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Abstract Clustering is a fundamental data processing technique. While clustering of static (vector based) data and of fixed window size   

time series have been well explored, dynamic clustering of spatiotemporal data has been little researched if at all. Especially when 

patterns of changes (events) in the data across space and time have to be captured and understood. The paper presents novel methods for 

clustering of spatiotemporal data using the NeuCube spiking neural network (SNN) architecture. Clusters of spatiotemporal data were 

created and modified on-line in a continuous, incremental way, where spatiotemporal relationships of changes in variables are 

incrementally learned in a 3D SNN model and the model connectivity and spiking activity are incrementally clustered. Two clustering 

methods were proposed for SNN, one performed during unsupervised and one – during supervised learning models. Before submitted to 

the models, the data is encoded as spike trains, a spike representing a change in the variable value (an event). During the unsupervised 

learning, the cluster centres were predefined by the spatial locations of the input data variables in a 3D SNN model. Then clusters are 

evolving during the learning, i.e. they are adapted continuously over time reflecting the dynamics of the changes in the data. In the 

supervised learning, clusters represent the dynamic sequence of neuron spiking activities in a trained SNN model, specific for a particular 

class of data or for an individual instance. We illustrate the proposed clustering method on a real case study of spatiotemporal EEG data, 

recorded from three groups of subjects during a cognitive task. The clusters were referred back to the brain data for a better understanding 

of the data and the processes that generated it. The cluster analysis allowed to discover and understand differences on temporal sequences 

and spatial involvement of brain regions in response to a cognitive task.  

Keywords: Dynamic spatiotemporal streaming data clustering; EEG data; NeuCube; spiking neural networks; 

unsupervised learning; supervised learning; personalised clustering. 

1 INTRODUCTION 

Clustering aims at objectively organise data samples into homogenised groups, where the data samples within a group are 

similar. So far many clustering methods have been developed to identify structures in different data types, such as static, 

temporal, etc. Data is static when the feature values do not change over time, and it is time series (temporal) if the features 

change their values over a continuous time. With respect to different data types, clustering methods differ significantly in 

the notion of the similarity or distance measures. 

Clustering can be classified according to several criteria: 

i. Clustering of raw data versus clustering of pre-processed data (such as encoded into spikes, as the case in the 

paper is); 

ii. Clustering of absolute values of variables versus clustering of changes in the variables (also called events, as the 

case in this paper is); 

iii. Direct clustering of data versus clustering of a model that is being created to learn and capture the essential 

characteristics of interest from the data (as the case in this paper is); 

iv. Clustering of vector based, static data versus clustering of dynamic, streaming data (as the case in the paper is).       

We can distinguish the following classes of clustering methods for static, vector based data:  

(a) Clustering of static, vector based data, where the number of clusters is pre-defined (such as C- means, K-Mean 

clustering methods); 

(b) Clustering of time series data, where the number of the time points are fixed and the time series samples are 

represented as vectors, applying the above methods.  

(c) Evolving clustering methods, where a stream of vectors are clustered incrementally without pre-defining the 

number of clusters (such as DENFIS (Kasabov and Song 2002) and Evolving Fuzzy Neural Network (EFuNN) 

(Kasabov 2001); 
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In this paper, we propose clustering methods for whole spatiotemporal data samples from a data stream. In principle, these 

methods can be classified into the following groups:  

(d) Two tier clustering of the data: first according to the spatial information, and then according to the temporal 

information; 

(e) Integrated clustering of both spatial and temporal information; 

(f) In case of both static and spatiotemporal data are available, clustering of the static information first, and then – the 

spatiotemporal information. This can be applied for personalised modelling(Gholami Doborjeh and Kasabov 2016). 

(g) Integrated clustering of both static and spatiotemporal data for personalised modelling. 

The paper presents two methods in the groups (d) and (e) from above that are also defined in the categories (i) - (iv).    

1.1 Overview on Static Data Clustering, Temporal Data Clustering and Evolving Clustering 

Methods 

Clustering methods for various static data are classified into five major categories: hierarchical methods (Johnson 1967); 

partitioning methods; density-based methods (Ester et al. 1996); grid-based methods; and model-based methods. 

Partitioning methods construct k partitions of data, where each partition is represented by a similarity metric of the objects 

in the partition. A partition is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

hard if each object belongs to only one cluster (k-means (Hartigan and Wong 1979)), or fuzzy if one object is allowed to 

be in more than one cluster by different degree (fuzzy c-means (Bezdek et al. 1984)). A hierarchical clustering represents 

groups of data objects using a tree of clusters, where the similarity is measured using a pairwise distance matrix of the 

objects. In density-based clustering, a cluster is continuously growing as long as the density in the neighbourhood surpasses 

a threshold. In grid-based clustering, the object space is quantized into a finite number of cells, where the operations for 

clustering are performed. A common example of the grid-based approach is STING (Wang et al. 1997). Model-based 

clustering undertakes a model for each cluster and aims at best fit of data to the model. One major method of model-based 

clustering is neural network approach. Two prominent clustering methods of the neural network are competitive learning, 

including ART (Carpenter and Grossberg 1987) and self-organizing maps (SOM) (Kohonen 1998).  

Massive amount of temporal data (time-series data) has been recorded so far in various areas, such as electronic, 

video/audio, biologic, neurology, etc. In case of clustering of such data, given a set of individual time series values, the 

objective is to group similar patterns into the same cluster. This task demands a measure notion to estimate the level of 

similarity between time series.  However, the known Euclidean distance and other typical measures used for non-temporal 

data are unsuitable metrics to evaluate the similarity between time series, because they are unable to deal with temporal 

interaction between time series data features. Various temporal data clustering methods have been introduced so far, such 

as biclustering (Mirkin 1998) that has been used for clustering the time series gene expression data (Tanay et al. 2002). 

