
i

CONCEPTUALISATION, DEVELOPMENT AND EVALUATION OF A
NOVEL FRAMEWORK TO ENHANCE DATA SECURITY IN MOBILE

CLOUD COMPUTING ENVIRONMENT

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY,
AUCKLAND, NEW ZEALAND.

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY

Supervisors

Dr Krassie Petrova

Dr Mee Loong (Bobby) Yang

Professor Stephen MacDonell

July 2022

By

NOAH OGHENEFEGO OGWARA

School of Engineering, Computer and Mathematical Sciences

ii

LIST OF PUBLICATIONS

These are the publications resulting from this study

1. Ogwara, N. O., Petrova, K., & Yang, M. L. (2019). Data security frameworks for mobile cloud
computing: A comprehensive review of the literature. In 2019 29th International
Telecommunication Networks and Applications Conference (ITNAC) (pp. 1-4). IEEE.
DOI: 10.1109/ITNAC46935.2019.9078007

2. Ogwara, N.O, Petrova, K., Yang, M. L. B & MacDonell, S. G. (2020). Enhancing Data
Security in the User Layer of Mobile Cloud Computing Environment: A Novel
Approach. In 2020 Security and Management (SAM2020) Computational Science and
Computational Intelligence (CSCI) (pp. 129-146). Springer.
https://ui.adsabs.harvard.edu/abs/2020arXiv201208042O/abstract

3. Ogwara, N. O., Petrova, K., & Yang, M. L. B. (2020). MOBDroid: an intelligent malware
detection system for improved data security in mobile cloud computing environments. In 2020
30th International Telecommunication Networks and Applications Conference (ITNAC) (pp.
1-6). IEEE.
DOI:10.1109/ITNAC50341.2020.9315052

4. Ogwara, N. O., Petrova, K., Yang, M. L. B., & MacDonell, S. (2021). Enhancing Data Security
in the User Layer of Mobile Cloud Computing Environment: A Novel Approach. Advances in
Security, Networks, and Internet of Things, 129-145.
https://link.springer.com/chapter/10.1007/978-3-030-71017-0_10

5. Ogwara, N. O., Petrova, K., & Yang, M. L. (2021). MOBDroid2: An Improved Feature
Selection Method for Detecting Malicious Applications in a Mobile Cloud Computing
Environment. In 2021 Conference Proceeding of Computational Science and Computational
Intelligence (CSCI). IEEE.
DOI:10.1109/CSCI54926.2021.00137

6. Ogwara, N. O., Petrova, K., & Yang, M. L. (2022). Towards the Development of a Cloud
Computing Intrusion Detection Framework Using an Ensemble Hybrid Feature Selection
Approach. Journal of Computer Networks and Communications, 2022.
DOI: https://doi.org/10.1155/2022/5988567

7. Ogwara, N. O., Yang, M. L. & Petrova, K., (2022) Towards the Development of an Application
Risk Assessment Model using Ensembling Technique for Improved Security in Mobile Cloud
Computing Environment. In Progress.

8. Ogwara, N. O., Petrova, K., & Yang, M. L. (2022) MINDPRES: A Prototype System to
Enhance Data Security in the User Layer of Mobile Cloud Computing Environment. In
Progress

https://doi.org/10.1109/ITNAC46935.2019.9078007
https://ui.adsabs.harvard.edu/abs/2020arXiv201208042O/abstract
https://doi.org/10.1109/ITNAC50341.2020.9315052
https://link.springer.com/chapter/10.1007/978-3-030-71017-0_10
https://doi.org/10.1109/CSCI54926.2021.00137
https://doi.org/10.1155/2022/5988567

iii

ACKNOWLEDGEMENTS

I want to use this medium to express my sincere gratitude to my primary supervisor, Dr. Krassie

Petrova, for her immense support and constant feedback during this research work. Without her

efforts and guidance, this research work would not have been completed.

I am also grateful to my secondary supervisor, Dr Bobby Mee Loong Yang, for his support and

feedback for this study.

I sincerely thank Professor Steve MacDonell for his mentorship role that made this research work a

great success. His constant feedback and directions have helped improve the quality of this research

work.

My appreciation goes to the Auckland University of Technology (AUT), New Zealand Scholarship

office staffs and School of Engineering, Computer and Mathematical Science AUT for their financial

support for my doctoral scholarship that has made my journey to AUT from my home country a great

success. I want to appreciate all members of AUT Network Security Research Group (NSRG) for

their feedback before my PGR9 presentation that has help me to improve the quality of this study.

Furthermore, I thank God almighty for his grace and mercy upon my life, which enabled me to

complete this research work.

Finally, my sincere appreciation goes to my wife, Mrs Violetina Ehimuan Ogwara and my son, Ethan

Oghenefego Noel Ogwara for their moral support for this study. I want to thank my parents (Chief

and Mrs Jonathan Ogwara) and my siblings (Elijah Ogwara, Eloho Ogwara and Faith Ogwara). I

want to thank Professor One-time Obi Obeten Ekabua, Dr Friday Okwonu and Dr Nicholas Oluwole

Ogini for their support, especially when I started the PhD admission process. I also want to use this

opportunity to thank my friends for all their support during my PhD journey (Professor Moses

Okechukwu Onyesolu, Dr Franklin Okorodudu, Mrs Augusta Aghaulor, Dr Eghbal Ghazizadeh,

Confidence Wanogho, Gbenga Wahab Adeyemi, Pastor Martins Ayo, Pastor Busola Martins, Ojabo

Myles, Trust Okoroego, Temitope Oguntade, Anthony Ezeamaka, Obichukwu Onyeowuzoni, Obi

Azuibike, Belinda Idowu, Hariata Emeka, Anthony Okwoani, Clement Chima, and Ekpemuaka

Charles).

iv

TABLE OF CONTENTS

List of Publications…………………………………………………………….……………………………..ii

Acknowledgements………………………………………………………………………………………….iii

Table of Contents……………………………………………………………………………………………iv

List of Figures……………………………………………………………………………………………….viii

List of Tables…………………………………………………………………………………………….……x

Declaration………………………………………………………………………………………………..…xii

Abstract……………………………………………………..……………………………………………....xiii

TABLE OF CONTENTS ... iv

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1 Background of the Study ... 1

1.2 Problem Statement ... 4

1.3 Research Goal and Objectives ... 7

1.4 Thesis Organization .. 8

1.5 Chapter Summary ... 9

CHAPTER TWO ... 10

LITERATURE REVIEW .. 10

2.1 Overview of Mobile Cloud Computing ... 10

2.1.1 Mobile Cloud Computing Service Models .. 15

2.1.2 Mobile Cloud Computing Challenges ... 15

2.2 Security and Privacy Issues in Mobile Cloud Computing .. 16

2.2.1 Data Security Issues .. 16

2.2.2 Partitioning and Offloading Security Issues ... 17

2.2.3 Virtualization Security Issues ... 17

2.2.4 Mobile Cloud Applications Security Issues .. 18

2.2.5 Mobile Device Security Issues ... 18

2.2.6 Privacy Issues .. 19

2.3 Mobile Cloud Computing Security Vulnerabilities ... 20

2.3.1 Vulnerabilities in Application and Interface Layer .. 20

2.3.2 Vulnerabilities in Platform Layer .. 21

2.3.3 Vulnerabilities in Infrastructure Layer ... 22

2.4 Mobile Cloud Computing Security Requirements and Threats ... 23

2.4.1 MCC Threat Trend Analysis ... 27

2.4.2 The Egregious CC Threat Analysis Mapping Using the STRIDE Model 27

2.5 Analysis of Current MCC Data Security Frameworks ... 29

2.5.1 Review of the MCC Data Security Frameworks ... 31

2.5.2 Summary of the Review ... 40

2.6 Intrusion Detection System ... 42

2.6.1 Intrusion in The Mobile Devices ... 43

v

2.6.2 Intrusion in The Cloud-Infrastructure ... 45

2.6.3 Types of Intrusion Detection System ... 46

2.6.4 Intrusion Detection Methods ... 48

2.7 Analysis of Current IDS Frameworks in CC, MD and MCC Environment 49

2.7.1 Review of IDS Frameworks that Targets CC Infrastructure ... 51

2.7.2 Review of IDS Frameworks that Targets MD Infrastructure... 52

2.7.3 Review of IDS Frameworks that Targets MCC Infrastructure .. 53

2.7.4 Summary of the Review ... 53

2.8 State of Security for Mobile Devices in The MCC Environment .. 57

2.9 Mobile Application Risk Factors and Assessment .. 60

2.10 Research Gaps ... 62

2.11 Chapter Summary ... 64

CHAPTER THREE .. 65

DESIGN SCIENCE RESEARCH METHODOLOGY ... 65

3.1 Research Methodology ... 65

3.2 Problem Identification Phase .. 68

3.3 Solution Design Phase .. 69

3.3.1 The Proposed MCC Data Security Framework .. 69

3.3.2 The Proposed Prototype System ... 71

3.4 Evaluation and Communication Phase ... 73

3.5 Chapter Summary ... 74

CHAPTER FOUR .. 75

DATA COLLECTION, ANALYSIS AND LABORATORY EXPERIMENTS 75

4.1 Android Operating System Security Description ... 75

4.2 Data Collection .. 78

4.2.1 Dataset Construction ... 81

4.2.2 Permission and Intent Usage Analysis .. 84

4.3 Laboratory Experiment 1 ... 90

4.3.1 Machine Learning Classification Algorithms .. 91

4.3.2 Validation Metrics used in This Study .. 94

4.3.3 Evaluation Metrics used in This Study ... 94

4.3.4 Results Obtained from Experiment 1 ... 95

4.3.5 Discussions of results Obtained from Experiment 1 .. 97

4.4 Laboratory Experiment 2 ... 99

4.4.1 Feature Selection Methods .. 100

4.4.2 The Proposed Filter-Based Feature Selection Technique ... 100

4.4.3 The Proposed Ensemble ML Model Using Static Analysis Approach 104

4.4.4 RESULTS Obtained from Experiment 2 .. 105

4.4.5 DISCUSSIONS of results Obtained from Experiment 2 ... 106

vi

4.5 Laboratory Experiment 3 ... 109

4.5.1 App Dynamic Features Extraction and Dataset Construction .. 110

4.5.2 The Proposed Ensemble ML Model Using Dynamic Analysis Approach 111

4.5.3 Discussions of results Obtained from Experiment 3 .. 112

4.6 Chapter Summary ... 112

CHAPTER FIVE .. 113

PROTOTYPE DESIGN AND IMPLEMENTATION.. 113

5.1 Prototype Design .. 113

5.1.1 The Device Manager .. 114

5.1.2 The App Evaluator ... 115

5.1.3 The Detection Engine .. 121

5.2 Prototype Implementation ... 124

5.2.1 The Database Design .. 124

5.2.2 The Implementation Tools ... 126

5.2.3 The Unified Modelling Of The Prototype System ... 131

5.2.4 The Algorithmic Design Of The Prototype System .. 135

5.3 Prototype Testing .. 137

5.3.1 Test Case Scenario 1 .. 139

5.3.2 Test Case Scenario 2 .. 140

5.3.3 Test Case Scenario 3 .. 141

5.3.4 Test Case Scenario 4 .. 142

5.3.5 Test Case Scenario 5 .. 143

5.4 Chapter Summary ... 144

CHAPTER SIX .. 145

PROTOTYPE EVALUATION .. 145

6.1 Prototype Evaluation ... 145

6.1.1 Experimental Setup For The Prototype Performance Evaluation .. 146

6.1.2 Description Of The Evaluation Testbed ... 146

6.1.3 Phase One (The App Evaluator) Results .. 148

6.1.4 Phase Two (The Detection Engine) Results ... 151

6.1.5 Performance Evaluation Results .. 152

6.1.6 Energy Consumption Evaluation Of The Prototype System .. 154

6.2 Prototype System Expert Evaluation Feedback .. 156

6.2.1 Expert 1 Feedback ... 156

6.2.2 Expert 2 Feedback ... 156

6.2.3 Expert 3 Feedback ... 158

6.2.4 Expert Feedback Summary .. 158

6.3 Results Comparison with Related Works .. 159

6.4 Chapter Summary ... 162

vii

CHAPTER SEVEN .. 163

DISCUSSION AND CONCLUDING REMARKS ... 163

7.1 Overview of the Study ... 163

7.2 Addressing the Research Questions .. 164

7.3 Research Contribution .. 167

7.4 Challenges and Limitations of the Study ... 168

7.5 Directions for Further Research .. 169

References .. 171

APPENDIX A (TABLES) ... 187

APPENDIX B (UML DIAGRAMS) ... 199

APPENDIX C (SOURCE CODES) .. 203

viii

LIST OF FIGURES

Figure 1.1 The General Architecture of MCC..3

Figure 1.2 Mobile Cloud Architecture ...4

Figure 2.1 CC Threat Ranking Change Spectrum...27

Figure 2.2. Summary of the Address Threats by Existing Frameworks..41

Figure 2.3. Summary of the Address Security Requirements by Existing Frameworks...................42

Figure 2.4. Analysis of IDS Frameworks and their Target Environment...55

Figure 2.5. Analysis of IDS Frameworks for ML & IPS Components..55

Figure 3.1: Research Process Followed in this Study..67

Figure 3.2: The Proposed MCC Data Security Framework..71

Figure 3.3 The Proposed Prototype System (MINDPRES)...72

Figure 4.1 Data Pre-processing and Features Extraction Stages..82

Figure 4.2 Top 25 Permission Usage Frequency of Apps in the Dataset…………………………….87

Figure 4.3 Top 25 Intent Usage Frequency of Apps in the Dataset..88

Figure 4.4 Performance Evaluation Results for the Ten ML Classifiers (CA,PR,RC & FM)………...98

Figure 4.5 Performance Evaluation Results for the Ten ML Classifiers (ER,FPR,FNR, & FAR)……99

Figure 4.6 The Proposed Ensemble ML Model using Static Analysis Approach…………………….105

Figure 4.7 Ensemble ML Model Performance Results Using the FS Approach...............................107

Figure 4.8 Ten-Fold Cross Validation Results of the ML Training..108

Figure 4.9 Ensemble ML Model Training and Testing Time..108

Figure 4.10 The Proposed Ensemble ML Model Using Dynamic Features Analysis Approach….111

Figure 5.1 High-Level View of the Proposed Prototype System Implementation (MINDPRES)…..114

Figure 5.2 The Device Manager...115

Figure 5.3 The App Evaluator...117

Figure 5.4 App Intrusion Manager..122

Figure 5.5 MINDPRES-Database Entity Relationship Diagram……………………………………....124

Figure 5.6 MINDPRES-Device Manager UI..127

Figure 5.7 MINDPRES-App Evaluator UI..128

Figure 5.8 MINDPRES-App Detection Engine-Online Activities Tab UI………………………….....129

Figure 5.9 MINDPRES-App Detection Engine-Malicious Activities Tab UI………………………….130

Figure 6.1 Risk Assessment Result of all Benign apps used in the Evaluation……………………..150

Figure 6.2 Risk Assessment Result of all Malicious apps used in the Evaluation..........................151

Figure 6.3 Detection Performance Evaluation Result ..154

ix

Figure 6.4 Energy Consumption Evaluation Result ...155

Figure 1. Class Diagram of the Prototype System..199

Figure 2. Sequence Diagram of the Prototype System...200

Figure 3. Activity Diagram of the Prototype System..201

Figure 4. Component Diagram of the Prototype System...201

Figure 5. Deployment Diagram of the Prototype System..202

Figure 6. Energy Profiler Estimation Result of the Prototype System………………………………202

x

LIST OF TABLES

Table 2.1. The Seven Basic MCC Security Requirements..24

Table 2.2. The evolution of the CC security threats...25

Table 2.3. The Egregious eleven CC Threats...26

Table 2.4 STRIDE Threat Analysis using the Egregious CC Threats………………………………....28

Table 2.5 Analysis Summary of the Selected Data Security Frameworks…………………………….30

Table 2.6. Analysis of IDS Frameworks ...50

Table 2.7. Dimensions Adopted in this Study for Framework Analysis……………………………….56

Table 2.8 Existing Validation Metrics Used for the Evaluation of Existing IDS and IDPS……….….57

Table 4.1 Apps Apk Source Market Distribution..81

Table 4.2 Sample Structure of the Constructed Dataset 1(Permissions)..83

Table 4.3 Sample Structure of the Constructed Dataset 2(Intents)...83

Table 4.4 Sample Structure of the Constructed Dataset 3 (Permissions and Intents)......................84

Table 4.5 Permissions Usage Analysis...85

Table 4.6 Intents Usage Analysis..86

Table 4.7 The Selected ML Classification Algorithms……………………………………….……….....91

Table 4.8 Apps Distribution as used in the three datasets..91

Table 4.9 Results of the First Experiment...96

Table 4.10 Ten-Fold Cross Validation Results of the Ten ML Classifiers……………………………..96

Table 4.11 The Selected 39 Features from the Proposed Filter-Based FS method........................104

Table 4.12 Results of the Second Experiment..106

Table 4.13 Network Traffic Apps Data Distribution..109

Table 4.14 API Calls Features from the App Network Traffic Data..110

Table 5.1 App Information Table...124

Table 5.2 App Evaluation Table..125

Table 5.3 App Network Traffic Table………………………………………………………………….....125

Table 5.4 App Online Activities Table...125

Table 5.5 App Traffic Detection Table…………………………………………………………………...126

Table 5.6 Selected Permissions and Intent used in the design of the ensemble ML model...........138

Table 5.7 Risk Score Output (Dangerous Permissions) of the Statistical Model..............................138

Table 5.8 Classification Outcome of the App Evaluator..139

Table 5.9 Permission Requested by the Test App for Scenario 1...139

Table 5.10 Permission Requested by the Test App for Scenario 2...140

Table 5.11 Permission Requested by the Test App for Scenario 3...141

Table 5.12 Permission Requested by the Test App for Scenario 4...142

Table 6.1 Apps Distribution Sample Installed in Each Device...146

xi

Table 6.2 Benign Apps Downloaded from Google Play Store………………………………………...148

Table 6.3 Malicious Apps Downloaded from CICMalDroid2020……………………………………...148

Table 6.4 Prototype System Risk Assessment Evaluation Result using Both Benign and Malicious

Apps...149

Table 6.5 Network Activities of all Apps in the Device Captured by the Detection Engine..............152

Table 6.6 Detection Performance Evaluation Results of the Prototype System…………………….153

Table 6.7 Energy Consumption of each Device..154

Table 6.8 Results Comparison with Related Works..161

Table 1 Unique List of Permissions Usage in the Constructed Dataset……………………………...187

Table 2 Unique List of Intent Usage in the Constructed Dataset...191

Table 3 Feature Selection Results of the Proposed Filter-Based FS Method……………………....195

Table 4 Related Works and their ML Classifiers Used…………………………………………….....198

xii

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it

contains no material previously published or written by another person, nor material which to a substantial

extent has been submitted for the award of any other degree or diploma of a university or other institution

of higher learning.

Noah Oghenefego Ogwara

xiii

ABSTRACT

Security issues (e.g., data breaches, malicious applications, account hijacking, and insecure
application programming interfaces) are obstacles in the adoption of Cloud Computing (CC) and
Mobile Cloud Computing (MCC) technologies as the enormous data circulation through the Internet
has attracted attackers to this environment. MCC inherits the security challenges faced by CC that
affect the security and privacy of user information, such as multi-tenancy, data security, virtualization
security, and application vulnerabilities. The highly distributed nature of MCC makes it vulnerable to
attacks such as denial of service (DoS), distributed denial of services (DDoS), virtual machines to
virtual machines attacks, man-in-the-middle attacks, cloud malware injection, covert channel, and
others. These attacks spread to the Mobile Device (MD) layer of the MCC infrastructure, in which
external access to MDs may enable the stealing of sensitive information. The exposure of the MD is
due in part to vulnerabilities introduced by malicious applications downloaded by users from trusted,
or untrusted sources. Despite the significant attack exposure level of the MD layer of the MCC
architecture, it has received little research attention; most of the existing work reported in the extant
literature targets the cloud infrastructure of the MCC environment. Although some researchers have
offered security solutions for the MCC environment, these solutions are not comprehensive enough
as they only provide countermeasures to a small number of known security threats. Hence the main
research question: what security components are required in a framework that can be used to protect
MCC resources against attacks and enhance the security of user data in this environment? To
address the main research question, this study adopted a Design Science Research Methodology
(DSRM) approach, to identify the security components needed and proposes a novel security
framework that offers a comprehensive solution to a large number of the known security threats in
the MCC domain. Based on the framework, a proof-of-concept prototype system, a novel hybrid
intrusion detection and prevention system named MINDPRES (Mobile-Cloud Intrusion Detection
and Prevention System) was designed and implemented. MINDPRES aims to protect the security of
the MD layer of the MCC infrastructure, it combines a host-based Intrusion Detection System (IDS)
and a network-based IDS using a Machine Learning (ML) model for the detection of malicious
activities at the MD nodes of the MCC environment. Android apk files from two repositories were
collected and used to construct the datasets used in building an ensemble ML classification model
that uses the permissions and intents demanded by apps to determine if an app is malicious or not.
Using the prototype system (MINDPRES), MD users can evaluate all apps on their device; each app
is assigned a risk score and risk category. The system also monitors the actual behaviour of the
apps by analysing the API calls to detect malicious behaviour; the MD user is automatically alerted,
and the activities of such apps are blocked. The results obtained from the experiments carried out in
this study show that the prototype system is effective in tackling security issues caused by malicious
apps in the user layer of the MCC environment. The energy consumption and intrusion detection
performance evaluation results indicate that the prototype system is feasible for implementation in
the resource-constrained MDs used in the MCC environment. In addition, the prototype system was
evaluated by invited security experts who were given access to standalone MDs with MINDPRES
pre-installed. The expert feedback was also positive, and they all agreed that the prototype system
is highly effective in detecting and preventing malicious activities at the MD node of the MCC
infrastructure. Despite the prototype implementation being limited to the Android mobile ecosystem,
this study proposes a novel data security framework that detect and prevent the security issues
caused by malicious applications in the MCC environment, by monitoring device behaviour using a
hybrid analysis approach without root level access to the device resources. However, there is a need
for further research to improve the proposed framework to manage security issues at other layers of
the MCC architecture and the implementation of a cross-platform prototype system.

1

CHAPTER ONE

INTRODUCTION

This research identifies the security components that is required to tackle security issues faced by

users of Mobile Cloud Computing (MCC) technology and proposes a novel data security framework

that offers a better solution to known security threats in the MCC environment. Based on the

proposed novel framework, this study implements a prototype system named MINDPRES (Mobile-

Cloud Intrusion Detection and Prevention System) for the security of the User Layer (UL) of the MCC

infrastructure as a proof of concept.

This chapter is organized as follows: A brief background of the study is presented in section 1.1;

section 1.2 discusses the problem statement. The research goal, research questions and the

objectives are presented in section 1.3. The overall thesis structure and the chapter conclusion are

discussed in sections 1.4 and 1.5. respectively.

1.1 BACKGROUND OF THE STUDY

The evolution of Cloud Computing (CC) has witnessed rapid growth in the last decade. This rapid

growth of the CC technology is a result of the invention of modern technology that depends on its

infrastructure, for example, MCC, Internet of Things (IoT), Fifth and Sixth generation (5G and 6G)

networks, and Software Defined Networks (SDN) (Kumar & Goyal, 2019).

CC can be described as computing resources and Information Technology (IT) services, made

available on-demand through internet technology, in a pay-as-you-go business model (Hazarika et

al., 2014). Cloud Services Providers (CSP) offer various cloud services to enterprises that function

as customers service. CC provides services and computing resources to its end-user through a

highly computational network with remote servers managed by the CSP. CC offers a model for

various end-users to use software applications(apps), storage, and processing capabilities without

investing in infrastructure. CC allows its end-users to use infrastructure (for example, networks,

servers, and storage), platforms (for example, operating systems and middleware services), and

software example application programs) provided by CSP, for example, Amazon, Google, Microsoft,

and Salesforce at an affordable rate. CC user may regularly update the data stored in the cloud.

However, data in this environment may be vulnerable to unauthorized modification, disclosure, and

replay attacks during data transmission and storage in the cloud infrastructure (Dinh et al., 2013).

Data security during updates is essential to ensure storage accuracy in such a dynamic environment.

To this end, it is necessary to ensure secure and reliable data transmissions between the cloud user

and the cloud storage. CC has received significant attention from different researchers, and there is

one important question that attracts serious attention. How do we complement the anytime access

possibilities of the cloud with anywhere access? The answer to this question has focused on different

research studies that proposed the Mobile Device (MD) as the cloud services consumption node.

2

The MD complements the CC infrastructure by offering access to enterprise information anywhere,

anytime. However, a significant revolution that Mohiuddin et al. (2012) describe is "24x7x365 mobile

access" since most MDs have reliable support for various networks connectivity between the cloud

clusters and MDs via 3G, 4G, Wi-Fi, and Bluetooth (Meads et al. 2009).

Mobile Computing (MC) is one of the leading business solutions in the IT industry. MDs are

increasingly becoming the most efficient and convenient communication tool in human life, not

confined by time and place. The number of mobile users is increasing due to continually improving

these devices' user-friendly hardware and software (Ba et al., 2013; Chung et al., 2014). Dinh et al.

(2013) stated that MD users acquire rich experience of various mobile apps services that run on the

devices or remote servers via wireless communication networks. MC has failed to satisfy the high

computational resources required by MD users for data processing. Also, the limited resources of

MD significantly hinder the improvement of its service qualities. However, MCC solves the limited

resources problem faced by MD user by offloading high computational tasks and storage to the CC

infrastructure (Noor et al.,2018).

MCC has attracted people's attention in business as a technology that lessens mobile services and

applications running and development costs. MCC is the interconnection of CC, MC and wireless

networks that provides powerful computational resources to MD users. Buyya et al.,2009; Mollah et

al., 2012 stated that MCC is offered as a service of CC, which is used in either the mobile embedded

environment or mobile phone environment. MC is well integrated with CC because of the vital

attributes of the cloud model, such as on-demand self-service, resource pooling, measured services,

rapid elasticity, and broad network access. MCC is a new model for mobile applications, in which

data processing and storage are transferred from the device to robust and centralized computing

platforms positioned in cloud. These applications are then accessed over the wireless network

connection based on a thin local client or web browser (on the MD). MCC takes full advantage of

CC infrastructure's availability, enabling MD users to offload computationally rigorously and high

storage demanding tasks on available cloud resources using the wireless network. MCC as

technology focuses on storing and processing data outside of the devices using the CC

infrastructure. However, security and privacy remain critical issues of this technology.

Sanaei et al. (2012) describe MCC as a valuable MC technology that leverages the centralized

elastic resources of various clouds and network technologies towards complete functionality,

storage, and mobility which serves a plenitude of MDs anywhere, anytime through the internet,

regardless of various environments and platforms based on the pay-as-you-use policy. The general

MCC architecture is shown in Figure 1.1. The architecture provides an access point at which MDs

can request services in the cloud through the mobile internet. These services are delivered via the

communication channel to the MD user. In this regard, the middleware allows for cross platforms of

3

different MDs to manage the service request and ensures easy access to other MDs users' cloud

resources in the MCC environment.

Figure 1.1 The General Architecture of MCC adapted from Dai et al. (2012)

The development of apps that runs on the MD platforms in the MCC environment has increased in

recent times. Mobile application categories such as social media, apps using location-based

services, games, and email apps have also contributed to the wide user acceptance and adoption.

However, MD resource constraints, for example, device processor, energy consumption, and

storage capacity, have posed some design challenges to the mobile apps’ developer. MCC can be

used to counter these challenges. Due to the new trend to use MCC technology for mobile apps

development. MCC users can access the powerful cloud services anywhere, anytime on a pay as

you use basis, even with the limited resources of their MDs. Using MCC can scale up or down rapidly

to meet the MDs user demands as well as the MD capability (Noor et al., 2018).

Noor et al. (2018) describes the three different layers in MCC architectures. These layers include 1.

Mobile Cloud User layer (MCUL) 2. Mobile Network Communication Layer (MNCL) and 3. Mobile

Cloud Services Provider layer (MCSPL) as shown in Figure 1.2.

4

Figure 1.2 Mobile Cloud Architecture Adapted from Noor et al. (2018)

MCUL: This layer provides a platform in which users can gain access to the cloud resources using

their MD through the MNCL.

MNCL: This layer is made up of different mobile networks that provide internet services to MD users

request through their base stations to the mobile cloud.

MCSPL. This layer presents the MD user with the different CSP available, which they can use to

store their information and deploy their cloud-based application.

1.2 PROBLEM STATEMENT

Security has become an obstacle in adopting CC and MCC technology even though the technologies

can deliver a broad range of resources and services to its user (Sathye et al, 2022; Liang et al, 2021;

Alghofaili et al, 2021; Tahirkheli et al,2021). The enormous data circulation through the internet has

attracted attackers to this environment (Zkik et al., 2017). The mobile nature of the network nodes

in MCC has raised numerous challenges related to data breaches, data loss, data replication, trust,

security, and privacy (Zissis & Lekkas, 2012; Mollah et al., 2017, Dey et al., 2019). The security

issues in MCC cut across the different models that make up its architecture (MCUL, MCNL and

MCSPL). To protect this technology there is a need to develop a good security solution that provides

5

a strong defence against attacks on data which is beneficial to both the MCC users and the service

provider.

Kulkarni & Khanai (2015) stated that even though users of MCC enjoy benefits such as device

independence, reduced maintenance, reliability, reduced cost, and scalability, there is a need for

MCC resources such as user data to be protected from all kinds of attacks. MCC inherits the security

challenges facing CC, such as multi-tenancy, data security, virtualization security, which affect the

security and privacy of user information stored in both mobile and cloud infrastructure. The

distributed nature of MCC infrastructure allows intruders the possibility of gaining unauthorized

access to these mobile and cloud resources, intending to extract sensitive information. However, the

cloud infrastructure of the MCC environment is much more powerful and reliable than the mobile

environment but the security and privacy of user data still poses a major challenge in the MCC

environment (Mollah et al., 2017).

Furthermore, shared resources and virtualization features of the MCC environment have attracted

cyber-attacks on the CC infrastructure such as a Denial of Services (DoS), Distributed Denial of

Services (DDoS), virtual machines to virtual machine attacks, man-in-the-middle, cloud malware

injection, covert channel, and so on. These attacks can spread to MDs and enable external access

to MDs leading to the stealing of sensitive information of MD users (Inayat et al., 2017). Therefore,

it is necessary to apply defensive measures to detect and prevent these attacks. In addition, the

popularity of the Android mobile Operating System (OS) which currently holds over 85% of the

market share of MD users in the MCC environment. These devices currently generate a large

amount of traffic that exceed personal computers and made MDs a prime target for cyber-attacks.

The use of MD in the MCC environment gives room for many security and privacy issues in this

environment. However, protecting these devices is a challenging task due to rapid changes in

technology which makes the MCC environment more complex (Gupta et al., 2018).

Nevertheless, the connectivity support for access points such as 2G/3G/4G/5G, Wi-Fi, Bluetooth and

the open nature of the Android mobile OS exposes the MD to more sophisticated attacks that may

affect the security requirements of the MCC environment. (Ribeiro et al.,2019). To this end, the 2019

Cloud Security Alliance (CSA) in 2019 mentions data breaches as the topmost threat in the CC

domain. These raise concerns about user information security at the MD at the MCUL of the MCC

environment.

Nisha et al. (2020) stated that MCC users enjoy unlimited computational resources. This technology

enables them to execute resource-demanding applications. However, offloaded content execution

is done on the cloud or edge servers in the MCC environment instead of the MD. The activities of

malicious apps on the end-user device when offloading content for execution on the cloud or edge

6

server may affect the confidentiality and integrity of data stored in the cloud. The inability of the MD

user to validate the correctness of the offloaded data at the point of usage is a critical concern. The

integration of malicious codes into the cloud-based apps leads to attacks on the MCC infrastructure.

These attacks may affect the integrity of both data and applications in the MCC environment (Mollah

et al., 2017).

OS (2021) reported that malicious apps are amongst the most threatening security issues facing

MCC users. This is because the malicious activities of such apps residing in this environment can

affect both the MCUL and MCSPL of the MCC architecture. In addition, Mollah et al (2017) stated

that malicious apps that reside on the user device and malicious insiders in the cloud network are

major obstacles facing the security of user data in the MCC environment. The presence of malicious

codes in MD during offloading affects the confidentiality and privacy of users in this domain. Kumar

& Goyal (2019) affirmed that due to vulnerabilities in a software application that serves as the entry

point to the cloud services using the internet affects the basic security requirements of the CC

infrastructure which open doors to attacks. However, the conventional way of handling security

attacks is not sufficient in the MCC environment. Therefore, it is necessary to develop a novel

approach to handle threats causes by malicious apps in this domain and to provide a dependable

MCC environment.

In recent times, attackers have adopted the use of malicious apps to target MD users in the MCC

domain. These categories of malicious apps especially are hard to detect by existing defensive

techniques, for example, malicious apps that have been modified by adding malicious payload to the

original benign version of an app that has been already vetted by the app store, and can be

successfully published in the app store when the signature of the benign app is compromised (Qi.

et al.,2014; Idrees & Muttukrishnan,2014; Hou et al., 2016; Hatcher et al,2016; Ribeiro, et al.,2019;

Zhou, et al., 2019).

In fact, traditional defensive mechanisms such as firewalls, access control, anti-spyware, anti-virus,

and anti-malware, may not be strong enough to protect MDs in the MCC environment. Most of these

defensive techniques require changing the kernel function of the mobile OS. Significant

computational power is required for running the highly intensive computing security algorithms in the

resource constrained MD. The need to shift these defensive mechanisms to the cloud end may have

become necessary, as suggested by Inayat et al. (2017).

MCC has received extensive research effort conducted by academia’s and research organizations

to provide a more secure MCC environment and attract more consumers to use these services.

However, security and privacy have been reported by researchers as a major challenge that hinders

this technology (Chen & Wang, 2011; Huang et al.,2011; Khan et al,2013; Goyal & Krishna, 2015;

7

Mollah et al., 2017; Khatri & Vadi, 2017; Chean et al.,2018; Noor et al;2018; Agrawal & Tapaswi,

2019; Dey et al., 2019).

This research work focuses on identifying the security components required in a framework that

provides a better solution to tackle security threats faced by MCC user. The proposed solution in this

study enhances the MCC environment's security and provides adequate protection to user data.

1.3 RESEARCH GOAL AND OBJECTIVES

The main goal of this study is to develop and evaluate a novel solution to the data security issues in

the MCC environment. Its main Research Question (RQ) and Research Sub Questions (RSQ) can

be formulated as:

Main RQ: What security components are required in a framework that can protect MCC resources

against attacks and enhance the security of user data in the MCC environment?

RSQ1: Which specific MCC resources require to be protected to enhance the security of this

environment?

RSQ2: What approach can be used to protect the identified MCC resources in RSQ1?

RSQ3: What metrics can be used to evaluate the performance of the identified approach in

RSQ2 and how can this approach be implemented to protect the resource identified in

RSQ1?

To address the main RQ, RSQs and meet the research goal, this study investigates the state-of-the-

art MCC data security solution landscape, develop and evaluate a novel framework for MCC data

security.

The following specific objectives will guide this study:

Research objective 1: To investigate the current MCC data security solution scope in-depth.

Research objective 2: To identify and analyze solutions that aim to detect, and protects MCC

resources against, attacks on data.

Research objective 3: To propose, develop and evaluate a novel framework that enhances MCC

data security in the user layer.

The main scope of this study covers the conceptualization of a novel framework to enhance data

security issues in the MCC environment. The conceptualized enhanced framework includes different

security technique across the three different architectural layers in the MCC environment. The study

focuses on the development and Implementation of a prototype system that addresses security

issues in the user layer of the MCC environment. The conceptualized enhanced framework

implemented as a prototype system as a proof of concept in this study adopted the use of ensemble

Machine Learning (ML) techniques with Intrusion Detection and Prevention System (IDPS) to detect

8

the security issues caused by malicious apps in the user layer of the MCC environment. Other

security aspects such as digital forensic techniques are beyond the scope of this study and are

reported as area of research for future studies.

1.4 THESIS ORGANIZATION

The thesis is organized as follows: Chapter two discusses the MCC security requirements and

provides a threats analysis, followed by a detailed analysis of related works. The analysis of related

works includes a comprehensive review of data security frameworks that propose security solutions

in the MCC domain and a review of security frameworks that aims to detect and protect resources

in CC, MC and MCC domains. The research gaps identified in the review of literature are presented

at the end of chapter two.

Chapter three presents the research methodology adopted for this study and discusses how the

methodology is applied to the body of research work conducted in this study. The proposed

framework and a brief description of the proposed prototype system are also presented.

Chapter four discusses the methods involved in the processes of data collection and analysis,

laboratory experiments of the ML Models, experimental evaluation and analysis of laboratory results

are also presented.

Chapter five discusses the design and implementation of the prototype system as a proof of concept

with respect to the proposed framework. The prototype system address security issues that face the

MCUL of the MCC infrastructure. The testing of the prototype system are presented in chapter five

with various test case scenarios.

Chapter six discusses the performance evaluation of the prototype system using real-life Android

devices with popular Android mobile apps. The expert evaluation report presented in chapter six is

based on the personal opinion of each invited security experts that participated in the evaluation of

the prototype system implemented in this study.

Chapter seven conclude the thesis by discussing answers to the research questions and identifies

the contribution of this research to the body of knowledge. Chapter seven also discussed the

challenges, limitations of the study and possible research directions for future work.

9

1.5 CHAPTER SUMMARY

MCC inherits security challenges facing the CC, such as multi-tenancy, data security, virtualization

security, and application vulnerabilities that affect the security and privacy of user information. The

use of malicious apps targeting the MD of the MCUL in the MCC domain has raised security concerns

that needs a better solution. The distributed nature of MCC has led to attacks in this environment

such as Denial of Services (DoS), Distributed Denial of Services (DDoS), virtual machines to virtual

machine attacks, man-in-the-middle attacks, cloud malware injection, covert channel attacks and

others. When these attacks spread to the MCC infrastructure's user layer (MCUL), they may enable

adversarial external access to MDs and the stealing of sensitive information from both device and

cloud storage. This chapter discusses the research goal and the objectives that are required to

address the main research problem. The next chapter provides a comprehensive review of the

literature and identifies the research gaps addressed in this study.

10

CHAPTER TWO

LITERATURE REVIEW

The previous chapter provides insight into this work by discussing the background of the study,

research problem, research goals and objectives, and how this thesis is organized.

This chapter presents background studies in MCC technology. The security challenges, security

threats, and requirements of the MCC environment are also discussed. A detailed analysis of data

security frameworks proposed in extant literature that adopted intrusion detection and prevention

security mechanisms and policies in MC, CC, and MCC environments is presented. The state-of-

the-art security in mobile devices is discussed alongside the research gaps identified in the entire

literature.

2.1 OVERVIEW OF MOBILE CLOUD COMPUTING

The MCC paradigm combines several technologies, including CC, MC, and wireless networks (WN),

to provide integrated services to users and organizations. MCC technology has grown in popularity

over the years because of factors such as network mobility and dynamicity, MD independence,

ubiquitous data access, and improved data communications (Moorthy et al, 2020). MCC entails the

technological synchronization of the MDs' OS and the dynamic quality of cloud services. It is

predicated on the fundamental characteristics of CC technology, for example, adaptability, elasticity,

availability, scalability, and resource sharing (Dinh et al.,2013).

MC is contingent upon the ability of MDs to access computer resources. Additionally, MC facilitates

the performance of tasks that were previously performed by traditional desktop computers. In

general, three fundamental concepts underpin MC: hardware, software, and communication (Dinh

et al., 2011; Liu et al., 2010). Hardware refers to user-accessible gadgets (for example tablet PCs

and cell phones). The software includes applications that are designed and developed to perform

tasks in a mobile environment, while communication encompasses networks and protocols that

enable mobile computers to communicate, such as Wireless Local Area Networks (WLAN), Long-

Term Evolution (4G LTE), and satellite networks.

The following are supported by the MC environment. First, there is mobility, which enables mobile

nodes or fixed nodes to communicate with other devices' nodes via Mobile Support Stations (MSS)

(for example servers and access points). Second, diversity of network access types refers to mobile

nodes that can communicate via a variety of different access networks, such as Long-Term Evolution

4G LTE or Wireless Wide Area Network (WWAN), each of which has a unique communication

bandwidth and overhead between the mobile nodes and the MSS.

11

Thirdly, frequent network disconnection indicates that mobile nodes are unable to maintain a

continuous connection due to restricted resources such as battery energy and communication

capacity.

Fourth, in terms of dependability and security, mobile node signals are susceptible to interference

and eavesdropping in mobile networks, highlighting the growing importance of security in MC.

Furthermore, the MCC paradigm evolved to combine the advantages of MC and CC to efficiently

utilize data centre computing capabilities and distribute them as mobile services. MC refers to

devices with limited hardware, software, and communication capabilities, with mobility as the primary

criterion. CC is a method of delivering enormous computing resources as services through

virtualization and service-oriented techniques to cut costs, increase performance, and enable remote

access. MCC enables the delivery of powerful computing resources as services. This enables low-

resource mobile devices to do complicated computations that would otherwise require more powerful

computer resources (Fernando et al., 2013).

MCC is a cloud-based computing system that enables resource-constrained MDs to run

computationally heavy applications and store their data in the cloud. MCC has greatly improved

execution speed and energy usage by shifting resource-intensive applications from hosting devices

to cloud-based resources. The evolution of MCC reduces MDs' heavy computational requirements

in data processing because all data and sophisticated computations are managed remotely via

cloud-based resources. MCC has transformed the landscape of traditional MC over the last few

years by enabling on-demand, self-service, measurable, elastic, and broad access mobile services.

MCC devices such as smartphones and tablets, are becoming an increasingly vital component of

our modern and virtual lifestyles (Noor et al.,2018).

Mobile application execution in the MC environment is computationally intensive, and as a result,

MDs consume a significant amount of energy. The computational offloading technique was

introduced to tackle the high demand for energy consumption by MDs in the MCC environment. In

the MCC environment, computationally intensive applications and tasks are offloaded to the cloud

for execution, and the results are returned to the MDs. Mollah et al. (2017) described the

computational offloading steps in the MCC environment as partitioning, migration, and execution.

However, the execution and processing tasks are shifted from the MDs environment to the cloud

environment. The MDs retain control over how the tasks are executed and how much computation

is offloaded to the cloud based on the available MCC resources.

With the rapid growth of MDs, developers are creating a plethora of applications for them, many of

which offer cloud-based services with a rich user experience (Bahrami, 2015). These applications

enable MCC users to access cloud-based rich experiences and services, even on low-resource MDs.

12

These applications must instantly scale up or down to meet the requirements of MCC users and the

capabilities of mobile devices. To cloud-deploy a mobile application, it must first be segmented into

components based on its requirements. Components of an application that rely on locally available

mobile resources, such as various sensors, do not require cloud offloading. However, components

that consume many resources must be executed in the cloud. As a result, these applications can be

classified as client-side, client-cloud-side, or cloud-based. Most of the application's execution occurs

on the mobile device in a client-based model. A client-cloud model, on the other hand, partitions an

application into components that are executed on both a mobile device and a remote cloud. Whereas

in a cloud-based model, the cloud is an integral part of the application, acting as the execution,

processing, and storage location (Mollah et al, 2017).

Mobile virtualization is the most advanced feature emerging in today's world, and its applications for

MDs are growing daily. The mobile user base continues to grow because it makes work easier and

faster, provides cutting-edge technology, and enables users to access all apps via the network from

anywhere in the world. Although MCC as a technology has a significant advantage in that it is

extremely versatile, allowing us to access data and share information from anywhere in the world

via the internet. It also offers cost-effectiveness, with usage and maintenance becoming relatively

low, as well as real-time data availability, with all user information available in real-time on our MD

when connected to the internet, from which we can update and share information.

For a variety of reasons (for example, mobility, communication, and portability), CC has long been

recognized as a viable alternative to MC (Al_Janabi & Hussein, 2019). The following additions

demonstrate how the cloud can be utilized to circumvent barriers in MC, emphasizing the benefits of

MCC.

Extending battery lifetime: Battery life is a major problem when it comes to MDs. Numerous

strategies have been proposed to improve CPU performance and to intelligently manage the disk

and display to reduce power consumption. However, many solutions require structural changes to

MDs or the inclusion of additional hardware, which adds to the cost and may not be practical for all

MDs. This is also important form the perspective of security protection of the MD. In the MCC

environment some of the security solution tasks required to protect the MDs can be offloaded to the

cloud while some of its tasks that are not battery demanding can reside on the device to have real-

time access to malicious activities that occur on the devices and offload the heavy security

computational tasks to the cloud for further processing whenever a malicious activity is detected.

These security tasks on the devices need to be running in the background and thus have high power

demands to prevent battery exhaustion attacks suffered by most MD user.

Improving data storage capacity and processing power: MDs' storage capacity is also a

constraint. MCC was created to enable mobile users to store and retrieve massive amounts of data

13

in the cloud using wireless networks. For instance, Amazon Simple Storage Service (Amazon S3)

provides file storage capabilities. Another example is image exchange, which makes extensive use

of cloud-based storage for mobile users. This is also important from the security perspective; as MD

user shave no control - whenever their data are offloaded there is no way they can verify the integrity

of their outsourced data. Although in recent times, users have developed trust based on the services

provided by CSPs.

Increased reliability: Storing data or running applications in the cloud is an effective technique to

increase reliability, as the data and apps are kept and backed up on a distributed network of

computers. This significantly reduces the likelihood of data and application loss on mobile devices.

Additionally, MCC may be used to create a comprehensive data security paradigm for service

providers and end-users alike. For instance, the cloud can be utilized to safeguard protected digital

content (e.g., videos, clips, and music) against exploitation and unauthorized distribution. However,

the security of user data and applications is still questionable whenever there is security breach in

the CSP area where there are possibilities of unauthorized distribution and exploitation.

Dynamic provisioning: Dynamic on-demand provisioning of resources on a fine-grained, self-

service basis enables service providers and mobile users to operate apps without reserving

resources in advance. This is also important from the perspective of security protection of the MD

by constantly monitoring apps activities and reporting to the CSP of possible intrusion from a

compromised MD node.

Scalability: Due to flexible resource provisioning, mobile apps may be deployed and scaled to meet

unforeseen user demands. Providers of services can simply add and extend applications and

services with little or no constraint on resource utilization. This is also important to the security of the

MCC environment to help with the investigation of security breaches (including digital forensics) that

occur, by identifying malicious nodes that are compromised in a distributed network. User activities

can be reviewed by analysing the resource usage of different apps and devices within a particular

period.

Multi-tenancy: Service providers (for example, network operators and data centre operators) can

pool resources and prices to support a diverse set of applications and a large number of customers.

The security impact of multi-tenancy on the user in the cloud environment includes data security,

data loss and data theft. Access can be mistakenly given to an unauthorised individual by the

database administrator. There are still security issues even though software and CC businesses

claim that client data is safer than ever on their servers.

Integration Ease: Multiple services from disparate sources can be readily integrated via the cloud

and the Internet to suit consumers' requests. This also important to protect the MD as security

14

vulnerabilities associated with different services integrated into the CC environment to suit user

demands can also result in security threats faced by users in this environment.

Numerous mobile applications have incorporated some of MCC's benefits, such as mobile

commerce, which is a business model for commerce conducted via mobile devices. Generally,

mobile commerce applications perform certain functions that demand mobility (e.g., mobile

transactions and payments, mobile messaging, and mobile ticketing). These apps confront a variety

of obstacles (e.g., limited network speed, high complexity of mobile device setups, and security),

which necessitate their integration into the MCC environment. Yang et al. (2010) presented a cloud-

based 3G e-commerce platform. This paradigm combines the benefits of 3G networks and CC to

boost the speed and security of data processing using PKI (public key infrastructure) (Dai & Zhou,

2010). To secure the privacy of the user's access to the outsourced data, the PKI mechanism

employs encryption-based access control and over-encryption.

Apart from the business and commercial implications of MCC across diverse applications, platforms,

international trade regulations, and transnational information and money flows, one of the most

significant fundamental disadvantages of MCC, as currently understood, is the entire area of safe

and trusted computing, which encompasses critical aspects of security, privacy, identity

management, audit, and digital forensics (Al_Janabi, 2020). While numerous modern scholars are

addressing a number of these subjects and difficulties, it is a daunting obstacle that must be

conquered by more advanced design and development of new frameworks, architectures, secure

open system protocols and processes that are globally standardized. Success in these areas can

result in massive dividends and payoffs across several technical verticals and horizontal enterprise

and commercial sectors in the MCC environment.

The last decade has seen numerous changes in our perception of computing and mobility. With the

advent of CC and MCC, computing is increasingly being viewed as the fifth utility, alongside critical

infrastructure utilities such as water, electricity, gas, and telecommunications, and it is already

providing a basic level of computing service that is considered necessary to meet the general

community's daily needs on a global scale and context. MCC is the most recent paradigm presented

to realize this vision through the effective fusion of MC and CC, which has proven to be a viable

solution for mobile computing for a variety of reasons (e.g., mobility, communication, portability, and

availability).

15

2.1.1 MOBILE CLOUD COMPUTING SERVICE MODELS

MCC's cloud services for its users are based on the following service models.

A. Mobile Network as a Service (MNaaS): In this service model, service providers provide

network infrastructure, allowing consumers to establish their networks, manage their traffic,

and connect to servers. For instance, consider the OpenStack Networking Service

(www.openstack.org).

B. Mobile Cloud Infrastructure as a Service (MIaaS): Providers of this service model provide

cloud infrastructure and storage to mobile users. iCloud (www.apple.com/icloud/) and Google

Drive (www.google.com/mobile/drive/) are two examples.

C. Mobile Data as a Service (MDaaS): In this service model, service providers provide

database-related services to enable mobile users to manage their data, conduct transactions,

and perform other data-related tasks. Oracle's mobile cloud data service

(www.oracle.com/cloud/daas.html) and CloudDB are two such examples (Lei et al., 2015).

D. Mobile App as a Service (MAppaaS): Users can access, use, and execute cloud-based

mobile applications via a wireless network from anywhere and at any time with this service

model. For instance, take a look at the Google Play Store (www.play.google.com/store/apps).

E. Mobile Multimedia as a Service (MMaaS): Users can access and manage multimedia

services such as watching movies or playing games via a wireless network equipped with

powerful hardware, in (Zhu et al. (2011), the authors present an MMaaS service model.

F. Mobile Community as a Service (MCaaS): In this service model, mobile users can create

and manage a mobile social network or community to provide social networking or community

services to other users. The following illustrates this type of service model (Kovachev et al.,

2010).

2.1.2 MOBILE CLOUD COMPUTING CHALLENGES

While MCC has several benefits for mobile users and CSPs, it also faces several challenges that

make it more complicated than traditional CC. The following section discusses the challenges

confronting MCC technology.

A. Limited Resources of Mobile Devices: Although various aspects of mobile devices have

improved, such as computational processing power, storage capacity, and battery life, there

are still some limitations compared to a personal computer. As a result, running resource-

intensive applications on mobile devices is inconvenient.

B. Heterogeneity: MCC is characterized by a high reliance on heterogeneous wireless

mediums, which creates a more challenging environment than conventional cloud computing.

This affects how wireless communications are managed, the quality of communications, the

response time of applications, the delivery of services, the mobility of mobile devices, and

http://www.play.google.com/store/apps

16

security. Additionally, the heterogeneous environment created by diverse infrastructures,

platforms, and application services creates interoperability and portability challenges in MCC.

C. Elasticity: MCC services, like cloud computing services, must be elastic and scalable. When

demand exceeds available resources, service providers must address the situation. The

unavailability of resources and service interruptions create a problem for cloud services

provided to privileged users.

D. Application Services Issues: Due to MDs' limited resources and high energy consumption,

specific data and computationally intensive applications cannot be deployed on them. As a

result, to utilize cloud computing services on mobile devices, most computational processing

must occur in the cloud. In contrast, a small amount of computational processing occurs on

mobile devices. In this case, mobile users will experience delays in processing and service

provision.

E. Security, Privacy and Trust Challenges: The security, privacy, and trust issues that arise

in an MCC environment are more volatile than in a traditional cloud computing environment.

Additionally, the lack of computational processing capability necessary to execute complex

algorithms makes it inconvenient to run computationally intensive anti-malware applications

on MDs and personal computers.

2.2 SECURITY AND PRIVACY ISSUES IN MOBILE CLOUD COMPUTING

MCC uses various established and emerging technologies, including partitioning, offloading,

virtualization, outsourced storage, and mobile-cloud-based applications. This section discusses

security and privacy issues associated with the MCC environment.

2.2.1 DATA SECURITY ISSUES

The significant data security challenge arises from mobile users' data being stored and processed

in clouds located at service providers' locations. Data loss, data breach, data recovery, data locality,

and data privacy are all examples of data-related challenges. The loss of data and data breach

violates two security requirements: integrity and confidentiality. Here, data loss refers to the state of

users' data damaged or skipped due to physical means used during processing, transmission, or

storage. In a data breach situation, users' data is stolen or copied by an unauthorized user. These

two types of attacks can be carried out by both malicious insiders in the cloud environment or

malicious applications that resides on the user device.

Another issue to consider is data recovery. This is the process of recovering data from mobile users'

data that has been damaged, failed, corrupted, or lost, or from physical storage devices. However,

because users' data is stored on the service providers' premises, users require knowledge of the

location or storage of their data, and thus data locality is a challenge. Additionally, users' data must

be stored separately from other data. If one user's data is mixed, combined, or confounded with the

17

data of other users, it becomes significantly more vulnerable. When data is outsourced to cloud

servers to increase storage capacity, mobile users simultaneously lose physical control of their data.

Thus, in a cloud storage scenario, data accuracy becomes a concern for mobile users. Although

cloud infrastructures are far more reliable and robust than mobile devices, they still face many threats

to data integrity from both internal and external sources.

2.2.2 PARTITIONING AND OFFLOADING SECURITY ISSUES

Access to the cloud via wireless networks is required during the offloading process. Due to mobile

users' lack of control and access over their offloading processes, there is a risk of unauthorised

access to offloaded content. Additionally, because offloaded content is executed on cloud or edge

servers rather than mobile devices, offloaded content's integrity and confidentiality are possibly

violated. The integrity issue arises because, following the execution of offloaded content, mobile

devices cannot easily verify the results' correctness if the result is incorrect or altered. Other

difficulties, however, include attacks on availability and malicious content threats. Jamming attacks

between data/application and mobile device during partitioning and between mobile device and cloud

during offloading can jeopardise cloud service availability. Additionally, the presence of malicious

content between the partitioning and offloading stages can jeopardise the confidentiality of users'

data and violate mobile users' privacy.

2.2.3 VIRTUALIZATION SECURITY ISSUES

Cloud service providers in MCC provide cloud services to mobile users via virtualization techniques.

At the cloud end, an image of the mobile device's virtual machine (VM) is pre-installed, and the

mobile device's tasks are offloaded to the VM for processing. This virtual machine is also referred to

as a thin VM or a phone clone. The primary purpose of virtualization is to enable multiple virtual

machines (VMs) on a single physical machine or mobile device while keeping the VMs isolated from

one another. An additional layer known as a hypervisor or VM Monitor, or Manager (VMM) is software

that enables the creation, operation, and control of virtual machines (VMs) and their associated

virtual subsystems. However, when applied to MCC, virtualization techniques introduce several

security challenges (Sgandurra and Lupu, 2016), including security challenges within VMs,

unauthorized access, VM-to-VM attack, communication security within the virtualized environment,

security challenges within the Hypervisors, and data confidentiality.

18

2.2.4 MOBILE CLOUD APPLICATIONS SECURITY ISSUES

As the number of MDs used in the MCC environment grows rapidly, developers are creating a wide

range of mobile apps for these devices. Most of these apps offer cloud-based services with rich user

experiences. With the help of these mobile apps, MCC users can access rich cloud-based services

and experiences on even low-resource MDs. These apps must scale quickly to meet both the user

requirements and device capabilities (Mollah et al, 2017).

Attacks on cloud-based mobile applications can compromise the integrity and confidentiality of both

data and applications through various strategies, including the integration of malware (Pokharel et

al., 2017; Prokhorenko et al., 2016; Peng et al., 2016; Quick and Choo, 2016). Malware, viruses,

worms, trojans, rootkits, and botnets (Arabo and Pranggono, 2013) are malicious, contrary, intrusive,

and obstructive applications or programmed codes. This malware is designed to run maliciously on

mobile devices or to attach to applications without the user's consent. As a result, mobile application

functionality can be altered. An attacker will identify a target application, inject malicious code into it,

and then republish it. A further discussion of the security solutions for mobile cloud application and

data in the context of this study can be found in sections 2.5.1 and 2.8.

2.2.5 MOBILE DEVICE SECURITY ISSUES

Physical threats to mobile devices exist. If mobile devices are misplaced, lost, or stolen, data or

applications may be lost, leaked, accessed, or unintentionally disclosed to unauthorised users

(Milligan and Hutcheson, 2008). Although many mobile users have password or pattern-based lock

features, many do not use them. Additionally, the identity module card within the mobile device can

be removed and accessed by unauthorised individuals. Additionally, most MD lack a defence

mechanism against threats. The attackers can attack by employing a variety of availability attack

techniques, including sending a high volume of malicious traffic and sending large messages to

target mobile devices to render them inactive or reduce their capability. Liu et al. (2009) investigate

and identify several security mechanisms and critical flaws in security models for intelligent mobile

devices.

