normal 4.92 31.42 

P23 ACCESS_LOCATION_EXTRA_COMMANDS Normal 1.00 22.65 

P24 RESTART_PACKAGES Normal 1.00 17.63 

P25 MODIFY_AUDIO_SETTINGS Normal 4.73 13.32 

Note 

Benign App Usage %= (Nos of Benign Apps that Use a Specific Permission /Total 
Benign Apps in the Entire Dataset) X 100 

Malicious App Usage %= (Nos of Malicious Apps that Use a Specific Permission /Total 
Malicious Apps in the Entire Dataset) X 100 

The total no of apps that uses a specific permission are listed in Table 1 in Appendix A 

For Example, P1(WRITE_EXTERNAL_STORAGE) The number of apps that uses P1 
permissions in the dataset as shown in Table 1 in appendix A =6284 (See S/N 128) 

Therefore, Benign App Usage %= (6284/9,879) X100=63.61 

Similarly for malicious app usage % for P1 
(16855/18427) X 100 =91.47 

Total Benign apps APK in the Dataset =9,879 
Total Malicious apps APK in the Dataset =18,427 
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Table 4.6 Intents Usage Analysis 

ID Intent Name 
Benign App 
Usage (%) 

Malicious App 
Usage (%) 

I1 Action MAIN 99.86 98.59 

I2 Category LAUNCHER 99.79 97.86 

I3 Category DEFAULT 35.53 39.64 

I4 Action BOOT COMPLETED 23.76 30.27 

I5 Action PACKAGE ADDED 3.89 29.01 

I6 Action VIEW 25.04 16.68 

I7 Category BROWSABLE 22.72 14.19 

I8 Action USER PRESENT 2.78 19.88 

I9 Action PACKAGE REMOVED 1.98 14.15 

I10 Category HOME 1.28 11.08 

I11 Action SEARCH 4.66 2.24 

I12 Action CREATE SHORTCUT 0.63 4.23 

I13 Action MY PACKAGE REPLACED 6.58 0.16 

I14 Action SEND 4.07 1.25 

I15 Action PACKAGE REPLACED 2.08 2.25 

I16 Action MEDIA MOUNTED 0.63 2.30 

I17 Category LEANBACK LAUNCHER 3.83 0.36 

I18 Action NEW OUTGOING CALL 0.69 2.02 

I19 Action MEDIA BUTTON 3.21 0.44 

I20 Action PACKAGE INSTALL 0.80 1.71 

I21 Action SCREEN ON 0.26 1.44 

I22 Category MONKEY 0.12 1.38 

I23 Action TIMEZONE CHANGED 1.58 0.59 

I24 Action SCREEN OFF 0.27 1.16 

I25 Category INFO 0.87 0.81 

Note 

Benign App Usage %= (Nos of Benign Apps that Use a Specific Intent /Total Benign 
Apps in the Entire Dataset) X 100 
 
Malicious App Usage %= (Nos of Malicious Apps that Use a Specific Intent /Total 
Malicious Apps in the Entire Dataset) X 100 
 
The total no of apps that uses a specific Intent are listed in Table 2 in Appendix A  
 
For Example, I1(Action Main) The number of apps that uses I1 intents in the dataset as 
shown in Table 2 in appendix A =9865 (See S/N 1) 
 
Therefore, Benign App Usage %= (9865/9,879) X100=99.86 
 
Similarly for malicious app usage % for I1 
(18168/18427) X 100 =98.59 
 
 
Total Benign apps APK in the Dataset =9,879 
Total Malicious apps APK in the Dataset =18,427 
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In order to visualize the usage patterns of both permissions and intents, Figures 4.2 and 4.3 present 

the data in Tables 4.5.and 4.6 (i.e., the usage of the top 25 unique permissions and unique intents 

by benign and malicious apps, respectively), sorted by value. The analysis of permissions and intent 

usage shows that most malicious apps utilize most of the permissions that fall under the dangerous 

category compared to benign apps. Suppose these permissions are granted to an untrusted app on 

a user device. In that case, the resultant effects can lead to the exposure of such devices to malicious 

activities unknown to the user. For example, if the GET_TASK permission is granted to an app, such 

an app can read the list of other apps on the user's device. As shown in Table 1 in Appendix A, over 

50% of the malicious apps in the collected data requested the dangerous permissions s P1, P2, P3, 

P4 and P5. These permissions were also requested by a number of benign apps.  However, only 

63.61% of the benign apps requested P1 while 91.47% of malicious app requested the same 

permissions as shown in Table 4.5; a similar pattern can be observed for dangerous permissions 

P2, P3, P4 and P5.  

 

Figure 4.2 Top 25 Permission Usage Frequency of Apps in the Dataset 
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Figure 4.3 Top 25 Intent Usage Frequency of Apps in the Dataset 

Further analysis of the results obtained in the dataset shows that 96.52% of the malicious apps in 

the dataset required the READ_PHONE_STATE permission. The READ_PHONE_STATE 

permission is the one most required by malicious apps. This permission enables hackers or malware 

developers to get the device identification number, such as the IMEI of a smartphone. Once granted 

to a malicious app, this permission results in targeted devices for specific online advertisements 

(ads). If not carefully reviewed by the user, these various ads mightily make their device more 

vulnerable. These vulnerabilities are exploited to target the devices and other devices connected to 

the same network as the infected device. The READ_PHONE_STATE permission, when used with 

other dangerous permissions, can enable apps to steal sensitive data or information from a device 

that is unknown to its owner. For example, an app requests both the GET_TASK and 

READ_PHONE_STATE permissions and receives approval from the device user. Such devices 

might be exposed to unauthorized access to sensitive information if such an app were installed from 

an untrusted source. However, some benign apps require both permissions, representing only a 

smaller fraction of the dataset. For example, 6.49% and 25.84% of benign apps only requested the 

GET_TASK and READ_PHONE_STATE permissions, respectively.  
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The analysis of most malicious apps' permissions and intent usage reveals the possibility of privacy 

leakage of user location unknown to the device user. Over 60% of malicious apps requested the 

ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION permissions. If these 

permissions are granted to an app, that app constantly monitors the user's locations. However, only 

27% of benign apps requested such services. The analysis of the permissions and intents usage 

amongst the malicious APK shows that most malicious apps are fond of exploiting the READ LOGS 

permissions to monitor the activities of all apps on the user device. When the READ LOGS 

permission is used with the MOUNT_UNMOUNT FILESYSTEMS permission, malicious apps exploit 

the device's file system, leading to data security issues. The result in the dataset shows that 30.57% 

of malicious apps requested both READ_LOGS and MOUNT_UNMOUNT FILESYSTEMS 

permissions. Nevertheless, the issue of unauthorized access to sensitive information on devices is 

possible if an app request some of these dangerous permissions discussed while having access to 

the WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE permissions. If granted, 

these two permissions, together with other related dangerous permissions, enable an app to 

manipulate and access different storage media available on such devices and send that information 

remotely to the malware developers database. 

In addition, 91.47% and 33.42% of malicious apps requested the WRITE EXTERNAL STORAGE 

and READ EXTERNAL STORAGE permissions, while only 63.61% and 30.58% of benign apps 

requested the same permissions, respectively. The possibility of unauthorized access to sensitive 

information stored on the devices is high since all Android apps access the INTERNET Permission. 

The results from the dataset used in this work show that almost 100% of malicious apps requested 

INTERNET permission, while 98.80% of benign apps requested INTERNET permission. In addition, 

most malicious apps tend to use a significantly higher number of dangerous permissions than normal 

permissions. 

 

Furthermore, the issue of malware developers' targeting the intercommunication processing system 

of the Android OS using app intents to manage activities between app components and other apps 

residing on the device has raised serious security concerns. These techniques, used by some 

malicious apps, are hard to detect by the existing security system. The Intent feature of the Android 

OS enables both inter-and intra-process communications between different apps. Intent allows two 

apps to exchange information without user consent. Malware developers exploit this feature to steal 

sensitive information from the device. Based on the results presented in Figure 4.3. Intents as a 

means of communication between two apps unknown to the user were seen in some malicious apps 

in the dataset. Some malicious apps use the USER_PRESENT intent to determine when the device 

owner is using the phone and when the device is idle. This feature enables malicious apps to operate 

in the background since user activities may affect these processes. The Action_PACKAGE_ADDED 
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Intent allows an app to automatically add or load malicious code to existing apps or install new apps 

in the background without the user's consent. However, most such apps do have their icons disabled 

so that the user might not notice the presence of some illegal apps on their device. The 

BOOT_COMPLETED intent, when used with the RECEIVE_BOOT_COMPLETED permission, 

allows an app to monitor the boot status of the device. If an app with malicious intentions requests 

the RECEIVE_BOOT_COMPLETED permission, the permission is granted. Such an app can use 

the BOOT_COMPLETED intent to perform malicious activities that can affect the OS kernel of the 

device. Similarly, both benign and malicious apps used action_main and category_launcher intents 

to start their different activities on the device.  

Finally, the Android OS allows users to grant or deny apps whenever they request permission from 

the dangerous permission set. The approval of some of these dangerous permissions to an app 

downloaded and installed from an untrusted source may expose the device to malicious activities. 

Because the use of intent with these dangerous permissions can easily compromise the device, the 

Android OS does not have the functionality to alert the user of any intent being used by an app. Most 

proposed systems have only considered permission as a static feature for designing malware 

detection systems. However, this study considers intent as a feature that can be combined with 

permissions to build an effective malware detection system. This research uses permissions and 

intents as static features to design a detection system to manage intrusion activities caused by 

malicious apps in the MCC environment. 

4.3 LABORATORY EXPERIMENT 1 

This experiment aims to find the best ML classification algorithms to distinguish malicious apps from 

benign apps. The best ML classification algorithms obtained from this experiment are used to build 

an ensemble ML model to manage intrusions caused by malicious apps in the user layer of the MCC 

architecture. This experiment uses the dataset constructed from the requested permissions and 

intents retrieved from the APK manifest files, as discussed in Section 4.2. The ML classification 

algorithms used for this experiment are shown in Table 4.7. The choice of these algorithms is based 

on the nature of the dataset constructed in this study. In addition, related works in this field of study 

has also adopted these set of ML classifier because of the nature of the proposed model to 

distinguish malicious apps from benign apps. 
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Table 4.7 The Selected ML Classification Algorithms 

Classifier ID ML Classification Algorithm 

C1 Decision Tree Classifier 

C2 Random Forest Classifier 

C3 AdaBoosting Classifier 

C4 Naïve Bayes Classifier 

C5 Stochastic Dual Coordinate Ascent Classifier 

C6 Multi-layer Perception Classifier 

C7 K-Nearest Neighbours Classifier

C8 Linear Discriminant Analysis Classifier 

C9 Logistic Regression Classifier 

C10 Support Vector Machine Classifier 

The ML experiment conducted in this study was implemented using the Python programming 

language using the ML classification algorithms (C1 to C10) in Table 4.7. The ML experiment uses 

the scikit-learn, pandas, and anaconda Python ML libraries. The experiment uses the three datasets 

constructed as explained in Section 4.2.1 (Tables 4.2, 4.3, and 4.4). Each of the three datasets was 

split in three portions (to be used for model training, validation, and testing, respectively), using the 

same proportion (Table 4.8). Each of the three datasets has the same distribution of apps APK in its 

dataset for training, validation, and testing, as shown in Table 4.8. The experiment was performed 

at the Auckland University of Technology, New Zealand, the WT Building laboratory using the 

following computer hardware configuration: Intel (R) Core (TM) i7-8700 CPU @3.20GHz, 16GB 

RAM, and a 500GB hard disk drive. 

Table 4.8 Apps Distribution as used in the three datasets. 

App Type Training (72 %) Validation (8%) Testing (20%) Total 

Benign 7,096 788 1,995 9,879 

Malicious 13,285 1,476 3,666 18,427 

Total 20,379 2,266 5,661 28,306 

4.3.1 MACHINE LEARNING CLASSIFICATION ALGORITHMS 

The ML classification algorithms used in this experiment are well-known in related studies. Table 4 

in the appendix A section shows a summary of related works and the ML classifiers used in their 

proposed solutions and experiments. The choice of these selected algorithms in Table 4.7 was 

based on the nature of the dataset constructed in this study and related works that have used similar 

algorithms in their various studies. The problem domain centres on classification problems. The 

model can differentiate between malicious and benign apps by learning from the features (requested 

permissions and intents by an app) represented in the dataset. These ML algorithms are briefly 

described as follows:  
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A. Decision Tree Classifier (C1): The Decision Tree (DT) Classifier belongs to the ML

supervised family. This classifier is used for both classification and regression problems. This

classifier's main goal is to create a model that can predict a class label for malicious or benign

apps. The DT classifier uses a tree structure to solve a specific problem. The leaf node in the

tree represents a class label, and attributes are defined in the internal node structure of the

tree.

B. Random Forest Classifier (C2): The Random Forest (RF) belongs to the supervised ML

family, and it is used for both classification and regression problems. The RF is an ensemble

classifier that consists of multiple decision trees. The trees in the RF classifier learn

independently on a subset of the training set that is randomly selected. The RF classifier

uses bagging techniques to improve the overall results by combining the results of different

learning models. The output of the RF ML classifier is determined by the most frequently

occurring categories predicted by each learning model of each tree in the classifier. However,

it is more suitable for multi-classification problems due to the nature of the tree, and it is also

very effective when it comes to binary classification problems.

C. AdaBoosting Classifier (C3): The AdaBoost Classifier is an example of an ensemble ML

classification algorithm belonging to the supervised ML family. This algorithm is used to

create a strong classifier from a weaker one. The algorithms work on the principle that each

learner is grown sequentially, such that each learner is grown from the previous learner

except the first learner.

D. Naïve Bayes Classifier (C4): The Naïve Bayes (NB) classifier belongs to the supervised ML

family, and the algorithms apply the probabilistic approach in solving classification problems

using the Bayes’ theorem. This ML model does not use iterative modelling like other

supervised ML classifiers. When given a test sample, the NB classifiers compute the

probability of various categories and determine the outcome by selecting the class with the

highest probability.

E. Stochastic Dual Coordinate Ascent Classifier (C5): The Stochastic Dual Coordinate

Ascent (SDCA) Classifier is an example of a supervised ML algorithm suitable for

classification problems. This classifier selects random coordinates to maximize the dual

objectives for solving a classification problem. The nature of its iteration is sequential as

compared to other ML classifiers.

F. Multi-layer Perception Classifier (C6): Multi-layer Perception (MLP) belongs to the

feedforward artificial neural network class. This classifier consists of three layers (input,

hidden, and output). The classifiers provide a non-linear mapping of the input’s vectors to a

specific output vector. This classifier is applied to solving problems in different domains. The

input layer is responsible for receiving the input data. The prediction of each class label is

performed at the output layer. In contrast, the hidden layer acts as the computational engine
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where all the necessary mappings occur before the output layer determines the results. The 

neurons in the MLP classifier are trained using backpropagation learning algorithms. This ML 

algorithm is very effective for solving classification problems. 

G. K-Nearest Neighbours Classifier (C7): The K-Nearest Neighbours (KNN) classifier is a

non-parametric classification algorithm that belongs to the supervised ML family. This

classifier measures the distance between the test sample and the training samples and uses

a majority voting concept to predict the category to which a specific sample belongs. Like the

NB classifier, the KNN algorithms do not apply probabilistic concepts. The ‘K’ is the nearest

neighbours that participate in the voting process. This type of classifier is more suited for

classing new objects. The numbers of K can yield different results under the same

circumstances.

H. Linear Discriminant Analysis Classifier (C8): The Linear Discriminant Analysis (LDA)

Classifier combines variables to maximize the difference between defined groups. This

classifier is used when the predictors are distributed. This ML classifier solves both

classification and regression problems. This classifier divides the dataset into k disjointed

regions, representing the different class labels in the set. The final prediction is based on the

maximum probabilistic allocation of the different class labels in the test set.

I. Logistic Regression Classifier (C9): The Logistic Regression (LR) Classifier is a

supervised ML algorithm used for classification and regression problems. The LR classifier

uses a statistical model that uses a logistic curve to fit the training dataset. Unlike other

classifiers mentioned in this work, this classifier is easily updated to take new data. The

classifier threshold can easily be adjusted. However, it requires a large sample size to be

efficient in predicting. This classifier finds the probability that a given instance of an input set

belongs to a specific class. The LR as a binary ML classifier requires a threshold to enable

the model to differentiate between two classes.

J. Support Vector Machine Classifier (C10): The Support Vector Machine (SVM) classifier

maps each input feature into an n-dimensional feature space such that n is the total number

of features. This classifier identifies the hyperplane that separates each input feature into two

different classes while maximizing the marginal distance for the classes and reducing the

classification errors. This classifier can classify both non-linear and linear data items. This

classifier uses the marginal distance between a class in its decision making.
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4.3.2 VALIDATION METRICS USED IN THIS STUDY  

This study uses the confusion matrix to validate the performance of the different ML classifiers in the 

experiment carried out in this study, which is defined as follows: 

A. True Positive (TP): The total number of malicious apps that were classified correctly. 

B. True Negative (TN): The total number of benign apps that were classified correctly. 

C. False Negative (FN): The total number of malicious apps that were incorrectly classified as 

benign apps. 

D. False Positive (FP): The total numbers of benign apps that were incorrectly classified as 

malicious apps. 

4.3.3 EVALUATION METRICS USED IN THIS STUDY  

To evaluate the performance of the different classifiers used in the experiment, the following metrics 

were adopted for this study based on the analysis of the 100 frameworks in the literature review as 

referenced in F1 to F35 in Table 2.5 and F36 to F100 in Table 2.6. Table 2.8 shows the definition of 

all the formulas used as evaluation metrics in this study which are obtained from the sources 

referenced in the reviewed works (F1 to F100).  Furthermore, the relevant prior work used in the 

comparison of the results is referenced in Table 6.8, along with the evaluation metrics used. 

A. Classification Accuracy (CA): This is the total percentage of the correctly classified 

malicious and benign apps in the dataset. 

𝐶𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100                           Eq. 4.1 

B. Error Rate (ER): This is the total percentage of all wrongly classified benign and malicious 

apps in the entire dataset. 

       𝐸𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100                                    Eq. 4.2 

C. Precision Rate (PR): This is the total percentage of correctly classified results of all 

malicious apps that belongs to the benign labelled in the dataset. 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                                            Eq. 4.3 

D. Recall Rate (RC): This is the total percentage of malicious apps that are correctly predicted 

as malicious apps in the dataset. 

𝑅𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                             Eq. 4.4 

E. False Positive Rate (FPR): This is the total percentage ratio of malicious apps classified 

wrongly to the actual numbers of the malicious samples in the dataset. 
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                                     𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100                                                                 Eq. 4.5 

F. False Negative Rate (FNR): This is the total percentage ratio of benign apps classified 

wrongly to the actual number of samples in the dataset. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
× 100                             Eq. 4.6 

G. False Alarm Rate (FAR): This is the total percentage average ratio of malicious and benign 

apps that are misclassified. 

𝐹𝐴𝑅 =
𝐹𝑃𝑅+𝐹𝑁𝑅

2
                         Eq. 4.7 

 

H. F-Measure (FM): This is the harmonic mean of the proposed classifier which is obtainable 

from the value of both PR and RC. 

𝐹𝑀 = 2 ×
𝑃𝑅×𝑅𝐶

𝑃𝑅+𝑅𝐶
                                  Eq. 4.8 

4.3.4 RESULTS OBTAINED FROM EXPERIMENT 1 

The results obtained from laboratory experiment 1 conducted in this study were evaluated using the 

confusion matrix evaluation metrics discussed in Sections 4.3.3 and 4.3.4. The results obtained from 

the experiment conducted using the ten ML classifiers are presented in Table 4.9. The outcome of 

experiment 1 was also validated using a tenfold cross-validation technique, and the validation results 

are shown in Table 4.10. 
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Table 4.9 Results of the First Experiment 
C

la
s

s
if

ie
r 

D
a

ta
s

e
t 

TP FP TN FN CA ER PR RC FM FPR FNR FAR 

C1 Permission 3451 201 1774 235 92.30 7.70 94.50 93.62 94.06 10.18 6.38 8.28 

 Intent 3455 1238 723 235 73.93 26.07 73.62 93.63 82.43 63.13 6.37 34.75 

 Both 3435 153 1842 231 93.22 6.78 95.74 93.70 94.71 7.67 6.30 6.99 

C2 Permission 3520 186 1789 166 93.78 6.22 94.98 95.50 95.24 9.42 4.50 6.96 

 Intent 3478 1248 714 212 74.16 25.84 73.59 94.25 82.65 63.64 5.75 34.69 

 Both 3504 144 1851 162 94.59 5.41 96.05 95.58 95.82 7.22 4.42 5.82 

C3 Permission 3489 296 1679 197 91.29 8.71 92.18 94.66 93.40 14.99 5.34 10.17 

 Intent 3428 1244 717 262 73.35 26.65 73.37 92.90 81.99 63.44 71.0 35.27 

 Both 3480 249 1746 186 92.32 7.68 93.32 94.93 94.12 12.48 5.07 8.78 

C4 Permission 1043 61 1914 2643 52.23 47.77 94.47 28.30 43.55 3.09 71.70 37.40 

 Intent 1042 86 1875 2648 51.62 48.38 92.38 28.24 43.25 4.39 71.76 38.07 

 Both 1306 66 1929 2360 57.15 42.85 95.19 35.62 51.85 3.31 64.38 33.84 

C5 Permission 3543 333 1642 143 91.59 8.41 91.41 96.12 93.71 16.86 3.88 10.37 

 Intent 3414 1251 710 276 72.98 27.02 73.18 92.52 81.72 63.79 7.48 35.64 

 Both 3488 248 1747 178 92.47 7.53 93.36 95.14 94.24 12.43 4.86 8.64 

C6 Permission 3471 202 1773 215 92.63 7.37 94.50 94.17 94.33 10.23 5.83 8.03 

 Intent 3463 1261 700 227 73.67 26.33 73.31 93.85 82.32 64.30 6.15 35.23 

 Both 3461 164 1831 205 93.48 6.52 95.48 94.41 94.94 8.22 5.59 6.91 

C7 Permission 3526 243 1732 160 92.88 7.12 93.55 95.66 94.59 12.30 4.34 8.32 

 Intent 2439 610 1351 1251 67.07 32.93 79.99 66.10 72.38 31.11 33.90 32.50 

 Both 3472 171 1824 194 93.55 6.45 95.31 94.71 95.01 8.57 5.29 6.93 

C8 Permission 3552 403 1572 134 90.51 9.49 89.81 96.36 92.97 20.41 3.64 12.02 

 Intent 3460 1289 672 230 73.12 26.88 72.86 93.77 82.00 65.73 6.23 35.98 

 Both 3504 349 1646 162 90.97 9.03 90.94 95.58 93.20 17.49 4.42 10.96 

C9 Permission 3490 268 1707 196 91.80 8.20 92.87 94.68 93.77 13.57 5.32 9.44 

 Intent 3455 1276 685 235 73.26 26.74 73.03 93.63 82.06 65.07 6.37 35.72 

 Both 3477 218 1777 189 92.81 7.19 94.10 94.84 94.47 10.93 5.16 8.04 

C10 Permission 3512 291 1684 174 91.79 8.21 92.35 95.28 93.79 14.73 4.72 9.73 

 Intent 3453 1273 688 237 73.28 26.72 73.06 93.58 82.06 64.92 6.42 35.67 

 Both 3474 230 1765 192 92.55 7.45 93.79 94.76 94.27 11.53 5.24 8.38 

Table 4.10 Ten-Fold Cross Validation Results of the Ten ML Classifiers 

D
a

ta
s

e
t 

M
e

tr
ic

s
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Permission 
Max CA 92.93 93.64 94.70 61.62 95.41 94.01 93.99 93.99 96.11 95.05 

MIN CA 87.99 91.17 89.75 50.53 85.51 89.05 88.84 86.57 89.40 88.69 

Intent 
Max CA 74.82 75.18 76.24 42.20 73.05 75.27 73.14 72.08 76.24 75.53 

MIN CA 69.50 69.86 69.15 37.46 57.60 70.57 65.37 67.08 69.96 69.96 

Both 
Max CA 93.64 95.41 94.70 53.00 94.35 95.76 94.70 93.64 95.41 95.41 

MIN CA 87.99 90.46 88.34 40.99 90.46 89.79 88.34 86.57 89.40 89.75 
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4.3.5 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 1 

The results obtained from the experiment conducted using the ten ML classifiers are presented in 

Table 4.9. The results in Table 4.9 shows each ML classifier's performance. The results presented 

in Table 4.9 also show that combining both permission and intent in the ML model outperforms using 

either permissions or intents as a feature in the trained model. Although the results obtained using 

dataset 1(permissions as features) are similar to the results of the experiment using dataset 3 

(permissions and intents as features). In addition, the results obtained using dataset 2 for the 

experiment (intent as features) were poor. However, the experimental results recorded with dataset 

3 show that the ML model performs better when both permissions and intents are combined as 

features to build a malware detection engine, as shown in the results reported in Table 4.9.  

Overall, the experimental results show that C2 as an ML classifier outperforms other ML classifiers 

as reported in the results, with a classification accuracy of 94.59%, a 96.05% precision rate, a 

95.58% recall rate, and a 5.82% false alarm rate, as presented in Figure 4.4 and Figure 4.5. In 

addition, the C1 and C7 ML classifiers performed better in the experiments, as shown in Figure 4.4 

and Figure 4.5. Both classifiers recorded a classification accuracy of 93.22 and 93.55, respectively. 

Therefore, the best three ML classifiers recorded in the experiments are C2, C7, and C1. The results 

of the ML experiment were validated using the ten-fold cross-validation ML techniques for each 

classifier. The ten-fold cross-validation results are presented in Table 4.10. The results show that 

the best three classifiers recorded in the experiment perform better as expected when validated 

using the ten-fold cross-validation technique presented in Table 4.10, even though classifier C9 

using the permission dataset obtained the highest classification accuracy of 96.11%.  

The best three classifiers (C2, C1 and C7) obtained 93.64%, 92.93% and 93.99%, respectively. The 

minimum classification accuracy for the best three classifiers obtained during the ten-fold cross-

validation process is 91.17%, 87.99%, and 91.17%. The validation results obtained using dataset 3 

(permissions and intents as features) achieve 95.41% accuracy for C2 and C9. The results show 

that the best three classifiers still perform better using dataset 3 than the results recorded in dataset 

1 during the cross-validation process. 
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Figure 4.4 Performance Evaluation Results for the Ten ML Classifiers (CA, PR, RC & FM) 
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Figure 4.5 Performance Evaluation Results for the Ten ML Classifiers (ER,FPR,FNR, & FAR) 

4.4 LABORATORY EXPERIMENT 2 

This experiment aims to build an ensemble ML model using the best three ML classifiers recorded 

in the results obtained in experiment 1. The experiment uses dataset 3 discussed in Section 4.2.1. 

The experiment reported in this section was performed at the Auckland University of Technology, 

New Zealand WT Building laboratory using the following computer hardware configuration: Intel (R) 

Core (TM) i7-8700 CPU @3.20GHz, 16GB RAM, and a 500GB hard disk drive.   