Any data that can be represented as a matrix is amenable to biclustering. Biclustering methods simultaneously clusters both 

rows and columns of a matrix.   

Evolving clustering methods represent incremental growth of clusters and creation of new clusters from a stream of vector 

based data. While SOM assigns similar input vectors into topologically close neurons, evolving Self-organizing maps 

(ESOM) (Deng and Kasabov 2000) and the DENFIS evolving clustering method (Kasabov and Song 2002) were introduced 

for online unsupervised data clustering. EFuNN (Kasabov 2001) was introduced for evolving supervised clustering related 

to classification or regression.  In (Katwal et al. 2013), a graph-based visualisations of SOM has been used for clustering 

fMRI data. In another research(Liao et al. 2008), an integrated SOM and hierarchical clustering architecture was designed 

to detect activation patterns of fMRI data. While using these methods for clustering of time series data, the temporal 

components of each sample data variables are transposed into feature vectors, where the time is hidden and no temporal 

interaction of time series within a sample can be learned anymore.  

A method of spatiotemporal clustering has been proposed in (Deng et al. 2013) for clustering input variables of 

meteorological data. In this research the input variables can be clustered if they are within a certain neighbourhood and 

their dynamics are auto-correlated. 

All the above methods deal with vector based data and do not reveal any spatiotemporal information related to the processes 

that generated the data. This is a significant contrast to the clustering methods that we propose in this paper as they deal 

with whole spatiotemporal patterns of data. 
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Unlike the above methods that aimed to directly cluster raw data, we propose to dynamically cluster not the raw data, but 

the changes in the data that are dynamically captured in a brain-like evolving SNN computational model. The model is 

dynamically evolving from the input spatiotemporal data after the data is encoded into spikes representing changes in the 

data, and the clusters in the model are evolving too. These clusters represent: (1) dynamic measures of spatiotemporal 

similarity in the input variables in respect to their changing values in time; (2) sequentially activated areas of the SNN 

model that capture changes in the data over time.   

1.2 Spatiotemporal Data Clustering 

Spatiotemporal clustering is a procedure of grouping data samples based on their spatial and temporal similarity. Learning 

dynamic patterns of spatiotemporal data is a challenging task, as temporal features may manifest complex interaction that 

may also change dynamically over time. Developing new clustering methods that can capture these “hidden” interactions 

and interrelationships among multivariate data, is of crucial importance not only for the spatiotemporal data analysis and 

data understanding, but also for future events prediction based on captured complex spatiotemporal patterns from Spatio-

Spectro -Temporal Data (SSTD). A variety of techniques have been developed for SSTD recordings, such as EEG, fMRI, 

DTI, etc. (Niedermeyer and da Silva 2005; Ogawa et al. 1992). 

SNN methods have been developed for SSTD learning, some of them are implemented in neuromorphic hardware systems 

(Indiveri et al. 2011). The challenge now for information science and artificial intelligence is to develop new computational 

methods that utilize SNN and neuromorphic hardware systems for efficient processing of SSTD, including clustering of 

such data.  

NeuCube (Kasabov 2014) is a generic evolving Spatio-Temporal Data Machine (STDM) based on SNN for learning, 

classification/regression, visualisation and interpretation of spatiotemporal data. It is able to capture both time and space 

features of SSTD in a SNN architecture for the sake of understanding the data. When compared with traditional statistical 

analysis methods and methods of artificial intelligence when dealing with SSTD, NeuCube models resulted in significantly 

higher accuracy of classification results, faster data processing, and a better visualisation and interpretation of the SSTD. 

This is due to the ability of a NeuCube model to learn and capture spatiotemporal interaction between the data variables. 

So far NeuCube has been successfully used for EEG data modelling, learning, and classification (Gholami Doborjeh  et al. 

2015; Kasabov and Capecci 2015), (Capecci et al. 2015), (Schliebs et al. 2013) 

This paper now contributes to the NeuCube computational framework with dynamic clustering of spatiotemporal 

connectivity and spiking activity of the spiking neurons in a NeuCube model, while it is learning from streaming data. 

This paper introduces new methods for dynamic, evolving clustering of spatiotemporal streaming data through encoding 

the data into spikes, creating dynamic, evolving clusters of spiking neurons in a 3D SNN reservoir, such as the NeuCube 

system, both in space and time. The main purposes of the introduced methods, that have not been achieved so far, are the 

following: 

1- To detect similar spatiotemporal patterns of changes in the streaming data, which are dynamically generated with respect 

to the interaction between input variables. The dynamic visualisation of the clusters captures the time in which a cluster is 

created and it demonstrates how this cluster is changed over time. It enables us for the first time to study the dynamics of 

such clusters. 

2- To understand hidden spatiotemporal patterns of changes in the data by pursuing the trend of the cluster creation. For 

the case study shown in the paper, this relates to brain activities.  

The clustering methods are applied to a case study of EEG data, but can be used for other spatiotemporal data, such as 

fMRI (Gholami Doborjeh and Kasabov 2015), seismic  and other data(Kasabov et al. 2016).  

This paper is structured as follows: Section 2 describes the NeuCube architecture for SSTD analysis (Kasabov 2014). 

Section 3 introduces the proposed methods for clustering of SSTD in an unsupervised and supervised learning modes.  