In addition, the authors demonstrate how to launch a distributed denial-of-service attack by exploiting

the vulnerabilities. However, a battery power exhaustion attack is another type of availability attack

in which the mobile device's battery power is rapidly depleted following the attack. This attack is

unique to mobile devices because it exploits wireless network vulnerabilities, and mobile users are

unaware of this type of attack. Racic et al. (2006) discusses this type of attack. They demonstrate

here that this attack causes a mobile device's battery to drain up to 22 times faster than it usually

does, rendering the device completely useless within a short period. Due to the increasing popularity

of mobile devices and applications, malware authors and attackers focus their efforts here. As a

result, malware poses a significant security risk to mobile users' privacy, applications, and data.

19

Additionally, the functionalities of contemporary mobile platforms are pretty similar to those of

personal computers. However, they include additional features, and these platforms for mobile

devices support a wide variety of applications.

As a result, to maintain the confidentiality and integrity of these applications, it is necessary to secure

the mobile platforms. Additionally, these mobile platforms are not malware-free. Typically, attackers

gain root permissions on mobile devices and gain control of the device, after which they can directly

affect the computational integrity of mobile platforms and applications. In mobile devices, three types

of storage are available: on-device storage, plugged-in storage, and identity module storage.

Generally, these storages are used to store users' data, applications, and other types of data.

However, if a mobile user utilises cloud services, the user's data and applications are replicated in

cloud storage. Thus, if a mobile device is stolen or lost, it becomes critical because attackers can

access both the mobile device and the cloud.

2.2.6 PRIVACY ISSUES

Privacy is a significant issue because confidential data or applications of mobile users are processed

and transferred from mobile devices to heterogeneous distributed cloud servers while utilising

various cloud services. These servers are in various locations and are solely owned and maintained

by the service providers. Because users cannot physically justify their data storage, data privacy and

protection issues are left to service providers, and users are not held accountable for privacy

breaches. Cloud storage and processing in multiple locations create privacy concerns. Service

providers' cloud servers are in various regions and countries. For example, Google's cloud servers

are spread globally, with seven locations in the Americas, two in Asia, and three in Europe.

Additionally, it is critical for users to obtain information about the cloud hosting location, as laws vary

by country. Numerous mobile applications may be unsafe due to their hideous functions, the

unintentional collection of users' personal information such as hobbies and locations, and the

potential for illegal distribution. Unwanted advertising emails, also known as junk emails, can infringe

on users' privacy.

Context awareness, enabled by sensors on mobile devices, is one of the primary characteristics that

differentiate mobile applications from personal computers. The context informs service providers by

providing context for users, allowing service providers to tailor their offerings to their specific needs.

These location-aware applications and services raise concerns about mobile device privacy. These

can be user-initiated or service provider-initiated and require the user's location to provide location-

based services. Additionally, many applications require and collect users' location data, which they

can use to target clients directly based on their locations. As a result, location-based services present

privacy concerns due to collecting, storing, and processing user data.

20

2.3 MOBILE CLOUD COMPUTING SECURITY VULNERABILITIES

The NIST Security Glossary defines vulnerabilities as "weaknesses in an information system, system

security procedures, internal controls, or implementation that could be exploited or triggered by a

threat source." (Kissel,2011). Grobauer et al. (2010) demonstrated how flaws in enabling

technologies lead to vulnerabilities in CC architectural components. Numerous researchers have

researched the vulnerabilities in CC architecture components. For example, Fernandes et al. (2014)

detailed the threats, vulnerabilities, and attacks against cloud infrastructure in their work. Hashizume

et al. (2013) discussed various cloud system vulnerabilities and proposed associated

countermeasures. The following subsections discuss some security vulnerabilities in the CC

environment that are also present in the MCC environment.

2.3.1 VULNERABILITIES IN APPLICATION AND INTERFACE LAYER

This layer serves as the gateway to a cloud provider's services, typically accessed via the Internet.

An MCC user typically accesses the cloud services via a web browser or mobile application on their

MD. Therefore, this layer is as vulnerable as web technologies' flaws and weaknesses and security

issues in the MD environment, such as malicious apps installed on the user device and the Internet

(Rittinghouse & Ransome, 2017; Jensen et al., 2009).

Apart from confidentiality and privacy, one of the fundamental security requirements that this layer

must meet is cloud user authentication and authorization. The Open Web Application Security

Project's (OWASP) list of the ten most serious web application security threats also applies to the

cloud computing environment (OWASP,2021). These include Broken Access Control, Cryptographic

Failures, Injection, Insecure Design, Security Misconfiguration, Vulnerable and Outdated

Components, Identification and Authentication Failures, Software and Data Integrity Failures,

Security Logging and Monitoring Failures, and Server-Side Request Forgery. Due to the unique

characteristics of CC, the conventional approach to addressing these vulnerabilities will be

insufficient. A novel approach to addressing vulnerabilities associated with web technologies will

need to be adopted. As PaaS and IaaS services require management interfaces and applications

for users accessed via web services and interfaces, these management interfaces also have the

same level of vulnerability as SaaS applications (Grobauer et al., 2010).

Web services and interface vulnerabilities can result in data leakage and unauthorised access to

resources. Grobauer et al. (2010) identified cross-site scripting, command injection, and SQL

injection as mechanisms for manipulating service requests to exploit the vulnerability in web services

interfaces. Additionally, they stated that a malicious agent is likely to steal the credentials of a web

service requester due to a faulty implementation of the session handler, which results in session

hijacking and session riding.

21

Access to read and modify web browser components during transactions between client applications

of a cloud user and the cloud provider's web application server results in client-side data

manipulation vulnerabilities. When attacks are launched against this class of vulnerabilities,

information confidentiality and integrity are jeopardised. The injection is ranked as the top three

security risk in OWASP's Top 10 Application Security Risks - 2021, indicating that data manipulation

vulnerabilities at the web client are the primary weakness in providing a secure CC and MCC

environment.

The most common method of exploiting the injection vulnerability is SQL injection, which is

accomplished by injecting a valid parsing string with malicious intent into the web client's original

legitimate SQL query request to the web application server via the provided application interface.

The HTTP hidden fields, which are typically used to store a web user's login information via web

forms, are another source of data manipulation vulnerabilities, as attackers can steal user credentials

via a watering hole attack (falling for a duplicate or fake, fraudulent website). The growing popularity

of social networking sites exposes the user's browser to self-installing malware. It is a significant

source of data manipulation vulnerabilities for web browsers due to the possibility of exploiting user

credentials entered by users.

The cloud's on-demand nature and multi-tenancy make identity management, authentication, and

authorization processes vulnerable. Identity management (IDM) is a broad term that refers to the

process of identifying entities, including cloud objects, and enforcing policies that restrict access to

resources. Authentication vulnerabilities occur due to insecure user behaviours such as using weak

passwords, reusing credentials, relying on one-factor authentication, and having a poor credential

life cycle management process. Inadequate authorization checks and a lack of control over user

privileges result in authorization vulnerabilities. Fernandes et al. (2014) noted in their survey that

even graphical, biometric, and three-dimensional passwords have limitations. Numerous studies

have identified flaws in authentication and authorization protocols. OpenID Connect, like OAuth2.0,

is widely used by web applications as a single sign-on (SISO) mechanism for end-user

authentication.

2.3.2 VULNERABILITIES IN PLATFORM LAYER

The platform layer provides development and deployment tools, middleware, and operating systems

to enable PaaS offerings to cloud users to develop and deploy their custom applications. The

vulnerabilities determine the layer's security level in custom software and the operating system. Real-

time software applications must pass functional and security checks before they are used to enhance

security of this layer (Fernandes et al., 2014).

The quality of the software is highly dependent on the software development framework used by

programmers throughout the software development lifecycle. Frequently, fundamental design and

22

development practices are undermined in the name of project time constraints. Vulnerabilities occur

due to insufficient and incomplete verification and validation of the software deployed at the platform

layer. Often, security concerns are overlooked or ignored during the software development life cycle

(Rittinghouse & Ransome,2009).

Security issues in a software application are typically caused by vulnerable programming codes,

which explains why exploitation has increased. Programmers who violate the best coding practices

and guidelines introduce vulnerabilities into their code (Rittinghouse & Ransome,2009). Rodero-

Merino et al. (2012) raised security concerns about the Java and.NET platform development

environments in instances of unsafe thread termination and violation of memory zone isolation.

When untrusted third-party software, primarily open-source code, is deployed on a cloud platform,

the platform becomes vulnerable to various security attacks (Fernandes et al.,2014). The cloud

application's back-end server code is susceptible to malicious masked code injection (such as SQL

injection) via a request from the front-end, such as a web browser.

Through system calls, operating systems installed in a virtual machine facilitate communication

between applications and hardware. As a result, it has access to all data within a virtual machine.

As a result, any malicious services that run in the background could result in data leakage. A

malicious system administrator can bring the entire operating system software to a halt.

Inappropriate resource allocation and monitoring have a detrimental effect on the performance and

availability of the system. Inadequate memory isolation can result in data leakage. Incomplete and

insufficient monitoring of the operating system results in unnoticed malicious actions (Babu & Bhanu,

2015).

2.3.3 VULNERABILITIES IN INFRASTRUCTURE LAYER

The communication within a cloud network can be classified into external and internal (Ali et

al.,2015). External communication occurs outside of the cloud, i.e. between cloud components and

user, via the Internet. Internal communication occurs between cloud components and virtual

machines via virtual network communication channels. Thus, the cloud network infrastructure is

inherently vulnerable to protocols and technologies associated with the Internet and virtual networks

(Fernandes et al., 2014).

These are security flaws inherent in the network communication protocol and technology used to

access cloud services. Protocols based on the TCP/IP stack, such as DHCP, IP, and DNS, are

vulnerable to IP spoofing, DNS cache poisoning, and DNS spoofing and may result in cross-tenant

attacks (Almorsy et al.,2016). When a malicious website is visited, an attacker may alter the DNS

settings on the user's broadband network router. Inadequate implementation of session

management techniques to deal with HTTP statelessness may result in session riding or hijacking

(Grobauer et al., 2010). When HTTPS and HTTP are used in conjunction with cloud services,

23

communication between web clients and cloud services becomes insecure (Prandini et al., 2010).

According to Jensen et al. (2009), flooding attacks pose a real threat to the cloud, resulting in direct

DoS, indirect DoS, and accountability issues.

Online storage services are fascinating due to their large storage capacity, high availability, and

stable performance. At the same time, it introduces security risks due to a lack of transparency and

direct control over data stored in a cloud environment (Aguiar et al.,2014). Additionally, cloud-specific

characteristics such as virtualization and multi-tenancy create inherent security challenges for cloud-

based data storage (Ali et al., 2015). Chen and Zhao (2012) discussed various vulnerabilities related

to the data lifecycle in a cloud environment. Singh et al. (2016) discussed storage security concerns

regarding cryptography, data persistence, data sanitization, data leakage, malware snooping, and

availability.

Data storage is vulnerable to security attacks due to poor key management, faulty, insecure, and

obsolete encryption algorithms (Grobauer et al.,2010). Modi et al. (2013) survey identifies a poor

encryption technique as the primary risk. Data stored in a cloud environment is perpetually

vulnerable to tampering by outsiders and insiders (Sood,2012). Due to the shared environment,

compromised keys, and application vulnerabilities, data stored in cloud storage (data-in-rest) is

vulnerable to unauthorised access (Modi et al.,2013).

The CC environment is generally distributed across multiple geographical locations to maximize

cost-effectiveness, scalability, redundancy, and disaster recovery. Local legal and regulatory policies

impact the security and privacy of user data. Cloud users are concerned about the physical location

vulnerability of the data centre that houses the storage and its backup. Unauthorized access and

tampering are possible with a backup storage. While the cloud's resource pooling and elasticity

characteristics enable dynamic resource allocation and sharing, they also present a unique security

challenge regarding data recovery vulnerabilities exploited by the newly allocated user. Cloud

storage is not immune to backup data recovery (Modi et al.,2013).

2.4 MOBILE CLOUD COMPUTING SECURITY REQUIREMENTS AND THREATS

Solving security issues in MCC requires identifying the security requirements and associated threats

resulting from vulnerabilities in the MCC environment that can lead to possible attacks on its

resources. The NIST in 2011 stated that confidentiality, integrity, and availability are the basic

security requirements of CC, just like in any other information security system (Liu et al., 2011). CSA,

one of the top organizations providing security guidance to the CC community, adds another four

security requirements (authentication, authorization, accountability, and privacy) to the three basic

ones as shown in Table 2.1 (Mogull et al.,2017). These seven basic requirements are also applicable

to the MCC environment.

24

The NIST security glossary defines a threat as ‘‘Any circumstance or event with the potential to

adversely impact organizational operations (including mission, functions, image, or reputation),

organizational assets, individuals, other organizations, or the Nation through an information system

via unauthorized access, destruction, disclosure, modification of information, and denial of

service’’(Kissel, 2011). CSA has adopted these definitions in their threat analysis concerning the

cloud ecosystem and the proposed security solution guideline reported between 2010 and 2019.

Taking account of Kumar & Goyal (2019), their study uses “The Treacherous Twelve top threat in

cloud security” as a baseline to identify vulnerabilities in the cloud architectural framework. In this

study, the egregious eleven top threats in cloud security reported by the CSA in 2019 is adopted to

analyze existing data security frameworks in the review of related works. The CC security threat

analysis reported by the CSA between 2010 to 2019 is presented in Table 2.2. The description of

the egregious eleven cloud security threats used to investigate existing data security frameworks in

MCC is shown in Table 2.3.

Table 2.1. The Seven Basic MCC Security Requirements

ID Security Requirement Description

R1 Confidentiality Sensitive data of users should be kept secret and not
accessible by an unauthorized user.

R2 Integrity Protection of MCC user data from modification or
deletion without authorization.

R3 Availability MCC user data and services should be available for
access at any time whenever the user demands.

R4 Authentication Every user in the MCC environment needs to have their
identity verified before accessing cloud services.

R5 Authorization Access control rights to each MCC resource must be
properly defined for each user.

R6 Accountability CSP must establish all-action administered in its cloud
environment to a single entity either to the cloud user,
the process, or the mobile device must be done in a
legitimate fashion.

R7 Privacy CSP must ensure that MCC user data are not used for
any purpose without the authorization of the data owner.

25

Table 2.2. The evolution of the CC security threats

Rank 2010 2013 2016 2019

1 Abuse of Cloud
Services

Data breaches Data breaches Data breaches

2 Insecure APIs Data loss Weak identity,
credential, and Access
management

Misconfiguration
and Inadequate Change
Control

3 Malicious
insiders

Account
hijacking

Insecure APIs Lack of Cloud
Security Architecture and
Strategy

4 Shared
Technology
vulnerabilities

Insecure APIs System and Application
Vulnerabilities

Insufficient
Identity, Credential,
Access
and Key Management

5 Data
loss/Leakage

Denial of
Service

Account hijacking Account hijacking

6 Account,
Service &
Traffic hijacking

Malicious
Insiders

Malicious Insiders Malicious Insiders

7 Unknown Risk
Profile

Abuse of Cloud
Services

Advanced Persistent
Threats (APTs)

Insecure APIs

8 Insufficient Due
Diligence

Data loss Weak Control Plane

9
Shared
Technology
Issues

Insufficient Due
Diligence

Metastructure and
Applistructure Failures

10 Abuse of Cloud
Services

Limited Cloud Usage
Visibility

11 Denial of Service Abuse of Cloud Services

12 Shared Technology
Issues

26

Table 2.3. The Egregious eleven CC Threats

ID Threat Name Threat Description

T1 Data breaches This is an incident that results in a release, access, stolen or use
of protected sensitive information by an unauthorized user.

T2 Misconfiguration
and Inadequate
Change Control

The absence of effective change control in the CC environment
leads to a misconfiguration of cloud resources which makes
them vulnerable to malicious activities and data breach.

T3 Lack of Cloud
Security
Architecture and
Strategy

Inadequate understanding of shared security responsibilities
during the migration of IT services to the public cloud without an
effective security architecture to withstand cyber-attacks.

T4 Insufficient
Identity,
Credential, Access
and Key
Management

This consist of tools and policy that allow the organization to
manage, monitor and secure resources within their
infrastructure. Incident usually occurs if either party (CSP and
cloud user) comprise their security as a result of weak credential
protection, lack of scalable identity and credential access
management, failure to use multi-factor authentication and
strong password policy.

T5 Account hijacking Loss of device or unauthorized access to device credentials can
be used to hijack user account, which leads to illegal access to
cloud resources of the mobile user.

T6 Malicious Insiders An authorized user of the cloud services can intentionally lunch
attacks against the cloud resources through legitimate access to
these resources.

T7 Insecure APIs APIs allows third-party agents to interact with the cloud services;
vulnerabilities in these APIs expose these resources to the
external world and malicious attacker for possible attacks.

T8 Weak Control
Plane

This Incident results in data corruption, unavailability, or leakage
due to the weak nature of the control plane for data duplication,
migration strategy and storage, especially when migrating to a
multi-cloud infrastructure. This weak nature of the control plane
makes the person in charge not have full control of data
infrastructure logic, security, and verification.

T9 Metastructure and
Applistructure
Failures

Poor APIs authentication designed by the CSP enables
malicious attackers an opportunity to comprise the security of
the CC resources. This is because API calls disclose sensitive
information, which is incorporated in the Metastructure, which is
a line of demarcation between the CSP and the cloud user.

T10 Limited Cloud
Usage Visibility

This is a type of threat that occurs when an organization cannot
analyze the existing cloud-based application used within its
organization to determine if the application is safe or not. Such
an employee using an application without the permission of the
IT security personnel can compromise organization CC services
which can result in credential theft, Structured Query Language
(SQL) Injection, domain name system attacks e.t.c

T11 Abuse of Cloud
Services

This kind of threat to the CC environment enables an attacker to
exploit vulnerabilities in the cloud deployment strategy such as
poor security policy and lunch attacks such as email spamming,
phishing campaigns, and denial of services attacks against the
cloud resources.

27

2.4.1 MCC THREAT TREND ANALYSIS

There has been a great change in the CC threat trends in recent times, as shown in Table 2.2 and

Table 2.3. The recent report, as published by CSA in 2019, took a new direction, as new threats

emerge (i.e., Misconfiguration and Inadequate Change Control, Lack of Cloud Security Architecture

and Strategy, Weak Control Plane, Metastructure and Applistructure Failures and Limited Cloud

Usage Visibility). There is a shift from a focus on traditional information security threat focus to a

focus on CC Infrastructure configuration and authentication issues, as shown in Figure 2.1.

Figure 2.1 CC Threat Ranking Change Spectrum

Figure 2.1 shows the ranking of different threats from 2010 to 2019. In 2013, three new threats were

added while the unknown profile risk was removed. Similarly, in 2016 three new threats: Weak

Identity, Credential and Access Management, System and Application Vulnerabilities and Advanced

Persistent Threats (APTs) were reported. The recent report released by CSA in 2019 show a new

ranking of Abuse of Cloud Services: it was placed at the top of the list in 2010 but was ranked 11th

in 2019. These changes also indicate that, despite the wide acceptance of CC in recent years, the

CC infrastructure credibility and the trust in its use have been questioned. For example, data

breaches have been ranked as the topmost threat in three consecutive times (i.e., 2013, 2016 and

2019).

2.4.2 THE EGREGIOUS CC THREAT ANALYSIS MAPPING USING THE STRIDE MODEL

Scandariato et al. (2015) describes the threat modelling tool (STRIDE) as reported by Microsoft in

2009. The STRIDE model reported by the study conducted by Scandariato et al. in 2015 evaluated

an Information System's security weakness using a descriptive approach. Similarly, this study

adopted the STRIDE threat modelling method to investigate the existing data security frameworks

in the MCC environment in the subsequent section of the literature review and presented the threat

analysis report using the STRIDE model reported by the CSA in 2019, as shown in Table 2.4. The

0
2
4
6
8

10
12
14

2010 2013 2016 2019

28

STRIDE model allows security experts to identify and develop solutions to CC and MCC security

issues. The STRIDE model includes six threat categories that are briefly described as follows:

A. Spoofing Identity (S): This threat category describes the use of stolen credentials to gain

unauthorized access to an information system or cloud resources. This threat category

affects the Authentication (R4) basic security requirements in CC and MCC environments.

B. Tampering with Data(T): This threat category describes the malicious modification of data

during transmission and at rest by an unauthorized user. This specific threat category affects

the integrity of user data(R2) in both CC and MCC environments.

C. Repudiation (R): This threat category describes a denial of malicious activities carried out by

the user without any means of verifying the actual user that carried out such illegal activities

in both the CC and MCC environment. This threat category affects the accountabilities(R6)

basic security requirements of this environment.

D. Information Disclosure(I): This threat category describes the exposure of user information or

access to user store data by an unauthorized user. This threat category affects both

confidentiality(R1) and privacy(R7) of user data in CC and MCC environments.

E. Denial of Service (D): This threat category affects the availability (R3) of cloud resources to

the legitimate user by denying the user access to critical cloud resources at the time of their

request.

F. Elevation of Privilege(E): This threat category grants excessive privilege gain by the user

without authorization. This threat category affects the Authorization (R5) basic security

requirements of both the CC and MCC environments.

Table 2.4: STRIDE Threat Analysis using the Egregious CC Threats

Threat ID S T R I D E

T1 ✓

T2 ✓ ✓ ✓ ✓

T3 ✓ ✓ ✓ ✓ ✓ ✓

T4 ✓ ✓ ✓ ✓ ✓ ✓

T5 ✓ ✓ ✓ ✓ ✓ ✓

T6 ✓ ✓ ✓ ✓

T7 ✓ ✓ ✓ ✓

T8 ✓ ✓ ✓

T9 ✓ ✓ ✓ ✓ ✓ ✓

T10 ✓ ✓ ✓ ✓ ✓ ✓

T11 ✓ ✓ ✓ ✓ ✓ ✓

✓ Indicates that the threat affects the threat category of the STRIDE model

 Indicates that the threat does not affects the threat category of the STRIDE
model

29

2.5 ANALYSIS OF CURRENT MCC DATA SECURITY FRAMEWORKS

To address the main research question and its sub research questions, following the specific

research objectives defined in chapter one, section 1.3. This section of the thesis addresses the first

research objectives by analysing data security frameworks proposed and used in recent MCC

security research. The search for relevant data security frameworks was conducted across four

electronic databases (IEEE, Science Direct, ACM, and Springer) from 2010 to 2021. To investigate

the current MCC data security solution scope in-depth, only relevant security frameworks that

address core data security issues in the MCC domain were selected. This study selected and

analysed thirty-five (35) peer-reviewed articles published in conferences and journals between 2010

and 2021 to address the first research objective.

The selected MCC data security framework presented in Table 2.5 was analyse using the following

predefined set of dimensions:

Domain (D1): This dimension describes the proposed security framework's architectural

layers (MCUL, MNCL, and MCSPL).

Threats (D2): This dimension describes the threats that the proposed framework addresses

using the eleven threats (T1 to T11) presented in Table 2.3.

Security Requirements (D3): This dimension describes the security requirements that the

proposed framework addresses, as presented in Table 2.1.

Security Approach (D4): This dimension describes the proposed framework's techniques to

protect user data (such as encryption, biometrics, access control, activity monitoring, and

intrusion detection).

Cloud Level Trust (D5): This dimension identifies the MCC components that are trusted by

the framework. This study assumes that using a trusted third party within a proposed

framework shows that the cloud infrastructure is not trustworthy. Similarly, if there is no third-

party component in the proposed framework, the cloud infrastructure is assumed to be

trusted.

Comprehensiveness (D6): This dimension is used to measure the number of threats a

framework addresses. A framework is considered more comprehensive in this study if it

addresses five or more threats; otherwise, it is less comprehensive.

30

Table 2.5: Analysis Summary of the Selected Data Security Frameworks

ID Source D1 D2 D3 D4 D5 D6

F1 Itani et al,
2010

MCUL/ MCSPL T1 R2
DE,DV

NT

F2 Huang et al. ,
2010

MCUL/
MCSPL/MNCL

T1-T4,T11, R1,R4,R5
TM

T

F3 Jia et al.,
2011

MCUL/ MCSPL T1-T2,T4 R1,R4,R5,R6,R7
DE,DV

T

F4 Huang et
al.,2011

MCUL/
MCSPL/MNCL

T1,T2,T4 R1,R4,R7
TM

NT

F5 Chen &
Wang, 2011

MCUL/ MCSPL T1,T4,T8 R1,R3,R4,R7
LBS

NT

F6 Lin,2011 MCUL/MCSPL T1,T3,T4,T8,T10 R1,R3,R4,R5,R7 DM NT *

F7 Lu et al., 2012 MCUL/ MCSPL T1,T4 R1 DE NT

F8 Omri et al.,
2013

MCUL/ MCSPL T1,T4-T5 R1,R4,R5,R7
BM,DE

NT

F9 Khan et al.,
2013

MCUL/ MCSPL T1,T4 R1,R4,R5,R7
TM,DE

T

F10 Zhang et al.,
2013

MCUL/ MCSPL T1,T5,T8 R1,R3,R7
TM

NT

F11 Khan et al.,
2014

MCUL/ MCSPL T1,T4 R1,R4,R5
DE

T

F12 Dey et al.,
2015

MCUL/ MNCL T1,T3-T4,T7-
T9,T11

R1,R3,R4,R7
IDS,DE

T *

F13 Shi et al.,
2015

MCUL T1,T3-T8,10,T11 R1,R3,R4,R7
IDS,DE

T *

F14 Goyal &
Krishna, 2015

MCUL/ MCSPL T1,T4,T5, R1,R4,R5,R7
DE

T

F15 Shiny et al.,
2015

MCUL/ MCSPL T1,T4,T5 R1,R4
DE

T

F16 Benabied et
al.,2015

MCUL/ MCSPL T1,T3-T6,T8,T11 R1,R3,R4,R7
TM

NT *

F17 Thumar &
Vekariya,
2016

MCUL/ MCSPL T1 R1,R7
DE

T

F18 Zhang &
Wen, 2016

MCUL/ MCSPL T1,T5,T11 R1,R4,R7
DE

NT

F19 Cushman et
al., 2017

MCUL T1,T7,T9 R1,R7
DV

T

F20 Lin et al.
,2017

MCUL/ MCSPL T1,T7,T9 R1,R2,R7
DE

NT

F21 Arvind &
Manimegalai,
2017

MCUL/ MCSPL T1 R1,R2,R7
DE

NT

F22 Khatri & Vadi,
2017

MCUL/ MCSPL T1,T4,T5 R1,R4,R7
BM

NT

F23 Sajjad et al.,
2017

MCUL/ MCSPL T1 R1,R7
DE,ST

NT

F24 Li et al., 2017 MCUL/ MCSPL T1,T4,T5 R1,R4,R7 DE NT

F25 Chean et al ,
2018

MCUL/ MCSPL T1,T4,T5 R1,R4,R7
DE,TM

NT

F26 Nguyen et al.,
2018

MCUL/ MCSPL T1,T3,T5,T7-T9 R1,R3,R7
IDS

T *

F27 Sukumaran &
Mohammed ,
2021

MCUL/ MCSPL T1,T4,T5 R1,R2,R4,R7
DE

T

31

ID Source D1 D2 D3 D4 D5 D6

F28 Dey et al. ,
2019

MCUL/ MCSPL T1,T3,T5,T7-
T9,T11

R1,R4,R7
IDS

NT *

F29 Agrawal &
Tapaswi ,
2019

MCUL/ MCSPL T1,T4,T5 R1,R4,R7
DE

T

F30 Nguyen et al.,
2019

MCUL/ MCSPL T1,T4,T5,T8,T11 R1,R2,R4,R5,R7
BC

T *

F31 Khedr et al.,
2020

MCSPL T1,T4,T5 R1,R4
DV

T

F32 Irshad et al.,
2020

MCSPL T1,T4,T5,T6 R1,R3,R4
DE,DV

T

F33 Derhab et al.,
2020

MCUL/ MCSPL T1,T2,T4,T5,T11 R1,R4,R7
DV

T *

F34 Li et al.,2020 MCSPL T1,T4,T5 R1,R4,R7 DE NT

F35 Shabbir et
al.,2021

MCSPL T1,T4,T5,T6 R1,R4,R7
DE

T

Note: DE- data encryption; DV – data verification, Block Chain, BM – Biometric; IDS – intrusion
detection system, TM- trust management, DM- data mining, LBS-location based services,
ST-steganography (*) - “more comprehensive” (T) –“Trusted” (NT) –“Not Trusted”

2.5.1 REVIEW OF THE MCC DATA SECURITY FRAMEWORKS

The description of each of the MCC data security frameworks used for the analysis in this review are

discuss as follow:

The framework proposed in F1 uses an incremental message authentication code to guarantee data

storage integrity in the MCC environment. The framework protects MCC user data while subduing

the device's energy consumption level and efficiently supporting dynamic data operations using

trusted computing. The model proposed in F1 comprises three entities: 1) mobile client, 2) cloud

service provider, and 3) trusted third party. The model allows the offloading of the verification job to

a coprocessor on the cloud end to reduce the processing overhead from the MD layer. The integrity

of mobile data is achieved by generating an incremental authentication code using a shared key

before uploading data to the cloud. The code is stored locally on the MD, and the data is offloaded

to the cloud. For data processing operations to be carried out on the offloaded data or files, there is

a need to perform an integrity check for the file using the message authentication code.

The proposed framework (MobiCloud) in F2 addresses trust management, risk, and secure routing

in ad hoc networks. This framework converts traditional mobile ad hoc networks into a new service-

oriented communication structure in which each MD is handled as a service node (SN). The device

produces different copies of extended semi-shadow images (ESSIs) in the cloud, which provide a

solution to an MD's communication and computation requirements. Data received from the MD

requires users to trust the service provider of the cloud infrastructure for the security of the data.

The authors in F3 proposed a secure data service mechanism (SDSM) that gives MCC users the

tool to enjoy secure data outsourcing in a trusted mode. This framework allows users to benefit from

32

minimized overheads associated with security management in the MCC environment. The

framework (F3) comprises two models, namely the network and security models. The network model

protects data leakage from a third party because the data owner uploads encrypted files on the cloud

server for use. The data owner must provide authorization for other cloud users, such as data

sharers, to access the files of the data owner. The authorization permission granted by the data

owner allows the data sharer to decrypt the specific files in the MCC environment. The security model

employs a proxy re-encryption scheme and a bi-linear mapping of an identity-based encryption

model to protect data from malicious sharers in the data sharing process in the cloud environment.

The framework in F3 also addresses the collusion attack of malicious data sharers that might affect

the secrecy of the data owner's secret key. This framework's security model was used to realize

strong data access control, low overhead processing, and flexibility to operate in a highly scalable

environment.

The authors in F4 address the privacy and security issues of MobiCloud by proposing a framework

for data processing for mobile cloud users using trust management, multi-tenant secure data

management, and the ESSI processing model. The framework isolates private data using a trust

management approach. The framework consists of three components: 1) the cloud mobile and

sensing domain, 2) the cloud as the trusted domain, and 3) the cloud public service and storage

domain. The Framework (F4) also supports the virtualization of each mobile device in a specific

application domain. Their virtualization techniques in this framework address a mobile device's

communication and computation issues and help improve security and privacy protections. The

FocusDrive project was designed as a prototype to demonstrate the security and privacy protection

techniques as proposed in their framework(F4).

The proposed security framework in F5 enhances the privacy and authentication of mobile device

users using location-based services in the cloud environment. The framework (F5) uses distributed

storage and international mobile subscriber identity to improve the security of user data. The result

evaluation of this framework shows that the network coding scheme has improved performance.

This framework (F5) enhances the security issues caused by multiple tenants and multiple replicas

of mobile user data in the cloud environment.

The MCC security frameworks in F6 investigate state-of-the-art technology in mobile security in CC

environment. The authors' results in F6 show that most of the existing mobile security frameworks

allow files to be sent to the cloud for processing due to the resource constraint of the MDs. This

approach faces critical issues such as compromised user data security and privacy, high network

load, high time consumption in processing, low connectivity, and bandwidth in securing MD files. To

provide a solution, the author proposed a new "Private Cloud and File Characteristics" (PCFC)

framework that has three (3) components: mobile client, private cloud, and PCFC protocol. The

33

mobile client is a lightweight application that runs on the MD that uses a specific extraction algorithm

to extract specific data from a suspicious file for processing in the cloud. The proposed framework

in F6 helps to solve some of the issues some of the existing frameworks faced. The private cloud

uses a scoring process to effectively identify files with malicious data and apply appropriate

measures to such a file using the protocol.

The framework in F7 proposed a dynamical data protection framework for off-trade between security

and resource consumption using a service access gateway. The model has a database of security

policies, and mobile users get assignments of data protection services for each requesting terminal.

In this framework (F7), different data protections are applied to data depending on the services policy

request by the mobile terminal that initiates the request.

The authors of F8 propose a framework that uses handwritten password recognition services to

authenticate users in the mobile cloud environment. The model implements an application that

creates an interface between the mobile device and the cloud, which captures handwritten

passwords from the mobile device as biometric data, encrypts the handwritten password data, and

transfers it to the cloud using the mobile device touch screen. Biometric data encryption enhances

the security and privacy of data access in the mobile cloud environment. The cloud end contains a

database of encrypted handwritten templates of cloud users to perform authentication. The authors

of F8 use K-nearest neighbour and an artificial neural network classifier for the handwritten

recognition of user passwords. The Framework authenticates the user based on the password and

biometric features using handwritten password techniques. The classifier algorithm uses a parallel

classifier combination method to obtain satisfying recognition and error rate precision.

F9 proposed a lightweight security framework to safeguard the mobile user's identity with dynamic

credentials to enable the identification of users in the mobile cloud environment. The framework

offloads the regularly occurring dynamic credential generation services into a trusted environment to

reduce the processing overhead, delay in communication, and loss of energy on the mobile device.

The system model used in this framework has the following components: 1) cloud service provider,

2) mobile users, and 3) trusted entity. Computational and storage services are offered to mobile

users by the cloud services provider. Mobile users employ those services to improve their MDs'

processing and storage inclinations. The trusted entity is responsible for generating cloud secrets,

mobile secrets, and credentials for the mobile user under the control of the client organization. The

trusted entity securely hands over the prevailing dynamic secrets to the cloud service provider and

mobile device to identify mobile users in a cloud environment. The trusted entity also shares each

mobile user's private and public keys and the CSP. The results obtained from the experiment

performed for this framework show a significant improvement in energy consumption on mobile

devices compared with other frameworks. The framework (F9) works in an untrusted environment,

34

reducing the possibility of a man-in-the-middle attack. The framework verifies the reliability of the

credentials of mobile users with the help of the received signature, and the user credentials are

encrypted with the mobile user's public key that ensures confidentiality.

The authors of F10 proposed a framework that uses a decentralized data aggregation approach for

securing cloud user data. The framework allows distributed computing among mobile devices,

personal clouds, and public clouds. In this framework, user data is stored in a private cloud in which

the user has full control. Data widget applications were introduced for the user to manage sensing

data. The framework (F10) addresses the privacy issues of mobile sensing systems by using a

trusted third-party certificate to monitor the behaviour of applications developed by cloud users.

These trusted party security techniques minimized the issue of publishing malware in the cloud

computing environment.

The proposed framework in F11 provides an incremental proxy re-encryption scheme to improve file

modification while maintaining the security of the offloaded file in the cloud infrastructure. The

framework enhances processing overhead and communication delay. The scheme uses bi-linear

mapping for randomly generated parameters for encryption, decryption, and re-encryption of data.

Key generation in this scheme uses a trusted entity called a proxy to create key pairs for various

authorized group members of the data partition for cloud storage. The incremental version of the

proxy re-encryption framework presents significant enhancement in results while implementing file

modification operations using the insufficient processing ability of mobile devices in the CC

environment.

F12 presented a context-aware security framework for a mobile cloud that requires deployment at

the cloud end to mitigate against attacks on user data as an extra security layer to the existing mobile

cloud security infrastructure. The framework analyses incoming traffic using a cognitive learning

model to identify patterns from previous attacks. The probabilistic model evaluates the packets

received from the network traffic to detect possible attacks on the infrastructure. A self-healing

network is used to deter denial of service attacks on the cloud side. Authentication ensures mutual

authentication between two communication parties using the message digest and location-based

services.

F13 presented a cloudlet mesh-based security framework that improves sensitive data protection on

mobile devices against malicious activities using intrusion detection techniques in a trusted

environment. With the aid of the cloud, the cloudlets update their malware database. Furthermore,

a trusted connection is placed among MD, cloudlets, and the remote cloud, and an inter-cloudlets

protocol is added to facilitate distributed malware detection. The framework (F13) provides

authentication between the cloudlet mesh and the mobile device using a multi-party authentication

protocol (MAP). The MAP process requests MD to access the cloudlet mesh. The cloudlet with the

35

highest signal strength is used for the connection. The MAP process authentication between the

mobile device and the cloudlet mesh in a multi-way by scanning only the smaller incoming message

using anti-virus software. In comparison, much larger incoming messages are offloaded to the

distance cloud for scanning to remove viruses or spam from the request. The multi-party

authentication used in this framework is a single sign-on in the cloudlet mesh. The Framework (F13)

uses a Trusted Cloud Transfer Protocol (TCTP) to encrypt messages offloaded to the distance cloud.

The authors in F14 presented a security framework that uses encryption technology to secure data

transmission. The proposed framework by the authors in F14 uses the identification numbers of the

MD to check an intruder whose device is not registered in a central database to enhance data access

security using the location-based services model.

The authors in F15 presented a framework that employs digital signature concepts for authentication

of received data and encryption for data storage. The framework comprises three phases: 1) key

generation, 2) signature generation, and 3) signature verification. The public and private keys used

for signing the packets and verifying the packets during encryption and decryption are generated

randomly during the key generation phase. Hashing and key generation phase means generating

both the public key and private key. The private key is used to sign the packets in the encryption

process, and the public key is used to verify the packets in the decryption process. A hashing

algorithm is used to produce a hash code. This hash code is obtained from the encryption of the

previous operation and the private sender key during the signature generation phase. The signature

process is verified after the document has been signed successfully.

The security framework proposed by the authors in F16 presents a two-level security model for the

continuous examination of trust degrees. A trust model is used to calculate each user's trust degree

and monitor his behaviour and activities. This framework (F16) works with a mobile and a trusted

agent. The security of the cloud user and the service provider is considered in this framework to

avoid a man-in-the-middle attack against the cloud user data while in transit.

F17 presented a framework that mitigates the security issues cloud users face while maintaining the

data in the cloud server and relocating data from the cloud. The framework provides a solution that

enables mobile users to store data securely so that the privacy of their data is preserved. The

information on the MDs is protected from unauthorized access using a modified RSA encryption

technique in which each message is mapped to an integer for preserving data before offloading the

data to the CSP storage infrastructure from the MD. This framework provides a software interface

for cloud users to perform encryption and decryption. In the first place, the user data is encrypted

with the receiver’s public key. After that, the decryption process can be done with the corresponding

key pair only.

36

The authors in F18 presented a framework based on the bilinear pairing cryptosystem and random

number theory. It performs user anonymity, mutual authentication, user intractability, and key

exchange. In this framework, the cloud service provider is unable to obtain the user's identity. The

user's identity is hidden by using a random number to secure sensitive information. The mobile cloud

environment is assumed to be supported by a trusted, smart card generator (SCG) service. The

SCG is responsible for generating public and private parameters for both cloud service providers

and cloud users, respectively. This framework (F18) has four phases: the system setup phase,

registration phase, authentication phase, and the passive user phase.

F19 presented a framework that protects data when offloading it from a mobile device to the cloud

by verifying if the data to be offloaded has security concerns or not. The security concern is using a

mobile API to classify the data into a security class. Once the data classification process is

completed, the Mobile API stores and processes data according to rules defined for the data

category at hand. The framework uses simulation-based software. The machines used in the

framework implementation run on Ubuntu Server 14.04 and have OpenStack cloud software installed

to store and provision virtual machines. In the proposed framework reported in F19, the lead node

is used as the controller, which manages the communication among the g database storage,

software, and permissions among the nodes. The server system uses Ubuntu Metal as a Service

(MAAS) to configure software and updates. The framework is scalable and contains nodes that run

the necessary software in the cloud environment.

Lin et al. (2017) in F20 presented a mobile provable data possession framework that supports data

dynamics operations via verification, outsourcing, block verification, and stateless verification by a

trusted third party. A Hash tree structure and a Boneh-Lynn-Shacham (BLS) short signature were

used in their scheme to support data dynamics operations. Data owners, CSPs, trusted third parties,

and storage service providers are the four entities used in this framework.

Arvind & Manimegalai (2017), in F21, presented a secure data storage classification architecture

(SDSCA) that protects data from illegal access. The framework consists of four components: 1) user

agent, 2) mobile user, 3) CSP, and 4) broker. Data are captured from the mobile user are received

by the user agent. The agent classifies this data into distinct levels, such as high, medium, and low.

The data classification uses a superior naive technique made up of different algorithms (Naive-Bayes

and K-Nearest Neighbor). This framework uses two-step methods to classify the data. The statistical

features of the data are used to select the neighbouring data of the new data. When the data

classification phase is completed, the Advanced Encryption Standard (AES) protects the data. The

Homomorphic Encryption algorithm prevents the integrity of the data from being compromised. In

the framework reported in F21, the security methods proposed allow the CSP and the mobile user

to process the data without necessarily decrypting the data.

37

The authors in F22 presented a framework that uses a multimodal biometric system for

authentication and access control to secure data in the mobile cloud environment. In this framework

reported in F22, a fingertip image is obtained from the mobile user using the fingerprint sensors on

their device. The image of the iris scan is captured using a high-definition image camera present in

today's smartphones. This biometric information is stored in the cloud database and used to verify

users in the mobile cloud environment. The framework (F22) provides an additional backup code

that can be automatically generated and sent to the user's cloud profile for authentication with either

biometric mean to enhance data security in the cloud server.

The authors of F23 proposed a framework that uses the steganography technique to enhance

security in the MCC environment. The framework preserves embedded data unrevealed to the cloud,

hence assuring the security of sensitive medical data when it's outsourced for encryption. The

framework (F23) uses data preparation, outsourcing encryption, and data distribution to send

classified medical images securely. In the data preparation stage, medical image detection is the

salient object considered an important region of interest (ROI). The edge-directed data hiding

method embeds the medical image into the host image. The selective encryption algorithm is used

to encrypt the outsourced steganography image, and the result of the encryption is sent to the

concerned user.

The authors in F24 presented a framework that adopts the Ciphertext-Policy Attribute-Based

Encryption (CP-ABE) for data security where data is encrypted. A lightweight data sharing scheme

moves high-computationally intensive access from the MD to the cloud environment. The framework

reduces user revocation costs by introducing property description fields to realize lazy revocation, a

complex problem in program-based CP-ABE systems. A semi-trusted server enables cloud users to

encrypt and decrypt data to reduce overhead in data processing using proxy encryption and

decryption techniques.

The authors in F25 presented a framework that uses a trusted third party to provide a unique

authentication for the mobile user for data access in the MCC environment. The trusted third party

reduces identity theft risk since the user's identity information is contained in a secure identity

management server (IDM). The IDM uses a homomorphic encryption and signature scheme to

authenticate users on the cloud to grant access to their cloud resources. This framework provides

privacy for the client's cloud service provider, but the risk of capturing the identity stolen through

information interchange between mobile user and authenticator is not eliminated.

The framework reported in F26 presents a model to detect and isolate cyber-attacks that will severely

impact the MCC environment using the deep learning technique. The authors of F26 claim that their

model can achieve up to a 97.11% accuracy rate in detecting attacks in the MCC environment. The

model proposed in F26 provides an attack detection module used to classify an incoming packet

38

request on the existing trained deep learning model. This framework trains the model in the offline

mode used to detect malicious requests. The Attack module performs three basic duties: data

collection and processing, attack recognition, and request processing. The deep learning model used

in this framework has two phases: the learning process and feature analysis. The model uses the

Principal Component Analysis (PCA) method for dimension reduction and the termination of optimal

features. The learning phase of this model takes a long time and needs the pre-processing of data

and features, which leads to an increase in the running cost. The pre-learning process of this model

uses the Gaussian Binary Restricted Boltzmann Machine (GRBM) method to transform real values

received from the input layer into binary codes used in the hidden layers.

The authors in F27 presented a framework that applies the concept of polymerase chain reaction

and primer generation to ensure data confidentiality and integrity in the MCC environment. In this

framework (F27), data is encoded in deoxyribonucleic acid (DNA) by converting the data into ASCII

and binary form before converting it to the DNA format using the AGCT. The resultant DNA sequence

is encrypted using symmetric encryption. This process is divided into different phases, including pre-

processing data into numerical form, premier generation of keys from DNA sequences, the

polymerase chain reaction encryption phase, and data integrity verification using the DNA Signature.

The authors in F28 presented a framework that uses a multi-layer intrusion detection technique to

analyze incoming traffic and a decision-based approach to select a virtual machine. The scheme can

best be described as a cognitive system consisting of a pattern matching engine and a knowledge

base for profile-based traffic filtration analysis. The system employs unsupervised learning methods

due to the multifaceted nature of incoming traffic and uses location information as a client's profile.

Agrawal & Tapaswi (2019) in F29 presented a framework that uses an agent-based multiple authority

attribute-based encryption access control technique in the mobile cloud computing environment. The

use of static and dynamic attributes in data encryption models is used to assure the security of data

uploaded by the owners. To access data in the cloud, they must satisfy these attributes used in the

encryption process. The proposed framework in F29 uses the mobile agent to deal with the loss of

connectivity between the data owner and the cloud storage service provider. The framework reported

in F29 also uses anonymous key issuing rules to manage encryption keys in their security

framework.

The framework reported in F30 applies blockchain technology to tackle security and privacy issues

in the MCC environment. The proposed framework focuses on a trust-based model to handle patient

health records when information is exchanged by the MDs used by the patients and the healthcare

provider's cloud storage and processing system. They implemented a prototype system as a proof

of concept using Ethereum blockchain technology in real-time data sharing using Amazon CC

services as their cloud storage provider. The performance evaluation carried out in their study was

39

reported to provide low network latency while maintaining a high level of security and privacy of user

data during data exchange in the MCC environment.

The solution proposed in F31 enhances the quality of services MCC users enjoy by addressing

undesirable delays MCC users encounter during user authentication and man in the middle attack

during data transmission. They proposed a framework that provides a solution to the handover

authentication issues in the MCC environment. The framework reported by the authors in F31 uses

IEEE 802.11/LTE protocol to manage user’s authentication while reducing the delay time.

The authors in F32 proposed a framework that tackles authentication issues in the MCC environment

by applying a free pairing system to handle multi-server authentication problems faced by the MCC

environment. The proposed framework eliminates the use of servers’ storage for user verification by

adopting a free pairing system that maintains user-oriented verifiers. They apply an elliptic curve

cryptographical approach to secure user data during user authentication in the MCC environment.

The framework reported in F33 combat security issues associated with SMS-based authentication.

The proposed framework applies offloading techniques to enhance the security of both the mobile

and the cloud environment. The offload the two-factor authentication mechanism to the cloud and

only grant access to a user if the authentication information sent by the user and the results of the

cloud-based mutual authentication is valid. They use virtual smart card technology to authenticate

each user request. The performance evaluation results reported by the authors show an

improvement in tackling security issues regarding user authentication in the MCC environment.

The authors in F34 proposed a lightweight data sharing scheme that outsources high mobile device

computational tasks to the cloud server. They used attribute-based encryption techniques to

transform the data owner's plain text into ciphertext and upload the ciphertext to the cloud server.

The framework reported in F34 outsources the key management tasks to a key generation centre

third-party system. The third-party system manages both the private and public keys used for

encryption and decryption. The framework allows the MCC users to obtain the decryption key without

revealing it to another user using a secure channel. They reported that the performance evaluation

of their proposed framework outperforms related works in literature.

The framework proposed in F35 uses a modular encryption approach to secure user data. The

framework focuses on the security of patient health information by identifying and classifying each

patient data's sensitivity and determining the required level of encryption needed to protect the data.

The focus of the framework reported in F35 is on the security of user data at the cloud server to

ensure that patient's health information is protected. They also provide a secured data sharing

scheme between patients and medical doctors using the modular encryption standard. They reported

40

that their model competes favourably with the existing solution while maintaining a high standard of

security of patient information.

2.5.2 SUMMARY OF THE REVIEW

The review frameworks can see a trend toward developing comprehensive frameworks (i.e.,

addressing multiple threats). In contrast, only one out of the eleven frameworks proposed between

2010 and 2014 managed more than five threat types, while in the period 2015 to 2021, the number

was seven out of twenty-four. None of the frameworks addressed all the security threat types. All

frameworks addressed threat type T1 (data breaches), which is concerned with preserving data

confidentiality and privacy. Twenty-five frameworks also addressed threat type T4 (Insufficient

Identity, Credential, Access, and Key Management an intrusion facilitator and thus, a precursor to

threat T1). Nineteen of these frameworks were concerned with another data breach precursor, threat

type T5 (account hijacking). The analysis of the review frameworks shows that frameworks proposed

between 2015 and 2021 address more threats than those proposed between 2010 and 2014

(according to my findings, such frameworks can be categorized as more comprehensive).

The review analysis regarding the MCC security requirements addressed by each framework shows

no specific trend regarding the number of fundamental MCC security requirements addressed.

However, there was a slight increase in the number of frameworks addressing data integrity as an

MCC security requirement, rising from one framework (F1) in the first half of the reviewed period to

four frameworks (F20, F21, F27, and F30) in the second half of the review.

Furthermore, no frameworks addressed data confidentiality, integrity, and availability, which are the

three basic security requirements of an information system (Table 2.5, column five). In addition, none

of the frameworks addressed all seven fundamental security requirements. All frameworks

addressed data confidentiality except one. Authentication focused on twenty-six frameworks, while

five and eight frameworks addressed data integrity and availability. Most frameworks handle at least

three security requirements, with data confidentiality and authentication being the most prevalent

combination. Figures 2.2 and 2.3 show the graphical representation of the number of threats and

security requirements addressed by all the thirty-five (35) frameworks used in this review. The

analysis so far indicates that the frameworks that include IDS and apply ML approaches can offer

more comprehensive MCC data security solutions.

Finally, the review demonstrates that various security approaches have been proposed to improve

the security of user data in the MCC environment. Data protection approaches via encryption and

access control via identity and trust management were the most prevalent. However, several

frameworks focused on identifying threats to data confidentiality, such as those that occur within the

"live" MCC environment, such as live monitoring and intrusion detection techniques. According to

41

the analysis of existing works carried in this study, shows that frameworks that incorporate IDS and

utilize cognitive approaches can provide a more comprehensive MCC data security solutions.

Additionally, due to the requirement to address security threats across the MCC environment's

various layers, a comprehensive security solution may need to integrate and coordinate the use of

multiple security controls such as stored data protection, access control, intelligent activities

monitoring, and intrusion detection. This study adopted IDS techniques to create a more secure

MCC data security environment and provide a more comprehensive solution to data security issues

in MCC. This study reviews existing IDS frameworks in both mobile and cloud environments to

understand this security technique in-depth, as discussed in the subsequent section.

Figure 2.2. Summary of the Address Threats by Existing Frameworks

35

4 7

25

19

4 6 8 5 2 6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

N
u

m
b

e
r

o
f

Fr
am

e
w

o
rk

s

MCC Threat Category

Summary of Address Threats by Existing
Data Security Frameworks

42

Figure 2.3. Summary of the Address Security Requirements by Existing Frameworks

2.6 INTRUSION DETECTION SYSTEM

Intrusion Detection System (IDS) monitor the activities that take place within the system or network

to identify activities that violate the security policy of the systems. IDS is critical in cyber security

because it enables a solid line of defence against cyber adversaries. The digital world has surpassed

the physical world as the primary complement due to the widespread use of computer and network

systems and their IoT services that efficiently execute users' tasks in a short time and at a low cost.

Due to the rapid spread of information technology throughout the world, the need for securing

network resources against cyber threats has grown. Since some existing technologies are not

designed securely, it is critical to consider security by design when protecting them (Moustafa et al.,

2019).

Each attacker employs unique and sophisticated techniques, posing severe threats to computer

networks. When an attacker obtains essential information about a system, the system's

confidentiality is violated, and when legitimate operations are interrupted, the system's availability

and integrity are jeopardized. For instance, a denial of service (DoS) attack disrupts client systems,

thereby violating the availability principle, whereas malware code hijacks the program's

implementation, thereby violating the integrity principle (Pontarelli et al., 2012).

Patel et al (2013) stated that outsider attacks are those attacks that originate from an external source

while Insider attacks occur when unauthorized internal users attempt to obtain and abuse privileged

access. An IDPS is a software or hardware device that combines the functionality of an intrusion

detection system to attempt to prevent potential incidents. IPSs can respond by attempting to thwart

its success (Scarfone and Mell, 2007). The Intrusion Prevention System (IPS) modifies the attack's

0

5

10

15

20

25

30

35

R1 R2 R3 R4 R5 R6 R7

34

5
8

26

8

1

27

N
u

m
b

e
r

o
f

Fr
am

e
w

o
rk

s

MCC Security Requirements

MCC Security Requirements Address by Existing
Frameworks

43

content or modifies the environment's security. It can potentially alter the configuration of other

security controls designed to thwart an attack, such as network reconfiguration of a device that

prevents the attacker or the victim from gaining access to the system. IPS incorrectly classifies a

legitimate non-intrusive surveillance system's normal activity as malicious and takes appropriate

action in response to that detection.

2.6.1 INTRUSION IN THE MOBILE DEVICES

In MCC, intrusion can occur at the MD and in the cloud infrastructure. MDs have an architecture

similar to personal computers (PCs), making them vulnerable to the same class of intrusions or

malicious activities. Nowadays, MD users want to download apps for various purposes from app

markets, including social networking, playing new games, and photography. In general, they are

unconcerned about malicious apps and will download them regardless of whether they are infected

with malware or not. Additionally, they will install and run these apps on their devices. As a result of

these factors, the number of smartphones infected with malware and adware applications is rapidly

increasing.

Kaspersky Lab reported the prevention of over 9 million malware, adware, and riskware attacks on

MDs in 2021. Most of the detected attacks are associated with RiskTool apps. In addition, Kaspersky

also reported the detection of 12,097 malicious apps that belong to mobile banking categories and

6,157 belonging to the mobile ransomware malware category. However, Android has some

fundamental mechanisms for controlling app permissions, and the critical point is that a large number

of unexpected (or unknown) attacks target smart gadgets. Users must employ a robust security

solution to mitigate those attacks at the MD user layer in the MCC environment.

Mobile malicious application (MMA) is a type of hidden malware that operates in the background of

the victim's device, completely undetected by the user. It can also execute or connect to other

networks to obtain new instructions. Additionally, the MMA can manipulate the victim's device,

resulting in specific results, such as abusing sensitive account specifications and information. For

instance, an MMA can send a message to a particular phone number or reveal the user's location

without the user's knowledge (Marforio et al., 2016).

In other words, the current version of MMAs is becoming increasingly sophisticated with malware

that can run under the guise of legitimate apps, undetected by users and even anti-malware, and

then perform some trick activities under the control of malicious users. The next generation of MMAs

is expected to be even more intelligent, with botnet-like characteristics capable of controlling and

hijacking victim devices (Karbab et al., 2016).

Malware is a type of malicious software that can steal information from users' devices, and,

additionally, anti-malware programs can predict its behaviour. Numerous malicious apps provide

44

vulnerable entry points for malicious attacks on a user device in the MCC environment. The following

are some of the categories of intrusions in MD (Inayat et al., 2017).

A. Virus: A virus is a malicious app capable of imitating itself, and its various imitations can infect

other applications, the boot sector, or files by attaching (or adding) themselves. The MD user must

download and execute the malicious app to infect the device (La Polla et al., 2012).

B. Spyware: Spyware is malware that monitors the victim's device to monitor and control user

activities such as location, contacts, calls, texting, and emailing. In some cases, it can transmit such

data to another location via available networks (or email, SMS, etc.) and take control of a device

without the user's knowledge (Inayat et al., 2017).

C. Bot Process: A mobile botnet is a collection of infected MDs remotely controlled by a

botmaster (e.g., an individual who disrupts normal network traffic flow) without the users' knowledge.

In other words, it creates a flaw within the intended app that allows attackers to gain complete control

of the victim's device. It then begins communicating with it and receiving new instructions from

specific servers. From a hacker's perspective, botnets are one of the most dangerous types of

attacks because they can be used and controlled for various malicious purposes (most frequently,

DDoS (Distributed Denial of Service) or spam attacks) (Alomari et al., 2012).

D. Phishing apps: A phishing app is a type of malware designed to look exactly like a legitimate

application (for example, a mobile banking app, a market app, etc.) to steal sensitive information

such as usernames, passwords, credit card specifications, and so on. Technically, these bogus apps

impersonate legitimate apps on the victim's device by masquerading as trusted apps. Phishing apps

can compromise the confidentiality of user input to hijack login authentication (Chaudhry et al, 2016).

For example, a phishing app may mimic a mobile banking login screen to steal the user's account

information (e.g., username and password). It is typically used to steal confidential information under

the guise of fake mobile banking apps, which have become a recurring threat due to several reported

incidents. According to Kaspersky Lab's malware analysis, a total of 12,097 mobile banking Trojans

were discovered in 2021 that used phishing to steal users' account information (Kaspersky, 2021).

E. Trojan: A Trojan is a type of malware that allows unauthorized access to the victim's sensitive

interactions, such as purchase transactions, premium rate calls, and so on. As a result, the goal of

these malicious apps is to transmit under the guise of legitimate apps or file devices (La Polla et al.,

2012).