To improve the performance of the ensemble ML model, this study proposed a filter-based feature 

selection (FS) technique that uses a statistical approach to reduce the number of features needed 

to train the ensemble ML model. The proposed FS technique uses the analysis of the permissions 

and intent usage in the dataset, discussed in Section 4.2.2. as a basic criterion for the selection of 

features. The results of the ML experiment reported in this section are compared to the individual 

ML classifiers used in experiment 1 using the reduced feature set dataset generated after the FS 

process. 
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4.4.1 FEATURE SELECTION METHODS 

In this study, FS refers to selecting the features (from the entire features dataset) used in the ML 

model for malicious app detection. Selecting the most relevant features is critical because it improves 

the ML detection model's performance. The techniques for selecting the best features have been 

classified as filter, wrapper, and embedded feature selection methods (Şahin et al., 2021). While 

filter FS methods employ statistical techniques to select the best features, wrapper methods rely on 

heuristics (e.g., a machine learning classifying algorithm) rather than statistical techniques. While 

wrapper methods effectively determine the optimal feature subset, they are more computationally 

intensive than filter methods. Unlike filter and wrapper FS methods, which select the best features 

before training the ML model, embedded FS methods do so during the training process (Shabtai et 

al, 2012; Şahin et al., 2021). 

In the existing literature, various feature types and FS techniques have been proposed. Most static 

analysis results published in the literature have been obtained using a small number of application 

samples, with only a few utilizing an ensembling technique to construct the malware detection model. 

For example, Shabtai et al. (2012) used Chi-Square, Information Gain (IG), and Fisher's Score as 

filtering methods; the set of features included CPU power consumption and Wi-Fi output volume. 

The three FS methods generated subsets of the 10 most significant features, the 20 most significant 

features, and the 50 most significant features, respectively. The authors' generic malware detection 

framework was evaluated using six different ML classifiers; the accuracy of malicious app 

classification ranged between 87 and 93%, with the Decision Tree (DT) algorithm achieving the 

highest rate. 

On the other hand, the test set contained only a few (purpose-built) malicious apps. Alazab et al. 

(2020) used API calls as a feature set and achieved a classification accuracy of 98.10% by selecting 

relevant features using Chi-Squared. The proposed model reported in their work was evaluated 

using the real-world live dataset of 9,000 apps. This study proposed a filter-based FS method that 

selects features by applying a statistical approach, taking into account the relative usage of each 

permission or intent by benign and malicious apps, as discussed in the subsequent section. 

4.4.2 THE PROPOSED FILTER-BASED FEATURE SELECTION TECHNIQUE 

This section presents the proposed filter-based statistical use to select relevant features (using the 

full features in dataset 3). The high dimensionality (263 features) of dataset 3 used in experiment 1 

can negatively affect the performance and energy consumption if such a feature dataset is used to 

train and build an ML model for resource-constrained MDs used in the MCC environment. This study 

proposed a new FS technique to help select relevant features (permissions and intents) to improve 

the performance of the ensemble ML model and make it feasible to be implemented in resource-

constrained MDs in the MCC environment. 
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The proposed filter-based FS techniques use a statistical model to best perform features to build the 

ML model for effective malware detection. The statistical FS technique presented in this study uses 

a statistical Intrinsic Deviation Model (IDM) by considering the relative usage of each permission or 

intent by benign and malicious apps. This approach analyses the dataset and identifies usage 

patterns common to malicious and benign apps while identifying features used to distinguish 

between the two app categories. This statistical filter-based FS technique helps to eliminate some 

permissions and intent that are frequently used by both benign and malicious apps, and other 

features that are not relevant to the detection process are removed. For example, the INTERNET 

permission indicates that an app may access the internet services. The analysis discussed in Section 

4.2.2 shows that almost all apps use INTERNET permission, irrespective of the app type. This kind 

of permission can affect the learning process of the model. Therefore, the need to remove such 

features and select the best features that the model uses to effectively differentiate between the two 

app types. The metrics formulated in equations 4.9 to 4.20 are used to define the evaluator  

(equations 4.21 and 4.22) that determine which features  should be removed and which one should 

not be removed from the dataset; the evaluator aim to remove the features that are not relevant to 

the proposed detection model.  

Let the set 𝑃𝐼 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃132, 𝐼1, 𝐼2, 𝐼3, … , 𝐼131, } be the non-empty set consisting of all the 132

unique permissions in the dataset , 𝑃𝑖, 1 ≤ 𝑖 ≤ 132, together with 131 unique intents in the dataset  

𝐼𝑗, 1 ≤ 𝑗 ≤ 131.  As such, the number of elements in the set 𝑃𝐼 ≡ 263. 

Set 

𝜙𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑖𝑠𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑎𝑝𝑝𝑠
× 100% Eq. 4.9 

𝜙𝑖 to be the percentage usage of each permission 𝑃𝑖 ∈ 𝑃𝐼 by (both benign and malicious) 

applications per overall total number applications in the entire data set, i.e., Eq 4.9  

In a similar manner, the intent usage 

𝜙′𝑗 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑖𝑠𝑛𝑔 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑎𝑝𝑝𝑠
× 100% Eq. 4.10 

𝜙′𝑗to be the percentage usage of each intent 𝐼𝑗 ∈ 𝑃𝐼 by (both benign and malicious) applications per 

overall total number applications in the entire data set, i.e., Eq 4.10 

Then, let a subset 𝑇 ⊆ 𝑃𝐼 called the testing set, 
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𝑇 = {𝑃𝑖 , 𝐼𝑗 ∈ 𝑃𝐼: 3 < 𝜙𝑖 ≤ 90,3 < ∅′𝑗 ≤ 90}          Eq. 4.11 

𝑇  containing some selected permissions and intents 𝑃𝑖 , 𝐼𝑗 ∈ 𝑃𝐼 to be tested, such that 𝑃𝑖 or 𝐼𝑗 will 

belong to the set 𝑇 if and only if the percentage usage of 𝜙𝑖 or ∅′𝑗 respectively, is strictly greater 

than 3% and less than or equal to 90%, i.e. Eq. 4.11 

Now, corresponding to each permission, 𝑃𝑖 ∈ 𝑇, define 𝜉𝑖 to be the percentage usage of the 

permission 𝑃𝑖 by benign apps per overall benign apps in the data set. That is, 

𝜉𝑖 =
𝑁𝑜.  𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜.𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠
× 100% Eq. 4.12 

In the same vein, 

𝜉′𝑗 =
𝑁𝑜.  𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑡 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜.  𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠
× 100% Eq. 4.13 

Also, define 𝜂𝑖 to be the percentage usage of the permission 𝑃𝑖 ∈ 𝑇 by malicious applications per 

overall malicious applications in the data set.                                       That is, 

𝜂𝑖 =
𝑁𝑜.  𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜.  𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠
× 100%, Eq. 4.14 

and take 

𝜂′
𝑗
=

𝑁𝑜.  𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑡 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜.  𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠
× 100% Eq. 4.15 

Then let 

휀𝑖 = 𝑚𝑖𝑛
(𝜉𝑖,𝜂𝑖)

𝑚𝑎𝑥(𝜉𝑖,𝜂𝑖)
Eq. 4.16 

be the ratio of the minimum to the maximum, respectively, of the two percentages 𝜉𝑖 and 𝜂𝑖; and as 

well 
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휀′𝑖 = 𝑚𝑖𝑛
(𝜉′𝑖,𝜂′𝑖)

𝑚𝑎𝑥(𝜉′𝑖,𝜂′𝑖)
        Eq. 4.17 

 

Furthermore, the metric function is simply defined by 𝛿𝑖(𝜉𝑖 , 𝜂𝑖) measuring the difference between the 

percentages 𝜉𝑖and 𝜂𝑖 for each permission 𝑃𝑖 ∈ 𝑇, such that 

𝛿𝑖(𝜉𝑖 , 𝜂𝑖) = |𝜉𝑖 − 𝜂𝑖| = {
𝜉𝑖 − 𝜂𝑖 , 𝜉𝑖 ≥ 𝜂𝑖
𝜂𝑖 − 𝜉𝑖 ,∧ 𝜉𝑖 < 𝜂𝑖

             Eq. 4.18 

 

Similarly, 

𝛿′𝑗(𝜉′𝑗 , 𝜂′𝑗) = |𝜉
′
𝑗 − 𝜂

′
𝑗
|.       Eq. 4.19 

 

Conclusively, the evaluator 𝐸(𝑃𝑖) of each permission 𝑃𝑖 ∈ 𝑇 based on whether or not the permission 

𝑃𝑖 is fit to be used as a relevant feature is given by 

𝐸(𝑃𝑖) = {
𝐺𝑂𝑂𝐷, 𝑖𝑓

𝛿𝑖

𝑚𝑖𝑛(𝜉𝑖,𝜂𝑖)
> 𝑖

2

𝑉𝑂𝐼𝐷, 𝑖𝑓
𝛿𝑖

𝑚𝑖𝑛(𝜉𝑖,𝜂𝑖)
≤ 𝑖

2

      Eq. 4.20 

where “GOOD” implies that the permission 𝑃𝑖 ∈ 𝑇 in question is indeed a relevant feature, while 

“VOID” therefore implies that the permission 𝑃𝑖 ∈ 𝑇 in question is not such a good feature. 

Similarly, the analogue of the evaluator 𝐸(𝑃𝑖) of each permission 𝑃𝑖 ∈ 𝑇 being the evaluator 𝐸(𝐼𝑗) for 

each intent 𝐼𝑗 ∈ 𝑇 as 

𝐸(𝐼𝑗) =

{
 

 𝐺𝑂𝑂𝐷, 𝑖𝑓
𝛿′𝑗

𝑚𝑖𝑛(𝜉′𝑗,𝜂
′
𝑗)
>

′
𝑗

2

𝑉𝑂𝐼𝐷, 𝑖𝑓
𝛿′𝑗

𝑚𝑖𝑛(𝜉′𝑗,𝜂
′
𝑗)
≤

′
𝑗

2

.     Eq. 4.21 

 

The proposed filter-based FS technique results in this study are presented in Table 3 in appendix A. 

The results of the FS technique show that out of the entire 263 feature sets, the proposed FS 

technique selected 39 feature sets comprising both permission and intent, whose status in Table 3 

appendix A is indicated as "Good". The permissions and intent commonly used by both app types 

were identified as not relevant features as they contribute little to the detection process. The model 

was able to identify both high-risk permission and low-risk permission and intent for each app type. 
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Using only high-risk permission will result in the ML model being biased. The deviation approach 

involves features that contribute more to the detection and features that balance the selection 

process less. For example, the action_main intent and action_category launcher intent was used by 

almost 99% of each type. These kinds of features can mislead the learning model. The selected 39 

features are presented in Table 4.11. 

Table 4.11 The Selected 39 Features from the Proposed Filter-Based FS method 

 Selected Features 

Permission PI3, PI4, PI5, PI9, PI31, PI33, PI38, PI39, PI41, PI47, PI52, PI55, PI62, PI68, PI71, PI79 
, PI80, PI82, PI84, PI85, PI89, PI91, PI93, PI100, PI101, PI114, PI122, PI123, PI12, 
PI131 

Intent PI143, PI194, PI201, PI214, PI230, PI232, PI245, PI248, PI252 

 

The selected features as presented in Table 4.11 were used in the design of the prototype system; 

these are labelled GOOD in Table 3 in Appendix A. Missing form Table 4.11 are the features that 

was removed based on the result of the proposed feature selection in the study; these ‘missing 

features ‘are shown in Table 3 Appendix A with the label VOID.   

4.4.3 THE PROPOSED ENSEMBLE ML MODEL USING STATIC ANALYSIS APPROACH 

This study uses apps' permission and intent requests as a static feature to build an ensemble ML 

model for detecting malicious user-installed apps in the MCC environment, as shown in Figure 4.6. 

The proposed ensemble ML model uses a supervised ML learning approach to train the detection 

engine. The detection engine uses voting ensemble classifiers. The voting ensemble ML classifier 

in the proposed model uses the best three ML classifiers, C1, C2 and C7 (outcome of experiment 

1). The proposed ensemble ML model was trained using the 39 selected features obtained from the 

proposed filter-based FS method. The proposed ensemble ML model is used to detect malicious 

activities of users who install apps on their mobile devices at the user layer of the MCC infrastructure. 

The ensemble ML model uses static analysis of the permission and intent required for the app to 

perform its basic functionality to determine if the app is either malicious or not. 

The ensemble ML model has an app permission filter used to extract permissions demanded by an 

app and generate the permission dataset. The permission dataset is made up of zeros and ones. 

The zero indicates that the app did not require specific permission, while the one indicates that the 

app demanded specific permission. Similarly, the model has an intent filter that reads the intent 

requested by an app, and the corresponding intent dataset is constructed. The ensemble model uses 

the union of the selected permission and intent based on the outcome of the selected feature in 

Table 4.11. as input for the model training. The classification outcomes of the proposed ensemble 

ML model depend on the majority votes among the three classifiers (C1, C2 and C7). 



 
 

105 
 

 

Figure 4.6 The Proposed Ensemble ML Model using Static Analysis Approach 

4.4.4 RESULTS OBTAINED FROM EXPERIMENT 2 

The results obtained from laboratory experiment 2 conducted in this study were evaluated using the 

confusion matrix evaluation metrics discussed in Sections 4.3.3 and 4.3.4. The second experiment 

uses the selected features outcome of the proposed filter-based FS technique to extract only the 

selected features columns from the original dataset 3 to form a new reduced dataset 4. Dataset 4 

contains 39 features, with 1 output column. The second experiment uses the new dataset 4 to 

conduct an ML experiment. The experiment uses 11 ML classifiers (the proposed ensemble voting 

classifier and the original ten ML classifiers used in the previous experiments), and the results 

obtained are presented in Table 4.12. 
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Table 4.12 Results of the Second Experiment. 
C

la
s

s
if

ie
r 

TP FP TN FN CA ER PR RC FM FPR FNR FAR 

C1 3421 185 1816 240 92.78 7.22 95.29 93.44 94.36 8.45 6.56 7.50 

C2 3496 174 1827 165 94.00 6.00 95.58 95.11 95.35 8.05 4.89 6.47 

C3 3478 273 1728 183 92.39 7.61 93.14 95.25 94.18 12.84 4.75 8.80 

C4 2699 224 1777 962 82.30 17.70 92.87 78.67 85.18 11.04 21.33 16.19 

C5 3497 284 1717 164 92.53 7.47 93.24 95.36 94.29 12.64 4.64 8.64 

C6 3470 205 1796 191 92.65 7.35 94.39 94.24 94.31 10.24 5.76 8.00 

C7 3484 201 1800 177 93.50 6.50 94.80 95.17 94.98 9.55 4.83 7.19 

C8 3524 412 1589 137 90.76 9.24 90.21 96.15 93.08 19.09 3.85 11.47 

C9 3475 245 1756 186 92.88 7.12 93.93 95.14 94.53 11.24 4.86 8.05 

C10 3483 270 1731 178 92.60 7.40 93.37 95.33 94.34 12.39 4.67 8.53 

Proposed  3598 43 1958 63 98.13 1.87 98.82 98.28 98.55 2.15 1.72 1.93 

 

4.4.5 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 2 

The results obtained from the second experiment show that the proposed ensemble model performs 

better than the individual ML classifiers. The ensemble model results when tested with 2,001 benign 

samples and 3,661 malicious samples. The proposed model achieves the highest classification 

accuracy of 98.13%, with an error rate of 1.87%. The precision and recall rates were very stable as 

the model obtained 98.82% precision and 98.28% recall, as presented in Figure 4.7. The false alarm 

was less than 2%, showing that the proposed model can efficiently detect malicious apps using static 

features such as permissions and intents. The results of the ten classifiers are also comparable to 

the results obtained without using the FS technique. The results show that the FS technique is better 

and makes it more feasible to implement this security model on resource-constrained MDs in the 

MCC environment. 
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Figure 4.7 Ensemble ML Model Performance Results Using the FS Approach 

The results obtained from the second experiment were validated using the ten-fold cross-validation 

technique as presented in Figure 4.8. The ensemble ML model achieved the highest classification 

accuracy of 99.01% with a minimum classification accuracy of 96.56% when validated using the ten-

fold cross-validation technique. This result shows stability in the model. However, the Support Vector 

Machine classifier obtained a maximum accuracy of 95.05%, which was the best amongst the ten 

classifiers. The minimum classification accuracy of the support vector machine was 89.40, which is 

not too stable compared to the selected Random Forest and K-Nearest Neighbour classifiers. A 

more stable model with classification accuracy lies between 90.46 to 95.05 for the Neighbour 

classifier, while Random Forest accuracy lies between 90.78 and 94.37. The validation results show 

the stability and reliability of the model.  

The FS approach makes it feasible to build an ML model and deploy it to resource-constrained MDs 

in the MCC environment because of improved detection using only 39 features compared to the 

entire 263 features. There is also a low computational overhead using only a few features, making 

this model more efficient and feasible in MDs.  

As shown in Figure 4.9, the model's computational overhead in terms of the time required for both 

training and testing was reasonable. However, the ensemble ML model requires 3.7 seconds to test 

over 5,000 apps during the experiment. The high time consumption by the ensemble model resulted 

from the voting process amongst the three classifiers and the selection of a simple majority amongst 

-
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the individual results of the classifiers. The detection time is feasible when this model is deployed to 

a real-life device in the MCC environment.  

Figure 4.8 Ten-Fold Cross Validation Results of the ML Training 

Figure 4.9 Ensemble ML Model Training and Testing Time 
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4.5 LABORATORY EXPERIMENT 3 

This experiment aims to build an ensemble ML model that uses a dynamic analysis approach to 

analyze Android apps and use their behaviour to detect malicious activities at the user layer of the 

MCC Infrastructure.  

This study collected network traffic data from 4,000 apps for two months. The selected app APK 

comprises 2,000 benign and 2,000 malicious samples chosen randomly from the 28,306 APK 

discussed in Section 4.2.1. The apps' APKs were installed on twenty different Android X Emulators 

(Nexus 5X) with the following hardware configuration: 1GB RAM, 512MB SD Card, 2GB internal 

storage, 1080 X 1920HDPI, 4 Multi-Core CPU in a remote Virtual Machine (VM) at the Auckland 

University of Technology, New Zealand Graduate Research Laboratory. The VM has the following 

hardware configuration AMD dual Core (processor) i7-8700 CPU @2.00GHz, 64GB RAM, and a 

1TB hard disk drive.   

A data capture app was designed to collect the network traffic from each app category (benign and 

malicious apps) that leveraged the Android VPN services. The data capture tool records each API 

request to an external service from the device emulator. The API request contains network traffic 

information, which includes: the number of bytes sent or received, the protocol for the request (i.e., 

TCP, HTTP, HTTPS, DNS, or TLS), the URL of each request, and the requested permissions and 

intent demanded at run-time by an app at the point of making the request. The data retrieved from 

each request is stored in an SQLite database for each emulator. 

In each emulator in this study, 200 different apps were installed and executed. The data capture tool 

records each app's network traffic and the permissions and intent requests at run time to get the 

dynamic features of each app. The emulator captured each app's traffic data and stored it in the 

device database for 5 hours daily. 

The emulators were left unattended for another 7 hours to record the activities of each app when the 

device was idle, allowing the recording of the background network calls of the apps when the user 

was not using the device. This process was repeated for each emulator for two days. At the end of 

the data acquisition period, a total of 78,285 unique network traffic records of all apps (4,000 apps) 

were recorded, as shown in Table 4.13 

Table 4.13 Network Traffic Apps Data Distribution 

Emulator 1 2 3 4 5 6 7 8 9 10 Total 

Benign 
Apps 

3578 3099 4329 2988 4005 3021 3566 5002 3944 2991 36523 

Malicious 
Apps 

4024 5600 5023 3456 3878 4098 5008 3207 3456 4012 41762 

Total 
Packets 

7602 8699 9352 6444 7883 7119 8574 8209 7400 7003 78285 
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4.5.1 APP DYNAMIC FEATURES EXTRACTION AND DATASET CONSTRUCTION 

The dynamic features recorded in this experiment, which represent the actual app behaviour were 

extracted from each emulator database.  

The database records of each emulator device were migrated to a Microsoft SQL Server database 

for further processing. The dynamic features extracted at run-time include permission, intent, and 

API calls to external services. The API calls to external services consist of requests made from the 

devices. The features of the API calls are presented in Table 4.14.  

Table 4.14 API Calls Features from the App Network Traffic Data 

S/N Features Description 

1 Protocol The type of request contains in the API call e.g., HTTP, DNS, TCP 

2 Duration The total time of the connection between the source and destination 

3 Domain URL The URL of the destination server that services the API call 

4 Packet Sent The number of packets sent from the host device(source) 

5 Packet Received The number of packets received from the destination server 

6 Destination IP The IP address of the destination server 

7 Source Bytes The total size of data sent from the host device(source) 

8 Destination Bytes The total size of data received from the destination host 

 

The permissions and intents used in constructing dataset 5 for this experiment use the proposed 

filter-based FS method reported in Table 4.11 and the API calls features presented in Table 4.14 

respectively using a binary vector.   

Such that  PIAPIi= {PI1, PI2, PI3, ……., PI39, API1, API2, API3……., API8} where PI represent the 39 

selected features (outcome of the proposed filter-based FS method) and 8 represent the total 

number of network features as shown in Table 4.14. 

Each app APK in the fifth dataset was represented using the binary vector of permissions or intent 

or API requested by an app at run-time i.e., APPi   where 

𝐴𝑝𝑝(𝑖) {
1  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝑜𝑟 𝐴𝑃𝐼  𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑡 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝐴𝑃𝐼  𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑡 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒            

 

The network traffic extracted as features used in constructing dataset 5 focuses only on HTTP, 

HTTPS, TCP, TLS, and DNS requests made from the device. These selected features of network 

traffic protocol are chosen because most malware usually steals sensitive information from the 

device and transmits the stolen data to a remote server. 

 

 

 



 
 

111 
 

4.5.2 THE PROPOSED ENSEMBLE ML MODEL USING DYNAMIC ANALYSIS APPROACH 

The proposed ensemble model uses dataset 5, constructed from the dynamic features retrieved from 

the apps installed on the emulator at runtime for ML training, as shown in Figure 4.10. The dynamic 

ensemble ML model proposed in this study focused on observing the real-time behaviours of apps' 

network activities by analysing the traffic data and retrieving information regarding the URL to which 

the traffic data is being sent. The proposed ML model was trained with an ensemble classifier using 

the dynamic analysis approach of bagging techniques. The choice of the bagging technique for the 

proposed ML model was made based on the performance results obtained during the experiment. 

The proposed ensemble model uses the Random Forest ML classifier as its base estimator for the 

training of its detection engine. The ensemble ML model was implemented in Python using the 

Microsoft Visual Studio 2019 IDE. The two ensemble ML models (static and dynamic feature analysis 

approach) proposed in this study were deployed to a cloud-based server to implement the prototype 

system. 

 

Figure 4.10 The Proposed Ensemble ML Model Using Dynamic Features Analysis Approach 
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4.5.3 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 3 

The experiment reported in this section was carried out using dataset 5 constructed from permissions 

and intent requested by apps at run time and the network request made by the apps. The experiment 

uses both the voting ensembling techniques and the bagging techniques. The results obtained from 

the experiment also show similar performance to the previous experiments. However, the 

ensembling techniques using the voting techniques were outperformed by the bagging technique, 

hence the bagging technique for the ensemble ML model that uses the dynamic analysis approach 

in this study. A detailed analysis of the experiment results focuses on the evaluation of the 

implemented prototype system reported in chapter six of this study. 

4.6 CHAPTER SUMMARY 

This chapter provides a detailed description of the Android OS security system. A detailed 

description of each of the datasets used in the experimental work is presented. The ML classification 

algorithms used in the study were briefly described, including the evaluation and validation metrics. 

The permissions and intent usage analysis was used as a basis for proposing filter-based feature 

selection techniques. The analysis of the experimental work reported in this chapter leads to 

developing two ensemble machine learning models that use both static and dynamic analysis 

approaches. These two models were deployed as a service to a cloud-based server for use in 

implementing the prototype system in the next chapter. 
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CHAPTER FIVE 

PROTOTYPE DESIGN AND IMPLEMENTATION 

The previous chapter describes the analysis of the data collected for this study. The collected data 

was used to construct five different datasets used in various experiments. The dataset analysis 

resulted in reducing the number of features to improve performance, thereby proposing a filter-based 

feature selection technique to reduce the number of features required to train the proposed ML 

models. The experimental results were evaluated, and two ensemble ML models were proposed. 

The proposed ML models use both static and dynamic analysis approaches of Android apps. These 

models were deployed as cloud-based services to implement the prototype system in this chapter. 

This chapter describes the implementation of the prototype system MINDPRES. This includes a 

high-level view and the various subsystems that make up the prototype system. Each subsystem's 

implementation design details that make up the entire prototype system are also presented. 

5.1 PROTOTYPE DESIGN  

The prototype system design (MINDPRES) in this study focuses on the Android mobile operating 

environment because of its popularity, making its users prime cyber targets in the MCC environment. 

Data was collected and analysed to implement the prototype system as a proof of concept. The 

collected data is used to perform detailed ML experiments and build an ensemble ML model 

embedded in the prototype system. The implementation of the prototype uses a core native mobile 

application development environment with Java programming using the Android Studio Integrated 

Development Environment. The Ensemble ML Model was implemented using the Python 

programming language. The prototype system uses static and dynamic device behaviour analysis 

and ML techniques to enhance user data security at the MD node in the MCC environment. The 

prototype system is an improved IDPS that runs on the MD node and protects MCC resources 

against internal and external attacks. A description of the proposed prototype system (MINDPRES) 

was previously described in Chapter 3, Section 3.3.2. MINDPRES comprises three sub-system 

components: the Device Manager, Apps Evaluator, and the Detection Engine. A high-level view 

illustrating the various components in the proposed prototype system (MINDPRES) implementation 

is shown in Figure 5.1. 
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Figure 5.1 High-Level View of the Proposed Prototype System Implementation (MINDPRES) 

5.1.1 THE DEVICE MANAGER 

The Device Manager (DM) is a component of the prototype system as shown in Figure 5.2. The DM 

scans all apps that reside on the device and generate results of the total user-installed apps. The 

DM uses the Virtual Private Network (VPN) service libraries in the Android OS for its implementation. 

The VPN allows the DM to prepare the prototype system for monitoring all apps activities that reside 

on the devices without root-level access. The device user must grant MINDPRES access to the 

Android VPN service to enable the system to monitor the traffic generated by the apps in the device. 

The DM allows MINDPRES to run in the background while the user is using other apps and 

constantly monitoring the behaviour of each app in the device by analysing the network traffic 

generated by the apps on the device. The DM does not require any external VPN service as it only 

leverages the Android OS's VPN services and processes the network traffic from the apps locally on 

the device. Once the traffic is processed locally and stored in the device database, the DM forwards 

the traffic to the ensemble ML Model deployed in the cloud service end for further analysis by the 

detection engine for possible malicious activities. 
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Figure 5.2 The Device Manager 

 

5.1.2 THE APP EVALUATOR 

MCC users suffer security vulnerabilities associated with apps installed on their devices, especially 

those malicious apps installed from the untrusted app store. To improve the security of the user layer 

of the MCC architecture, the app evaluator components in the proposed prototype system helps 

informs the MCC users of the risks associated with each app on their device.  