Section 4 describes the case study data. Section 5 describes the details of the proposed dynamic unsupervised clustering 

methods and illustrates them on the case study data. Section 6 describes the details of the personalised clustering methods 

at supervised learning stage and illustrates them on the case study data. Section 7 represents a comparison of the proposed 

clustering methods with SOM clustering. Section 8 discusses results and future directions.  
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2 THE NEUCUBE SPIKING NEURAL NETWORK ARCHITECTURE FOR SSTD 

Spiking Neural Network (SNN) models can learn both space and time components from data and are considered as suitable 

models to process SSTD (Maass et al. 2002). The NeuCube-based SNN architecture (shown graphically in Fig.1)  consists 

of: input data encoding module; that encodes multivariable continuous temporal stream data into spike trains; a 3D recurrent 

SNN cube (SNNcube), where input data are mapped and learned in an unsupervised mode; and an SNN classifier that learns 

in a supervised mode to classify the spatiotemporal patterns of the SNNcube activities which represent patterns from the 

input data (Kasabov 2007; Kasabov 2012; Kasabov 2014; Kasabov et al. 2013).  

 

Fig 1. A schematic block diagram of the NeuCube Architecture illustrated on EEG brain streaming data  

2.1 Input Data Encoding, Mapping, and Model Initialisation 

Input spatiotemporal data encoding: In one of the implementations of the NeuCube encoding module, a Threshold-Based 

Representation method (TBR) (Delbruck 2007) is applied to the SSTD to produce spike trains. Generated spikes represent 

the form of the SSTD wave signal in terms of amplitude changes. Once a signal change exceeds the threshold 𝑇𝐵𝑅𝑡ℎ𝑟, one 

spike occurs. Therefore, in the case of brain data, the spike trains represent real brain activity patterns that will be used to 

train a SNNcube. 

SSTD mapping to the SNNcube: A 3D brain-like SNN cube is created to map a relevant brain data template, such as 

Talairach (Talairach and Tournoux 1988), MNI (Lancaster et al. 2007), etc. The size of the SNNcube is controlled by three 

parameters: 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 representing the number of spiking neurons along x, y and z coordinates. Every neuron in this cube 

is a computational unit that is implemented based on the Leaky-Integrate and Fire Model (LIFM) of a spiking neuron as 

one implementation (Abbott 1999). Input neurons are allocated to the input SSTD variables for transferring their spike 

trains to the SNNcube. In order to preserve the spatial information of the SSTD, each neuron in the SNNcube represents a 

spatial location from the brain template, therefore – an area of the brain. Also each allocated input neuron in the SNNcube 

has the same (𝑥, 𝑦, 𝑧) coordinates as the corresponding input data variable in the used brain template.  

SNNcube initialisation: The SNNcube is initialised with the use of the “small world” connectivity. Each neuron in the 

SNNcube is connected to its nearby neurons, which are within a maximum distance d. The initial connection weight 

between neurons i and j, denoted by 𝑤𝑖,𝑗, is defined as follow: 

𝑤𝑖,𝑗 =
𝑟𝑖,𝑗

𝑑𝑖,𝑗
; 𝑟 ∈  ℝ[−1,1]                                                                          (1) 

2.2 Unsupervised Learning in the SNNcube  

After SNNcube initialisation, unsupervised learning is performed using Spike-Timing Dependent Plasticity (STDP) 

learning rule (Song et al. 2000)  as one implementation. STDP is one of the most popular example of Hebbian learning(Hebb 
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1949), which depends on the relative timing of pre- and post-synaptic action potentials. STDP learning rule is defined using 

the following relation: 

𝐹(∆𝑡) = {
  𝐴+exp (∆𝑡/𝜏+)                   𝑖𝑓 ∆𝑡 < 0 
−𝐴−exp (−∆𝑡/𝜏− )             𝑖𝑓 ∆𝑡 ≥ 0

                                                      (2) 

Where 𝐹(∆𝑡) defines the synaptic modification elicited from a single pair of pre- and post-synaptic spikes separated by a 

time ∆𝑡. The parameters A+ and A- define the maximum quantities of synaptic modification, which transpire when ∆𝑡 ≈ 0. 

The parameters 𝜏+ and 𝜏− determine the ranges of pre-to-postsynaptic inter spike intervals over which the synaptic 

strengthening and weakening occur (Song et al. 2000),   

STDP learning stage is performed through transferring spikes (in time) across spatially located synapses and modifying the 

synapses over time. In this learning, a neuron’s Post Synaptic Potential (PSP) increases by every input spike at time t to 

reach the firing threshold which can be also a dynamical threshold as proposed in (Schliebs and Fiasche 2012). Once the 

PSP exceeds this threshold, the neuron fires and sends a spike to the other neurons that are connected to it. In STDP learning, 

if neuron i fires before neuron j, the connection weight from neuron i to neuron j will increase, otherwise it will decrease. 

As a result, STDP adjusts the connection weights between neurons based on the relative timing of a particular neuron’s 

output and input spikes. STDP learning encodes the ‘hidden’ spatiotemporal relations between SSTD streams in the form 

of “neuronal connections” and “spiking activities” in the SNNcube model. This information is used to define spatiotemporal 

similarity in the proposed dynamic clustering method.  