F. RootKit: A rootkit is a hidden process that can run in the background of a victim's device and

create malicious flaws for malware writers by infecting the operating system. In practice, this malware

attempts to disable firewalls and anti-malware software or hide malicious user-space processes used

to install Trojans (La Polla et al., 2012).

G. Man-In-The-Middle Attack: A Man-In-The-Middle (MITM) is a stealthy fraud that entails

eavesdropping data transmissions between two communication devices. For example, the attacker

45

establishes a new connection between the target device and the server during a banking transaction.

The hacker uses various techniques to split the direct connection into two new lines. The first

connection is between the hacker and the server; the second is between the hacker and the victim's

smartphone. This attack is one of the most effective threats since the TCP and HTTP protocols are

based on the Unicode or ASCII standard. As a result, MITM attackers can decode and manipulate

data streams as they pass through the target network.

2.6.2 INTRUSION IN THE CLOUD-INFRASTRUCTURE

CC environments are also vulnerable to intrusions that target the security of technology itself.

Confidential information that users of cloud resources may store may become the target of an attack.

Through obtaining unauthorized access, attackers may violate the privacy and confidentiality of cloud

users' data stored in the cloud. Amongst others, the types of intrusion attacks prevalent in the CC

infrastructure include insider attacks, flooding attacks, Denial of Service (DoS) attacks, user to root

attacks, port scanning, Virtual Machine (VM) attacks, and covert-channel attacks. Such intrusion

attacks are dangerous since they affect both the MD users and the CSP. Moreover, it is the

responsibility of CSPs to provide adequate security protection of user information (Inayat et al.,

2017). The following are types of intrusions in the CC environment.

A. Insider attacks: This type of attack allows a legitimate user of the cloud infrastructure to

misuse unauthorized privileges by performing malicious activities in the cloud environment,

thereby accessing, or modifying another user's information without authorization (Modi et al.,

2013).

B. Flooding attacks: In this attack, intruders send many packets from an innocent host in the

network, thereby making them not respond to legitimate traffic. In MCC, the user can access

virtual machines when connected to the internet, which an attacker can use to cause DoS

via the innocent host. Flooding attacks affect the availability of services to an authorized user

when an intruder attacks servers that provide services to a user. It involves the availability of

services offered by such servers in the MCC environment (Modi et al., 2013).

C. User to root attacks: In this type of intrusion, attacker gains access to a legitimate user's

account by sniffing passwords. As a result, they can exploit vulnerabilities to gain root-level

access to the system. Buffer overflows, for example, are used to generate root shells from a

process that is running as a root. It occurs when the application program's code exceeds the

size of the static buffer. Frequently targeted are the mechanisms used to secure the

authentication process. There are no universally accepted security mechanisms for

preventing security risks such as insecure password recovery workflows, phishing attacks,

and keyloggers. In the case of CC, the attacker gains access to valid user instances, allowing

them to gain root-level access to VMs or hosts (Inayat, et al, 2017).

46

D. Port scanning: In this type of intrusion, the intruder attempts to locate and access an open

port on the cloud network to launch attacks against cloud resources. This attack can reveal

network-related information such as IP addresses, MAC addresses, routers, gateway filtering,

and firewall rules. Some of the various port scanning techniques are CP scanning, UDP

scanning, SYN scanning, FIN scanning, ACK scanning, and Window scanning. In a cloud

scenario, an attacker can attack offered services by scanning for open ports where these

services are provided (Modi et al., 2013).

E. Attacks on Virtual Machine (VM): In this type of intrusion, an attacker can gain control of

installed VMs by compromising the lower layer hypervisor. Hackers may compromise the

installed hypervisor and gain control of the host via these attacks. New vulnerabilities,

including zero-day attacks, are discovered in VMs, attracting an attacker's attention, and

allowing them to access the hypervisor or other installed VMs. Attackers use zero-day

exploits before the target software's developer is aware of the vulnerability. A zero-day

vulnerability in the Hyper VM virtualization application was exploited, resulting in the demise

of numerous virtual server-based websites. (Inayat, et al, 2017).

F. Covert-channel attacks: In this type of attacks, the intruder exploits the weakness in the

isolation of shared resources and use hidden part to steal confidential information. A passive

attack enables the hacker to gain remote access to the infected node, thereby jeopardizing

user confidentiality. Using backdoor channels, the hacker can take control of the victim's

resources and turn them into zombies to launch a DDoS attack. Additionally, it reveals the

victim's confidential information. As a result, the compromised system has difficulty

performing routine tasks. In a cloud environment, an attacker can gain access to and control

the resources of a cloud user via a backdoor channel and turn a VM into a zombie to launch

a DoS/DDoS attack. A firewall (in the cloud) may be a standard solution for preventing some

of the aforementioned attacks. Flooding and backdoor channel attacks can be detected using

either signature-based or anomaly-based intrusion detection techniques (Wu et al., 2014).

2.6.3 TYPES OF INTRUSION DETECTION SYSTEM

There are four major types of intrusion detection systems (IDS) used in the CC environment: host-

based intrusion detection systems (HIDS), network-based intrusion detection systems (NIDS),

hypervisor-based intrusion detection systems, and distributed intrusion detection systems (DIDS).

A. HIDS: This type of IDS detect intrusion by analysing the information received from a host

machine. The HIDS collects and analyses data from a specific host machine. HIDS monitors

the machine for intrusions by collecting information such as the file system being used,

network events, and system calls. HIDS monitors host kernel, file system, and program

behaviour changes. When the system detects a deviation from expected behaviour, it alerts

47

the user to the presence of an attack. The effectiveness of HIDS is contingent upon the

system characteristics being monitored. In the CC environment, HIDS is installed either on a

host machine, VM, or hypervisor to monitor and analyze log files, security access control

policies, and user login information to detect intrusive behaviour. If it's installed on a VM, the

cloud user is responsible for its monitoring. Similarly, if installed on a hypervisor, the CSP is

accountable for monitoring (Inayat, et al, 2017).

B. NIDS: This type of IDS detect intrusion by analysing the network packets to detect malicious

activities in the network. NIDS can detect intruder by comparing the current network

behaviour with previously observed behaviour (Modi et al.,2013). NIDS monitors network

traffic to detect malicious activity such as denial-of-service attacks, port scans, and even

attempted computer hacking. For intrusion detection, network data is compared to known

attacks. NIDS employs a more robust detection mechanism to identify network intruders in

real-time by comparing current behaviour to previously observed behaviour. NIDS is primarily

concerned with monitoring individual packets' IP and transport layer headers to detect

intrusion activity. NIDS employs intrusion detection techniques based on signatures and

anomalies. NIDS has only a minimal view of the host machines. If network traffic is encrypted,

the NIDS cannot decrypt it. Al-Hemairy et al. (2009) surveyed the security solutions used to

detect ARP spoofing attacks. They concluded that the XArp 2 tool is an effective,

commercially available security solution that accurately detects ARP spoofing attacks.

C. Hypervisor based IDS(Hy-IDS): This type of IDS allows users to monitor communication

protocols among VMs and analyses the behaviour of these communications to detect

possible intrusion (Modi et al.,2013). A hypervisor is a software platform that enables the

execution of virtual machines. An IDS based on hypervisors is running at the hypervisor layer.

It enables users to monitor and analyze communications between virtual machines (VMs),

between hypervisors, and within hypervisor-based virtual networks. One of the advantages

of hypervisor-based IDS is the availability of information.VM introspection-based IDS(VMI-

IDS) is one type of hypervisor-based IDS.

Hypervisor-based IDS is a critical technique for detecting intrusions in virtual environments,

particularly CC environments. VMI-IDS differs from traditional HIDS in that it directly observes

the host's hardware states, events, and software states, providing a complete picture of the

system than HIDS. The virtual machine monitor (VMM) manages hardware virtualization and

provides isolation, monitoring, and interposition capabilities. VMI-IDS has access to the VMM

so that code running in the monitored VM does not communicates with VMM via the VMM

interface, enabling VMI-IDS to obtain VM state information, monitor specific events, and

control VMs. This VMM interface comprises Unix sockets that allow you to send commands

to and receive responses from VMM. Additionally, it enables physical memory access to the

48

monitored VM. The OS interface library translates VMM's low-level machine states into a

higher-level OS structure. A policy engine is included for performing high-level queries on the

monitored host's operating system. Even if the system is compromised, the policy engine

responds appropriately (Modi et al.,2013).

D. DIDS: DIDS is a collection of IDS (for example, HIDS, NIDS, e.t.c.) distributed across a large

network, all of which communicate with one another or with a central server that enables

network monitoring. The intrusion detection components gather system information and

format it for transmission to the central analyser. A foremost analyser is a computer that

collects and analyses data from multiple IDS. The analysis employs a combination of

anomaly and signature-based detection approaches. DIDS can be used to detect both known

and unknown attacks because it combines the benefits of NIDS and HIDS (Modi et al.,2013).

2.6.4 INTRUSION DETECTION METHODS

In the CC environment, the following detection method are used in the design of cloud-based

detection system: These methods are briefly described as follows:

A. Signature-based IDS: This detection method tries to define a set of rules or signatures used

to predict and detect the consequently known patterns of an attack. This method usually

achieves high accuracy in detection with minimal false positives in recognizing intrusions in

a specific environment. This method is used to identify a known attack in a cloud-based

system. The positioning of the IDS in the cloud network is significant and determines the

categories of external or internal attacks it can effectively detect. If an IDS that uses the

signature-based method is placed at the front end of the cloud network, it can detect known

external attacks but not detect internal intrusion, but if placed at the back end, it can detect

both internal and external attacks (Patel et al., 2013).

B. Anomaly-based IDS: This detection method is concerned with identifying a malicious attack

that seems anomalous concerning normal behaviour in a cloud network. Different techniques

are used in this type of detection, such as data mining, statistical modelling, and ML. This

approach involves collecting data relating to the behaviour of authorized users over some

time and then applying statistical tests to the preserved behaviour to determine whether that

behaviour is legal or not. It has the advantage of identifying attacks that have not been found

previously. This method applies to the cloud-based infrastructure for detecting unknown

attacks at different levels. Modi et al. (2013) reported that the adoption of soft computing

techniques is used to improve the accuracy and efficiency of intrusion detection using

anomaly-based detection methods. Some of these soft computing techniques used in

anomaly-based intrusion detection are Artificial Neural Network (ANN), Fuzzy logic,

Association rule mining, Support Vector Machine (SVM), Genetic Algorithm (GA), and so on.

49

C. Hybrid IDS: In these IDS, the capabilities of an existing IDS are enhanced by combining the

two methods (signature-based and anomaly-based) to detect both known attacks and

unknown attacks (Patel et al., 2013).

2.7 ANALYSIS OF CURRENT IDS FRAMEWORKS IN CC, MD AND MCC ENVIRONMENT

Following up on the summary presented in section 2.6.2, this analysis of the current IDS frameworks

in the CC, MD, and MCC environments addresses the second research objective stated in chapter

one, section 1.3. The search for the articles across the different databases (IEEE, Science Direct,

ACM, and Springer Link) resulted in 412 articles published between 2010 and 2020. The search

string used the Boolean OR and AND to construct the keyword expression used in the search:

(intrusion AND detection AND ((Mobile Cloud) OR MCC)) OR (anomaly AND detection AND ((Mobile

Cloud) OR MCC)) OR (signature AND detection AND ((Mobile Cloud) OR MCC)) OR (internal AND

attack AND ((Mobile Cloud) OR MCC)).

This study selected sixty-five peer-reviewed articles for journals and conferences written in English.

The selected articles proposed an IDS framework targeting the CC, MD, or MCC environment. The

selection of this relevant articles outside the MCC domain was limited since only a few works that

use IDS have been proposed in the MCC environment. Analysing the existing IDS frameworks that

target either the CC, MD, or MCC environment reveals possible research gaps and addresses

research objectives 2 in chapter one, section 1.3. The articles were analysed (Table 2.6) using the

following predefined set of dimensions:

IDS Type(D7): This dimension specifies the type of IDS proposed in a specific framework

(for example, HIDS, NIDS, DIDS, or Hy-IDS).

Detection Method(D8): This dimension identifies the method of intrusion detection used in

the proposed framework (for example, Signature-based (SB), Anomaly-based (AB) and

Hybrid (HB)).

Target Environment(D9): This dimension specifies the environment the framework was built

to work in, such as MD, CC, or MCC.

Machine Learning (ML) Component(D10): This dimension indicates whether or not the

framework incorporates any ML process or algorithm for intrusion detection.

Prevention Component(D11): This dimension indicates whether or not the framework

provides an intrusion prevention mechanism in addition to the intrusion detection ones.

50

Table 2.6. Analysis of IDS Frameworks

ID. Source D7 D8 D9 D10 D11

F36 Dhage et al., 2011 DIDS AB CC Yes No

F37 Houmansadr et al., 2011 HIDS SB CC No Yes

F38 Ulltveit-Moe et al., 2011 HIDS AB MD No No

F39 Modi et al., 2012 NIDS HB CC Yes No

F40 Khune & Thangakumar, 2012 HIDS SB CC No Yes

F41 Yan, 2012 NIDS AB CC Yes No

F42 Yassin et al., 2012 NIDS SB CC No No

F43 Ficco et al., 2012 DIDS SB CC No No

F44 Man & Huh, 2012 NIDS SB CC No No

F45 Patel et al, 2012 NIDS HB CC Yes Yes

F46 Roshandel et al., 2013 DIDS HB MD Yes Yes

F47 Dolgikh et al., 2013 NIDS AB CC No No

F48 Yazji et al., 2014 HIDS AB MD Yes Yes

F49 Milosevic et al., 2014 HIDS AB MD Yes No

F50 Li et al., 2014 NIDS AB MD Yes No

F51 Idrees & Muttukrishnan, 2014 NIDS AB CC Yes No

F52 Moorthy & Masillamani, 2014 DIDS HB CC Yes No

F53 Pandian & Kumar, 2014 NIDS AB CC Yes Yes

F54 Qi et al., 2014 NIDS AB MD Yes No

F55 Kumar & Hanumanthappa, 2015 NIDS SB CC No No

F56 Marengereke & Sornalakshmi, 2015 NIDS SB CC No Yes

F57 Shi et al., 2015 DIDS AB MCC No Yes

F58
Mehmood et al., 2015 Hy-

IDS
SB CC No No

F59 Toumi et al., 2015 DIDS AB CC Yes No

F60
Fischer et al., 2015 Hy-

IDS
AB CC Yes No

F61 Modi, 2015 NIDS HB CC Yes Yes

F62 Singh et al, 2016 NIDS AB CC No No

F63 Hou et al., 2016 HIDS AB MD Yes No

F64 Hatcher et al., 2016 HIDS AB MD Yes No

F65 Dbouk et al., 2016 NIDS SB CC No No

F66 Kholidy et al., 2016 DIDS HB CC No Yes

F67
Pandeeswari & Kumar, 2016 Hy-

IDS
AB CC Yes No

F68 Nagar et al., 2017 DIDS HB CC No Yes

F69 Tong & Yan, 2017 HIDS HB MD No No

F70
Nezarat, 2017 Hy-

IDS
AB CC No No

F71 Moloja & Mpekoa, 2017 NIDS SB CC No Yes

F72 Balamurugan & Saravanan, 2017 NIDS AB CC No Yes

F73 Idrissi et al., 2017 DIDS SB CC No Yes

F74
Nezarat & Shams, 2017 Hy-

IDS
AB CC No No

F75 Raja & Ramaiah, 2017 NIDS AB CC Yes No

F76 Velliangiri & Premalatha, 2017 NIDS AB CC Yes No

F77 Sohal et al., 2018 NIDS AB CC Yes Yes

F78 Li et al, 2018 NIDS AB CC No Yes

F79 Ghribi et al., 2018 NIDS AB CC No No

F80 Nguyen et al., 2018 NIDS AB MCC Yes No

51

ID. Source D7 D8 D9 D10 D11

F81 Ravji & Ali, 2018 NIDS HB CC No Yes

F82 Qin et al., 2018 HIDS AB CC Yes No

F83 Achbarou et al., 2018 DIDS HB CC No No

F84 Besharati et al., 2018 HIDS AB CC Yes No

F85 Kim et al., 2018 NIDS AB CC Yes No

F86 Modi & Patel, 2018 NIDS HB CC Yes No

F87 Peng et al., 2018 NIDS AB MCC Yes No

F88 Rajendran et al., 2018 NIDS AB CC Yes No

F89 Ribeiro et al., 2018 HIDS AB MD Yes No

F90 Dey et al., 2019 DIDS AB MCC Yes No

F91 Weng & Liu, 2019 NIDS AB CC Yes No

F92 Ribeiro et al., 2019 HIDS AB MD Yes No

F93 Zhou et al., 2019 HIDS AB MD Yes No

F94 Mugabo & Zhang, 2020 NIDS AB MCC Yes No

F95 Kim et al.,2020 NIDS AB MD Yes No

F96 Lima et al.,2020 HIDS AB MD Yes No

F97 Barbhuiya et al., 2020 NIDS AB MD Yes No

F98 Manikanthan et al., 2020 HIDS AB MD Yes No

F99 Subramaniam, 2020 DIDS SB MCC No No

F100 Gaharwar & Gupta,2020 NIDS AB MD No Yes

Note: D7-IDS Type, D8-Detection Method, D9-Target Environment, D10-ML
Component, D11-IPS Component

2.7.1 REVIEW OF IDS FRAMEWORKS THAT TARGETS CC INFRASTRUCTURE

This review shows that 65% of the selected frameworks target IDS implementation in the CC

environment. The frameworks proposed in F37, F40, F82, and F84 are HIDS types that target the

CC environment. The frameworks presented by the authors in F37 and F40 use an SB detection

approach and proxy servers for in-depth forensic analysis of files stored locally on the device for

intrusion detection in the CC environment. The proposed frameworks reported by the authors in F82

and F84 use the AB detection approach with ML techniques. F82 uses a mobile agent to collect data

from each host for its detection process automatically. However, F84 focuses on protecting the VMs

in the CC environment. In this review, the NIDS proposed solution that uses the SB detection method

has the detection engine located on the cloud server. The analysis of the reviews shows that only

two frameworks that use the SB detection method proposed by the authors in F56 and F71

incorporate the IPS component to mitigate malicious activities detected in the CC environment. The

framework presented in F44 uses correlated alerts for its detection process. Some solutions that

target the CC environments shift the detection engine to the MD node, as reported by the authors in

F55 and F65. The solution presented in F42 enhances the SB detection method by automatically

updating a new signature.

The NIDS frameworks that use the AB detection method for analysing network traffic apply various

ML techniques to detect intrusions in the CC environment. F76 and F88 were concerned with

detecting DoS attacks in the CC infrastructure. Framework F91 provides a novel approach for

52

anomaly detection using statistical time series features. F85 applies both supervised and

unsupervised ML techniques to improve the detection and classification of attacks in the CC

environment. The security approach presented in F78 incorporated mobile immune agents, while

F79 uses the correlation of alerts to detect malicious activities in a network. The frameworks

presented in F62, F75, and F77 use ML techniques. The solution in F77 was concerned with

predicting the malicious devices in the cloud network. At the same time, F62 relies on identifying

network paths where disruption occurs as a result of longer transmission times and reduced speed

in transmission for intrusion detection.

The NIDS solutions presented in F72 and F53 address security issues concerning communication

using cloudlet controllers and virtual private networks (VPNs), respectively. However, the

frameworks presented in F47, F41, and F51 analyze system calls and model the device's behaviour

to enable the IDS to identify attacks. The NIDS frameworks presented in F39, F45, F61, F81, and

F86 apply the HB detection method to identify intrusions in the CC environment. Most of these

solutions combine SNORT with ML algorithms. However, the framework proposed by the authors of

F81 uses honeypot technology to produce an early warning about possible threats and attacks.

The frameworks presented by the authors in F58, F60, F67, F70, and F74 are Hy-IDS. Only F58

uses the SB detection method, while F60, F67, F70, and F74 use the AB detection method in their

detection engines located at the CC infrastructure. However, none of the Hy-IDS uses a hybrid

detection method. Mobile agents are common in these frameworks reported by the various authors

mentioned above. These mobile agents carry intrusion alerts from each virtual machine in the cloud

to a management server for analysis to detect distributed intrusions at the hypervisor layer. The

solutions presented in F73, F43, F36, F59, F52, F66, F68 and F83 are DIDS. The authors in F43

and F73 use the SB detection method to design their proposed frameworks. In addition, the HB

detection method was applied to F52, F66, F68, and F83. The framework reported in F36 and F59

uses the AB detection method for managing intrusions in the CC environment.

 2.7.2 REVIEW OF IDS FRAMEWORKS THAT TARGETS MD INFRASTRUCTURE

The frameworks proposed by the authors in F38, F48, F49, F63, F64, F69, F89, F92, F93, F96, and

F98 are HIDS types that target the MD environment. The detection engine for these frameworks was

located at the device level, except for F48 and F49. The framework reported by the authors in F48

focuses on device resource optimization and places its detection engine in the cloud, while F49

places its detection engine on the device. HB detection was applied in the framework presented in

F69, while the other frameworks adopted the AB detection method. However, none of the HIDS

types targeting the MD environment uses the SB detection method. The dynamic and static analysis

of malicious apps in the MD node using system calls was used in the proposed framework in F69.

Similarly, the framework proposed in F63 extracts system calls from the applications that reside on

53

the devices and constructs a weighted direct graph. It applies a deep learning algorithm to detect

new attacks. Using ML techniques, the framework proposed by the authors in F89 presents an

autonomous detection of malicious activities (known and unknown attacks).

The frameworks presented in F38 and F48 use location-based services to detect intrusions at the

MD node. F49 runs a local malware detection algorithm at the MD node to check for a known

malware family. The security solution presented in F93 and F92 analyses system calls and system

log files respectively to determine if a given app is malicious or not. The security techniques in F64

use the Google Cloud Messaging service in malware detection. The NIDS frameworks targeting the

MD environment in this review are seen in F50, F54, F95, F97, and F100. The NIDS based

frameworks that target the detection of malicious activities at the MD node use the AB detection

method. The detection engine in F50 resides in the cloud, while F54, F95, FF97, and F100 reside

on the device. The framework presented in F46 uses the DIDS and the HB detection approach. The

detection engine in F46 resides on both the device and the cloud.

2.7.3 REVIEW OF IDS FRAMEWORKS THAT TARGETS MCC INFRASTRUCTURE

The authors of F57, F80, F87, and F90 proposed frameworks that target the MCC environment. F57,

F90, and F99 are DIDS types, while F80, F87, and F94 are NIDS types. All the frameworks that

target the MCC environment presented in this review apply the AB detection approach with ML

techniques, except for the framework reported by the authors in F99, which uses the SB detection

method. F57 has the only prevention module. In the framework presented in F80, the attack detection

module analyses incoming requests and classifies each request as normal or suspicious based on

the trained deep learning model. The security techniques used in F87 apply balanced iterative

reducing and clustering using hierarchies with principal component analysis for simulation

experiments to demonstrate intrusion in the MCC environment. The framework in F90 presents an

ML-based IDS that secures the data collected and data fusion in a distributed environment. This

framework (F90) uses a multi-layer intrusion detection technique to analyze incoming traffic and a

decision-based technique to select a virtual machine.

2.7.4 SUMMARY OF THE REVIEW

The analysis of articles shows that most of the proposed IDS frameworks target the CC environment,

as shown in Figure 2.4. The result of the analysis presented in Figure 2.4 shows that the MCC

environment has the least framework. The analysis of the reviews shows that 9% of the selected

IDS frameworks target the MCC environment, while 26% and 65% of the selected IDS frameworks

target the MD and CC environments, respectively.

As shown in the preceding subsections, most of the proposed IDS frameworks do not provide a

prevention technique once an intrusion is detected. The results in Figure 2.5 show that, out of forty-

two frameworks that target the CC environment, only fourteen frameworks proposed a prevention

54

technique to handle intrusions detected in this environment. Similarly, only one (F57) out of six

frameworks proposed a prevention technique in the MCC environment. In addition, three (F46, F48,

and F100) out of seventeen frameworks have a prevention module in their detection engines that

targets the MD environment. It was observed that some of the frameworks that have a prevention

feature only deploy a passive prevention method, which requires the user or administrator to take

appropriate action to mitigate suspected attacks. This is a challenge that needs to be addressed. A

good prevention technique that requires a fast response to intrusion without the user or administrator

taking any necessary action will help to enhance security in this environment.

The review of existing IDS shows that only a few frameworks incorporate ML in the detection of

intrusion, as shown in Figure 2.5. The use of a hybrid ML technique, which includes a supervised,

semi-supervised, or unsupervised learning model, will help to improve security in this environment.

The result of the analysis of existing IDS solutions in the review shows that the majority of the existing

IDS frameworks use the AB detection method. The AB detection method is associated with a high

rate of false alarms and required a lot of training time and computational resources. The HB detection

method is reported to be better because it has a higher degree of accuracy in its detection process

since it combines both the SB and AB detection methods. A good security framework that produces

better accuracy in detection and low false alarms is required to enhance the security of the MCC

environment.

Several dimensions adopted in this study to analysed existing data security frameworks and existing

IDS and IDPS frameworks(F1-F100) and models together with the validation metrics used in the

evaluation of existing IDPS model proposed in extant literature are summarized in Table 2.7 and

Table 2.8, respectively.

55

Figure 2.4. Analysis of IDS Frameworks and their Target Environment

Figure 2.5. Analysis of IDS Frameworks for ML & IPS Components

65%
9%

26%

Analysis of Frameworks that Targets a
Specific Environment

CC MCC MD

0

5

10

15

20

25

30

Yes No Yes No

ML Component IPS Component

20
22

14

28

4
2 1

5

14

3 3

14

N
o

 o
f

Fr
am

e
w

o
rk

s

Target Environment

Analysis of IDS Frameworks for ML & IPS
Components

CC MCC MD

56

Table 2.7. Dimensions Adopted in this Study for Framework Analysis

ID Dimension Name Description

D1 Domain This dimension describes the proposed security framework's
architectural layers (MCUL, MNCL, and MCSPL).

D2 Threats This dimension describes the threats that the existing data security
framework in literature addresses using the eleven threats (T1 to T11)
presented in Table 2.3.

D3 Security
Requirements

This dimension describes the security requirements that the existing
data security framework in literature addresses, as presented in Table
2.1.

D4 Security Approach This dimension describes the proposed framework's techniques to
protect user data (such as encryption, biometrics, access control, activity
monitoring, and intrusion detection).

D5 Cloud Level Trust This dimension identifies the MCC components that are trusted by the
framework. This study assumes that using a trusted third party within a
proposed framework shows that the cloud infrastructure is not
trustworthy. Similarly, if there is no third-party component in the
proposed framework, the cloud infrastructure is assumed to be trusted.

D6 Comprehensiveness This dimension is used to measure the number of threats a framework
addresses. A framework is considered more comprehensive in this study
if it addresses five or more threats; otherwise, it is less comprehensive.

D7 IDS Type This dimension specifies the type of IDS proposed in a specific
framework (for example, HIDS, NIDS, DIDS, or Hy-IDS).

D8 Detection Method This dimension identifies the method of intrusion detection used in the
proposed framework (for example, Signature-based (SB), Anomaly-
based (AB) and Hybrid (HB)).

D9 Target Environment This dimension specifies the environment the framework was built to
work in, such as MD, CC, or MCC.

D10 Machine Learning
(ML) Component

This dimension indicates whether or not the framework incorporates any
ML process or algorithm for intrusion detection.

D11 Prevention
Component

This dimension indicates whether or not the framework provides an
intrusion prevention mechanism in addition to the intrusion detection
ones

57

Table 2.8 Existing Validation Metrics Used for the Evaluation of Existing IDS and IDPS

S/N Metrics Description Calculating Function

1 Classification
Accuracy
(CA)

This is the total percentage of the correctly
classified malicious and benign apps in any
given sample dataset.

𝐶𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100

2 Error Rate
(ER)

This is the total percentage of all wrongly
classified benign and malicious apps in the entire
dataset.

𝐸𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100

3 Precision
Rate (PR)

This is the total percentage of correctly classified
results of all malicious apps that belongs to the
benign labelled in the dataset

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100

4 Recall Rate
(RC)

This is the total percentage of malicious apps
that are correctly predicted as malicious apps in
the dataset.

𝑅𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100

5 False
Positive Rate
(FPR)

This is the total percentage ratio of malicious
apps classified wrongly to the actual numbers of
the malicious samples in the dataset

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100

6 False
Negative
Rate (FNR)

This is the total percentage ratio of benign apps
classified wrongly to the actual number of
samples in the dataset.

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
× 100

7 False Alarm
Rate (FAR)

This is the total percentage average ration of
malicious and benign apps that are misclassified.

𝐹𝐴𝑅 =
𝐹𝑃𝑅 + 𝐹𝑁𝑅

2

8 F-Measure
(FM)

This is the harmonic mean of the proposed
classifier which is obtainable from the value of
both PR and RC

𝐹𝑀 = 2 ×
𝑃𝑅 × 𝑅𝐶

𝑃𝑅 + 𝑅𝐶

Note True Positive
(TP)

The total number of malicious apps that were classified correctly

True
Negative
(TN)

The total number of benign apps that were classified correctly

False
Negative
(FN)

The total number of malicious apps that were incorrectly classified as benign apps.

False
Positive (FP)

The total numbers of benign apps that were incorrectly classified as malicious apps.

2.8 STATE OF SECURITY FOR MOBILE DEVICES IN THE MCC ENVIRONMENT

Attacks on the MD layer (MCUL) of the MCC infrastructure have increased in recent times due to

the technique adopted by hackers. These attacks are different from those on desktops or enterprise

information systems that are application-specific attacks such as port scanning or SQL injection

attacks. The recent attacks on the MCUL in the MCC environment are in the form of users installing

apps on their devices that require more than the usual number of permissions in order to perform

malicious activities without user consent. Most of the user-installed apps in the MCC environment

utilize more permissions, which enables the apps to retrieve privacy-related data that can be

exploited by hackers for financial gain. In addition, the process of injecting malicious codes into

legitimate apps by hackers has raised security concerns about the safety of user data stored locally

58

on both the device and the cloud infrastructure in the MCC environment. Such apps in the MCUL

can serve as a point of entry for possible intrusion into the cloud services in the MCC environment.

The popularity of Android devices amongst MCC users has motivated malware developers to target

Android-based devices in this environment. One of the major contributing factors explaining why this

platform has been targeted so easily is the open application publication policy, which allows its users

to install apps from both official and non-official market stores. The relatively low cost of acquiring

Android devices has been one of the reasons why the number of users of the platform has increased

significantly. These devices are part of our daily lives as we use them to access sensitive resources

that are business or work specifically. The increased reliance on these devices for our daily activities

such as financial transactions, shopping, communication, and storing of private data has made them

a prime target for malware developers. The recent trend by malware developers targeting mobile

users, especially those on the Android platforms, has raised concerns with regards to the security of

the user layer of the MCC environment.

The end-users of the MC technology are exposed to risk through a number of different vulnerabilities.

Different techniques have been proposed to solve the problem of MD users downloading malware

mobile apps, focusing on mobile app security characteristics such as permissions, intent, API calls,

system calls, kernel operation, and resource usage. For example,

Alazab et al. (2020) proposed a malware detection model that uses permission and API calls. They

proposed three different strategies for selecting relevant API calls that will improve the chances of

detecting a malicious app. Using statistical and ML approaches, Idrees et al. (2017) proposed a

novel malware detection system that uses a combination of permissions and intent to identify

malicious apps. The model reported in their work was evaluated using 1,745 Android apps, and the

authors reported a classification accuracy of 99.80%. However, the model was not implemented in

a real-life Android device. The authors only reported their experimental work conducted on their

personal computers.

Hou et al. (2016) proposed a framework named Deep4MalDroid that could detect malicious apps

using deep learning techniques. The framework proposed in their work applies the concept of weight

graph for feature extraction of system calls. They propose a novel approach that uses dynamic

analysis called component traversal to execute code routines in each given Android application to

extract the Linux kernel system calls of the apps running on the devices. The model reported by

these authors uses a dataset of 3,000 Android apps for both training and testing of their proposed

system.

59

Qi et al. (2014) proposed a network behaviour-based malware detection for Android devices, which

is made up of a network behaviour monitoring module, a network behaviour analysing module, and

a storage module. The monitoring module is used for extracting features of network behaviour. A

feature vector of the network behaviour characteristic was constructed based on the impact of

malware on Android devices. The vector contains the process ID, the start and end time of the

network connection, up/downflow, source/destination IP address, protocol type, and

source/destination port number. They evaluate their model using 1260 malware apps.

The security model proposed by Hatcher et al. (2016) detects malicious activities in Android OS

mobile devices in which the detection process of these activities utilizes both static and dynamic

analysis approaches, simultaneously providing rapid and intuitive security with predictive

capabilities. The system is centred around four primary components, the Android App, the Security

Server, Google Cloud Messaging (GCM) service, and the Analysis Module. The authors reported

using 241 malware and 241 benign apps for the detection based on permissions in their experiment.

Similarly, the authors use 91 malware and 95 benign apps for the detection based on system call

data.

Ribeiro et al. (2020) proposed a system that dynamically analyses device behaviour by monitoring

deviations in device behaviour characteristics of certain features such as total CPU usage, memory

consumption, total outgoing and incoming network traffic, battery usage, and so on using machine

learning and statistical algorithms to classify it as either benign or malicious.

Zhou et al. (2019) proposed a model for malicious attack detection using dynamic features extraction

of mobile apps constrained in 166 dimensions and applied a novel ML classifier to identify malware

apps by triggering an alarm. In their experimental work, system calls from both benign and malicious

Android-based apps were collected. The detection engine reported in their proposed model acquires

runtime system calls from unknown Android apps and forms the feature vector table, which is fed to

the detection model to evaluate the behaviour of the unknown app. The behavioural analysis of the

system calls enables their model to identify apps that are performing malicious activities on the user

device.

Feizollah et al. (2017) proposed a model named Androdialysis. The proposed system in their work

uses Android intent as a feature for identifying malicious apps. The experimental work carried out by

the authors used both permissions and intent to detect malicious apps. They achieve better accuracy

using intent as compared to permission. They use a total of 7,406 apps, with an overall detection

rate of 91% using intent and 83% using permissions.

60

Arp et al. (2014) proposed a lightweight approach (DREBIN) for detecting malicious apps using

permissions, hardware components, restricted API calls, and network addresses. The proposed

system was evaluated using 123,453 benign apps and 5,560 malware apps. The authors reported

an overall classification accuracy of about 94%. Similarly, Saracino et al. (2016) presented a model

called MADAM. MADAM analyses apps at four distinct levels: kernel, application, user, and package

to detect malicious activities in apps. They tested their model with 2,800 apps and got an overall

classification accuracy of 96%.

Li et al. (2018) presented a model called SigPID, which uses permission to identify malicious apps.

These models apply the concept of selecting significant permissions that are relevant to

distinguishing malicious apps from benign apps. They identify 22 permissions that are significant in

identifying a malicious app. The overall classification accuracy reported in their work is 93.62%.

2.9 MOBILE APPLICATION RISK FACTORS AND ASSESSMENT

Today's mobile internet is so popular that using mobile apps has become a crucial component of our

daily lives. These mobile apps offer fantastic features like file sharing, email services, and

entertainment, among others. Due to the extensive permissions that modern apps require, there is

a significant risk that they could gain confidential data from MD users in the MCC infrastructure.

Users in the MCC environment download applications via app stores like the Apple App Store and

the Google Play Store (Feng et al., 2019).

These apps are installed on their devices with permissions provided to allow access to their contacts,

photo gallery, and location data, etc. While some of the apps may not be malicious, they can

undermine user privacy by giving others access to personal information and sensitive data. The

Internet of Things (IoT), a developing technology that enables everything in our daily lives to be

connected, relies heavily on MCC devices like smartphones as end user interface. However,

exchanging data between devices poses potential security risks. Due to a malicious programme that

lives on a specific connected device, there is a chance that linked devices in the IoT environment

could also become infected. These dangers are related to the vulnerability of mobile apps,

particularly for users of the Android mobile operating system (Kim et al, 2020).

The goal of the risk assessment is to offer a quantitative estimate of the likelihood that a resource

accessed by an app would harm users. Particularly in the MCC environment, the risk assessment of

mobile apps has not drawn much attention. However, as discussed in the preceding section, the

majority of related research efforts focus on the capacity to distinguish between malicious and benign

apps in the mobile environment. For example, the work reported in Feng et al. (2019) uses app

permissions and descriptions to determine the risk level of an app. Similarly, Wang et al. (2013)

proposed a framework that uses apps permission and quantitative analysis to determine the

riskiness of an app.

61

A risk assessment approach called XDroid was reported by Rashidi et al. (2019) to monitor the

resource utilisation of Android devices based on the permissions requested. For the purpose of

providing an adaptive risk assessment of the apps that are installed on the device, they adopted the

use of the hidden Markov model and an online learning technique. Users of the model described in

their work can create a unique profile of the resources they want to track. Based on the user-

approved device resources specified by the user, the model proposed by Rashidi et al. (2019) utilises

a probabilistic method to model app behaviour and inform the user of suspicious actions. However,

their work suffers from relying solely on the user to decide which resources should be monitored

without considering the user's capability to recognise the proper resources to be watched.

A model called PUREDroid was introduced by Alshehri et al. (2019) that assesses the security risk

of Android apps based on the user's consented authorization. The model put forth by Alshehri et al.

(2019) calculates the extent of the harm that could result from users of Android devices granting too

many permissions. The requested and non-requested permissions of each mobile apps are

represented using two orthonormal states vectors by PUREDroid, which calculates the risk score of

each app based on the app category. According to PUREDroid, each app's risk score is calculated

based on how frequently both good apps and malicious apps have asked for this permission.

However, their algorithm ignores the fact that some malicious apps request a disproportionate

number of permissions and only assigns a high-risk score to the dangerous apps. However, they do

not use any kind of ML techniques in their work to enhance the performance of their model.

A model named RISKMON was proposed by Jing et al (2014) to assist users in understanding and

reducing security risks related to mobile apps, particularly in the Android mobile environment. The

approach adopted by their model combines user expectations with runtime behaviour of trusted apps

to create a baseline risk score. The risk score baseline results are applied to model an app's real-

world behaviour. When an app tries to access sensitive or important device resources, RISKMON

assigns a score, and based on the risk baseline score, generates cumulative scores. By assuming

that user assets can only be accessed with protected permission, the research presented in

RISKMON analyses permission-protected only systems. They did, however, propose an automated

permission revocation without considering the user's agreement, which might have an impact on the

user's actions while utilising certain of the services that an app requests.

In addition, the work reported by Son et al (2021) applies app static analysis approach to assess the

risk of apps that resides on user devices. The work of Son et al (2021) focus on how each mobile

app requests personal data and how the pattern of each request. The model proposed in their work,

analyse personal data that most apps with the same commercial objective (such as social networks,

commerce, sports, etc.) demand in order to define the "regular behaviour." Following that, they

62

determine how much the target app's signature deviates from the typical access pattern of the

associated set of apps to estimate the risk of an app.

In summary, several works in literature have used different risk assessment models to determine the

risk poses by different apps in the mobile environment. Some of the existing work in the literature

adopted the permission-based model, app description-based model, user review-based model and

API-based model to determine the risk of an app running on the user device. Nonetheless, majority

of the work in literature have failed to clearly state the risk factors associated with their proposed

model. However, the work reported by Sharma and Gupta (2018) defines the risk factors that can

used in the design of a risk assessment model. The proposed prototype system implemented in this

study adopted the risk factors defined by Sharma and Gupta (2018) and improved categorization of

each app risk level using an ensemble ML technique. The risk factor defined by Sharma and Gupta

(2018) are briefly described as follows:

High Risk Factor: In this category, the risk factor only applies to the permissions found in the sample

of malicious apps and not in benign apps.

Medium Risk Factor: In this category, the risk factor is determined if the percentage of permissions

in malicious apps is greater than or equal to the percentage of permissions in benign apps, this

category has a medium risk factor.

Low Risk Factor: In this category, the risk factor is determined If the percentage of permissions in

malicious apps in this category is lower than the percentage of permissions in benign apps in this

category, then it is low risk.

No Risk Factor: In this category, the risk factor only applies to the permissions found in the sample

of benign apps and not in malicious apps.

2.10 RESEARCH GAPS

Following the outcomes of the analysis of the literature presented in this chapter, it can be concluded

that most of the proposed security solutions in the MCC environment are not sufficiently

comprehensive as they only provide countermeasures to a few of the known security threats. In

addition, and to the best of my knowledge, none of the existing security solutions proposed in the

literature addresses all MCC's known security threats and requirements; the majority of the solutions

only focus on user authentication and data storage, applying biometric and cryptographical

approaches as a means of providing a secure MCC environment.

Furthermore, the analysis of the literature shows that activity monitoring using IDS techniques has

the potential to address a wider spectrum of the threats that are faced by the MCC environment

when compared to the more popular approaches such as user authentication and data storage

63

protection. While some of the current research in MCC security has investigated the application of

ML methods in activity monitoring using IDS, the reported results still show a high rate of false alarms

when detecting anomalous behaviour in MDs. In addition, the security algorithms employed by most

existing ML techniques require significantly high computational resources, which makes their

implementation infeasible at the MD level. The relatively high ML training time also affects the

performance of these techniques.

Nevertheless, only a few studies have proposed a prevention system for managing intrusions in the

MCC environment. However, these prevention techniques are passive (i.e., user attention is

required). The need for an active prevention approach that requires an automatic response without

user attention is still an open area for further research.

Overall, security issues affecting the MD node as part of the MCC environment, and the

communication channels used by MDs have not received much attention in the extant research.

However, attackers do focus their attention on the MD node as it is relatively more exposed (due in

part to the lack of security awareness amongst MD users). Attackers target the MD node using

malicious apps, code obfuscation, and repackaging of popular and legitimate apps with malicious

payloads; these are difficult to detect by the defensive techniques currently available to MD users.

As shown in the literature review, existing defensive techniques such as anti-virus and anti-malwares

commonly used to protect the MD node in the MCC environments apply predominantly an SB

detection approach, which cannot detect zero-day attacks on these devices. As already highlighted

above, the security solution offering malware detection using ML techniques at the device level (i.e.,

without considering the other layers of the MCC architecture) may be computationally heavy and

thus not feasible, given the resource constraints of the MDs. It was also observed that most of the

existing solutions also require a constant connection between an online server and the MD

consumption node for effective protection. However, it was shown earlier that in the MCC

environment, the MD node is highly exposed, and, therefore, the security solution gaps identified

above need to be addressed. Thus, the focus of this research is on the security needs and

requirements of the MD node as part of the MCC environment. It aims to propose an implementable

solution that offers better protection of the MD node in the MCC environment.

64

2.11 CHAPTER SUMMARY

In this chapter, detailed background studies are discussed in the CC, MC, and MCC environments.

The service models for both CC and MCC technology were briefly discussed. The CC deployment

model, together with the benefits and challenges of both the CC and MCC technologies, was

presented. This chapter also discusses in detail the security issues facing MCC by highlighting the

security requirements, vulnerabilities, and threats associated with the MCC technology. The analysis

of the STRIDE model using the MCC threats category was also presented in this chapter. General

background on intrusion detection in both mobile and cloud-based environments was also discussed

in this chapter. The state-of-the-art in security and the current proposed solution that addresses

security issues at the MD node of the MCC infrastructure were discussed in this chapter. In addition,

data security frameworks and IDS proposed and developed for the CC, MC, and MCC environments

were discussed and analysed. The results of the literature survey analysis were used to identify

existing research gaps that determine the focus of this study. A solution that addresses the identified

gaps are discussed in subsequent chapters.

65

CHAPTER THREE

DESIGN SCIENCE RESEARCH METHODOLOGY

The previous chapter presents a detailed review of the literature on data security frameworks and

intrusion detection systems in the mobile and cloud environment. The detailed analysis of the

literature highlighted that none of the existing frameworks addresses all the known security threats

in the MCC environment. The literature also shows that the user layer is relatively more exposed to

attacks than other MCC architecture layers. Therefore, improving the user layer's security in the

MCC architecture is critical. This research addresses the user layer security issues by proposing a

comprehensive framework that protect against the top security threats relevant to the MCC

environment. The framework is used in the development of a proof-of-concept IDPS prototype

system that significantly enhances the security of the user layer of the MCC environment.

This chapter presents the research methodology and research questions adopted for this study. The

research question's solution was discussed in line with the research methodology, outlining the

various steps required to complete each research phase. The proposed framework prototype system

to enhance the security of the user layer of the MCC was also presented in this chapter.

3.1 RESEARCH METHODOLOGY

The Design Science Research Methodology (DSRM) was adopted as the research methodology

required to conduct this study. This study aims to develop a prototype system as a proof of concept,

as outlined in research objective three, in chapter one, section 1.3. Similarly, the study that focuses

on the design and evaluation of an artifact, such as the proposed prototype system that is

implemented as a proof of concept in this study, has used the following research methodology

reported in the following works, for example, Hevner et al. (2004), Peffers et al. (2007), and

Offermann et al. (2009). Therefore, the choice of this methodology in this study.

Peffers et al. (2007) stated that the DSRM is the framework that includes guidelines, practices, and

procedures required to perform specific research that leads to the design of artifacts. The importance

of this methodological approach is that it provides guidelines for the design and improvement of an

artifact through continuous testing and iteration (Offermann et al., 2009). Hevner et al. (2004)

introduced the DSRM in information systems (IS), which supports complex, artificial and purposefully

designed systems. This methodology uniquely addresses the research problem by solving IS issues

more efficiently. This research approach focuses on developing and evaluating artifacts for a specific

research problem. The DSRM also highlights the researchers' contributions to the body of knowledge

by analysing relevant literature and addressing issues raised in the gaps identified in this study.

In IS, to accomplish a better understanding of and application of DSRM as a research methodology,

Hevner et al. (2004) suggest that design is both a “process” (i.e., a set of activities that are acted

66

upon by the world) and a “product” (i.e., an artifact that is sensed by the world). The DSRM supports

a problem-solving concept that shifts perspective between design procedures and designed

solutions continuously for solving complex problems in IS research. The process involved in the

DSRM consists of a sequence of expert activities that produce an innovative design artifact. The

evaluation stage of this method provides feedback information and a better understanding of a given

research problem, which hence improves both the design process and the quality of the final product.

There is a series of iterations between the distinct phases of this methodology before a final artifact

is produced.

Hevner et al. (2004) mentioned four types of artifacts, i.e., constructs, models, methods, and

instantiations. Most artifacts are designed to address unsolved problems, and their evaluation is

based on their utility in solving those problems. Constructs provide the language used in defining the

problem and solution. A model represents an instance of a real-world problem. Methods define the

processes involved in solving a problem and provide guidelines on how the problems are solved. An

instantiation shows the implementation of constructs, models, and methods in a working system.

Based on the DSRM proposed by Hevner et al. (2004), instantiation is one of the most important

artifacts to assess whether a solution or a prototype works since it adopts the implementation of

constructs, models, and methods in solving the problem.

As the research involves building a software artifact., other potentially suitable software development

methodology was also considered among them, prototyping, adaptive software development and

model-driven engineering (Saeed, et al, 2019). However, these approaches are concerned to a

significant degree with identifying user requirements and tailoring the artefact to meet these. The

focus of this research was the development of a framework, with the software artefact representing

an instance of the framework that demonstrated the feasibility of the framework's implementation.

Adopting DSRM as thus study’s methodology allowed to both model the real-world threat

environment as relevant to the context of the research, and to design "new means to...change and

improve reality” (Venable et al, 2017).

This study applies the process mentioned in the DSRM by Offermann et al. (2009), as shown in

Figure 3.1, to develop and implement a novel framework as a proof of concept to enhance data

security in the user layer of the MCC architecture. The DSRM consists of rigorous steps required to

design artifacts to solve a given problem, contribute to the body of knowledge, and provide a means

to evaluate the proposed solution, as shown in Figure 3.1. The DSRM consists of three main phases

(i.e., problem identification, solution design, and evaluation). Each of these phases is broken into

different sequential steps that often refer to each other. The most crucial stage of the DSRM is

designing an artifact that addresses the problems identified in the research.

67

Figure 3.1: Research Process Followed in this Study

Problem Decomposition Literature Review
Capturing

Requirements

Pre-Evaluation

Artefact Design

Testing

Performance

Evaluation/Laboratory

Experiment

Communication of

Results

Framework Design

Data Collection

Data Analysis

Prototype Design

Implementation

P
R

O
B

LEM
 ID

EN
TIFIC

A
TIO

N
SO

LU
TIO

N
 D

ESIG
N

EV
A

LU
A

TIO
N

 &
 C

O
M

M
U

N
IC

A
TIO

N

Expert Validation
Results

comparison with

other Related

68

3.2 PROBLEM IDENTIFICATION PHASE

This study first reviews the existing data security framework to establish the MCC environment's

state-of-the-art data security solution landscape. Second, a review of the IDS frameworks in the

cloud-based environment to identify issues related to existing intrusion detection methods. The

problems identified were then analysed to meet the research objectives. At the end of the problem

identification phase, research gaps are identified, leading to the formulation of the research question.

Main Research Question: What security components are required in a framework that can protect

MCC resources against attacks and enhance the security of user data in the MCC environment?

To address the main research question and meet the research goal stated in chapter one, section

1.3, this study provides answers to the main research question and formulates possible research

sub-questions. Hence, the first research sub-question (RSQ) is formulated as:

RSQ1: Which specific MCC resources require to be protected to enhance the security of this

environment?

From the evidence shown in the literature analysis, existing research paid less attention to the user

layer of the MCC infrastructure. The vulnerabilities associated with malicious apps can easily find

their way into the devices used in the MCC environment because MCC Android users are allowed

to download and install apps from official and unofficial app stores. The compromization of the user

layer by malicious apps can serve as an entry point into the MCC environment, directly or indirectly

affecting other MCC architecture layers. This study addresses these security issues by focusing on

the mobile device as a resource that needs adequate protection in the MCC environment.

RSQ2: What approach can be used to protect the identified MCC resources in RSQ1?

In the literature review, different approaches have been reported to protect MCC resources against

attacks. The most dominant approach used in protecting MCC resources such as user data is the

biometric and cryptographic approach. It was evident in the analyses of literature that these

approaches are widely used in protecting MCC resources, although they only protect the MCC

resources against few numbers of known security threats in this environment. A protection approach

that offers more comprehensive protection to these resources is required. Therefore, this study

adopted the use of the Intrusion Detection and Prevention System (IDPS) approach using ensemble

ML technique. The IDPS when combines with ML approach offers protection to a wide spectrum of

threat as reported in the literature review and can protect MCC resources against both known and

unknown attacks.

RSQ3: What metrics can be used to evaluate the performance of the identified approach in

RSQ2 and how can this approach be implemented to protect the resource identified in

RSQ1?

69

Based on the detailed analysis of the literature reported in chapter two, several metrics were

reported, this study adopted the classification accuracy of an attack, precision rate, recall rate, false

alarm rate and energy consumption as metrics that can be used for the evaluation of the prototype

system.

3.3 SOLUTION DESIGN PHASE

The second phase of the DSRM focuses on the proposed solution design to address the problems

identified in this study. The proposed framework and the prototype that will be implemented as a

proof of concept are discussed as follows:

3.3.1 THE PROPOSED MCC DATA SECURITY FRAMEWORK

The solution designed in DSRM provides support for the design of artifacts that guide the design

objectives. Evidence from the literature analysis suggests that an MCC data security framework that

aims to offer a comprehensive security solution should address threats across the different layers of

the MCC architecture. This study suggested that a comprehensive framework should address at

least five or more known security threats that cut across the different layers of the MCC architecture.

Therefore, this study recommends that these threat types T1, T4, T5, T7, T9, and T10 should be

addressed at the MCUL layer, threat types T1, T2, and T8 at the MNCL layer, and threat types T1,

T2, T3, T4, T5, T6, T7, T10, and T11 at the MCSPL layer.

This study proposes a comprehensive data security framework that protect MCC resources'

confidentiality, integrity, and availability to their users, as shown in Figure 3.2. The proposed

framework contains security management models that handle data security at rest and during

transmissions across the three layers (MCUL, MNCL, and MCSPL) that make up the MCC

architecture. The proposed framework adopts different existing security approaches to build the

security management models across all three layers of the MCC infrastructure.

A. MCUL Security Model: The security management model at the user layer applies both

static and dynamic analysis of mobile devices by monitoring the behaviour of apps that

reside on the device using an ensemble ML technique to detect malicious activities at the

MCUL layer. The security management at the user layer uses an IDPS approach to

handle the detection of malicious activities and the Attribute-Base Encryption (ABE)

technique to protect the data stored at the user layer in the MCC environment.

B. MNCL Security Model: The security management model at the MNCL of the proposed

framework applies an ML approach to monitor the user network requests coming from

the devices in the MCC environment and automatically stops all malicious requests

detected from the MCC user devices. The intelligent model deployed at the MNCL

70

reduces the number of external attacks on the MCC resources located in the cloud

infrastructure.

C. MCSPL Security Model: The security management model that resides on the MCSPL

applies two levels of protection to tackle attacks coming from an external source using

an Identity Management System (IdMS) and an ensemble ML-based IDPS position on

the cloud network. The IdMS handles all the user authentication and authorization

requests to manage user access to MCC resources at the MCSPL. The ensemble ML-

based IDPS stops all malicious activities that go undetected at the MNCL to protect MCC

resources at the service provider layer. The proposed framework provides an ensemble

ML-based IDPS deployed on each virtual machine and a hypervisor-based IDPS to

protect the cloud infrastructure against insider attacks. The proposed IDPS position on

the service provider layer is complemented with malware/spyware software to detect

malicious cloud-based applications on the MCSPL. The proposed framework provides an

ABE component to handle data encryption at rest as a last line of defence.

71

Figure 3.2: The Proposed MCC Data Security Framework.

3.3.2 THE PROPOSED PROTOTYPE SYSTEM

Based on the proposed framework in Figure 3.2, this study proposed implementing a prototype

system as a proof of concept that offers a better security solution to the user layer of the MCC

architecture. The proposed prototype system is a host-based Mobile-Cloud Intrusion Detection

and Prevention System named MINDPRES, shown in Figure 3.3. The proposed prototype system

(MINDPRES) aims to analyze the behaviour of different apps that reside on the MD by monitoring

the app activities both when the user is using the device and when the device is idle. MINDPRES

has an application evaluator that evaluates an application's risk to determine its risk level. When

MINDPRES is installed on a device for the first time, it analyses each user-installed app, computes

their risk score value, and determines each app's risk category. MINDPRES placed the list of apps

that fall into high and medium risk categories into the app watchlist to constantly monitor each app's

network activities within and outside the devices. The installation of a new app on the MCC user

device triggers MINDPRES to read the content of the manifest file of the newly installed app and

offload the requested permissions and intent by the app to the cloud server for preliminary risk

72

assessment. The risk level of the app is evaluated by an ensemble ML model using the number of

dangerous permissions, intents, and hardware components required by the app for its basic

functionality. The cloud-based app evaluation uses a static approach to determine the app's risk

level, assign a risk score value (i.e., high, medium, and low), and send a response to the device

based on the app's assessment results. The prototype system prioritizes monitoring apps behaviour

with high and medium risk levels at the device level.

Furthermore, MINDPRES uses a Host-Based-IDPS to safeguard the device by analysing suspicious

API calls made by its apps. The information extracted by the Host-Based IDPS at runtime is used to

monitor the device for malicious behaviour. The prototype system applies a hybrid detection method

to monitor apps network activities (i.e., Internet usage, requested URL, upBytes, DownBytes, etc.).

The prototype system monitors the device activities when the user is active (using the device) and

when the user is not active (not using the device).

Figure 3.3 The Proposed Prototype System (MINDPRES)

73

The proposed prototype system also applies an efficient ML feature selection (FS) technique, which

removes features that are not important for the classification of malicious apps for improved

performance. The FS approach removes features that are not important in distinguishing between

malicious and benign apps. The process also involves selecting features (such as the required

permissions, required intent, and required hardware used) common to malicious and benign apps.

The statistical analysis of these feature sets alongside the ML FS algorithm identifies the feature

sets that are important for use in the training of the ML model.

Legitimate apps repackaged with malicious payloads by an attacker, when installed on the user

devices are hard to detect by existing security solution in extant literature. The proposed prototype

system monitors the apps' activities at runtime, both when used and when not used. The proposed

prototype system includes an automatic intrusion prevention module to block detected malicious

network traffic. However, MINDPRES gives users the flexibility to either execute such an app if the

user feels the app is safe for her device due to the possibility of false alarms. In this study, the issues

associated with the infeasibility of running an advanced security system using ML algorithms at the

device level are mitigated by training the ML model at the cloud end and deploying the trained model

to the device. Secondly, the application evaluator assesses each mobile app's risk level at the device

end. This addresses the MD resource constraints, and these devices enjoy the benefits of ML. This

study also applies the ML algorithm, requiring less computation resources for the actual detection at

the device level, even though a highly secure algorithm has been used at the cloud end. This

technique, adopted by this study, solves the problem of constant connection to the cloud server for

actual device protection, as offered by the majority of the existing solutions in the CC and MC

environments.

3.4 EVALUATION AND COMMUNICATION PHASE

The last stage of the DSRM involves the evaluation of the artifact, which is the prototype system.

The evaluation phase applies standard security policy benchmarks to determine the system's

effectiveness. The evaluation procedure requires laboratory experiments and evaluation of the

prototype system using Android mobile apps on real-life devices. System testing includes continuous

iterations to meet the requirements of the specified artifact as contained in the solution design stage.

The effectiveness of the proposed prototype system was evaluated with a testbed of over 1000

mobile applications that was collected from Google Play Store and Android malware repository. The

evaluation of the prototype system involves real life experiment (five Android devices) and simulation

experiment with Android device emulators by installing the prototype system (MINDPRES) in the

various devices. The experiment was carried out for two weeks on using five real-life devices and

twenty devices’ emulators.