The app evaluator displays the list of all requested permissions for each app and also provides user 

an option to remove unwanted apps that the app evaluator reported as risky to the security of the 

user data in the device. The app evaluator evaluates the risk profile of all user-installed apps and 

assign a risk score and category (high, medium or low) to each app. The app evaluator relies on the 

app's metadata information, for example the permissions and intents demanded by the app to 

determines its risk profile. The ensemble ML Model used by the app evaluator is deployed in an 

Amazon Web Service (AWS) cloud server. The model deployed in the AWS cloud server is 

consumed by MINDPRES using an API endpoint integrated into the app evaluator. The app 

evaluator requires some selected permissions and intent using the ensemble ML model via the 

Permission and Intent Filter. These features (permissions and intents) are passed as parameters to 

the API endpoint, and a request is sent to the ensemble model in the cloud server. The cloud server 

processes the request and sends feedback to the devices that make the request. The feedback sent 
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to the devices is either zero or one. The value of zero indicates that the ensemble ML model has 

classified the app that demanded the permissions and intent as a benign app, while a value of one 

indicates that the app is classified as malicious. 

The output of the app evaluator depends on fuzzy classification rules proposed in this study. The 

fuzzy sets include the classification outcome of the ensemble ML model using the static analysis 

approach discussed in Chapter Four, Section 4.4.3 and the score generated by the Risk Assessor 

in the prototype system using the probabilistic approach discussed below in this section to determine 

the risk category of the app (i.e., High, Medium, or Low) as shown in Figure 5.3. For example, an 

app classified as benign by the ensemble ML model is categorized as a high-risk app if and only if 

the risk value generated by the risk assessor using the probability approach proposed in this study 

is between 0.86 and 1.00. Also, an app classified as benign by the ensemble ML model is 

categorized as medium risk if the risk value is between 0.66 and 0.85, or low risk if the risk value is 

below 0.00 and 0.65.  

In addition, an app classified as malicious by the ensemble ML model is categorized as a high-risk 

app if and only if the risk value generated by the risk assessor using the probability approach 

proposed in this study is between 0.61 and 1.00. Also, an app classified as malicious by the 

ensemble ML model is categorized as either medium-risk if the risk value is between 0.26 and 0.60 

or low-risk if the risk value is below 0.00 and 0.25. 
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Figure 5.3 The App Evaluator 

The probabilistic risk assessor model proposed in this study determines the risk score of the app 

based on how much; the app uses these fifteen dangerous permissions (P1 to P15) as discussed in 

Chapter Four, Section 4.2.2, Table 4.5. The choice of these sets of permissions relies on the 

information provided in the Android OS documentation. This set of dangerous permissions, when 

granted to an app, poses a greater risk to the security and privacy of user data stored on the device. 

The greater risk posed by these sets of permissions allows the app evaluator to determine the risk 

score of an app by its usage patterns. The equations (5.1 to 5. 4) are used to define the proposed 

risk function (equations 5.5 and 5.6) used for the implementation of the risk assessment module of 

the proposed MINDPRES system (equations 5.7 and 5.8).  The choice of this approach (a probability 

risk value function that is based on the statistics of the data collected in this study) is supported by 

previous studies that apply  similar methods; for example,  in determining the risk value of Android 

apps (Peng et al, 2012; Cen et al, 2014; Mat et al, 2022). 

The probabilistic risk assessment model proposed in this study and used by the app evaluator is 

described as follows: 
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Let 𝑆 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛} be a non-empty set containing all known dangerous permissions in the 

dataset, 𝑃𝑖, such that the cardinality of the set 𝑆, |𝑆| = 𝑛 < ∞ (i.e., 𝑆 is a finite set and n=15). 

For each dangerous permission, 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑛, let 𝛼𝑖 be the ratio of usage of the permission 𝑃𝑖 by the 

total number of malicious apps in the dataset discussed in Chapter Four, Sections 4.2 and 4.2.2, 

Tables 4.1 and 4.5. That is, 

𝛼𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
                                                                       𝐸𝑞. 5.1 

     

Similarly, let 𝛽𝑖 be the ratio of usage of the permission 𝑃𝑖 by benign applications to the entire 

benign data set as discussed in Chapter Four, Sections 4.2 and 4.2.2, Tables 4.1 and 4.5.  That is, 

𝛽𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
                                                                           𝐸𝑞. 5.2                              

 

In this case, both 𝛼𝑖 and 𝛽𝑖 can take values ranging from 0 to 1 only, for all values of 𝑖. (i.e., 0 ≤

𝛼𝑖 , 𝛽𝑖 ≤ 1, for all 𝑖). 

Corresponding to each permission 𝑃𝑖, define the function 𝜆(𝑖) by  

𝜆(𝑖) = {
1, 𝑖𝑓𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝.

0, 𝑖𝑓𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝.
                                                                  𝐸𝑞. 5.3 

Next, the value of the constant 𝑘, is set for every app to be tested, as 

𝑘 =∑𝜆(𝑖)                                                                                                                                                               

𝑛

𝑖=1

𝐸𝑞. 5.4 

Hence, 𝑘 is a positive integer such that 0 ≤ 𝑘 ≤ 𝑛. 

Finally, the risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) of an Android app 𝑋 is defined by 

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) =
1

𝑘
∑𝜆(𝑖)√𝛼𝑖 − 𝛼𝑖𝛽𝑖

𝑛

𝑖=1

                                                                                                                  𝐸𝑞. 5.5 

These evaluates the risk of all dangerous permissions requested by app 𝑋. Thus, 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) is a 

probability valued function that determine the risk value of each dangerous permission such that 𝑅 

lies in the interval [0,1] (i.e., 0 ≤ 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ≤ 1), for each Android app to be evaluated. Suppose 

an app uses any of these dangerous permissions the risk value generated by the proposed model 

will be greater than zero but less than or equal to 1. 



 
 

119 
 

Considering the risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) in (𝐸𝑞5.5) above, it follows straightforward that for an app 

𝑋 with 𝛼𝑖 = 0 (which implies that the dangerous permission 𝑃𝑖 was never requested or demanded by 

all malicious app), for all 𝜆(𝑖) = 1 (i.e. for all dangerous permissions requested in the app 𝑋 to be 

evaluated), then the risk function generates 

𝑅 = 0                                                                                                                                                                          𝐸𝑞. 5.6 

Clearly, it is evident that independent of  𝛽𝑖 (ratio of the dangerous permission 𝑃𝑖 requested by benign 

apps as discussed in Chapter Four, Sections 4.2 and 4.2.2, Tables 4.1 and 4.5, the risk function 𝑅 =

0, whenever 𝛼𝑖 = 0, for every permission 𝑃𝑖 found in app 𝑋.  

In Figure 5.3, the app evaluator, analysed each app in the device by sending a request to the 

ensemble ML model deployed in the cloud server. The request contains the selected features require 

by the model that consist of a set of permissions and intent demanded by each app and the proposed 

probabilistic value function score of the list of dangerous permission demanded by the app as 

discussed in this section. The app evaluator uses a set of fuzzy rules define on the risk score output 

of equation Eq. 5.5 as a membership function to categorize each app into one of the following three 

(3) distinct groups namely as Low-risk app, Medium-risk app, or High-risk app. 

This study constructs the following fuzzy rules with the help of (AND) logical operators to determine 

the risk category of each app by the app evaluator. 

 

Rule 1:   (if app risk score >=0.0 AND risk score <=0.65) AND ensemble ML classification of the app 

is benign THEN the app is classifies as a low risk app 

 

Rule 2:  If (app risk score >0.65 AND risk score <=0.85) AND ensemble ML classification of the app 

is benign THEN the app is classifies as a medium risk app 

 

Rule 3:  If (app risk score >0.85 AND risk score <=1.00) AND ensemble ML classification of the app 

is benign THEN the app is classifies as a high risk app 

 

Rule 4:  If (app risk score >=0.00 AND risk score <=0.25) AND ensemble ML classification of the 

app is malicious THEN the app is classifies as a low risk app 

 

Rule 5:  If (app risk score >0.25 AND risk score <=0.60) AND ensemble ML classification of the app 

is malicious THEN the app is classifies as a medium risk app 

 

Rule 6:  If (app risk score >0.60 AND risk score <=1.00) AND ensemble ML classification of the app 

is malicious THEN the app is classifies as a high risk app 
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These fuzzy set rules are applied on the following possible case scenarios. 

Case A: Low risk app:  Suppose 𝛼𝑖 = 0 for each dangerous permission 𝑃𝑖 found in an app 𝑋, 

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = 𝑅𝑚𝑖𝑛 = 0, which implies the lowest risk irrespective of the outcome of the ensemble

ML classification such app is classify as a Low-risk app. 

Specifically, if for every dangerous permission 𝑃𝑖 requested in an app 𝑋, 𝛼𝑖 < 𝛽𝑖 (i.e. 𝛼𝑖 is much less 

than 𝛽𝑖), then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ [0,0.25] (i.e. 0 ≤ 𝑅 ≤ 0.25) is said to be a low-risk app irrespective of

the outcome of the ensemble ML classification. The risk classification for this scenario use either 

rule 1 or rule 4 depending on the outcome of ensemble ML classification model. 

In addition, using rule 1, an app can also be considered as low-risk app if and only if the result of the 

ensemble ML classification is benign and the risk lies between 0.00 to 0.65( 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ [0,0.65]

(i.e., 0 ≤ 𝑅 ≤ 0.65)) 

Case B: Medium risk app: In this scenario, an app is considered a medium risk depending on the 

result of the ensemble ML classification and the region the risk value score of the app falls into. 

Using rule 2, suppose the ensemble ML model classified the app X as benign and for every 

dangerous permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.66,0.85] (i.e., 0.66 <

𝑅 ≤ 0.85) is said to be medium-risk app. 

Similarly, using rule 5, suppose the ensemble ML model classified the app X as malicious and for 

every dangerous permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.26,0.60] (i.e.,

0.26 < 𝑅 ≤ 0.60) is said to be medium-risk app. 

Case C: High risk app: Using rule 3 or 6, suppose that 𝛼𝑖 = 𝛽𝑖 ≤ 0.50, for every dangerous 

permission 𝑃𝑖 found in an app 𝑋, then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ≤ 0.50. (This implies that the dangerous

permission 𝑃𝑖 is requested at the same rate in both malicious and benign applications, and of which 

rate is less than or exactly 50%). But supposing for each and every dangerous permission 𝑃𝑖 found 

in any arbitrary app 𝑋, 𝛼𝑖 = 1 and 𝛽𝑖 = 0 (i.e. if all the permissions 𝑃𝑖
′𝑠 are requested for at 100%

rate in malicious applications and 0% rate in benign applications), then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = 𝑅𝑚𝑎𝑥 = 1.

which implies the highest risk irrespective of the outcome of the ensemble ML model classification 

such app is classify as a High-risk app. 

Suppose the ensemble ML model classified app X as benign and for every dangerous permission 𝑃𝑖 

found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.86,1.00] (i.e., 0.86 < 𝑅 ≤ 1.00) is said to be high-

risk app. 
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Similarly, suppose the ensemble ML model classified app X as malicious and for every dangerous 

permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.61,1.00] (i.e., 0.61 < 𝑅 ≤ 1.00) is

said to be high-risk app. 

In general, the boundaries used for risk categorization of apps in this study is based on the analysis 

of the dangerous permissions usage by both malicious and benign apps and the results of the 

ensemble ML classification model. The app evaluator in MINDPRES as shown in Figure 5.3 classify 

an Android app by analysing each dangerous permission 𝑃𝑖 requested therein, the following is 

obtainable  

if the results of the ensemble ML Prediction for an app is Benign: 

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = {

𝑥 ∈ [0,0.65], 𝑓𝑜𝑟 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.66,0.85], 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.86,1.00], 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

 𝐸𝑞.  5.7 

where 𝑥 ∈ 𝑅, the set of real numbers that denotes the risk score of the app. 

and if the results of the ensemble ML Prediction for an app is Malicious: 

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = {

𝑥 ∈ [0,0.25], 𝑓𝑜𝑟 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.26,0.60], 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ ([0.61,1.00]], 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

 𝐸𝑞.    5.8 

where 𝑥 ∈ 𝑅, the set of real numbers that denotes the risk score of the app. 

5.1.3 THE DETECTION ENGINE 

The detection engine is the security component of the prototype system (MINDPRES) that monitors 

apps' behaviours in real-time. The detection engine comprises two main sub-systems, shown in 

Figure 5.1: the app intrusion manager and the app prevention manager. 

A. The App Intrusion Manager: The app intrusion manager uses a host-based IDS approach

to analyze the behaviour of all apps that reside on the devices, as shown in Figure 5.4. The

app intrusion manager works in conjunction with the device manager by leveraging the

Android VPN services to monitor the behaviours of all apps on the device. The app intrusion

manager applies a dynamic analysis approach to analyze the behaviour of apps that reside

locally on the device using the proposed ensemble ML model discussed in Chapter Four,

Section 4.5.2.

The intrusion manager analyses the permissions and intents requested by an app and

extracts the selected features (permissions and intents requested at run-time). The

permission and intent extractor of the intrusion manager analyses the actual permission and

intent requested by an app at run time rather than the permission and intent declared in the
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app manifest file. These enable the intrusion manager to know the actual resources that the 

app is accessing at any point in time. 

In addition, the app evaluator uses all permissions and intents declared by the developers 

that the app intends to use during the actual execution of the app. In contrast, the intrusion 

manager analyses only permissions and intents requested during the app's execution. The 

ability to analyse the actual permissions and intent enables the intrusion manager to predict 

the actual behaviour rather than the intended behaviour of the app at run-time. The intrusion 

manager only selects the permissions and intent to belong to the list of selected features 

used in the training of the ensemble model as described in Chapter Four, Section 4.4.2, Table 

4.11. An app demands the selected permissions and intents at run-time, and the extracted 

network traffic of the request is passed to the feature set manager. The feature input received 

by the feature set manager is forwarded to the ensemble ML deployed in the AWS cloud 

service for analysis. The classification results produced by the ensemble ML model 

(malicious or benign request) are forwarded to the intrusion assessor for an investigation to 

determine if the request is malicious or not. 

Figure 5.4 App Intrusion Manager 
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The app traffic extractor in the intrusion manager captures all network traffic from all apps 

on the device by analysing the actual API calls, consisting of HTTP/HTTPS requests, 

TCP requests, TLS requests, and DNS requests. The network traffic features (such as 

the request protocol, the duration of the connection, the number of bytes sent from the 

device, the number of bytes received from the destination host, the packet size sent, the 

packet size received from the destination host, the IP address of the destination request, 

and the source request) are forwarded to the feature set manager for further processing. 

The app traffic extractor also extracts the URL from the API calls and checks it against a 

known global malicious URL database to determine if the API URL call is malicious or 

not. The results from the global database of known malicious URLs are grouped into four 

categories: malware, spamming, phishing, and suspicious URLs. The results from the 

API request to analyze the URL from the global database are forwarded to the intrusion 

assessor for the final assessment. 

The intrusion assessor analyses the results obtained from the global database of 

malicious URLs and the cloud-based ensemble ML model to determine if app traffic 

contains a URL that has been classified as malicious or not. The final results by the 

intrusion assessor show that a specific packet might be suspicious by analysing the 

abnormality in the packet, checking the duration of connection and the packet size 

information combined with the results of the global database of malicious URLs. The 

intrusion assessor flags any network traffic or packets obtained as malicious if and only 

if the cloud-based ensemble ML model predicts it as malicious or if the global malicious 

URL results return true for any of the four categories, namely malware URL, suspicious 

phishing URL, or spamming URL. The URL is marked as "red," and an intrusion alert is 

sent back as feedback to the intrusion manager component of the detection engine. 

 

B. The App Prevention Manager: As shown in Figure 5.1, the prevention manager is a 

detection engine's mitigation component that checks for intrusion alerts reported by the 

intrusion assessor. The prevention manager identifies the app that requests by checking the 

traffic data and communicating with the device manager, leveraging the VPN services, and 

automatically blocking any traffic coming from the app to the reported destination IP address. 

The prevention manager shows the list of backlisted traffic and allows the user to enable the 

app to call the blacklisted URL based on the MD user assessment. 
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5.2 PROTOTYPE IMPLEMENTATION  

The implementation of the prototype system in this study applies the object-oriented analysis and 

design (OOAD) paradigm. This approach provides flexibility in designing artifacts for use in a real-

life scenario. 

5.2.1 THE DATABASE DESIGN 

The prototype system's database was implemented using an open-source database system named 

SQLite. This database is available for all Android devices. The database stores the traffic data 

captured on the device, and the intrusion manager will analyze each piece of data in the background 

for possible intrusions. The Entity-Relationship (ER) of the database tables and how they are used 

to implement the prototype system (MINDPRES) is shown in Figure 5.5. 

 

 

Figure 5.5 MINDPRES-Database Entity Relationship Diagram 

A. The App Information Table: The app information table structure is shown in Table 5.1. This 

table stores information on all apps that reside on the devices. The app information table is 

populated by the device manager based on its analysis of all apps that reside on the device. 

 

Table 5.1 App Information Table 

Column Name Description Data Type 

AppID (PK) This column holds a unique identity for each app.  Integer (10) 

Package Name This column holds the package name of each app. Varchar (50) 

Version This column holds the version details of each app Varchar (20) 

Category This column holds the category information of each app as 
either user install apps or system apps 

Varchar (20) 
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B. The App Evaluation Table: The structure of the app evaluation table is shown in Table 5.2. 

This table stores both the results of the app evaluator and the ensemble ML prediction of 

each user-installed app using the metadata information (permissions and intents). 

 

Table 5.2 App Evaluation Table 

Column Name Description Data Type 

AppID (PK) This column holds a unique identity for each app.  Integer (10) 

RiskScore This column holds the risk score of each app. Float (10) 

RiskCategory This column holds the risk category of each app Varchar (20) 

Prediction This column holds the ML Prediction result for each app Integer (1) 

 

C. The App Network Traffic Table: The structure of the app network traffic table is shown in 

Table 5.3. This table stores information retrieved from each request made by an app that 

passes through the VPN. The table also stores details of each connection request via an API 

call to an external service. 

 

Table 5.3 App Network Traffic Table 

Column Name Description Data Type 

RequestID (PK) This column holds a unique identity for each app network 
traffic connection made from the device 

int 

AppID (FK) This column holds a unique identity for each app.  int 

RequestTime This column holds the date and time the request was initiated datetime 

Duration This column holds the time interval for each API call request. int 

Protocol This column holds the request type information Varchar (20) 

URL This column holds the URL information of each request Varchar (50) 

SourceIP This column holds the IP address of the source request Varchar (50) 

DestinationIP This column holds the IP address of the destination of the 
API call request 

Varchar (50) 

DataSent This column holds size of the data sent  Varchar (20) 

DataRecieved This column holds size of the data received Varchar (20) 

PacketSent This column holds number of the packet sent Varchar (20) 

PacketRecieved This column holds number of the packet received Varchar (20) 

 

D. The App Online Activities Table: The structure of the app's online activities table is shown 

in Table 5.4. This table stores information on all apps and the total number of all online 

activities. 

Table 5.4 App Online Activities Table 

Column Name Description Data Type 

AppID (PK) This column holds a unique identity for each app.  int 

TotalActivities This column holds the total number of online activities for 
each app 

int 
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E. The App Traffic Detection Table: The structure of the app traffic detection table is shown 

in Table 5.5. This table stores information about the detection and prevention engine results 

for each network traffic. 

 

Table 5.5 App Traffic Detection Table 

Column Name Description Data Type 

RequestID (PK) This column holds a unique identity for each app.  int 

IntrusionStatus This column holds the intrusion result status of each online 
activities request made by each app. 

int 

BlacklistedStatus This column holds the backlisted status of each online 
activities request made by each app. 

int 

 

5.2.2 THE IMPLEMENTATION TOOLS 

The proposed ensemble ML models used to implement the prototype system in this study were 

implemented using Python programming language. The robust ML libraries that is supported in 

python programming language makes it’s a preferred tool for the design and development of 

ensemble ML models in this study. This study uses the python’s scikit-learn, pandas, and NumPy 

libraries to develop the ensemble ML model. The ensemble ML models used to implement the 

prototype system (MINDPRES) were also deployed to the AWS cloud container. MINDPRES utilized 

the corresponding endpoint API implementation of the ensemble ML models for app evaluation and 

intrusion detection of malicious activities of suspicious API calls from the device. 

 

The prototype system was implemented using the Android Studio Integrated Development 

Environment (IDE). The Android Studio IDE was used to design the mobile app on the MCC user's 

end. The language used for implementing the mobile app is the programming language. Using the 

Java programming language to develop the prototype system was chosen because of its efficiency 

in developing native mobile apps that run on the device. This study's prototype system requirements 

require a programming language that provides an efficient library system that enables access to the 

device's low-level resources. MINDPRES requires some native access to the device's resources, 

such as the VPN service and the package manager. Java provides efficient libraries that provide an 

efficient way to communicate with the Android OS kernel. The libraries supported by the Java 

programming language enable the prototype to efficiently analyze all the apps on the devices and 

provide a way to intercept all API calls from each app that resides on the device. 

 

The User Interface (UI) was designed using the Extended Markup Language (XML) in the Android 

Studio. The prototype implementation used the Android Emulators during the development phase 

and was later tested on various real-life Android devices. The UIs designed for the implementation 

of the prototype system are discussed as follows: 
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A. The Device Manager UI: This is the first UI displayed to the app's end-user when the app is

launched. The device manager UI has a different process that runs in the background. This

UI provides greater functionality and asks the user to accept the VPN service for MINDPRES

to monitor the activities of all apps on the device. The device manager UI also displayed the

total number of users who had installed apps on the device, as shown in Figure 5.6.

Figure 5.6 MINDPRES-Device Manager UI 

B. The App Evaluator UI: The app evaluator UI evaluates all user-installed apps by analysing

the metadata features (permissions and intents) demanded by the apps. The metadata

evaluation results are used to generate the risk score and category for each app by

combining the results of the ensemble ML model with the probability risk value function as

discussed in Section 5.1.2 of this chapter. The app UI also shows the list of permissions

demanded by an app and allows the user to uninstall apps that pose more risk to the device,

as shown in Figure 5.7.
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Figure 5.7 MINDPRES-App Evaluator UI 

 

C.  The Detection Engine UI: The detection engine UI contains three different tabs embedded 

in the UI. The first tab displays the list of all apps, the total number of online requests made 

by each app, and MINDPRES monitors that. The UI also provides a view containing the list 

of API calls made to external URLs from the device and the details of the API calls made. 

The second tab displays the list of apps with the total number of malicious API calls detected 

by the intrusion assessor. This tab also shows the API call URL that is flagged as malicious. 

The third tab displays the list of all blacklisted API calls and allows the user to either enable 

or disable a blacklisted URL, as shown in Figures 5.8 and 5.9. 
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Figure 5.8 MINDPRES-App Detection Engine-Online Activities Tab UI 
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Figure 5.9 MINDPRES-App Detection Engine-Malicious Activities Tab UI 
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5.2.3 THE UNIFIED MODELLING OF THE PROTOTYPE SYSTEM 

This study uses the Unified Modelling Language (UML) approach to show the internal structures of 

the various objects and how they interact with each other in the implemented prototype system. The 

UML diagrams used for the prototype implementation are discussed as follows: 

A. The Class Diagram of the Prototype System: The class diagram is a structural type of 

UML diagram that shows the internal structures of the various classes that make up the 

prototype system and how each class interacts with the other. The class diagrams also show 

each class's different attributes and the associated methods required to function. In this 

study, the main activity class is the backbone of the prototype system. The main_activity 

class has three classes that are associated with it. These classes include the 

device_manager class, app_evaluator class, and detection_engine class. The three classes 

use the various subclasses for their functionality, as shown in the class diagram presented 

in Figure 1 in appendix B.  

 

The setAppStateListener is a setter method that sets the value of the m_Listener attributes 

of the main_activity class. Similarly, the getAppUri methods set the value of the URL retrieved 

by each app to the m_uri attributes of the main_activity class. The check_permission method 

evaluates the device's VPN permissions to allow the prototype system to either capture app 

activities or not. In addition, the captureServiceOk and captureServiceResults are 

responsible for capturing all API calls from all apps that reside on the device. 

 

The device_manager class directly depends on the main_activity class for some of its basic 

functionality. The OnCreate method of the device_manager class initiates the class activity 

and loads all the necessary data passed on by the main_activity class. The device_manager 

class sets up the VPN connection for the devices and gets the device app list returned by the 

getAppList method. The device_manager class is also responsible for evaluating the total 

number of user-installed apps on the devices. It returns the total number of apps and device 

information via the getAppsCount and getDeviceID methods. 

The app_evaluator class depends also on the main_activity class to process the state of each 

apps that resides on the device. The app_evaluator class inherits the methods in AllAppData 

class and the permissionList class. The AllAppData class also depends directly on the 

AppRiskModel class and AppRiskData class. The app_evaluator has five attributes that 

depends on the methods define within its entity. The app_evaluator class executes the 

getRiskCategory of all apps which depends on the results return by the getMLPrediction 

methods and getRiskScore method that depends directly on other subclass associated with 

the app_evaluator class and set the app risk category for all users install apps in the device. 
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The detection_engine class depends on the main_activity class to get result of activities and 

URL request that was capture. The detection_engine class also inherits the 

AppOnlineActivities class that depend on the AllAppData class and AppActivites class. This 

enables the detection engine to execute the getAppOnlineActivites method that set the 

values of Apps, TrafficData and TotalAppActivites attributes of the AppOnlineActivities class. 

These enable the detection engines to monitor the activities of all apps in the device. 

The GetAllMaliciousActivites of the detection engines depends on the AppMaliciousActivities 

class that inherits methods in the AppActivites class that depends directly on the 

URL_Extractor class to set the maliciousActivites attribute of the detection engine. Similarly, 

the GetAllBlacklistedActivites method of the detection engines also inherits methods of 

AppActivites class and the AppBlacklistedActivites class to set the attributes values of 

blacklistedActivites   of the detection engine class. The detection engine also executes the 

enableBlacklistedActivites of AppBlacklistedActivites class to allow a blacklisted activities to 

be active in the device. 

B. The Sequence Diagram of the Prototype System: The sequence diagram is behavioural

type of UML diagram that shows the behavioural of the objects in the prototype system. The

sequence diagrams show the interaction activities amongst the various objects that make up

the prototype system, as shown in Figure 2 in appendix B.

The sequence diagram depicts the activities sequence on how the system interact with each

of the object. First, the user launches the prototype system the system gets the information

of the device and prompt the user to grant the prototype system access to the VPN service

which enable the system to monitor the activities of all apps that resides on the device. The

system will not monitor the activities of the apps if the user denies system access to the VPN

services.

Secondly, whenever access to the VPN services is granted by the device user, the prototype

system automatically setup its own VPN connection that enable MINDPRES to monitor all

the activities of all the apps that resides on the device. The system also scanned all user

installed apps that resides on the device and returns the total numbers of apps that resides

on the device.

Thirdly, the App evaluator extract the permission demanded by each apps that resides on

the devices and used the information to evaluate the riskiness of each app and returns the

result of the risk assessment by combining the result of the ML prediction and risk score

assessor model of the prototype system
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Finally, the detection engine works in parallel with the device manager once the VPN 

connection has been established the prototype system start capturing all activities of all apps 

within the device. These activities captured are also further examined for possible intrusions 

and filter out activities that are predicted as malicious by the detection engine and 

automatically block all malicious activities. The system also allows the user to activate block 

activities in the event of false alarm by the system. 

C. The Activity Diagram of the Prototype System: The activity diagram is behavioural type 

of UML diagram that shows the dynamic aspects of the prototype system. The activity 

diagram models the flow between activities within a system. The activity diagram shows the 

coordination of activities to provide services at different levels of abstraction within the system 

abstraction. The activity diagrams show different events and their associated operations 

required to complete them. In this study, the UML diagram presented in Figure 3 in appendix 

B, shows how the various activities flow from one point to another. It shows an abstraction of 

events between the MD user and the prototype system (MINDPRES). 