2.3 Supervised Learning of Evolving Output Neurons for Classification 

For data classification/ regression, dynamic evolving SNNs (deSNNs) (Kasabov et al. 2013) is  used to train an  output 

classifier based on the association between class labels and training samples. For each training sample, an output neuron is 

created and connected to each neuron in the SNNcube (shown in “Fig. 1”). After the unsupervised learning stage in the 

SNNcube is finished, the same data is propagated again through the trained SNNcube sample by sample. The spatiotemporal 

pattern of activation of the trained SNNcube evoked by a particular sample is used as input data to train an output neuron 

to recognize this pattern. The initial connection weight between a neuron i from the SNNcube and an output neuron j is 

defined by using the Rank-Order (RO) learning rule (Thorpe and Gautrais 1998). Through this rule, the first arrived spike 

to the output neuron j would have the highest value: 

                                                           𝑊𝑖,𝑗(t)= ∑ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖)                                                                        (3) 

Where mod is a modulation factor and order (i) is the order of the coming spikes to the connection between neurons i and 

j.  

While the RO learning will set the initial values of the connection weights 𝑊𝑖,𝑗 , the STDP rule will adjust these connection 

weights based on further incoming spikes. The connection weight 𝑊𝑖,𝑗 is further modified by a small drift parameter value, 

so that at a next time t if a spike arrives from neuron i to neuron j, the weight 𝑊𝑖,𝑗 will increase by a positive drift parameter 

value and if not, it will decrease by the drift value. The potential of neuron j at time t is calculated as follow: 

     𝑃𝑆𝑃(𝑗, 𝑡) = ∑ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖) 𝑊𝑖,𝑗                                                        (4) 

The details of the deSNN learning are published in (Kasabov et al. 2013). 

 

3 THE PROPOSED METHODOLOGY FOR CLUSTERING OF SSTD IN A NEUCUBE SNN MODEL    

In contrast to traditional clustering techniques, which are based on either spatial or temporal components and corresponding 

similarity measures ((Kohonen 1998), (Kasabov and Song 2002), (Deboeck and Kohonen 1998), (Kasabov 2007)), we 

propose here a new approach for dynamic data clustering with respect to spatiotemporal similarity measures including  both 

spatial  and temporal components from the data that is learned in a SNN model. The proposed methodology is performed 

in both unsupervised and supervised learning modes and consists of the following clustering methods:      

1- Dynamic clustering in an unsupervised learning mode in a 3D SNN model: dynamic spatiotemporal clusters, 

represented as either similar neuronal connections or similar temporal interactions between the spiking neurons in a 

SNN model during the unsupervised learning (Sec.3.1).  
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2- Dynamic clustering in supervised learning mode related to individual outputs (“personalised”): (a) clusters of 

connections between the 3D SNN model from above and each individual output neuron, representing one class or 

one prototype from a given class; (b) clusters of spike time activity in the 3D SNN model from above related to each 

individual output neuron activation (Sec. 3.2).       

These clustering phases are followed by analysis and interpretation of the created clusters for the discovery of new 

information about the SSTD and the processes that generated it.    

3.1 Dynamic Clustering Based on Spiking Activity and Neuronal Connectivity during 

Unsupervised Learning   

In order to apply the dynamic clustering of spatiotemporal data in a SNNcube, the cluster centres are predefined by the 

spatial locations of the data sources used as input variables (e.g. EEG channels in the case study presented later). During 

the unsupervised STDP learning in the SNNcube, spikes are transmitted between neurons across synapses that cause 

modifications of the connection weights. The more spikes are transmitted between two neurons i and j, (𝑆𝑖𝑗), the stronger 

the connection (𝑊𝑖𝑗) becomes between them. During the clustering procedure, each neuron belongs to a cluster centre 

(which is the input neuron, corresponding to an input variable) that has the strongest connection or the most spikes received 

from this input neuron when compared with other input neurons.  

Such created clusters are three dimensional and have different shapes as illustrated in Fig. 2a.  The size and the shape of a 

cluster represent the importance of the cluster centre in the trained SNNcube model and therefore – the importance of the 

corresponding input variable in the SSTD.   

     In the SNNcube, the input neurons are allocated to the cluster centres and labelled by the input variables (e.g. EEG 

channels). The rest of the neuros in the SNNcube are unlabelled. The goal is to assign the cluster labels of the unlabelled 

neurons in the SNNcube.  This procedure is addressed through the following steps: 

1- An adjacency graph G(V, E) is defined on the SNNcube, where vertex set V represents the spiking neurons of the 

SNNcube and edges E are weighted by either 𝑆𝑖𝑗   or 𝑊𝑖𝑗   when the clustering is based on the spiking activity or neuronal 

connectivity respectively. Note that stronger 𝐸𝑖𝑗   represents stronger intraction and more information shared between 

neurons i and j in SNNcube. 

2- Given graph G and starting vertex 𝑣𝑠, a random walk (Tu et al. 2014) in G of length n is defined as a randomised 

process in which, starting from the vertex 𝑣𝑠, we repeat n times a step that consists of choosing a random neighbour of 

the vertex 𝑣𝑠. We define 𝑝𝑣
𝑛 to be the probability that we chose vertex v after n steps of random walk.  If random walk 

starts from vertex 𝑣𝑠, which represents one input neuron in the SNNcube, the initial distribution of the random walk 

can be defined as:  

𝑝𝑣
0 = {

1,                 𝑖𝑓 𝑣 = 𝑣𝑠

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                             (5) 

At a further step n of this random walk, the probability distribution is defined as: 

 

⩝  𝑣 ∈ 𝑉:  𝑃𝑣
𝑛+1 = ∑

𝐸𝑢𝑣

𝑑(𝑢)
𝑃𝑢

𝑛   (𝑢,𝑣)∈𝐸                                         (6) 

Where 𝑑(𝑢) is the weighted degree of vertex u, that is, the sum of weights of adjacent edges.   