74

The applications installed in each of the devices were tested on VirusTotal engine to ascertain

whether the app is benign or malicious. The power consumption was also recorded for each stage

of this experiment. The power consumption recorded during the experiment represent the battery

usage when MINDPRES was installed on a real-life device.

After completing the testing of the proposed system, the evaluation of the prototype system follows.

The evaluation plans include experiments with both real-life devices and device emulators to check

for the effectiveness and efficiency of the prototype system.

Finally, a performance evaluation is conducted using Android mobile apps on real-life devices. This

study uses the classification accuracy of an attack, precision rate, recall rate, false alarm rate, and

energy consumption metrics to evaluate the performance of the prototype system. The evaluation

results are compared with other related works in the literature. The proposed prototype system is

evaluated by invited industry experts working in IT security roles.

3.5 CHAPTER SUMMARY

This chapter discusses the DSRM methodology and process adopted for this research. The DSRM

guidelines for the conduct of this research were also discussed and applied to each of the stages.

The solution design stage of the DSRM in this study discusses the proposed framework and a

detailed description of the prototype system. The chapter also briefly discusses the prototype design

plan and how the system will be implemented and evaluated.

75

CHAPTER FOUR

DATA COLLECTION, ANALYSIS AND LABORATORY EXPERIMENTS

The previous chapter discusses the research methodology adopted for this study. The research

questions formulated were also addressed to align with the proposed framework and prototype

system. The design, implementation, and evaluation plan of the proposed prototype system that will

be implemented as a proof of concept were described.

This chapter presents a brief description of Android OS's security system and a detailed description

of the dataset used in this study. The data collection and analysis of the retrieved apps metadata

(permissions and intents) from the dataset is presented in this chapter. The metadata analysis of the

dataset shows the permissions and intent that are commonly used by both malicious and benign

apps. The analysis of the permissions and intents also reveals some specific permissions and intent

that can be used in ML algorithms as features to differentiate between the two app categories. This

chapter also describes the feature selection techniques used in related studies and how these

techniques can be used to reduce dataset dimensionality. Furthermore, this chapter proposes a

filter-based feature section method that identifies the set of features needed for successful detection

of malicious apps. The proposed filter was applied to the dataset constructed in this study and used

to inform the dynamic app feature extraction process that provided the input to the ML detection

model.

In addition, a detailed description of the classification algorithms used in the experimental work and

the evaluation metrics used to evaluate the performance of the proposed machine learning models

is also provided. This chapter also reports the experimental work carried out to extract the dynamic

behaviours of apps. The extracted data were used in the experiment, proposing two different

machine learning models that use both static and dynamic feature analysis approaches. This chapter

also presents the analysis of the collected data and the three laboratory experiments conducted.

The results of the three experiments are also presented and discussed.

4.1 ANDROID OPERATING SYSTEM SECURITY DESCRIPTION

The choice of Android Operating System (OS) as a target environment for the implementation of the

prototype system in this study is based on the very large market share currently occupied by this OS

in the mobile market (statcounter, 2022). The statcounter (2022) has reported that the Android OS

occupies over 71% of the current mobile market of MD users. The vulnerabilities introduced into the

MCUL of the MCC environment, when Android user download apps from outside the official mobile

app store which turn out to be malicious, makes this mobile operating system (OS) platform a prime

target considering the large market share of devices running in this environment. However, the core

security component of the Android OS comprises different layers that enable developers to build

secure applications. The Android OS provides a secure system such that no app can perform

76

activities that may affect other apps on the device, using the application sandbox and permission-

based access control system. Android uses Linux's user-based protection to identify and isolate

application resources. The sandbox isolates applications and protects both the applications and the

system from malicious applications. In the Android mobile OS environment, each application is

assigned a unique user ID (UUID) and runs in a separate sandbox. Since the application sandbox is

embedded in the OS kernel, this security model applies to native code and operating system

applications. The application sandbox contains all software above the kernel, such as OS libraries,

application frameworks, application runtimes, etc. Specific platforms restrict developers to a

particular development framework, set of APIs, or language. On Android, there are no restrictions

on the way an application may be written that are necessary to enforce security; native code is just

as sandboxed as interpreted code in this regard (Android, 2021).

The current permission-based access control model adopted by the Android OS plays a vital role in

the Android security system and provides a secure environment. It handles access control to

sensitive device resources such as user data and the device's functionalities. The permission-based

access control model feature of the Android OS is used to invoke API calls for various functionalities

in the mobile ecosystem. A complete list of all the different permissions required by the app is

declared and stored in the manifest file before installation (Idrees et al., 2017). Any app that requests

communication with another app or access to sensitive device resources must have adequate

permission to perform such tasks. However, the effectiveness of this security model depends on the

mobile user's ability to judge the permissions that need to be granted to a specific application. The

granting of permissions by the user to apps whose developers' intention is maliciously unknown to

the user can expose the device to an attack and possible leakage of sensitive information from such

devices (Rai, 2013; Alshehri et al., 2019).

Android permissions are classified into four categories based on their degree of protection: normal,

dangerous, signature, and signature or system. Android includes an access mechanism that checks

applications' permissions and determines whether they are authorized to access protected

resources. Normal permissions are granted to apps without the user's intervention because they are

not deemed harmful. For example, the user does not get any notification to authorize INTERNET

permission since it falls under normal permission. The Android OS handles the authorization without

user intervention. The dangerous permission requires user approval due to the risk of privacy leaks

and access to sensitive API calls. Dangerous permissions are higher-risk permissions (such as

READ CALENDAR) that grant requesting applications access to private user data or device control,

negatively impacting the user. Malware developers can easily exploit these sets of dangerous

permissions to target the end-users of this mobile environment. Signature permissions are granted

only to apps that are signed with the same certificate that defines the permission. Preinstalled apps

77

or those signed with the device manufacturer's certificate are granted signature or system

permissions, and third-party apps cannot access these permissions (Idrees et al., 2017; Feng et al.,

2019).

The Android permission-based access control system requires users to grant requested permissions

in two different ways (install-time permission requests and runtime permission requests). The older

versions of the Android OS (Android 5.1.1 and below) enforce install-time permission requests, while

the newer versions (Android 6.0 and above) apply runtime permission requests. The install-time

request requires the user to grant all requested dangerous permissions before installing the app on

the device. The install-time permission request restricts access to system resources and private

data. This version of the permission-based security system is more vulnerable to attacks since the

user had no choice but to grant the app all requested dangerous permissions during installation;

otherwise, the installation process would terminate abnormally. Similarly, some developers

attempted to enlist the required permissions for users' consideration when using the apps. Still, users

are not likely to judge better because they do not understand the inner workings and implications of

the app. These increased the risk of possible attacks due to security risks incurred from breached

apps (Feng et al., 2019).

The run-time permission request model of Android 6.0 and above requires the user to either grant

or deny an app some specific dangerous permission when the request is made for the first time. One

of the issues associated with this permission request is that an app can be granted overprivileged

permissions because some single dangerous permission handles different sets of APIs. For

example, an app might request access to READ SMS permissions. Granting such permission to the

app will result in overprivileged access because the READ SMS permissions belong to the SMS-

related group permission. The approval of an app to use SMS permissions will automatically allow

the app to use other SMS related permissions (such as SEND SMS and RECEIVED SMS) without

requiring the user to either grant or deny the requested permission. In addition, an app might request

the READ PHONE STATE permission if such permission is granted to the app. The app can access

different types of information, such as the IMEI, SIM card serial number, SIM card operator, and

device ID. These overprivileged issues associated with the run-time permission requests allow an

app to access more resources than anticipated (Alshehri et al., 2019).

Android uses Intents to enable applications to communicate with one another in a loosely coupled

fashion. Android Intent is a security mechanism for inter-component communication within the OS.

Intent handles app access control to the resources of other apps on a device. Intent works with

Android's permission-based access control system, preventing an app from gaining direct access to

other apps' data without having appropriate authorization. The Intent communicates the intention of

78

an app to perform a specific action. The intent filter defined in the app manifest file communicates

the type of Intent an app can receive. Intent are of two types: explicit and implicit. The explicit Intent

requires launching a specified component when such a request is processed. In contrast, implicit

intents allow the system to look for an appropriate component by looking at the various intent filters

(Idrees et al., 2017).

The Android intent handles all the inter and intra- app messages securely. Intra-app communication

takes place between different activities within the app domain. For example, an app might consist of

different pages; users move from one activity to another, i.e., from one page to another. Also, an

activity might involve a different page element on a single page, such as a button, textbox, etc. The

Android intent allows developers to perform communication or interactions amongst these activities.

In a more precise term, the intent is used to push data between different activities and carry the

results at the end of a specific activity to another activity (Feizollah et al., 2017). Inter-app

communication requires sending messages or data to other apps with the same intent. In this regard,

the app must have declared an appropriate intent and granted the necessary permission to share

data between various apps. An app must define what type of intent it can accept in the intent filter

section of the app manifest file. The binder makes communication between various apps possible in

the Android security system. The binder is responsible for all inter-process communication within the

OS (Feizollah et al., 2017).

4.2 DATA COLLECTION

This study requires data collected from the manifest files of Android Package Kit (APK) installation

files of Android apps to build an ML model. The ML model was used to develop the proposed

prototype system (MINDPRES) to tackle the data security issues caused by malicious apps on MCC

user devices. To construct the required dataset needed to develop the ML models, benign and

malicious apps were downloaded from AndroZoo and RmvDroid repositories (Allix et al.,

2016; Wang et al., 2019).

AndroZoo is one of the research community's largest repositories of Android apps. It contains over

three million apps that belong to different app stores. The AndroZoo repository includes benign and

malware apps drawn from the following app stores: Google Play Store, App China Store, Anzhi,

AnGeeks, 1mobile, torrents, Fdroid, HiApk, Genome, Proandroid, Apk_bang, and Slideme. The apps

in the AndroZoo repository were labelled based on the results of over 50 different anti-virus engines

as either malware or benign apps using the VirusTotal service. The VirusTotal service

(https://www.virustotal.com) is an online tool that contains tens of anti-virus engines. This service is

utilized to scan files to determine if a file contains malicious code or not. The APKs in the AndroZoo

repositories were classified as malicious if any of the anti-virus engines (at least one anti-virus

https://www.virustotal.com/

79

engine) in the VirusTotal service used for scanning the APK detected any malicious codes or

malware samples. This approach resulted in the labelling of over 22% of apps collected from the

official Android market store “Google Play Store” as malicious. In addition, using the results obtained

from at least ten anti-virus engine results as criteria to determine if an app should be classified as

malicious shows that 1% of Google app stores have malicious content or malware. The official

market store has its own inbuilt security to analyze apps before uploading them to the store for the

public to use. However, malware developers have developed new techniques to bypass the security

checks of the official Android app store, which resulted in 1% (Google Play Store) of the apps being

reported as malicious in AndroZoo repository.

The apps in the RmvDroid repository contain over 9,000 malware samples that belong to 56 malware

families. However, the malware families of the malicious APK samples obtained from the AndroZoo

repositories were not reported. The APKs contained in the RmvDroid repository were collected

based on the results of the maintenance report of the Google Play Store for four years. Each year,

a snapshot of the Google Play Store is created; the metadata for each app includes the name,

description, developer name, number of user installs, user rating, and the app API. RmvDroid

reported having crawled over 1.5 million apps in four years. The malicious APKs were determined

by the list of apps removed from the Google Play Store by comparing each snapshot. The removed

apps' APKs were scanned using the VirusTotal services to ascertain how many of such apps' APKS

have been flagged by various antivirus engines as malicious and used the AVClass to assign each

app APK a malware family label (Sebastián et al., 2016).

The collection of app APKs from the two repositories requires the authors' authorization to download

the APKs because the APKs are not publicly available. The authors provided the authorization key

to download the apps' APK from their repositories (AndroZoo and RmvDroid) using a C# console

app design in this study. The APK files were automatically downloaded and stored on the university's

remote server allocated for this research for further processing. Due to the size of the APK files, the

APK files collection stage consumes a lot of time and requires a lot of storage space. Between June

1st and July 31st, 2020, over 40,000 unaltered app APKs were downloaded from both repositories.

This research uses the VirusTotal services to ascertain the cleanliness of the collected APKs. The

APK files were scanned using the VirusTotal service engine to categorize each file as a benign or

malicious app. In this study, each app APK is labelled “benign” if none of the anti-virus engines in

the VirusTotal service flagged the APK file as malicious. In contrast, an app is labelled “malicious” if

at least 15 VirusTotal anti-virus engines flag it as malicious. However, most research work in the

literature has based their work on using 1 to 10 anti-virus engines as a criterion to determine if an

app is malicious. This work adopted at least 15 “malicious” outcomes from the different anti-virus

engines to classify an app as malicious to build a more reliable dataset. The reason for this required

80

number of anti-virus engines in the VirusTotal service (at least 15 anti-virus engines flagging an app

as malicious) is to remove uncertainty and build a more reliable ML model. Although some of these

apps might not be malicious, they might contain codes that perform some activities that compromise

data security at the device level.

In this study, most of the benign apps labelled based were originally collected from the official

Android app store, “Google Play Store,” as reported in AndroZoo. Most of the malicious apps that

were labelled for the construction of the dataset were collected initially from the App China store in

AndroZoo repository. After completing the scanning and labelling of the collected APK files, a total

of 28,306 apps, 9,879 benign and 18,427 malicious apps APK, were labelled, while the remaining

apps APK were discarded. In particular, the sampled malicious apps used in this study contain apps

that use the Joker malware; the Joker malware is known to be quite pervasive and has affected

several apps available in the Google app store. The distribution of the app APK source market used

in constructing the dataset in this study is shown in Table 4.1.

81

Table 4.1 Apps Apk Source Market Distribution.

App Type App Market Total

Benign play.google.com 9879

Malicious

play.google.com 2121

angeeks 53

angeeks|appchina 1

anzhi 2403

anzhi|appchina 1

anzhi|mi.com|appchina 7

appchina 12453

appchina|mi.com 1

appchina|play.google.com|PlayDrone 2

appchina|VirusShare 2

mi.com 5

play.google.com 671

1mobile 35

play.google.com|appchina|PlayDrone 1

play.google.com|PlayDrone 39

play.google.com|PlayDrone|mi.com 1

play.google.com|PlayDrone|VirusShare 1

PlayDrone 93

PlayDrone|play.google.com 49

PlayDrone|play.google.com|appchina 1

PlayDrone|VirusShare|play.google.com 1

praguard 46

slideme 22

VirusShare 629

Total 28,306

4.2.1 DATASET CONSTRUCTION

The manifest file contains essential information (such as the required permissions and intents) about

the app functionality. To construct the feature datasets required for the laboratory experiments

conducted in this study, the collected app APK files were first pre-processed to extract the

permissions and intents used by each app. The sets of unique permissions and intents used by the

apps are shown in Appendix A, Tables 1 and 2). The various steps used in the pre-processing of

app APKs in this research are presented in Figure 4.1. The APK of each label app was decompiled

using the APK Easy tool. The APK Easy tool is a software utility tool use for decomiplation of an APK

file. The APK Easy tool applies the reverse software engineering techniques to decompile the APK

file and extract its manifest file. The Apk Easy Tool is a lightweight application that provides an

excellent user interface that allows easy decomiplation of each apk file. The manifest file of each

82

app was extracted using a customized console program after completing the decomiplation process

of each app's APK.

Figure 4.1 Data Pre-processing and Features Extraction Stages

The manifest file contains essential information (such as the required permissions and intents) about

the app functionality. The three feature datasets used in the experiment (a feature set representing

the permissions used by the apps, a feature set representing the intents used by the apps and

combine feature set representing both the intents and permissions used by the apps) were

constructed as explained below. In each dataset, the value of one represents that the app requires

that specific permission or intent, and the value of zero indicates that the app does not require such

permission or intent for its functionality. The final column in each dataset is the output column, which

contains one or zero values. The value of one in the output column of the datasets indicates that the

app with the corresponding permissions and/or intent features belongs to the malicious app category.

The value of zero in the output column of the dataset indicates that the app belongs to the benign

app category. The constructed dataset also contained the total number of permissions and/or intents

required by each app and the hash value of the apk name, as shown in Table 4.2., Table 4.3 and

Table 4.4.

The first dataset was constructed from the list of unique permissions in Table 1 in appendix A. using

a binary vector. Such that Pi= {P1, P2, P3, ……., Pn} where n = 132 is the total number of unique

permissions in the entire datasets.

83

Each app APK in the first dataset was represented using the binary vector of permissions required

by an app as contained in the manifest file i.e., APPi where

𝐴𝑝𝑝(𝑖) {
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

The second dataset was constructed from the list of unique intents in Table 2 in appendix A. using

a binary vector. Such that Ii= {I1, I2, I3, ……., In} where n = 131 is the total number of unique intents

in the entire datasets.

Each app APK in the second dataset was represented using the binary vector of intents required by

an app as contained in the manifest file i.e., APPi where

𝐴𝑝𝑝(𝑖) {
1 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

Finally, the third dataset was constructed by combining dataset 1 and dataset 2. The third dataset

consists of unique permissions and intents in Table 1 and Table 2 in appendix A respectively using

a binary vector. Such that PIi= {PI1, PI2, PI3, ……., PIn} where n = 236 is the total number of unique

permissions and intents in the entire datasets.

Each app APK in the third dataset was represented using the binary vector of permissions or intent

required by an app as contained in the manifest file i.e., APPi where

𝐴𝑝𝑝(𝑖) {
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

Table 4.2 Sample Structure of the Constructed Dataset 1(Permissions)

S/N Apk P1 P2 P3 P4 . . P132 Total Permission Used App Type

1 XXX 0 1 1 1 1 4 (1) Malware

2 YYY 0 0 1 1 0 2 (0) Benign

3 ZZZ 0 1 0 0 0 1 (0) Benign

4 TTT 1 0 1 0 1 3 (1) Malware

.

.

.

28,306 WWW 0 1 0 1 0 1 (1) Malware

Table 4.3 Sample Structure of the Constructed Dataset 2(Intents)

S/N Apk I1 I2 I3 I4 . . I131 Total Intent Used App Type

1 XXX 0 1 1 1 1 4 (1) Malware

2 YYY 0 0 1 1 0 2 (0) Benign

3 ZZZ 0 1 0 0 0 1 (0) Benign

4 TTT 1 0 1 0 1 3 (1) Malware

.

.

.

28,306 WWW 0 1 0 1 0 1 (1) Malware

84

Table 4.4 Sample Structure of the Constructed Dataset 3 (Permissions and Intents)

S/N Apk PI1 PI2 PI3 PI4 . . PI263 Total Permission/Intent Used App Type

1 XXX 0 1 1 1 1 4 (1) Malware

2 YYY 0 0 1 1 0 2 (0) Benign

3 ZZZ 0 1 0 0 0 1 (0) Benign

4 TTT 1 0 1 0 1 3 (1) Malware

.

.

.

28,306 WWW 0 1 0 1 0 1 (1) Malware

Overall, the extracted metadata from the manifest files of all apps APK used to construct the datasets

consists of 291,863 permissions and 112,022 intents. There were 132 unique permissions and 131

unique intents used in the dataset’s construction. The number of apps APK that uses demanded

each permission and intents as contained in the data retrieved from each manifest file are shown in

Table 1 and Table 2 in appendix A.

4.2.2 PERMISSION AND INTENT USAGE ANALYSIS

This section discusses the analysis of the pre-processed data used to construct the dataset. The

analysis of the dataset reveals how malicious apps utilize certain permissions and intents to steal

sensitive information from the Android devices used in the MCC environment. First, the number of

apps that use each permission and intent was computed. This computation shows the usage pattern

amongst the two categories of app types (benign and malicious apps). As shown in Table 4.5,

malware apps were seen to use more dangerous permissions than benign apps. The analysis of the

dataset shows that out of the 132 unique permissions used by the entire set of apps, 110 of those

permissions were common to both malicious and benign apps. The dataset analysis also reveals

that most benign apps use fewer permissions than malicious apps. The dataset results show that

benign apps use an average of 7 permissions, while malicious apps use an average of 13

permissions. However, some benign apps use more permissions like malicious apps. The results

also reveal that the top ten benign apps use 36 to 64 permissions while malicious apps use 68 to

89. After analysing the results of the usage patterns of the permissions and intents demanded by

apps in the dataset, the overall usage patterns of permissions and intents in the dataset analysis

reveal frequently used permissions and intents amongst the collected apps in the dataset. Tables

4.5 and 4.6 show the top 25 permissions and intents commonly used by benign and malicious apps.

85

Table 4.5 Permissions Usage Analysis

ID Permission Name Category
Benign
Usage

(%)

Malicious
Usage (%)

P1 WRITE_EXTERNAL_STORAGE Dangerous 63.61 91.47

P2 READ_PHONE_STATE Dangerous 25.84 96.52

P3 ACCESS_COARSE_LOCATION Dangerous 24.95 68.20

P4 ACCESS_FINE_LOCATION Dangerous 26.72 59.53

P5 GET_TASKS Dangerous 6.49 50.17

P6 READ_EXTERNAL_STORAGE Dangerous 30.58 33.42

P7 SYSTEM_ALERT_WINDOW Dangerous 7.78 29.47

P8 READ_LOGS Dangerous 1.85 30.57

P9 MOUNT_UNMOUNT_FILESYSTEMS Dangerous 1.52 30.57

P10 CAMERA Dangerous 19.34 19.70

P11 RECORD_AUDIO Dangerous 8.31 20.18

P12 GET_ACCOUNTS Dangerous 19.41 14.14

P13 CALL_PHONE Dangerous 7.62 18.81

P14 WRITE_SETTINGS Dangerous 5.70 16.50

P15 SEND_SMS Dangerous 2.08 17.36

P16 INTERNET Normal 98.80 99.89

P17 ACCESS_NETWORK_STATE Normal 93.09 97.88

P18 ACCESS_WIFI_STATE Normal 35.59 83.36

P19 WAKE_LOCK Normal 58.29 45.16

P20 VIBRATE Normal 34.04 50.92

P21 RECEIVE_BOOT_COMPLETED Normal 23.30 38.22

P22 CHANGE_WIFI_STATE Normal 4.92 31.42

P23 ACCESS_LOCATION_EXTRA_COMMANDS Normal 1.00 22.65

P24 RESTART_PACKAGES Normal 1.00 17.63

P25 MODIFY_AUDIO_SETTINGS Normal 4.73 13.32

Note

Benign App Usage %= (Nos of Benign Apps that Use a Specific Permission /Total
Benign Apps in the Entire Dataset) X 100

Malicious App Usage %= (Nos of Malicious Apps that Use a Specific Permission /Total
Malicious Apps in the Entire Dataset) X 100

The total no of apps that uses a specific permission are listed in Table 1 in Appendix A

For Example, P1(WRITE_EXTERNAL_STORAGE) The number of apps that uses P1
permissions in the dataset as shown in Table 1 in appendix A =6284 (See S/N 128)

Therefore, Benign App Usage %= (6284/9,879) X100=63.61

Similarly for malicious app usage % for P1
(16855/18427) X 100 =91.47

Total Benign apps APK in the Dataset =9,879
Total Malicious apps APK in the Dataset =18,427

86

Table 4.6 Intents Usage Analysis

ID Intent Name
Benign App
Usage (%)

Malicious App
Usage (%)

I1 Action MAIN 99.86 98.59

I2 Category LAUNCHER 99.79 97.86

I3 Category DEFAULT 35.53 39.64

I4 Action BOOT COMPLETED 23.76 30.27

I5 Action PACKAGE ADDED 3.89 29.01

I6 Action VIEW 25.04 16.68

I7 Category BROWSABLE 22.72 14.19

I8 Action USER PRESENT 2.78 19.88

I9 Action PACKAGE REMOVED 1.98 14.15

I10 Category HOME 1.28 11.08

I11 Action SEARCH 4.66 2.24

I12 Action CREATE SHORTCUT 0.63 4.23

I13 Action MY PACKAGE REPLACED 6.58 0.16

I14 Action SEND 4.07 1.25

I15 Action PACKAGE REPLACED 2.08 2.25

I16 Action MEDIA MOUNTED 0.63 2.30

I17 Category LEANBACK LAUNCHER 3.83 0.36

I18 Action NEW OUTGOING CALL 0.69 2.02

I19 Action MEDIA BUTTON 3.21 0.44

I20 Action PACKAGE INSTALL 0.80 1.71

I21 Action SCREEN ON 0.26 1.44

I22 Category MONKEY 0.12 1.38

I23 Action TIMEZONE CHANGED 1.58 0.59

I24 Action SCREEN OFF 0.27 1.16

I25 Category INFO 0.87 0.81

Note

Benign App Usage %= (Nos of Benign Apps that Use a Specific Intent /Total Benign
Apps in the Entire Dataset) X 100

Malicious App Usage %= (Nos of Malicious Apps that Use a Specific Intent /Total
Malicious Apps in the Entire Dataset) X 100

The total no of apps that uses a specific Intent are listed in Table 2 in Appendix A

For Example, I1(Action Main) The number of apps that uses I1 intents in the dataset as
shown in Table 2 in appendix A =9865 (See S/N 1)

Therefore, Benign App Usage %= (9865/9,879) X100=99.86

Similarly for malicious app usage % for I1
(18168/18427) X 100 =98.59

Total Benign apps APK in the Dataset =9,879
Total Malicious apps APK in the Dataset =18,427

87

In order to visualize the usage patterns of both permissions and intents, Figures 4.2 and 4.3 present

the data in Tables 4.5.and 4.6 (i.e., the usage of the top 25 unique permissions and unique intents

by benign and malicious apps, respectively), sorted by value. The analysis of permissions and intent

usage shows that most malicious apps utilize most of the permissions that fall under the dangerous

category compared to benign apps. Suppose these permissions are granted to an untrusted app on

a user device. In that case, the resultant effects can lead to the exposure of such devices to malicious

activities unknown to the user. For example, if the GET_TASK permission is granted to an app, such

an app can read the list of other apps on the user's device. As shown in Table 1 in Appendix A, over

50% of the malicious apps in the collected data requested the dangerous permissions s P1, P2, P3,

P4 and P5. These permissions were also requested by a number of benign apps. However, only

63.61% of the benign apps requested P1 while 91.47% of malicious app requested the same

permissions as shown in Table 4.5; a similar pattern can be observed for dangerous permissions

P2, P3, P4 and P5.

Figure 4.2 Top 25 Permission Usage Frequency of Apps in the Dataset

0

20

40

60

80

100

120

IN
TE

R
N

ET

A
C

C
ES

S_
N

ET
W

O
R

K
_S

TA
TE

W
R

IT
E_

EX
TE

R
N

A
L_

ST
O

R
…

R
EA

D
_P

H
O

N
E_

ST
A

TE

A
C

C
ES

S_
W

IF
I_

ST
A

TE

A
C

C
ES

S_
C

O
A

R
SE

_L
O

C
A

T…

W
A

K
E_

LO
C

K

A
C

C
ES

S_
FI

N
E_

LO
C

A
TI

O
N

V
IB

R
A

TE

G
ET

_T
A

SK
S

R
EC

EI
V

E_
B

O
O

T_
C

O
M

P
L…

R
EA

D
_E

X
TE

R
N

A
L_

ST
O

R
A
…

C
H

A
N

G
E_

W
IF

I_
ST

A
TE

SY
ST

EM
_A

LE
R

T_
W

IN
D

O
W

R
EA

D
_L

O
G

S

M
O

U
N

T_
U

N
M

O
U

N
T_

FI
L…

C
A

M
ER

A

R
EC

O
R

D
_A

U
D

IO

G
ET

_A
C

C
O

U
N

TS

A
C

C
ES

S_
LO

C
A

TI
O

N
_E

X
T…

C
A

LL
_P

H
O

N
E

W
R

IT
E_

SE
TT

IN
G

S

SE
N

D
_S

M
S

R
ES

TA
R

T_
P

A
C

K
A

G
ES

M
O

D
IF

Y_
A

U
D

IO
_S

ET
TI

N
…

P
er

ce
n

ta
ge

 U
sa

ge

List of Top 25 Permissions in the Dataset

Top 25 Permission Usage Frequency of Apps in the Dataset

Benign Malicious

88

Figure 4.3 Top 25 Intent Usage Frequency of Apps in the Dataset

Further analysis of the results obtained in the dataset shows that 96.52% of the malicious apps in

the dataset required the READ_PHONE_STATE permission. The READ_PHONE_STATE

permission is the one most required by malicious apps. This permission enables hackers or malware

developers to get the device identification number, such as the IMEI of a smartphone. Once granted

to a malicious app, this permission results in targeted devices for specific online advertisements

(ads). If not carefully reviewed by the user, these various ads mightily make their device more

vulnerable. These vulnerabilities are exploited to target the devices and other devices connected to

the same network as the infected device. The READ_PHONE_STATE permission, when used with

other dangerous permissions, can enable apps to steal sensitive data or information from a device

that is unknown to its owner. For example, an app requests both the GET_TASK and

READ_PHONE_STATE permissions and receives approval from the device user. Such devices

might be exposed to unauthorized access to sensitive information if such an app were installed from

an untrusted source. However, some benign apps require both permissions, representing only a

smaller fraction of the dataset. For example, 6.49% and 25.84% of benign apps only requested the

GET_TASK and READ_PHONE_STATE permissions, respectively.

-

20.00

40.00

60.00

80.00

100.00

120.00

P
er

ce
n

ta
ge

 U
sa

ge

List of Top 25 Intents

Top 25 Intents Usage Analysis in the Dataset

Series1 Series2 Series3 Benign Malicious

89

The analysis of most malicious apps' permissions and intent usage reveals the possibility of privacy

leakage of user location unknown to the device user. Over 60% of malicious apps requested the

ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION permissions. If these

permissions are granted to an app, that app constantly monitors the user's locations. However, only

27% of benign apps requested such services. The analysis of the permissions and intents usage

amongst the malicious APK shows that most malicious apps are fond of exploiting the READ LOGS

permissions to monitor the activities of all apps on the user device. When the READ LOGS

permission is used with the MOUNT_UNMOUNT FILESYSTEMS permission, malicious apps exploit

the device's file system, leading to data security issues. The result in the dataset shows that 30.57%

of malicious apps requested both READ_LOGS and MOUNT_UNMOUNT FILESYSTEMS

permissions. Nevertheless, the issue of unauthorized access to sensitive information on devices is

possible if an app request some of these dangerous permissions discussed while having access to

the WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE permissions. If granted,

these two permissions, together with other related dangerous permissions, enable an app to

manipulate and access different storage media available on such devices and send that information

remotely to the malware developers database.

In addition, 91.47% and 33.42% of malicious apps requested the WRITE EXTERNAL STORAGE

and READ EXTERNAL STORAGE permissions, while only 63.61% and 30.58% of benign apps

requested the same permissions, respectively. The possibility of unauthorized access to sensitive

information stored on the devices is high since all Android apps access the INTERNET Permission.

The results from the dataset used in this work show that almost 100% of malicious apps requested

INTERNET permission, while 98.80% of benign apps requested INTERNET permission. In addition,

most malicious apps tend to use a significantly higher number of dangerous permissions than normal

permissions.

Furthermore, the issue of malware developers' targeting the intercommunication processing system

of the Android OS using app intents to manage activities between app components and other apps

residing on the device has raised serious security concerns. These techniques, used by some

malicious apps, are hard to detect by the existing security system. The Intent feature of the Android

OS enables both inter-and intra-process communications between different apps. Intent allows two

apps to exchange information without user consent. Malware developers exploit this feature to steal

sensitive information from the device. Based on the results presented in Figure 4.3. Intents as a

means of communication between two apps unknown to the user were seen in some malicious apps

in the dataset. Some malicious apps use the USER_PRESENT intent to determine when the device

owner is using the phone and when the device is idle. This feature enables malicious apps to operate

in the background since user activities may affect these processes. The Action_PACKAGE_ADDED

90

Intent allows an app to automatically add or load malicious code to existing apps or install new apps

in the background without the user's consent. However, most such apps do have their icons disabled

so that the user might not notice the presence of some illegal apps on their device. The

BOOT_COMPLETED intent, when used with the RECEIVE_BOOT_COMPLETED permission,

allows an app to monitor the boot status of the device. If an app with malicious intentions requests

the RECEIVE_BOOT_COMPLETED permission, the permission is granted. Such an app can use

the BOOT_COMPLETED intent to perform malicious activities that can affect the OS kernel of the

device. Similarly, both benign and malicious apps used action_main and category_launcher intents

to start their different activities on the device.

Finally, the Android OS allows users to grant or deny apps whenever they request permission from

the dangerous permission set. The approval of some of these dangerous permissions to an app

downloaded and installed from an untrusted source may expose the device to malicious activities.

Because the use of intent with these dangerous permissions can easily compromise the device, the

Android OS does not have the functionality to alert the user of any intent being used by an app. Most

proposed systems have only considered permission as a static feature for designing malware

detection systems. However, this study considers intent as a feature that can be combined with

permissions to build an effective malware detection system. This research uses permissions and

intents as static features to design a detection system to manage intrusion activities caused by

malicious apps in the MCC environment.

4.3 LABORATORY EXPERIMENT 1

This experiment aims to find the best ML classification algorithms to distinguish malicious apps from

benign apps. The best ML classification algorithms obtained from this experiment are used to build

an ensemble ML model to manage intrusions caused by malicious apps in the user layer of the MCC

architecture. This experiment uses the dataset constructed from the requested permissions and

intents retrieved from the APK manifest files, as discussed in Section 4.2. The ML classification

algorithms used for this experiment are shown in Table 4.7. The choice of these algorithms is based

on the nature of the dataset constructed in this study. In addition, related works in this field of study

has also adopted these set of ML classifier because of the nature of the proposed model to

distinguish malicious apps from benign apps.

91

Table 4.7 The Selected ML Classification Algorithms

Classifier ID ML Classification Algorithm

C1 Decision Tree Classifier

C2 Random Forest Classifier

C3 AdaBoosting Classifier

C4 Naïve Bayes Classifier

C5 Stochastic Dual Coordinate Ascent Classifier

C6 Multi-layer Perception Classifier

C7 K-Nearest Neighbours Classifier

C8 Linear Discriminant Analysis Classifier

C9 Logistic Regression Classifier

C10 Support Vector Machine Classifier

The ML experiment conducted in this study was implemented using the Python programming

language using the ML classification algorithms (C1 to C10) in Table 4.7. The ML experiment uses

the scikit-learn, pandas, and anaconda Python ML libraries. The experiment uses the three datasets

constructed as explained in Section 4.2.1 (Tables 4.2, 4.3, and 4.4). Each of the three datasets was

split in three portions (to be used for model training, validation, and testing, respectively), using the

same proportion (Table 4.8). Each of the three datasets has the same distribution of apps APK in its

dataset for training, validation, and testing, as shown in Table 4.8. The experiment was performed

at the Auckland University of Technology, New Zealand, the WT Building laboratory using the

following computer hardware configuration: Intel (R) Core (TM) i7-8700 CPU @3.20GHz, 16GB

RAM, and a 500GB hard disk drive.

Table 4.8 Apps Distribution as used in the three datasets.

App Type Training (72 %) Validation (8%) Testing (20%) Total

Benign 7,096 788 1,995 9,879

Malicious 13,285 1,476 3,666 18,427

Total 20,379 2,266 5,661 28,306

4.3.1 MACHINE LEARNING CLASSIFICATION ALGORITHMS

The ML classification algorithms used in this experiment are well-known in related studies. Table 4

in the appendix A section shows a summary of related works and the ML classifiers used in their

proposed solutions and experiments. The choice of these selected algorithms in Table 4.7 was

based on the nature of the dataset constructed in this study and related works that have used similar

algorithms in their various studies. The problem domain centres on classification problems. The

model can differentiate between malicious and benign apps by learning from the features (requested

permissions and intents by an app) represented in the dataset. These ML algorithms are briefly

described as follows:

92

A. Decision Tree Classifier (C1): The Decision Tree (DT) Classifier belongs to the ML

supervised family. This classifier is used for both classification and regression problems. This

classifier's main goal is to create a model that can predict a class label for malicious or benign

apps. The DT classifier uses a tree structure to solve a specific problem. The leaf node in the

tree represents a class label, and attributes are defined in the internal node structure of the

tree.

B. Random Forest Classifier (C2): The Random Forest (RF) belongs to the supervised ML

family, and it is used for both classification and regression problems. The RF is an ensemble

classifier that consists of multiple decision trees. The trees in the RF classifier learn

independently on a subset of the training set that is randomly selected. The RF classifier

uses bagging techniques to improve the overall results by combining the results of different

learning models. The output of the RF ML classifier is determined by the most frequently

occurring categories predicted by each learning model of each tree in the classifier. However,

it is more suitable for multi-classification problems due to the nature of the tree, and it is also

very effective when it comes to binary classification problems.

C. AdaBoosting Classifier (C3): The AdaBoost Classifier is an example of an ensemble ML

classification algorithm belonging to the supervised ML family. This algorithm is used to

create a strong classifier from a weaker one. The algorithms work on the principle that each

learner is grown sequentially, such that each learner is grown from the previous learner

except the first learner.

D. Naïve Bayes Classifier (C4): The Naïve Bayes (NB) classifier belongs to the supervised ML

family, and the algorithms apply the probabilistic approach in solving classification problems

using the Bayes’ theorem. This ML model does not use iterative modelling like other

supervised ML classifiers. When given a test sample, the NB classifiers compute the

probability of various categories and determine the outcome by selecting the class with the

highest probability.

E. Stochastic Dual Coordinate Ascent Classifier (C5): The Stochastic Dual Coordinate

Ascent (SDCA) Classifier is an example of a supervised ML algorithm suitable for

classification problems. This classifier selects random coordinates to maximize the dual

objectives for solving a classification problem. The nature of its iteration is sequential as

compared to other ML classifiers.

F. Multi-layer Perception Classifier (C6): Multi-layer Perception (MLP) belongs to the

feedforward artificial neural network class. This classifier consists of three layers (input,

hidden, and output). The classifiers provide a non-linear mapping of the input’s vectors to a

specific output vector. This classifier is applied to solving problems in different domains. The

input layer is responsible for receiving the input data. The prediction of each class label is

performed at the output layer. In contrast, the hidden layer acts as the computational engine

93

where all the necessary mappings occur before the output layer determines the results. The

neurons in the MLP classifier are trained using backpropagation learning algorithms. This ML

algorithm is very effective for solving classification problems.

G. K-Nearest Neighbours Classifier (C7): The K-Nearest Neighbours (KNN) classifier is a

non-parametric classification algorithm that belongs to the supervised ML family. This

classifier measures the distance between the test sample and the training samples and uses

a majority voting concept to predict the category to which a specific sample belongs. Like the

NB classifier, the KNN algorithms do not apply probabilistic concepts. The ‘K’ is the nearest

neighbours that participate in the voting process. This type of classifier is more suited for

classing new objects. The numbers of K can yield different results under the same

circumstances.

H. Linear Discriminant Analysis Classifier (C8): The Linear Discriminant Analysis (LDA)

Classifier combines variables to maximize the difference between defined groups. This

classifier is used when the predictors are distributed. This ML classifier solves both

classification and regression problems. This classifier divides the dataset into k disjointed

regions, representing the different class labels in the set. The final prediction is based on the

maximum probabilistic allocation of the different class labels in the test set.

I. Logistic Regression Classifier (C9): The Logistic Regression (LR) Classifier is a

supervised ML algorithm used for classification and regression problems. The LR classifier

uses a statistical model that uses a logistic curve to fit the training dataset. Unlike other

classifiers mentioned in this work, this classifier is easily updated to take new data. The

classifier threshold can easily be adjusted. However, it requires a large sample size to be

efficient in predicting. This classifier finds the probability that a given instance of an input set

belongs to a specific class. The LR as a binary ML classifier requires a threshold to enable

the model to differentiate between two classes.

J. Support Vector Machine Classifier (C10): The Support Vector Machine (SVM) classifier

maps each input feature into an n-dimensional feature space such that n is the total number

of features. This classifier identifies the hyperplane that separates each input feature into two

different classes while maximizing the marginal distance for the classes and reducing the

classification errors. This classifier can classify both non-linear and linear data items. This

classifier uses the marginal distance between a class in its decision making.

94

4.3.2 VALIDATION METRICS USED IN THIS STUDY

This study uses the confusion matrix to validate the performance of the different ML classifiers in the

experiment carried out in this study, which is defined as follows:

A. True Positive (TP): The total number of malicious apps that were classified correctly.

B. True Negative (TN): The total number of benign apps that were classified correctly.

C. False Negative (FN): The total number of malicious apps that were incorrectly classified as

benign apps.

D. False Positive (FP): The total numbers of benign apps that were incorrectly classified as

malicious apps.

4.3.3 EVALUATION METRICS USED IN THIS STUDY

To evaluate the performance of the different classifiers used in the experiment, the following metrics

were adopted for this study based on the analysis of the 100 frameworks in the literature review as

referenced in F1 to F35 in Table 2.5 and F36 to F100 in Table 2.6. Table 2.8 shows the definition of

all the formulas used as evaluation metrics in this study which are obtained from the sources

referenced in the reviewed works (F1 to F100). Furthermore, the relevant prior work used in the

comparison of the results is referenced in Table 6.8, along with the evaluation metrics used.

A. Classification Accuracy (CA): This is the total percentage of the correctly classified

malicious and benign apps in the dataset.

𝐶𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100 Eq. 4.1

B. Error Rate (ER): This is the total percentage of all wrongly classified benign and malicious

apps in the entire dataset.

 𝐸𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100 Eq. 4.2

C. Precision Rate (PR): This is the total percentage of correctly classified results of all

malicious apps that belongs to the benign labelled in the dataset.

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 Eq. 4.3

D. Recall Rate (RC): This is the total percentage of malicious apps that are correctly predicted

as malicious apps in the dataset.

𝑅𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 Eq. 4.4

E. False Positive Rate (FPR): This is the total percentage ratio of malicious apps classified

wrongly to the actual numbers of the malicious samples in the dataset.

95

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100 Eq. 4.5

F. False Negative Rate (FNR): This is the total percentage ratio of benign apps classified

wrongly to the actual number of samples in the dataset.

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
× 100 Eq. 4.6

G. False Alarm Rate (FAR): This is the total percentage average ratio of malicious and benign

apps that are misclassified.

𝐹𝐴𝑅 =
𝐹𝑃𝑅+𝐹𝑁𝑅

2
 Eq. 4.7

H. F-Measure (FM): This is the harmonic mean of the proposed classifier which is obtainable

from the value of both PR and RC.

𝐹𝑀 = 2 ×
𝑃𝑅×𝑅𝐶

𝑃𝑅+𝑅𝐶
 Eq. 4.8

4.3.4 RESULTS OBTAINED FROM EXPERIMENT 1

The results obtained from laboratory experiment 1 conducted in this study were evaluated using the

confusion matrix evaluation metrics discussed in Sections 4.3.3 and 4.3.4. The results obtained from

the experiment conducted using the ten ML classifiers are presented in Table 4.9. The outcome of

experiment 1 was also validated using a tenfold cross-validation technique, and the validation results

are shown in Table 4.10.

96

Table 4.9 Results of the First Experiment
C

la
s

s
if

ie
r

D
a

ta
s

e
t

TP FP TN FN CA ER PR RC FM FPR FNR FAR

C1 Permission 3451 201 1774 235 92.30 7.70 94.50 93.62 94.06 10.18 6.38 8.28

 Intent 3455 1238 723 235 73.93 26.07 73.62 93.63 82.43 63.13 6.37 34.75

 Both 3435 153 1842 231 93.22 6.78 95.74 93.70 94.71 7.67 6.30 6.99

C2 Permission 3520 186 1789 166 93.78 6.22 94.98 95.50 95.24 9.42 4.50 6.96

 Intent 3478 1248 714 212 74.16 25.84 73.59 94.25 82.65 63.64 5.75 34.69

 Both 3504 144 1851 162 94.59 5.41 96.05 95.58 95.82 7.22 4.42 5.82

C3 Permission 3489 296 1679 197 91.29 8.71 92.18 94.66 93.40 14.99 5.34 10.17

 Intent 3428 1244 717 262 73.35 26.65 73.37 92.90 81.99 63.44 71.0 35.27

 Both 3480 249 1746 186 92.32 7.68 93.32 94.93 94.12 12.48 5.07 8.78

C4 Permission 1043 61 1914 2643 52.23 47.77 94.47 28.30 43.55 3.09 71.70 37.40

 Intent 1042 86 1875 2648 51.62 48.38 92.38 28.24 43.25 4.39 71.76 38.07

 Both 1306 66 1929 2360 57.15 42.85 95.19 35.62 51.85 3.31 64.38 33.84

C5 Permission 3543 333 1642 143 91.59 8.41 91.41 96.12 93.71 16.86 3.88 10.37

 Intent 3414 1251 710 276 72.98 27.02 73.18 92.52 81.72 63.79 7.48 35.64

 Both 3488 248 1747 178 92.47 7.53 93.36 95.14 94.24 12.43 4.86 8.64

C6 Permission 3471 202 1773 215 92.63 7.37 94.50 94.17 94.33 10.23 5.83 8.03

 Intent 3463 1261 700 227 73.67 26.33 73.31 93.85 82.32 64.30 6.15 35.23

 Both 3461 164 1831 205 93.48 6.52 95.48 94.41 94.94 8.22 5.59 6.91

C7 Permission 3526 243 1732 160 92.88 7.12 93.55 95.66 94.59 12.30 4.34 8.32

 Intent 2439 610 1351 1251 67.07 32.93 79.99 66.10 72.38 31.11 33.90 32.50

 Both 3472 171 1824 194 93.55 6.45 95.31 94.71 95.01 8.57 5.29 6.93

C8 Permission 3552 403 1572 134 90.51 9.49 89.81 96.36 92.97 20.41 3.64 12.02

 Intent 3460 1289 672 230 73.12 26.88 72.86 93.77 82.00 65.73 6.23 35.98

 Both 3504 349 1646 162 90.97 9.03 90.94 95.58 93.20 17.49 4.42 10.96

C9 Permission 3490 268 1707 196 91.80 8.20 92.87 94.68 93.77 13.57 5.32 9.44

 Intent 3455 1276 685 235 73.26 26.74 73.03 93.63 82.06 65.07 6.37 35.72

 Both 3477 218 1777 189 92.81 7.19 94.10 94.84 94.47 10.93 5.16 8.04

C10 Permission 3512 291 1684 174 91.79 8.21 92.35 95.28 93.79 14.73 4.72 9.73

 Intent 3453 1273 688 237 73.28 26.72 73.06 93.58 82.06 64.92 6.42 35.67

 Both 3474 230 1765 192 92.55 7.45 93.79 94.76 94.27 11.53 5.24 8.38

Table 4.10 Ten-Fold Cross Validation Results of the Ten ML Classifiers

D
a

ta
s

e
t

M
e

tr
ic

s

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Permission
Max CA 92.93 93.64 94.70 61.62 95.41 94.01 93.99 93.99 96.11 95.05

MIN CA 87.99 91.17 89.75 50.53 85.51 89.05 88.84 86.57 89.40 88.69

Intent
Max CA 74.82 75.18 76.24 42.20 73.05 75.27 73.14 72.08 76.24 75.53

MIN CA 69.50 69.86 69.15 37.46 57.60 70.57 65.37 67.08 69.96 69.96

Both
Max CA 93.64 95.41 94.70 53.00 94.35 95.76 94.70 93.64 95.41 95.41

MIN CA 87.99 90.46 88.34 40.99 90.46 89.79 88.34 86.57 89.40 89.75

97

4.3.5 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 1

The results obtained from the experiment conducted using the ten ML classifiers are presented in

Table 4.9. The results in Table 4.9 shows each ML classifier's performance. The results presented

in Table 4.9 also show that combining both permission and intent in the ML model outperforms using

either permissions or intents as a feature in the trained model. Although the results obtained using

dataset 1(permissions as features) are similar to the results of the experiment using dataset 3

(permissions and intents as features). In addition, the results obtained using dataset 2 for the

experiment (intent as features) were poor. However, the experimental results recorded with dataset

3 show that the ML model performs better when both permissions and intents are combined as

features to build a malware detection engine, as shown in the results reported in Table 4.9.

Overall, the experimental results show that C2 as an ML classifier outperforms other ML classifiers

as reported in the results, with a classification accuracy of 94.59%, a 96.05% precision rate, a

95.58% recall rate, and a 5.82% false alarm rate, as presented in Figure 4.4 and Figure 4.5. In

addition, the C1 and C7 ML classifiers performed better in the experiments, as shown in Figure 4.4

and Figure 4.5. Both classifiers recorded a classification accuracy of 93.22 and 93.55, respectively.

Therefore, the best three ML classifiers recorded in the experiments are C2, C7, and C1. The results

of the ML experiment were validated using the ten-fold cross-validation ML techniques for each

classifier. The ten-fold cross-validation results are presented in Table 4.10. The results show that

the best three classifiers recorded in the experiment perform better as expected when validated

using the ten-fold cross-validation technique presented in Table 4.10, even though classifier C9

using the permission dataset obtained the highest classification accuracy of 96.11%.

The best three classifiers (C2, C1 and C7) obtained 93.64%, 92.93% and 93.99%, respectively. The

minimum classification accuracy for the best three classifiers obtained during the ten-fold cross-

validation process is 91.17%, 87.99%, and 91.17%. The validation results obtained using dataset 3

(permissions and intents as features) achieve 95.41% accuracy for C2 and C9. The results show

that the best three classifiers still perform better using dataset 3 than the results recorded in dataset

1 during the cross-validation process.

98

Figure 4.4 Performance Evaluation Results for the Ten ML Classifiers (CA, PR, RC & FM)

0

10

20

30

40

50

60

70

80

90

100
P

er
m

is
si

o
n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

P
er

ce
n

ta
ge

Machine Learning Classifiers

Experiment 1 Peformance Evaluation Results
CA, PR, RC and FM

CA PR RC FM

99

Figure 4.5 Performance Evaluation Results for the Ten ML Classifiers (ER,FPR,FNR, & FAR)

4.4 LABORATORY EXPERIMENT 2

This experiment aims to build an ensemble ML model using the best three ML classifiers recorded

in the results obtained in experiment 1. The experiment uses dataset 3 discussed in Section 4.2.1.

The experiment reported in this section was performed at the Auckland University of Technology,

New Zealand WT Building laboratory using the following computer hardware configuration: Intel (R)

Core (TM) i7-8700 CPU @3.20GHz, 16GB RAM, and a 500GB hard disk drive.

To improve the performance of the ensemble ML model, this study proposed a filter-based feature

selection (FS) technique that uses a statistical approach to reduce the number of features needed

to train the ensemble ML model. The proposed FS technique uses the analysis of the permissions

and intent usage in the dataset, discussed in Section 4.2.2. as a basic criterion for the selection of

features. The results of the ML experiment reported in this section are compared to the individual

ML classifiers used in experiment 1 using the reduced feature set dataset generated after the FS

process.

0

10

20

30

40

50

60

70

80
P

er
m

is
si

o
n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

P
er

m
is

si
o

n

In
te

n
t

B
o

th

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

P
er

ce
n

ta
ge

Machine Learning Classifiers

Experiment 1 Performance Evaluation
Results for ER, FPR, FNR and FAR

ER FPR FNR FAR

100

4.4.1 FEATURE SELECTION METHODS

In this study, FS refers to selecting the features (from the entire features dataset) used in the ML

model for malicious app detection. Selecting the most relevant features is critical because it improves

the ML detection model's performance. The techniques for selecting the best features have been

classified as filter, wrapper, and embedded feature selection methods (Şahin et al., 2021). While

filter FS methods employ statistical techniques to select the best features, wrapper methods rely on

heuristics (e.g., a machine learning classifying algorithm) rather than statistical techniques. While

wrapper methods effectively determine the optimal feature subset, they are more computationally

intensive than filter methods. Unlike filter and wrapper FS methods, which select the best features

before training the ML model, embedded FS methods do so during the training process (Shabtai et

al, 2012; Şahin et al., 2021).

In the existing literature, various feature types and FS techniques have been proposed. Most static

analysis results published in the literature have been obtained using a small number of application

samples, with only a few utilizing an ensembling technique to construct the malware detection model.

For example, Shabtai et al. (2012) used Chi-Square, Information Gain (IG), and Fisher's Score as

filtering methods; the set of features included CPU power consumption and Wi-Fi output volume.

The three FS methods generated subsets of the 10 most significant features, the 20 most significant

features, and the 50 most significant features, respectively. The authors' generic malware detection

framework was evaluated using six different ML classifiers; the accuracy of malicious app

classification ranged between 87 and 93%, with the Decision Tree (DT) algorithm achieving the

highest rate.

On the other hand, the test set contained only a few (purpose-built) malicious apps. Alazab et al.

(2020) used API calls as a feature set and achieved a classification accuracy of 98.10% by selecting

relevant features using Chi-Squared. The proposed model reported in their work was evaluated

using the real-world live dataset of 9,000 apps. This study proposed a filter-based FS method that

selects features by applying a statistical approach, taking into account the relative usage of each

permission or intent by benign and malicious apps, as discussed in the subsequent section.

4.4.2 THE PROPOSED FILTER-BASED FEATURE SELECTION TECHNIQUE

This section presents the proposed filter-based statistical use to select relevant features (using the

full features in dataset 3). The high dimensionality (263 features) of dataset 3 used in experiment 1

can negatively affect the performance and energy consumption if such a feature dataset is used to

train and build an ML model for resource-constrained MDs used in the MCC environment. This study

proposed a new FS technique to help select relevant features (permissions and intents) to improve

the performance of the ensemble ML model and make it feasible to be implemented in resource-

constrained MDs in the MCC environment.

101

The proposed filter-based FS techniques use a statistical model to best perform features to build the

ML model for effective malware detection. The statistical FS technique presented in this study uses

a statistical Intrinsic Deviation Model (IDM) by considering the relative usage of each permission or

intent by benign and malicious apps. This approach analyses the dataset and identifies usage

patterns common to malicious and benign apps while identifying features used to distinguish

between the two app categories. This statistical filter-based FS technique helps to eliminate some

permissions and intent that are frequently used by both benign and malicious apps, and other

features that are not relevant to the detection process are removed. For example, the INTERNET

permission indicates that an app may access the internet services. The analysis discussed in Section

4.2.2 shows that almost all apps use INTERNET permission, irrespective of the app type. This kind

of permission can affect the learning process of the model. Therefore, the need to remove such

features and select the best features that the model uses to effectively differentiate between the two

app types. The metrics formulated in equations 4.9 to 4.20 are used to define the evaluator

(equations 4.21 and 4.22) that determine which features should be removed and which one should

not be removed from the dataset; the evaluator aim to remove the features that are not relevant to

the proposed detection model.

Let the set 𝑃𝐼 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃132, 𝐼1, 𝐼2, 𝐼3, … , 𝐼131, } be the non-empty set consisting of all the 132

unique permissions in the dataset , 𝑃𝑖, 1 ≤ 𝑖 ≤ 132, together with 131 unique intents in the dataset

𝐼𝑗, 1 ≤ 𝑗 ≤ 131. As such, the number of elements in the set 𝑃𝐼 ≡ 263.

Set

𝜙𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑖𝑠𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑠
× 100% Eq. 4.9

𝜙𝑖 to be the percentage usage of each permission 𝑃𝑖 ∈ 𝑃𝐼 by (both benign and malicious)

applications per overall total number applications in the entire data set, i.e., Eq 4.9

In a similar manner, the intent usage

𝜙′𝑗 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑖𝑠𝑛𝑔 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑎𝑝𝑝𝑠
× 100% Eq. 4.10

𝜙′𝑗to be the percentage usage of each intent 𝐼𝑗 ∈ 𝑃𝐼 by (both benign and malicious) applications per

overall total number applications in the entire data set, i.e., Eq 4.10

Then, let a subset 𝑇 ⊆ 𝑃𝐼 called the testing set,

102

𝑇 = {𝑃𝑖 , 𝐼𝑗 ∈ 𝑃𝐼: 3 < 𝜙𝑖 ≤ 90,3 < ∅′𝑗 ≤ 90} Eq. 4.11

𝑇 containing some selected permissions and intents 𝑃𝑖 , 𝐼𝑗 ∈ 𝑃𝐼 to be tested, such that 𝑃𝑖 or 𝐼𝑗 will

belong to the set 𝑇 if and only if the percentage usage of 𝜙𝑖 or ∅′𝑗 respectively, is strictly greater

than 3% and less than or equal to 90%, i.e. Eq. 4.11

Now, corresponding to each permission, 𝑃𝑖 ∈ 𝑇, define 𝜉𝑖 to be the percentage usage of the

permission 𝑃𝑖 by benign apps per overall benign apps in the data set. That is,

𝜉𝑖 =
𝑁𝑜. 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜.𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠
× 100% Eq. 4.12

In the same vein,

𝜉′𝑗 =
𝑁𝑜. 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑡 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜. 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠
× 100% Eq. 4.13

Also, define 𝜂𝑖 to be the percentage usage of the permission 𝑃𝑖 ∈ 𝑇 by malicious applications per

overall malicious applications in the data set. That is,

𝜂𝑖 =
𝑁𝑜. 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑃𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜. 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠
× 100%, Eq. 4.14

and take

𝜂′
𝑗
=

𝑁𝑜. 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑡 𝐼𝑗

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑜. 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠
× 100% Eq. 4.15

Then let

휀𝑖 = 𝑚𝑖𝑛
(𝜉𝑖,𝜂𝑖)

𝑚𝑎𝑥(𝜉𝑖,𝜂𝑖)
Eq. 4.16

be the ratio of the minimum to the maximum, respectively, of the two percentages 𝜉𝑖 and 𝜂𝑖; and as

well

103

휀′𝑖 = 𝑚𝑖𝑛
(𝜉′𝑖,𝜂′𝑖)

𝑚𝑎𝑥(𝜉′𝑖,𝜂′𝑖)
 Eq. 4.17

Furthermore, the metric function is simply defined by 𝛿𝑖(𝜉𝑖 , 𝜂𝑖) measuring the difference between the

percentages 𝜉𝑖and 𝜂𝑖 for each permission 𝑃𝑖 ∈ 𝑇, such that

𝛿𝑖(𝜉𝑖 , 𝜂𝑖) = |𝜉𝑖 − 𝜂𝑖| = {
𝜉𝑖 − 𝜂𝑖 , 𝜉𝑖 ≥ 𝜂𝑖
𝜂𝑖 − 𝜉𝑖 ,∧ 𝜉𝑖 < 𝜂𝑖

 Eq. 4.18

Similarly,

𝛿′𝑗(𝜉′𝑗 , 𝜂′𝑗) = |𝜉
′
𝑗 − 𝜂

′
𝑗
|. Eq. 4.19

Conclusively, the evaluator 𝐸(𝑃𝑖) of each permission 𝑃𝑖 ∈ 𝑇 based on whether or not the permission

𝑃𝑖 is fit to be used as a relevant feature is given by

𝐸(𝑃𝑖) = {
𝐺𝑂𝑂𝐷, 𝑖𝑓

𝛿𝑖

𝑚𝑖𝑛(𝜉𝑖,𝜂𝑖)
> 𝑖

2

𝑉𝑂𝐼𝐷, 𝑖𝑓
𝛿𝑖

𝑚𝑖𝑛(𝜉𝑖,𝜂𝑖)
≤ 𝑖

2

 Eq. 4.20

where “GOOD” implies that the permission 𝑃𝑖 ∈ 𝑇 in question is indeed a relevant feature, while

“VOID” therefore implies that the permission 𝑃𝑖 ∈ 𝑇 in question is not such a good feature.