First, the user launches the prototype system and initiates the VPN connection that requires 

the user's approval to allow the system access to the VPN service. The user's approval of 

the VPN connection request allows the system to automatically scan all apps on the device 

and set up the VPN connection in the device manager activity class. The denial of a VPN 

connection by the user automatically stops the setting up of the VPN services. Hence, the 

system will not monitor the activities of the apps that reside on the device. 

The user navigates between the three major activity tabs in the activity diagram depending 

on the user's selection. If the user selects the app to evaluate activity, the system 

automatically gets the list of all permissions and intent demanded by each app and executes 

two different activities simultaneously. The result from the two activities is used to determine 

the risk category of each app and the risk value associated with each of the apps that reside 

on the device. 

The selection of the detection engine gives the user the ability to navigate between three 

sub-activities associated with the detection engine. The default sub-activities related to the 

detection engine are the app's online activities. These sub activities work in conjunction with 

the device manager VPN services to retrieve all associated activities associated with each 

app that resides on the device. On the other hand, during the selection of the malicious 

activities, the system executes activities related to evaluating each app's traffic data and 

determining malicious connections. In addition, once a malicious activity is detected, the 

activity is blacklisted. This displays the list of blacklisted traffic data on the user's selection of 

the blacklisted activities. This selection allows the user to either activate the blacklisted traffic 

data or not. 
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D. The Component Diagram of the Prototype System: The component diagram is structural 

type of UML diagrams that is used to model the physical aspect of the prototype system. The 

component diagram is like the class diagram although the component diagram focuses on 

the various components that make up the system by providing a visual specification of each 

components elements. In this study, the component diagram of the prototype system is 

presented in Figure 4 in appendix B. 

The prototype system comprises three major components: the device manager component, 

the app evaluator component, and the detection engine component. The device manager 

component depends on other subsystem components for its basic functionality. This 

subsystem component includes the VPN connection manager and app information manager 

components. The app evaluator components rely on a cloud-based ensemble ML model 

component and a risk score component that resides locally on the device. These 

subcomponents also depend on other components presented in Figure 4 in appendix B. 

On the other hand, the detection engine components have three subsystem components: the 

online app activities component, the malicious activities component, and the blacklisted 

activities component. The various subcomponents of the detection engine also use other 

components to carry out their basic operations. These components include the app network 

traffic manager, the app network traffic ML model, and the URL global database scanner 

components. 

E.  The Deployment Diagram of the Prototype System: The deployment diagram is a 

structural type of UML diagram used to visualize the communication links between the 

system hardware and software. The deployment diagram shows the execution architecture 

of the prototype system. The execution architecture includes the various nodes like the 

hardware or software execution environments and the middleware software connecting the 

nodes. The deployment diagram of the prototype system is presented in Figure 5 in appendix 

B. The deployment diagram in Figure 5 in appendix B, shows two execution environment and 

the device environment. The prototype development execution environment shows the 

personal computer (PC) hardware where the prototype system was developed. The prototype 

system is an Android mobile app that depends on two subsystems. The prototype system 

(MINDPRES) was deployed to a MD with Android 7.0 OS as a minimum software requirement 

for the device. The two subsystems of the prototype system were developed as an ensemble 

ML model at the experimental stage of this work. These models were implemented using 

python programming language and the final models were deployed separately to AWS cloud 

server. 

First, the ensemble ML model uses permission and intent that are declared by the app as 

features to analyses whether the app is benign or malicious. The ensemble ML model is used 
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by the app evaluator to determine the riskiness of apps based on the permissions and intent 

declared by the developers of each apps.  

Second, the ensemble ML model that uses the app traffic data (API calls) together with the 

permission and intents demanded at run-time by each app that resides on the device. This 

model examines the network traffic data for malicious behaviour of an app activity. Also, the 

model also extracts URL calls from the traffic data and check the URL against a global 

malicious URL database and the result from both approach is used to predict whether a 

specific app traffic is malicious or not. and these models can be used as a web service from 

the device end. 

At the device level, the prototype system communicates with the AWS cloud server via a 

Transmission Control Protocol (TCP) or Internet Protocol (IP) to consume the web services 

of the two subsystem of the prototype system that are hosted in the cloud server as presented 

in the deployment diagram in Figure 5 in appendix B. 

5.2.4 THE ALGORITHMIC DESIGN OF THE PROTOTYPE SYSTEM 

The general algorithmic description of the three main components of the prototype system are 

presented in this section. The algorithms presented for each component represent an abstract high-

level description of the steps involves in the operation of each major component in the prototype 

system. 

A. Algorithmic Description of the Device Manager

B. Algorithmic Description of the App Evaluator

INPUT: DangerousPermissionList, EnsemblePermissionIntentList, PermissionRiskValue 

Step 1: For Each App X in DefaultAppList repeat step 2, 3, 4,5, and 6 

Step 2: Extract the Permission and Intent demanded by app X contained in the Features Listed in 
EnsemblePermissionIntentList as appPermissionIntentList and Set array PI = 
appPermissionIntentList 

Step 1: Let VPNStatus =0 and Initialize VPN Service Connection and Prompt User for permission 
to monitor all apps 

Step 2: IF VPN Service Connection is granted by the user, Then Go to Step 3 Otherwise Go to 
Step  

Step 3: Setup VPN Service Connection for the Device and Set VPNStatus=1 (Ready) 

Step 4: Scanned all Apps that are Installed by the User and Set Array DefaultAppList to 
AllUserInstallApps 

Step 5: Let AppsCount = number of records in array DefaultAppList and Set 
TotalUserInstallApps = AppsCount 

Step 6: Stop VPN Service Connection and Set VPNStatus=0 

Step 7: End of IF structure in Step 2 

Step 8: OUTPUT: VPNStatus, TotalUserInstallApps 

Step 9: Exit 
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Step 3: Extract the dangerous Permission demanded by app X contained in the Features Listed in 
DangerousPermissionList as appDangerousPermissionList and Set array DP = 
appDangerousPermissionList 

Step 4: Compute the RiskScore of app X with the selected dangerous permission in DP and 
Extract the Permission Risk Value for each permission contained in PermissionRiskValue that 
exists in DP  

Step 5: Get the result of the ensemble ML prediction for app X using the features extracted from 
Step 2 in array PI and store the result return in a variable MLResult as integer (0 is benign and 1 is 
malicious) 
 

Step 6: IF RiskScore in Step 4 is greater than or equal to 0.75 and MLResult=0 Then Set 
RiskCategory to “High Risk App” and go to Step 12 Otherwise go to step 7 

Step 7: IF RiskScore in Step 4 is greater than or equal to 0.50 and MLResult=0 Then Set 
RiskCategory to “Medium Risk App” and go to Step 12   Otherwise go to step 8 

Step 8: IF RiskScore in Step 4 is greater than or equal to 0.00 and MLResult=0 Then Set 
RiskCategory to “Low Risk App” and go to Step 12 Otherwise go to step 9 

Step 9: IF RiskScore in Step 4 is greater than or equal to 0.65 and MLResult=1 Then Set 
RiskCategory to “High Risk App” and go to Step 12 Otherwise go to step 10 

Step 10: IF RiskScore in Step 4 is greater than or equal to 0.25 and MLResult=1 Then Set 
RiskCategory to “Medium Risk App” and go to Step 12   Otherwise go to step 11 

Step 11: Set RiskCategory to “Low Risk App” and go to Step 12   
 
End of If Structure in Step 6 

Step 12: OUTPUT RiskScore, RiskCategory 
 

Step 13: End of Step 1 For -Loop   

Step 14: Exit 

 

C.  Algorithmic Description of the Detection Engine 

Var: Array<string>: AppsActivities, MaliciousAppsTraffic, BlackListedAppsTraffic 

INPUT: VPNStatus, EnsemblePermissionIntentList, TrafficDataList, DefaultAppTrafficList 

Step 1: IF VPNStatus =1 Then Go to Step 2 Otherwise Go to Step 16 

Step 2: For Each App X in DefaultAppList repeat step 3, 13 and 14 

Step 3:     For Each Traffic Data of App X in DefaultAppTrafficList repeat step 4,5, 6,7,8,9, and 10 

Step 4:         Extract the Permission and Intent demanded by app X at run-time whenever    an 
online Request is made contained in the Features Listed in EnsemblePermissionIntentList as 
appPermissionIntentList and Set array PI = appPermissionIntentList 

Step 5: Extract the Traffic Network Data by app X contained in the Features Listed in 
TrafficDataList as appTrafficData and Set array TD = appTrafficData  and add Traffic data for 
app x in array AppsActivities 

Step 6: Extract the URL call by app X contained in the TrafficDataList as appTrafficURL and Set 
array TURL = appTrafficURL 

Step 7: Construct App network traffic dataset from TD in step 5 and PI in step 4 and set 
AppTrafficMLData as the new dataset for each traffic request consisting of API calls, Permissions, 
and Intent 
 

Step 8: Get the result of the ensemble ML prediction for app X using the features constructed from 
Step 7 in array AppTrafficMLData and store the result return in a variable MLTrafficResult as 
integer (0 is benign and 1 is malicious) 
 

Step 9: Get the result of the Malicious Global Database scanner for app X using the URL extracted 
from Step 6 in array TURL and store the result return in a variable URLTrafficResult as integer (0 
is benign and 1 is malicious) 
 

Step 10: IF MLTrafficResult =1 OR URLTrafficResult =1 Then ADD the traffic data in TD from 
step 5 for app X to MaliciousAppsTraffic and also automatically block TD and ADD to 
BlackListedAppsTraffic for app X and go to Step 11 Otherwise go to step 12 
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Step 11: End of If Structure in Step 10 

Step 12: End of Inner For-Loop in Step 3 

Step 13: Set TotalAppActivites = Total Number of Records in AppsActivities in Step 5 
   Set TotalMaliciousAppActivites= Total Number of Records in    MaliciousAppsTraffic 

in Step 10 
     Set TotalBlacklistedAppActivites= Total Number of Records in 

BlackListedAppsTraffic in Step 10 

Step 14: OUTPUT: TotalAppActivites, TotalMaliciousAppActivites, 
TotalBlacklistedAppActivites, AppsActivities, MaliciousAppsTraffic, BlackListedAppsTraffic 
for app X. 

Step 15: End of Outer For -Loop in Step 2 

Step 16: Exit 

5.3 PROTOTYPE TESTING 

The testing of the prototype system follows a scenario-based approach that demonstrates the 

functionality of the prototype system implemented as a proof of concept. In this regard, five dummy 

apps were designed to test how the system would behave in each scenario. The first four scenarios 

focus on the app evaluator module. This module enables MCC users to assess the risk of Android 

apps that reside on their device and provides information that helps the user identify each app's risk 

category and score. At the same time, the last scenarios focus on the detection engine and how the 

system can automatically detect malicious activities of an app both when the device is active and 

when the device is idle. 

The app evaluator in the prototype system (MINDPRES) analyses all user-installed apps that reside 

on an Android device and determines an app's risk score and category (i.e., High, Medium, or Low). 

The risk category of an app is determined by combining the result of the ensemble ML model 

classification with the permissions and intents demanded by apps, as shown in Table 5.6, to 

determine if the app is malicious or benign. The risk score of user-installed apps is determined by a 

probability value function of the statistical model discussed in equations Eq. 5.1 to Eq. 5.8 using only 

the dangerous permissions. The statistical model uses equations Eq. 5.7 and Eq. 5.8 to determine 

the risk category of each app, as presented in Table 5.8.  
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Table 5.6 Selected Permissions and Intent used in the design of the ensemble ML model 

ID  Permission and Intent Name ID Permission and Intent Name 

PI1 WRITE_EXTERNAL_STORAGE PI21 CHANGE_WIFI_STATE 

PI2 READ_PHONE_STATE PI22 DISABLE_KEYGUARD 

PI3 ACCESS_COARSE_LOCATION PI23 KILL_BACKGROUND_PROCESSES 

PI4 ACCESS_FINE_LOCATION PI24 MODIFY_AUDIO_SETTINGS 

PI5 GET_TASKS PI25 READ_CONTACTS 

PI6 READ_EXTERNAL_STORAGE PI26 READ_SMS 

PI7 SYSTEM_ALERT_WINDOW PI27 RECEIVE_BOOT_COMPLETED 

PI8 READ_LOGS PI28 RESTART_PACKAGES 

PI9 MOUNT_UNMOUNT_FILESYSTEMS PI29 VIBRATE 

PI10 CAMERA PI30 WAKE_LOCK 

PI11 RECORD_AUDIO PI31 BOOT_COMPLETED 

PI12 GET_ACCOUNTS PI32 PACKAGE_REMOVED 

PI13 CALL_PHONE PI33 SEARCH 

PI14 WRITE_SETTINGS PI34 USER_PRESENT 

PI15 SEND_SMS PI35 VIEW 

PI16 ACCESS_LOCATION_EXTRA_COMMAND PI36 BROWSABLE 

PI17 ACCESS_WIFI_STATE PI37 DEFAULT 

PI18 BROADCAST_STICKY PI38 HOME 

PI19 CHANGE_CONFIGURATION PI39 INFO 

PI20 CHANGE_NETWORK_STATE   

 

Table 5.7. Risk Score Output (Dangerous Permissions) of the Statistical Model 

ID Risk Score 

P1 0.5769 

P2 0.8460 

P3 0.7154 

P4 0.4982 

P5 0.6063 

P6 0.4816 

P7 0.2557 

P8 0.4991 

P9 0.5091 

P10 0.3986 

P11 0.1846 

P12 0.3375 

P13 0.2115 

P14 0.2635 

P15 0.3707 
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Table 5.8 Classification Outcome of the App Evaluator 

ML Prediction Risk Score of an App Final Risk Category Classification 

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.00,0.65) Low Risk App 

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.66,0.85) Medium Risk App 

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.86,1.00) High Risk App 

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.00,0.25) Low Risk App 

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.26,0.60) Medium Risk App 

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.61,1.00) High Risk App 

 

5.3.1 TEST CASE SCENARIO 1 

The test case scenario 1 illustrates an app with a zero-risk score classified as low risk by the 

prototype system. The app designed for scenario 1 did not use any dangerous permissions. For 

example, suppose an Android app is designed for a student course registration system at a 

university. The app developers demanded the permissions and intents contained in Table 5.9 for the 

first version of the software release to be used by the students. 

The second column in Table 5.9 shows the name of the permissions or intents demanded by the 

app. The third column shows the equivalent permission or intent ID as part of the selected features 

used in the design of the ensemble ML model as shown in Table 5.6, and the fourth column shows 

the equivalent dangerous permission risk score used in the design of the risk score computation of 

each app as shown in Table 5.7. 

Table 5.9 Permission Requested by the Test App for Scenario 1 

S/N Permission/ Intent Name ML Features Risk Score 

1 INTERNET - - 

2 VIBRATE PI29 - 

3 ACCESS_NETWORK_STATE - - 

4 ACCESS_WIFI_STATE PI17 - 

5 WAKE_LOCK PI30 - 

6 ACTION_MAIN - - 

7 CATEGORY LAUNCHER - - 

Note - The permission or intent is not part of the selected features used for design of the 
ensemble ML model or the statistical model. 

For evaluation purpose, the test case app is an empty app that does nothing but simulate the 

permission and intent demanded by such app in this scenario 

Outcome of the Test in Scenario 1 

A. Ensemble ML model returns the value of zero which means the app is classified as Benign 

B. The statistical model returns a risk score of zero (0.00) for the app in this scenario. Since 

none of the permissions demanded by the app in scenario 1 belongs to the dangerous 

permissions listed in table 5.7. 
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C. The app evaluator classified the test app in scenario 1 as a low-risk app with 0.00 risk score.

5.3.2 TEST CASE SCENARIO 2 

The test case in scenario 2 illustrates the modification of the app in scenario 1 to handle some extra 

functionalities. This modification changes the risk score of the app. For example, suppose the 

Android app in Scenario 1 is modified by the developer to include some additional functionalities. 

The updated version of the app demanded the following permissions and Intent as contained in 

Table 5.10 for the second version of the software release for used by the student. 

The second column in Table 5.10 shows the name of the permission or intent demanded by the app. 

The third column shows the equivalent permission or intent ID as part of the selected features used 

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the 

equivalent dangerous permission risk score used in the design of the risk score computation of each 

app as shown in Table 5.7 

Table 5.10 Permission Requested by the Test App for Scenario 2 

S/N Permission/ Intent Name ML Features Risk Score 

1 INTERNET - - 

2 VIBRATE PI29 - 

3 ACCESS_NETWORK_STATE - - 

4 ACCESS_WIFI_STATE PI17 - 

5 PERMISSION WAKE_LOCK PI30 - 

6 ACTION_MAIN - - 

7 CATEGORY LAUNCHER - - 

8 READ_EXTERNAL_STORAGE PI6 0.4816 

9 CAMERA PI10 0.3986 

Note - The permission or intent is not part of the selected features used for design of the 
ensemble ML model or the statistical model. 

For evaluation purpose, the test app is an empty app that does nothing but demonstrates the 

permissions and intents demanded by such app in this scenario 

Outcome of the Test in Scenario 2 

A. Ensemble ML model returns zero which means the app is classified as Benign

B. The statistical model returns a risk score of 0.44 because of the average risk value of the

dangerous permissions demanded by the app, as shown in table 5.7. The dangerous camera 

permission does not pose much more threat to the device user than the read external storage 

permission. The app can only read information stored on the internal memory, such as images 

combined with the camera permission that allows the app to take a photograph of an object. 

C. The app evaluator classified the test app in scenario 2 as low-risk app with the risk score of

0.44. 
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5.3.3 TEST CASE SCENARIO 3 

The test case in scenario 3 illustrates the modification of the app in scenario 1 to handle some extra 

functionalities. This modification changes the risk score of the app. For example, suppose the 

Android app in Scenario 1 is modified by the developer to include some additional functionalities. 

The updated version of the app demanded the following permissions and Intent as contained in 

Table 5.11 for the third version of the software release for used by the student. 

The second column in Table 5.11 shows the name of the permission or intent demanded by the app. 

The third column shows the equivalent permission or intent ID as part of the selected features used 

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the 

equivalent dangerous permission risk score used in the design of the risk score computation of each 

app as shown in Table 5.7. 

Table 5.11 Permission Requested by the Test App for Scenario 3 

S/N Permission/ Intent Name ML Features Risk Score 

1 INTERNET - - 

2 VIBRATE PI29 - 

3 ACCESS_NETWORK_STATE - - 

4 ACCESS_WIFI_STATE PI17 - 

5 WAKE_LOCK PI30 - 

6 IACTION_MAIN - - 

7 CATEGORY LAUNCHER - - 

8 READ_PHONE_STATE PI2 0.8460 

9 ACCESS_FINE_LOCATION PI4 0.4982 

10 BROWSABLE PI36 - 

Note - The permission or intent is not part of the selected features used for design of the 
ensemble ML model or the statistical model. 

For evaluation purpose, the test app is an empty app that does nothing but demonstrate the 

permissions and intents demanded by such app in this scenario 

Outcome of the Test in Scenario 3 

A. Ensemble ML model returns zero which means the app is classified as Benign 

B. The statistical model returns a risk score of 0.67 because of the average risk value of the 

dangerous permissions demanded by the app, as shown in table 5.7. The increase in the risk score 

of the app is because of the risk value associated with the two dangerous permissions. For example, 

the Read Phone State allows the apps' developers to access sensitive information on the device. 

Such as the current cellular network information, the status of any ongoing calls, and a list of any 

phone accounts registered on the device. The Access Fine Location permission allows the 

developers of the app to access an exact location of the device at any point in time when the user 

grant the app access to such permission on the device. 
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C. The app evaluator classified the test app in scenario 3 as medium-risk app with the risk score 

of 0.67. 

5.3.4 TEST CASE SCENARIO 4 

The test case in scenario 4 illustrates the modification of the app in scenario 1 to handle some extra 

functionalities. This modification changes the risk score of the app. For example, suppose the 

Android app in Scenario 1 is modified by the developer to include some additional functionalities. 

The updated version of the app demanded the following permissions and Intent as contained in 

Table 5.12 for the fourth version of the software release for used by the student. 

The second column in Table 5.12 shows the name of the permission or intent demanded by the app. 

The third column shows the equivalent permission or intent ID as part of the selected features used 

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the 

equivalent dangerous permission risk score used in the design of the risk score computation of each 

app as shown in Table 5.7 

Table 5.12 Permission Requested by the Test App for Scenario 4 

S/N Permission/ Intent Name ML Features Risk Score 

1 PERMISSION INTERNET - - 

2 PERMISSION VIBRATE PI29 - 

3 PERMISSION 
ACCESS_NETWORK_STATE 

- - 

4 PERMISSION 
ACCESS_WIFI_STATE 

PI17 - 

5 PERMISSION WAKE_LOCK PI30 - 

6 INTENT MAIN - - 

7 INTENT CATEGORY LAUNCHER - - 

8 PERMISSION 
READ_PHONE_STATE 

PI2 0.8460 

9 PERMISSION 
ACCESS_FINE_LOCATION 

PI4 0.4982 

10 INTENT BROWSABLE PI36 - 

11 PERMISSION GET_TASKS PI5 0.6063 

12 PERMISSION 
WRITE_EXTERNAL_STORAGE 

PI1 0.5769 

Note - The permission or intent is not part of the selected features used for design of the 

ensemble ML model or the statistical model. 

For evaluation purpose, the test app is an empty app that does nothing but demonstrates the 

permission and intent demanded by such app in this scenario 

Outcome of the Test in Scenario 4 

A. The Ensemble ML model returns one, which means the app is classified as malicious. The 

result of the ensemble ML model is evidence of the app using dangerous permissions commonly 
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used by malicious apps to achieve some form of control over sensitive information stored on the 

device. The introduction of Get_Task permissions allows apps to read the current tasks or lists of all 

other apps and their current tasks on the device. Combining such permission by the app with the 

ability to write and read from external storage allows the app to manipulate information stored on the 

device. The access to the internet permission also means the app can send information out of the 

device without the user's knowledge. Also, the Read Phone State allows the developers to access 

sensitive information on the device. Such as the current cellular network information, the status of 

any ongoing calls, and a list of any phone accounts registered on the device. The Access Fine 

Location permission allows the developers of the app to access the device's exact location at any 

point in time when the user grants the app access to such permission on the device. These four 

dangerous permissions, commonly used by malicious apps, give the developer great control of the 

device if all these permissions are granted without the user knowing the developer's intention. 

B. The statistical model returns a risk score of 0.63 because of the average risk value of the

dangerous permissions demanded by the app, as shown in table 5.7. The statistical model's 

decrease in the risk score value of the app return is because of its average, although this does not 

have any significant effect on the classification. The result of the ensemble ML model has shown 

that the more dangerous permission requested by an app, the more likely the app is to be classified 

as malicious. Therefore, in this study, the risk score of an app greater than 0.65 is classified as a 

medium-risk or high-risk app, depending on the outcome of the ensemble ML model. 

C. The app evaluator classified the test app in scenario 4 as a "high-risk app" with a 0.63 risk

score. Although Scenario 3 has a higher risk score value and is classified as a medium-risk app 

because the ML model predicted it as a benign app. However, scenario 4 is different, with a lower 

risk score of 0.63 compared to 0.67 in scenario 3. In this case, the risk category of the app described 

in Scenario 4 is high-risk because the ML model classifies the app as malicious. Hence, the resultant 

outcome of the app evaluator for this scenario is a high-risk app. 

5.3.5 TEST CASE SCENARIO 5 

In scenario 5, the detection engine uses the behaviour patterns of the traffic data generated by an 

app whenever a request is made to a specific domain to monitor abnormalities in the device's 

behaviour. The detection engine used an ensemble ML model that required the permission and intent 

demanded by an app at run-time together with network traffic data to determine if the request was 

malicious or not. The detection engine also used a global blacklisted malicious API to screen the 

domain each network traffic request was calling from the device and used both results to determine 

if the call was malicious or not. This scenario demonstrates how an app might behave when called 

with a malicious URL. 

For example, suppose the updated version of the app in Scenario 4 is loaded with malicious code 

unknown to the user. Using the same set of permissions in table 5.12 with an additional intent 
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USER_PRESENT enables the app to check if the user is using the device or not. The behaviour of 

the app when the user is using the device is different from when the user is not using the device as 

described below: 

Phase 1: When the user is using the device, the app in Scenario 5 reads the user's location 

information and sends it to the remote server (maybe the user's email address) accessible by the 

user, which is a legitimate URL. 

Phase 2: When the user is not using the device, the app in scenario 5 reads the user location 

information with the list of all apps installed on the user device and send it to the remote server 

accessible by the developer, a legitimate URL. Suppose the remote server with the URL in that 

domain has been reported and listed in the global database of malicious URL. 

Outcome of the Test in Scenario 5 

A. Phase 1. MINDPRES will flags all request as benign since the URL is benign. 

B. Phase 2. MINDPRES will flags all request as malicious since the URL is malicious as 

contained in global database of malicious URL and automatically block all calls to that URL 

from the device. 

5.4 CHAPTER SUMMARY 

This chapter describes the implementation details of the prototype system and the various sub-

systems design. The database design of the prototype system UIs was presented. The tools used 

in developing the prototype system are discussed in this chapter. The UML diagrams, which show 

the various system objects and how they interact, were discussed in this chapter. In addition, a 

detailed algorithmic design of the main components of the prototype system was also presented. 

The final parts of this chapter discuss five different test case scenarios used to demonstrates the 

functionalities of the implemented prototype system and how the various sub modules work together. 

The test case scenarios use a dummy app to demonstrates how changes in permissions and intents 

requested by an app can affect the risk scores and categories when screened by the implemented 

prototype system (MINDPRES). 
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CHAPTER SIX 

PROTOTYPE EVALUATION 

The previous chapter discusses the design and implementation of the prototype system. The 

software tools used for implementing the prototype were discussed. In addition, the UML diagrams 

showing the various component implementations of the prototype system were discussed. The 

previous chapter also discusses the various algorithms used to implement the different modules that 

make up the prototype system. The description of the different test case scenarios, that shows how 

the prototype system was tested and the outcome of each case scenarios were discussed.  

This chapter describes how the prototype system (MINDPRES) implemented as a proof of concept 

was evaluated. The prototype is evaluated using real-life Android MDs, and the results obtained from 

the experiment were evaluated using a confusion matrix. The MDs' energy consumption was 

recorded during the experiment, and the results obtained were evaluated. The prototype system is 

evaluated by invited IT security experts, whose expert opinions are also presented in this chapter. 

6.1 PROTOTYPE EVALUATION 

The prototype system was evaluated based on its performance and energy consumption 

requirements. First, the prototype system's performance evaluation (MINDPRES) uses a hybrid 

analysis approach (both static and dynamic analysis). Second, the energy consumption of the 

prototype system was evaluated to assess the app energy consumption rate and its feasibility to 

cope with resource-constrained MDs in the MCC environment. 

To evaluate the performance of the prototype system, several real-life experiments were conducted. 

The performance evaluation of the prototype system follows two phases.  

The first phase involves the risk assessment of apps that reside on the device by the app evaluator 

to determine the risk category of the various apps that reside on user device. 