3- The evolution of the probability 𝑃𝑣
𝑛 continues as a function of n until it converges, i.e. 𝑃𝑣

𝑛+1 = 𝑃𝑣
𝑛. For every vertex 𝑣 ∈

𝑉, the obtained 𝑝𝑣 represents the membership to the input vertex. At the end, each vertex 𝑣 ∈ 𝑉 will belong to a starting 

vertex (input neuron) from which it obtained the highest membership 𝑝𝑣. This algorithm is mathematically 

implemented in (Tu et al. 2016; Zhou et al. 2004).  
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Fig 2. (a) Neuronal clusters created through unsupervised clustering in a SNNcube; (b) Measuring spike exchanges between neuronal 

clusters (the thicker the lines, the more spikes are exchanged between the clusters). The example uses results from the case study 

simulation of brain spatiotemporal data measured as EEG through 26 channels.            

In this paper, the above technique is applied at each time unit t of the STDP learning process to generate dynamic clusters 

which are formed with respect to 𝑆𝑖𝑗  or 𝑊𝑖𝑗  of the SNNcube. This clustering also allows to represent the level of interaction 

between clusters (corresponding to brain areas in the example of “Fig. 2a”) measured as number of spikes exchanged 

between the clusters– see Fig. 2b. In the graph presented in Fig. 2b, the thicker the connected line between two variables 

is, the more the spikes exchanged.     

3.2 Dynamic Clustering of the SNNcube Connectivity and Temporal Activity Based on 

Supervised Learning of Individual Evolving Outputs (“Personalised”)  

As discussed in section 2, after the unsupervised learning in the SNNcube is finished, the same data is propagated again 

through the trained SNNcube sample by sample for supervised learning. For each training sample, we create an output 

neuron and connect it to each neuron in the SNNcube. An output neuron is associated with a single input spatiotemporal 

sample or prototypes of samples from a given class. As a partial case it can represent brain or other data from one person.   

Initial connection weights of the neurons from the SNNcube to an output neuron j are set according to RO rule in which 

the earlier spikes arriving to a neuron j resulting in a higher initial connection weight. The output neuron is trained to 

recognize the spatiotemporal pattern of activity in the already trained SNNcube that is triggered when an input pattern 

corresponding to this individual is propagated through the SNNcube.  

Through the clustering, neurons in the SNNcube are labelled by their connection weights to the output neuron j.   

   The stronger the connection from a neuron i from the SNNcube to an output neuron j, the higher the impact of the spiking 

activity of neuron i is on the activation of the output neuron j representing the SSTD related to brain activity of an individual 

subject j.  In order to define the cluster centres in SNNcube, we can choose a number of neurons with different label values 

(between the minimum and the maximum connection weights). This clustering is performed through grouping the neurons 

in the SNNcube into clusters of similar connection weights to neuron j. In this way the importance of the brain areas can 

be ranked according to the performance of an individual j during a cognitive task.   

     During the supervised learning, when an input data sample related to the performance of an individual j is entered into 

the already trained SNNcube, the order in which the neurons in the SNNcube spike reflects the temporal activities captured 

in the SSTD of the individual j. Capturing this order in groups of neurons that spike at a similar time period results in 

clusters of neurons in the SNNcube. In this procedure, the neurons of SNNcube will be ranked by the temporal order in 

which they spike. The minimum neuron rank is 1 and the maximum rank is when the last SSTD time point comes into the 

SNNcube for supervised learning. We selected a number of neurons from the ranked SNNcube as cluster centres to capture 

groups of neurons with similar spiking orders to the centres. The cluster members are selected if they have close proximity 

(more than a similarity threshold) to the cluster centre. These clusters can be used to understand the timing of the sequential 

brain activities when a particular individual j is performing a cognitive task. Sec.3.2 is illustrated in section 6 on three 

individuals, from the case study data, belonging to three classes. Fig. 3 shows a block diagram of the proposed clustering 

methods.  

4 FEASIBILITY STUDY OF THE PROPOSED CLUSTERING METHODS ON A CASE STUDY EEG DATA  

In order to validate the proposed methods, we demonstrate it on a case study of EEG data which was recorded during a 

cognitive GO-NOGO task performed by three groups of subjects: healthy subjects (H), opiate user subjects (OP), and opiate 
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users under methadone maintenance treatment (M). Prior to commencing this research, ethical approval was granted by the 

“Northern X Regional Ethics Committee of New Zealand” and informed consent was given by all participants.  Identifying 

information of participants including names, initials, etc. are not reported in the paper. 

    A cognitive GO-NOGO task has been used, in which participants were repeatedly presented with the word ‘PRESS’ (for 

500 milliseconds).  The colour of the word ‘PRESS’ was presented randomly in either red or green. Participants were 

instructed to respond by pressing a button in response to the word that appeared in green (GO) and not respond to the word 

that appeared in red (NOGO). The EEG data was recorded via 26 EEG channels: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, 

CP3, CPz, CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2, and Oz.  
The GO-NOGO task was displayed and simultaneously the event-related potentials (ERPs) were recorded. We extracted 

75 EEG time points per subject, each corresponds to grand mean average. In this case the EEG data analysis is in time 

domain. Based on the most literature about GO/NOGO task, the brain response inhibition, as a core executive function, is 

expected to be observed in prefrontal, frontal, dorsal, ventral, and parietal regions, which are related to human response 

inhibition. On the other hand, psychological reports showed there is a direct relation between the response reduction in 

prefrontal cortex magnitude and addictive behaviour, due to the drug effects on these particular brain functions.  