Similarly, the analogue of the evaluator 𝐸(𝑃𝑖) of each permission 𝑃𝑖 ∈ 𝑇 being the evaluator 𝐸(𝐼𝑗) for

each intent 𝐼𝑗 ∈ 𝑇 as

𝐸(𝐼𝑗) =

{

 𝐺𝑂𝑂𝐷, 𝑖𝑓
𝛿′𝑗

𝑚𝑖𝑛(𝜉′𝑗,𝜂
′
𝑗)
>

′
𝑗

2

𝑉𝑂𝐼𝐷, 𝑖𝑓
𝛿′𝑗

𝑚𝑖𝑛(𝜉′𝑗,𝜂
′
𝑗)
≤

′
𝑗

2

. Eq. 4.21

The proposed filter-based FS technique results in this study are presented in Table 3 in appendix A.

The results of the FS technique show that out of the entire 263 feature sets, the proposed FS

technique selected 39 feature sets comprising both permission and intent, whose status in Table 3

appendix A is indicated as "Good". The permissions and intent commonly used by both app types

were identified as not relevant features as they contribute little to the detection process. The model

was able to identify both high-risk permission and low-risk permission and intent for each app type.

104

Using only high-risk permission will result in the ML model being biased. The deviation approach

involves features that contribute more to the detection and features that balance the selection

process less. For example, the action_main intent and action_category launcher intent was used by

almost 99% of each type. These kinds of features can mislead the learning model. The selected 39

features are presented in Table 4.11.

Table 4.11 The Selected 39 Features from the Proposed Filter-Based FS method

 Selected Features

Permission PI3, PI4, PI5, PI9, PI31, PI33, PI38, PI39, PI41, PI47, PI52, PI55, PI62, PI68, PI71, PI79
, PI80, PI82, PI84, PI85, PI89, PI91, PI93, PI100, PI101, PI114, PI122, PI123, PI12,
PI131

Intent PI143, PI194, PI201, PI214, PI230, PI232, PI245, PI248, PI252

The selected features as presented in Table 4.11 were used in the design of the prototype system;

these are labelled GOOD in Table 3 in Appendix A. Missing form Table 4.11 are the features that

was removed based on the result of the proposed feature selection in the study; these ‘missing

features ‘are shown in Table 3 Appendix A with the label VOID.

4.4.3 THE PROPOSED ENSEMBLE ML MODEL USING STATIC ANALYSIS APPROACH

This study uses apps' permission and intent requests as a static feature to build an ensemble ML

model for detecting malicious user-installed apps in the MCC environment, as shown in Figure 4.6.

The proposed ensemble ML model uses a supervised ML learning approach to train the detection

engine. The detection engine uses voting ensemble classifiers. The voting ensemble ML classifier

in the proposed model uses the best three ML classifiers, C1, C2 and C7 (outcome of experiment

1). The proposed ensemble ML model was trained using the 39 selected features obtained from the

proposed filter-based FS method. The proposed ensemble ML model is used to detect malicious

activities of users who install apps on their mobile devices at the user layer of the MCC infrastructure.

The ensemble ML model uses static analysis of the permission and intent required for the app to

perform its basic functionality to determine if the app is either malicious or not.

The ensemble ML model has an app permission filter used to extract permissions demanded by an

app and generate the permission dataset. The permission dataset is made up of zeros and ones.

The zero indicates that the app did not require specific permission, while the one indicates that the

app demanded specific permission. Similarly, the model has an intent filter that reads the intent

requested by an app, and the corresponding intent dataset is constructed. The ensemble model uses

the union of the selected permission and intent based on the outcome of the selected feature in

Table 4.11. as input for the model training. The classification outcomes of the proposed ensemble

ML model depend on the majority votes among the three classifiers (C1, C2 and C7).

105

Figure 4.6 The Proposed Ensemble ML Model using Static Analysis Approach

4.4.4 RESULTS OBTAINED FROM EXPERIMENT 2

The results obtained from laboratory experiment 2 conducted in this study were evaluated using the

confusion matrix evaluation metrics discussed in Sections 4.3.3 and 4.3.4. The second experiment

uses the selected features outcome of the proposed filter-based FS technique to extract only the

selected features columns from the original dataset 3 to form a new reduced dataset 4. Dataset 4

contains 39 features, with 1 output column. The second experiment uses the new dataset 4 to

conduct an ML experiment. The experiment uses 11 ML classifiers (the proposed ensemble voting

classifier and the original ten ML classifiers used in the previous experiments), and the results

obtained are presented in Table 4.12.

106

Table 4.12 Results of the Second Experiment.
C

la
s

s
if

ie
r

TP FP TN FN CA ER PR RC FM FPR FNR FAR

C1 3421 185 1816 240 92.78 7.22 95.29 93.44 94.36 8.45 6.56 7.50

C2 3496 174 1827 165 94.00 6.00 95.58 95.11 95.35 8.05 4.89 6.47

C3 3478 273 1728 183 92.39 7.61 93.14 95.25 94.18 12.84 4.75 8.80

C4 2699 224 1777 962 82.30 17.70 92.87 78.67 85.18 11.04 21.33 16.19

C5 3497 284 1717 164 92.53 7.47 93.24 95.36 94.29 12.64 4.64 8.64

C6 3470 205 1796 191 92.65 7.35 94.39 94.24 94.31 10.24 5.76 8.00

C7 3484 201 1800 177 93.50 6.50 94.80 95.17 94.98 9.55 4.83 7.19

C8 3524 412 1589 137 90.76 9.24 90.21 96.15 93.08 19.09 3.85 11.47

C9 3475 245 1756 186 92.88 7.12 93.93 95.14 94.53 11.24 4.86 8.05

C10 3483 270 1731 178 92.60 7.40 93.37 95.33 94.34 12.39 4.67 8.53

Proposed 3598 43 1958 63 98.13 1.87 98.82 98.28 98.55 2.15 1.72 1.93

4.4.5 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 2

The results obtained from the second experiment show that the proposed ensemble model performs

better than the individual ML classifiers. The ensemble model results when tested with 2,001 benign

samples and 3,661 malicious samples. The proposed model achieves the highest classification

accuracy of 98.13%, with an error rate of 1.87%. The precision and recall rates were very stable as

the model obtained 98.82% precision and 98.28% recall, as presented in Figure 4.7. The false alarm

was less than 2%, showing that the proposed model can efficiently detect malicious apps using static

features such as permissions and intents. The results of the ten classifiers are also comparable to

the results obtained without using the FS technique. The results show that the FS technique is better

and makes it more feasible to implement this security model on resource-constrained MDs in the

MCC environment.

107

Figure 4.7 Ensemble ML Model Performance Results Using the FS Approach

The results obtained from the second experiment were validated using the ten-fold cross-validation

technique as presented in Figure 4.8. The ensemble ML model achieved the highest classification

accuracy of 99.01% with a minimum classification accuracy of 96.56% when validated using the ten-

fold cross-validation technique. This result shows stability in the model. However, the Support Vector

Machine classifier obtained a maximum accuracy of 95.05%, which was the best amongst the ten

classifiers. The minimum classification accuracy of the support vector machine was 89.40, which is

not too stable compared to the selected Random Forest and K-Nearest Neighbour classifiers. A

more stable model with classification accuracy lies between 90.46 to 95.05 for the Neighbour

classifier, while Random Forest accuracy lies between 90.78 and 94.37. The validation results show

the stability and reliability of the model.

The FS approach makes it feasible to build an ML model and deploy it to resource-constrained MDs

in the MCC environment because of improved detection using only 39 features compared to the

entire 263 features. There is also a low computational overhead using only a few features, making

this model more efficient and feasible in MDs.

As shown in Figure 4.9, the model's computational overhead in terms of the time required for both

training and testing was reasonable. However, the ensemble ML model requires 3.7 seconds to test

over 5,000 apps during the experiment. The high time consumption by the ensemble model resulted

from the voting process amongst the three classifiers and the selection of a simple majority amongst

-

20.00

40.00

60.00

80.00

100.00

120.00

CA % Error_Rate % Precision % Recall % F1_score % FPR % FNR % FAR %

Performance of the Proposed Ensemble ML and the Ten ML
Classifier

DecisionTreeClassifier RandomForestClassifier AdaBoostClassifier

GaussianNB Classifier SGDClassifier MLPClassifier

KNeighborsClassifier LinearDiscriminantAnalysis LogisticRegression

Support Vector Machine Proposed Ensemble Model

108

the individual results of the classifiers. The detection time is feasible when this model is deployed to

a real-life device in the MCC environment.

Figure 4.8 Ten-Fold Cross Validation Results of the ML Training

Figure 4.9 Ensemble ML Model Training and Testing Time

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

P
er

ce
n

ta
ge

Machine Learning Classifiers

Ten-Fold Cross Validation of the ML Model

Maximum CA Minimum CA

0.00000

1.00000

2.00000

3.00000

4.00000

Training_Time

Testing_Time

Se
co

n
d

s

Machine Learning Classifiers

ML Training and Testing Time

DecisionTreeClassifier RandomForestClassifier AdaBoostClassifier

GaussianNB Classifier SGDClassifier MLPClassifier

KNeighborsClassifier LinearDiscriminantAnalysis LogisticRegression

Support Vector Machine Proposed Ensemble Model

109

4.5 LABORATORY EXPERIMENT 3

This experiment aims to build an ensemble ML model that uses a dynamic analysis approach to

analyze Android apps and use their behaviour to detect malicious activities at the user layer of the

MCC Infrastructure.

This study collected network traffic data from 4,000 apps for two months. The selected app APK

comprises 2,000 benign and 2,000 malicious samples chosen randomly from the 28,306 APK

discussed in Section 4.2.1. The apps' APKs were installed on twenty different Android X Emulators

(Nexus 5X) with the following hardware configuration: 1GB RAM, 512MB SD Card, 2GB internal

storage, 1080 X 1920HDPI, 4 Multi-Core CPU in a remote Virtual Machine (VM) at the Auckland

University of Technology, New Zealand Graduate Research Laboratory. The VM has the following

hardware configuration AMD dual Core (processor) i7-8700 CPU @2.00GHz, 64GB RAM, and a

1TB hard disk drive.

A data capture app was designed to collect the network traffic from each app category (benign and

malicious apps) that leveraged the Android VPN services. The data capture tool records each API

request to an external service from the device emulator. The API request contains network traffic

information, which includes: the number of bytes sent or received, the protocol for the request (i.e.,

TCP, HTTP, HTTPS, DNS, or TLS), the URL of each request, and the requested permissions and

intent demanded at run-time by an app at the point of making the request. The data retrieved from

each request is stored in an SQLite database for each emulator.

In each emulator in this study, 200 different apps were installed and executed. The data capture tool

records each app's network traffic and the permissions and intent requests at run time to get the

dynamic features of each app. The emulator captured each app's traffic data and stored it in the

device database for 5 hours daily.

The emulators were left unattended for another 7 hours to record the activities of each app when the

device was idle, allowing the recording of the background network calls of the apps when the user

was not using the device. This process was repeated for each emulator for two days. At the end of

the data acquisition period, a total of 78,285 unique network traffic records of all apps (4,000 apps)

were recorded, as shown in Table 4.13

Table 4.13 Network Traffic Apps Data Distribution

Emulator 1 2 3 4 5 6 7 8 9 10 Total

Benign
Apps

3578 3099 4329 2988 4005 3021 3566 5002 3944 2991 36523

Malicious
Apps

4024 5600 5023 3456 3878 4098 5008 3207 3456 4012 41762

Total
Packets

7602 8699 9352 6444 7883 7119 8574 8209 7400 7003 78285

110

4.5.1 APP DYNAMIC FEATURES EXTRACTION AND DATASET CONSTRUCTION

The dynamic features recorded in this experiment, which represent the actual app behaviour were

extracted from each emulator database.

The database records of each emulator device were migrated to a Microsoft SQL Server database

for further processing. The dynamic features extracted at run-time include permission, intent, and

API calls to external services. The API calls to external services consist of requests made from the

devices. The features of the API calls are presented in Table 4.14.

Table 4.14 API Calls Features from the App Network Traffic Data

S/N Features Description

1 Protocol The type of request contains in the API call e.g., HTTP, DNS, TCP

2 Duration The total time of the connection between the source and destination

3 Domain URL The URL of the destination server that services the API call

4 Packet Sent The number of packets sent from the host device(source)

5 Packet Received The number of packets received from the destination server

6 Destination IP The IP address of the destination server

7 Source Bytes The total size of data sent from the host device(source)

8 Destination Bytes The total size of data received from the destination host

The permissions and intents used in constructing dataset 5 for this experiment use the proposed

filter-based FS method reported in Table 4.11 and the API calls features presented in Table 4.14

respectively using a binary vector.

Such that PIAPIi= {PI1, PI2, PI3, ……., PI39, API1, API2, API3……., API8} where PI represent the 39

selected features (outcome of the proposed filter-based FS method) and 8 represent the total

number of network features as shown in Table 4.14.

Each app APK in the fifth dataset was represented using the binary vector of permissions or intent

or API requested by an app at run-time i.e., APPi where

𝐴𝑝𝑝(𝑖) {
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝑜𝑟 𝐴𝑃𝐼 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑡 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑡 𝐴𝑃𝐼 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑎𝑡 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒

The network traffic extracted as features used in constructing dataset 5 focuses only on HTTP,

HTTPS, TCP, TLS, and DNS requests made from the device. These selected features of network

traffic protocol are chosen because most malware usually steals sensitive information from the

device and transmits the stolen data to a remote server.

111

4.5.2 THE PROPOSED ENSEMBLE ML MODEL USING DYNAMIC ANALYSIS APPROACH

The proposed ensemble model uses dataset 5, constructed from the dynamic features retrieved from

the apps installed on the emulator at runtime for ML training, as shown in Figure 4.10. The dynamic

ensemble ML model proposed in this study focused on observing the real-time behaviours of apps'

network activities by analysing the traffic data and retrieving information regarding the URL to which

the traffic data is being sent. The proposed ML model was trained with an ensemble classifier using

the dynamic analysis approach of bagging techniques. The choice of the bagging technique for the

proposed ML model was made based on the performance results obtained during the experiment.

The proposed ensemble model uses the Random Forest ML classifier as its base estimator for the

training of its detection engine. The ensemble ML model was implemented in Python using the

Microsoft Visual Studio 2019 IDE. The two ensemble ML models (static and dynamic feature analysis

approach) proposed in this study were deployed to a cloud-based server to implement the prototype

system.

Figure 4.10 The Proposed Ensemble ML Model Using Dynamic Features Analysis Approach

112

4.5.3 DISCUSSIONS OF RESULTS OBTAINED FROM EXPERIMENT 3

The experiment reported in this section was carried out using dataset 5 constructed from permissions

and intent requested by apps at run time and the network request made by the apps. The experiment

uses both the voting ensembling techniques and the bagging techniques. The results obtained from

the experiment also show similar performance to the previous experiments. However, the

ensembling techniques using the voting techniques were outperformed by the bagging technique,

hence the bagging technique for the ensemble ML model that uses the dynamic analysis approach

in this study. A detailed analysis of the experiment results focuses on the evaluation of the

implemented prototype system reported in chapter six of this study.

4.6 CHAPTER SUMMARY

This chapter provides a detailed description of the Android OS security system. A detailed

description of each of the datasets used in the experimental work is presented. The ML classification

algorithms used in the study were briefly described, including the evaluation and validation metrics.

The permissions and intent usage analysis was used as a basis for proposing filter-based feature

selection techniques. The analysis of the experimental work reported in this chapter leads to

developing two ensemble machine learning models that use both static and dynamic analysis

approaches. These two models were deployed as a service to a cloud-based server for use in

implementing the prototype system in the next chapter.

113

CHAPTER FIVE

PROTOTYPE DESIGN AND IMPLEMENTATION

The previous chapter describes the analysis of the data collected for this study. The collected data

was used to construct five different datasets used in various experiments. The dataset analysis

resulted in reducing the number of features to improve performance, thereby proposing a filter-based

feature selection technique to reduce the number of features required to train the proposed ML

models. The experimental results were evaluated, and two ensemble ML models were proposed.

The proposed ML models use both static and dynamic analysis approaches of Android apps. These

models were deployed as cloud-based services to implement the prototype system in this chapter.

This chapter describes the implementation of the prototype system MINDPRES. This includes a

high-level view and the various subsystems that make up the prototype system. Each subsystem's

implementation design details that make up the entire prototype system are also presented.

5.1 PROTOTYPE DESIGN

The prototype system design (MINDPRES) in this study focuses on the Android mobile operating

environment because of its popularity, making its users prime cyber targets in the MCC environment.

Data was collected and analysed to implement the prototype system as a proof of concept. The

collected data is used to perform detailed ML experiments and build an ensemble ML model

embedded in the prototype system. The implementation of the prototype uses a core native mobile

application development environment with Java programming using the Android Studio Integrated

Development Environment. The Ensemble ML Model was implemented using the Python

programming language. The prototype system uses static and dynamic device behaviour analysis

and ML techniques to enhance user data security at the MD node in the MCC environment. The

prototype system is an improved IDPS that runs on the MD node and protects MCC resources

against internal and external attacks. A description of the proposed prototype system (MINDPRES)

was previously described in Chapter 3, Section 3.3.2. MINDPRES comprises three sub-system

components: the Device Manager, Apps Evaluator, and the Detection Engine. A high-level view

illustrating the various components in the proposed prototype system (MINDPRES) implementation

is shown in Figure 5.1.

114

Figure 5.1 High-Level View of the Proposed Prototype System Implementation (MINDPRES)

5.1.1 THE DEVICE MANAGER

The Device Manager (DM) is a component of the prototype system as shown in Figure 5.2. The DM

scans all apps that reside on the device and generate results of the total user-installed apps. The

DM uses the Virtual Private Network (VPN) service libraries in the Android OS for its implementation.

The VPN allows the DM to prepare the prototype system for monitoring all apps activities that reside

on the devices without root-level access. The device user must grant MINDPRES access to the

Android VPN service to enable the system to monitor the traffic generated by the apps in the device.

The DM allows MINDPRES to run in the background while the user is using other apps and

constantly monitoring the behaviour of each app in the device by analysing the network traffic

generated by the apps on the device. The DM does not require any external VPN service as it only

leverages the Android OS's VPN services and processes the network traffic from the apps locally on

the device. Once the traffic is processed locally and stored in the device database, the DM forwards

the traffic to the ensemble ML Model deployed in the cloud service end for further analysis by the

detection engine for possible malicious activities.

115

Figure 5.2 The Device Manager

5.1.2 THE APP EVALUATOR

MCC users suffer security vulnerabilities associated with apps installed on their devices, especially

those malicious apps installed from the untrusted app store. To improve the security of the user layer

of the MCC architecture, the app evaluator components in the proposed prototype system helps

informs the MCC users of the risks associated with each app on their device.

The app evaluator displays the list of all requested permissions for each app and also provides user

an option to remove unwanted apps that the app evaluator reported as risky to the security of the

user data in the device. The app evaluator evaluates the risk profile of all user-installed apps and

assign a risk score and category (high, medium or low) to each app. The app evaluator relies on the

app's metadata information, for example the permissions and intents demanded by the app to

determines its risk profile. The ensemble ML Model used by the app evaluator is deployed in an

Amazon Web Service (AWS) cloud server. The model deployed in the AWS cloud server is

consumed by MINDPRES using an API endpoint integrated into the app evaluator. The app

evaluator requires some selected permissions and intent using the ensemble ML model via the

Permission and Intent Filter. These features (permissions and intents) are passed as parameters to

the API endpoint, and a request is sent to the ensemble model in the cloud server. The cloud server

processes the request and sends feedback to the devices that make the request. The feedback sent

116

to the devices is either zero or one. The value of zero indicates that the ensemble ML model has

classified the app that demanded the permissions and intent as a benign app, while a value of one

indicates that the app is classified as malicious.

The output of the app evaluator depends on fuzzy classification rules proposed in this study. The

fuzzy sets include the classification outcome of the ensemble ML model using the static analysis

approach discussed in Chapter Four, Section 4.4.3 and the score generated by the Risk Assessor

in the prototype system using the probabilistic approach discussed below in this section to determine

the risk category of the app (i.e., High, Medium, or Low) as shown in Figure 5.3. For example, an

app classified as benign by the ensemble ML model is categorized as a high-risk app if and only if

the risk value generated by the risk assessor using the probability approach proposed in this study

is between 0.86 and 1.00. Also, an app classified as benign by the ensemble ML model is

categorized as medium risk if the risk value is between 0.66 and 0.85, or low risk if the risk value is

below 0.00 and 0.65.

In addition, an app classified as malicious by the ensemble ML model is categorized as a high-risk

app if and only if the risk value generated by the risk assessor using the probability approach

proposed in this study is between 0.61 and 1.00. Also, an app classified as malicious by the

ensemble ML model is categorized as either medium-risk if the risk value is between 0.26 and 0.60

or low-risk if the risk value is below 0.00 and 0.25.

117

Figure 5.3 The App Evaluator

The probabilistic risk assessor model proposed in this study determines the risk score of the app

based on how much; the app uses these fifteen dangerous permissions (P1 to P15) as discussed in

Chapter Four, Section 4.2.2, Table 4.5. The choice of these sets of permissions relies on the

information provided in the Android OS documentation. This set of dangerous permissions, when

granted to an app, poses a greater risk to the security and privacy of user data stored on the device.

The greater risk posed by these sets of permissions allows the app evaluator to determine the risk

score of an app by its usage patterns. The equations (5.1 to 5. 4) are used to define the proposed

risk function (equations 5.5 and 5.6) used for the implementation of the risk assessment module of

the proposed MINDPRES system (equations 5.7 and 5.8). The choice of this approach (a probability

risk value function that is based on the statistics of the data collected in this study) is supported by

previous studies that apply similar methods; for example, in determining the risk value of Android

apps (Peng et al, 2012; Cen et al, 2014; Mat et al, 2022).

The probabilistic risk assessment model proposed in this study and used by the app evaluator is

described as follows:

118

Let 𝑆 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛} be a non-empty set containing all known dangerous permissions in the

dataset, 𝑃𝑖, such that the cardinality of the set 𝑆, |𝑆| = 𝑛 < ∞ (i.e., 𝑆 is a finite set and n=15).

For each dangerous permission, 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑛, let 𝛼𝑖 be the ratio of usage of the permission 𝑃𝑖 by the

total number of malicious apps in the dataset discussed in Chapter Four, Sections 4.2 and 4.2.2,

Tables 4.1 and 4.5. That is,

𝛼𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 𝐸𝑞. 5.1

Similarly, let 𝛽𝑖 be the ratio of usage of the permission 𝑃𝑖 by benign applications to the entire

benign data set as discussed in Chapter Four, Sections 4.2 and 4.2.2, Tables 4.1 and 4.5. That is,

𝛽𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 𝐸𝑞. 5.2

In this case, both 𝛼𝑖 and 𝛽𝑖 can take values ranging from 0 to 1 only, for all values of 𝑖. (i.e., 0 ≤

𝛼𝑖 , 𝛽𝑖 ≤ 1, for all 𝑖).

Corresponding to each permission 𝑃𝑖, define the function 𝜆(𝑖) by

𝜆(𝑖) = {
1, 𝑖𝑓𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝.

0, 𝑖𝑓𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝.
 𝐸𝑞. 5.3

Next, the value of the constant 𝑘, is set for every app to be tested, as

𝑘 =∑𝜆(𝑖)

𝑛

𝑖=1

𝐸𝑞. 5.4

Hence, 𝑘 is a positive integer such that 0 ≤ 𝑘 ≤ 𝑛.

Finally, the risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) of an Android app 𝑋 is defined by

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) =
1

𝑘
∑𝜆(𝑖)√𝛼𝑖 − 𝛼𝑖𝛽𝑖

𝑛

𝑖=1

 𝐸𝑞. 5.5

These evaluates the risk of all dangerous permissions requested by app 𝑋. Thus, 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) is a

probability valued function that determine the risk value of each dangerous permission such that 𝑅

lies in the interval [0,1] (i.e., 0 ≤ 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ≤ 1), for each Android app to be evaluated. Suppose

an app uses any of these dangerous permissions the risk value generated by the proposed model

will be greater than zero but less than or equal to 1.

119

Considering the risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) in (𝐸𝑞5.5) above, it follows straightforward that for an app

𝑋 with 𝛼𝑖 = 0 (which implies that the dangerous permission 𝑃𝑖 was never requested or demanded by

all malicious app), for all 𝜆(𝑖) = 1 (i.e. for all dangerous permissions requested in the app 𝑋 to be

evaluated), then the risk function generates

𝑅 = 0 𝐸𝑞. 5.6

Clearly, it is evident that independent of 𝛽𝑖 (ratio of the dangerous permission 𝑃𝑖 requested by benign

apps as discussed in Chapter Four, Sections 4.2 and 4.2.2, Tables 4.1 and 4.5, the risk function 𝑅 =

0, whenever 𝛼𝑖 = 0, for every permission 𝑃𝑖 found in app 𝑋.

In Figure 5.3, the app evaluator, analysed each app in the device by sending a request to the

ensemble ML model deployed in the cloud server. The request contains the selected features require

by the model that consist of a set of permissions and intent demanded by each app and the proposed

probabilistic value function score of the list of dangerous permission demanded by the app as

discussed in this section. The app evaluator uses a set of fuzzy rules define on the risk score output

of equation Eq. 5.5 as a membership function to categorize each app into one of the following three

(3) distinct groups namely as Low-risk app, Medium-risk app, or High-risk app.

This study constructs the following fuzzy rules with the help of (AND) logical operators to determine

the risk category of each app by the app evaluator.

Rule 1: (if app risk score >=0.0 AND risk score <=0.65) AND ensemble ML classification of the app

is benign THEN the app is classifies as a low risk app

Rule 2: If (app risk score >0.65 AND risk score <=0.85) AND ensemble ML classification of the app

is benign THEN the app is classifies as a medium risk app

Rule 3: If (app risk score >0.85 AND risk score <=1.00) AND ensemble ML classification of the app

is benign THEN the app is classifies as a high risk app

Rule 4: If (app risk score >=0.00 AND risk score <=0.25) AND ensemble ML classification of the

app is malicious THEN the app is classifies as a low risk app

Rule 5: If (app risk score >0.25 AND risk score <=0.60) AND ensemble ML classification of the app

is malicious THEN the app is classifies as a medium risk app

Rule 6: If (app risk score >0.60 AND risk score <=1.00) AND ensemble ML classification of the app

is malicious THEN the app is classifies as a high risk app

120

These fuzzy set rules are applied on the following possible case scenarios.

Case A: Low risk app: Suppose 𝛼𝑖 = 0 for each dangerous permission 𝑃𝑖 found in an app 𝑋,

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = 𝑅𝑚𝑖𝑛 = 0, which implies the lowest risk irrespective of the outcome of the ensemble

ML classification such app is classify as a Low-risk app.

Specifically, if for every dangerous permission 𝑃𝑖 requested in an app 𝑋, 𝛼𝑖 < 𝛽𝑖 (i.e. 𝛼𝑖 is much less

than 𝛽𝑖), then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ [0,0.25] (i.e. 0 ≤ 𝑅 ≤ 0.25) is said to be a low-risk app irrespective of

the outcome of the ensemble ML classification. The risk classification for this scenario use either

rule 1 or rule 4 depending on the outcome of ensemble ML classification model.

In addition, using rule 1, an app can also be considered as low-risk app if and only if the result of the

ensemble ML classification is benign and the risk lies between 0.00 to 0.65(𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ [0,0.65]

(i.e., 0 ≤ 𝑅 ≤ 0.65))

Case B: Medium risk app: In this scenario, an app is considered a medium risk depending on the

result of the ensemble ML classification and the region the risk value score of the app falls into.

Using rule 2, suppose the ensemble ML model classified the app X as benign and for every

dangerous permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.66,0.85] (i.e., 0.66 <

𝑅 ≤ 0.85) is said to be medium-risk app.

Similarly, using rule 5, suppose the ensemble ML model classified the app X as malicious and for

every dangerous permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.26,0.60] (i.e.,

0.26 < 𝑅 ≤ 0.60) is said to be medium-risk app.

Case C: High risk app: Using rule 3 or 6, suppose that 𝛼𝑖 = 𝛽𝑖 ≤ 0.50, for every dangerous

permission 𝑃𝑖 found in an app 𝑋, then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ≤ 0.50. (This implies that the dangerous

permission 𝑃𝑖 is requested at the same rate in both malicious and benign applications, and of which

rate is less than or exactly 50%). But supposing for each and every dangerous permission 𝑃𝑖 found

in any arbitrary app 𝑋, 𝛼𝑖 = 1 and 𝛽𝑖 = 0 (i.e. if all the permissions 𝑃𝑖
′𝑠 are requested for at 100%

rate in malicious applications and 0% rate in benign applications), then 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = 𝑅𝑚𝑎𝑥 = 1.

which implies the highest risk irrespective of the outcome of the ensemble ML model classification

such app is classify as a High-risk app.

Suppose the ensemble ML model classified app X as benign and for every dangerous permission 𝑃𝑖

found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.86,1.00] (i.e., 0.86 < 𝑅 ≤ 1.00) is said to be high-

risk app.

121

Similarly, suppose the ensemble ML model classified app X as malicious and for every dangerous

permission 𝑃𝑖 found in app 𝑋 with risk function 𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) ∈ (0.61,1.00] (i.e., 0.61 < 𝑅 ≤ 1.00) is

said to be high-risk app.

In general, the boundaries used for risk categorization of apps in this study is based on the analysis

of the dangerous permissions usage by both malicious and benign apps and the results of the

ensemble ML classification model. The app evaluator in MINDPRES as shown in Figure 5.3 classify

an Android app by analysing each dangerous permission 𝑃𝑖 requested therein, the following is

obtainable

if the results of the ensemble ML Prediction for an app is Benign:

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = {

𝑥 ∈ [0,0.65], 𝑓𝑜𝑟 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.66,0.85], 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.86,1.00], 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

 𝐸𝑞. 5.7

where 𝑥 ∈ 𝑅, the set of real numbers that denotes the risk score of the app.

and if the results of the ensemble ML Prediction for an app is Malicious:

𝑅(𝜆(𝑖), 𝛼𝑖 , 𝛽𝑖) = {

𝑥 ∈ [0,0.25], 𝑓𝑜𝑟 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ [0.26,0.60], 𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

𝑥 ∈ ([0.61,1.00]], 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 𝑎𝑝𝑝

 𝐸𝑞. 5.8

where 𝑥 ∈ 𝑅, the set of real numbers that denotes the risk score of the app.

5.1.3 THE DETECTION ENGINE

The detection engine is the security component of the prototype system (MINDPRES) that monitors

apps' behaviours in real-time. The detection engine comprises two main sub-systems, shown in

Figure 5.1: the app intrusion manager and the app prevention manager.

A. The App Intrusion Manager: The app intrusion manager uses a host-based IDS approach

to analyze the behaviour of all apps that reside on the devices, as shown in Figure 5.4. The

app intrusion manager works in conjunction with the device manager by leveraging the

Android VPN services to monitor the behaviours of all apps on the device. The app intrusion

manager applies a dynamic analysis approach to analyze the behaviour of apps that reside

locally on the device using the proposed ensemble ML model discussed in Chapter Four,

Section 4.5.2.

The intrusion manager analyses the permissions and intents requested by an app and

extracts the selected features (permissions and intents requested at run-time). The

permission and intent extractor of the intrusion manager analyses the actual permission and

intent requested by an app at run time rather than the permission and intent declared in the

122

app manifest file. These enable the intrusion manager to know the actual resources that the

app is accessing at any point in time.

In addition, the app evaluator uses all permissions and intents declared by the developers

that the app intends to use during the actual execution of the app. In contrast, the intrusion

manager analyses only permissions and intents requested during the app's execution. The

ability to analyse the actual permissions and intent enables the intrusion manager to predict

the actual behaviour rather than the intended behaviour of the app at run-time. The intrusion

manager only selects the permissions and intent to belong to the list of selected features

used in the training of the ensemble model as described in Chapter Four, Section 4.4.2, Table

4.11. An app demands the selected permissions and intents at run-time, and the extracted

network traffic of the request is passed to the feature set manager. The feature input received

by the feature set manager is forwarded to the ensemble ML deployed in the AWS cloud

service for analysis. The classification results produced by the ensemble ML model

(malicious or benign request) are forwarded to the intrusion assessor for an investigation to

determine if the request is malicious or not.

Figure 5.4 App Intrusion Manager

123

The app traffic extractor in the intrusion manager captures all network traffic from all apps

on the device by analysing the actual API calls, consisting of HTTP/HTTPS requests,

TCP requests, TLS requests, and DNS requests. The network traffic features (such as

the request protocol, the duration of the connection, the number of bytes sent from the

device, the number of bytes received from the destination host, the packet size sent, the

packet size received from the destination host, the IP address of the destination request,

and the source request) are forwarded to the feature set manager for further processing.

The app traffic extractor also extracts the URL from the API calls and checks it against a

known global malicious URL database to determine if the API URL call is malicious or

not. The results from the global database of known malicious URLs are grouped into four

categories: malware, spamming, phishing, and suspicious URLs. The results from the

API request to analyze the URL from the global database are forwarded to the intrusion

assessor for the final assessment.

The intrusion assessor analyses the results obtained from the global database of

malicious URLs and the cloud-based ensemble ML model to determine if app traffic

contains a URL that has been classified as malicious or not. The final results by the

intrusion assessor show that a specific packet might be suspicious by analysing the

abnormality in the packet, checking the duration of connection and the packet size

information combined with the results of the global database of malicious URLs. The

intrusion assessor flags any network traffic or packets obtained as malicious if and only

if the cloud-based ensemble ML model predicts it as malicious or if the global malicious

URL results return true for any of the four categories, namely malware URL, suspicious

phishing URL, or spamming URL. The URL is marked as "red," and an intrusion alert is

sent back as feedback to the intrusion manager component of the detection engine.

B. The App Prevention Manager: As shown in Figure 5.1, the prevention manager is a

detection engine's mitigation component that checks for intrusion alerts reported by the

intrusion assessor. The prevention manager identifies the app that requests by checking the

traffic data and communicating with the device manager, leveraging the VPN services, and

automatically blocking any traffic coming from the app to the reported destination IP address.

The prevention manager shows the list of backlisted traffic and allows the user to enable the

app to call the blacklisted URL based on the MD user assessment.

124

5.2 PROTOTYPE IMPLEMENTATION

The implementation of the prototype system in this study applies the object-oriented analysis and

design (OOAD) paradigm. This approach provides flexibility in designing artifacts for use in a real-

life scenario.

5.2.1 THE DATABASE DESIGN

The prototype system's database was implemented using an open-source database system named

SQLite. This database is available for all Android devices. The database stores the traffic data

captured on the device, and the intrusion manager will analyze each piece of data in the background

for possible intrusions. The Entity-Relationship (ER) of the database tables and how they are used

to implement the prototype system (MINDPRES) is shown in Figure 5.5.

Figure 5.5 MINDPRES-Database Entity Relationship Diagram

A. The App Information Table: The app information table structure is shown in Table 5.1. This

table stores information on all apps that reside on the devices. The app information table is

populated by the device manager based on its analysis of all apps that reside on the device.

Table 5.1 App Information Table

Column Name Description Data Type

AppID (PK) This column holds a unique identity for each app. Integer (10)

Package Name This column holds the package name of each app. Varchar (50)

Version This column holds the version details of each app Varchar (20)

Category This column holds the category information of each app as
either user install apps or system apps

Varchar (20)

125

B. The App Evaluation Table: The structure of the app evaluation table is shown in Table 5.2.

This table stores both the results of the app evaluator and the ensemble ML prediction of

each user-installed app using the metadata information (permissions and intents).

Table 5.2 App Evaluation Table

Column Name Description Data Type

AppID (PK) This column holds a unique identity for each app. Integer (10)

RiskScore This column holds the risk score of each app. Float (10)

RiskCategory This column holds the risk category of each app Varchar (20)

Prediction This column holds the ML Prediction result for each app Integer (1)

C. The App Network Traffic Table: The structure of the app network traffic table is shown in

Table 5.3. This table stores information retrieved from each request made by an app that

passes through the VPN. The table also stores details of each connection request via an API

call to an external service.

Table 5.3 App Network Traffic Table

Column Name Description Data Type

RequestID (PK) This column holds a unique identity for each app network
traffic connection made from the device

int

AppID (FK) This column holds a unique identity for each app. int

RequestTime This column holds the date and time the request was initiated datetime

Duration This column holds the time interval for each API call request. int

Protocol This column holds the request type information Varchar (20)

URL This column holds the URL information of each request Varchar (50)

SourceIP This column holds the IP address of the source request Varchar (50)

DestinationIP This column holds the IP address of the destination of the
API call request

Varchar (50)

DataSent This column holds size of the data sent Varchar (20)

DataRecieved This column holds size of the data received Varchar (20)

PacketSent This column holds number of the packet sent Varchar (20)

PacketRecieved This column holds number of the packet received Varchar (20)

D. The App Online Activities Table: The structure of the app's online activities table is shown

in Table 5.4. This table stores information on all apps and the total number of all online

activities.

Table 5.4 App Online Activities Table

Column Name Description Data Type

AppID (PK) This column holds a unique identity for each app. int

TotalActivities This column holds the total number of online activities for
each app

int

126

E. The App Traffic Detection Table: The structure of the app traffic detection table is shown

in Table 5.5. This table stores information about the detection and prevention engine results

for each network traffic.

Table 5.5 App Traffic Detection Table

Column Name Description Data Type

RequestID (PK) This column holds a unique identity for each app. int

IntrusionStatus This column holds the intrusion result status of each online
activities request made by each app.

int

BlacklistedStatus This column holds the backlisted status of each online
activities request made by each app.

int

5.2.2 THE IMPLEMENTATION TOOLS

The proposed ensemble ML models used to implement the prototype system in this study were

implemented using Python programming language. The robust ML libraries that is supported in

python programming language makes it’s a preferred tool for the design and development of

ensemble ML models in this study. This study uses the python’s scikit-learn, pandas, and NumPy

libraries to develop the ensemble ML model. The ensemble ML models used to implement the

prototype system (MINDPRES) were also deployed to the AWS cloud container. MINDPRES utilized

the corresponding endpoint API implementation of the ensemble ML models for app evaluation and

intrusion detection of malicious activities of suspicious API calls from the device.

The prototype system was implemented using the Android Studio Integrated Development

Environment (IDE). The Android Studio IDE was used to design the mobile app on the MCC user's

end. The language used for implementing the mobile app is the programming language. Using the

Java programming language to develop the prototype system was chosen because of its efficiency

in developing native mobile apps that run on the device. This study's prototype system requirements

require a programming language that provides an efficient library system that enables access to the

device's low-level resources. MINDPRES requires some native access to the device's resources,

such as the VPN service and the package manager. Java provides efficient libraries that provide an

efficient way to communicate with the Android OS kernel. The libraries supported by the Java

programming language enable the prototype to efficiently analyze all the apps on the devices and

provide a way to intercept all API calls from each app that resides on the device.

The User Interface (UI) was designed using the Extended Markup Language (XML) in the Android

Studio. The prototype implementation used the Android Emulators during the development phase

and was later tested on various real-life Android devices. The UIs designed for the implementation

of the prototype system are discussed as follows:

127

A. The Device Manager UI: This is the first UI displayed to the app's end-user when the app is

launched. The device manager UI has a different process that runs in the background. This

UI provides greater functionality and asks the user to accept the VPN service for MINDPRES

to monitor the activities of all apps on the device. The device manager UI also displayed the

total number of users who had installed apps on the device, as shown in Figure 5.6.

Figure 5.6 MINDPRES-Device Manager UI

B. The App Evaluator UI: The app evaluator UI evaluates all user-installed apps by analysing

the metadata features (permissions and intents) demanded by the apps. The metadata

evaluation results are used to generate the risk score and category for each app by

combining the results of the ensemble ML model with the probability risk value function as

discussed in Section 5.1.2 of this chapter. The app UI also shows the list of permissions

demanded by an app and allows the user to uninstall apps that pose more risk to the device,

as shown in Figure 5.7.

128

Figure 5.7 MINDPRES-App Evaluator UI

C. The Detection Engine UI: The detection engine UI contains three different tabs embedded

in the UI. The first tab displays the list of all apps, the total number of online requests made

by each app, and MINDPRES monitors that. The UI also provides a view containing the list

of API calls made to external URLs from the device and the details of the API calls made.

The second tab displays the list of apps with the total number of malicious API calls detected

by the intrusion assessor. This tab also shows the API call URL that is flagged as malicious.

The third tab displays the list of all blacklisted API calls and allows the user to either enable

or disable a blacklisted URL, as shown in Figures 5.8 and 5.9.

129

Figure 5.8 MINDPRES-App Detection Engine-Online Activities Tab UI

130

Figure 5.9 MINDPRES-App Detection Engine-Malicious Activities Tab UI

131

5.2.3 THE UNIFIED MODELLING OF THE PROTOTYPE SYSTEM

This study uses the Unified Modelling Language (UML) approach to show the internal structures of

the various objects and how they interact with each other in the implemented prototype system. The

UML diagrams used for the prototype implementation are discussed as follows:

A. The Class Diagram of the Prototype System: The class diagram is a structural type of

UML diagram that shows the internal structures of the various classes that make up the

prototype system and how each class interacts with the other. The class diagrams also show

each class's different attributes and the associated methods required to function. In this

study, the main activity class is the backbone of the prototype system. The main_activity

class has three classes that are associated with it. These classes include the

device_manager class, app_evaluator class, and detection_engine class. The three classes

use the various subclasses for their functionality, as shown in the class diagram presented

in Figure 1 in appendix B.

The setAppStateListener is a setter method that sets the value of the m_Listener attributes

of the main_activity class. Similarly, the getAppUri methods set the value of the URL retrieved

by each app to the m_uri attributes of the main_activity class. The check_permission method

evaluates the device's VPN permissions to allow the prototype system to either capture app

activities or not. In addition, the captureServiceOk and captureServiceResults are

responsible for capturing all API calls from all apps that reside on the device.

The device_manager class directly depends on the main_activity class for some of its basic

functionality. The OnCreate method of the device_manager class initiates the class activity

and loads all the necessary data passed on by the main_activity class. The device_manager

class sets up the VPN connection for the devices and gets the device app list returned by the

getAppList method. The device_manager class is also responsible for evaluating the total

number of user-installed apps on the devices. It returns the total number of apps and device

information via the getAppsCount and getDeviceID methods.

The app_evaluator class depends also on the main_activity class to process the state of each

apps that resides on the device. The app_evaluator class inherits the methods in AllAppData

class and the permissionList class. The AllAppData class also depends directly on the

AppRiskModel class and AppRiskData class. The app_evaluator has five attributes that

depends on the methods define within its entity. The app_evaluator class executes the

getRiskCategory of all apps which depends on the results return by the getMLPrediction

methods and getRiskScore method that depends directly on other subclass associated with

the app_evaluator class and set the app risk category for all users install apps in the device.

132

The detection_engine class depends on the main_activity class to get result of activities and

URL request that was capture. The detection_engine class also inherits the

AppOnlineActivities class that depend on the AllAppData class and AppActivites class. This

enables the detection engine to execute the getAppOnlineActivites method that set the

values of Apps, TrafficData and TotalAppActivites attributes of the AppOnlineActivities class.

These enable the detection engines to monitor the activities of all apps in the device.

The GetAllMaliciousActivites of the detection engines depends on the AppMaliciousActivities

class that inherits methods in the AppActivites class that depends directly on the

URL_Extractor class to set the maliciousActivites attribute of the detection engine. Similarly,

the GetAllBlacklistedActivites method of the detection engines also inherits methods of

AppActivites class and the AppBlacklistedActivites class to set the attributes values of

blacklistedActivites of the detection engine class. The detection engine also executes the

enableBlacklistedActivites of AppBlacklistedActivites class to allow a blacklisted activities to

be active in the device.

B. The Sequence Diagram of the Prototype System: The sequence diagram is behavioural

type of UML diagram that shows the behavioural of the objects in the prototype system. The

sequence diagrams show the interaction activities amongst the various objects that make up

the prototype system, as shown in Figure 2 in appendix B.

The sequence diagram depicts the activities sequence on how the system interact with each

of the object. First, the user launches the prototype system the system gets the information

of the device and prompt the user to grant the prototype system access to the VPN service

which enable the system to monitor the activities of all apps that resides on the device. The

system will not monitor the activities of the apps if the user denies system access to the VPN

services.

Secondly, whenever access to the VPN services is granted by the device user, the prototype

system automatically setup its own VPN connection that enable MINDPRES to monitor all

the activities of all the apps that resides on the device. The system also scanned all user

installed apps that resides on the device and returns the total numbers of apps that resides

on the device.

Thirdly, the App evaluator extract the permission demanded by each apps that resides on

the devices and used the information to evaluate the riskiness of each app and returns the

result of the risk assessment by combining the result of the ML prediction and risk score

assessor model of the prototype system

133

Finally, the detection engine works in parallel with the device manager once the VPN

connection has been established the prototype system start capturing all activities of all apps

within the device. These activities captured are also further examined for possible intrusions

and filter out activities that are predicted as malicious by the detection engine and

automatically block all malicious activities. The system also allows the user to activate block

activities in the event of false alarm by the system.

C. The Activity Diagram of the Prototype System: The activity diagram is behavioural type

of UML diagram that shows the dynamic aspects of the prototype system. The activity

diagram models the flow between activities within a system. The activity diagram shows the

coordination of activities to provide services at different levels of abstraction within the system

abstraction. The activity diagrams show different events and their associated operations

required to complete them. In this study, the UML diagram presented in Figure 3 in appendix

B, shows how the various activities flow from one point to another. It shows an abstraction of

events between the MD user and the prototype system (MINDPRES).

First, the user launches the prototype system and initiates the VPN connection that requires

the user's approval to allow the system access to the VPN service. The user's approval of

the VPN connection request allows the system to automatically scan all apps on the device

and set up the VPN connection in the device manager activity class. The denial of a VPN

connection by the user automatically stops the setting up of the VPN services. Hence, the

system will not monitor the activities of the apps that reside on the device.

The user navigates between the three major activity tabs in the activity diagram depending

on the user's selection. If the user selects the app to evaluate activity, the system

automatically gets the list of all permissions and intent demanded by each app and executes

two different activities simultaneously. The result from the two activities is used to determine

the risk category of each app and the risk value associated with each of the apps that reside

on the device.

The selection of the detection engine gives the user the ability to navigate between three

sub-activities associated with the detection engine. The default sub-activities related to the

detection engine are the app's online activities. These sub activities work in conjunction with

the device manager VPN services to retrieve all associated activities associated with each

app that resides on the device. On the other hand, during the selection of the malicious

activities, the system executes activities related to evaluating each app's traffic data and

determining malicious connections. In addition, once a malicious activity is detected, the

activity is blacklisted. This displays the list of blacklisted traffic data on the user's selection of

the blacklisted activities. This selection allows the user to either activate the blacklisted traffic

data or not.

134

D. The Component Diagram of the Prototype System: The component diagram is structural

type of UML diagrams that is used to model the physical aspect of the prototype system. The

component diagram is like the class diagram although the component diagram focuses on

the various components that make up the system by providing a visual specification of each

components elements. In this study, the component diagram of the prototype system is

presented in Figure 4 in appendix B.

The prototype system comprises three major components: the device manager component,

the app evaluator component, and the detection engine component. The device manager

component depends on other subsystem components for its basic functionality. This

subsystem component includes the VPN connection manager and app information manager

components. The app evaluator components rely on a cloud-based ensemble ML model

component and a risk score component that resides locally on the device. These

subcomponents also depend on other components presented in Figure 4 in appendix B.

On the other hand, the detection engine components have three subsystem components: the

online app activities component, the malicious activities component, and the blacklisted

activities component. The various subcomponents of the detection engine also use other

components to carry out their basic operations. These components include the app network

traffic manager, the app network traffic ML model, and the URL global database scanner

components.

E. The Deployment Diagram of the Prototype System: The deployment diagram is a

structural type of UML diagram used to visualize the communication links between the

system hardware and software. The deployment diagram shows the execution architecture

of the prototype system. The execution architecture includes the various nodes like the

hardware or software execution environments and the middleware software connecting the

nodes. The deployment diagram of the prototype system is presented in Figure 5 in appendix

B. The deployment diagram in Figure 5 in appendix B, shows two execution environment and

the device environment. The prototype development execution environment shows the

personal computer (PC) hardware where the prototype system was developed. The prototype

system is an Android mobile app that depends on two subsystems. The prototype system

(MINDPRES) was deployed to a MD with Android 7.0 OS as a minimum software requirement

for the device. The two subsystems of the prototype system were developed as an ensemble

ML model at the experimental stage of this work. These models were implemented using

python programming language and the final models were deployed separately to AWS cloud

server.

First, the ensemble ML model uses permission and intent that are declared by the app as

features to analyses whether the app is benign or malicious. The ensemble ML model is used

135

by the app evaluator to determine the riskiness of apps based on the permissions and intent

declared by the developers of each apps.

Second, the ensemble ML model that uses the app traffic data (API calls) together with the

permission and intents demanded at run-time by each app that resides on the device. This

model examines the network traffic data for malicious behaviour of an app activity. Also, the

model also extracts URL calls from the traffic data and check the URL against a global

malicious URL database and the result from both approach is used to predict whether a

specific app traffic is malicious or not. and these models can be used as a web service from

the device end.

At the device level, the prototype system communicates with the AWS cloud server via a

Transmission Control Protocol (TCP) or Internet Protocol (IP) to consume the web services

of the two subsystem of the prototype system that are hosted in the cloud server as presented

in the deployment diagram in Figure 5 in appendix B.

5.2.4 THE ALGORITHMIC DESIGN OF THE PROTOTYPE SYSTEM

The general algorithmic description of the three main components of the prototype system are

presented in this section. The algorithms presented for each component represent an abstract high-

level description of the steps involves in the operation of each major component in the prototype

system.

A. Algorithmic Description of the Device Manager

B. Algorithmic Description of the App Evaluator

INPUT: DangerousPermissionList, EnsemblePermissionIntentList, PermissionRiskValue

Step 1: For Each App X in DefaultAppList repeat step 2, 3, 4,5, and 6

Step 2: Extract the Permission and Intent demanded by app X contained in the Features Listed in
EnsemblePermissionIntentList as appPermissionIntentList and Set array PI =
appPermissionIntentList

Step 1: Let VPNStatus =0 and Initialize VPN Service Connection and Prompt User for permission
to monitor all apps

Step 2: IF VPN Service Connection is granted by the user, Then Go to Step 3 Otherwise Go to
Step

Step 3: Setup VPN Service Connection for the Device and Set VPNStatus=1 (Ready)

Step 4: Scanned all Apps that are Installed by the User and Set Array DefaultAppList to
AllUserInstallApps

Step 5: Let AppsCount = number of records in array DefaultAppList and Set
TotalUserInstallApps = AppsCount

Step 6: Stop VPN Service Connection and Set VPNStatus=0

Step 7: End of IF structure in Step 2

Step 8: OUTPUT: VPNStatus, TotalUserInstallApps

Step 9: Exit

136

Step 3: Extract the dangerous Permission demanded by app X contained in the Features Listed in
DangerousPermissionList as appDangerousPermissionList and Set array DP =
appDangerousPermissionList

Step 4: Compute the RiskScore of app X with the selected dangerous permission in DP and
Extract the Permission Risk Value for each permission contained in PermissionRiskValue that
exists in DP

Step 5: Get the result of the ensemble ML prediction for app X using the features extracted from
Step 2 in array PI and store the result return in a variable MLResult as integer (0 is benign and 1 is
malicious)

Step 6: IF RiskScore in Step 4 is greater than or equal to 0.75 and MLResult=0 Then Set
RiskCategory to “High Risk App” and go to Step 12 Otherwise go to step 7

Step 7: IF RiskScore in Step 4 is greater than or equal to 0.50 and MLResult=0 Then Set
RiskCategory to “Medium Risk App” and go to Step 12 Otherwise go to step 8

Step 8: IF RiskScore in Step 4 is greater than or equal to 0.00 and MLResult=0 Then Set
RiskCategory to “Low Risk App” and go to Step 12 Otherwise go to step 9

Step 9: IF RiskScore in Step 4 is greater than or equal to 0.65 and MLResult=1 Then Set
RiskCategory to “High Risk App” and go to Step 12 Otherwise go to step 10

Step 10: IF RiskScore in Step 4 is greater than or equal to 0.25 and MLResult=1 Then Set
RiskCategory to “Medium Risk App” and go to Step 12 Otherwise go to step 11

Step 11: Set RiskCategory to “Low Risk App” and go to Step 12

End of If Structure in Step 6

Step 12: OUTPUT RiskScore, RiskCategory

Step 13: End of Step 1 For -Loop

Step 14: Exit

C. Algorithmic Description of the Detection Engine

Var: Array<string>: AppsActivities, MaliciousAppsTraffic, BlackListedAppsTraffic

INPUT: VPNStatus, EnsemblePermissionIntentList, TrafficDataList, DefaultAppTrafficList

Step 1: IF VPNStatus =1 Then Go to Step 2 Otherwise Go to Step 16

Step 2: For Each App X in DefaultAppList repeat step 3, 13 and 14

Step 3: For Each Traffic Data of App X in DefaultAppTrafficList repeat step 4,5, 6,7,8,9, and 10

Step 4: Extract the Permission and Intent demanded by app X at run-time whenever an
online Request is made contained in the Features Listed in EnsemblePermissionIntentList as
appPermissionIntentList and Set array PI = appPermissionIntentList

Step 5: Extract the Traffic Network Data by app X contained in the Features Listed in
TrafficDataList as appTrafficData and Set array TD = appTrafficData and add Traffic data for
app x in array AppsActivities

Step 6: Extract the URL call by app X contained in the TrafficDataList as appTrafficURL and Set
array TURL = appTrafficURL

Step 7: Construct App network traffic dataset from TD in step 5 and PI in step 4 and set
AppTrafficMLData as the new dataset for each traffic request consisting of API calls, Permissions,
and Intent

Step 8: Get the result of the ensemble ML prediction for app X using the features constructed from
Step 7 in array AppTrafficMLData and store the result return in a variable MLTrafficResult as
integer (0 is benign and 1 is malicious)

Step 9: Get the result of the Malicious Global Database scanner for app X using the URL extracted
from Step 6 in array TURL and store the result return in a variable URLTrafficResult as integer (0
is benign and 1 is malicious)

Step 10: IF MLTrafficResult =1 OR URLTrafficResult =1 Then ADD the traffic data in TD from
step 5 for app X to MaliciousAppsTraffic and also automatically block TD and ADD to
BlackListedAppsTraffic for app X and go to Step 11 Otherwise go to step 12

137

Step 11: End of If Structure in Step 10

Step 12: End of Inner For-Loop in Step 3

Step 13: Set TotalAppActivites = Total Number of Records in AppsActivities in Step 5
 Set TotalMaliciousAppActivites= Total Number of Records in MaliciousAppsTraffic

in Step 10
 Set TotalBlacklistedAppActivites= Total Number of Records in

BlackListedAppsTraffic in Step 10

Step 14: OUTPUT: TotalAppActivites, TotalMaliciousAppActivites,
TotalBlacklistedAppActivites, AppsActivities, MaliciousAppsTraffic, BlackListedAppsTraffic
for app X.

Step 15: End of Outer For -Loop in Step 2

Step 16: Exit

5.3 PROTOTYPE TESTING

The testing of the prototype system follows a scenario-based approach that demonstrates the

functionality of the prototype system implemented as a proof of concept. In this regard, five dummy

apps were designed to test how the system would behave in each scenario. The first four scenarios

focus on the app evaluator module. This module enables MCC users to assess the risk of Android

apps that reside on their device and provides information that helps the user identify each app's risk

category and score. At the same time, the last scenarios focus on the detection engine and how the

system can automatically detect malicious activities of an app both when the device is active and

when the device is idle.