The second phase involves monitoring the actual network behaviours of all apps that reside on the 

device by listening to their network activities and using an ensemble ML model trained with network 

data to detect and prevent malicious activities. To evaluate the performance of the detection engine 

in the prototype system, the validation metrics of the confusion matrix are discussed in Chapter Four, 

Sections 4.3.2 and 4.3.3. equations Eq 4.1 to Eq 4.8 were used to validate the 1,000 mobile apps 

installed on five Android devices. 
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6.1.1 EXPERIMENTAL SETUP FOR THE PROTOTYPE PERFORMANCE EVALUATION 

This experiment aims to evaluate the performance of the prototype system (MINDPRES) using the 

evaluation metrics stated in Chapter Four, Section 4.3.2. The experimental setup for evaluating the 

prototype system uses 1000 (600 benign and 400 malicious) apps as a testbed. The distribution of 

the app samples installed on the five devices used for this experiment is shown in Table 6.1. 

The evaluation of the prototype system (MINDPRES) uses five Android devices with the following 

hardware configuration. 

A. Device A: EE Tablet HTC Nexus 9.8.9, 1.8GB RAM 32GB Internal storage

B. Device B: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

C. Device C: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

D. Device D: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

E. Device E: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

Table 6.1 Apps Distribution Sample Installed in Each Device 

DEVICE Benign Apps (Google Play Store) Malicious Apps (CICMalDroid2020) 

A 240 200 

B 90 50 

C 90 50 

D 90 50 

E 90 50 

Total 600 400 

6.1.2 DESCRIPTION OF THE EVALUATION TESTBED 

The evaluation of the prototype system uses a testbed dataset that is different from the initial training 

and testing datasets used in the laboratory experiments to evaluate the performance of the ensemble 

ML model discussed in Chapter Four. The 600 benign samples were obtained from popular apps 

available in the Google Play store with at least one million users’ downloads. The apps were 

downloaded and installed on each device between November 1st, 2021, and December 1st, 2021. 

The evaluation of the system uses the top thirty most popular apps downloaded from each of the 

twenty selected app categories in the Google Play Store. These apps categories include most apps 

that are found in almost every user device that are used for their day-to-day activities such as social 

networking, business, travel, education e.t.c.  

The testbed used for the evaluation of the prototype system contains 400 malicious app samples. 

These samples were obtained from a recent malware repository (CICMalDroid2020) publicly 

available to evaluate the malware detection system (https://www.unb.ca/cic/datasets/maldroid-

2020.html). The malicious APK samples in the CICMalDroid2020 dataset contains four malware 

categories which are briefly describes as follows:  

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
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A. Adware: The adware category in this dataset includes advertisement materials (i.e., ads) 

that hide behind legitimate apps. The ad libraries contain malware that repeatedly runs 

on the device. Even though the user tries to close the ads, they keep popping up. It can 

infect the device and get root-level access, compromising the user device and gaining 

unauthorized access to sensitive data or device operation (Mahdavifar et al., 2020).  

B. Banking Malware: The banking malware, this malware app category is trojan-based 

designed to mimic the original banking app interface to infiltrate user devices, gain 

unauthorized access to use banking apps, and steal sensitive information from the 

device.  

C. SMS Malware: The SMS malware category; this app is designed to intercept payload 

operations to conduct attacks on the device. These malware categories send malicious 

SMS to users, intercept the SMS and steal data from the device.  

D. Riskware: The riskware malware category includes legitimate apps manipulated by users 

to take the form of mobile malware, SMS malware, or adware malware. The malicious 

app category can install new apps on the device unknown to the user. 

The benign and malicious apps used for the evaluation were checked using the VirusTotal services 

to ascertain whether they were malicious or not. The malware samples use a minimum of 15 

antiviruses as benchmark criteria for selecting the app as malicious (i.e., at least 15 antivirus engines 

in VirusTotal Services must flag the app apk as malicious). The benign samples obtained from the 

Google Play store were also checked using the same VirusTotal services, with none of the antivirus 

flagging the app as malicious. After checking both benign and malicious apps using the VirusTotal 

service, each app was installed on the five devices, as shown in Table 6.1. The distribution of the 

benign and malicious apps’ samples and the numbers of apps installed on each device are shown 

in Tables 6.2 and 6.3. 
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Table 6.2 Benign Apps Downloaded from Google Play Store 

ID Category  Total  
Apps 

Average 
Downloads 

Average Ratings Device 

B1 Watch 30 95 million  4.3  
     

A 
B2 Art and Design 30 21 million  4.3 

B3 Beauty 30 1 million 4.4 

B4 Business 30 100 million 4.3 

B5 Communication 30 200 million 4.1 

B6 Education 30 20 million 4.4 

B7 Events 30 1 million 3.8 

B8 Food and Drink 30 10 million 4.2 

B9 Shopping 30 50 million 4.5 B 

B10 Social 30 500 million 4.0 

B11 News & Magazines 30 5 million 4.2 

B12 Finance 30 10 million 3.8 C 

B13 Entertainment 30 100 million 4.1 

B14 Lifestyle 30 10 million 4.2 

B15 Music & Audio 30 50 million 4.4 D 

B16 Maps & Navigation 30 10 million 4.2 

B17 Travel and Local 30 1 million 4.4 

B18 Tools 30 10 million 4.3 E 

B19 Sports 30 10 million 4.2 

B20 Dating 30 10 million 3.9 

 

Table 6.3 Malicious Apps Downloaded from CICMalDroid2020 

ID Category  Total Apps Device 

M1 Adware 100  A 

M2 Banking Malware 100  A 

M3 SMS Malware 50 B  

M4 SMS Malware 50 C 

M5 Mobile Riskware 50 D  

M6 Mobile Riskware 50 E 

 

6.1.3 PHASE ONE (THE APP EVALUATOR ) RESULTS  

The app evaluator assesses the risk of each user-installed app on the device in the first phase of the 

prototype evaluation. The risk assessment experiment was conducted, following the complete 

installation of all apps on the various devices. The prototype system (MINDPRES) was installed on 

the five devices (A, B, C, D, and E). The app evaluator evaluated the risk category and the ensemble 

ML classification result using the static analysis approach of all apps on the device.  The results 

obtained during the evaluation process are recorded and presented in Table 6.4. 
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Table 6.4 Prototype System Risk Assessment Evaluation Result using Both Benign and 

Malicious Apps 

Category MLCR-
Benign 

MLPR-
Malicious  

Low 
Risk 

Medium 
Risk 

High 
Risk 

Total Apps 

B1 30 0 29 1 0 30 

B2 30 0 30 0 0 30 

B3 30 0 30 0 0 30 

B4 28 2 28 2 0 30 

B5 27 3 27 3 0 30 

B6 28 2 28 1 1 30 

B7 30 0 30 0 0 30 

B8 30 0 30 0 0 30 

B9 26 4 26 3 1 30 

B10 25 5 25 5 0 30 

B11 28 2 26 4 0 30 

B12 29 1 29 1 0 30 

B13 29 1 29 1 0 30 

B14 29 1 28 2 0 30 

B15 27 3 27 3 0 30 

B16 28 2 28 2 0 30 

B17 29 1 29 1 0 30 

B18 28 2 28 2 0 30 

B19 28 2 27 3 0 30 

B20 29 1 29 1 0 30 

M1 7 93 0 73 27 100 

M2 3 97 0 85 15 100 

M3 4 46 2 35 17 50 

M4 2 48 0 30 16 50 

M5 3 47 0 38 16 50 

M6 1 49 1 33 12 50 

Note: MLCR: Machine Learning Classification Result 

The results presented in Table 6.4 show that all selected apps in categories B1, B2, B3, B7, and B8 

were correctly classified as benign by the ensemble ML model in the prototype system using the 

static analysis approach. These results show an improved performance by accurately evaluating 

apps in these categories by the prototype system. At the same time, the results presented in Table 

6.4 show that the ensemble ML model embedded in the app evaluator can effectively distinguish 

benign apps from malicious apps with over 90% classification accuracy at all times. Overall, out of 

600 benign apps downloaded from the Google Play store, 568 were correctly classified as benign 

apps, with 32 wrongly classified as malicious apps. Furthermore, the benign apps that were wrongly 

classified as malicious were found to demand dangerous permissions and intents commonly used 

by malicious apps. The developers of these apps can misuse the permissions requested by these 

apps for malicious purposes if their intentions change in the future. The end user must be careful 

with the granting of dangerous permissions whenever an app requested it, and they also need to 

trust the source before granting such permission to prevent the compromization of their device. 

In addition, the ensemble ML classification results for the malicious app set used in the evaluation 

in the results shown in Table 6.4 show that 380 (95%) apps from a total of 400 apps from malicious 
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app categories M1, M2, M3, M4, M5 and M6 were correctly classified as malicious apps. In contrast, 

only 20 apps from these categories were wrongly classified as benign. A further investigation into 

this set of malicious apps shows that these apps did not use dangerous permissions commonly used 

by malicious apps. This set of apps used dangerous permissions and intents commonly used by 

benign apps. These apps can evade detection if a system only uses a static analysis approach to 

distinguish between malicious and benign apps without monitoring their actual behaviour at run time. 

However, the prototype system implemented in this study can detect such apps using the hybrid 

approach that combines both the static and dynamic analysis approach. The dynamic analysis 

approach of the prototype system implemented in this study can monitor apps actual behaviour and 

it can easily detect apps that falls under these categories. 

The risk assessment results of the benign apps used in the prototype evaluation is shown in Figure 

6.1. The results show that all apps in categories B2, B3, B7, and B8 are low risk, with risk scores 

between 0.00 and 0.65. The raw data from the results of the benign apps used in the evaluation 

shows that about 5% of all benign apps were classified as zero risk (risk score 0.00) and other apps 

had a risk score of greater than 0.00 but less than or equal to 0.65. Overall, 563 out of the 600 of the 

benign apps' samples used in the evaluation were classified as low risk, 35 as medium risk, and only 

2 benign apps from categories B6 and B9 were classified as high-risk apps with a risk score of above 

0.60. This is because these 2 benign apps were wrongly classified as malicious by the ensemble ML 

model using the static analysis approach. The results of the app evaluators have shown that 94% of 

the benign app samples used for this evaluation are classified as low-risk apps. 

Figure 6.1 Risk Assessment Result of all Benign apps used in the Evaluation 
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The risk assessment results regarding the risk categorization (high, medium, or low) of the malicious 

apps used in the evaluation are presented in Figure 6.2. The results presented in Figure 6.2 show 

that all apps in categories M1, M2, M4 and M5 are classified as either medium-risk or high-risk with 

a risk score of between 0.25 to 1.00. On the other hand, only 3 apps from categories M3 and M6 

were low risk. These results show the prototype system's weakness in using a static analysis 

approach for malware detection, as these apps were designed to evade detection by such a system. 

Overall, 294 of the malicious apps' categories were classified as medium risk, 103 as high risk, and 

only 3 malicious apps were classified as low-risk apps, with a risk score of 0.00. The above 

performance results of the app evaluators have shown that 99% of the malicious apps samples used 

for the prototype evaluation are classified as either medium-risk or high-risk apps. 

 

Figure 6.2 Risk Assessment Result of all Malicious apps used in the Evaluation 

6.1.4 PHASE TWO (THE DETECTION ENGINE ) RESULTS  

The second phase of the prototype evaluation focuses on the detection engine subsystem. The 

detection engine experiments aimed to evaluate the performance of the prototype system using the 

hybrid analysis approach that combines both the static and dynamic analysis approach. The 

detection engine performance is based on the actual behaviour of the apps both when the user is 

using the device and when the device is idle. The experiment was carried out for two weeks to 

evaluate the detection engine performance of the prototype system (MINDPRES) installed in the 

device. 

During the experiment, each device was used for 2 hours daily. The usage of the device includes 
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requested by the app. The prototype system has a VPN service that allows the system to monitor all 

network activities of all apps on the device. The detection engine logs the details of each network 

call from each app on the device and stores the results in a local database on the device. The 

detection engines also analyse each network call made by the various apps for malicious activities 

using an ensemble ML model trained with network data using the hybrid analysis approach. The 

detection engine also uses a global database containing known malicious URLs to assess each 

domain URL request made by the apps on the device. The notification module of the detection engine 

notifies the user if a malicious activity (such as spamming, phishing, botnet or malware) is detected 

in any request made by the various apps. The detection of any malicious activities by the detection 

engine automatically triggers the prevention modules to blocks the detected malicious activities and 

allows the user to either enable it in the event of false alarms. The details on the number of activities 

recorded both when the device was in use and when the device was idle in this experiment are 

shown in Table 6.5. 

Table 6.5 Network Activities of all Apps in the Device Captured by the Detection Engine 

DEVICE Actual 
App Type 

Activities 
When 
Device is in 
Used 

Activities 
When 
Device is Idle 

No of Malicious 
Activities  

Total apps 
with 
Malicious 
Activities 

A Benign 1,978 597 13 6 

B Benign 899 215 5 2 

C Benign 768 198 2 1 

D Benign 987 231 7 3 

E Benign 1204 149 4 2 

A Malicious 2876 459 1781 187 

B Malicious 768 202 571 48 

C Malicious 1377 599 650 45 

D Malicious 1422 231 679 49 

E Malicious 1009 456 752 42 

6.1.5 PERFORMANCE EVALUATION RESULTS 

The overall performance of the prototype system (MINDPRES) in this study is evaluated by the 

experimental results presented in Sections 6.1.3 and 6.1.4 (Table 6.4 and Table 6.5). The evaluation 

is based on the prototype system ability to detect intrusion activities caused by malicious apps at the 

user layer of the MCC environment. The evaluation of the prototype system uses the confusion 

matrix (TP, FP, TN, and FN) defined in Chapter Four, Section 4.3.2 and employs equations Eq 4.1 

to Eq 4.8 to evaluate the performance of the system. The detection performance of the system is 

evaluated in two phases. The first phase uses the static analysis approach with permissions and 

intents demanded by apps as features to evaluate the performance of the ensemble ML model in 

the app evaluator module in the prototype system. The results used for the first phase are presented 

in Table 6.4, columns 1 to 3. The second phase of the evaluation uses a hybrid analysis approach 

(both static and dynamic analysis) in the detection engine to assess whether an app activity is 
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malicious or not by monitoring the actual behaviour and using the signature-based approach to 

evaluate whether the URL the app calls is contained in a global database of malicious URLs.  

The results presented in Table 6.5 are details of the network-related activities and detection engine 

results of the experiment conducted for two weeks. Using the results in Table 6.4 and Table 6.5, the 

performance evaluation results of the prototype system applying the confusion matrix and its 

evaluation metrics defined in Chapter Four equations Eq. 4.1 to 4.8 are shown in Table 6.6. The 

results are in Table 6.6, which shows the detailed evaluation results of the two approaches used for 

the experiment. The evaluation result of the prototype system is shown in Figure 6.3. Overall, the 

prototype system achieved above 90% classification accuracy in all devices using both the static 

and hybrid approaches. The static approach achieves better classification accuracy than the hybrid 

in devices A, C, and E. Although in devices B and D, the hybrid approach outperforms the static 

approach. The detection performance using the precision rate (PR) shows that the hybrid approach 

performs better in detecting malicious activities than using the static approach, with over 94% on all 

devices used for the evaluation. Similarly, the hybrid approaches have a better false-positive rate in 

all devices, as low as 1.11% in device C. 

Table 6.6 Detection Performance Evaluation Results of the Prototype System 
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TP FP TN FN CA ER PR RC FM FPR FNR FAR 

A Static 190 7 233 10 96.14 3.86 96.45 95.00 95.72 2.92 5.00 3.96 

Hybrid 187 6 234 13 95.68 4.32 96.89 93.50 95.17 2.50 6.50 4.50 

B Static 46 4 86 4 94.29 5.71 92.00 92.00 92.00 4.44 8.00 6.22 

Hybrid 48 2 88 2 97.14 2.86 96.00 96.00 96.00 2.22 4.00 3.11 

C Static 48 3 87 2 96.43 3.57 94.12 96.00 95.05 3.33 4.00 3.67 

Hybrid 45 1 89 5 95.71 4.29 97.83 90.00 93.75 1.11 10.00 5.56 

D Static 47 6 84 3 93.57 6.43 88.68 94.00 91.26 6.67 6.00 6.33 

Hybrid 49 3 87 1 97.14 2.86 94.23 98.00 96.08 3.33 2.00 2.67 

E Static 49 5 85 1 95.71 4.29 90.74 98.00 94.23 5.56 2.00 3.78 

Hybrid 42 2 88 8 92.86 7.14 95.45 84.00 89.36 2.22 16.00 9.11 
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Figure 6.3 Detection Performance Evaluation Result 

6.1.6 ENERGY CONSUMPTION EVALUATION OF THE PROTOTYPE SYSTEM 

The evaluation of energy consumption is necessary for this study because of the resource constraint 

nature of MDs in the MCC environment. During the experiment, the battery consumption of each 

device was recorded. The results of the energy consumption of each device, both when the prototype 

system was installed and when the prototype system was uninstalled from each device were 

recorded. The energy consumption of each device recorded during the experiment are presented in 

Table 6.7.  

Table 6.7 Energy Consumption of each Device 

DEVICE Energy Usage with MINDPRES (%) Energy Usage without MINDPRES (%) 

A 78 71 

B 86 79 

C 75 64 

D 83 71 

E 89 75 

The energy consumption was also evaluated using a standard benchmark tool to evaluate the energy 

consumption. This study uses the Android profiler as a benchmark to evaluate the energy 

performance of the prototype system. The Android profiler does not directly measure energy 

consumption. Rather, it uses a model that estimates the energy consumption for each resource on 

the device. This tool is integrated into the development environment and gives a detailed insight of 
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energy consumption of both simulated and real-life devices. In addition, other studies in this field 

have also adopted this tool for evaluation of energy consumption by Android apps (Gaska et al,2018; 

Farooq et al, 2019; Myasnikov et al,2021). The result of the Android profiler is also comparable to 

the energy consumption of the actual real-life device used for the experiment. Figure 6 in Appendix 

B shows the energy estimation level of the emulator used during development. The energy 

consumption evaluation of this study focused on the battery usage by the prototype system during 

the evaluation process (Table 6.7).  The battery usage of device E was very high because of the 

types of apps installed on the device. On the device, dating apps and sports apps were installed 

which had high energy requirements due to the number of network activities in this apps category. 

The results presented in Figure 6.4 show that the prototype system consumes a considerable 

amount of energy during the experiment for a period of two weeks. Based on the results obtained 

during the prototype evaluation, one can conclude that the prototype system is feasible to be 

deployed on any Android device used in the MCC environment. 

 

 

Figure 6.4 Energy Consumption Evaluation Result  
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6.2 PROTOTYPE SYSTEM EXPERT EVALUATION FEEDBACK 

In this study, expert evaluation was carried out by three industry experts; two of them are employed 

in IT security roles, and one is an IT security consultant. Expert 1 (Osama Al Omari) is currently a 

security architect at New Zealand Post with over fifteen years’ experience working in IT security roles 

in various companies. Expert 2 (Paul Hayes) has over ten years’ experience as an IT security 

consultant to various NZ companies and Expert 3 (Eghbal Ghazizadeh) has over five years’ 

experience in IT security roles. He is currently working as the Group Information Security Manager 

at Mercury NZ. The experts were approached based on the recommendation of the supervisory team 

for this research. The expert evaluation carried out by the invited experts covers one month period. 

This enables the expert to evaluate all the components that make up the prototype system. The 

invited experts evaluate the functionality and useability of the prototype system. After completing the 

expert validation process, each expert sends a report via email regarding the functionality and 

usability of the prototype system which are presented in the following sub sections.  The contents 

presented in sections 6.2.1, 6.2.2 and 6.2.3 are the experts exact words contains in their email 

feedback as regards the evaluation of the prototype system. 

6.2.1 EXPERT 1 FEEDBACK 

I have read the documentation of this prototype system (MINDPRES) and tried it in action. I think 

the proposed prototype is very good in terms of detecting and preventing malicious applications. 

There is room for enhancement and coverage to do more practical threat detection and protection 

capabilities. Due to the nature of today’s continuous threat landscape, more endpoint protection 

systems are tending to achieve more detection and prevention through behavioural analysis and 

more inspection of critical OS system calls and user land functions.  

As an example, I attempted to install a malicious application, however the MINDPRES application 

stopped it, however I managed to run a reverse shell that loads a session and i was successful. 

6.2.2 EXPERT 2 FEEDBACK 

A. General Comments 

1. It was interesting to see the level of background activity taking place when the 

device wasn’t being used. Some logging and reporting capability would be a 

useful addition to the app, e.g., to report on for which apps there has been activity 

over the last hour even though the device and/or those apps haven’t been used 

over that period.  

2. It is important to consider what the information presented means to the average 

layman, as opposed to someone who has specialist knowledge in this field (e.g., 

when clicking down into the detail of a malicious activity, what does this mean to 

the average user?). 
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3. When apps have been identified as malicious or blacklisted, it should be clearly 

communicated what action has been taken by the MINDPRES app and what 

action is recommended to be taken by the user. This didn’t appear to be clear 

from using the app.  

4. Sometime the App locked up and needed to be restarted. I wasn’t able to 

ascertain all the conditions that this occurred for and this may need further testing. 

5. What information gets automatically or manually refreshed also needs to be 

considered as there are examples below of where this may have led to 

inconsistencies being displayed.  

6. To fully evaluate functionality ideally needs the development of the Prevention 

Module (Blacklisted Activities) to be completed.  

B. Device Manager – Specific Comments 

1. The Device Manager appeared to be just an information page with no options to 

manage anything. If it doesn’t manage anything (e.g., no settings or options to 

select) it should perhaps be renamed. 

2. States the number of installed apps – this didn’t automatically update when apps 

were either installed or removed.  

C. App Evaluator – Specific Comments 

1. Apps were easy to uninstall from the App Evaluator, although as noted earlier, 

the count of Apps installed on the Device Manager did not automatically update.  

2. When a new app was added, I needed to disconnect and reconnect to Wi-Fi to 

see the new app listed. It would be better if this information was automatically 

updated.  

3. The App Evaluator showed the ‘Google Play services for Instant Apps’ app as 

malicious and medium risk. For the uninformed user, this may raise some 

concerns as this is the app that is used to install other apps. This may be correct, 

but some information on why an app has been assessed as malicious would be 

useful. 

4. The ‘Video Call: Dating’ app was mostly categorised as Malicious and Medium 

Risk, but on one occasion was shown as Benign and Low Risk (when MINDPRES 

was being used over a similar time period). This indicated some possible 

inconsistency.  

5. com.zynga.wwf3.Words3Application was listed in the App Evaluator, but unlike 

for the other apps, selecting it didn’t take you to the underlying list and the 

‘Uninstall button’. 
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D. Detection Engine – Specific Comments 

1. As stated above, interesting to see the activities counts increase over a period of 

time (e.g., the last hour) when the device wasn’t being used – indicating a level 

of background activity taking place over the network.  

2. The count of activities for each page appeared to need to be refreshed manually 

and for each page, sometimes leading to inconsistencies between the number of 

activities displayed for each page, e.g., count of online activities showed as 17 

whereas count of blacklisted activities showed as 18 – probably due to one of the 

pages not having been refreshed? 

3. The Online Activities and Blacklisted Activities appeared to display the same 

information (if both were refreshed). Is this correct? Should all Online Activities 

be blacklisted? I assume this is due to this component still being under 

development. 

4. On one occasion there was a notification that there were 5 malicious activities 

detected, but in the Malicious Activities page it showed only 4 malicious activities 

(this may have been due to a screen/page not being refreshed?).  

5. When selecting a Malicious Activity or Blacklisted Activity for more information, 

the MINDPRES app sometimes locked-up – i.e. it said MINDPRES isn’t 

responding and necessitated closing the app and re-launching.  

6.2.3 EXPERT 3 FEEDBACK 

It is my pleasure to review the MINDPRES mobile APP, I have worked with this app and overall, in 

two weeks, I have found that this Mobile Cloud Computing (MCC) consists of solutions that protect 

Android devices. I have found that this app employs different techniques and collect and analyse 

indicators of compromise to identify anomalous behaviour and counter threats. This App gathers 

data from the Android device/s and well as from external sources. Moreover, in my testing, I have 

found that the app works in conjunction with the device manager by leveraging the Android VPN 

services to monitor the behaviours of all apps in the device. As a summary, the app analyses all 

installed apps that have been installed on an Android device and determine the risk levels. My main 

recommendation is to focus of UX (https://www.total.com/designers/ux/mobile-ux-design-best-

practices) and tuning the data specifically ML model. 

6.2.4 EXPERT  FEEDBACK SUMMARY 

Overall, the feedbacks from all experts were positive and they all agreed that the prototype system 

is very effective in detecting Android malicious apps used in the MCC environment. However, each 

expert suggested areas for further improvement, as contained in the expert's summary report. Some 

of the feedbacks received from the expert was used to improve the implementation of the prototype 
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system. However, some of the recommended feedbacks from the invited security experts are beyond 

the scope of this study. 

6.3 RESULTS COMPARISON WITH RELATED WORKS 

The results obtained from both the laboratory experiment discussed in Chapter Four and the real-

life experiment results obtained from evaluating the prototype system in Table 6.6 are compared with 

other related malware detection systems in the extant literature. This is because the prototype 

system was implemented as a proof of concept to enhance data security in the MCC environment 

by focusing on the user layer of the MCC architecture. On the other hand, the implemented prototype 

system targets the Android OS environment. Therefore, comparing the results obtained in this study 

with the state-of-the-art Android malware detection system is necessary to evaluate the model's 

performance. The summary of the results from selected research articles published in peer-reviewed 

journals and conferences alongside the results recorded in this study is shown in Table 6.8. 

It is evident from the results presented in Table 6.8 that most research work focuses only on 

permissions requested by an app as a feature to build a malware detection system using the static 

analysis approach, even though some have combined permission with other related components as 

features for building a more reliable detection model. This study has explored the combination of 

permissions, intent, and API requests by an app in a hybrid approach to analyse apps' static and 

dynamic behaviour in a hybrid approach. This study also considers monitoring app activities both 

when the user is using the device and when the device is not being use, to build a prototype system 

that can combat the threats caused by malicious apps that reside on the MCC users' devices. 

In the literature, only a few works have proposed a solution to tackle data security issues caused by 

malicious apps executed by MDs in the MCC environment. For example, the work reported in OS 

(2021) proposed an intelligent model to combat threats caused by Android apps in the MCC 

environment using only permissions as a feature to build an ontology-based model. This study has 

combined permissions with intents and APIs to monitor apps. Apps are monitored using a VPN 

service approach combined with a hybrid analysis approach that alerts the user to the risk score and 

category of the apps on their device. This study complements the existing approach of many related 

works by monitoring the actual execution of apps on the cloud server by listening to the APIs and 

URL requests that the apps make in real-time. The prototype system implemented in this study, 

automatically analysed each request made in real-time using an ensemble ML model built using 

network traffic data obtained from the experiments conducted in this research. 

Furthermore, the results presented in Table 6.8 show that most of the existing research in the 

literature has used only a few malware samples (less than 10,000 apps) to build a detection model, 

except for the work reported by Mathur et al. (2021) and Alazab et al. (2020). This study uses over 

18,000 malicious app samples to build the detection model used to implement the prototype system. 
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This is because of the repositories (AndroZoo and RmvDroid) used for the data collection of apps in 

this study. The AndroZoo is currently the largest repository of Android malware samples in the 

research community, with over one million apps (both benign and malicious apps) APKs in their 

repository.  