In this study, we aim to apply the proposed clustering methods to the EEG case study, to illustrate the differences between 

the clusters in terms of the cluster evolution pattern, cluster creation time, and cluster size across the subject groups when 

performed GO versus NOGO trials.  

     We performed six EEG sample files, each containing EEG data captured from one group (M/ OP/ H) per cognitive task 

(GO versus NOGO). Each sample file was entered separately into the SNNcube for unsupervised training. Every learning 

was started by entering the first EEG time point to train the SNNcube and it was finished after entering the final EEG time 

point. Simultaneously, neuronal clusters were created with respect to the neuron spiking activity and connectivity in the 

SNNcube.   

5 APPLICATION OF THE PROPOSED DYNAMIC CLUSTERING IN THE UNSUPERVISED LEARNING 

MODE OF THE SNNCUBE ON EEG DATA FOR THE CASE STUDY PROBLEM  

5.1. Dynamic clustering of EEG data in a SNNcube model for the case study problem 

The SNNcube clusters were formed and updated with every new input EEG time point entered, frame by frame. This 

process can be traced and analysed in terms of: 

- The order in which input EEG channels formed the clusters, related to the order of activity of the corresponding 

areas of the brain. 

- The evolution of the size of the clusters, related to the importance of the activity of brain areas over time.      

Fig. 4 shows step-wise visualisation of the neuronal cluster evolution corresponding to the 26 EEG channels in the SNNcube 

models. Fig. 4a shows how the input neurons of the SNNcube are allocated to the respective EEG channels for transferring 

the spike trains. It also shows the evolution of the clusters for 4 selected time points during the unsupervised learning of 

the SNNcube with EEG data of H group when performing a GO task. Cluster creation started from predefined centroids 

and clusters were changed after every input EEG time point is entered into the SNNcube. Since there were 21 healthy 

subjects, and 75 EEG time points were captured from every subject, the last time point of the training data was 21*75=1575.  

 
Fig. 3. A block diagram of the clustering methods in the NeuCube SNN architecture  
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Fig 4. (a)- (c) The cluster evolution during the unsupervised learning with EEG data of H , M and OP subjects in the GO task, (d)- (f) 

The neuronal cluster evolution of H , M and OP subjects in the NOGO task. 

Fig. 4b and Fig. 4c represent the dynamic clustering of the EEG data related to M and OP subjects in GO trials with a total 

number of 29*75=2175 and 18*75=1350 EEG time points respectively. The reason that we have chosen different time 

frames in our visualisation is the time differences in clusters creation across the subject groups with respect to their EEG 

data. Once new clusters were created during the NeuCube training, a new figure was captured to display the step-wise 

changes in the cluster evolution. These results show that when a SNNcube is training with EEG data of H group in GO 

task, the first created clusters correspond to Fz and FCz channels after entering the 8th  EEG time point to the learning 

process. Those neurons that are clustered by Fz and FCz channels have received the most number of spikes from these 

corresponding channels by this moment of the learning process. On the other hand, for M group, the first neuronal clusters 

are created by FP1 and FP2 channels at 11th time points. In case of OP subjects, the first cluster is created by FP2 at the 2nd 

EEG time point.  

Figs. 4d, 4e, and 4f are related to the NOGO trials.  For H group, there are a total number of 21*75=1575 EEG time points 

and the first created cluster is related to the FC3 channel at 2nd EEG time point. It represents that more spikes were 

transferred into the SNNcube via FC3 channel at this time. Therefore, those neurons located around this channel are 

clustered faster than the other neurons in the SNNcube. As the frontal areas of the brain are involved in inhibition functions, 

our finding may indicate that H group has successful inhibition with less response time in performing the NOGO trials. 
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However, the first clusters for M and OP groups were generated later than the clusters in H group and they belonged to the 

C3 and F8 at 4th and 9th EEG time points respectively. These results show that in M and OP groups, slower response was 

observed from frontal regions and consequently less number of spikes were entered into the SNNcube when compare it 

with H group. There were 31*75=2325 and 18*75=1350 EEG time points for M and OP group respectively 

     The neuronal clusters evolved in the SNNcube during unsupervised learning can be also statistically compared in terms 

of the size (number of neurons that belong to each cluster) and also in terms of the cluster creation time. The clusters were 

scaled up or down with respect to the number of neurons associated with every input EEG variable. A bigger cluster contains 

larger number of spiking neurons around the centre, which means more spikes transmitted via this centre to the SNNcube. 

By comparing the number of neurons that belong to each cluster centroid, we can differentiate the dynamic brain activity 

captured via different EEG channels across the subject groups in GO versus NOGO trials. Fig. 5a visualises how the cluster 

size of two EEG variables change during the unsupervised learning in SNNcube. The horizontal axis represents the number 

of EEG data points entered to the SNNcube training via input neurons corresponding to the EEG channels. The vertical 

axis represents the number of neurons that belong to each cluster at each time unit of the SNNcube learning process. 

As observed in prefrontal electrodes (as the potentially best candidate to reflect inhibition-related cognitive activity), there 

is a specific reduction in the prefrontal and frontal activity in the M group in NOGO task (illustrated by red plot). Less 

number of neurons in F3 and FP2 clusters may represent that M group exhibited significant reduction of their attention 

within the frontal region. This clustering trend allows us to understand the differences between subject groups by 

distinguishing their brain activities as different clusters.  

Using the proposed clustering methods, we can also extract important EEG variables that contribute to generating large 

clusters.  