The app evaluator in the prototype system (MINDPRES) analyses all user-installed apps that reside

on an Android device and determines an app's risk score and category (i.e., High, Medium, or Low).

The risk category of an app is determined by combining the result of the ensemble ML model

classification with the permissions and intents demanded by apps, as shown in Table 5.6, to

determine if the app is malicious or benign. The risk score of user-installed apps is determined by a

probability value function of the statistical model discussed in equations Eq. 5.1 to Eq. 5.8 using only

the dangerous permissions. The statistical model uses equations Eq. 5.7 and Eq. 5.8 to determine

the risk category of each app, as presented in Table 5.8.

138

Table 5.6 Selected Permissions and Intent used in the design of the ensemble ML model

ID Permission and Intent Name ID Permission and Intent Name

PI1 WRITE_EXTERNAL_STORAGE PI21 CHANGE_WIFI_STATE

PI2 READ_PHONE_STATE PI22 DISABLE_KEYGUARD

PI3 ACCESS_COARSE_LOCATION PI23 KILL_BACKGROUND_PROCESSES

PI4 ACCESS_FINE_LOCATION PI24 MODIFY_AUDIO_SETTINGS

PI5 GET_TASKS PI25 READ_CONTACTS

PI6 READ_EXTERNAL_STORAGE PI26 READ_SMS

PI7 SYSTEM_ALERT_WINDOW PI27 RECEIVE_BOOT_COMPLETED

PI8 READ_LOGS PI28 RESTART_PACKAGES

PI9 MOUNT_UNMOUNT_FILESYSTEMS PI29 VIBRATE

PI10 CAMERA PI30 WAKE_LOCK

PI11 RECORD_AUDIO PI31 BOOT_COMPLETED

PI12 GET_ACCOUNTS PI32 PACKAGE_REMOVED

PI13 CALL_PHONE PI33 SEARCH

PI14 WRITE_SETTINGS PI34 USER_PRESENT

PI15 SEND_SMS PI35 VIEW

PI16 ACCESS_LOCATION_EXTRA_COMMAND PI36 BROWSABLE

PI17 ACCESS_WIFI_STATE PI37 DEFAULT

PI18 BROADCAST_STICKY PI38 HOME

PI19 CHANGE_CONFIGURATION PI39 INFO

PI20 CHANGE_NETWORK_STATE

Table 5.7. Risk Score Output (Dangerous Permissions) of the Statistical Model

ID Risk Score

P1 0.5769

P2 0.8460

P3 0.7154

P4 0.4982

P5 0.6063

P6 0.4816

P7 0.2557

P8 0.4991

P9 0.5091

P10 0.3986

P11 0.1846

P12 0.3375

P13 0.2115

P14 0.2635

P15 0.3707

139

Table 5.8 Classification Outcome of the App Evaluator

ML Prediction Risk Score of an App Final Risk Category Classification

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.00,0.65) Low Risk App

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.66,0.85) Medium Risk App

Benign App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.86,1.00) High Risk App

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.00,0.25) Low Risk App

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.26,0.60) Medium Risk App

Malicious App 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 ∈ (0.61,1.00) High Risk App

5.3.1 TEST CASE SCENARIO 1

The test case scenario 1 illustrates an app with a zero-risk score classified as low risk by the

prototype system. The app designed for scenario 1 did not use any dangerous permissions. For

example, suppose an Android app is designed for a student course registration system at a

university. The app developers demanded the permissions and intents contained in Table 5.9 for the

first version of the software release to be used by the students.

The second column in Table 5.9 shows the name of the permissions or intents demanded by the

app. The third column shows the equivalent permission or intent ID as part of the selected features

used in the design of the ensemble ML model as shown in Table 5.6, and the fourth column shows

the equivalent dangerous permission risk score used in the design of the risk score computation of

each app as shown in Table 5.7.

Table 5.9 Permission Requested by the Test App for Scenario 1

S/N Permission/ Intent Name ML Features Risk Score

1 INTERNET - -

2 VIBRATE PI29 -

3 ACCESS_NETWORK_STATE - -

4 ACCESS_WIFI_STATE PI17 -

5 WAKE_LOCK PI30 -

6 ACTION_MAIN - -

7 CATEGORY LAUNCHER - -

Note - The permission or intent is not part of the selected features used for design of the
ensemble ML model or the statistical model.

For evaluation purpose, the test case app is an empty app that does nothing but simulate the

permission and intent demanded by such app in this scenario

Outcome of the Test in Scenario 1

A. Ensemble ML model returns the value of zero which means the app is classified as Benign

B. The statistical model returns a risk score of zero (0.00) for the app in this scenario. Since

none of the permissions demanded by the app in scenario 1 belongs to the dangerous

permissions listed in table 5.7.

140

C. The app evaluator classified the test app in scenario 1 as a low-risk app with 0.00 risk score.

5.3.2 TEST CASE SCENARIO 2

The test case in scenario 2 illustrates the modification of the app in scenario 1 to handle some extra

functionalities. This modification changes the risk score of the app. For example, suppose the

Android app in Scenario 1 is modified by the developer to include some additional functionalities.

The updated version of the app demanded the following permissions and Intent as contained in

Table 5.10 for the second version of the software release for used by the student.

The second column in Table 5.10 shows the name of the permission or intent demanded by the app.

The third column shows the equivalent permission or intent ID as part of the selected features used

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the

equivalent dangerous permission risk score used in the design of the risk score computation of each

app as shown in Table 5.7

Table 5.10 Permission Requested by the Test App for Scenario 2

S/N Permission/ Intent Name ML Features Risk Score

1 INTERNET - -

2 VIBRATE PI29 -

3 ACCESS_NETWORK_STATE - -

4 ACCESS_WIFI_STATE PI17 -

5 PERMISSION WAKE_LOCK PI30 -

6 ACTION_MAIN - -

7 CATEGORY LAUNCHER - -

8 READ_EXTERNAL_STORAGE PI6 0.4816

9 CAMERA PI10 0.3986

Note - The permission or intent is not part of the selected features used for design of the
ensemble ML model or the statistical model.

For evaluation purpose, the test app is an empty app that does nothing but demonstrates the

permissions and intents demanded by such app in this scenario

Outcome of the Test in Scenario 2

A. Ensemble ML model returns zero which means the app is classified as Benign

B. The statistical model returns a risk score of 0.44 because of the average risk value of the

dangerous permissions demanded by the app, as shown in table 5.7. The dangerous camera

permission does not pose much more threat to the device user than the read external storage

permission. The app can only read information stored on the internal memory, such as images

combined with the camera permission that allows the app to take a photograph of an object.

C. The app evaluator classified the test app in scenario 2 as low-risk app with the risk score of

0.44.

141

5.3.3 TEST CASE SCENARIO 3

The test case in scenario 3 illustrates the modification of the app in scenario 1 to handle some extra

functionalities. This modification changes the risk score of the app. For example, suppose the

Android app in Scenario 1 is modified by the developer to include some additional functionalities.

The updated version of the app demanded the following permissions and Intent as contained in

Table 5.11 for the third version of the software release for used by the student.

The second column in Table 5.11 shows the name of the permission or intent demanded by the app.

The third column shows the equivalent permission or intent ID as part of the selected features used

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the

equivalent dangerous permission risk score used in the design of the risk score computation of each

app as shown in Table 5.7.

Table 5.11 Permission Requested by the Test App for Scenario 3

S/N Permission/ Intent Name ML Features Risk Score

1 INTERNET - -

2 VIBRATE PI29 -

3 ACCESS_NETWORK_STATE - -

4 ACCESS_WIFI_STATE PI17 -

5 WAKE_LOCK PI30 -

6 IACTION_MAIN - -

7 CATEGORY LAUNCHER - -

8 READ_PHONE_STATE PI2 0.8460

9 ACCESS_FINE_LOCATION PI4 0.4982

10 BROWSABLE PI36 -

Note - The permission or intent is not part of the selected features used for design of the
ensemble ML model or the statistical model.

For evaluation purpose, the test app is an empty app that does nothing but demonstrate the

permissions and intents demanded by such app in this scenario

Outcome of the Test in Scenario 3

A. Ensemble ML model returns zero which means the app is classified as Benign

B. The statistical model returns a risk score of 0.67 because of the average risk value of the

dangerous permissions demanded by the app, as shown in table 5.7. The increase in the risk score

of the app is because of the risk value associated with the two dangerous permissions. For example,

the Read Phone State allows the apps' developers to access sensitive information on the device.

Such as the current cellular network information, the status of any ongoing calls, and a list of any

phone accounts registered on the device. The Access Fine Location permission allows the

developers of the app to access an exact location of the device at any point in time when the user

grant the app access to such permission on the device.

142

C. The app evaluator classified the test app in scenario 3 as medium-risk app with the risk score

of 0.67.

5.3.4 TEST CASE SCENARIO 4

The test case in scenario 4 illustrates the modification of the app in scenario 1 to handle some extra

functionalities. This modification changes the risk score of the app. For example, suppose the

Android app in Scenario 1 is modified by the developer to include some additional functionalities.

The updated version of the app demanded the following permissions and Intent as contained in

Table 5.12 for the fourth version of the software release for used by the student.

The second column in Table 5.12 shows the name of the permission or intent demanded by the app.

The third column shows the equivalent permission or intent ID as part of the selected features used

in the design of the ensemble ML model as shown in Table 5.6 and the fourth column shows the

equivalent dangerous permission risk score used in the design of the risk score computation of each

app as shown in Table 5.7

Table 5.12 Permission Requested by the Test App for Scenario 4

S/N Permission/ Intent Name ML Features Risk Score

1 PERMISSION INTERNET - -

2 PERMISSION VIBRATE PI29 -

3 PERMISSION
ACCESS_NETWORK_STATE

- -

4 PERMISSION
ACCESS_WIFI_STATE

PI17 -

5 PERMISSION WAKE_LOCK PI30 -

6 INTENT MAIN - -

7 INTENT CATEGORY LAUNCHER - -

8 PERMISSION
READ_PHONE_STATE

PI2 0.8460

9 PERMISSION
ACCESS_FINE_LOCATION

PI4 0.4982

10 INTENT BROWSABLE PI36 -

11 PERMISSION GET_TASKS PI5 0.6063

12 PERMISSION
WRITE_EXTERNAL_STORAGE

PI1 0.5769

Note - The permission or intent is not part of the selected features used for design of the

ensemble ML model or the statistical model.

For evaluation purpose, the test app is an empty app that does nothing but demonstrates the

permission and intent demanded by such app in this scenario

Outcome of the Test in Scenario 4

A. The Ensemble ML model returns one, which means the app is classified as malicious. The

result of the ensemble ML model is evidence of the app using dangerous permissions commonly

143

used by malicious apps to achieve some form of control over sensitive information stored on the

device. The introduction of Get_Task permissions allows apps to read the current tasks or lists of all

other apps and their current tasks on the device. Combining such permission by the app with the

ability to write and read from external storage allows the app to manipulate information stored on the

device. The access to the internet permission also means the app can send information out of the

device without the user's knowledge. Also, the Read Phone State allows the developers to access

sensitive information on the device. Such as the current cellular network information, the status of

any ongoing calls, and a list of any phone accounts registered on the device. The Access Fine

Location permission allows the developers of the app to access the device's exact location at any

point in time when the user grants the app access to such permission on the device. These four

dangerous permissions, commonly used by malicious apps, give the developer great control of the

device if all these permissions are granted without the user knowing the developer's intention.

B. The statistical model returns a risk score of 0.63 because of the average risk value of the

dangerous permissions demanded by the app, as shown in table 5.7. The statistical model's

decrease in the risk score value of the app return is because of its average, although this does not

have any significant effect on the classification. The result of the ensemble ML model has shown

that the more dangerous permission requested by an app, the more likely the app is to be classified

as malicious. Therefore, in this study, the risk score of an app greater than 0.65 is classified as a

medium-risk or high-risk app, depending on the outcome of the ensemble ML model.

C. The app evaluator classified the test app in scenario 4 as a "high-risk app" with a 0.63 risk

score. Although Scenario 3 has a higher risk score value and is classified as a medium-risk app

because the ML model predicted it as a benign app. However, scenario 4 is different, with a lower

risk score of 0.63 compared to 0.67 in scenario 3. In this case, the risk category of the app described

in Scenario 4 is high-risk because the ML model classifies the app as malicious. Hence, the resultant

outcome of the app evaluator for this scenario is a high-risk app.

5.3.5 TEST CASE SCENARIO 5

In scenario 5, the detection engine uses the behaviour patterns of the traffic data generated by an

app whenever a request is made to a specific domain to monitor abnormalities in the device's

behaviour. The detection engine used an ensemble ML model that required the permission and intent

demanded by an app at run-time together with network traffic data to determine if the request was

malicious or not. The detection engine also used a global blacklisted malicious API to screen the

domain each network traffic request was calling from the device and used both results to determine

if the call was malicious or not. This scenario demonstrates how an app might behave when called

with a malicious URL.

For example, suppose the updated version of the app in Scenario 4 is loaded with malicious code

unknown to the user. Using the same set of permissions in table 5.12 with an additional intent

144

USER_PRESENT enables the app to check if the user is using the device or not. The behaviour of

the app when the user is using the device is different from when the user is not using the device as

described below:

Phase 1: When the user is using the device, the app in Scenario 5 reads the user's location

information and sends it to the remote server (maybe the user's email address) accessible by the

user, which is a legitimate URL.

Phase 2: When the user is not using the device, the app in scenario 5 reads the user location

information with the list of all apps installed on the user device and send it to the remote server

accessible by the developer, a legitimate URL. Suppose the remote server with the URL in that

domain has been reported and listed in the global database of malicious URL.

Outcome of the Test in Scenario 5

A. Phase 1. MINDPRES will flags all request as benign since the URL is benign.

B. Phase 2. MINDPRES will flags all request as malicious since the URL is malicious as

contained in global database of malicious URL and automatically block all calls to that URL

from the device.

5.4 CHAPTER SUMMARY

This chapter describes the implementation details of the prototype system and the various sub-

systems design. The database design of the prototype system UIs was presented. The tools used

in developing the prototype system are discussed in this chapter. The UML diagrams, which show

the various system objects and how they interact, were discussed in this chapter. In addition, a

detailed algorithmic design of the main components of the prototype system was also presented.

The final parts of this chapter discuss five different test case scenarios used to demonstrates the

functionalities of the implemented prototype system and how the various sub modules work together.

The test case scenarios use a dummy app to demonstrates how changes in permissions and intents

requested by an app can affect the risk scores and categories when screened by the implemented

prototype system (MINDPRES).

145

CHAPTER SIX

PROTOTYPE EVALUATION

The previous chapter discusses the design and implementation of the prototype system. The

software tools used for implementing the prototype were discussed. In addition, the UML diagrams

showing the various component implementations of the prototype system were discussed. The

previous chapter also discusses the various algorithms used to implement the different modules that

make up the prototype system. The description of the different test case scenarios, that shows how

the prototype system was tested and the outcome of each case scenarios were discussed.

This chapter describes how the prototype system (MINDPRES) implemented as a proof of concept

was evaluated. The prototype is evaluated using real-life Android MDs, and the results obtained from

the experiment were evaluated using a confusion matrix. The MDs' energy consumption was

recorded during the experiment, and the results obtained were evaluated. The prototype system is

evaluated by invited IT security experts, whose expert opinions are also presented in this chapter.

6.1 PROTOTYPE EVALUATION

The prototype system was evaluated based on its performance and energy consumption

requirements. First, the prototype system's performance evaluation (MINDPRES) uses a hybrid

analysis approach (both static and dynamic analysis). Second, the energy consumption of the

prototype system was evaluated to assess the app energy consumption rate and its feasibility to

cope with resource-constrained MDs in the MCC environment.

To evaluate the performance of the prototype system, several real-life experiments were conducted.

The performance evaluation of the prototype system follows two phases.

The first phase involves the risk assessment of apps that reside on the device by the app evaluator

to determine the risk category of the various apps that reside on user device.

The second phase involves monitoring the actual network behaviours of all apps that reside on the

device by listening to their network activities and using an ensemble ML model trained with network

data to detect and prevent malicious activities. To evaluate the performance of the detection engine

in the prototype system, the validation metrics of the confusion matrix are discussed in Chapter Four,

Sections 4.3.2 and 4.3.3. equations Eq 4.1 to Eq 4.8 were used to validate the 1,000 mobile apps

installed on five Android devices.

146

6.1.1 EXPERIMENTAL SETUP FOR THE PROTOTYPE PERFORMANCE EVALUATION

This experiment aims to evaluate the performance of the prototype system (MINDPRES) using the

evaluation metrics stated in Chapter Four, Section 4.3.2. The experimental setup for evaluating the

prototype system uses 1000 (600 benign and 400 malicious) apps as a testbed. The distribution of

the app samples installed on the five devices used for this experiment is shown in Table 6.1.

The evaluation of the prototype system (MINDPRES) uses five Android devices with the following

hardware configuration.

A. Device A: EE Tablet HTC Nexus 9.8.9, 1.8GB RAM 32GB Internal storage

B. Device B: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

C. Device C: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

D. Device D: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

E. Device E: Samsung Galaxy Tab A (SM-T380) 2GB RAM, 16GB Internal storage

Table 6.1 Apps Distribution Sample Installed in Each Device

DEVICE Benign Apps (Google Play Store) Malicious Apps (CICMalDroid2020)

A 240 200

B 90 50

C 90 50

D 90 50

E 90 50

Total 600 400

6.1.2 DESCRIPTION OF THE EVALUATION TESTBED

The evaluation of the prototype system uses a testbed dataset that is different from the initial training

and testing datasets used in the laboratory experiments to evaluate the performance of the ensemble

ML model discussed in Chapter Four. The 600 benign samples were obtained from popular apps

available in the Google Play store with at least one million users’ downloads. The apps were

downloaded and installed on each device between November 1st, 2021, and December 1st, 2021.

The evaluation of the system uses the top thirty most popular apps downloaded from each of the

twenty selected app categories in the Google Play Store. These apps categories include most apps

that are found in almost every user device that are used for their day-to-day activities such as social

networking, business, travel, education e.t.c.

The testbed used for the evaluation of the prototype system contains 400 malicious app samples.

These samples were obtained from a recent malware repository (CICMalDroid2020) publicly

available to evaluate the malware detection system (https://www.unb.ca/cic/datasets/maldroid-

2020.html). The malicious APK samples in the CICMalDroid2020 dataset contains four malware

categories which are briefly describes as follows:

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html

147

A. Adware: The adware category in this dataset includes advertisement materials (i.e., ads)

that hide behind legitimate apps. The ad libraries contain malware that repeatedly runs

on the device. Even though the user tries to close the ads, they keep popping up. It can

infect the device and get root-level access, compromising the user device and gaining

unauthorized access to sensitive data or device operation (Mahdavifar et al., 2020).

B. Banking Malware: The banking malware, this malware app category is trojan-based

designed to mimic the original banking app interface to infiltrate user devices, gain

unauthorized access to use banking apps, and steal sensitive information from the

device.

C. SMS Malware: The SMS malware category; this app is designed to intercept payload

operations to conduct attacks on the device. These malware categories send malicious

SMS to users, intercept the SMS and steal data from the device.

D. Riskware: The riskware malware category includes legitimate apps manipulated by users

to take the form of mobile malware, SMS malware, or adware malware. The malicious

app category can install new apps on the device unknown to the user.

The benign and malicious apps used for the evaluation were checked using the VirusTotal services

to ascertain whether they were malicious or not. The malware samples use a minimum of 15

antiviruses as benchmark criteria for selecting the app as malicious (i.e., at least 15 antivirus engines

in VirusTotal Services must flag the app apk as malicious). The benign samples obtained from the

Google Play store were also checked using the same VirusTotal services, with none of the antivirus

flagging the app as malicious. After checking both benign and malicious apps using the VirusTotal

service, each app was installed on the five devices, as shown in Table 6.1. The distribution of the

benign and malicious apps’ samples and the numbers of apps installed on each device are shown

in Tables 6.2 and 6.3.

148

Table 6.2 Benign Apps Downloaded from Google Play Store

ID Category Total
Apps

Average
Downloads

Average Ratings Device

B1 Watch 30 95 million 4.3

A
B2 Art and Design 30 21 million 4.3

B3 Beauty 30 1 million 4.4

B4 Business 30 100 million 4.3

B5 Communication 30 200 million 4.1

B6 Education 30 20 million 4.4

B7 Events 30 1 million 3.8

B8 Food and Drink 30 10 million 4.2

B9 Shopping 30 50 million 4.5 B

B10 Social 30 500 million 4.0

B11 News & Magazines 30 5 million 4.2

B12 Finance 30 10 million 3.8 C

B13 Entertainment 30 100 million 4.1

B14 Lifestyle 30 10 million 4.2

B15 Music & Audio 30 50 million 4.4 D

B16 Maps & Navigation 30 10 million 4.2

B17 Travel and Local 30 1 million 4.4

B18 Tools 30 10 million 4.3 E

B19 Sports 30 10 million 4.2

B20 Dating 30 10 million 3.9

Table 6.3 Malicious Apps Downloaded from CICMalDroid2020

ID Category Total Apps Device

M1 Adware 100 A

M2 Banking Malware 100 A

M3 SMS Malware 50 B

M4 SMS Malware 50 C

M5 Mobile Riskware 50 D

M6 Mobile Riskware 50 E

6.1.3 PHASE ONE (THE APP EVALUATOR) RESULTS

The app evaluator assesses the risk of each user-installed app on the device in the first phase of the

prototype evaluation. The risk assessment experiment was conducted, following the complete

installation of all apps on the various devices. The prototype system (MINDPRES) was installed on

the five devices (A, B, C, D, and E). The app evaluator evaluated the risk category and the ensemble

ML classification result using the static analysis approach of all apps on the device. The results

obtained during the evaluation process are recorded and presented in Table 6.4.

149

Table 6.4 Prototype System Risk Assessment Evaluation Result using Both Benign and

Malicious Apps

Category MLCR-
Benign

MLPR-
Malicious

Low
Risk

Medium
Risk

High
Risk

Total Apps

B1 30 0 29 1 0 30

B2 30 0 30 0 0 30

B3 30 0 30 0 0 30

B4 28 2 28 2 0 30

B5 27 3 27 3 0 30

B6 28 2 28 1 1 30

B7 30 0 30 0 0 30

B8 30 0 30 0 0 30

B9 26 4 26 3 1 30

B10 25 5 25 5 0 30

B11 28 2 26 4 0 30

B12 29 1 29 1 0 30

B13 29 1 29 1 0 30

B14 29 1 28 2 0 30

B15 27 3 27 3 0 30

B16 28 2 28 2 0 30

B17 29 1 29 1 0 30

B18 28 2 28 2 0 30

B19 28 2 27 3 0 30

B20 29 1 29 1 0 30

M1 7 93 0 73 27 100

M2 3 97 0 85 15 100

M3 4 46 2 35 17 50

M4 2 48 0 30 16 50

M5 3 47 0 38 16 50

M6 1 49 1 33 12 50

Note: MLCR: Machine Learning Classification Result

The results presented in Table 6.4 show that all selected apps in categories B1, B2, B3, B7, and B8

were correctly classified as benign by the ensemble ML model in the prototype system using the

static analysis approach. These results show an improved performance by accurately evaluating

apps in these categories by the prototype system. At the same time, the results presented in Table

6.4 show that the ensemble ML model embedded in the app evaluator can effectively distinguish

benign apps from malicious apps with over 90% classification accuracy at all times. Overall, out of

600 benign apps downloaded from the Google Play store, 568 were correctly classified as benign

apps, with 32 wrongly classified as malicious apps. Furthermore, the benign apps that were wrongly

classified as malicious were found to demand dangerous permissions and intents commonly used

by malicious apps. The developers of these apps can misuse the permissions requested by these

apps for malicious purposes if their intentions change in the future. The end user must be careful

with the granting of dangerous permissions whenever an app requested it, and they also need to

trust the source before granting such permission to prevent the compromization of their device.

In addition, the ensemble ML classification results for the malicious app set used in the evaluation

in the results shown in Table 6.4 show that 380 (95%) apps from a total of 400 apps from malicious

150

app categories M1, M2, M3, M4, M5 and M6 were correctly classified as malicious apps. In contrast,

only 20 apps from these categories were wrongly classified as benign. A further investigation into

this set of malicious apps shows that these apps did not use dangerous permissions commonly used

by malicious apps. This set of apps used dangerous permissions and intents commonly used by

benign apps. These apps can evade detection if a system only uses a static analysis approach to

distinguish between malicious and benign apps without monitoring their actual behaviour at run time.

However, the prototype system implemented in this study can detect such apps using the hybrid

approach that combines both the static and dynamic analysis approach. The dynamic analysis

approach of the prototype system implemented in this study can monitor apps actual behaviour and

it can easily detect apps that falls under these categories.

The risk assessment results of the benign apps used in the prototype evaluation is shown in Figure

6.1. The results show that all apps in categories B2, B3, B7, and B8 are low risk, with risk scores

between 0.00 and 0.65. The raw data from the results of the benign apps used in the evaluation

shows that about 5% of all benign apps were classified as zero risk (risk score 0.00) and other apps

had a risk score of greater than 0.00 but less than or equal to 0.65. Overall, 563 out of the 600 of the

benign apps' samples used in the evaluation were classified as low risk, 35 as medium risk, and only

2 benign apps from categories B6 and B9 were classified as high-risk apps with a risk score of above

0.60. This is because these 2 benign apps were wrongly classified as malicious by the ensemble ML

model using the static analysis approach. The results of the app evaluators have shown that 94% of

the benign app samples used for this evaluation are classified as low-risk apps.

Figure 6.1 Risk Assessment Result of all Benign apps used in the Evaluation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

P
e

rc
e

n
ta

ge

App Categories

Risk Assessment Results of Benign Apps using the App
Evaluator in MINDPRES

Low Risk Apps Medium Risk Apps High Risk Apps

151

The risk assessment results regarding the risk categorization (high, medium, or low) of the malicious

apps used in the evaluation are presented in Figure 6.2. The results presented in Figure 6.2 show

that all apps in categories M1, M2, M4 and M5 are classified as either medium-risk or high-risk with

a risk score of between 0.25 to 1.00. On the other hand, only 3 apps from categories M3 and M6

were low risk. These results show the prototype system's weakness in using a static analysis

approach for malware detection, as these apps were designed to evade detection by such a system.

Overall, 294 of the malicious apps' categories were classified as medium risk, 103 as high risk, and

only 3 malicious apps were classified as low-risk apps, with a risk score of 0.00. The above

performance results of the app evaluators have shown that 99% of the malicious apps samples used

for the prototype evaluation are classified as either medium-risk or high-risk apps.

Figure 6.2 Risk Assessment Result of all Malicious apps used in the Evaluation

6.1.4 PHASE TWO (THE DETECTION ENGINE) RESULTS

The second phase of the prototype evaluation focuses on the detection engine subsystem. The

detection engine experiments aimed to evaluate the performance of the prototype system using the

hybrid analysis approach that combines both the static and dynamic analysis approach. The

detection engine performance is based on the actual behaviour of the apps both when the user is

using the device and when the device is idle. The experiment was carried out for two weeks to

evaluate the detection engine performance of the prototype system (MINDPRES) installed in the

device.

During the experiment, each device was used for 2 hours daily. The usage of the device includes

the running of the all apps that reside on the device for the prototype system to monitor the actual

network behaviours of each app as regards the external API calls and other network-related activities

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

M1 (Adware) M2 (Banking
Malware)

M3 (SMS
Malware)

M4 (SMS
Malware)

M5 (Mobile
Riskware)

M6 (Mobile
Riskware)

P
e

rc
e

n
ta

ge

Malware App Categories

Risk Assessment Results of Malicious Apps using the App
Evaluator in MINDPRES

Low Risk Apps Medium Risk Apps High Risk Apps

152

requested by the app. The prototype system has a VPN service that allows the system to monitor all

network activities of all apps on the device. The detection engine logs the details of each network

call from each app on the device and stores the results in a local database on the device. The

detection engines also analyse each network call made by the various apps for malicious activities

using an ensemble ML model trained with network data using the hybrid analysis approach. The

detection engine also uses a global database containing known malicious URLs to assess each

domain URL request made by the apps on the device. The notification module of the detection engine

notifies the user if a malicious activity (such as spamming, phishing, botnet or malware) is detected

in any request made by the various apps. The detection of any malicious activities by the detection

engine automatically triggers the prevention modules to blocks the detected malicious activities and

allows the user to either enable it in the event of false alarms. The details on the number of activities

recorded both when the device was in use and when the device was idle in this experiment are

shown in Table 6.5.

Table 6.5 Network Activities of all Apps in the Device Captured by the Detection Engine

DEVICE Actual
App Type

Activities
When
Device is in
Used

Activities
When
Device is Idle

No of Malicious
Activities

Total apps
with
Malicious
Activities

A Benign 1,978 597 13 6

B Benign 899 215 5 2

C Benign 768 198 2 1

D Benign 987 231 7 3

E Benign 1204 149 4 2

A Malicious 2876 459 1781 187

B Malicious 768 202 571 48

C Malicious 1377 599 650 45

D Malicious 1422 231 679 49

E Malicious 1009 456 752 42

6.1.5 PERFORMANCE EVALUATION RESULTS

The overall performance of the prototype system (MINDPRES) in this study is evaluated by the

experimental results presented in Sections 6.1.3 and 6.1.4 (Table 6.4 and Table 6.5). The evaluation

is based on the prototype system ability to detect intrusion activities caused by malicious apps at the

user layer of the MCC environment. The evaluation of the prototype system uses the confusion

matrix (TP, FP, TN, and FN) defined in Chapter Four, Section 4.3.2 and employs equations Eq 4.1

to Eq 4.8 to evaluate the performance of the system. The detection performance of the system is

evaluated in two phases. The first phase uses the static analysis approach with permissions and

intents demanded by apps as features to evaluate the performance of the ensemble ML model in

the app evaluator module in the prototype system. The results used for the first phase are presented

in Table 6.4, columns 1 to 3. The second phase of the evaluation uses a hybrid analysis approach

(both static and dynamic analysis) in the detection engine to assess whether an app activity is

153

malicious or not by monitoring the actual behaviour and using the signature-based approach to

evaluate whether the URL the app calls is contained in a global database of malicious URLs.

The results presented in Table 6.5 are details of the network-related activities and detection engine

results of the experiment conducted for two weeks. Using the results in Table 6.4 and Table 6.5, the

performance evaluation results of the prototype system applying the confusion matrix and its

evaluation metrics defined in Chapter Four equations Eq. 4.1 to 4.8 are shown in Table 6.6. The

results are in Table 6.6, which shows the detailed evaluation results of the two approaches used for

the experiment. The evaluation result of the prototype system is shown in Figure 6.3. Overall, the

prototype system achieved above 90% classification accuracy in all devices using both the static

and hybrid approaches. The static approach achieves better classification accuracy than the hybrid

in devices A, C, and E. Although in devices B and D, the hybrid approach outperforms the static

approach. The detection performance using the precision rate (PR) shows that the hybrid approach

performs better in detecting malicious activities than using the static approach, with over 94% on all

devices used for the evaluation. Similarly, the hybrid approaches have a better false-positive rate in

all devices, as low as 1.11% in device C.

Table 6.6 Detection Performance Evaluation Results of the Prototype System

D
e

v
ic

e

A
p

p
ro

a
c

h

TP FP TN FN CA ER PR RC FM FPR FNR FAR

A Static 190 7 233 10 96.14 3.86 96.45 95.00 95.72 2.92 5.00 3.96

Hybrid 187 6 234 13 95.68 4.32 96.89 93.50 95.17 2.50 6.50 4.50

B Static 46 4 86 4 94.29 5.71 92.00 92.00 92.00 4.44 8.00 6.22

Hybrid 48 2 88 2 97.14 2.86 96.00 96.00 96.00 2.22 4.00 3.11

C Static 48 3 87 2 96.43 3.57 94.12 96.00 95.05 3.33 4.00 3.67

Hybrid 45 1 89 5 95.71 4.29 97.83 90.00 93.75 1.11 10.00 5.56

D Static 47 6 84 3 93.57 6.43 88.68 94.00 91.26 6.67 6.00 6.33

Hybrid 49 3 87 1 97.14 2.86 94.23 98.00 96.08 3.33 2.00 2.67

E Static 49 5 85 1 95.71 4.29 90.74 98.00 94.23 5.56 2.00 3.78

Hybrid 42 2 88 8 92.86 7.14 95.45 84.00 89.36 2.22 16.00 9.11

154

Figure 6.3 Detection Performance Evaluation Result

6.1.6 ENERGY CONSUMPTION EVALUATION OF THE PROTOTYPE SYSTEM

The evaluation of energy consumption is necessary for this study because of the resource constraint

nature of MDs in the MCC environment. During the experiment, the battery consumption of each

device was recorded. The results of the energy consumption of each device, both when the prototype

system was installed and when the prototype system was uninstalled from each device were

recorded. The energy consumption of each device recorded during the experiment are presented in

Table 6.7.

Table 6.7 Energy Consumption of each Device

DEVICE Energy Usage with MINDPRES (%) Energy Usage without MINDPRES (%)

A 78 71

B 86 79

C 75 64

D 83 71

E 89 75

The energy consumption was also evaluated using a standard benchmark tool to evaluate the energy

consumption. This study uses the Android profiler as a benchmark to evaluate the energy

performance of the prototype system. The Android profiler does not directly measure energy

consumption. Rather, it uses a model that estimates the energy consumption for each resource on

the device. This tool is integrated into the development environment and gives a detailed insight of

0

20

40

60

80

100

120

Static Hybrid Static Hybrid Static Hybrid Static Hybrid Static Hybrid

A B C D E

P
e

rc
e

n
ta

ge

Device / Approach Used

Detection Performance Evaluation Results of the Prototype
System

CA ER PR RC FM FPR FNR FAR

155

energy consumption of both simulated and real-life devices. In addition, other studies in this field

have also adopted this tool for evaluation of energy consumption by Android apps (Gaska et al,2018;

Farooq et al, 2019; Myasnikov et al,2021). The result of the Android profiler is also comparable to

the energy consumption of the actual real-life device used for the experiment. Figure 6 in Appendix

B shows the energy estimation level of the emulator used during development. The energy

consumption evaluation of this study focused on the battery usage by the prototype system during

the evaluation process (Table 6.7). The battery usage of device E was very high because of the

types of apps installed on the device. On the device, dating apps and sports apps were installed

which had high energy requirements due to the number of network activities in this apps category.

The results presented in Figure 6.4 show that the prototype system consumes a considerable

amount of energy during the experiment for a period of two weeks. Based on the results obtained

during the prototype evaluation, one can conclude that the prototype system is feasible to be

deployed on any Android device used in the MCC environment.

Figure 6.4 Energy Consumption Evaluation Result

0

10

20

30

40

50

60

70

80

90

Percentage Used With MINDPRES

Percentage Used Without MINDPRES

B
at

te
ry

 P
e

ce
n

ta
ge

 U
sa

ge

Device

Energy Consumption Evaluation Results

A B C D E

156

6.2 PROTOTYPE SYSTEM EXPERT EVALUATION FEEDBACK

In this study, expert evaluation was carried out by three industry experts; two of them are employed

in IT security roles, and one is an IT security consultant. Expert 1 (Osama Al Omari) is currently a

security architect at New Zealand Post with over fifteen years’ experience working in IT security roles

in various companies. Expert 2 (Paul Hayes) has over ten years’ experience as an IT security

consultant to various NZ companies and Expert 3 (Eghbal Ghazizadeh) has over five years’

experience in IT security roles. He is currently working as the Group Information Security Manager

at Mercury NZ. The experts were approached based on the recommendation of the supervisory team

for this research. The expert evaluation carried out by the invited experts covers one month period.

This enables the expert to evaluate all the components that make up the prototype system. The

invited experts evaluate the functionality and useability of the prototype system. After completing the

expert validation process, each expert sends a report via email regarding the functionality and

usability of the prototype system which are presented in the following sub sections. The contents

presented in sections 6.2.1, 6.2.2 and 6.2.3 are the experts exact words contains in their email

feedback as regards the evaluation of the prototype system.

6.2.1 EXPERT 1 FEEDBACK

I have read the documentation of this prototype system (MINDPRES) and tried it in action. I think

the proposed prototype is very good in terms of detecting and preventing malicious applications.

There is room for enhancement and coverage to do more practical threat detection and protection

capabilities. Due to the nature of today’s continuous threat landscape, more endpoint protection

systems are tending to achieve more detection and prevention through behavioural analysis and

more inspection of critical OS system calls and user land functions.

As an example, I attempted to install a malicious application, however the MINDPRES application

stopped it, however I managed to run a reverse shell that loads a session and i was successful.

6.2.2 EXPERT 2 FEEDBACK

A. General Comments

1. It was interesting to see the level of background activity taking place when the

device wasn’t being used. Some logging and reporting capability would be a

useful addition to the app, e.g., to report on for which apps there has been activity

over the last hour even though the device and/or those apps haven’t been used

over that period.

2. It is important to consider what the information presented means to the average

layman, as opposed to someone who has specialist knowledge in this field (e.g.,

when clicking down into the detail of a malicious activity, what does this mean to

the average user?).

157

3. When apps have been identified as malicious or blacklisted, it should be clearly

communicated what action has been taken by the MINDPRES app and what

action is recommended to be taken by the user. This didn’t appear to be clear

from using the app.

4. Sometime the App locked up and needed to be restarted. I wasn’t able to

ascertain all the conditions that this occurred for and this may need further testing.

5. What information gets automatically or manually refreshed also needs to be

considered as there are examples below of where this may have led to

inconsistencies being displayed.

6. To fully evaluate functionality ideally needs the development of the Prevention

Module (Blacklisted Activities) to be completed.

B. Device Manager – Specific Comments

1. The Device Manager appeared to be just an information page with no options to

manage anything. If it doesn’t manage anything (e.g., no settings or options to

select) it should perhaps be renamed.

2. States the number of installed apps – this didn’t automatically update when apps

were either installed or removed.

C. App Evaluator – Specific Comments

1. Apps were easy to uninstall from the App Evaluator, although as noted earlier,

the count of Apps installed on the Device Manager did not automatically update.

2. When a new app was added, I needed to disconnect and reconnect to Wi-Fi to

see the new app listed. It would be better if this information was automatically

updated.

3. The App Evaluator showed the ‘Google Play services for Instant Apps’ app as

malicious and medium risk. For the uninformed user, this may raise some

concerns as this is the app that is used to install other apps. This may be correct,

but some information on why an app has been assessed as malicious would be

useful.

4. The ‘Video Call: Dating’ app was mostly categorised as Malicious and Medium

Risk, but on one occasion was shown as Benign and Low Risk (when MINDPRES

was being used over a similar time period). This indicated some possible

inconsistency.

5. com.zynga.wwf3.Words3Application was listed in the App Evaluator, but unlike

for the other apps, selecting it didn’t take you to the underlying list and the

‘Uninstall button’.

158

D. Detection Engine – Specific Comments

1. As stated above, interesting to see the activities counts increase over a period of

time (e.g., the last hour) when the device wasn’t being used – indicating a level

of background activity taking place over the network.

2. The count of activities for each page appeared to need to be refreshed manually

and for each page, sometimes leading to inconsistencies between the number of

activities displayed for each page, e.g., count of online activities showed as 17

whereas count of blacklisted activities showed as 18 – probably due to one of the

pages not having been refreshed?

3. The Online Activities and Blacklisted Activities appeared to display the same

information (if both were refreshed). Is this correct? Should all Online Activities

be blacklisted? I assume this is due to this component still being under

development.

4. On one occasion there was a notification that there were 5 malicious activities

detected, but in the Malicious Activities page it showed only 4 malicious activities

(this may have been due to a screen/page not being refreshed?).

5. When selecting a Malicious Activity or Blacklisted Activity for more information,

the MINDPRES app sometimes locked-up – i.e. it said MINDPRES isn’t

responding and necessitated closing the app and re-launching.

6.2.3 EXPERT 3 FEEDBACK

It is my pleasure to review the MINDPRES mobile APP, I have worked with this app and overall, in

two weeks, I have found that this Mobile Cloud Computing (MCC) consists of solutions that protect

Android devices. I have found that this app employs different techniques and collect and analyse

indicators of compromise to identify anomalous behaviour and counter threats. This App gathers

data from the Android device/s and well as from external sources. Moreover, in my testing, I have

found that the app works in conjunction with the device manager by leveraging the Android VPN

services to monitor the behaviours of all apps in the device. As a summary, the app analyses all

installed apps that have been installed on an Android device and determine the risk levels. My main

recommendation is to focus of UX (https://www.total.com/designers/ux/mobile-ux-design-best-

practices) and tuning the data specifically ML model.

6.2.4 EXPERT FEEDBACK SUMMARY

Overall, the feedbacks from all experts were positive and they all agreed that the prototype system

is very effective in detecting Android malicious apps used in the MCC environment. However, each

expert suggested areas for further improvement, as contained in the expert's summary report. Some

of the feedbacks received from the expert was used to improve the implementation of the prototype

159

system. However, some of the recommended feedbacks from the invited security experts are beyond

the scope of this study.

6.3 RESULTS COMPARISON WITH RELATED WORKS

The results obtained from both the laboratory experiment discussed in Chapter Four and the real-

life experiment results obtained from evaluating the prototype system in Table 6.6 are compared with

other related malware detection systems in the extant literature. This is because the prototype

system was implemented as a proof of concept to enhance data security in the MCC environment

by focusing on the user layer of the MCC architecture. On the other hand, the implemented prototype

system targets the Android OS environment. Therefore, comparing the results obtained in this study

with the state-of-the-art Android malware detection system is necessary to evaluate the model's

performance. The summary of the results from selected research articles published in peer-reviewed

journals and conferences alongside the results recorded in this study is shown in Table 6.8.

It is evident from the results presented in Table 6.8 that most research work focuses only on

permissions requested by an app as a feature to build a malware detection system using the static

analysis approach, even though some have combined permission with other related components as

features for building a more reliable detection model. This study has explored the combination of

permissions, intent, and API requests by an app in a hybrid approach to analyse apps' static and

dynamic behaviour in a hybrid approach. This study also considers monitoring app activities both

when the user is using the device and when the device is not being use, to build a prototype system

that can combat the threats caused by malicious apps that reside on the MCC users' devices.

In the literature, only a few works have proposed a solution to tackle data security issues caused by

malicious apps executed by MDs in the MCC environment. For example, the work reported in OS

(2021) proposed an intelligent model to combat threats caused by Android apps in the MCC

environment using only permissions as a feature to build an ontology-based model. This study has

combined permissions with intents and APIs to monitor apps. Apps are monitored using a VPN

service approach combined with a hybrid analysis approach that alerts the user to the risk score and

category of the apps on their device. This study complements the existing approach of many related

works by monitoring the actual execution of apps on the cloud server by listening to the APIs and

URL requests that the apps make in real-time. The prototype system implemented in this study,

automatically analysed each request made in real-time using an ensemble ML model built using

network traffic data obtained from the experiments conducted in this research.

Furthermore, the results presented in Table 6.8 show that most of the existing research in the

literature has used only a few malware samples (less than 10,000 apps) to build a detection model,

except for the work reported by Mathur et al. (2021) and Alazab et al. (2020). This study uses over

18,000 malicious app samples to build the detection model used to implement the prototype system.

160

This is because of the repositories (AndroZoo and RmvDroid) used for the data collection of apps in

this study. The AndroZoo is currently the largest repository of Android malware samples in the

research community, with over one million apps (both benign and malicious apps) APKs in their

repository.

The detection performance results shown in Table 6.8 show that the models built in this research

work's experimental and prototype implementation stages compare favourably with other related

research. The results also improve the state-of-the-art solution proposed to combat malicious apps

in the MCC environment and the mobile ecosystem. The experimental results, real-life and expert

evaluation of the prototype system using apps in the official Android app stores show that the security

solution proposed in this study is very effective in tackling the security issues caused bsy malicious

apps in the MCC environment. The results show a classification accuracy of over 97% and a false

positive rate of less than 2% in both laboratory and real-life experiments compared to other related

works with less than 97% classification accuracy and a high false alarm rate of over 4%. Finally,

some of the related works in the literature require root-level access to monitor apps' behaviour

dynamically, but the prototype system implemented in this study does not require root-level access;

instead, it leverages the Android VPN services to monitor the apps' behaviours in the MCC

environment.

161

Table 6.8 Results Comparison with Related Works

Source Features Approach Dataset Size MLC Results

Proposed -
Lab
Experiment

P, I, A Hybrid AZ, RD B-9,879
M-18,427

ECV CA 98.16%,
PR 98.95%
RC 98.20%
FM 98.57%
FPR 1.90%

Proposed -
Real-Life
Experiment

P, I, A Hybrid AZ, RD,
CMD2020
& GP

B-9,879
+600
M-
18,427+400

ECV CA 97.14%
PR 97.83%
RC 98.00%
FM 96.08%
FPR 1.11%

OS (2021) P Static AZ, VSH B-1,959
M-2,113

RF CA-94.11%
FM-93.00%
FPR-3.00%

Cai et al
(2021)

P, I, AC Static DB, AMD,
GP

B-3,000
M-3,000

KNN CA-96.58%
PR-96.94%
RC-96.47%
FM-96.70%

Lu et al
(2021)

P Static VT, DB B-2,000
M-2,000

DNN CA-95.83%
PR-95.24%
RC96.15%
FM-95.69%

Mathur et al
(2021)

P Static AZ B-14,630
M-14,700

RF CA- 96.95%
FPR-3.32%

Alazab et al
(2020)

P, A Static AZ B-14,172
M-13,719

RF FM-94.3%

Ribeiro et al
(2019)

DR Dynamic GP B-6,000
M-6,000

DT CA-99.80%

Zhou et al
(2019)

SC Dynamic BM, VSH Not
Reported

MCA CA-97.85%
PR-98.70%
FPR-4.21%

Li, et al
(2018)

P Static GP, Anzhi B-5,494
M-2,650

DT CA-93.62%

Idrees, et al
(2017)

P, I Static GP, CT,
DB, Gen

B-445
M-1300

ECV PR- 98.40%
FPR-0.10%

Feizollah, et
al (2017)

P, I Static GP, DB B-1,846
M-5,560

NB PR-95.50%
FPR-4.40%

Hatcher et al
(2016)

P, SC Static Gen Not
Reported

DT PR-94.59%

Hou, et al
(2016)

SC Dynamic Not
Reported

Not
Reported

DL CA-93.68%

Arp, et al
(2014)

HC, P, I,
A, NT

Static GP, ACH B-123,453
M-5,560

SVM CA-94%

Saracino, et
al (2014)

SC, P, A,
UB

Hybrid Gen, CT,
VSH

B-9,804
M-2,800

KNN PR-96.90%

Qi et al
(2014)

NT Dynamic Gen M-1,260 NB CA-90.00%

Note: Permissions (P), Intent(I), API-(A),App Component(AC), Hardware Component (HC), Network Traffic

(NT), Device Resource (DR), User Behaviour (UB),System Calls (SC),Benign (B) Malware (M),Decision
Tree,(DT), Naïve Bayes (NB), Logistic Regression (LR), Random Forest (RF), KNearest Neighbour (k-NN),
and Support Vector Machine, Monte Carlo Algorithm (MCA), Deep Learning (DL),Deep Neural Network
(DNN),Ensemble Voting classifier (EVC),Classification Accuracy (CA), Precision Rate (PR), Recall Rate (RC),
False Positive Rate (FPR), F-Score Measure (FM), AndroZoo (AZ), RmvDroid, (RD), CICMalDroid2020
(CMD2020), VirusShare (VSH), DREBIN (DB), Google Play (GP), VirusTotal (VT), Argus Lab’s Android
Malware Database (AMD), Baidu Mobile (BM), Anzhi (Anzhi), Contagio (CT), Genome (Gen), App China
(ACH), Machine Learning Classifier (MLC)

162

6.4 CHAPTER SUMMARY

A detailed prototype system evaluation was carried out in this chapter. The prototype system

implemented in this study can be built into the existing Android OS system and serve as a utility tool

to enable MD users in the MCC environment to effectively secure their devices against threats

caused by malicious apps that resides on their device. Notably, the prototype system implemented

in this study logs all apps activities which can be useful for digital forensic investigation. The details

of the logs are offloaded to the cloud server for future reference this also helps to prevent the MD

user from tampering with the activity logs store locally in the devices since copies of this files are

move periodically to the cloud to reduce the storage resources consumed by the prototype system.

To the best of my knowledge, there are no comparable real-life systems that target the MCC

environment. However, relevant models have been proposed in the extant literature; future

implementations may be compared to the prototype system developed in this study

However, the prototype evaluation was limited to only five real-life Android devices. This was

because of the limited number of devices available to be borrowed from the university resource

centre as at the time the prototype evaluation was carried out.

The evaluation results show that the model implemented as a proof of concept can effectively detect

malicious activities of apps that reside on the MDs of MCC users. MINDPRES also compared

favourably with existing solutions proposed in the extant literature as reported in this chapter. The

permission risk value used in building the app evaluator that determines each app's riskiness was

also presented in this chapter. This chapter also presents a detailed real-life experiment conducted

using a new dataset different from the original dataset used for training the ensemble ML model used

to implement the prototype system. This enables the model's evaluator to cope with new apps that

will be designed over time and with the ability to detect malicious apps that can cause a zero-day

attack in the MCC domain. The evaluations show a better detection rate and compare favourably to

reported results. Overall, the prototype system implemented in this study was evaluated by invited

security experts in the New Zealand IT industry to get their expert opinion. The feedback from the

experts was very positive. However, the experts made a few suggestions to make the prototype

system a great tool used by both the academic community and the industrial environment.

163

CHAPTER SEVEN

DISCUSSION AND CONCLUDING REMARKS

This study develops and proposes a novel ML-based framework that enhances the security of user

data in the MCC environment. The research goal and objectives as defined in chapter one was

accomplished at the end of the study. An instance of the framework was designed as a proof-of-

concept prototype that addresses security issues caused by malicious apps residing on the MD

nodes. The prototype system was developed and implemented for devices using the Android mobile

OS. The ML model considers app permissions, intents and network activities (such as API calls at

run-time) to identify potentially malicious activities of mobile apps and alerts the MD user who used

their judgement to grant or deny the permissions requested by the app.

7.1 OVERVIEW OF THE STUDY

This study identifies gaps in existing security research in the MCC environment and proposes a

novel framework that enhances the security of user data in the MCC environment. APK files of

Android apps were collected from two repositories (AndroZoo and RmvDroid). The APK files were

used to construct five different datasets used in ML experiments. The first experiment was carried

out with ten ML classification algorithms using the first three datasets constructed in this study

(datasets 1, 2 and 3) to identify the best performing ML algorithms with the constructed dataset using

all the features (permissions and intents demanded by each app APK).

The second experiment involves the reduction of the feature sets used in experiment 1 by using a

proposed filter-based FS statistical approach to select relevant features required to train an ML

model. The selected features (permissions and intents) were used to construct dataset 4 from

dataset 3. The reduced dataset and the best three ML classifiers (C1, C2 and C7) outcome of the

first experiments were used in the development of an ensemble ML model using the static analysis

approach. The ensemble ML model uses the selected features (permissions and intents demanded

by an app) to distinguish malicious apps from benign apps.

The third experiment uses dataset 5 constructed from actual permissions and intents required at run

time and network-related activities performed by each app using the dynamic analysis approach.

The dynamic analysis approach monitors the actual behaviour of both malicious and benign apps

on the device. The dynamic analysis approach analyses the network activities of each app using an

Android emulator in a controlled environment to avoid infection of the university network. The

experiment was carried out using a virtual machine that is isolated from the university network. The

dynamic analysis approach also used the requested permissions and intent at run-time rather than

the permissions and intent that were declared to be used by the app. This approach reveals the

actual behaviour of the apps in the third experiment rather than the intended behaviour using the

164

static analysis approach. Both ensemble ML models using static and dynamic analysis approaches

were developed and deployed to a cloud-based service for use in the prototype implementation.

The deployed ensemble ML models were used to implement the prototype system as a proof of

concept. The prototype system was evaluated by invited security experts, and its performance was

also evaluated using the confusion matrix alongside the energy consumption of the prototype

system. The results of the evaluation show the system is effective at tackling data security issues in

the user layer of the MCC architecture

7.2 ADDRESSING THE RESEARCH QUESTIONS

The main research goal of the study was to investigate how to protect MCC resources against attacks

and enhance the security of user data in the MCC environment. The development of the novel

framework and the implementation of the prototype system (MINDPRES) aimed to answer the main

research question that guided the study and to achieve the specific research objectives of the sub

research questions formulated in Chapter 1.

Main Research Question: What security components are required in a framework that can be used

to protect MCC resources against attacks and enhance the security of user data in the MCC

environment?

To answer the main research question, the following sub questions were formulated in this study

RSQ1: Which specific MCC resource require to be protected to enhance the security of the MCC

environment?

RSQ2: What approach can be used to protect the identified MCC resource in RSQ1?

RSQ3: What metrics can be used to evaluate the performance of the approach identified in RSQ2

above and how can this approach be implemented to protect the relevant MCC resource?

Overall, the research goal set in at the start of the study, was successfully met. As discussed in

Chapter 2, a comprehensive literature review was conducted to answer the first research sub-

question. An in-depth study of existing security frameworks that offer protection to the MCC

resources was carried out. The frameworks proposed in the literature were analysed using the MCC

security requirements and the egregious eleven threat model (Kissel, 2011; Liu et al., 2011; Mogull

et al.,2017; CSA, 2019). Based on the analysis of the results reported in the extant literature it was

concluded that despite the significant vulnerability level of the MD user layer of the MCC

environment, research that has been carried out to address these security issues associated with

the user layer of the MCC architecture was relatively scarce.

The further study of MD security indicated that attackers had found a way around developing

malicious apps that were able to avoid detection by most existing detection techniques. In addition,

165

the security vulnerabilities associated with the popular Android mobile OS (installed in many of the

MCC user devices) have contributed to the recent growth in the development of malicious apps able

to be uploaded to the Google play store. The Android OS does have system and application security

countermeasures that offer protection to its users. However, the Android OS application security

control layer of the Android OS is built on a permission-based model that generally relies on the end-

user to judge whether an app legitimately requires (or not) certain permissions without knowing the

intention of the app developer. This weakness in the Android OS used in the MCC environment has

attracted malware developers to target these devices to obtain sensitive information that can

compromise both the mobile and cloud environment in the MCC domain. Therefore, in this study,

the MD user layer was identified as the specific MCC resource that requires adequate protection to

enhance the security of this environment.

To answer the second research sub-question, the initial results of the comprehensive literature

review of the security frameworks that target the MCC environment were analysed further to identify

the best approach to protect the MD as a resource in the MCC environment. The protection methods

used by each framework were evaluated based on the number of threats each framework offers

protection against, using the egregious eleven threat model proposed by the Cloud Security Alliance

in 2019 as a benchmark (CSA, 2019). The results showed that most of the studies included in the

literature applied cryptographic and biometric authentication models to combat the threats that faced

the MCC environment. However, these approaches provide protection against only a few of the

known threats in the MCC domain.

This study aimed to develop a framework that offered a better the protection of the MD resources in

the MCC environment. This necessitates the requirement to provides protection against a higher

number of threats in the MCC environment compared to the protection given by the cryptographic

and biometric authentication approaches that are predominantly used in current research.

As shown by the outcomes of the analysis of the existing frameworks, only a few included IDS as an

integral part of the protection approach. However, the IDS-based frameworks were found to be

performing better than other proposed approaches regarding the number of threats they offered

protection against. The identification of IDS as a better approach necessitated another

comprehensive review of work that applied IDS as a security technique in the MCC, CC, and MC

environments. The review showed that IDS applying ML techniques provided a significantly better

protection against the egregious threats (as the benchmark for this study) compared to other

approaches. Hence, this study answers the second sub research question by proposing a novel

IDPS approach that uses the ensemble ML techniques named MINDPRES (Mobile-

Cloud Intrusion Detection and Prevention System). The proposed approach uses hybrid (static and

166

dynamic analysis) analysis of device behaviour to protect MD users from malicious apps in the MCC

environment.

To address the first part of the third research sub-question and identify the metrics to be used in the

evaluation of the efficiency of the proposed approach, a detailed review of the literature of existing

works that used ML classification models for IDS and IDPS as an approach for security in the MCC

and CC domains was conducted first. The analysis of the results showed that most studies had

adopted the confusion matrix to derive a metrics for the evaluation of the intrusion detection models'

performance. In all studies, classification accuracy was used as the most important metric and an

evaluation criterion. In addition, most of the studies also considered the false alarm rate as an

evaluation criterion and a high rate of false alarm was reported as one of the performance issues

with ML-based IDS. Other evaluation criteria’s, such as precision rate, recall rate, and F-score

measure values, were also used but only in a few of the studies reviewed.

In this study, the evaluation metrics used for the evaluation of the proposed prototype system’s

performance use a confusion matrix that consider malware detection output. In addition, most of the

studies included in the discussion did not consider the evaluation of the energy consumption of the

MD nodes in the MCC domain considering the resource constrained nature of these devices. This is

another critical issue that was identified during this research. Therefore, this study uses the energy

consumption level of the various devices, classification accuracy, precision rate, recall rate, f-

measure scores, false alarm rate, false positive rate, and false negative rate as metrics to evaluate

the performance of the prototype system (MINDPRES).