The detection performance results shown in Table 6.8 show that the models built in this research 

work's experimental and prototype implementation stages compare favourably with other related 

research. The results also improve the state-of-the-art solution proposed to combat malicious apps 

in the MCC environment and the mobile ecosystem. The experimental results, real-life and expert 

evaluation of the prototype system using apps in the official Android app stores show that the security 

solution proposed in this study is very effective in tackling the security issues caused bsy malicious 

apps in the MCC environment. The results show a classification accuracy of over 97% and a false 

positive rate of less than 2% in both laboratory and real-life experiments compared to other related 

works with less than 97% classification accuracy and a high false alarm rate of over 4%. Finally, 

some of the related works in the literature require root-level access to monitor apps' behaviour 

dynamically, but the prototype system implemented in this study does not require root-level access; 

instead, it leverages the Android VPN services to monitor the apps' behaviours in the MCC 

environment. 
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Table 6.8 Results Comparison with Related Works 

Source Features  Approach Dataset  Size MLC Results 

Proposed -
Lab 
Experiment 

P, I, A Hybrid AZ, RD B-9,879 
M-18,427 

ECV CA 98.16%, 
PR 98.95% 
RC 98.20% 
FM 98.57% 
FPR 1.90% 

Proposed -
Real-Life 
Experiment 

P, I, A Hybrid AZ, RD, 
CMD2020 
& GP 

B-9,879 
+600 
M-
18,427+400 

ECV CA 97.14% 
PR 97.83% 
RC 98.00% 
FM 96.08% 
FPR 1.11% 

OS (2021) P Static AZ, VSH B-1,959 
M-2,113 

RF CA-94.11% 
FM-93.00% 
FPR-3.00% 

Cai et al 
(2021) 

P, I, AC Static DB, AMD, 
GP 

B-3,000 
M-3,000 

KNN CA-96.58% 
PR-96.94% 
RC-96.47% 
FM-96.70% 

Lu et al 
(2021)  

P Static VT, DB B-2,000 
M-2,000 

DNN CA-95.83% 
PR-95.24% 
RC96.15% 
FM-95.69% 

Mathur et al 
(2021) 

P Static AZ B-14,630 
M-14,700 

RF CA- 96.95% 
FPR-3.32% 

Alazab et al 
(2020) 

P, A Static AZ B-14,172 
M-13,719 

RF FM-94.3% 

Ribeiro et al 
(2019) 

DR Dynamic GP  B-6,000 
M-6,000 

DT CA-99.80% 

 
Zhou et al 
(2019) 

SC Dynamic BM, VSH Not 
Reported 

MCA CA-97.85% 
PR-98.70% 
FPR-4.21% 

Li, et al 
(2018) 

P Static GP, Anzhi B-5,494 
M-2,650 

DT CA-93.62% 

Idrees, et al 
(2017) 

P, I Static GP, CT, 
DB, Gen 

B-445 
M-1300 

ECV PR- 98.40% 
FPR-0.10% 

Feizollah, et 
al (2017) 

P, I Static GP, DB B-1,846 
M-5,560 

NB PR-95.50% 
FPR-4.40% 

Hatcher et al 
(2016) 

P, SC Static Gen Not 
Reported 

DT PR-94.59% 

Hou, et al 
(2016) 

SC Dynamic Not 
Reported 

Not 
Reported 

DL CA-93.68% 

Arp, et al 
(2014) 

HC, P, I, 
A, NT 

Static GP, ACH B-123,453 
M-5,560 

SVM CA-94% 

Saracino, et 
al (2014) 

SC, P, A, 
UB 

Hybrid Gen, CT, 
VSH 

B-9,804 
M-2,800 

KNN PR-96.90% 

Qi et al 
(2014) 

NT Dynamic Gen M-1,260 NB CA-90.00% 

Note: Permissions (P), Intent(I), API-(A),App Component(AC), Hardware Component (HC), Network Traffic 

(NT), Device Resource (DR), User Behaviour (UB),System Calls (SC),Benign (B) Malware (M),Decision 
Tree,(DT), Naïve Bayes (NB), Logistic Regression (LR), Random Forest (RF), KNearest Neighbour (k-NN), 
and Support Vector Machine, Monte Carlo Algorithm (MCA), Deep Learning (DL),Deep Neural Network 
(DNN),Ensemble Voting classifier (EVC),Classification Accuracy (CA), Precision Rate (PR), Recall Rate (RC), 
False Positive Rate (FPR), F-Score Measure (FM), AndroZoo (AZ), RmvDroid, (RD), CICMalDroid2020 
(CMD2020), VirusShare (VSH), DREBIN (DB), Google Play (GP), VirusTotal (VT), Argus Lab’s Android 
Malware Database (AMD), Baidu Mobile (BM), Anzhi (Anzhi), Contagio (CT), Genome (Gen), App China 
(ACH), Machine Learning Classifier (MLC) 
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6.4 CHAPTER SUMMARY 

A detailed prototype system evaluation was carried out in this chapter. The prototype system 

implemented in this study can be built into the existing Android OS system and serve as a utility tool 

to enable MD users in the MCC environment to effectively secure their devices against threats 

caused by malicious apps that resides on their device. Notably, the prototype system implemented 

in this study logs all apps activities which can be useful for digital forensic investigation. The details 

of the logs are offloaded to the cloud server for future reference this also helps to prevent the MD 

user from tampering with the activity logs store locally in the devices since copies of this files are 

move periodically to the cloud to reduce the storage resources consumed by the prototype system. 

To the best of my knowledge, there are no comparable real-life systems that target the MCC 

environment. However, relevant models have been proposed in the extant literature; future 

implementations may be compared to the prototype system developed in this study 

However, the prototype evaluation was limited to only five real-life Android devices. This was 

because of the limited number of devices available to be borrowed from the university resource 

centre as at the time the prototype evaluation was carried out.  

The evaluation results show that the model implemented as a proof of concept can effectively detect 

malicious activities of apps that reside on the MDs of MCC users. MINDPRES also compared 

favourably with existing solutions proposed in the extant literature as reported in this chapter. The 

permission risk value used in building the app evaluator that determines each app's riskiness was 

also presented in this chapter. This chapter also presents a detailed real-life experiment conducted 

using a new dataset different from the original dataset used for training the ensemble ML model used 

to implement the prototype system. This enables the model's evaluator to cope with new apps that 

will be designed over time and with the ability to detect malicious apps that can cause a zero-day 

attack in the MCC domain. The evaluations show a better detection rate and compare favourably to 

reported results.  Overall, the prototype system implemented in this study was evaluated by invited 

security experts in the New Zealand IT industry to get their expert opinion. The feedback from the 

experts was very positive. However, the experts made a few suggestions to make the prototype 

system a great tool used by both the academic community and the industrial environment. 
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CHAPTER SEVEN 

DISCUSSION AND CONCLUDING REMARKS 

This study develops and proposes a novel ML-based framework that enhances the security of user 

data in the MCC environment. The research goal and objectives as defined in chapter one was 

accomplished at the end of the study. An instance of the framework was designed as a proof-of-

concept prototype that addresses security issues caused by malicious apps residing on the MD 

nodes. The prototype system was developed and implemented for devices using the Android mobile 

OS. The ML model considers app permissions, intents and network activities (such as API calls at 

run-time) to identify potentially malicious activities of mobile apps and alerts the MD user who used 

their judgement to grant or deny the permissions requested by the app. 

7.1 OVERVIEW OF THE STUDY 

This study identifies gaps in existing security research in the MCC environment and proposes a 

novel framework that enhances the security of user data in the MCC environment. APK files of 

Android apps were collected from two repositories (AndroZoo and RmvDroid). The APK files were 

used to construct five different datasets used in ML experiments. The first experiment was carried 

out with ten ML classification algorithms using the first three datasets constructed in this study 

(datasets 1, 2 and 3) to identify the best performing ML algorithms with the constructed dataset using 

all the features (permissions and intents demanded by each app APK).  

The second experiment involves the reduction of the feature sets used in experiment 1 by using a 

proposed filter-based FS statistical approach to select relevant features required to train an ML 

model. The selected features (permissions and intents) were used to construct dataset 4 from 

dataset 3. The reduced dataset and the best three ML classifiers (C1, C2 and C7) outcome of the 

first experiments were used in the development of an ensemble ML model using the static analysis 

approach. The ensemble ML model uses the selected features (permissions and intents demanded 

by an app) to distinguish malicious apps from benign apps.  

The third experiment uses dataset 5 constructed from actual permissions and intents required at run 

time and network-related activities performed by each app using the dynamic analysis approach. 

The dynamic analysis approach monitors the actual behaviour of both malicious and benign apps 

on the device. The dynamic analysis approach analyses the network activities of each app using an 

Android emulator in a controlled environment to avoid infection of the university network. The 

experiment was carried out using a virtual machine that is isolated from the university network. The 

dynamic analysis approach also used the requested permissions and intent at run-time rather than 

the permissions and intent that were declared to be used by the app. This approach reveals the 

actual behaviour of the apps in the third experiment rather than the intended behaviour using the 
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static analysis approach. Both ensemble ML models using static and dynamic analysis approaches 

were developed and deployed to a cloud-based service for use in the prototype implementation.  

The deployed ensemble ML models were used to implement the prototype system as a proof of 

concept. The prototype system was evaluated by invited security experts, and its performance was 

also evaluated using the confusion matrix alongside the energy consumption of the prototype 

system. The results of the evaluation show the system is effective at tackling data security issues in 

the user layer of the MCC architecture 

7.2 ADDRESSING THE RESEARCH QUESTIONS 

The main research goal of the study was to investigate how to protect MCC resources against attacks 

and enhance the security of user data in the MCC environment. The development of the novel 

framework and the implementation of the prototype system (MINDPRES) aimed to answer the main 

research question that guided the study and to achieve the specific research objectives of the sub 

research questions formulated in Chapter 1. 

Main Research Question: What security components are required in a framework that can be used 

to protect MCC resources against attacks and enhance the security of user data in the MCC 

environment? 

To answer the main research question, the following sub questions were formulated in this study 

RSQ1: Which specific MCC resource require to be protected to enhance the security of the MCC 

environment? 

RSQ2: What approach can be used to protect the identified MCC resource in RSQ1? 

RSQ3: What metrics can be used to evaluate the performance of the approach identified in RSQ2 

above and how can this approach be implemented to protect the relevant MCC resource? 

Overall, the research goal set in at the start of the study, was successfully met. As discussed in 

Chapter 2, a comprehensive literature review was conducted to answer the first research sub-

question. An in-depth study of existing security frameworks that offer protection to the MCC 

resources was carried out. The frameworks proposed in the literature were analysed using the MCC 

security requirements and the egregious eleven threat model (Kissel, 2011; Liu et al., 2011; Mogull 

et al.,2017; CSA, 2019). Based on the analysis of the results reported in the extant literature it was 

concluded that despite the significant vulnerability level of the MD user layer of the MCC 

environment, research that has been carried out to address these security issues associated with 

the user layer of the MCC architecture was relatively scarce. 

The further study of MD security indicated that attackers had found a way around developing 

malicious apps that were able to avoid detection by most existing detection techniques. In addition, 
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the security vulnerabilities associated with the popular Android mobile OS (installed in many of the 

MCC user devices) have contributed to the recent growth in the development of malicious apps able 

to be uploaded to the Google play store. The Android OS does have system and application security 

countermeasures that offer protection to its users. However, the Android OS application security 

control layer of the Android OS is built on a permission-based model that generally relies on the end-

user to judge whether an app legitimately requires (or not) certain permissions without knowing the 

intention of the app developer. This weakness in the Android OS used in the MCC environment has 

attracted malware developers to target these devices to obtain sensitive information that can 

compromise both the mobile and cloud environment in the MCC domain. Therefore, in this study, 

the MD user layer was identified as the specific MCC resource that requires adequate protection to 

enhance the security of this environment. 

To answer the second research sub-question, the initial results of the comprehensive literature 

review of the security frameworks that target the MCC environment were analysed further to identify 

the best approach to protect the MD as a resource in the MCC environment. The protection methods 

used by each framework were evaluated based on the number of threats each framework offers 

protection against, using the egregious eleven threat model proposed by the Cloud Security Alliance 

in 2019 as a benchmark (CSA, 2019). The results showed that most of the studies included in the 

literature applied cryptographic and biometric authentication models to combat the threats that faced 

the MCC environment. However, these approaches provide protection against only a few of the 

known threats in the MCC domain. 

This study aimed to develop a framework that offered a better the protection of the MD resources in 

the MCC environment. This necessitates the requirement to provides protection against a higher 

number of threats in the MCC environment compared to the protection given by the cryptographic 

and biometric authentication approaches that are predominantly used in current research. 

As shown by the outcomes of the analysis of the existing frameworks, only a few included IDS as an 

integral part of the protection approach. However, the IDS-based frameworks were found to be 

performing better than other proposed approaches regarding the number of threats they offered 

protection against. The identification of IDS as a better approach necessitated another 

comprehensive review of work that applied IDS as a security technique in the MCC, CC, and MC 

environments.  The review showed that IDS applying ML techniques provided a significantly better 

protection against the egregious threats (as the benchmark for this study) compared to other 

approaches. Hence, this study answers the second sub research question by proposing a novel 

IDPS approach that uses the ensemble ML techniques named MINDPRES (Mobile-

Cloud Intrusion Detection and Prevention System). The proposed approach uses hybrid (static and 
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dynamic analysis) analysis of device behaviour to protect MD users from malicious apps in the MCC 

environment. 

To address the first part of the third research sub-question and identify the metrics to be used in the 

evaluation of the efficiency of the proposed approach, a detailed review of the literature of existing 

works that used ML classification models for IDS and IDPS as an approach for security in the MCC 

and CC domains was conducted first. The analysis of the results showed that most studies had 

adopted the confusion matrix to derive a metrics for the evaluation of the intrusion detection models' 

performance. In all studies, classification accuracy was used as the most important metric and an 

evaluation criterion. In addition, most of the studies also considered the false alarm rate as an 

evaluation criterion and a high rate of false alarm was reported as one of the performance issues 

with ML-based IDS. Other evaluation criteria’s, such as precision rate, recall rate, and F-score 

measure values, were also used but only in a few of the studies reviewed. 

In this study, the evaluation metrics used for the evaluation of the proposed prototype system’s 

performance use a confusion matrix that consider malware detection output. In addition, most of the 

studies included in the discussion did not consider the evaluation of the energy consumption of the 

MD nodes in the MCC domain considering the resource constrained nature of these devices. This is 

another critical issue that was identified during this research. Therefore, this study uses the energy 

consumption level of the various devices, classification accuracy, precision rate, recall rate, f-

measure scores, false alarm rate, false positive rate, and false negative rate as metrics to evaluate 

the performance of the prototype system (MINDPRES). 

To address the second part of the third research sub question, a set of malicious and benign app 

APKS samples collected from the AndroZoo and RmvDroid repositories was used to build an 

ensemble ML models. (Developed and discussed in Chapter 4). The ensemble ML model was 

implemented in a proof-of-concept prototype system (MINDPRES), presented, and discussed in 

Chapter 5. The performance of the prototype system was evaluated using the metrics identified 

above; the results were discussed in Chapter 6. In addition, a group of invited New Zealand based 

IT security experts working in related industry sectors provided evaluation reports considering the 

features and performance characteristics of the prototype system as installed and activated. The 

performance evaluation outcomes and the experts’ reports indicated that the prototype system 

implemented as a proof of concepts was able to effectively detect intrusions in the MCC environment 

caused by malicious apps at the MD nodes. 

Finally, to answer the main research question, after providing answers to the sub research questions. 

The novel framework proposed in this study has identified the following security components as 

being required in a framework to protect MCC resources against attacks and improve the security of 

user data in this environment: 
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A. An IDPS with ensemble ML models using static and dynamic analysis of device behaviour 

can protect resources in both mobile and cloud environment. 

B. A strong cryptographical system to protect leakage of sensitive information when mobile apps 

are executed in the MCC environment both at rest and in motion. 

C. A-hypervisor-based IDPS to protect the cloud infrastructures against insider attacks. 

D. A strong identity and trust management security components to combat illegal access to 

cloud resources of MCC users. 

Furthermore, it was proposed that comprehensive framework for the protection of MCC resources 

should address at least five or more top security threats that cut across the different layers of the 

MCC architecture. It was suggested in particular that threat types T1, T4, T5, T7, T9, and T10 should 

be addressed at the MCUL (user device) layer, threat types T1, T2 and T8 at the MNCL layer, and 

threats type T1, T2, T3, T4, T5, T6, T7, T10 and T11 at the MCSPL layer. The ML-based protection 

system developed, implemented, and evaluated in this study addresses the data security issues 

related to use of malicious apps which is, one of the topmost threats facing users of MCC 

infrastructure. Malicious apps present dangerous threats, affecting both mobile and cloud 

environments' security. In particular, threats T1, T5, T7, T10, and T11 that exploit vulnerabilities at 

the MCUL layer of the MCC environment. The system is highly relevant to current cybersecurity 

environment for example, the prototype system that was implemented in this study (MINDPRES) 

addresses four of the six most important threats (namely malicious apps and websites, mobile 

ransomware, phishing, and advanced jailbreaking and rooting techniques) identified in the report 

published by Checkpoint (Checkpoint, 2021). The prototype system developed and implemented in 

this study only address the security component of the novel framework in A above to tackle data 

security issues at the user layer of the MCC environment. The other security components identified 

in B, C and D are part of the proposed novel framework that addresses other security issues in other 

layers of the MCC environment. 

7.3 RESEARCH CONTRIBUTION 

The process involved in the development and evaluation of a novel framework to improve the data 

security in the MCC environment in this study has revealed some of the major contributions of this 

research. It was evident that the literature review analysis approach of related works that was used 

in this study, helped identify the research gaps. The adoption of the DSRM resulted in the design of 

a prototype system (artifact) that can be integrated into existing mobile OS as a utility tool to protect 

MCC user against the vulnerabilities and threats caused by malicious apps. In addition, the following 

are some of the contributions of this research to the body of knowledge. 

A. This study proposes a novel security framework which identifies the security threats that 

needs to be addressed at the different layers of the MCC architecture to provide a more 

comprehensive solution for protection of MCC resources. These requirements may serve as 
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guideline for both organizations and MCC service providers for developing relevant security 

programmes for their services and cloud Infrastructure. 

B. The study proposes a novel approach towards controlling app behaviour by empowering the 

user to make an informed judgement. The system monitors all network activities of mobile 

apps within the device without root level access and automatically blocks the detected 

malicious apps activities and provides the MD user with the option to enable the activities in 

the event of false alarm. This is important, because the system mitigates the negative effect 

of potentially false alarm rate and allows the app to operate freely if an app activity has been 

determined as not malicious. 

C. The proposed cloud-based approach for risk assessment by the app evaluator to determine 

the risk score and category of mobile apps at the MD layer using ensemble ML techniques 

and a novel statistical approach with dangerous permissions and intents frequency usage by 

both malicious and benign apps is the first of its kind in the MCC domain to the best of my 

knowledge.  

D. The development of a filter-based FS technique using a statistical approach (based on the 

frequency of usage of permissions and intents by both malicious and benign apps) to select 

relevant features used in the development of the ensemble ML model. 

E. The proposed ML-based IDPS approach using ensembling techniques in the study is the first 

of its kind in the MCC domain to the best of my knowledge. Only in a few works an IDS have 

been used in the MCC environment. Furthermore, most such work has not really focused on 

the MD user layer in the MCC environment. Also, no study in MCC to the best of my 

knowledge has combined both static and dynamic analysis of device behaviour at run time 

with user activities. MINDPRES combines static and dynamic analysis of device behaviour 

with the ML technique for protection of MCC resources against attacks.  

7.4 CHALLENGES AND LIMITATIONS OF THE STUDY 

In this study, different challenges were encountered as regards the implementation of the novel 

solution to tackle security issues faced by the user layer of the MCC architecture. First, issues with 

data collection arise at the time of the development of the ML model. There was no readily available 

dataset that contained the features required in this study for the development of the ML model. 

Similarly, there are no publicly available repositories that contain app installation files for other mobile 

platforms, such as iOS. Hence, the prototype system implemented in this study can only work on 

Android mobile devices because the dataset constructed for the development of the ensemble ML 

model used by the detection engine and the app evaluator of the prototype system was constructed 

from the Android APK files collected from different repositories. These challenges limit this study's 

prototype implementation to the Android mobile platform. An important lesson learnt was that 

constructing one’s own dataset was a laborious and time-consuming process that needed to be 

carried out rigorously to ensure the credibility of the subsequent experiments.  
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In addition, due to the possibility of infection of the university network, the malicious APK sample 

files were stored and processed in an isolated environment different from the university network. 

Due to the storage and processing capability of the resources available for this study, only 40,000 

APK files (benign and malicious app samples) were initially collected and processed. Hence, this 

study uses only 28,306 Android APKs for its training and testing during the laboratory experiment. 

Another lesson learnt was that the dataset construction needed to be supported by adequate 

resources acquired at the preparation as not to impose additional limitations of the study.  

Finally, the testbed set used for the evaluation of the prototype system was only limited to 1,000 

apps because of the storage space and memory capability of the Android tablets devices used for 

the evaluation of the prototype system. The malicious app samples used for the evaluation require 

root-level access to the devices. Hence, the evaluation of the prototype type system did not use any 

personal devices for actual, real-life experiments. This study is limited to the evaluation of apps that 

reside on university devices and do not contain personally identifiable information about any 

individual. While the use of devices containing personal data would not be justifiable for the purposes 

of this study a ‘real-life’ testing may extend the use of a large number of apps in the prototype 

evaluation may show a more realistic detection performance compared to what was obtainable in 

this study.  

7.5 DIRECTIONS FOR FURTHER RESEARCH 

The prototype was completed in 2021. While the security landscape may have changed, especially 

with the demands on MC and MCC during the global pandemic, the threats and attacks considered 

in this study are still relevant. The goals and objectives specified are met in this study as evidenced 

by the answers provided to the main research questions and the sub research questions. The 

proposed framework may be improved further by extending it to include digital forensics and other 

IDPS techniques that are not covered in this study. In addition, future work may address security 

issues at the mobile communication channel layers and the mobile cloud service provider layer of 

the MCC architecture. Other possible research directions are stated as follows: 

A. Implementation and evaluation of the prototype system in another mobile OS

environment different from Android.

B. Detection of malicious activities in the MCC environment by behavioural analysis

approach and inspection of critical OS system calls and user land functions to

improve the detection and prevention system.

C. Energy consumption optimization of the prototype system in Internet of Things (IoTs)

devices.

D. Designing repositories for Installation files of other mobile platforms such as iOS so

that researchers can also implement the prototype system in this environment
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E. Tackling the issues of insider attacks in the service providers layer of the MCC 

environment. 

F. Application of deep learning techniques to improve the detection engine performance  

Finally, there is need for the development and implementation of other security component such as 

the strong cryptographical system to protect leakage of sensitive information when devices offload 

data to the cloud environment. The development of the hypervisor based IDPS to protect the cloud 

infrastructures against insider attacks. The development and implementation of strong identity and 

trust management security components to combat illegal access to cloud resources of MCC users. 
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APPENDIX A (TABLES) 

Table 1 Unique List of Permissions Usage in the Constructed Dataset 

S/N Permission Name B
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1 ACCESS_BACKGROUND_LOCATION 8 22 30 

2 ACCESS_CHECKIN_PROPERTIES 1 20 21 

3 ACCESS_COARSE_LOCATION 2465 12568 15033 

4 ACCESS_FINE_LOCATION 2640 10970 13610 

5 ACCESS_LOCATION_EXTRA_COMMANDS 137 4173 4310 

6 ACCESS_MEDIA_LOCATION 1 0 1 

7 ACCESS_NETWORK_STATE 9196 18037 27233 

8 ACCESS_NOTIFICATION_POLICY 38 11 49 

9 ACCESS_WIFI_STATE 3516 15361 18877 

10 ACCOUNT_MANAGER 6 24 30 

11 ACTIVITY_RECOGNITION 3 0 3 

12 ADD_VOICEMAIL 0 1 1 

13 ANSWER_PHONE_CALLS 9 2 11 

14 BATTERY_STATS 53 301 354 

15 BIND_ACCESSIBILITY_SERVICE 10 27 37 

16 BIND_APPWIDGET 8 27 35 

17 BIND_DEVICE_ADMIN 1 7 8 

18 BIND_INPUT_METHOD 3 6 9 

19 BIND_NOTIFICATION_LISTENER_SERVICE 8 5 13 

20 BIND_PRINT_SERVICE 1 0 1 

21 BIND_REMOTEVIEWS 3 0 3 

22 BIND_SCREENING_SERVICE 1 0 1 

23 BIND_TELECOM_CONNECTION_SERVICE 0 1 1 

24 BIND_WALLPAPER 2 41 43 

25 BLUETOOTH 676 1153 1829 

26 BLUETOOTH_ADMIN 440 767 1207 

27 BLUETOOTH_PRIVILEGED 14 4 18 

28 BODY_SENSORS 7 28 35 

29 BROADCAST_PACKAGE_REMOVED 1 4 5 

30 BROADCAST_SMS 2 44 46 

31 BROADCAST_STICKY 159 927 1086 

32 BROADCAST_WAP_PUSH 2 12 14 

33 CALL_PHONE 753 3466 4219 

34 CALL_PRIVILEGED 4 22 26 

35 CAMERA 1911 3630 5541 

36 CAPTURE_AUDIO_OUTPUT 6 8 14 

37 CHANGE_COMPONENT_ENABLED_STATE 4 30 34 

38 CHANGE_CONFIGURATION 94 915 1009 

39 CHANGE_NETWORK_STATE 247 2013 2260 
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40 CHANGE_WIFI_MULTICAST_STATE 83 170 253 