Fig. 5a showed the dynamics of the cluster size changes during the presentation of the EEG data of a particular order of the 

subject data.  Two questions may arise in this regards. 

Would cluster evolution be different within a subject group? 

Would the order of presentation of subject data influences the final clustering?  

To address these questions, we performed the clustering experiment 10 times for each subject group using random order of 

the subject data as shown in Fig.6. It can be seen that different clusters based on EEG channels have different variability 

across subject groups and also within a subject group.  

In the SNNcube, the neuron’s Post Synaptic Potential (PSP) increases by every input spike arrived to the neuron at time t. 

Once the PSP reaches a threshold, neuron emits the output spike. The total spiking rate emitted by the neurons within a 

cluster as well as their total PSP rate are reported in Fig. 5b for one randomly selected cluster (FP1 channel). This result 

allows us to study the pattern of the cluster creation more in details by looking at the number of spikes produced within a 

cluster and also the pattern of the neurons’ PSP during the learning. 

 

Fig 5a. The size of the clusters, centred at the input neurons corresponding to EEG channels (F3, FP2), changes during 

the cluster evolution in the SNNcube while training on EEG data of H (blue), M (red), OP (green) subjects.  
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Fig 5b. Total spike rate and PSP rate of the neurons within the FP1 cluster during the unsupervised learning of EEG data 

in NOGO task. Blue: H, red: M, and green: OP. The Leaky-Integrate and Fire (LIF) patterns of spiking neurons can be 

captured from both spiking rate and PSP rate.     

5.2. Analysis of Dynamic Brain Processes through Mapping Neuronal Clusters from the 

NeuCube Model back to Brain Areas 

Using the NeuCube models, we can map the obtained neuronal clusters into the corresponding brain areas for a better 

localization of the brain activity sources and to precisely show which areas of the brain are associated to each cluster. In 

order to interpret the dynamic clusters in terms of associated brain areas, we have used the generic Talairach brain template 

(Koessler et al. 2009; Lancaster et al. 2000; Talairach and Tournoux 1988). In Fig. 7, a trained SNNcube is labelled by 8 

Talairach brain areas, namely: Frontal Lobe in yellow-green; Temporal Lobe in pink; Parietal Lobe in light-blue; Occipital 

Lobe in red; Posterior Lobe in light yellow; Sublobar Region in orange; Limbic Lobe in green; and Anterior Lobe in blue.  

 
Fig. 6. Minimum, maximum and mean of the number of neurons that belong to each cluster. The dynamic clustering is run 

10 times for each group using random order of the subject data presentations. The standard deviation σ is reported in the 

last row. Higher σ mostly observed in M and OP groups. 
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Fig. 7a illustrates the connected neurons in two randomly selected clusters (FC3 and FC4) in healthy versus OP groups in 

GO task. The stronger the connections created between neurons, the more spikes transmitted between them. Fig. 7b shows 

the strongest connections (larger than a threshold) within the clusters. Less connections captured for OP group represents 

less functional brain activities observed when OP group was expected to response in the GO task in comparison with healthy 

group. As it is seen from Fig. 7b and Fig. 7c, greater connections were detected in the neuronal clusters of the healthy 

group, significantly in the frontal areas. Our findings represent that healthy group was able to perform more accurate 

responses in the GO task. Fig. 7d shows the static information of dynamic cluster creation (size and time) in one particular 

order of subject data. It allows us to trace the sequence of the functional brain activities associated with different brain 

areas. In this figure we can see when the healthy group deals with GO task, the clustering of the neurons starts from the 

functional brain activities generated in middle frontal lobe (37 and 26 neurons of SNNcube belong to the Fz and FCz 

clusters respectively at 8th time point of learning process) and then followed by the inferior and the superior frontal gyrus 

(23, 35, 43, 27, 26, 29 neurons belong to F3, Fz, F4, Fc3, Fcz and C3 clusters respectively at 9th time point). 

 
Fig. 7. (a) Clusters of connected neurons generated by FC3 and FC4 channels in two SNNcubes trained on EEG data of 

healthy versus OP subjects in GO task; (b) The strongest connected neurons in 26 clusters; (c): 2D visualisations of Fig.7b; 

(d): Static information of the dynamic cluster creation, The EEG time points are represented as rows and cluster centres 

are represented as columns. Each cell represents the number of neurons that belong to the cluster at this time of the learning 

process in the SNNcube 



< Evolving Systems Journal> 

 
13 

6 DYNAMIC CLUSTERING OF SNNCUBE PATTERNS IN A SUPERVISED MODE FOR INDIVIDUAL 

OUTPUT NEURONS OF A NEUCUBE MODEL ON THE CASE STUDY PROBLEM  

As described in section 2.3, the second training stage is to train the output classifier using class label information associated 

with the training samples.  The deSNN is used as output classifier is illustrated in Fig. 8 that shows for every training sample 

representing EEG data of one subject, one output neuron is evolved and labelled by its class label (red: healthy subjects; 

green: M subjects; and blue: OP subjects). The output neurons are connected to all neurons of the SNNcube and the 

connection weights between them are initialised based on the RO rule. This learning rule endows a higher priority to the 

first spike coming to the output neuron. After the first spikes entered, the connection weights are modified according to the 

further incoming spikes to the output neurons. When the supervise learning is completed, the connection weights between 

SNNcube and the output neurons are stablished. These connection weights are visualised by coloured neurons. Brighter 

neurons mean larger connection between neuron i from SNNcube to the output neuron j.   