To address the second part of the third research sub question, a set of malicious and benign app

APKS samples collected from the AndroZoo and RmvDroid repositories was used to build an

ensemble ML models. (Developed and discussed in Chapter 4). The ensemble ML model was

implemented in a proof-of-concept prototype system (MINDPRES), presented, and discussed in

Chapter 5. The performance of the prototype system was evaluated using the metrics identified

above; the results were discussed in Chapter 6. In addition, a group of invited New Zealand based

IT security experts working in related industry sectors provided evaluation reports considering the

features and performance characteristics of the prototype system as installed and activated. The

performance evaluation outcomes and the experts’ reports indicated that the prototype system

implemented as a proof of concepts was able to effectively detect intrusions in the MCC environment

caused by malicious apps at the MD nodes.

Finally, to answer the main research question, after providing answers to the sub research questions.

The novel framework proposed in this study has identified the following security components as

being required in a framework to protect MCC resources against attacks and improve the security of

user data in this environment:

167

A. An IDPS with ensemble ML models using static and dynamic analysis of device behaviour

can protect resources in both mobile and cloud environment.

B. A strong cryptographical system to protect leakage of sensitive information when mobile apps

are executed in the MCC environment both at rest and in motion.

C. A-hypervisor-based IDPS to protect the cloud infrastructures against insider attacks.

D. A strong identity and trust management security components to combat illegal access to

cloud resources of MCC users.

Furthermore, it was proposed that comprehensive framework for the protection of MCC resources

should address at least five or more top security threats that cut across the different layers of the

MCC architecture. It was suggested in particular that threat types T1, T4, T5, T7, T9, and T10 should

be addressed at the MCUL (user device) layer, threat types T1, T2 and T8 at the MNCL layer, and

threats type T1, T2, T3, T4, T5, T6, T7, T10 and T11 at the MCSPL layer. The ML-based protection

system developed, implemented, and evaluated in this study addresses the data security issues

related to use of malicious apps which is, one of the topmost threats facing users of MCC

infrastructure. Malicious apps present dangerous threats, affecting both mobile and cloud

environments' security. In particular, threats T1, T5, T7, T10, and T11 that exploit vulnerabilities at

the MCUL layer of the MCC environment. The system is highly relevant to current cybersecurity

environment for example, the prototype system that was implemented in this study (MINDPRES)

addresses four of the six most important threats (namely malicious apps and websites, mobile

ransomware, phishing, and advanced jailbreaking and rooting techniques) identified in the report

published by Checkpoint (Checkpoint, 2021). The prototype system developed and implemented in

this study only address the security component of the novel framework in A above to tackle data

security issues at the user layer of the MCC environment. The other security components identified

in B, C and D are part of the proposed novel framework that addresses other security issues in other

layers of the MCC environment.

7.3 RESEARCH CONTRIBUTION

The process involved in the development and evaluation of a novel framework to improve the data

security in the MCC environment in this study has revealed some of the major contributions of this

research. It was evident that the literature review analysis approach of related works that was used

in this study, helped identify the research gaps. The adoption of the DSRM resulted in the design of

a prototype system (artifact) that can be integrated into existing mobile OS as a utility tool to protect

MCC user against the vulnerabilities and threats caused by malicious apps. In addition, the following

are some of the contributions of this research to the body of knowledge.

A. This study proposes a novel security framework which identifies the security threats that

needs to be addressed at the different layers of the MCC architecture to provide a more

comprehensive solution for protection of MCC resources. These requirements may serve as

168

guideline for both organizations and MCC service providers for developing relevant security

programmes for their services and cloud Infrastructure.

B. The study proposes a novel approach towards controlling app behaviour by empowering the

user to make an informed judgement. The system monitors all network activities of mobile

apps within the device without root level access and automatically blocks the detected

malicious apps activities and provides the MD user with the option to enable the activities in

the event of false alarm. This is important, because the system mitigates the negative effect

of potentially false alarm rate and allows the app to operate freely if an app activity has been

determined as not malicious.

C. The proposed cloud-based approach for risk assessment by the app evaluator to determine

the risk score and category of mobile apps at the MD layer using ensemble ML techniques

and a novel statistical approach with dangerous permissions and intents frequency usage by

both malicious and benign apps is the first of its kind in the MCC domain to the best of my

knowledge.

D. The development of a filter-based FS technique using a statistical approach (based on the

frequency of usage of permissions and intents by both malicious and benign apps) to select

relevant features used in the development of the ensemble ML model.

E. The proposed ML-based IDPS approach using ensembling techniques in the study is the first

of its kind in the MCC domain to the best of my knowledge. Only in a few works an IDS have

been used in the MCC environment. Furthermore, most such work has not really focused on

the MD user layer in the MCC environment. Also, no study in MCC to the best of my

knowledge has combined both static and dynamic analysis of device behaviour at run time

with user activities. MINDPRES combines static and dynamic analysis of device behaviour

with the ML technique for protection of MCC resources against attacks.

7.4 CHALLENGES AND LIMITATIONS OF THE STUDY

In this study, different challenges were encountered as regards the implementation of the novel

solution to tackle security issues faced by the user layer of the MCC architecture. First, issues with

data collection arise at the time of the development of the ML model. There was no readily available

dataset that contained the features required in this study for the development of the ML model.

Similarly, there are no publicly available repositories that contain app installation files for other mobile

platforms, such as iOS. Hence, the prototype system implemented in this study can only work on

Android mobile devices because the dataset constructed for the development of the ensemble ML

model used by the detection engine and the app evaluator of the prototype system was constructed

from the Android APK files collected from different repositories. These challenges limit this study's

prototype implementation to the Android mobile platform. An important lesson learnt was that

constructing one’s own dataset was a laborious and time-consuming process that needed to be

carried out rigorously to ensure the credibility of the subsequent experiments.

169

In addition, due to the possibility of infection of the university network, the malicious APK sample

files were stored and processed in an isolated environment different from the university network.

Due to the storage and processing capability of the resources available for this study, only 40,000

APK files (benign and malicious app samples) were initially collected and processed. Hence, this

study uses only 28,306 Android APKs for its training and testing during the laboratory experiment.

Another lesson learnt was that the dataset construction needed to be supported by adequate

resources acquired at the preparation as not to impose additional limitations of the study.

Finally, the testbed set used for the evaluation of the prototype system was only limited to 1,000

apps because of the storage space and memory capability of the Android tablets devices used for

the evaluation of the prototype system. The malicious app samples used for the evaluation require

root-level access to the devices. Hence, the evaluation of the prototype type system did not use any

personal devices for actual, real-life experiments. This study is limited to the evaluation of apps that

reside on university devices and do not contain personally identifiable information about any

individual. While the use of devices containing personal data would not be justifiable for the purposes

of this study a ‘real-life’ testing may extend the use of a large number of apps in the prototype

evaluation may show a more realistic detection performance compared to what was obtainable in

this study.

7.5 DIRECTIONS FOR FURTHER RESEARCH

The prototype was completed in 2021. While the security landscape may have changed, especially

with the demands on MC and MCC during the global pandemic, the threats and attacks considered

in this study are still relevant. The goals and objectives specified are met in this study as evidenced

by the answers provided to the main research questions and the sub research questions. The

proposed framework may be improved further by extending it to include digital forensics and other

IDPS techniques that are not covered in this study. In addition, future work may address security

issues at the mobile communication channel layers and the mobile cloud service provider layer of

the MCC architecture. Other possible research directions are stated as follows:

A. Implementation and evaluation of the prototype system in another mobile OS

environment different from Android.

B. Detection of malicious activities in the MCC environment by behavioural analysis

approach and inspection of critical OS system calls and user land functions to

improve the detection and prevention system.

C. Energy consumption optimization of the prototype system in Internet of Things (IoTs)

devices.

D. Designing repositories for Installation files of other mobile platforms such as iOS so

that researchers can also implement the prototype system in this environment

170

E. Tackling the issues of insider attacks in the service providers layer of the MCC

environment.

F. Application of deep learning techniques to improve the detection engine performance

Finally, there is need for the development and implementation of other security component such as

the strong cryptographical system to protect leakage of sensitive information when devices offload

data to the cloud environment. The development of the hypervisor based IDPS to protect the cloud

infrastructures against insider attacks. The development and implementation of strong identity and

trust management security components to combat illegal access to cloud resources of MCC users.

171

REFERENCES

Achbarou, O., El Kiram, M. A., Bourkoukou, O., & Elbouanani, S. (2018). A Multi-agent System-
Based Distributed Intrusion Detection System for a Cloud Computing. In International
Conference on Model and Data Engineering (pp. 98-107). Springer, Cham.

Agrawal, N., & Tapaswi, S. (2019). A trustworthy agent-based encrypted access control method for
the mobile cloud computing environment. Pervasive and Mobile Computing, 52, 13-28.

Aguiar, E., Zhang, Y., & Blanton, M. (2014). An overview of issues and recent developments in cloud
computing and storage security. High Performance Cloud Auditing and Applications, 3-33.

Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware
detection using permission requests and API calls. Future Generation Computer Systems,
107, 509-521.

Alghofaili, Y., Albattah, A., Alrajeh, N., Rassam, M. A., & Al-rimy, B. A. S. (2021). Secure Cloud
Infrastructure: A Survey on Issues, Current Solutions, and Open Challenges. Applied
Sciences, 11(19), 9005.

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing: Opportunities and
challenges. Information sciences, 305, 357-383.

Almorsy, M., Grundy, J., & Müller, I. (2016). An analysis of the cloud computing security problem.
arXiv preprint arXiv:1609.01107.

Alomari, E., Manickam, S., Gupta, B. B., Karuppayah, S., & Alfaris, R. (2012). Botnet-based
distributed denial of service (DDoS) attacks on web servers: classification and art. arXiv
preprint arXiv:1208.0403.

AlShahwan, F., Faisal, M., & Ansa, G. (2016). Security framework for RESTful mobile cloud
computing Web services. Journal of Ambient Intelligence and Humanized Computing, 7(5),
649-659.

Alshehri, A., Hewins, A., McCulley, M., Alshahrani, H., Fu, H., & Zhu, Y. (2017). Risks behind device
information permissions in Android OS. Communications and Network, 9(04), 219.

Alshehri, A., Marcinek, P., Alzahrani, A., Alshahrani, H., & Fu, H. (2019). Puredroid: Permission
usage and risk estimation for android applications. In Proceedings of the 2019 3rd
International Conference on Information System and Data Mining (pp. 179-184).

Allix, K., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2016). Androzoo: Collecting millions of android
apps for the research community. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR) (pp. 468-471). IEEE.

Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion detection system
through feature selection analysis and building hybrid efficient model. Journal of
Computational Science, 25, 152-160.

Al_Janabi, S., & Hussein, N. Y. (2019). The reality and future of the secure mobile cloud computing
(SMCC): survey. In International Conference on big data and networks technologies (pp. 231-
261). Springer, Cham.

Al_Janabi, S. (2020). Smart system to create an optimal higher education environment using IDA
and IOTs. International Journal of Computers and Applications, 42(3), 244-259.

Al-Hemairy, M., Amin, S., & Trabelsi, Z. (2009). Towards more sophisticated ARP Spoofing
detection/prevention systems in LAN networks. In 2009 International Conference on the
Current Trends in Information Technology (CTIT) (pp. 1-6). IEEE.

Android O.S (2021). Security Documentation: https://source.android.com/security

https://source.android.com/security

172

Anwer, H. M., Farouk, M., & Abdel-Hamid, A. (2018). A framework for efficient network anomaly
intrusion detection with features selection. IEEE. Symposium conducted at the meeting of
the 2018 9th International Conference on Information and Communication Systems (ICICS)

Ambusaidi, M. A., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection system using
a filter-based feature selection algorithm. IEEE transactions on computers, 65(10), 2986-
2998.

Arabo A., Pranggono, B., (2013). Mobile Malware and Smart Device Security: Trends, Challenges
and Solutions, in Control Systems and Computer Science (CSCS), 2013. In: Proceedings of
the 19th International Conference on, pp. 526–531.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014,
February). Drebin: Effective and explainable detection of android malware in your pocket. In
Ndss (Vol. 14, pp. 23-26).

Arvind, K. S., & Manimegalai, R. (2017). Secure data classification using superior naive classifier in
agent-based mobile cloud computing. Cluster Computing, 20(2), 1535-1542.

Babu, B. M., & Bhanu, M. S. (2015). Prevention of insider attacks by integrating behavior analysis
with risk-based access control model to protect cloud. Procedia Computer Science, 54, 157-
166.

Ba, H., Heinzelman, W., Janssen, C. A., & Shi, J. (2013). Mobile computing-A green computing
resource. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp.
4451-4456). IEEE.

Bahrami, M., & Singhal, M. (2015). A light-weight permutation-based method for data privacy in
mobile cloud computing. In 2015 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (pp. 189-198). IEEE.

Balamurugan, V., & Saravanan, R. (2017). Enhanced intrusion detection and prevention system on
cloud environment using hybrid classification and OTS generation. Cluster Computing, 1-13.

Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2020). DroidLight: Lightweight anomaly-based
intrusion detection system for smartphone devices. In Proceedings of the 21st International
Conference on Distributed Computing and Networking (pp. 1-10).

Bedi, R. K., Singh, J., & Gupta, S. K. (2021). An efficient and secure privacy preserving multi-cloud
storage framework for mobile devices. International Journal of Computers and Applications,
43(5), 472-482.

Belouch, M., El Hadaj, S., & Idhammad, M. (2017). A two-stage classifier approach using reptree
algorithm for network intrusion detection. International Journal of Advanced Computer
Science and Applications, 8(6), 389-394.

Benabied, S., Zitouni, A., & Djoudi, M. (2015). A cloud security framework based on trust model and
mobile agent. In 2015 International Conference on Cloud Technologies and Applications
(CloudTech) (pp. 1-8). IEEE.

Besharati, E., Naderan, M., & Namjoo, E. (2018). LR-HIDS: logistic regression host-based intrusion
detection system for cloud environments. Journal of Ambient Intelligence and Humanized
Computing, 1-24.

Bhattacharya, S., & Selvakumar, S. (2016). Multi-measure multi-weight ranking approach for the
identification of the network features for the detection of DoS and Probe attacks. The
Computer Journal, 59(6), 923-943.

173

Bostani, H., & Sheikhan, M. (2017). Hybrid of binary gravitational search algorithm and mutual
information for feature selection in intrusion detection systems. Soft computing, 21(9), 2307-
2324.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems, 25(6), 599-616.

Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature
weighting with joint optimization of weight-mapping and classifier parameters. Computers &
Security, 100, 102086.

Çavuşoğlu, Ü. (2019). A new hybrid approach for intrusion detection using machine learning
methods. Applied Intelligence, 49(7), 2735-2761.

Cen, L., Gates, C. S., Si, L., & Li, N. (2014). A probabilistic discriminative model for android malware
detection with decompiled source code. IEEE Transactions on Dependable and Secure
Computing, 12(4), 400-412.

Chaudhry, J. A., Chaudhry, S. A., & Rittenhouse, R. G. (2016). Phishing attacks and
defenses. International Journal of Security and Its Applications, 10(1), 247-256.

Chean, L. T., Ponnusamy, V., & Fati, S. M. (2018). Authentication scheme using unique identification
method with homomorphic encryption in Mobile Cloud Computing. In 2018 IEEE Symposium
on Computer Applications & Industrial Electronics (ISCAIE) (pp. 195-200). IEEE.

Checkpoint Security Report (2021) https://www.checkpoint.com/cyber-hub/threat prevention/what-
is-mobile-security/top-6-mobile-security-threats-and-how-to-prevent-them/#TopThreats

Chen, D., & Zhao, H. (2012). Data security and privacy protection issues in cloud computing. In 2012
International Conference on Computer Science and Electronics Engineering (Vol. 1, pp. 647-
651). IEEE.

Chen, Y. J., & Wang, L. C. (2011). A security framework of group location-based mobile applications
in cloud computing. In 2011 40th International Conference on Parallel Processing
Workshops (pp. 184-190). IEEE.

Chung, K. Y., Yoo, J., & Kim, K. J. (2014). Recent trends on mobile computing and future networks.
Personal and Ubiquitous Computing, 18(3), 489-491.

Cushman, I. J., Al Sadi, M. B., Chen, L., & Haddad, R. J. (2017). A Framework and the Design of
Secure Mobile Cloud with Smart Load Balancing. In 2017 5th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering (MobileCloud) (pp. 205-210). IEEE.

CSA (2013) The Notorious 9 - Cloud Computing Top Threats in 2013, Tech. Rep., Cloud Security
Alliance, URL https://cloudsecurityalliance.org/artifacts/the-notorious-nine-cloud-computing-
top-threats-in-2013/ [Accessed on 10-May-2019], 2013.

CSA (2016) The Treacherous 12 - Cloud Computing Top Threats in 2016, Tech. Rep., Cloud
Security Alliance, URL https://cloudsecurityalliance.org/artifacts/the-treacherous-twelve-
cloud-computing-top-threats-in-2016/ [Accessed on 10-May-2019]

CSA (2019) The Egregious 11 - Cloud Computing Top Threats in 2019, Tech. Rep., Cloud Security
Alliance, URL https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-
egregious-eleven/, [Accessed on 22-October-2019], 2019.

Dai, J., & Zhou, Q. (2010). A PKI-based mechanism for secure and efficient access to outsourced
data. In 2010 International Conference on Networking and Digital Society (Vol. 1, pp. 640-
643). IEEE.

https://www.checkpoint.com/cyber-hub/threat%20prevention/what-is-mobile-security/top-6-mobile-security-threats-and-how-to-prevent-them/#TopThreats
https://www.checkpoint.com/cyber-hub/threat%20prevention/what-is-mobile-security/top-6-mobile-security-threats-and-how-to-prevent-them/#TopThreats

174

Dai, Q., Yang, H., Yao, Q., & Chen, Y. (2012). An improved security service scheme in a mobile
cloud environment. In 2012 IEEE 2nd International Conference on Cloud Computing and
Intelligence Systems (Vol. 1, pp. 407-412). IEEE.

Dbouk, T., Mourad, A., Otrok, H., & Talhi, C. (2016). Towards an ad-hoc cloud-based approach for
mobile intrusion detection. In 2016 IEEE 12th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob) (pp. 1-8). IEEE.

Derhab, A., Belaoued, M., Guerroumi, M., & Khan, F. A. (2020). Two-factor mutual authentication
offloading for mobile cloud computing. IEEE Access, 8, 28956-28969.

Dey, S., Sampalli, S., & Ye, Q. (2015). A context-adaptive security framework for mobile cloud
computing. In 2015 11th International Conference on Mobile Ad-hoc and Sensor Networks
(MSN) (pp. 89-95). IEEE.

Dey, S., Ye, Q., & Sampalli, S. (2019). A machine learning-based intrusion detection scheme for
data fusion in mobile clouds involving heterogeneous client networks. Information Fusion, 49,
205-215.

Dhage, S. N., Meshram, B. B., Rawat, R., Padawe, S., Paingaokar, M., & Misra, A. (2011). An
intrusion detection system in a cloud computing environment. In Proceedings of the
International Conference & Workshop on Emerging Trends in Technology (pp. 235-239).
ACM.

Dhanya, N. M., & Kousalya, G. (2015). Adaptive and Secure Application Partitioning for Offloading
in Mobile Cloud Computing. In International Symposium on Security in Computing and
Communication (pp. 45-53). Springer, Cham.

Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless communications and mobile computing, 13(18),
1587-1611.

Dolgikh, A., Birnbaum, Z., Chen, Y., & Skormin, V. (2013). Behavioural modelling for suspicious
process detection in cloud computing environments. In 2013 IEEE 14th International
Conference on Mobile Data Management (Vol. 2, pp. 177-181). IEEE.

Donald, A. C., & Arockiam, L. (2015, January). A secure authentication scheme for MobiCloud.
In 2015 International Conference on Computer Communication and Informatics (ICCCI) (pp.
1-6). IEEE.

Eesa, A. S., Orman, Z., & Brifcani, A. M. A. (2015). A novel feature-selection approach based on the
cuttlefish optimization algorithm for intrusion detection systems. Expert Systems with
Applications, 42(5), 2670-2679.

Farooq, M. U., Khan, S. U. R., & Beg, M. O. (2019). Melta: A method level energy estimation
technique for android development. In 2019 International Conference on Innovative
Computing (ICIC) (pp. 1-10). IEEE.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017). Androdialysis:
Analysis of android intent effectiveness in malware detection. computers & security, 65, 121-
134.

Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M. M., & Inácio, P. R. (2014). Security issues
in cloud environments: a survey. International Journal of Information Security, 13(2), 113-
170.

Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. Future
generation computer systems, 29(1), 84-106.

175

Feng, Y., Chen, L., Zheng, A., Gao, C., & Zheng, Z. (2019). Ac-net: Assessing the consistency of
description and permission in android apps. IEEE Access, 7, 57829-57842.

Ficco, M., Venticinque, S., & Di Martino, B. (2012). Mosaic-based intrusion detection framework for
cloud computing. In OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems"(pp. 628-644). Springer, Berlin, Heidelberg.

Fischer, A., Kittel, T., Kolosnjaji, B., Lengyel, T. K., Mandarawi, W., de Meer, H., & Weishäupl, E.
(2015). CloudIDEA: a malware defence architecture for cloud data centres. In OTM
Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp.
594-611). Springer, Cham.

Gaharwar, R. S., & Gupta, R. (2020). Vulnerability assessment of android instant messaging
application and network intrusion detection prevention systems. Journal of Statistics and
Management Systems, 23(2), 399-406.

Gai, K., Qiu, M., Tao, L., & Zhu, Y. (2016). Intrusion detection techniques for mobile cloud computing
in heterogeneous 5G. Security and Communication Networks, 9(16), 3049-3058.

Gaska, B., Gniady, C., & Surdeanu, M. (2018). MLStar: Machine Learning in Energy Profile
Estimation of Android Apps. In Proceedings of the 15th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (pp. 216-225).

Ghribi, S., Makhlouf, A. M., & Zarai, F. (2018). C-DIDS: A Cooperative and Distributed Intrusion
Detection System in Cloud environment. In 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC)(pp. 267-272). IEEE.

Goyal, D., & Krishna, M. B. (2015). Secure framework for data access using Location-based service
in Mobile Cloud Computing. In 2015 Annual IEEE India Conference (INDICON) (pp. 1-6).
IEEE.

Grobauer, B., Walloschek, T., & Stocker, E. (2010). Understanding cloud computing vulnerabilities.
IEEE Security & privacy, 9(2), 50-57.

Gupta, B. B., Yamaguchi, S., & Agrawal, D. P. (2018). Advances in security and privacy of multimedia
big data in mobile and cloud computing. Multimedia Tools and Applications, 77(7), 9203-
9208.

Gupta, S., Horrow, S., & Sardana, A. (2012). IDS based defence for cloud-based mobile
infrastructure as a service. In 2012 IEEE Eighth World Congress on Services (pp. 199-202).
IEEE.

Hashizume, K., Rosado, D. G., Fernández-Medina, E., & Fernandez, E. B. (2013). An analysis of
security issues for cloud computing. Journal of internet services and applications, 4(1), 1-13.

Hatcher, W. G., Maloney, D., & Yu, W. (2016). Machine learning-based mobile threat monitoring and
detection. In 2016 IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA)(pp. 67-73). IEEE.

Hazarika, P., Baliga, V., & Tolety, S. (2014). The mobile-cloud computing (MCC) roadblocks. In 2014
Eleventh International Conference on Wireless and Optical Communications Networks
(WOCN) (pp. 1-5). IEEE.

Heninger, N., Durumeric, Z., Wustrow, E., & Halderman, J. A. (2012). Mining your Ps and Qs:
Detection of widespread weak keys in network devices. In 21st {USENIX} Security
Symposium ({USENIX} Security 12) (pp. 205-220).

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly, 75-105.

176

Huang, D., Zhang, X., Kang, M., & Luo, J. (2010). MobiCloud: building secure cloud framework for
mobile computing and communication. In 2010 fifth IEEE international symposium on
service-oriented system engineering (pp. 27-34). IEEE.

Huang, D., Zhou, Z., Xu, L., Xing, T., & Zhong, Y. (2011). Secure data processing framework for
mobile cloud computing. In 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 614-618). IEEE.

Houmansadr, A., Zonouz, S. A., & Berthier, R. (2011). A cloud-based intrusion detection and
response system for mobile phones. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W) (pp. 31-32). IEEE.

Hou, S., Saas, A., Chen, L., & Ye, Y. (2016). Deep4maldroid: A deep learning framework for android
malware detection based on Linux kernel system call graphs. In 2016 IEEE/WIC/ACM
International Conference on Web Intelligence Workshops (WIW) (pp. 104-111). IEEE.

Idhammad, M., Afdel, K., & Belouch, M. (2017). Dos detection method based on artificial neural
networks. International Journal of Advanced Computer Science and Applications, 8(4), 465-
471.

Idrees, F., & Muttukrishnan, R. (2014). War against mobile malware with cloud computing and
machine learning forces. In 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet) (pp. 278-280). IEEE.

Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017). PIndroid: A novel
Android malware detection system using ensemble learning methods. Computers & Security,
68, 36-46.

Idrissi, H., Ennahbaoui, M., El Hajji, S., & Souidi, E. M. (2017). A Secure Cloud-Based IDPS Using
Cryptographic Traces and Revocation Protocol. In International Conference on Codes,
Cryptology, and Information Security (pp. 365-382). Springer, Cham.

Inayat, Z., Gani, A., Anuar, N. B., Anwar, S., & Khan, M. K. (2017). Cloud-based intrusion detection
and response system: open research issues, and solutions. Arabian Journal for Science and
Engineering, 42(2), 399-423.

Irshad, A., Chaudhry, S. A., Alomari, O. A., Yahya, K., & Kumar, N. (2020). A novel pairing-free
lightweight authentication protocol for mobile cloud computing framework. IEEE Systems
Journal, 15(3), 3664-3672.

Itani, W., Kayssi, A., & Chehab, A. (2010). Energy-efficient incremental integrity for securing storage
in mobile cloud computing. In 2010 International Conference on Energy-Aware
Computing (pp. 1-2). IEEE.

Jensen, M., Gruschka, N., & Herkenhöner, R. (2009). A survey of attacks on web services. Computer
Science-Research and Development, 24(4), 185-197.

Jia, W., Zhu, H., Cao, Z., Wei, L., & Lin, X. (2011). SDSM: a secure data service mechanism in
mobile cloud computing. In 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 1060-1065). IEEE.

Jing, Y., Ahn, G. J., Zhao, Z., & Hu, H. (2014). Towards automated risk assessment and mitigation
of mobile applications. IEEE Transactions on Dependable and Secure Computing, 12(5),
571-584.

Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2016). Cypider: building community-based
cyber-defense infrastructure for android malware detection. In Proceedings of the 32nd
Annual Conference on Computer Security Applications (pp. 348-362).

177

Kaspersky Security Lab (2021) Mobile Malware Evaluation 2021, https://securelist.com/it-threat-
evolution-in-q3-2021-mobile-statistics/105020/

Khan, A. N., Kiah, M. M., Madani, S. A., & Ali, M. (2013). Enhanced dynamic credential generation
scheme for the protection of user identity in mobile-cloud computing. The Journal of
Supercomputing, 66(3), 1687-1706.

Khan, A. N., Kiah, M. M., Madani, S. A., Ali, M., & Shamshirband, S. (2014). Incremental proxy re-
encryption scheme for the mobile cloud computing environment. The Journal of
Supercomputing, 68(2), 624-651.

Khatri, S. K., & Vadi, V. R. (2017). Biometric-based authentication and access control techniques to
secure mobile cloud computing. In 2017 2nd International Conference on Telecommunication
and Networks (TEL-NET) (pp. 1-7). IEEE.

Khedr, W. I., Hosny, K. M., Khashaba, M. M., & Amer, F. A. (2020). Prediction-based secured
handover authentication for mobile cloud computing. Wireless Networks, 26, 4657-4675.

Kholidy, H. A., Erradi, A., Abdelwahed, S., & Baiardi, F. (2016). A risk mitigation approach for
autonomous cloud intrusion response system. Computing, 98(11), 1111-1135.

Khune, R. S., & Thangakumar, J. (2012). A cloud-based intrusion detection system for Android
smartphones. In 2012 International Conference on Radar, Communication and Computing
(ICRCC) (pp. 180-184). IEEE.

Kim, H., Kim, J., Kim, Y., Kim, I., & Kim, K. J. (2018). Design of network threat detection and
classification based on machine learning on cloud computing. Cluster Computing, 1-10.

Kim, S., Hwang, C., & Lee, T. (2020). Anomaly based unknown intrusion detection in endpoint
environments. Electronics, 9(6), 1022.

Kim, K., Kim, J., Ko, E., & Yi, J. H. (2020). Risk assessment scheme for mobile applications based
on tree boosting. IEEE Access, 8, 48503-48514.

Kissel, R. (2011) Glossary of Key Information Security Terms, in NISTIR 7298 National Institute of
Standards and Technology, 2011, URL
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf, [Accessed on 10-May-2019].

Ko, K., Son, Y., Kim, S., & Lee, Y. (2017). DisCO: A distributed and concurrent offloading framework
for mobile edge cloud computing. In the 2017 Ninth International Conference on Ubiquitous
and Future Networks (ICUFN) (pp. 763-766). IEEE.

Kovachev, D., Renzel, D., Klamma, R., Cao, Y., 2010. Mobile community cloud computing emerges
and evolves, in Mobile Data Management (MDM), 2010. In: Proceedings of the Eleventh
International Conference on, pp. 393–395.

Kulkarni, P., & Khanai, R. (2015). Addressing mobile Cloud Computing security issues: A survey.
In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp.
1463-1467). IEEE.

Kulkarni, P., Khanai, R., & Bindagi, G. (2016). Security frameworks for mobile cloud computing: A
survey. In 2016 International Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT) (pp. 2507-2511). IEEE.

Kumar, M., & Hanumanthappa, M. (2015). Cloud-based intrusion detection architecture for
smartphones. In 2015 international conference on innovations in information, embedded and
communication systems (ICIIECS) (pp. 1-6). IEEE.

178

Kumar, N., Singh, J. P., Bali, R. S., Misra, S., & Ullah, S. (2015). An intelligent clustering scheme for
distributed intrusion detection in vehicular cloud computing. Cluster Computing, 18(3), 1263-
1283.

Kumar, R., & Goyal, R. (2019). On cloud security requirements, threats, vulnerabilities and
countermeasures: A survey. Computer Science Review, 33, 1-48.

La Polla, M., Martinelli, F., & Sgandurra, D. (2012). A survey on security for mobile devices. IEEE
communications surveys & tutorials, 15(1), 446-471.

Lei, L., Sengupta, S., Pattanaik, T., & Gao, J. (2015). MCloudDB: A Mobile Cloud Database Service
Framework. In 2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (pp. 6-15). IEEE.

Liang, Y., Wang, W., Dong, K., Zhang, G., & Qi, G. (2021). Adoption of mobile government cloud
from the perspective of public sector. Mobile Information Systems.

Li, H., Lan, C., Fu, X., Wang, C., Li, F., & Guo, H. (2020). A secure and lightweight fine-grained data
sharing scheme for mobile cloud computing. Sensors, 20(17), 4720.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission identification for
machine-learning-based android malware detection. IEEE Transactions on Industrial
Informatics, 14(7), 3216-3225.

Li, J., Zhai, L., Zhang, X., & Quan, D. (2014). Research of android malware detection based on
network traffic monitoring. In 2014 9th IEEE Conference on Industrial Electronics and
Applications (pp. 1739-1744). IEEE.

Li, R., Shen, C., He, H., Gu, X., Xu, Z., & Xu, C. Z. (2017). A lightweight secure data sharing scheme
for mobile cloud computing. IEEE Transactions on Cloud Computing, 6(2), 344-357.

Li, Y., Du, M., & Xu, J. (2018). A New Distributed Intrusion Detection Method Based on Immune
Mobile Agent. In 2018 Sixth International Conference on Advanced Cloud and Big Data
(CBD) (pp. 215-219). IEEE

Lima, A., Rosa, L., Cruz, T., & Simões, P. (2020). A Security Monitoring Framework for Mobile
Devices. Electronics, 9(8), 1197.

Lin, C., Shen, Z., Chen, Q., & Sheldon, F. T. (2017). A data integrity verification scheme in mobile
cloud computing. Journal of Network and Computer Applications, 77, 146-151.

Lin, X. (2011). Survey on cloud-based mobile security and a new framework for improvement.
In 2011 IEEE International Conference on Information and Automation (pp. 710-715). IEEE.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.and Leaf, D. (2011) NIST Cloud
Computing Reference Architecture (SP 500-292), National Institute of Standards &
Technology, Gaithersburg, MD 20899-8930, USA, URL
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=909505,[Accessed on 10-May-2019].

Liu, L., Zhang, X., Yan, G., Chen, S., (2009). Exploitation and threat analysis of open mobile devices,
In: Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pp. 20–29.

Lordan, F., Jensen, J., & Badia, R. M. (2018). Towards mobile cloud computing with single sign-on
access. Journal of Grid Computing, 16(4), 627-646.

Lu, H., Xia, X., & Wang, X. (2012). How to dynamically protect data in mobile cloud computing?. In
Joint International Conference on Pervasive Computing and the Networked World (pp. 364-
371). Springer, Berlin, Heidelberg.

179

Lu, N., Li, D., Shi, W., Vijayakumar, P., Piccialli, F., & Chang, V. (2021). An efficient combined deep
neural network based malware detection framework in 5G environment. Computer Networks,
189, 107932.

Luo, B., & Xia, J. (2014). A novel intrusion detection system based on feature generation with
visualization strategy. Expert Systems with Applications, 41(9), 4139-4147.

Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020). Dynamic Android
Malware Category Classification using Semi-Supervised Deep Learning. In 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence
and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 515-522). IEEE.

Manikanthan, S. V., Padmapriya, T., Hussain, A., & Thamizharasi, E. (2020). Artificial Intelligence
Techniques for Enhancing Smartphone Application Development on Mobile Computing, 4-
19.

Man, N. D., & Huh, E. N. (2012). A collaborative intrusion detection system framework for cloud
computing. In Proceedings of the International Conference on IT Convergence and Security
2011 (pp. 91-109). Springer, Dordrecht.

Marengereke, T. M., & Sornalakshmi, K. (2015). Cloud-based security solution for Android
smartphones. In 2015 International Conference on Circuits, Power and Computing
Technologies [ICCPCT-2015] (pp. 1-6). IEEE.

Marforio, C., Masti, R. J., Soriente, C., Kostiainen, K., & Capkun, S. (2016). Hardened setup of
personalized security indicators to counter phishing attacks in mobile banking.
In Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile
Devices (pp. 83-92).

Marlinspike, M. (2009). More tricks for defeating SSL in practice. Black Hat USA, 516.

Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q., & Javaid, A. Y. (2021). NATICUSdroid: A malware
detection framework for Android using native and custom permissions. Journal of Information
Security and Applications, 58, 102696.

Mat, S. R. T., Ab Razak, M. F., Kahar, M. N. M., Arif, J. M., & Firdaus, A. (2022). A Bayesian

probability model for Android malware detection. ICT Express, 8(3), 424-431.

Maza, S., & Touahria, M. (2019). Feature selection for intrusion detection using new multi-objective

estimation of distribution algorithms. Applied Intelligence, 1-21.

Meads, A., Roughton, A., Warren, I., & Weerasinghe, T. (2009). Mobile service provisioning
middleware for multihomed devices. In 2009 IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (pp. 67-72). IEEE.

Mehmood, Y., Shibli, M. A., Kanwal, A., & Masood, R. (2015). Distributed intrusion detection system
using mobile agents in the cloud computing environment. In 2015 Conference on Information
Assurance and Cyber Security (CIACS) (pp. 1-8). IEEE.

Microsoft(2009) The STRIDE Threat Model, URL https://docs.microsoft.com/enus/previous-
versions/commerce-server/ee823878(v=cs.20), [Accessed on 27-Oct-2019].

Microsoft (2022) "STRIDE Threat Modelling Tool" https://docs.microsoft.com/en-
us/azure/security/develop/threat-modeling-tool-threats

Milligan, P.M., Hutcheson, D., (2008). Business risks and security assessment for mobile devices.
Inf. Syst. Control J. 1, 24.

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

180

Milosevic, J., Dittrich, A., Ferrante, A., & Malek, M. (2014). A resource-optimized approach to efficient
early detection of mobile malware. In 2014 Ninth International Conference on Availability,
Reliability and Security (pp. 333-340). IEEE.

Modi, C. N. (2015). Network intrusion detection in cloud computing. In Emerging Research in
Computing, Information, Communication and Applications (pp. 289-296). Springer, New
Delhi.

Modi, C., Patel, D., Borisanya, B., Patel, A., & Rajarajan, M. (2012). A novel framework for intrusion
detection in the cloud. In Proceedings of the fifth international conference on security of
information and networks (pp. 67-74). ACM.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of intrusion
detection techniques in the cloud. Journal of network and computer applications, 36(1), 42-
57.

Modi, C., & Patel, D. (2018). A feasible approach to intrusion detection in the virtual network layer of
Cloud computing. Sādhanā, 43(7), 114.

Mogull, R., Arlen, J., Lane, A., Peterson, K., Rothman, M., Mortman, D.(2017) Security Guidance for
Critical Areas of Focus in Cloud Computing, Cloud Security Alliance, 2017, URL
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/security-
guidance-v4-FINAL.pdf, [Accessed on 10-May-2019].

Mohammadi, S., Mirvaziri, H., Ghazizadeh-Ahsaee, M., & Karimipour, H. (2019). Cyber intrusion
detection by combined feature selection algorithm. Journal of information security and
applications, 44, 80-88.

Mohiuddin, K., Islam, A., Alam, A., and Ali, A. (2012): mobile cloud access. In Proceedings of the
CUBE International Information Technology Conference, Pp: 544-551.

Mogal, D. G., Ghungrad, S. R., & Bhusare, B. B. (2017). NIDS using machine learning classifiers on
UNSW-NB15 and KDDCUP99 datasets. International Journal of Advanced Research in
Computer and Communication Engineering (IJARCCE), 6(4), 533-537.

Mollah, M. B., Azad, M. A. K., & Vasilakos, A. (2017). Security and privacy challenges in mobile
cloud computing: Survey and way ahead. Journal of Network and Computer Applications, 84,
38-54.

Mollah, M. B., Islam, K. R., & Islam, S. S. (2012, April). Next-generation computing through cloud
computing technology. In 2012 25th IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE) (pp. 1-6). IEEE.

Moloja, D., & Mpekoa, N. (2017). Towards a cloud intrusion detection and prevention system form-
voting in south Africa. In 2017 International Conference on Information Society (i-
Society) (pp. 34-39). IEEE.

Moorthy, S. M., & Masillamani, M. R. (2014). Intrusion detection in cloud computing implementation
of (SAAS & IAAS) using grid environment. In Proceedings of International Conference on
Internet Computing and Information Communications (pp. 53-64). Springer, New Delhi.

Moorthy, V., Venkataraman, R., & Rao, T. R. (2020). Security and privacy attacks during data
communication in software defined mobile clouds. Computer Communications, 153, 515-526.

Moustafa, N., & Slay, J. (2017). A hybrid feature selection for network intrusion detection systems:
Central points. arXiv preprint arXiv:1707.05505.

Moustafa, N., Hu, J., & Slay, J. (2019). A holistic review of network anomaly detection systems: A
comprehensive survey. Journal of Network and Computer Applications, 128, 33-55.

https://downloads.cloudsecurityalliance.org/assets/

181

Mugabo, E., & Zhang, Q. Y. (2020). Intrusion Detection Method Based on Support Vector Machine
and Information Gain for Mobile Cloud Computing. International Journal. Network. Security,
22(2), 231-241.

Myasnikov, V., Shaposhnikov, A., Sartasov, S., Gordienko, E., Aphonina, O., & Gamaonov, A.
(2021). Navitas Framework: A Novel Tool for Android Applications Energy Profiling. In Sixth
Conference on Software Engineering and Information Management (SEIM-2021)(full papers)
(p. 11).

Nagar, U., Nanda, P., He, X., & Tan, Z. T. (2017). A framework for data security in the cloud using a
collaborative intrusion detection scheme. In Proceedings of the 10th International
Conference on Security of Information and Networks (pp. 188-193). ACM.

Nezarat, A. (2017). A game-theoretic method for VM-to-hypervisor attacks detection in the cloud
environment. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID) (pp. 1127-1132). IEEE.

Nezarat, A., & Shams, Y. (2017). A game theoretic-based distributed detection method for VM-to-
hypervisor attacks in the cloud environment. The Journal of Supercomputing, 73(10), 4407-
4427.

Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2019). Blockchain for secure ehrs
sharing of mobile cloud based e-health systems. IEEE access, 7, 66792-66806.

Nguyen, K. K., Hoang, D. T., Niyato, D., Wang, P., Nguyen, D., & Dutkiewicz, E. (2018). Cyberattack
detection in mobile cloud computing: A deep learning approach. In 2018 IEEE Wireless
Communications and Networking Conference (WCNC) (pp. 1-6). IEEE.

Nisha, O. J., & Bhanu, S. M. S. (2020). Detection of malware applications using social spider
algorithm in the mobile cloud computing environment. International Journal of Ad Hoc and
Ubiquitous Computing, 34(3), 154-169.

Noor, T. H., Zeadally, S., Alfazi, A., & Sheng, Q. Z. (2018). Mobile cloud computing: Challenges and
future research directions. Journal of Network and Computer Applications, 115, 70-85.

Offermann, P., Levina, O., Schönherr, M., & Bub, U. (2009). Outline of a design science research
process. In Proceedings of the 4th International Conference on Design Science Research in
Information Systems and Technology (pp. 1-11).

Omri, F., Foufou, S., Hamila, R., & Jarraya, M. (2013). Cloud-based mobile system for biometrics
authentication. In 2013 13th International Conference on ITS Telecommunications
(ITST) (pp. 325-330). IEEE.

Osanaiye, O., Cai, H., Choo, K.-K. R., Dehghantanha, A., Xu, Z., & Dlodlo, M. (2016). Ensemble
based multi-filter feature selection method for DDoS detection in cloud computing. EURASIP
Journal on Wireless Communications and Networking, 2016(1), 130.

OS, J. N. (2021). Detection of malicious Android applications using Ontology-based intelligent model
in mobile cloud environment. Journal of Information Security and Applications, 58, 102751.

OWASP, (2021). Top 10 Most Critical Web Application Security Risks, Tech. Rep. Top 10 - 2021,
The OWASP Foundation, URL https://owasp.org/www-project-top-ten/, [Accessed on 28-
Jan-2022].

Panah, A., Panah, A., Panah, O., & Fallahpour, S. (2012). Challenges of security issues in cloud
computing layers. Rep. Opin, 4(10), 25-29.

Pandeeswari, N., & Kumar, G. (2016). An anomaly detection system in a cloud environment using
fuzzy clustering-based ANN. Mobile Networks and Applications, 21(3), 494-505.

182

Pandian, V. A., & Kumar, T. G. (2014). A Novel Cloud-Based NIDPS for Smartphones.
In International Conference on Security in Computer Networks and Distributed Systems(pp.
473-484). Springer, Berlin, Heidelberg.

Patel, A., Taghavi, M., Bakhtiyari, K., & Júnior, J. C. (2012). Taxonomy and proposed architecture
of intrusion detection and prevention systems for cloud computing. In Cyberspace Safety and
Security (pp. 441-458). Springer, Berlin, Heidelberg

Patel, A., Taghavi, M., Bakhtiyari, K., & JúNior, J. C. (2013). An intrusion detection and prevention
system in cloud computing: A systematic review. Journal of network and computer
applications, 36(1), 25-41.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of management information systems,
24(3), 45-77.

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., ... & Molloy, I. (2012). Using probabilistic
generative models for ranking risks of android apps. In Proceedings of the 2012 ACM
conference on Computer and communications security (pp. 241-252).

Peng, K., Zheng, L., Xu, X., Lin, T., & Leung, V. C. (2018). Balanced Iterative Reducing and
Clustering Using Hierarchies with Principal Component Analysis (PBirch) for Intrusion
Detection over Big Data in Mobile Cloud Environment. In International Conference on
Security, Privacy and Anonymity in Computation, Communication and Storage (pp. 166-177).
Springer, Cham.

Pham, N. T., Foo, E., Suriadi, S., Jeffrey, H., & Lahza, H. F. M. (2018). Improving performance of
intrusion detection system using ensemble methods and feature selection. In Proceedings of
the Australasian computer science week multiconference (pp. 1-6).

Pokharel, S., Choo, K.-K.R., Liu, J., (2017). Mobile cloud security: an adversary model for lightweight
browser security. Computer. Stand. Interfaces 49, 71–78.

Pontarelli, S., Bianchi, G., & Teofili, S. (2012). Traffic-aware design of a high-speed FPGA network
intrusion detection system. IEEE Transactions on Computers, 62(11), 2322-2334.

Prandini, M., Ramilli, M., Cerroni, W., & Callegati, F. (2010). Splitting the HTTPS stream to attack
secure web connections. IEEE Security & Privacy, 8(6), 80-84.

Prokhorenko, V., Choo, K.-K.R., Ashman, H., (2016). Web application protection techniques: a
taxonomy. Journal. of Network and Computer Application. 60, 95–112.

Qin, T., Chen, R., Wang, L., & He, C. (2018). LMHADC: Lightweight Method for Host-based Anomaly
Detection in Cloud using Mobile Agents. In 2018 IEEE Conference on Communications and
Network Security (CNS) (pp. 1-8). IEEE.

Qi, Y., Cao, M., Zhang, C., & Wu, R. (2014). A design of network behaviour-based malware detection
system for Android. In International Conference on Algorithms and Architectures for Parallel
Processing (pp. 590-600). Springer, Cham.

Quick, D., & Choo, K. K. R. (2017). Pervasive social networking forensics: intelligence and evidence
from mobile device extracts. Journal of Network and Computer Applications, 86, 24-33.

Racic, R., Ma, D., Chen, H., (2006). Exploiting MMS vulnerabilities to stealthily exhaust mobile
phone’s battery. In: Secure comm and Workshops, pp. 1–10.

Rai, P. O. (2013). Android Application Security Essentials. Packt Publishing Ltd.

Raja, S., & Ramaiah, S. (2017). An efficient fuzzy-based hybrid system to cloud intrusion
detection. International Journal of Fuzzy Systems, 19(1), 62-77.

183

Rajendran, R., Kumar, S. S., Palanichamy, Y., & Arputharaj, K. (2018) Detection of DoS attacks in
cloud networks using the intelligent rule-based classification system. Cluster Computing, 1-
12.

Rashidi, B., Fung, C., & Bertino, E. (2017). Android resource usage risk assessment using hidden
Markov model and online learning. Computers & Security, 65, 90-107.

Ravji, S., & Ali, M. (2018). Integrated Intrusion Detection and Prevention System with Honeypot in
Cloud Computing. In 2018 International Conference on Computing, Electronics &
Communications Engineering (iCCECE) (pp. 95-100). IEEE.

Ren, W., Yu, L., Gao, R., & Xiong, F. (2011). Lightweight and compromise resilient storage
outsourcing with distributed secure accessibility in mobile cloud computing. Tsinghua
Science and Technology, 16(5), 520-528.

Ribeiro, J., Mantas, G., Saghezchi, F. B., Rodriguez, J., Shepherd, S. J., & Abd-Alhameed, R. A.
(2018). Towards an Autonomous Host-Based Intrusion Detection System for Android Mobile
Devices. In International Conference on Broadband Communications, Networks and
Systems (pp. 139-148). Springer, Cham.

Ribeiro, J., Saghezchi, F. B., Mantas, G., Rodriguez, J., Shepherd, S. J., & Abd-Alhameed, R. A.
(2019). An Autonomous Host-Based Intrusion Detection System for Android Mobile
Devices. Mobile Networks and Applications, 1-9.

Ribeiro, J., Saghezchi, F. B., Mantas, G., Rodriguez, J., Shepherd, S. J., & Abd-Alhameed, R. A.
(2020). An autonomous host-based intrusion detection system for Android mobile devices.
Mobile Networks and Applications, 25(1), 164-172.

Rittinghouse, J. W., & Ransome, J. F. (2017). Cloud computing: implementation, management, and
security. CRC press.

Rodero-Merino, L., Vaquero, L. M., Caron, E., Muresan, A., & Desprez, F. (2012). Building safe PaaS
clouds: A survey on security in multitenant software platforms. computers & security, 31(1),
96-108.

Roshandel, R., Arabshahi, P., & Poovendran, R. (2013). LIDAR: layered intrusion detection and
remediation framework for smartphones. In Proceedings of the 4th international ACM Sigsoft
symposium on Architecting critical systems (pp. 27-32). ACM.

Saeed, S., Jhanjhi, N. Z., Naqvi, M., & Humayun, M. (2019). Analysis of software development
methodologies. International Journal of Computing and Digital Systems, 8(5), 446-460.

Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021). A novel Android malware detection system:
adaption of filter-based feature selection methods. Journal of Ambient Intelligence and
Humanized Computing, 1-15.

Sajjad, M., Muhammad, K., Baik, S. W., Rho, S., Jan, Z., Yeo, S. S., & Mehmood, I. (2017). Mobile-
cloud assisted framework for selective encryption of medical images with steganography for
resource-constrained devices. Multimedia Tools and Applications, 76(3), 3519-3536.

Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam: Effective and efficient
behaviour-based android malware detection and prevention. IEEE Transactions on
Dependable and Secure Computing, 15(1), 83-97.

Sathye, M., Goundar, S., & Bhardwaj, A. (2022). Determinants of Mobile Cloud Computing Adoption
by Financial Services Firms. Journal of Information Technology Research (JITR), 15(1), 1-
17.

184

Sanaei, Z., Abolfazli, S., Gani, A., & Shiraz, M. (2012). SAMI: Service-based arbitrated multi-tier
infrastructure for Mobile Cloud Computing. In 2012 1st IEEE International Conference on
Communications in China Workshops (ICCC)(pp. 14-19). IEEE.

Scandariato, R., Wuyts, K., & Joosen, W. (2015). A descriptive study of Microsoft’s threat modelling
technique. Requirements Engineering, 20(2), 163-180.

Scarfone, K., & Mell, P. (2007). Guide to intrusion detection and prevention systems (IDPS). NIST
special publication, 800(2007), 94.

Schaffer, H. E. (2009). X as a service, cloud computing, and the need for good judgment. IT
professional, 11(5), 4-5.

Sebastián, M., Rivera, R., Kotzias, P., & Caballero, J. (2016). Avclass: A tool for massive malware
labeling. In International symposium on research in attacks, intrusions, and defenses (pp.
230-253). Springer, Cham.

Sgandurra, D., & Lupu, E. (2016). Evolution of attacks, threat models, and solutions for virtualized
systems. ACM Computing Surveys (CSUR), 48(3), 1-38.

Shabbir, M., Shabbir, A., Iwendi, C., Javed, A. R., Rizwan, M., Herencsar, N., & Lin, J. C. W. (2021).
Enhancing security of health information using modular encryption standard in mobile cloud
computing. IEEE Access, 9, 8820-8834.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: a behavioral
malware detection framework for android devices. Journal of Intelligent Information Systems,
38(1), 161-190.

Sharma, K., & Gupta, B. B. (2018). Mitigation and risk factor analysis of android applications.
Computers & Electrical Engineering, 71, 416-430.

Shi, Y., Abhilash, S., & Hwang, K. (2015). Cloudlet mesh for securing mobile clouds from intrusions
and network attacks. In 2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (pp. 109-118). IEEE

Shila, D. M., Shen, W., Cheng, Y., Tian, X., & Shen, X. S. (2016). AMCloud: Toward a secure
autonomic mobile ad hoc cloud computing system. IEEE Wireless Communications, 24(2),
74-81.

Shiny, R., Shaji, R. S., & Jayan, J. P. (2015). Signature-based data auditing under mobile cloud
system. In 2015 Global Conference on Communication Technologies (GCCT)(pp. 565-570).
IEEE.

Singh, S., Jeong, Y. S., & Park, J. H. (2016). A survey on cloud computing security: Issues, threats,
and solutions. Journal of Network and Computer Applications, 75, 200-222.

Singh, T., Verma, S., Kulshrestha, V., & Katiyar, S. (2016). Intrusion detection system using genetic
algorithm for the cloud. In Proceedings of the Second International Conference on
Information and Communication Technology for Competitive Strategies (p. 115). ACM.

Sohal, A. S., Sandhu, R., Sood, S. K., & Chang, V. (2018). A cybersecurity framework to identify
malicious edge device in fog computing and cloud-of-things environments. Computers &
Security, 74, 340-354.

Son, H. X., Carminati, B., & Ferrari, E. (2021). A Risk Assessment Mechanism for Android Apps. In
2021 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 237-244).
IEEE.

Sood, S. K. (2012). A combined approach to ensure data security in cloud computing. Journal of
Network and Computer Applications, 35(6), 1831-1838.

185

Statcounter(2022) https://gs.statcounter.com/android-version-market-share/mobile-
tablet/worldwide/2022

Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of cloud
computing. Journal of network and computer applications, 34(1), 1-11.

Subramaniam Govindaraj, S. P. (2020). Joint Honeypot Networks and Hybrid Intrusion Detection
System for Mobile Cloud Computing (Doctoral dissertation, Dublin, National College of
Ireland).

Sun, S., Ye, Z., Yan, L., Su, J., & Wang, R. (2018). Wrapper feature selection based on lightning
attachment procedure optimization and support vector machine for intrusion detection. IEEE.
Symposium conducted at the meeting of the 2018 IEEE 4th International Symposium on
Wireless Systems within the International Conferences on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS-SWS)

Sukumaran, S. C., & Misbahuddin, M. (2021). PCR and Bio-signature for data confidentiality and
integrity in mobile cloud computing. Journal of King Saud University-Computer and
Information Sciences, 33(4), 426-435.

Tama, B. A., Comuzzi, M., & Rhee, K.-H. (2019). TSE-IDS: A Two-Stage Classifier Ensemble for
Intelligent Anomaly-Based Intrusion Detection System. IEEE Access, 7, 94497-94507.

Tahirkheli, A. I., Shiraz, M., Hayat, B., Idrees, M., Sajid, A., Ullah, R., ... & Kim, K. I. (2021). A survey
on modern cloud computing security over smart city networks: Threats, vulnerabilities,
consequences, countermeasures, and challenges. Electronics, 10(15), 1811.

Thumar, V., & Vekariya, V. (2016). A Framework for Secure Data Storage in Mobile Cloud
Computing. In Proceedings of International Conference on ICT for Sustainable Development
(pp. 791-800). Springer, Singapore.

Tong, F., & Yan, Z. (2017). A hybrid approach of mobile malware detection in
Android. Journal of Parallel and Distributed computing, 103, 22-31.

Tong, F., & Yan, Z. (2017). A hybrid approach of mobile malware detection in Android. Journal of
Parallel and Distributed computing, 103, 22-31.

Toumi, H., Talea, M., Sabiri, K., & Eddaoui, A. (2015). Toward a trusted framework for cloud
computing. In 2015 International Conference on Cloud Technologies and Applications
(CloudTech) (pp. 1-6). IEEE.

Trabelsi, S., Di Cerbo, F., Gomez, L., & Bezzi, M. (2015). A Privacy-Preserving Framework for Mobile
and Cloud. In 2015 2nd ACM International Conference on Mobile Software Engineering and
Systems (pp. 160-161). IEEE.

Ulltveit-Moe, N., Oleshchuk, V. A., & Køien, G. M. (2011). Location-aware mobile intrusion detection
with enhanced privacy in a 5G context. Wireless Personal Communications, 57(3), 317-338.

Velliangiri, S., & Premalatha, J. (2017). Intrusion detection of distributed denial of service attack in
the cloud. Cluster Computing, 1-9.

Venable, J. R., Pries-Heje, J., & Baskerville, R. L. (2017). Choosing a design science research
methodology. ACIS 2017 Proceedings. 112.

Vijayanand, R., Devaraj, D., & Kannapiran, B. (2018). Intrusion detection system for wireless mesh
network using multiple support vector machine classifiers with genetic-algorithm-based
feature selection. Computers & Security, 77, 304-314.

https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide/2022
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide/2022

186

Wang, H., Si, J., Li, H., & Guo, Y. (2019). Rmvdroid: towards a reliable android malware dataset with
app metadata. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR) (pp. 404-408). IEEE.

Wang, Y., Zheng, J., Sun, C., & Mukkamala, S. (2013). Quantitative security risk assessment of
android permissions and applications. In IFIP Annual Conference on Data and Applications
Security and Privacy (pp. 226-241). Springer, Berlin, Heidelberg.

Weng, Y., & Liu, L. (2019). A Collective Anomaly Detection Approach for Multidimensional Streams
in Mobile Service Security. IEEE Access, 7, 49157-49168.

Wu, J., Ding, L., Wu, Y., Min‐Allah, N., Khan, S. U., & Wang, Y. (2014). C2detector: a covert channel
detection framework in cloud computing. Security and Communication Networks, 7(3), 544-
557.

Xu, J., Yu, Y., Chen, Z., Cao, B., Dong, W., Guo, Y., & Cao, J. (2013). MobSafe: cloud computing-
based forensic analysis for massive mobile applications using data mining. Tsinghua science
and technology, 18(4), 418-427.

Yang, X., Pan, T., & Shen, J. (2010). On 3G mobile e-commerce platform based on cloud computing.
In 2010 3rd IEEE International Conference on Ubi-Media Computing (pp. 198-201). IEEE.

Yan, W. (2012). CAS: A framework of online detecting advanced malware families for cloud-based
security. In 2012 1st IEEE International Conference on Communications in China (ICCC) (pp.
220-225). IEEE.