41 CHANGE_WIFI_STATE 486 5789 6275 

42 CLEAR_APP_CACHE 58 187 245 

43 CONTROL_LOCATION_UPDATES 0 19 19 

44 DELETE_CACHE_FILES 2 62 64 

45 DELETE_PACKAGES 5 108 113 

46 DIAGNOSTIC 0 12 12 

47 DISABLE_KEYGUARD 231 1519 1750 

48 DUMP 0 5 5 

49 EXPAND_STATUS_BAR 46 347 393 

50 FACTORY_TEST 0 3 3 

51 FOREGROUND_SERVICE 335 82 417 

52 GET_ACCOUNTS 1918 2605 4523 

53 GET_ACCOUNTS_PRIVILEGED 1 3 4 

54 GET_PACKAGE_SIZE 49 278 327 

55 GET_TASKS 641 9245 9886 

56 GLOBAL_SEARCH 0 3 3 

57 INSTALL_LOCATION_PROVIDER 0 2 2 

58 INSTALL_PACKAGES 14 566 580 

59 INSTALL_SHORTCUT 15 11 26 

60 INSTANT_APP_FOREGROUND_SERVICE 0 1 1 

61 INTERNET 9760 18406 28166 

62 KILL_BACKGROUND_PROCESSES 118 2092 2210 

63 LOCATION_HARDWARE 6 10 16 

64 MANAGE_DOCUMENTS 53 36 89 

65 MANAGE_OWN_CALLS 3 0 3 

66 MASTER_CLEAR 0 10 10 

67 MEDIA_CONTENT_CONTROL 41 25 66 

68 MODIFY_AUDIO_SETTINGS 467 2454 2921 

69 MODIFY_PHONE_STATE 19 289 308 

70 MOUNT_FORMAT_FILESYSTEMS 1 56 57 

71 MOUNT_UNMOUNT_FILESYSTEMS 150 5634 5784 

72 NFC 113 151 264 

73 NFC_TRANSACTION_EVENT 1 0 1 

74 PACKAGE_USAGE_STATS 73 136 209 

75 PERSISTENT_ACTIVITY 7 38 45 

76 PROCESS_OUTGOING_CALLS 70 649 719 

77 READ_CALENDAR 277 161 438 

78 READ_CALL_LOG 77 164 241 

79 READ_CONTACTS 743 1644 2387 

80 READ_EXTERNAL_STORAGE 3021 6159 9180 
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81 READ_INPUT_STATE 2 5 7 

82 READ_LOGS 183 5634 5817 

83 READ_PHONE_NUMBERS 8 8 16 

84 READ_PHONE_STATE 2553 17785 20338 

85 READ_SMS 163 1406 1569 

86 READ_SYNC_SETTINGS 109 116 225 

87 READ_SYNC_STATS 59 58 117 

88 REBOOT 2 16 18 

89 RECEIVE_BOOT_COMPLETED 2302 7042 9344 

90 RECEIVE_MMS 18 206 224 

91 RECEIVE_SMS 223 1195 1418 

92 RECEIVE_WAP_PUSH 11 86 97 

93 RECORD_AUDIO 821 3718 4539 

94 REORDER_TASKS 39 361 400 

95 REQUEST_COMPANION_RUN_IN_BACKGROUND 1 0 1 

96 REQUEST_COMPANION_USE_DATA_IN_BACKGROUND 1 0 1 

97 REQUEST_DELETE_PACKAGES 13 4 17 

98 REQUEST_IGNORE_BATTERY_OPTIMIZATIONS 27 45 72 

99 REQUEST_INSTALL_PACKAGES 107 460 567 

100 RESTART_PACKAGES 86 3249 3335 

101 SEND_SMS 205 3199 3404 

102 SET_ALARM 11 3 14 

103 SET_ALWAYS_FINISH 0 10 10 

104 SET_ANIMATION_SCALE 1 6 7 

105 SET_DEBUG_APP 14 151 165 

106 SET_PREFERRED_APPLICATIONS 2 23 25 

107 SET_PROCESS_LIMIT 0 3 3 

108 SET_TIME 3 13 16 

109 SET_TIME_ZONE 3 44 47 

110 SET_WALLPAPER 586 1078 1664 

111 SET_WALLPAPER_HINTS 226 116 342 

112 SIGNAL_PERSISTENT_PROCESSES 0 19 19 

113 STATUS_BAR 1 21 22 

114 SYSTEM_ALERT_WINDOW 769 5431 6200 

115 TRANSMIT_IR 7 24 31 

116 UNINSTALL_SHORTCUT 4 1 5 

117 UPDATE_DEVICE_STATS 8 79 87 

118 USE_BIOMETRIC 24 2 26 

119 USE_FINGERPRINT 179 45 224 

120 USE_FULL_SCREEN_INTENT 1 1 2 

121 USE_SIP 11 36 47 
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122 VIBRATE 3363 9383 12746 

123 WAKE_LOCK 5758 8322 14080 

124 WRITE_APN_SETTINGS 9 746 755 

125 WRITE_CALENDAR 281 176 457 

126 WRITE_CALL_LOG 33 88 121 

127 WRITE_CONTACTS 298 515 813 

128 WRITE_EXTERNAL_STORAGE 6284 16855 23139 

129 WRITE_GSERVICES 1 20 21 

130 WRITE_SECURE_SETTINGS 20 231 251 

131 WRITE_SETTINGS 563 3040 3603 

132 WRITE_SYNC_SETTINGS 136 126 262 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

191 
 

Table 2 Unique List of Intent Usage in the Constructed Dataset 
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1 action_MAIN 9865 18168 28033 

2 category_LAUNCHER 9858 18032 27890 

3 category_DEFAULT 3510 7304 10814 

4 action_BOOT_COMPLETED 2347 5577 7924 

5 action_PACKAGE_ADDED 384 5345 5729 

6 action_VIEW 2474 3074 5548 

7 category_BROWSABLE 2245 2614 4859 

8 action_USER_PRESENT 275 3664 3939 

9 action_PACKAGE_REMOVED 196 2607 2803 

10 category_HOME 126 2041 2167 

11 action_SEARCH 460 412 872 

12 action_CREATE_SHORTCUT 62 779 841 

13 action_MY_PACKAGE_REPLACED 650 29 679 

14 action_SEND 402 231 633 

15 action_PACKAGE_REPLACED 205 414 619 

16 action_MEDIA_MOUNTED 62 424 486 

17 category_LEANBACK_LAUNCHER 378 66 444 

18 action_NEW_OUTGOING_CALL 68 373 441 

19 action_MEDIA_BUTTON 317 82 399 

20 action_PACKAGE_INSTALL 79 316 395 

21 action_SCREEN_ON 26 266 292 

22 category_MONKEY 12 255 267 

23 action_TIMEZONE_CHANGED 156 109 265 

24 action_SCREEN_OFF 27 214 241 

25 category_INFO 86 150 236 

26 action_MEDIA_EJECT 27 190 217 

27 action_MEDIA_UNMOUNTED 37 177 214 

28 action_BATTERY_CHANGED 22 150 172 

29 action_BATTERY_LOW 126 45 171 

30 action_BATTERY_OKAY 122 36 158 

31 action_MEDIA_REMOVED 28 130 158 

32 action_EDIT 52 100 152 

33 action_SEND_MULTIPLE 95 52 147 

34 action_PACKAGE_CHANGED 34 97 131 

35 action_GET_CONTENT 60 69 129 

36 action_SENDTO 34 94 128 

37 action_LOCALE_CHANGED 82 42 124 

38 action_DATE_CHANGED 29 94 123 

39 category_OPENABLE 49 72 121 
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40 category_PREFERENCE 12 104 116 

41 action_DEVICE_STORAGE_LOW 95 14 109 

42 action_HEADSET_PLUG 71 36 107 

43 action_SET_WALLPAPER 57 47 104 

44 action_DEVICE_STORAGE_OK 88 13 101 

45 action_MEDIA_CHECKING 5 92 97 

46 action_PACKAGE_RESTARTED 14 80 94 

47 action_PICK 42 52 94 

48 action_WALLPAPER_CHANGED 11 82 93 

49 action_TIME_TICK 8 84 92 

50 action_DIAL 18 52 70 

51 action_MEDIA_BAD_REMOVAL 19 49 68 

52 action_MEDIA_SCANNER_FINISHED 19 43 62 

53 action_INSERT 8 52 60 

54 action_CALL_BUTTON 5 52 57 

55 action_MEDIA_SCANNER_STARTED 16 38 54 

56 action_PACKAGE_DATA_CLEARED 21 29 50 

57 action_REBOOT 25 25 50 

58 action_MEDIA_SHARED 19 23 42 

59 action_WEB_SEARCH 13 28 41 

60 category_ALTERNATIVE 19 22 41 

61 action_CALL 9 27 36 

62 action_UMS_CONNECTED 2 34 36 

63 action_MEDIA_NOFS 1 34 35 

64 action_DEFAULT 2 29 31 

65 action_PACKAGE_FULLY_REMOVED 25 6 31 

66 action_INPUT_METHOD_CHANGED 2 26 28 

67 action_EXTERNAL_APPLICATIONS_AVAILABLE 8 19 27 

68 action_CONFIGURATION_CHANGED 6 20 26 

69 action_DELETE 1 25 26 

70 action_LOCKED_BOOT_COMPLETED 24 2 26 

71 category_SAMPLE_CODE 3 20 23 

72 category_APP_BROWSER 9 13 22 

73 action_SEARCH_LONG_PRESS 2 17 19 

74 action_PROCESS_TEXT 16 2 18 

75 category_SELECTED_ALTERNATIVE 11 7 18 

76 category_TAB 5 13 18 

77 action_UMS_DISCONNECTED 0 17 17 

78 action_CLOSE_SYSTEM_DIALOGS 2 14 16 

79 action_MEDIA_SCANNER_SCAN_FILE 5 11 16 
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80 action_MEDIA_UNMOUNTABLE 3 13 16 

81 action_ASSIST 7 7 14 

82 action_CAMERA_BUTTON 2 11 13 

83 action_PROVIDER_CHANGED 7 5 12 

84 action_EXTERNAL_APPLICATIONS_UNAVAILABLE 1 10 11 

85 category_APP_MARKET 2 9 11 

86 action_MANAGE_NETWORK_USAGE 9 1 10 

87 action_PACKAGE_FIRST_LAUNCH 5 5 10 

88 action_INSERT_OR_EDIT 1 8 9 

89 category_DESK_DOCK 1 8 9 

90 category_EMBED 4 5 9 

91 action_APPLICATION_PREFERENCES 8 0 8 

92 action_ATTACH_DATA 6 2 8 

93 action_CHOOSER 4 3 7 

94 action_DOCK_EVENT 0 7 7 

95 action_RUN 2 5 7 

96 action_UID_REMOVED 0 7 7 

97 category_APP_MUSIC 7 0 7 

98 action_ANSWER 3 3 6 

99 action_DREAMING_STOPPED 1 5 6 

100 action_USER_INITIALIZE 4 2 6 

101 action_INSTALL_PACKAGE 1 4 5 

102 action_PACKAGE_NEEDS_VERIFICATION 1 3 4 

103 action_VOICE_COMMAND 2 2 4 

104 category_APP_CALENDAR 4 0 4 

105 category_CAR_DOCK 2 2 4 

106 action_ALL_APPS 0 3 3 

107 action_DREAMING_STARTED 1 2 3 

108 action_MANAGE_PACKAGE_STORAGE 0 3 3 

109 action_POWER_CONNECTED 2 1 3 

110 action_TIME_CHANGED 0 3 3 

111 action_UNINSTALL_PACKAGE 0 3 3 

112 category_APP_CONTACTS 2 1 3 

113 category_APP_MESSAGING 2 1 3 

114 category_CAR_MODE 1 2 3 

115 category_VOICE 3 0 3 

116 action_APPLICATION_RESTRICTIONS_CHANGED 0 2 2 

117 action_GET_RESTRICTION_ENTRIES 0 2 2 

118 action_SYNC 2 0 2 

119 category_APP_GALLERY 1 1 2 



 
 

194 
 

S/N Intent Name B
e

n
ig

n
 A

p
p

s
 

M
a

li
c

io
u

s
 A

p
p

s
 

T
o

ta
l 

U
s

a
g

e
 

120 category_DEVELOPMENT_PREFERENCE 1 1 2 

121 action_BUG_REPORT 1 0 1 

122 action_CREATE_DOCUMENT 1 0 1 

123 action_OPEN_DOCUMENT 1 0 1 

124 action_OPEN_DOCUMENT_TREE 1 0 1 

125 action_PACKAGE_VERIFIED 1 0 1 

126 action_POWER_DISCONNECTED 1 0 1 

127 action_SHOW_APP_INFO 1 0 1 

128 action_USER_UNLOCKED 0 1 1 

129 category_APP_EMAIL 1 0 1 

130 category_TEST 1 0 1 

131 action_AIRPLANE_MODE_CHANGED 0 1 1 
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Table 3 Feature Selection Results of the Proposed Filter-Based FS Method 

ID B 
App% 

M 
App% 

δ ε Status ID B 
App% 

M 
App% 

δ ε Status 

PI1 0.08 0.12 0.04 0.68 VOID PI54 0.50 1.51 1.01 0.33 VOID 

PI2 0.01 0.11 0.10 0.09 VOID PI55 6.49 50.17 43.68 0.13 GOOD 

PI3 24.95 68.20 43.25 0.37 GOOD PI56 0.00 0.02 0.02 0.00 VOID 

PI4 26.72 59.53 32.81 0.45 GOOD PI57 0.00 0.01 0.01 0.00 VOID 

PI5 1.39 22.65 21.26 0.06 GOOD PI58 0.14 3.07 2.93 0.05 VOID 

PI6 0.01 0.00 0.01 0.00 VOID PI59 0.15 0.06 0.09 0.39 VOID 

PI7 93.09 97.88 4.80 0.95 VOID PI60 0.00 0.01 0.01 0.00 VOID 

PI8 0.38 0.06 0.32 0.16 VOID PI61 98.80 99.89 1.09 0.99 VOID 

PI9 35.59 83.36 47.77 0.43 GOOD PI62 1.19 11.35 10.16 0.11 GOOD 

PI10 0.06 0.13 0.07 0.47 VOID PI63 0.06 0.05 0.01 0.89 VOID 

PI11 0.03 0.00 0.03 0.00 VOID PI64 0.54 0.20 0.34 0.36 VOID 

PI12 0.00 0.01 0.01 0.00 VOID PI65 0.03 0.00 0.03 0.00 VOID 

PI13 0.09 0.01 0.08 0.12 VOID PI66 0.00 0.05 0.05 0.00 VOID 

PI14 0.54 1.63 1.10 0.33 VOID PI67 0.42 0.14 0.28 0.33 VOID 

PI15 0.10 0.15 0.05 0.69 VOID PI68 4.73 13.32 8.59 0.35 GOOD 

PI16 0.08 0.15 0.07 0.55 VOID PI69 0.19 1.57 1.38 0.12 VOID 

PI17 0.01 0.04 0.03 0.27 VOID PI70 0.01 0.30 0.29 0.03 VOID 

PI18 0.03 0.03 0.00 0.93 VOID PI71 1.52 30.57 29.06 0.05 GOOD 

PI19 0.08 0.03 0.05 0.34 VOID PI72 1.14 0.82 0.32 0.72 VOID 

PI20 0.01 0.00 0.01 0.00 VOID PI73 0.01 0.00 0.01 0.00 VOID 

PI21 0.03 0.00 0.03 0.00 VOID PI74 0.74 0.74 0.00 1.00 VOID 

PI22 0.01 0.00 0.01 0.00 VOID PI75 0.07 0.21 0.14 0.34 VOID 

PI23 0.00 0.01 0.01 0.00 VOID PI76 0.71 3.52 2.81 0.20 VOID 

PI24 0.02 0.22 0.20 0.09 VOID PI77 2.80 0.87 1.93 0.31 VOID 

PI25 6.84 6.26 0.59 0.91 VOID PI78 0.78 0.89 0.11 0.88 VOID 

PI26 4.45 4.16 0.29 0.93 VOID PI79 7.52 8.92 1.40 0.84 GOOD 

PI27 0.14 0.02 0.12 0.15 VOID PI80 30.58 33.42 2.84 0.91 GOOD 

PI28 0.07 0.15 0.08 0.47 VOID PI81 0.02 0.03 0.01 0.75 VOID 

PI29 0.01 0.02 0.01 0.47 VOID PI82 1.85 30.57 28.72 0.06 GOOD 

PI30 0.02 0.24 0.22 0.08 VOID PI83 0.08 0.04 0.04 0.54 VOID 

PI31 1.61 5.03 3.42 0.32 GOOD PI84 25.84 96.52 70.67 0.27 GOOD 

PI32 0.02 0.07 0.04 0.31 VOID PI85 1.65 7.63 5.98 0.22 GOOD 

PI33 7.62 18.81 11.19 0.41 GOOD PI86 1.10 0.63 0.47 0.57 VOID 

PI34 0.04 0.12 0.08 0.34 VOID PI87 0.60 0.31 0.28 0.53 VOID 

PI35 19.34 19.70 0.36 0.98 VOID PI88 0.02 0.09 0.07 0.23 VOID 

PI36 0.06 0.04 0.02 0.71 VOID PI89 23.30 38.22 14.91 0.61 GOOD 

PI37 0.04 0.16 0.12 0.25 VOID PI90 0.18 1.12 0.94 0.16 VOID 

PI38 0.95 4.97 4.01 0.19 GOOD PI91 2.26 6.49 4.23 0.35 GOOD 

PI39 2.50 10.92 8.42 0.23 GOOD PI92 0.11 0.47 0.36 0.24 VOID 

PI40 0.84 0.92 0.08 0.91 VOID PI93 8.31 20.18 11.87 0.41 GOOD 

PI41 4.92 31.42 26.50 0.16 GOOD PI94 0.39 1.96 1.56 0.20 VOID 

PI42 0.59 1.01 0.43 0.58 VOID PI95 0.01 0.00 0.01 0.00 VOID 

PI43 0.00 0.10 0.10 0.00 VOID PI96 0.01 0.00 0.01 0.00 VOID 

PI44 0.02 0.34 0.32 0.06 VOID PI97 0.13 0.02 0.11 0.16 VOID 

PI45 0.05 0.59 0.54 0.09 VOID PI98 0.27 0.24 0.03 0.89 VOID 

PI46 0.00 0.07 0.07 0.00 VOID PI99 1.08 2.50 1.41 0.43 VOID 

PI47 2.34 8.24 5.91 0.28 GOOD PI100 0.87 17.63 16.76 0.05 GOOD 

PI48 0.00 0.03 0.03 0.00 VOID PI101 2.08 17.36 15.29 0.12 GOOD 

PI49 0.47 1.88 1.42 0.25 VOID PI102 0.11 0.02 0.10 0.15 VOID 

PI50 0.00 0.02 0.02 0.00 VOID PI103 0.00 0.05 0.05 0.00 VOID 

PI51 3.39 0.44 2.95 0.13 VOID PI104 0.01 0.03 0.02 0.31 VOID 

PI52 19.41 14.14 5.28 0.73 GOOD PI105 0.14 0.82 0.68 0.17 VOID 

PI53 0.01 0.02 0.01 0.62 VOID PI106 0.02 0.12 0.10 0.16 VOID 
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PI107 0.00 0.02 0.02 0.00 VOID PI162 0.53 0.54 0.02 0.97 VOID 

PI108 0.03 0.07 0.04 0.43 VOID PI163 0.08 0.10 0.02 0.79 VOID 

PI109 0.03 0.24 0.21 0.13 VOID PI164 0.01 0.05 0.04 0.19 VOID 

PI110 5.93 5.85 0.08 0.99 VOID PI165 0.61 0.37 0.23 0.62 VOID 

PI111 2.29 0.63 1.66 0.28 VOID PI166 0.00 0.01 0.01 0.00 VOID 

PI112 0.00 0.10 0.10 0.00 VOID PI167 0.72 0.20 0.52 0.27 VOID 

PI113 0.01 0.11 0.10 0.09 VOID PI168 0.02 0.14 0.12 0.14 VOID 

PI114 7.78 29.47 21.69 0.26 GOOD PI169 0.08 0.28 0.20 0.29 VOID 

PI115 0.07 0.13 0.06 0.54 VOID PI170 0.01 0.04 0.03 0.23 VOID 

PI116 0.04 0.01 0.04 0.13 VOID PI171 0.01 0.02 0.01 0.47 VOID 

PI117 0.08 0.43 0.35 0.19 VOID PI171 0.83 0.23 0.60 0.27 VOID 

PI118 0.24 0.01 0.23 0.04 VOID PI172 0.24 0.01 0.23 0.04 VOID 

PI119 1.81 0.24 1.57 0.13 VOID PI173 99.86 98.59 1.26 0.99 VOID 

PI120 0.01 0.01 0.00 0.54 VOID PI174 0.09 0.01 0.09 0.06 VOID 

PI121 0.11 0.20 0.08 0.57 VOID PI175 0.00 0.02 0.02 0.00 VOID 

PI122 34.04 50.92 16.88 0.67 GOOD PI176 0.19 0.27 0.07 0.72 VOID 

PI123 58.29 45.16 13.12 0.77 GOOD PI177 3.21 0.44 2.76 0.14 VOID 

PI124 0.09 4.05 3.96 0.02 VOID PI178 0.05 0.50 0.45 0.10 VOID 

PI125 2.84 0.96 1.89 0.34 VOID PI179 0.27 1.03 0.76 0.27 VOID 

PI126 0.33 0.48 0.14 0.70 VOID PI180 0.63 2.30 1.67 0.27 VOID 

PI127 3.02 2.79 0.22 0.93 VOID PI181 0.01 0.18 0.17 0.05 VOID 

PI128 63.61 91.47 27.86 0.70 GOOD PI182 0.28 0.71 0.42 0.40 VOID 

PI129 0.01 0.11 0.10 0.09 VOID PI183 0.19 0.23 0.04 0.82 VOID 

PI130 0.20 1.25 1.05 0.16 VOID PI184 0.05 0.06 0.01 0.85 VOID 

PI131 5.70 16.50 10.80 0.35 GOOD PI185 0.16 0.21 0.04 0.79 VOID 

PI132 1.38 0.68 0.69 0.50 VOID PI186 0.19 0.12 0.07 0.65 VOID 

PI133 0.00 0.00 0.00 0.00 VOID PI187 0.03 0.07 0.04 0.43 VOID 

PI134 0.00 0.02 0.02 0.00 VOID PI188 0.37 0.96 0.59 0.39 VOID 

PI135 0.03 0.02 0.01 0.54 VOID PI190 6.58 0.16 6.42 0.02 VOID 

PI136 0.08 0.00 0.08 0.00 VOID PI191 0.69 2.02 1.34 0.34 VOID 

PI137 0.00 0.01 0.01 0.00 VOID PI192 0.01 0.00 0.01 0.00 VOID 

PI138 0.07 0.04 0.03 0.54 VOID PI193 0.01 0.00 0.01 0.00 VOID 

PI139 0.06 0.01 0.05 0.18 VOID PI194 3.89 29.01 25.12 0.13 GOOD 

PI140 0.22 0.81 0.59 0.27 VOID PI195 0.34 0.53 0.18 0.65 VOID 

PI141 1.28 0.24 1.03 0.19 VOID PI196 0.21 0.16 0.06 0.74 VOID 

PI142 1.23 0.20 1.04 0.16 VOID PI197 0.05 0.03 0.02 0.54 VOID 

PI143 23.76 30.27 6.51 0.78 GOOD PI198 0.25 0.03 0.22 0.13 VOID 

PI144 0.01 0.00 0.01 0.00 VOID PI199 0.80 1.71 0.92 0.47 VOID 

PI145 0.09 0.15 0.06 0.62 VOID PI200 0.01 0.02 0.01 0.62 VOID 

PI146 0.05 0.28 0.23 0.18 VOID PI201 1.98 14.15 12.16 0.14 GOOD 

PI147 0.02 0.06 0.04 0.34 VOID PI202 2.08 2.25 0.17 0.92 VOID 

PI148 0.04 0.02 0.02 0.40 VOID PI203 0.14 0.43 0.29 0.33 VOID 

PI149 0.02 0.08 0.06 0.27 VOID PI204 0.01 0.00 0.01 0.00 VOID 

PI150 0.06 0.11 0.05 0.56 VOID PI205 0.43 0.28 0.14 0.66 VOID 

PI151 0.01 0.00 0.01 0.00 VOID PI206 0.02 0.01 0.01 0.27 VOID 

PI152 0.63 4.23 3.60 0.15 VOID PI207 0.01 0.00 0.01 0.00 VOID 

PI153 0.29 0.51 0.22 0.58 VOID PI208 0.16 0.01 0.15 0.07 VOID 

PI154 0.02 0.16 0.14 0.13 VOID PI209 0.07 0.03 0.04 0.38 VOID 

PI155 0.01 0.14 0.13 0.07 VOID PI210 0.25 0.14 0.12 0.54 VOID 

PI156 0.96 0.08 0.89 0.08 VOID PI211 0.02 0.03 0.01 0.75 VOID 

PI157 0.89 0.07 0.82 0.08 VOID PI212 0.27 1.16 0.89 0.24 VOID 

PI158 0.18 0.28 0.10 0.65 VOID PI213 0.26 1.44 1.18 0.18 VOID 

PI159 0.00 0.04 0.04 0.00 VOID PI214 4.66 2.24 2.42 0.48 GOOD 

PI160 0.01 0.01 0.00 0.93 VOID PI215 0.02 0.09 0.07 0.22 VOID 

PI161 0.01 0.03 0.02 0.37 VOID PI216 4.07 1.25 2.82 0.31 VOID 

PI217 0.96 0.28 0.68 0.29 VOID PI241 0.01 0.01 0.00 0.54 VOID 
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ID B 
App% 

M 
App% 

δ ε Status ID B 
App% 

M 
App% 

δ ε Status 

PI218 0.34 0.51 0.17 0.67 VOID PI242 0.02 0.05 0.03 0.41 VOID 

PI219 0.58 0.26 0.32 0.44 VOID PI243 0.02 0.01 0.01 0.27 VOID 

PI220 0.01 0.00 0.01 0.00 VOID PI244 0.07 0.00 0.07 0.00 VOID 

PI221 0.02 0.00 0.02 0.00 VOID PI245 22.72 14.19 8.54 0.62 GOOD 

PI222 0.00 0.02 0.02 0.00 VOID PI246 0.02 0.01 0.01 0.54 VOID 

PI223 0.08 0.46 0.37 0.18 VOID PI247 0.01 0.01 0.00 0.93 VOID 

PI224 1.58 0.59 0.99 0.37 VOID PI248 35.53 39.64 4.11 0.90 GOOD 

PI225 0.00 0.04 0.04 0.00 VOID PI249 0.01 0.04 0.03 0.23 VOID 

PI226 0.02 0.18 0.16 0.11 VOID PI250 0.01 0.01 0.00 0.54 VOID 

PI227 0.00 0.09 0.09 0.00 VOID PI251 0.04 0.03 0.01 0.67 VOID 

PI228 0.00 0.02 0.02 0.00 VOID PI252 1.28 11.08 9.80 0.12 GOOD 

PI229 0.04 0.01 0.03 0.27 VOID PI253 0.87 0.81 0.06 0.94 VOID 

PI230 2.78 19.88 17.10 0.14 GOOD PI254 99.79 97.86 1.93 0.98 VOID 

PI231 0.00 0.01 0.01 0.00 VOID PI255 3.83 0.36 3.47 0.09 VOID 

PI232 25.04 16.68 8.36 0.67 GOOD PI256 0.12 1.38 1.26 0.09 VOID 

PI233 0.02 0.01 0.01 0.54 VOID PI257 0.50 0.39 0.11 0.79 VOID 

PI234 0.11 0.44 0.33 0.25 VOID PI258 0.12 0.56 0.44 0.22 VOID 

PI235 0.13 0.15 0.02 0.87 VOID PI259 0.03 0.11 0.08 0.28 VOID 

PI236 0.19 0.12 0.07 0.62 VOID PI260 0.11 0.04 0.07 0.34 VOID 

PI237 0.09 0.07 0.02 0.77 VOID PI261 0.05 0.07 0.02 0.72 VOID 

PI238 0.04 0.00 0.04 0.00 VOID PI262 0.01 0.00 0.01 0.00 VOID 

PI239 0.02 0.01 0.01 0.27 VOID PI263 0.03 0.00 0.03 0.00 VOID 

PI240 0.01 0.00 0.01 0.00 VOID 

Note: PI1-PI132 represents the unique permissions list in Table 1 and PI133-PI263 
represents the unique intents list in Table 2. 
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Table 4 Related Works and their ML Classifiers Used 
 

Source ML Classifier 

Luo & Xia SVM 

Eesa et al. DT 

Bhattacharya & Selvakumar BN, J48, KM  

Osanaiye et al. DT 

Ambusaidi et al. SVM 

Belouch et al  REPTree  

Moustafa & Slay  EM, LR, NB  

Bostani & Sheikhan SVM 

Mogal et al. NB, LR 

Idhammad et al. ANN 

Vijayanand et al SVM 

Aljawarneh et al. NB, J48, RT 

Anwer et al. J48, NB 

Sun et al. SVM 

Pham et al. EC, J48 

Besharati et al. EC, DT, LDA, ANN 

Mohammadi et al. DT 

Çavuşoğlu RF, J48, KNN, NB 

Maza & Touahria NB, MLP, SVM, KNN and DT 

Tama et al. RF, CF 

Pandian & Kumar BN, NB, SMO, J48 ,RF,RT DT 

Qi et al. 
 

NB 

Modi AC 

Pandeeswari & Kumar ANN 

Raja & Ramaiah Type-2 fuzzy TSK-rule 
 

Velliangiri & Premalatha Radial basis function neural network 

Besharati et al. ANN, DT, LDA 

Kim et al. K-means and DBSCAN method 
 

Modi & Patel  BN, AC, DT 

Rajendran et al. rule based 
 

Ribeiro et al. 
 

OneR, DT, NB, BN, LR, SVM, k-NN 
 

Note: DT- Decision Tree; SVM-Support Vector Machine; REPTree-Reduced Error Pruning Tree algorithm; 

EM-Expectation-Maximisation Clustering;  LR-Logistic Regression; BN- Bayesian Networks; NB- Naïve 

Bayes; KM -K Means Learning Algorithm; ANN- Artificial Neural Networks; J48-J48 Decision Tree; EC-

Ensemble Classifiers, Bagging or Boosting; CF- Conjunctive Rule; LDA-Linear Discriminant Analysis; MLP-

Multilayer Perceptron;  RF-Random Forest; SMO (Sequential Minimal Optimization);RT (Random Tree);AC-

Associative classifier; LDA-linear discriminate analysis; OneR-One Rule 
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APPENDIX B (UML DIAGRAMS) 

 

 

Figure 1. Class Diagram of the Prototype System 
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Figure 2. Sequence Diagram of the Prototype System 
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Figure 3. Activity Diagram of the Prototype System 

Figure 4. Component Diagram of the Prototype System 
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Figure 5. Deployment Diagram of the Prototype System 

 

Figure 6. Energy Profiler Estimation Result of the Prototype System 
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APPENDIX C (SOURCE CODES) 

package com.mindpres.remote_capture.adapters; 
import android.content.Context; 
import android.content.pm.ApplicationInfo; 
import android.content.pm.PackageManager; 
import android.view.LayoutInflater; 
import android.view.View; 
import android.view.ViewGroup; 
import android.widget.ImageView; 
import android.widget.ProgressBar; 
import android.widget.TextView; 
import com.mindpres.remote_capture.LocalDb.SQLDB2; 
import com.mindpres.remote_capture.R; 
import androidx.recyclerview.widget.RecyclerView; 
import java.text.DecimalFormat; 
import java.util.List; 
 
 
public class MlAdapter extends RecyclerView.Adapter<MlAdapter.ViewHolder> { 
 
    private List<ApplicationInfo> allApps; 
    private Context context; 
    private List<Integer> Predictions; 
    private List<Double>RiskValues; 
    private  ItemClickListener mClickListener; 
 
    // data is passed into the constructor 
    public MlAdapter(List<ApplicationInfo> allApps, Context 
context,List<Integer>Predictions,List<Double>RiskValues) { 
        this.allApps = allApps; 
        this.context = context; 
        this.RiskValues=RiskValues; 
        this.Predictions=Predictions; 
    } 
 
    // inflates the row layout from xml when needed 
    @Override 
    public  ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) { 
        Context context = parent.getContext(); 
        LayoutInflater inflater = LayoutInflater.from(context); 
        View view = inflater.inflate(R.layout.mlrecyclerview, parent, false); 
        return new  ViewHolder(view); 
    } 
 
    // binds the data to the TextView in each row 
    @Override 
    public void onBindViewHolder(ViewHolder holder, int position) { 
        ApplicationInfo app = allApps.get(position); 
 
        // TextView textView = holder.nameTextView; 
        holder.pckimage.setImageDrawable(app.loadIcon(context.getPackageManager())); 
        holder.pckname.setText(app.loadLabel(context.getPackageManager())); 
 
 
        if (Predictions.get(position)==0) 
        { 
            holder.status1.setVisibility(View.VISIBLE); 
            holder.status11.setVisibility(View.INVISIBLE); 
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 holder.status2.setVisibility(View.INVISIBLE); 

 } 
 else 
 { 

 holder.status2.setVisibility(View.VISIBLE); 
 holder.status11.setVisibility(View.INVISIBLE); 
 holder.status1.setVisibility(View.INVISIBLE); 

 } 
 SQLDB2 sqldata=new SQLDB2(context); 
 holder.percent1.setVisibility(View.INVISIBLE); 
 holder.percent2.setVisibility(View.INVISIBLE); 

     holder.percent3.setVisibility(View.INVISIBLE); 
 if (RiskValues.get(position)>0.85&&Predictions.get(position)==0) 
 { 

 sqldata.addApp(app.packageName,"1",Integer.toString(app.uid)); 
 DecimalFormat df=new DecimalFormat("0.00"); 
 holder.percent3.setProgress(78); 
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
 holder.percent3.setVisibility(View.VISIBLE); 
 return; 

 } 
 if (RiskValues.get(position)>0.60&&Predictions.get(position)==1) 
 { 

 sqldata.addApp(app.packageName,"1",Integer.toString(app.uid)); 
 DecimalFormat df=new DecimalFormat("0.00"); 
 holder.percent3.setProgress(78); 
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
 holder.percent3.setVisibility(View.VISIBLE); 
 return; 

 } 
 if (RiskValues.get(position)>0.65&&Predictions.get(position)==0) 
 { 

 sqldata.addApp(app.packageName,"0",Integer.toString(app.uid)); 
 DecimalFormat df=new DecimalFormat("0.00"); 
 holder.percent2.setProgress(50); 
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
 holder.percent2.setVisibility(View.VISIBLE); 
 holder.status2.setVisibility(View.INVISIBLE); 
 holder.status11.setVisibility(View.VISIBLE); 
 holder.status1.setVisibility(View.INVISIBLE); 
 return; 

 } 
 if (RiskValues.get(position)<=0.65&&Predictions.get(position)==0) 
 { 

 DecimalFormat df=new DecimalFormat("0.00"); 
 holder.percent1.setProgress(20); 
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
 holder.percent1.setVisibility(View.VISIBLE); 
 return; 

 } 
 if (RiskValues.get(position)>=0.25&&Predictions.get(position)==1) 
 { 

 sqldata.addApp(app.packageName,"0",Integer.toString(app.uid)); 
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            DecimalFormat df=new DecimalFormat("0.00"); 
            holder.percent2.setProgress(50); 
            holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
            holder.percent2.setVisibility(View.VISIBLE); 
            holder.status2.setVisibility(View.INVISIBLE); 
            holder.status11.setVisibility(View.VISIBLE); 
            holder.status1.setVisibility(View.INVISIBLE); 
            return; 
        } 
 
        if (RiskValues.get(position)>=0&&Predictions.get(position)==1) 
        { 
            DecimalFormat df=new DecimalFormat("0.00"); 
            holder.percent1.setProgress(20); 
 
            holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position))); 
            holder.percent1.setVisibility(View.VISIBLE); 
 
            return; 
        } 
 
 
 
    } 
 
    // total number of rows 
    @Override 
    public int getItemCount() { 
        return allApps.size(); 
    } 
 
 
    // stores and recycles views as they are scrolled off screen 
    public class ViewHolder extends RecyclerView.ViewHolder implements View.OnClickListener { 
        public ImageView pckimage; 
        public TextView pckname; 
        public TextView status1; 
        public TextView status11; 
        public TextView status2; 
        public TextView percentText; 
        public ProgressBar percent1; 
        public ProgressBar percent2; 
        public ProgressBar percent3; 
 
 
 
 
        ViewHolder(View itemView) { 
            super(itemView); 
            pckimage = (ImageView) itemView.findViewById(R.id.imageView); 
            pckname = (TextView) itemView.findViewById(R.id.textView); 
            status1 = (TextView) itemView.findViewById(R.id.status1); 
            status11 = (TextView) itemView.findViewById(R.id.status11); 
            status2 = (TextView) itemView.findViewById(R.id.status2); 
            percentText = (TextView) itemView.findViewById(R.id.textpercent); 
            percent1=(ProgressBar)itemView.findViewById(R.id.progressBar1); 
            percent2=(ProgressBar)itemView.findViewById(R.id.progressBar2); 
            percent3=(ProgressBar)itemView.findViewById(R.id.progressBar3); 
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            itemView.setOnClickListener(this); 
        } 
 
        @Override 
        public void onClick(View view) { 
            if (mClickListener != null) { 
                try { 
                    mClickListener.onItemClick(view, getAdapterPosition()); 
                } catch (PackageManager.NameNotFoundException e) { 
                    e.printStackTrace(); 
                } 
            } 
        } 
 
    } 
    public void setClickListener(ItemClickListener itemClickListener) { 
        this.mClickListener = itemClickListener; 
    } 
 
    // parent activity will implement this method to respond to click events 
    public interface ItemClickListener { 
        void onItemClick(View view, int position) throws PackageManager.NameNotFoundException; 
    } 
 
 
} 
// convenience method for getting data at click position 
 
 
 
 
import java.util.ArrayList; 
import java.util.List; 
 
  class AppRiskModel{ 
 
          String permission; 
          double riskValue; 
    public AppRiskModel(String permission,double riskValue) 
          { 
              this.permission=permission; 
              this.riskValue=riskValue; 
          } 
 
  } 
 
 
public class RiskData { 
 
    List<AppRiskModel> permission=new ArrayList<AppRiskModel>(); 
    public double AppRiskValue=0; 
    public RiskData(String[]data) 
    { 
 
        permission.add(new AppRiskModel("android.permission.WRITE_EXTERNAL_STORAGE",0.5769)); 
        permission.add(new AppRiskModel("android.permission.READ_PHONE_STATE",0.8460)); 
        permission.add(new AppRiskModel("android.permission.ACCESS_COARSE_LOCATION",0.7154)); 
        permission.add(new AppRiskModel("android.permission.ACCESS_FINE_LOCATION",0.4982)); 
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        permission.add(new AppRiskModel("android.permission.GET_TASKS",0.6063)); 
        permission.add(new AppRiskModel("android.permission.READ_EXTERNAL_STORAGE",0.4816)); 
        permission.add(new AppRiskModel("android.permission.SYSTEM_ALERT_WINDOW",0.2557)); 
        permission.add(new AppRiskModel("android.permission.READ_LOGS",0.4991)); 
        permission.add(new AppRiskModel("android.permission.MOUNT_UNMOUNT_FILESYSTEMS",0.5091)); 
        permission.add(new AppRiskModel("android.permission.CAMERA",0.3986)); 
        permission.add(new AppRiskModel("android.permission.RECORD_AUDIO",0.1846)); 
        permission.add(new AppRiskModel("android.permission.GET_ACCOUNTS",0.3375)); 
        permission.add(new AppRiskModel("android.permission.CALL_PHONE",0.2115)); 
        permission.add(new AppRiskModel("android.permission.WRITE_SETTINGS",0.2635)); 
        permission.add(new AppRiskModel("android.permission.SEND_SMS",0.3707)); 
 
        //create arrays of element 
        List<Integer>allPs=new ArrayList<Integer>(); 
 
 
        //Initialize and create array with 15 elements 
        for(int x=0; x<15; x++){allPs.add(0);} 
 
 
        //Then check if the app make use of permission and change the value to 1 
       for(String appData:data) 
       { 
           if(permission.get(0).permission.equals(appData)){ allPs.set(0,1);continue;} 
           if(permission.get(1).permission.equals(appData)){ allPs.set(1,1);continue;} 
           if(permission.get(2).permission.equals(appData)){ allPs.set(2,1);continue;} 
           if(permission.get(3).permission.equals(appData)){ allPs.set(3,1);continue;} 
           if(permission.get(4).permission.equals(appData)){ allPs.set(4,1);continue;} 
           if(permission.get(5).permission.equals(appData)){ allPs.set(5,1);continue;} 
           if(permission.get(6).permission.equals(appData)){ allPs.set(6,1);continue;} 
           if(permission.get(7).permission.equals(appData)){ allPs.set(7,1);continue;} 
           if(permission.get(8).permission.equals(appData)){ allPs.set(8,1);continue;} 
           if(permission.get(9).permission.equals(appData)){ allPs.set(9,1);continue;} 
           if(permission.get(10).permission.equals(appData)){ allPs.set(10,1);continue;} 
           if(permission.get(11).permission.equals(appData)){ allPs.set(11,1);continue;} 
           if(permission.get(12).permission.equals(appData)){ allPs.set(12,1);continue;} 
           if(permission.get(13).permission.equals(appData)){ allPs.set(13,1);continue;} 
           if(permission.get(14).permission.equals(appData)){ allPs.set(14,1);continue;} 
       } 
       double TotalPermissinRiskValue=0; 
       int Total=0; 
       for(int x=0; x<15; x++) 
       { 
          if(allPs.get(x)==0){continue;} 
          Total++; 
          TotalPermissinRiskValue+=permission.get(x).riskValue; 
 
       } 
       if(Total==0){return;} 
        AppRiskValue=TotalPermissinRiskValue/Total; 
 
    } 
} 
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using System; 
using System.Collections.Generic; 
using System.Text; 
using System.IO; 
using System.Collections; 
 
namespace MINDPRES_RiskModel 
{ 
    public class App_Risk_Classifier 
    { 
      public void ComputeAppRiskValue() 
        { 
            double[] A = new double[15] { 0.9147, 0.9652, 0.6820, 0.5953, 0.5017, 0.3342, 
0.2947, 0.3057, 0.3057, 0.1970, 0.2018, 0.1414, 0.1881, 0.1615, 0.1736 }; 
            double[] B = new double[15] { 0.6361, 0.2584, 0.2495, 0.5829, 0.2672, 0.3058, 
0.778, 0.185, 0.152, 0.1934, 0.831, 0.1941, 0.762, 0.57, 0.208 }; 
           
            using (var reader = new 
StreamReader(@"C:\Users\fogwara\source\repos\MINDPRES_RiskModel\DangerousPermissionDataSet.c
sv")) 
            { 
              
                while (!reader.EndOfStream) 
                { 
                    var line = reader.ReadLine(); 
                    System.Console.WriteLine(line); 
                    var values = line.Split(','); 
 
                    float sum = 0; 
                    double TotalPermissionRiskValue = 0; 
                    double AppRiskValue = 0; 
                    string  AppType=""; 
                    for (int i=0; i<=values.Length-1; i++) 
                    {    
                        if (i== values.Length - 1) { AppType = values[i].ToString(); 
continue; } 
                        double PermissionRiskValue = 0; 
                        double Riskvalue = 0; 
                         Riskvalue = A[i] - (A[i] * B[i]); 
                        PermissionRiskValue = Math.Sqrt(Riskvalue); 
                        TotalPermissionRiskValue = TotalPermissionRiskValue + 
(PermissionRiskValue * Convert.ToInt32(values[i].ToString())); 
                        sum += Convert.ToInt32(values[i].ToString()); 
                                                                   
 
                    } 
                     
                    AppRiskValue = TotalPermissionRiskValue  / sum; 
                    string RiskType = " "; 
                    if (AppRiskValue >= 0.5) { RiskType = "High"; } 
                    else if (AppRiskValue >= 0.25) { RiskType = "Medium"; } 
                    else { RiskType = "Low"; } 
                    Console.WriteLine("The Risk Value  for this App is = " + AppRiskValue); 
                    Console.WriteLine("Total No of Dangerous Permission Use  is =  " + sum); 
                    Console.WriteLine("The Risk Classification for this App is " + 
RiskType); 
                    Console.WriteLine("The Actual App category Type is  " + 
AppType.ToString()); 
                    
                } 
            } 
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        } 
        
    } 
    
} 

 

#Voting Ensemble Model for Malicous app detection in Python 

#This model has the ability to differentiate a benign app from a malicious app 

Intrusions) 

import pandas as pd 

import numpy as np 

import time 

import sklearn 

import matplotlib.pyplot as plt 

import seaborn as sn 

from   pandas import read_csv 

 

datapath = r"C:\Users\fogwara\Desktop\DangerousPermissionDataSet.csv" # Selected 

Features Dataset 

 

mydataset = read_csv(datapath) 

array = mydataset.values 

X = array[:,0:39]  #The Selected 8 Features of the Esembling Techniques 

y = array[:,-1]    #target Class(The Attack Type) 

 

from sklearn import model_selection 

from sklearn.ensemble import BaggingClassifier 

from sklearn.tree  import DecisionTreeClassifier 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 

random_state=1) 

 

 

 

 

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, 

test_size=0.125, random_state=500) # 0.125 x 0.8 = 0.1 

print("Begining of my proposed Voting Classifier Ensemble Model for Malicious app 

detection") 

from sklearn.model_selection import cross_val_score 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree  import DecisionTreeClassifier 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import VotingClassifier 
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from sklearn import svm 

from sklearn.neural_network import MLPClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB  

import time 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import accuracy_score, f1_score, log_loss 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

#from sklearn.ensemble import StackingClassifier 

 

clf1 = DecisionTreeClassifier() 

clf2 = RandomForestClassifier() 

clf3 = AdaBoostClassifier() 

clf4 = GaussianNB () 

clf5 = SGDClassifier(loss="hinge", penalty="l2") 

clf6 = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), 

random_state=500) 

clf7 = KNeighborsClassifier(n_neighbors=5) 

clf8 = LinearDiscriminantAnalysis() 

clf9 = LogisticRegression(random_state=500, solver='lbfgs', multi_class='ovr') 

clf10 = svm.LinearSVC() 

#eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', 

clf3),('lda', clf6),('knn', clf7)], voting='soft') 

#eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2),  ('ad', clf7)], 

voting='hard') 

eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2),  ('ad', clf7)], 

voting='hard') 

 

bgclf=BaggingClassifier(base_estimator=clf2, n_estimators=23, random_state=500, 

bootstrap=True) 

 

#seclf = StackingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)], 

final_estimator=RandomForestClassifier()) 

#seclf = StackingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)], 

final_estimator=RandomForestClassifier()) 

 

start_time = time.time() 

clf1.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf1-DecisionTreeClassifier: {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf2.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf2-RandomForestClassifier: {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf3.fit(X_train, y_train) 
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elapsed_time = time.time() - start_time 

print("Training time for clf3:-AdaBoostClassifier {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf4.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf4:-GaussianNB Classifier  {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf5.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf5:-SGDClassifier {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf6.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf6:-MLPClassifier {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf7.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf7:-KNeighborsClassifier {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf8.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf8:-LinearDiscriminantAnalysis 

{:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf9.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf9:-LogisticRegression {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

clf10.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for clf10:-Support Vector Machine {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

eclf.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 

print("Training time for Ensemble Voting Classifier: {:.2}".format(elapsed_time)) 

 

start_time = time.time() 

bgclf.fit(X_train, y_train) 

elapsed_time = time.time() - start_time 
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print("Training time for Ensemble Bagging Classifier: {:.2}".format(elapsed_time)) 

#start_time = time.time() 

#seclf.fit(X_train, y_train) 

#elapsed_time = time.time() - start_time 

#print("Training time for Ensemble Stacking Classifier: 

{:.2}".format(elapsed_time)) 

start_time = time.time() 

clf1_pred = clf1.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf1-DecisionTreeClassifier: {:.2}".format(elapsed_time)) 

acc = accuracy_score(y_test, clf1_pred) 

#l_loss = log_loss(y_test, clf1_pred) 

#f1 = f1_score(y_test, clf1_pred) 

print("DecisionTreeClassifier Accuracy is: " + str(acc)) 

#print("DecisionTreeClassifier Log Loss is: " + str(l_loss)) 

#print("DecisionTreeClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf1_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf1_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf1_pred 

for i in range(len(preds)): 

 if y_test[i]==preds[i]==1: 

 TP += 1 

 if preds[i]==1 and y_test[i]!=preds[i]: 

 FP += 1 

 if y_test[i]==preds[i]==0: 

 TN += 1 

 if preds[i]==0 and y_test[i]!=preds[i]: 

 FN += 1 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

start_time = time.time() 

clf2_pred = clf2.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf2-RandomForestClassifier: {:.2}".format(elapsed_time)) 
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acc = accuracy_score(y_test, clf2_pred) 

#l_loss = log_loss(y_test, clf2_pred) 

#f1 = f1_score(y_test, clf2_pred) 

print("RandomForestClassifier Accuracy is: " + str(acc)) 

#print("RandomForestClassifier Log Loss is: " + str(l_loss)) 

#print("RandomForestClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf2_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf2_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf2_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf3_pred = clf3.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf3-AdaBoostClassifier {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf3_pred) 

#l_loss = log_loss(y_test, clf3_pred) 

#f1 = f1_score(y_test, clf3_pred) 

print("AdaBoostClassifier Accuracy is: " + str(acc)) 

#print("AdaBoostClassifier Log Loss is: " + str(l_loss)) 

#print("AdaBoostClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf3_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf3_pred, labels=[0,1])) 
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#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf3_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf4_pred = clf4.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf4-GaussianNB Classifier  {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf4_pred) 

#l_loss = log_loss(y_test, clf4_pred) 

#f1 = f1_score(y_test, clf4_pred) 

print("GaussianNB Classifier  Accuracy is: " + str(acc)) 

#print("Support Vector Machine Classfier Log Loss is: " + str(l_loss)) 

#print("Support Vector Machine Classfier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf4_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf4_pred, labels=[0,1])) 

 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf4_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 
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    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf5_pred = clf5.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf5-SGDClassifier {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf5_pred) 

#l_loss = log_loss(y_test, clf5_pred) 

#f1 = f1_score(y_test, clf5_pred) 

print("SGDClassifier Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf5_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf5_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf5_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf6_pred = clf6.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf6-MLPClassifier {:.2}".format(elapsed_time)) 
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acc = accuracy_score(y_test, clf6_pred) 

#l_loss = log_loss(y_test, clf6_pred) 

#f1 = f1_score(y_test, clf6_pred) 

print("MLPClassifier Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf6_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf6_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf6_pred 

for i in range(len(preds)): 

 if y_test[i]==preds[i]==1: 

 TP += 1 

 if preds[i]==1 and y_test[i]!=preds[i]: 

 FP += 1 

 if y_test[i]==preds[i]==0: 

 TN += 1 

 if preds[i]==0 and y_test[i]!=preds[i]: 

 FN += 1 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

start_time = time.time() 

clf7_pred = clf7.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf7-KNeighborsClassifier {:.2}".format(elapsed_time)) 

acc = accuracy_score(y_test, clf7_pred) 

#l_loss = log_loss(y_test, clf7_pred) 

#f1 = f1_score(y_test, clf7_pred) 

print("KNeighborsClassifier Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf7_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf7_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 
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TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf7_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf8_pred = clf8.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf8-LinearDiscriminantAnalysis 

{:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf8_pred) 

#l_loss = log_loss(y_test, clf8_pred) 

#f1 = f1_score(y_test, clf8_pred) 

print("LinearDiscriminantAnalysis Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf8_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf8_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf8_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 
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    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf9_pred = clf9.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf9-LogisticRegression {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf9_pred) 

#l_loss = log_loss(y_test, clf9_pred) 

#f1 = f1_score(y_test, clf9_pred) 

print("LogisticRegression Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf9_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf9_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf9_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

clf10_pred = clf10.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for clf10-Support Vector Machine {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, clf10_pred) 

#l_loss = log_loss(y_test, clf10_pred) 

#f1 = f1_score(y_test, clf10_pred) 
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print("Support Vector Machine Accuracy is: " + str(acc)) 

#print("SGDClassifier Log Loss is: " + str(l_loss)) 

#print("SGDClassifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,clf10_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,clf10_pred, labels=[0,1])) 

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=clf10_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

eclf_pred = eclf.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for Ensemble Voting Classifier: {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, eclf_pred) 

#l_loss = log_loss(y_test, eclf_pred) 

#f1 = f1_score(y_test, eclf_pred) 

print("Voting Classifier Accuracy is: " + str(acc)) 

#print("Voting Classifier Log Loss is: " + str(l_loss)) 

#print("Voting Classifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,eclf_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,eclf_pred, 

labels=[0,1]))                                            

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 
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TN = 0 

FN = 0 

preds=eclf_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 

 

print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

start_time = time.time() 

bgclf_pred = bgclf.predict(X_test) 

elapsed_time = time.time() - start_time 

print("Testing time for Ensemble Bagging Classifier: {:.2}".format(elapsed_time)) 

 

acc = accuracy_score(y_test, bgclf_pred) 

#l_loss = log_loss(y_test, eclf_pred) 

#f1 = f1_score(y_test, eclf_pred) 

print("Ensemble Bagging Classifier Accuracy is: " + str(acc)) 

#print("Voting Classifier Log Loss is: " + str(l_loss)) 

#print("Voting Classifier F1 Score is: " + str(f1)) 

from sklearn import metrics 

print("Confusion Matrix:") 

print(metrics.confusion_matrix(y_test,bgclf_pred, labels=[0,1])) 

print("Classification Report:") 

print(metrics.classification_report(y_test,bgclf_pred, 

labels=[0,1]))                                            

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

TP = 0 

FP = 0 

TN = 0 

FN = 0 

preds=bgclf_pred 

for i in range(len(preds)):  

    if y_test[i]==preds[i]==1: 

           TP += 1 

    if preds[i]==1 and y_test[i]!=preds[i]: 

           FP += 1 

    if y_test[i]==preds[i]==0: 

           TN += 1 

    if preds[i]==0 and y_test[i]!=preds[i]: 

           FN += 1 
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print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

#start_time = time.time() 

#seclf_pred = seclf.predict(X_test) 

#elapsed_time = time.time() - start_time 

#print("Testing time for Ensemble Stacking Classifier: {:.2}".format(elapsed_time)) 

 

#acc = accuracy_score(y_test, seclf_pred) 

#l_loss = log_loss(y_test, eclf_pred) 

#f1 = f1_score(y_test, eclf_pred) 

#print("Ensemble Stacking Classifier Accuracy is: " + str(acc)) 

#print("Voting Classifier Log Loss is: " + str(l_loss)) 

#print("Voting Classifier F1 Score is: " + str(f1)) 

#from sklearn import metrics 

#print("Confusion Matrix:") 

#print(metrics.confusion_matrix(y_test,seclf_pred, labels=[0,1])) 

#print("Classification Report:") 

#print(metrics.classification_report(y_test,seclf_pred, 

labels=[0,1]))                                            

#For Binary Classfication Report of the Confusion Matrix between Intrusion and 

Normal Traffic 

#TP = 0 

#FP = 0 

#TN = 0 

#FN = 0 

#preds=seclf_pred 

#for i in range(len(preds)):  

  #  if y_test[i]==preds[i]==1: 

    #       TP += 1 

    #if preds[i]==1 and y_test[i]!=preds[i]: 

    #       FP += 1 

   # if y_test[i]==preds[i]==0: 

    #       TN += 1 

    #if preds[i]==0 and y_test[i]!=preds[i]: 

       #    FN += 1 

 

# print("TP",TP,"FP", FP, "TN",TN, "FN", FN) 

 

for clf, label in zip([clf1, clf2, clf3,clf4,clf5, clf6, clf7, clf8, clf9, clf10, 

eclf,bgclf], ['Decision Tree', 'Random Forest', 'AdaBoost Classifier','GaussianNB 

Classifier','SGDClassifier','MLPClassifier','KNeighborsClassifier','LinearDiscrimin

antAnalysis','LogisticRegression','Support Vector Machine', 'Ensemble 

Voting','Ensemble Bagging']): 

    scores = cross_val_score(clf, X_val,y_val, scoring='accuracy', cv=10) 

    #print(scores) 

    print("Cross Validation Accuracy: %0.4f  %0.4f  %0.4f (+/- %0.4f) [%s]" % 

(scores.mean(),scores.max(), scores.min(), scores.std(), label)) 
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 #print("Cross Validation Accuracy: " % (scores.mean(), scores.std(), label)) 