Yassin, W., Udzir, N. I., Muda, Z., Abdullah, A., & Abdullah, M. T. (2012). A cloud-based intrusion
detection service framework. In Proceedings Title: 2012 International Conference on Cyber
Security, Cyber Warfare and Digital Forensic (CyberSec) (pp. 213-218). IEEE.

Yazji, S., Scheuermann, P., Dick, R. P., Trajcevski, G., & Jin, R. (2014). Efficient location-aware
intrusion detection to protect mobile devices. Personal and Ubiquitous Computing, 18(1),
143-162.

Zhang, T., & Wen, F. (2016). An ID-Based Anonymous Authentication Scheme for Distributed Mobile
Cloud Computing. In International Conference on Geo-Informatics in Resource Management
and Sustainable Ecosystem (pp. 401-409). Springer, Singapore.

Zhang, J. Y., Wu, P., Zhu, J., Hu, H., & Bonomi, F. (2013). Privacy-preserved mobile sensing through
a hybrid cloud trust framework. In 2013 IEEE Sixth International Conference on Cloud
Computing (pp. 952-953). IEEE.

Zhong, H., & Xiao, J. (2014). Design for a cloud-based hybrid Android application security
assessment framework. In 2014 10th International Conference on Reliability, Maintainability
and Safety (ICRMS) (pp. 539-546). IEEE.

Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M. Y., & Li, K. C. (2019). A novel approach for mobile
malware classification and detection in Android systems. Multimedia Tools and
Applications, 78(3), 3529-3552.

Zhu, W., Luo, C., Wang, J., Li, S., (2011). Multimedia cloud computing. Signal Process.

Mag. IEEE 28, 59–69.

Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future Generation
computer systems, 28(3), 583-592.

Zkik, K., Orhanou, G., & El Hajji, S. (2017). Secure mobile multi-cloud architecture for authentication
and data storage. International Journal of Cloud Applications and Computing (IJCAC), 7(2), 62-76.

187

APPENDIX A (TABLES)

Table 1 Unique List of Permissions Usage in the Constructed Dataset

S/N Permission Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

T
o

ta
l

U
s

a
g

e

1 ACCESS_BACKGROUND_LOCATION 8 22 30

2 ACCESS_CHECKIN_PROPERTIES 1 20 21

3 ACCESS_COARSE_LOCATION 2465 12568 15033

4 ACCESS_FINE_LOCATION 2640 10970 13610

5 ACCESS_LOCATION_EXTRA_COMMANDS 137 4173 4310

6 ACCESS_MEDIA_LOCATION 1 0 1

7 ACCESS_NETWORK_STATE 9196 18037 27233

8 ACCESS_NOTIFICATION_POLICY 38 11 49

9 ACCESS_WIFI_STATE 3516 15361 18877

10 ACCOUNT_MANAGER 6 24 30

11 ACTIVITY_RECOGNITION 3 0 3

12 ADD_VOICEMAIL 0 1 1

13 ANSWER_PHONE_CALLS 9 2 11

14 BATTERY_STATS 53 301 354

15 BIND_ACCESSIBILITY_SERVICE 10 27 37

16 BIND_APPWIDGET 8 27 35

17 BIND_DEVICE_ADMIN 1 7 8

18 BIND_INPUT_METHOD 3 6 9

19 BIND_NOTIFICATION_LISTENER_SERVICE 8 5 13

20 BIND_PRINT_SERVICE 1 0 1

21 BIND_REMOTEVIEWS 3 0 3

22 BIND_SCREENING_SERVICE 1 0 1

23 BIND_TELECOM_CONNECTION_SERVICE 0 1 1

24 BIND_WALLPAPER 2 41 43

25 BLUETOOTH 676 1153 1829

26 BLUETOOTH_ADMIN 440 767 1207

27 BLUETOOTH_PRIVILEGED 14 4 18

28 BODY_SENSORS 7 28 35

29 BROADCAST_PACKAGE_REMOVED 1 4 5

30 BROADCAST_SMS 2 44 46

31 BROADCAST_STICKY 159 927 1086

32 BROADCAST_WAP_PUSH 2 12 14

33 CALL_PHONE 753 3466 4219

34 CALL_PRIVILEGED 4 22 26

35 CAMERA 1911 3630 5541

36 CAPTURE_AUDIO_OUTPUT 6 8 14

37 CHANGE_COMPONENT_ENABLED_STATE 4 30 34

38 CHANGE_CONFIGURATION 94 915 1009

39 CHANGE_NETWORK_STATE 247 2013 2260

188

S/N Permission Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

T
o

ta
l

U
s

a
g

e

40 CHANGE_WIFI_MULTICAST_STATE 83 170 253

41 CHANGE_WIFI_STATE 486 5789 6275

42 CLEAR_APP_CACHE 58 187 245

43 CONTROL_LOCATION_UPDATES 0 19 19

44 DELETE_CACHE_FILES 2 62 64

45 DELETE_PACKAGES 5 108 113

46 DIAGNOSTIC 0 12 12

47 DISABLE_KEYGUARD 231 1519 1750

48 DUMP 0 5 5

49 EXPAND_STATUS_BAR 46 347 393

50 FACTORY_TEST 0 3 3

51 FOREGROUND_SERVICE 335 82 417

52 GET_ACCOUNTS 1918 2605 4523

53 GET_ACCOUNTS_PRIVILEGED 1 3 4

54 GET_PACKAGE_SIZE 49 278 327

55 GET_TASKS 641 9245 9886

56 GLOBAL_SEARCH 0 3 3

57 INSTALL_LOCATION_PROVIDER 0 2 2

58 INSTALL_PACKAGES 14 566 580

59 INSTALL_SHORTCUT 15 11 26

60 INSTANT_APP_FOREGROUND_SERVICE 0 1 1

61 INTERNET 9760 18406 28166

62 KILL_BACKGROUND_PROCESSES 118 2092 2210

63 LOCATION_HARDWARE 6 10 16

64 MANAGE_DOCUMENTS 53 36 89

65 MANAGE_OWN_CALLS 3 0 3

66 MASTER_CLEAR 0 10 10

67 MEDIA_CONTENT_CONTROL 41 25 66

68 MODIFY_AUDIO_SETTINGS 467 2454 2921

69 MODIFY_PHONE_STATE 19 289 308

70 MOUNT_FORMAT_FILESYSTEMS 1 56 57

71 MOUNT_UNMOUNT_FILESYSTEMS 150 5634 5784

72 NFC 113 151 264

73 NFC_TRANSACTION_EVENT 1 0 1

74 PACKAGE_USAGE_STATS 73 136 209

75 PERSISTENT_ACTIVITY 7 38 45

76 PROCESS_OUTGOING_CALLS 70 649 719

77 READ_CALENDAR 277 161 438

78 READ_CALL_LOG 77 164 241

79 READ_CONTACTS 743 1644 2387

80 READ_EXTERNAL_STORAGE 3021 6159 9180

189

S/N Permission Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

T
o

ta
l

U
s

a
g

e

81 READ_INPUT_STATE 2 5 7

82 READ_LOGS 183 5634 5817

83 READ_PHONE_NUMBERS 8 8 16

84 READ_PHONE_STATE 2553 17785 20338

85 READ_SMS 163 1406 1569

86 READ_SYNC_SETTINGS 109 116 225

87 READ_SYNC_STATS 59 58 117

88 REBOOT 2 16 18

89 RECEIVE_BOOT_COMPLETED 2302 7042 9344

90 RECEIVE_MMS 18 206 224

91 RECEIVE_SMS 223 1195 1418

92 RECEIVE_WAP_PUSH 11 86 97

93 RECORD_AUDIO 821 3718 4539

94 REORDER_TASKS 39 361 400

95 REQUEST_COMPANION_RUN_IN_BACKGROUND 1 0 1

96 REQUEST_COMPANION_USE_DATA_IN_BACKGROUND 1 0 1

97 REQUEST_DELETE_PACKAGES 13 4 17

98 REQUEST_IGNORE_BATTERY_OPTIMIZATIONS 27 45 72

99 REQUEST_INSTALL_PACKAGES 107 460 567

100 RESTART_PACKAGES 86 3249 3335

101 SEND_SMS 205 3199 3404

102 SET_ALARM 11 3 14

103 SET_ALWAYS_FINISH 0 10 10

104 SET_ANIMATION_SCALE 1 6 7

105 SET_DEBUG_APP 14 151 165

106 SET_PREFERRED_APPLICATIONS 2 23 25

107 SET_PROCESS_LIMIT 0 3 3

108 SET_TIME 3 13 16

109 SET_TIME_ZONE 3 44 47

110 SET_WALLPAPER 586 1078 1664

111 SET_WALLPAPER_HINTS 226 116 342

112 SIGNAL_PERSISTENT_PROCESSES 0 19 19

113 STATUS_BAR 1 21 22

114 SYSTEM_ALERT_WINDOW 769 5431 6200

115 TRANSMIT_IR 7 24 31

116 UNINSTALL_SHORTCUT 4 1 5

117 UPDATE_DEVICE_STATS 8 79 87

118 USE_BIOMETRIC 24 2 26

119 USE_FINGERPRINT 179 45 224

120 USE_FULL_SCREEN_INTENT 1 1 2

121 USE_SIP 11 36 47

190

S/N Permission Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

T
o

ta
l

U
s

a
g

e

122 VIBRATE 3363 9383 12746

123 WAKE_LOCK 5758 8322 14080

124 WRITE_APN_SETTINGS 9 746 755

125 WRITE_CALENDAR 281 176 457

126 WRITE_CALL_LOG 33 88 121

127 WRITE_CONTACTS 298 515 813

128 WRITE_EXTERNAL_STORAGE 6284 16855 23139

129 WRITE_GSERVICES 1 20 21

130 WRITE_SECURE_SETTINGS 20 231 251

131 WRITE_SETTINGS 563 3040 3603

132 WRITE_SYNC_SETTINGS 136 126 262

191

Table 2 Unique List of Intent Usage in the Constructed Dataset

S/N Intent Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

s

T
o

ta
l

U
s

a
g

e

1 action_MAIN 9865 18168 28033

2 category_LAUNCHER 9858 18032 27890

3 category_DEFAULT 3510 7304 10814

4 action_BOOT_COMPLETED 2347 5577 7924

5 action_PACKAGE_ADDED 384 5345 5729

6 action_VIEW 2474 3074 5548

7 category_BROWSABLE 2245 2614 4859

8 action_USER_PRESENT 275 3664 3939

9 action_PACKAGE_REMOVED 196 2607 2803

10 category_HOME 126 2041 2167

11 action_SEARCH 460 412 872

12 action_CREATE_SHORTCUT 62 779 841

13 action_MY_PACKAGE_REPLACED 650 29 679

14 action_SEND 402 231 633

15 action_PACKAGE_REPLACED 205 414 619

16 action_MEDIA_MOUNTED 62 424 486

17 category_LEANBACK_LAUNCHER 378 66 444

18 action_NEW_OUTGOING_CALL 68 373 441

19 action_MEDIA_BUTTON 317 82 399

20 action_PACKAGE_INSTALL 79 316 395

21 action_SCREEN_ON 26 266 292

22 category_MONKEY 12 255 267

23 action_TIMEZONE_CHANGED 156 109 265

24 action_SCREEN_OFF 27 214 241

25 category_INFO 86 150 236

26 action_MEDIA_EJECT 27 190 217

27 action_MEDIA_UNMOUNTED 37 177 214

28 action_BATTERY_CHANGED 22 150 172

29 action_BATTERY_LOW 126 45 171

30 action_BATTERY_OKAY 122 36 158

31 action_MEDIA_REMOVED 28 130 158

32 action_EDIT 52 100 152

33 action_SEND_MULTIPLE 95 52 147

34 action_PACKAGE_CHANGED 34 97 131

35 action_GET_CONTENT 60 69 129

36 action_SENDTO 34 94 128

37 action_LOCALE_CHANGED 82 42 124

38 action_DATE_CHANGED 29 94 123

39 category_OPENABLE 49 72 121

192

S/N Intent Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

s

T
o

ta
l

U
s

a
g

e

40 category_PREFERENCE 12 104 116

41 action_DEVICE_STORAGE_LOW 95 14 109

42 action_HEADSET_PLUG 71 36 107

43 action_SET_WALLPAPER 57 47 104

44 action_DEVICE_STORAGE_OK 88 13 101

45 action_MEDIA_CHECKING 5 92 97

46 action_PACKAGE_RESTARTED 14 80 94

47 action_PICK 42 52 94

48 action_WALLPAPER_CHANGED 11 82 93

49 action_TIME_TICK 8 84 92

50 action_DIAL 18 52 70

51 action_MEDIA_BAD_REMOVAL 19 49 68

52 action_MEDIA_SCANNER_FINISHED 19 43 62

53 action_INSERT 8 52 60

54 action_CALL_BUTTON 5 52 57

55 action_MEDIA_SCANNER_STARTED 16 38 54

56 action_PACKAGE_DATA_CLEARED 21 29 50

57 action_REBOOT 25 25 50

58 action_MEDIA_SHARED 19 23 42

59 action_WEB_SEARCH 13 28 41

60 category_ALTERNATIVE 19 22 41

61 action_CALL 9 27 36

62 action_UMS_CONNECTED 2 34 36

63 action_MEDIA_NOFS 1 34 35

64 action_DEFAULT 2 29 31

65 action_PACKAGE_FULLY_REMOVED 25 6 31

66 action_INPUT_METHOD_CHANGED 2 26 28

67 action_EXTERNAL_APPLICATIONS_AVAILABLE 8 19 27

68 action_CONFIGURATION_CHANGED 6 20 26

69 action_DELETE 1 25 26

70 action_LOCKED_BOOT_COMPLETED 24 2 26

71 category_SAMPLE_CODE 3 20 23

72 category_APP_BROWSER 9 13 22

73 action_SEARCH_LONG_PRESS 2 17 19

74 action_PROCESS_TEXT 16 2 18

75 category_SELECTED_ALTERNATIVE 11 7 18

76 category_TAB 5 13 18

77 action_UMS_DISCONNECTED 0 17 17

78 action_CLOSE_SYSTEM_DIALOGS 2 14 16

79 action_MEDIA_SCANNER_SCAN_FILE 5 11 16

193

S/N Intent Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

s

T
o

ta
l

U
s

a
g

e

80 action_MEDIA_UNMOUNTABLE 3 13 16

81 action_ASSIST 7 7 14

82 action_CAMERA_BUTTON 2 11 13

83 action_PROVIDER_CHANGED 7 5 12

84 action_EXTERNAL_APPLICATIONS_UNAVAILABLE 1 10 11

85 category_APP_MARKET 2 9 11

86 action_MANAGE_NETWORK_USAGE 9 1 10

87 action_PACKAGE_FIRST_LAUNCH 5 5 10

88 action_INSERT_OR_EDIT 1 8 9

89 category_DESK_DOCK 1 8 9

90 category_EMBED 4 5 9

91 action_APPLICATION_PREFERENCES 8 0 8

92 action_ATTACH_DATA 6 2 8

93 action_CHOOSER 4 3 7

94 action_DOCK_EVENT 0 7 7

95 action_RUN 2 5 7

96 action_UID_REMOVED 0 7 7

97 category_APP_MUSIC 7 0 7

98 action_ANSWER 3 3 6

99 action_DREAMING_STOPPED 1 5 6

100 action_USER_INITIALIZE 4 2 6

101 action_INSTALL_PACKAGE 1 4 5

102 action_PACKAGE_NEEDS_VERIFICATION 1 3 4

103 action_VOICE_COMMAND 2 2 4

104 category_APP_CALENDAR 4 0 4

105 category_CAR_DOCK 2 2 4

106 action_ALL_APPS 0 3 3

107 action_DREAMING_STARTED 1 2 3

108 action_MANAGE_PACKAGE_STORAGE 0 3 3

109 action_POWER_CONNECTED 2 1 3

110 action_TIME_CHANGED 0 3 3

111 action_UNINSTALL_PACKAGE 0 3 3

112 category_APP_CONTACTS 2 1 3

113 category_APP_MESSAGING 2 1 3

114 category_CAR_MODE 1 2 3

115 category_VOICE 3 0 3

116 action_APPLICATION_RESTRICTIONS_CHANGED 0 2 2

117 action_GET_RESTRICTION_ENTRIES 0 2 2

118 action_SYNC 2 0 2

119 category_APP_GALLERY 1 1 2

194

S/N Intent Name B
e

n
ig

n
 A

p
p

s

M
a

li
c

io
u

s
 A

p
p

s

T
o

ta
l

U
s

a
g

e

120 category_DEVELOPMENT_PREFERENCE 1 1 2

121 action_BUG_REPORT 1 0 1

122 action_CREATE_DOCUMENT 1 0 1

123 action_OPEN_DOCUMENT 1 0 1

124 action_OPEN_DOCUMENT_TREE 1 0 1

125 action_PACKAGE_VERIFIED 1 0 1

126 action_POWER_DISCONNECTED 1 0 1

127 action_SHOW_APP_INFO 1 0 1

128 action_USER_UNLOCKED 0 1 1

129 category_APP_EMAIL 1 0 1

130 category_TEST 1 0 1

131 action_AIRPLANE_MODE_CHANGED 0 1 1

195

Table 3 Feature Selection Results of the Proposed Filter-Based FS Method

ID B
App%

M
App%

δ ε Status ID B
App%

M
App%

δ ε Status

PI1 0.08 0.12 0.04 0.68 VOID PI54 0.50 1.51 1.01 0.33 VOID

PI2 0.01 0.11 0.10 0.09 VOID PI55 6.49 50.17 43.68 0.13 GOOD

PI3 24.95 68.20 43.25 0.37 GOOD PI56 0.00 0.02 0.02 0.00 VOID

PI4 26.72 59.53 32.81 0.45 GOOD PI57 0.00 0.01 0.01 0.00 VOID

PI5 1.39 22.65 21.26 0.06 GOOD PI58 0.14 3.07 2.93 0.05 VOID

PI6 0.01 0.00 0.01 0.00 VOID PI59 0.15 0.06 0.09 0.39 VOID

PI7 93.09 97.88 4.80 0.95 VOID PI60 0.00 0.01 0.01 0.00 VOID

PI8 0.38 0.06 0.32 0.16 VOID PI61 98.80 99.89 1.09 0.99 VOID

PI9 35.59 83.36 47.77 0.43 GOOD PI62 1.19 11.35 10.16 0.11 GOOD

PI10 0.06 0.13 0.07 0.47 VOID PI63 0.06 0.05 0.01 0.89 VOID

PI11 0.03 0.00 0.03 0.00 VOID PI64 0.54 0.20 0.34 0.36 VOID

PI12 0.00 0.01 0.01 0.00 VOID PI65 0.03 0.00 0.03 0.00 VOID

PI13 0.09 0.01 0.08 0.12 VOID PI66 0.00 0.05 0.05 0.00 VOID

PI14 0.54 1.63 1.10 0.33 VOID PI67 0.42 0.14 0.28 0.33 VOID

PI15 0.10 0.15 0.05 0.69 VOID PI68 4.73 13.32 8.59 0.35 GOOD

PI16 0.08 0.15 0.07 0.55 VOID PI69 0.19 1.57 1.38 0.12 VOID

PI17 0.01 0.04 0.03 0.27 VOID PI70 0.01 0.30 0.29 0.03 VOID

PI18 0.03 0.03 0.00 0.93 VOID PI71 1.52 30.57 29.06 0.05 GOOD

PI19 0.08 0.03 0.05 0.34 VOID PI72 1.14 0.82 0.32 0.72 VOID

PI20 0.01 0.00 0.01 0.00 VOID PI73 0.01 0.00 0.01 0.00 VOID

PI21 0.03 0.00 0.03 0.00 VOID PI74 0.74 0.74 0.00 1.00 VOID

PI22 0.01 0.00 0.01 0.00 VOID PI75 0.07 0.21 0.14 0.34 VOID

PI23 0.00 0.01 0.01 0.00 VOID PI76 0.71 3.52 2.81 0.20 VOID

PI24 0.02 0.22 0.20 0.09 VOID PI77 2.80 0.87 1.93 0.31 VOID

PI25 6.84 6.26 0.59 0.91 VOID PI78 0.78 0.89 0.11 0.88 VOID

PI26 4.45 4.16 0.29 0.93 VOID PI79 7.52 8.92 1.40 0.84 GOOD

PI27 0.14 0.02 0.12 0.15 VOID PI80 30.58 33.42 2.84 0.91 GOOD

PI28 0.07 0.15 0.08 0.47 VOID PI81 0.02 0.03 0.01 0.75 VOID

PI29 0.01 0.02 0.01 0.47 VOID PI82 1.85 30.57 28.72 0.06 GOOD

PI30 0.02 0.24 0.22 0.08 VOID PI83 0.08 0.04 0.04 0.54 VOID

PI31 1.61 5.03 3.42 0.32 GOOD PI84 25.84 96.52 70.67 0.27 GOOD

PI32 0.02 0.07 0.04 0.31 VOID PI85 1.65 7.63 5.98 0.22 GOOD

PI33 7.62 18.81 11.19 0.41 GOOD PI86 1.10 0.63 0.47 0.57 VOID

PI34 0.04 0.12 0.08 0.34 VOID PI87 0.60 0.31 0.28 0.53 VOID

PI35 19.34 19.70 0.36 0.98 VOID PI88 0.02 0.09 0.07 0.23 VOID

PI36 0.06 0.04 0.02 0.71 VOID PI89 23.30 38.22 14.91 0.61 GOOD

PI37 0.04 0.16 0.12 0.25 VOID PI90 0.18 1.12 0.94 0.16 VOID

PI38 0.95 4.97 4.01 0.19 GOOD PI91 2.26 6.49 4.23 0.35 GOOD

PI39 2.50 10.92 8.42 0.23 GOOD PI92 0.11 0.47 0.36 0.24 VOID

PI40 0.84 0.92 0.08 0.91 VOID PI93 8.31 20.18 11.87 0.41 GOOD

PI41 4.92 31.42 26.50 0.16 GOOD PI94 0.39 1.96 1.56 0.20 VOID

PI42 0.59 1.01 0.43 0.58 VOID PI95 0.01 0.00 0.01 0.00 VOID

PI43 0.00 0.10 0.10 0.00 VOID PI96 0.01 0.00 0.01 0.00 VOID

PI44 0.02 0.34 0.32 0.06 VOID PI97 0.13 0.02 0.11 0.16 VOID

PI45 0.05 0.59 0.54 0.09 VOID PI98 0.27 0.24 0.03 0.89 VOID

PI46 0.00 0.07 0.07 0.00 VOID PI99 1.08 2.50 1.41 0.43 VOID

PI47 2.34 8.24 5.91 0.28 GOOD PI100 0.87 17.63 16.76 0.05 GOOD

PI48 0.00 0.03 0.03 0.00 VOID PI101 2.08 17.36 15.29 0.12 GOOD

PI49 0.47 1.88 1.42 0.25 VOID PI102 0.11 0.02 0.10 0.15 VOID

PI50 0.00 0.02 0.02 0.00 VOID PI103 0.00 0.05 0.05 0.00 VOID

PI51 3.39 0.44 2.95 0.13 VOID PI104 0.01 0.03 0.02 0.31 VOID

PI52 19.41 14.14 5.28 0.73 GOOD PI105 0.14 0.82 0.68 0.17 VOID

PI53 0.01 0.02 0.01 0.62 VOID PI106 0.02 0.12 0.10 0.16 VOID

196

ID B
App%

M
App%

δ ε Status ID B
App%

M
App%

δ ε Status

PI107 0.00 0.02 0.02 0.00 VOID PI162 0.53 0.54 0.02 0.97 VOID

PI108 0.03 0.07 0.04 0.43 VOID PI163 0.08 0.10 0.02 0.79 VOID

PI109 0.03 0.24 0.21 0.13 VOID PI164 0.01 0.05 0.04 0.19 VOID

PI110 5.93 5.85 0.08 0.99 VOID PI165 0.61 0.37 0.23 0.62 VOID

PI111 2.29 0.63 1.66 0.28 VOID PI166 0.00 0.01 0.01 0.00 VOID

PI112 0.00 0.10 0.10 0.00 VOID PI167 0.72 0.20 0.52 0.27 VOID

PI113 0.01 0.11 0.10 0.09 VOID PI168 0.02 0.14 0.12 0.14 VOID

PI114 7.78 29.47 21.69 0.26 GOOD PI169 0.08 0.28 0.20 0.29 VOID

PI115 0.07 0.13 0.06 0.54 VOID PI170 0.01 0.04 0.03 0.23 VOID

PI116 0.04 0.01 0.04 0.13 VOID PI171 0.01 0.02 0.01 0.47 VOID

PI117 0.08 0.43 0.35 0.19 VOID PI171 0.83 0.23 0.60 0.27 VOID

PI118 0.24 0.01 0.23 0.04 VOID PI172 0.24 0.01 0.23 0.04 VOID

PI119 1.81 0.24 1.57 0.13 VOID PI173 99.86 98.59 1.26 0.99 VOID

PI120 0.01 0.01 0.00 0.54 VOID PI174 0.09 0.01 0.09 0.06 VOID

PI121 0.11 0.20 0.08 0.57 VOID PI175 0.00 0.02 0.02 0.00 VOID

PI122 34.04 50.92 16.88 0.67 GOOD PI176 0.19 0.27 0.07 0.72 VOID

PI123 58.29 45.16 13.12 0.77 GOOD PI177 3.21 0.44 2.76 0.14 VOID

PI124 0.09 4.05 3.96 0.02 VOID PI178 0.05 0.50 0.45 0.10 VOID

PI125 2.84 0.96 1.89 0.34 VOID PI179 0.27 1.03 0.76 0.27 VOID

PI126 0.33 0.48 0.14 0.70 VOID PI180 0.63 2.30 1.67 0.27 VOID

PI127 3.02 2.79 0.22 0.93 VOID PI181 0.01 0.18 0.17 0.05 VOID

PI128 63.61 91.47 27.86 0.70 GOOD PI182 0.28 0.71 0.42 0.40 VOID

PI129 0.01 0.11 0.10 0.09 VOID PI183 0.19 0.23 0.04 0.82 VOID

PI130 0.20 1.25 1.05 0.16 VOID PI184 0.05 0.06 0.01 0.85 VOID

PI131 5.70 16.50 10.80 0.35 GOOD PI185 0.16 0.21 0.04 0.79 VOID

PI132 1.38 0.68 0.69 0.50 VOID PI186 0.19 0.12 0.07 0.65 VOID

PI133 0.00 0.00 0.00 0.00 VOID PI187 0.03 0.07 0.04 0.43 VOID

PI134 0.00 0.02 0.02 0.00 VOID PI188 0.37 0.96 0.59 0.39 VOID

PI135 0.03 0.02 0.01 0.54 VOID PI190 6.58 0.16 6.42 0.02 VOID

PI136 0.08 0.00 0.08 0.00 VOID PI191 0.69 2.02 1.34 0.34 VOID

PI137 0.00 0.01 0.01 0.00 VOID PI192 0.01 0.00 0.01 0.00 VOID

PI138 0.07 0.04 0.03 0.54 VOID PI193 0.01 0.00 0.01 0.00 VOID

PI139 0.06 0.01 0.05 0.18 VOID PI194 3.89 29.01 25.12 0.13 GOOD

PI140 0.22 0.81 0.59 0.27 VOID PI195 0.34 0.53 0.18 0.65 VOID

PI141 1.28 0.24 1.03 0.19 VOID PI196 0.21 0.16 0.06 0.74 VOID

PI142 1.23 0.20 1.04 0.16 VOID PI197 0.05 0.03 0.02 0.54 VOID

PI143 23.76 30.27 6.51 0.78 GOOD PI198 0.25 0.03 0.22 0.13 VOID

PI144 0.01 0.00 0.01 0.00 VOID PI199 0.80 1.71 0.92 0.47 VOID

PI145 0.09 0.15 0.06 0.62 VOID PI200 0.01 0.02 0.01 0.62 VOID

PI146 0.05 0.28 0.23 0.18 VOID PI201 1.98 14.15 12.16 0.14 GOOD

PI147 0.02 0.06 0.04 0.34 VOID PI202 2.08 2.25 0.17 0.92 VOID

PI148 0.04 0.02 0.02 0.40 VOID PI203 0.14 0.43 0.29 0.33 VOID

PI149 0.02 0.08 0.06 0.27 VOID PI204 0.01 0.00 0.01 0.00 VOID

PI150 0.06 0.11 0.05 0.56 VOID PI205 0.43 0.28 0.14 0.66 VOID

PI151 0.01 0.00 0.01 0.00 VOID PI206 0.02 0.01 0.01 0.27 VOID

PI152 0.63 4.23 3.60 0.15 VOID PI207 0.01 0.00 0.01 0.00 VOID

PI153 0.29 0.51 0.22 0.58 VOID PI208 0.16 0.01 0.15 0.07 VOID

PI154 0.02 0.16 0.14 0.13 VOID PI209 0.07 0.03 0.04 0.38 VOID

PI155 0.01 0.14 0.13 0.07 VOID PI210 0.25 0.14 0.12 0.54 VOID

PI156 0.96 0.08 0.89 0.08 VOID PI211 0.02 0.03 0.01 0.75 VOID

PI157 0.89 0.07 0.82 0.08 VOID PI212 0.27 1.16 0.89 0.24 VOID

PI158 0.18 0.28 0.10 0.65 VOID PI213 0.26 1.44 1.18 0.18 VOID

PI159 0.00 0.04 0.04 0.00 VOID PI214 4.66 2.24 2.42 0.48 GOOD

PI160 0.01 0.01 0.00 0.93 VOID PI215 0.02 0.09 0.07 0.22 VOID

PI161 0.01 0.03 0.02 0.37 VOID PI216 4.07 1.25 2.82 0.31 VOID

PI217 0.96 0.28 0.68 0.29 VOID PI241 0.01 0.01 0.00 0.54 VOID

197

ID B
App%

M
App%

δ ε Status ID B
App%

M
App%

δ ε Status

PI218 0.34 0.51 0.17 0.67 VOID PI242 0.02 0.05 0.03 0.41 VOID

PI219 0.58 0.26 0.32 0.44 VOID PI243 0.02 0.01 0.01 0.27 VOID

PI220 0.01 0.00 0.01 0.00 VOID PI244 0.07 0.00 0.07 0.00 VOID

PI221 0.02 0.00 0.02 0.00 VOID PI245 22.72 14.19 8.54 0.62 GOOD

PI222 0.00 0.02 0.02 0.00 VOID PI246 0.02 0.01 0.01 0.54 VOID

PI223 0.08 0.46 0.37 0.18 VOID PI247 0.01 0.01 0.00 0.93 VOID

PI224 1.58 0.59 0.99 0.37 VOID PI248 35.53 39.64 4.11 0.90 GOOD

PI225 0.00 0.04 0.04 0.00 VOID PI249 0.01 0.04 0.03 0.23 VOID

PI226 0.02 0.18 0.16 0.11 VOID PI250 0.01 0.01 0.00 0.54 VOID

PI227 0.00 0.09 0.09 0.00 VOID PI251 0.04 0.03 0.01 0.67 VOID

PI228 0.00 0.02 0.02 0.00 VOID PI252 1.28 11.08 9.80 0.12 GOOD

PI229 0.04 0.01 0.03 0.27 VOID PI253 0.87 0.81 0.06 0.94 VOID

PI230 2.78 19.88 17.10 0.14 GOOD PI254 99.79 97.86 1.93 0.98 VOID

PI231 0.00 0.01 0.01 0.00 VOID PI255 3.83 0.36 3.47 0.09 VOID

PI232 25.04 16.68 8.36 0.67 GOOD PI256 0.12 1.38 1.26 0.09 VOID

PI233 0.02 0.01 0.01 0.54 VOID PI257 0.50 0.39 0.11 0.79 VOID

PI234 0.11 0.44 0.33 0.25 VOID PI258 0.12 0.56 0.44 0.22 VOID

PI235 0.13 0.15 0.02 0.87 VOID PI259 0.03 0.11 0.08 0.28 VOID

PI236 0.19 0.12 0.07 0.62 VOID PI260 0.11 0.04 0.07 0.34 VOID

PI237 0.09 0.07 0.02 0.77 VOID PI261 0.05 0.07 0.02 0.72 VOID

PI238 0.04 0.00 0.04 0.00 VOID PI262 0.01 0.00 0.01 0.00 VOID

PI239 0.02 0.01 0.01 0.27 VOID PI263 0.03 0.00 0.03 0.00 VOID

PI240 0.01 0.00 0.01 0.00 VOID

Note: PI1-PI132 represents the unique permissions list in Table 1 and PI133-PI263
represents the unique intents list in Table 2.

198

Table 4 Related Works and their ML Classifiers Used

Source ML Classifier

Luo & Xia SVM

Eesa et al. DT

Bhattacharya & Selvakumar BN, J48, KM

Osanaiye et al. DT

Ambusaidi et al. SVM

Belouch et al REPTree

Moustafa & Slay EM, LR, NB

Bostani & Sheikhan SVM

Mogal et al. NB, LR

Idhammad et al. ANN

Vijayanand et al SVM

Aljawarneh et al. NB, J48, RT

Anwer et al. J48, NB

Sun et al. SVM

Pham et al. EC, J48

Besharati et al. EC, DT, LDA, ANN

Mohammadi et al. DT

Çavuşoğlu RF, J48, KNN, NB

Maza & Touahria NB, MLP, SVM, KNN and DT

Tama et al. RF, CF

Pandian & Kumar BN, NB, SMO, J48 ,RF,RT DT

Qi et al.

NB

Modi AC

Pandeeswari & Kumar ANN

Raja & Ramaiah Type-2 fuzzy TSK-rule

Velliangiri & Premalatha Radial basis function neural network

Besharati et al. ANN, DT, LDA

Kim et al. K-means and DBSCAN method

Modi & Patel BN, AC, DT

Rajendran et al. rule based

Ribeiro et al.

OneR, DT, NB, BN, LR, SVM, k-NN

Note: DT- Decision Tree; SVM-Support Vector Machine; REPTree-Reduced Error Pruning Tree algorithm;

EM-Expectation-Maximisation Clustering; LR-Logistic Regression; BN- Bayesian Networks; NB- Naïve

Bayes; KM -K Means Learning Algorithm; ANN- Artificial Neural Networks; J48-J48 Decision Tree; EC-

Ensemble Classifiers, Bagging or Boosting; CF- Conjunctive Rule; LDA-Linear Discriminant Analysis; MLP-

Multilayer Perceptron; RF-Random Forest; SMO (Sequential Minimal Optimization);RT (Random Tree);AC-

Associative classifier; LDA-linear discriminate analysis; OneR-One Rule

199

APPENDIX B (UML DIAGRAMS)

Figure 1. Class Diagram of the Prototype System

200

Figure 2. Sequence Diagram of the Prototype System

201

Figure 3. Activity Diagram of the Prototype System

Figure 4. Component Diagram of the Prototype System

202

Figure 5. Deployment Diagram of the Prototype System

Figure 6. Energy Profiler Estimation Result of the Prototype System

203

APPENDIX C (SOURCE CODES)

package com.mindpres.remote_capture.adapters;
import android.content.Context;
import android.content.pm.ApplicationInfo;
import android.content.pm.PackageManager;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.ProgressBar;
import android.widget.TextView;
import com.mindpres.remote_capture.LocalDb.SQLDB2;
import com.mindpres.remote_capture.R;
import androidx.recyclerview.widget.RecyclerView;
import java.text.DecimalFormat;
import java.util.List;

public class MlAdapter extends RecyclerView.Adapter<MlAdapter.ViewHolder> {

 private List<ApplicationInfo> allApps;
 private Context context;
 private List<Integer> Predictions;
 private List<Double>RiskValues;
 private ItemClickListener mClickListener;

 // data is passed into the constructor
 public MlAdapter(List<ApplicationInfo> allApps, Context
context,List<Integer>Predictions,List<Double>RiskValues) {
 this.allApps = allApps;
 this.context = context;
 this.RiskValues=RiskValues;
 this.Predictions=Predictions;
 }

 // inflates the row layout from xml when needed
 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 Context context = parent.getContext();
 LayoutInflater inflater = LayoutInflater.from(context);
 View view = inflater.inflate(R.layout.mlrecyclerview, parent, false);
 return new ViewHolder(view);
 }

 // binds the data to the TextView in each row
 @Override
 public void onBindViewHolder(ViewHolder holder, int position) {
 ApplicationInfo app = allApps.get(position);

 // TextView textView = holder.nameTextView;
 holder.pckimage.setImageDrawable(app.loadIcon(context.getPackageManager()));
 holder.pckname.setText(app.loadLabel(context.getPackageManager()));

 if (Predictions.get(position)==0)
 {
 holder.status1.setVisibility(View.VISIBLE);
 holder.status11.setVisibility(View.INVISIBLE);

204

 holder.status2.setVisibility(View.INVISIBLE);

 }
 else
 {

 holder.status2.setVisibility(View.VISIBLE);
 holder.status11.setVisibility(View.INVISIBLE);
 holder.status1.setVisibility(View.INVISIBLE);

 }
 SQLDB2 sqldata=new SQLDB2(context);
 holder.percent1.setVisibility(View.INVISIBLE);
 holder.percent2.setVisibility(View.INVISIBLE);

 holder.percent3.setVisibility(View.INVISIBLE);
 if (RiskValues.get(position)>0.85&&Predictions.get(position)==0)
 {

 sqldata.addApp(app.packageName,"1",Integer.toString(app.uid));
 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent3.setProgress(78);
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent3.setVisibility(View.VISIBLE);
 return;

 }
 if (RiskValues.get(position)>0.60&&Predictions.get(position)==1)
 {

 sqldata.addApp(app.packageName,"1",Integer.toString(app.uid));
 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent3.setProgress(78);
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent3.setVisibility(View.VISIBLE);
 return;

 }
 if (RiskValues.get(position)>0.65&&Predictions.get(position)==0)
 {

 sqldata.addApp(app.packageName,"0",Integer.toString(app.uid));
 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent2.setProgress(50);
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent2.setVisibility(View.VISIBLE);
 holder.status2.setVisibility(View.INVISIBLE);
 holder.status11.setVisibility(View.VISIBLE);
 holder.status1.setVisibility(View.INVISIBLE);
 return;

 }
 if (RiskValues.get(position)<=0.65&&Predictions.get(position)==0)
 {

 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent1.setProgress(20);
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent1.setVisibility(View.VISIBLE);
 return;

 }
 if (RiskValues.get(position)>=0.25&&Predictions.get(position)==1)
 {

 sqldata.addApp(app.packageName,"0",Integer.toString(app.uid));

205

 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent2.setProgress(50);
 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent2.setVisibility(View.VISIBLE);
 holder.status2.setVisibility(View.INVISIBLE);
 holder.status11.setVisibility(View.VISIBLE);
 holder.status1.setVisibility(View.INVISIBLE);
 return;
 }

 if (RiskValues.get(position)>=0&&Predictions.get(position)==1)
 {
 DecimalFormat df=new DecimalFormat("0.00");
 holder.percent1.setProgress(20);

 holder.percentText.setText("Risk Score: "+df.format(RiskValues.get(position)));
 holder.percent1.setVisibility(View.VISIBLE);

 return;
 }

 }

 // total number of rows
 @Override
 public int getItemCount() {
 return allApps.size();
 }

 // stores and recycles views as they are scrolled off screen
 public class ViewHolder extends RecyclerView.ViewHolder implements View.OnClickListener {
 public ImageView pckimage;
 public TextView pckname;
 public TextView status1;
 public TextView status11;
 public TextView status2;
 public TextView percentText;
 public ProgressBar percent1;
 public ProgressBar percent2;
 public ProgressBar percent3;

 ViewHolder(View itemView) {
 super(itemView);
 pckimage = (ImageView) itemView.findViewById(R.id.imageView);
 pckname = (TextView) itemView.findViewById(R.id.textView);
 status1 = (TextView) itemView.findViewById(R.id.status1);
 status11 = (TextView) itemView.findViewById(R.id.status11);
 status2 = (TextView) itemView.findViewById(R.id.status2);
 percentText = (TextView) itemView.findViewById(R.id.textpercent);
 percent1=(ProgressBar)itemView.findViewById(R.id.progressBar1);
 percent2=(ProgressBar)itemView.findViewById(R.id.progressBar2);
 percent3=(ProgressBar)itemView.findViewById(R.id.progressBar3);

206

 itemView.setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
 if (mClickListener != null) {
 try {
 mClickListener.onItemClick(view, getAdapterPosition());
 } catch (PackageManager.NameNotFoundException e) {
 e.printStackTrace();
 }
 }
 }

 }
 public void setClickListener(ItemClickListener itemClickListener) {
 this.mClickListener = itemClickListener;
 }

 // parent activity will implement this method to respond to click events
 public interface ItemClickListener {
 void onItemClick(View view, int position) throws PackageManager.NameNotFoundException;
 }

}
// convenience method for getting data at click position

import java.util.ArrayList;
import java.util.List;

 class AppRiskModel{

 String permission;
 double riskValue;
 public AppRiskModel(String permission,double riskValue)
 {
 this.permission=permission;
 this.riskValue=riskValue;
 }

 }

public class RiskData {

 List<AppRiskModel> permission=new ArrayList<AppRiskModel>();
 public double AppRiskValue=0;
 public RiskData(String[]data)
 {

 permission.add(new AppRiskModel("android.permission.WRITE_EXTERNAL_STORAGE",0.5769));
 permission.add(new AppRiskModel("android.permission.READ_PHONE_STATE",0.8460));
 permission.add(new AppRiskModel("android.permission.ACCESS_COARSE_LOCATION",0.7154));
 permission.add(new AppRiskModel("android.permission.ACCESS_FINE_LOCATION",0.4982));

207

 permission.add(new AppRiskModel("android.permission.GET_TASKS",0.6063));
 permission.add(new AppRiskModel("android.permission.READ_EXTERNAL_STORAGE",0.4816));
 permission.add(new AppRiskModel("android.permission.SYSTEM_ALERT_WINDOW",0.2557));
 permission.add(new AppRiskModel("android.permission.READ_LOGS",0.4991));
 permission.add(new AppRiskModel("android.permission.MOUNT_UNMOUNT_FILESYSTEMS",0.5091));
 permission.add(new AppRiskModel("android.permission.CAMERA",0.3986));
 permission.add(new AppRiskModel("android.permission.RECORD_AUDIO",0.1846));
 permission.add(new AppRiskModel("android.permission.GET_ACCOUNTS",0.3375));
 permission.add(new AppRiskModel("android.permission.CALL_PHONE",0.2115));
 permission.add(new AppRiskModel("android.permission.WRITE_SETTINGS",0.2635));
 permission.add(new AppRiskModel("android.permission.SEND_SMS",0.3707));

 //create arrays of element
 List<Integer>allPs=new ArrayList<Integer>();

 //Initialize and create array with 15 elements
 for(int x=0; x<15; x++){allPs.add(0);}

 //Then check if the app make use of permission and change the value to 1
 for(String appData:data)
 {
 if(permission.get(0).permission.equals(appData)){ allPs.set(0,1);continue;}
 if(permission.get(1).permission.equals(appData)){ allPs.set(1,1);continue;}
 if(permission.get(2).permission.equals(appData)){ allPs.set(2,1);continue;}
 if(permission.get(3).permission.equals(appData)){ allPs.set(3,1);continue;}
 if(permission.get(4).permission.equals(appData)){ allPs.set(4,1);continue;}
 if(permission.get(5).permission.equals(appData)){ allPs.set(5,1);continue;}
 if(permission.get(6).permission.equals(appData)){ allPs.set(6,1);continue;}
 if(permission.get(7).permission.equals(appData)){ allPs.set(7,1);continue;}
 if(permission.get(8).permission.equals(appData)){ allPs.set(8,1);continue;}
 if(permission.get(9).permission.equals(appData)){ allPs.set(9,1);continue;}
 if(permission.get(10).permission.equals(appData)){ allPs.set(10,1);continue;}
 if(permission.get(11).permission.equals(appData)){ allPs.set(11,1);continue;}
 if(permission.get(12).permission.equals(appData)){ allPs.set(12,1);continue;}
 if(permission.get(13).permission.equals(appData)){ allPs.set(13,1);continue;}
 if(permission.get(14).permission.equals(appData)){ allPs.set(14,1);continue;}
 }
 double TotalPermissinRiskValue=0;
 int Total=0;
 for(int x=0; x<15; x++)
 {
 if(allPs.get(x)==0){continue;}
 Total++;
 TotalPermissinRiskValue+=permission.get(x).riskValue;

 }
 if(Total==0){return;}
 AppRiskValue=TotalPermissinRiskValue/Total;

 }
}

208

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Collections;

namespace MINDPRES_RiskModel
{
 public class App_Risk_Classifier
 {
 public void ComputeAppRiskValue()
 {
 double[] A = new double[15] { 0.9147, 0.9652, 0.6820, 0.5953, 0.5017, 0.3342,
0.2947, 0.3057, 0.3057, 0.1970, 0.2018, 0.1414, 0.1881, 0.1615, 0.1736 };
 double[] B = new double[15] { 0.6361, 0.2584, 0.2495, 0.5829, 0.2672, 0.3058,
0.778, 0.185, 0.152, 0.1934, 0.831, 0.1941, 0.762, 0.57, 0.208 };

 using (var reader = new
StreamReader(@"C:\Users\fogwara\source\repos\MINDPRES_RiskModel\DangerousPermissionDataSet.c
sv"))
 {

 while (!reader.EndOfStream)
 {
 var line = reader.ReadLine();
 System.Console.WriteLine(line);
 var values = line.Split(',');

 float sum = 0;
 double TotalPermissionRiskValue = 0;
 double AppRiskValue = 0;
 string AppType="";
 for (int i=0; i<=values.Length-1; i++)
 {
 if (i== values.Length - 1) { AppType = values[i].ToString();
continue; }
 double PermissionRiskValue = 0;
 double Riskvalue = 0;
 Riskvalue = A[i] - (A[i] * B[i]);
 PermissionRiskValue = Math.Sqrt(Riskvalue);
 TotalPermissionRiskValue = TotalPermissionRiskValue +
(PermissionRiskValue * Convert.ToInt32(values[i].ToString()));
 sum += Convert.ToInt32(values[i].ToString());

 }

 AppRiskValue = TotalPermissionRiskValue / sum;
 string RiskType = " ";
 if (AppRiskValue >= 0.5) { RiskType = "High"; }
 else if (AppRiskValue >= 0.25) { RiskType = "Medium"; }
 else { RiskType = "Low"; }
 Console.WriteLine("The Risk Value for this App is = " + AppRiskValue);
 Console.WriteLine("Total No of Dangerous Permission Use is = " + sum);
 Console.WriteLine("The Risk Classification for this App is " +
RiskType);
 Console.WriteLine("The Actual App category Type is " +
AppType.ToString());

 }
 }

209

 }

 }

}

#Voting Ensemble Model for Malicous app detection in Python

#This model has the ability to differentiate a benign app from a malicious app

Intrusions)

import pandas as pd

import numpy as np

import time

import sklearn

import matplotlib.pyplot as plt

import seaborn as sn

from pandas import read_csv

datapath = r"C:\Users\fogwara\Desktop\DangerousPermissionDataSet.csv" # Selected

Features Dataset

mydataset = read_csv(datapath)

array = mydataset.values

X = array[:,0:39] #The Selected 8 Features of the Esembling Techniques

y = array[:,-1] #target Class(The Attack Type)

from sklearn import model_selection

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,

random_state=1)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.125, random_state=500) # 0.125 x 0.8 = 0.1

print("Begining of my proposed Voting Classifier Ensemble Model for Malicious app

detection")

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import VotingClassifier

210

from sklearn import svm

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

import time

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import accuracy_score, f1_score, log_loss

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

#from sklearn.ensemble import StackingClassifier

clf1 = DecisionTreeClassifier()

clf2 = RandomForestClassifier()

clf3 = AdaBoostClassifier()

clf4 = GaussianNB ()

clf5 = SGDClassifier(loss="hinge", penalty="l2")

clf6 = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2),

random_state=500)

clf7 = KNeighborsClassifier(n_neighbors=5)

clf8 = LinearDiscriminantAnalysis()

clf9 = LogisticRegression(random_state=500, solver='lbfgs', multi_class='ovr')

clf10 = svm.LinearSVC()

#eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad',

clf3),('lda', clf6),('knn', clf7)], voting='soft')

#eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)],

voting='hard')

eclf = VotingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)],

voting='hard')

bgclf=BaggingClassifier(base_estimator=clf2, n_estimators=23, random_state=500,

bootstrap=True)

#seclf = StackingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)],

final_estimator=RandomForestClassifier())

#seclf = StackingClassifier(estimators=[('dt', clf1), ('rf', clf2), ('ad', clf7)],

final_estimator=RandomForestClassifier())

start_time = time.time()

clf1.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf1-DecisionTreeClassifier: {:.2}".format(elapsed_time))

start_time = time.time()

clf2.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf2-RandomForestClassifier: {:.2}".format(elapsed_time))

start_time = time.time()

clf3.fit(X_train, y_train)

211

elapsed_time = time.time() - start_time

print("Training time for clf3:-AdaBoostClassifier {:.2}".format(elapsed_time))

start_time = time.time()

clf4.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf4:-GaussianNB Classifier {:.2}".format(elapsed_time))

start_time = time.time()

clf5.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf5:-SGDClassifier {:.2}".format(elapsed_time))

start_time = time.time()

clf6.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf6:-MLPClassifier {:.2}".format(elapsed_time))

start_time = time.time()

clf7.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf7:-KNeighborsClassifier {:.2}".format(elapsed_time))

start_time = time.time()

clf8.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf8:-LinearDiscriminantAnalysis

{:.2}".format(elapsed_time))

start_time = time.time()

clf9.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf9:-LogisticRegression {:.2}".format(elapsed_time))

start_time = time.time()

clf10.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for clf10:-Support Vector Machine {:.2}".format(elapsed_time))

start_time = time.time()

eclf.fit(X_train, y_train)

elapsed_time = time.time() - start_time

print("Training time for Ensemble Voting Classifier: {:.2}".format(elapsed_time))

start_time = time.time()

bgclf.fit(X_train, y_train)

elapsed_time = time.time() - start_time

212

print("Training time for Ensemble Bagging Classifier: {:.2}".format(elapsed_time))

#start_time = time.time()

#seclf.fit(X_train, y_train)

#elapsed_time = time.time() - start_time

#print("Training time for Ensemble Stacking Classifier:

{:.2}".format(elapsed_time))

start_time = time.time()

clf1_pred = clf1.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf1-DecisionTreeClassifier: {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf1_pred)

#l_loss = log_loss(y_test, clf1_pred)

#f1 = f1_score(y_test, clf1_pred)

print("DecisionTreeClassifier Accuracy is: " + str(acc))

#print("DecisionTreeClassifier Log Loss is: " + str(l_loss))

#print("DecisionTreeClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf1_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf1_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf1_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf2_pred = clf2.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf2-RandomForestClassifier: {:.2}".format(elapsed_time))

213

acc = accuracy_score(y_test, clf2_pred)

#l_loss = log_loss(y_test, clf2_pred)

#f1 = f1_score(y_test, clf2_pred)

print("RandomForestClassifier Accuracy is: " + str(acc))

#print("RandomForestClassifier Log Loss is: " + str(l_loss))

#print("RandomForestClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf2_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf2_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf2_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf3_pred = clf3.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf3-AdaBoostClassifier {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf3_pred)

#l_loss = log_loss(y_test, clf3_pred)

#f1 = f1_score(y_test, clf3_pred)

print("AdaBoostClassifier Accuracy is: " + str(acc))

#print("AdaBoostClassifier Log Loss is: " + str(l_loss))

#print("AdaBoostClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf3_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf3_pred, labels=[0,1]))

214

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf3_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf4_pred = clf4.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf4-GaussianNB Classifier {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf4_pred)

#l_loss = log_loss(y_test, clf4_pred)

#f1 = f1_score(y_test, clf4_pred)

print("GaussianNB Classifier Accuracy is: " + str(acc))

#print("Support Vector Machine Classfier Log Loss is: " + str(l_loss))

#print("Support Vector Machine Classfier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf4_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf4_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf4_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

215

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf5_pred = clf5.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf5-SGDClassifier {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf5_pred)

#l_loss = log_loss(y_test, clf5_pred)

#f1 = f1_score(y_test, clf5_pred)

print("SGDClassifier Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf5_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf5_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf5_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf6_pred = clf6.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf6-MLPClassifier {:.2}".format(elapsed_time))

216

acc = accuracy_score(y_test, clf6_pred)

#l_loss = log_loss(y_test, clf6_pred)

#f1 = f1_score(y_test, clf6_pred)

print("MLPClassifier Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf6_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf6_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf6_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf7_pred = clf7.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf7-KNeighborsClassifier {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf7_pred)

#l_loss = log_loss(y_test, clf7_pred)

#f1 = f1_score(y_test, clf7_pred)

print("KNeighborsClassifier Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf7_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf7_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

217

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf7_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf8_pred = clf8.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf8-LinearDiscriminantAnalysis

{:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf8_pred)

#l_loss = log_loss(y_test, clf8_pred)

#f1 = f1_score(y_test, clf8_pred)

print("LinearDiscriminantAnalysis Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf8_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf8_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf8_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

218

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf9_pred = clf9.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf9-LogisticRegression {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf9_pred)

#l_loss = log_loss(y_test, clf9_pred)

#f1 = f1_score(y_test, clf9_pred)

print("LogisticRegression Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf9_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf9_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf9_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

clf10_pred = clf10.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for clf10-Support Vector Machine {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, clf10_pred)

#l_loss = log_loss(y_test, clf10_pred)

#f1 = f1_score(y_test, clf10_pred)

219

print("Support Vector Machine Accuracy is: " + str(acc))

#print("SGDClassifier Log Loss is: " + str(l_loss))

#print("SGDClassifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,clf10_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,clf10_pred, labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=clf10_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

eclf_pred = eclf.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for Ensemble Voting Classifier: {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, eclf_pred)

#l_loss = log_loss(y_test, eclf_pred)

#f1 = f1_score(y_test, eclf_pred)

print("Voting Classifier Accuracy is: " + str(acc))

#print("Voting Classifier Log Loss is: " + str(l_loss))

#print("Voting Classifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,eclf_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,eclf_pred,

labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

220

TN = 0

FN = 0

preds=eclf_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

start_time = time.time()

bgclf_pred = bgclf.predict(X_test)

elapsed_time = time.time() - start_time

print("Testing time for Ensemble Bagging Classifier: {:.2}".format(elapsed_time))

acc = accuracy_score(y_test, bgclf_pred)

#l_loss = log_loss(y_test, eclf_pred)

#f1 = f1_score(y_test, eclf_pred)

print("Ensemble Bagging Classifier Accuracy is: " + str(acc))

#print("Voting Classifier Log Loss is: " + str(l_loss))

#print("Voting Classifier F1 Score is: " + str(f1))

from sklearn import metrics

print("Confusion Matrix:")

print(metrics.confusion_matrix(y_test,bgclf_pred, labels=[0,1]))

print("Classification Report:")

print(metrics.classification_report(y_test,bgclf_pred,

labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

TP = 0

FP = 0

TN = 0

FN = 0

preds=bgclf_pred

for i in range(len(preds)):

 if y_test[i]==preds[i]==1:

 TP += 1

 if preds[i]==1 and y_test[i]!=preds[i]:

 FP += 1

 if y_test[i]==preds[i]==0:

 TN += 1

 if preds[i]==0 and y_test[i]!=preds[i]:

 FN += 1

221

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

#start_time = time.time()

#seclf_pred = seclf.predict(X_test)

#elapsed_time = time.time() - start_time

#print("Testing time for Ensemble Stacking Classifier: {:.2}".format(elapsed_time))

#acc = accuracy_score(y_test, seclf_pred)

#l_loss = log_loss(y_test, eclf_pred)

#f1 = f1_score(y_test, eclf_pred)

#print("Ensemble Stacking Classifier Accuracy is: " + str(acc))

#print("Voting Classifier Log Loss is: " + str(l_loss))

#print("Voting Classifier F1 Score is: " + str(f1))

#from sklearn import metrics

#print("Confusion Matrix:")

#print(metrics.confusion_matrix(y_test,seclf_pred, labels=[0,1]))

#print("Classification Report:")

#print(metrics.classification_report(y_test,seclf_pred,

labels=[0,1]))

#For Binary Classfication Report of the Confusion Matrix between Intrusion and

Normal Traffic

#TP = 0

#FP = 0

#TN = 0

#FN = 0

#preds=seclf_pred

#for i in range(len(preds)):

 # if y_test[i]==preds[i]==1:

 # TP += 1

 #if preds[i]==1 and y_test[i]!=preds[i]:

 # FP += 1

 # if y_test[i]==preds[i]==0:

 # TN += 1

 #if preds[i]==0 and y_test[i]!=preds[i]:

 # FN += 1

print("TP",TP,"FP", FP, "TN",TN, "FN", FN)

for clf, label in zip([clf1, clf2, clf3,clf4,clf5, clf6, clf7, clf8, clf9, clf10,

eclf,bgclf], ['Decision Tree', 'Random Forest', 'AdaBoost Classifier','GaussianNB

Classifier','SGDClassifier','MLPClassifier','KNeighborsClassifier','LinearDiscrimin

antAnalysis','LogisticRegression','Support Vector Machine', 'Ensemble

Voting','Ensemble Bagging']):

 scores = cross_val_score(clf, X_val,y_val, scoring='accuracy', cv=10)

 #print(scores)

 print("Cross Validation Accuracy: %0.4f %0.4f %0.4f (+/- %0.4f) [%s]" %

(scores.mean(),scores.max(), scores.min(), scores.std(), label))

222

 #print("Cross Validation Accuracy: " % (scores.mean(), scores.std(), label))