 

In order to represent an individual performance, we clustered the connections weights between the SNNcube’s neurons and 

an output neuron j based on two aspects:  

a) Clusters reveal the importance of the areas of neurons in the SNNcube for the activation of this output neuron. 

b) Clusters reveal the order of activity of neurons in the SNNcube according to their time of spiking.   

  Fig. 8 shows for an individual subject (selected output neuron j), each neuron i from the SNNcube is labelled by the 

connection weight value between i and the output neuron j. In the labelled SNNcube, a number of neurons with different 

label values (selected between the minimum and the maximum connection weights) are selected as the cluster centres. 

Those neurons that have similar label value to the centre (less than a distance threshold) are selected as the cluster members.   

In this example, for one individual healthy subject in NOGO task, the biggest cluster is located in the frontal areas which 

are associated with brain cognitive inhibition. The personalised clusters represent the importance of the brain areas 

corresponding to this particular subject’s performance during the cognitive NOGO task. This finding is consistent with the 

literature that cognitive inhibition processes are ascribed to the frontal and prefrontal cortex that is fundamental for healthy 

neuropsychological functions. However, this observation is different for the selected M and OP individuals.  

Fig. 8b shows that the SNNcube is labelled by the temporal order in which the neurons spike.  

For one individual healthy subject in NOGO task, we selected 5 neurons with different label values between 1 and 75 (there 

are 75 EEG time points per subject). In this case, we can see different clusters are captured based on the similarity in the 

neuron temporal spiking time. The brighter neurons mean they spike earlier. Cluster members are those neurons with close 

distance (less than a distance threshold) to the centres. The clusters can be interpreted to discover which areas of the brain 

were activated earlier. For example, for the selected healthy subject, we can see those neurons located in the visual cortex 

are brighter, which means they spiked earlier. These cognitive processes were then followed by spikes at neurons located 

in central parietal and superior frontal areas. Our findings in Fig. 8b prove that the NeuCube clustering is supported by the 

neuroscience literature that reported visual perception initiates as soon as the eye transfers light to the retina, where it is 

observed by a layer of photoreceptor cells (Carter 2014). Compared to the M and OP individuals, we conclude that the 

visual cortex is activated first, but not many early spikes were captured in the frontal areas. This result may suggest the 

cognitive inhibition impairment in those subjects with the history of drug usage.  

7 COMPARATIVE ANALYSIS OF THE PROPOSED DYNAMIC, EVOLVING 

CLUSTERING METHODS WITH SOM   

Here we demonstrate the principle differences between the proposed clustering methods and the method of clustering in 

Self-Organizing Maps (SOM) (Kohonen 1998), (Deboeck and Kohonen 1998) – one of the most popular method in 

computational intelligence. SOM are topological maps trained on a sequence of vector based data. Here we have applied 

SOM (available at (Hassinen 2015)) to the case study used in the paper of EEG data of healthy, M and OP subjects in GO 

task. In the healthy group, there are 21 subject data samples, each contains 26 EEG channels measured during 75 time 

points. We reorganized the EEG data of every subject as a vector of 130 elements. For each EEG channel, the 75 time 

points are aggregated into 5 time points. Therefore, 26 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 5 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠=130 elements involved for each sample. 

The training data used for SOM has 21 vectors representing 21 healthy subjects, each vector of 130 elements (“Fig.9”). The 
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neurons in the trained SOM are clustered into 9 clusters. These clusters represent which input vectors are similar to each  
other, but it does not reveal any spatiotemporal information related to the brain processes. A single individual sample will 

be mapped as a point on the SOM that does not reveal any dynamic information related to the performance of this individual. 

This is a significant contrast to the proposed in this paper clustering methods.  

 

Fig. 8. In the output layer, for each training sample, one output neuron is evolved and connected to the neurons of the trained SNNcube. 

The output neurons are labelled by their class information in different colours (Class 1: healthy subjects is red, Class 2: M subjects in 

green, and Class 3: OP subjects in blue). (a): Personalised clusters of three selected subjects, belonging to each of the three groups H, M, 

OP. Brighter neurons mean larger connection between neuron i from SNNcube to the output neuron j. (b): Personalised clusters represent 

the similar temporal order in which the neurons in SNNcube spike to activate the corresponding output neuron. The brighter the colour 

of the neurons, the earlier they spike. 

 

Fig. 9. SOM map generated from EEG data of 21 healthy subjects, 29 M subjects, and 18 OP subjects in a GO task. Similar 

healthy individual samples are clustered into 9 clusters. Similar M and OP individual samples are clustered into 16 clusters 

each. Clusters represent similarity between subjects across all channels and the whole time period, but not the dynamic 
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spatiotemporal differences. No new information can be revealed about the dynamic processes captured in the EEG data 

for specific individuals or groups of individuals.  

8 DISCUSSIONS AND FUTURE WORK   

In this study, a generic SNN methodology was proposed as a novel approach to dynamic clustering of SSTD. The methods 

are based on the following scheme: 

Dynamic processes (e.g. brain processes; seismic activities, etc.) Spatio/Spectro Temporal Data (SSTD)  3D NeuCube 

model creation  NeuCube model clustering  Analysis of the data and the processes that generated it  Cluster update 

on new data.   

The paper introduces two new methods for: (1) dynamic clustering in an unsupervised learning mode in 3D SNN model; 

(2) dynamic clustering in a supervised learning mode for individual outputs (“personalised”).  

Dynamic clusters represented similar spatiotemporal changes (events) in a SNN model during unsupervised learning. This 

method captures significant information about SSTD as it records the exact time in which a cluster was formed and it 

reveals how this cluster’s shape changes over time. The cluster size and the time of creation represent the importance of the 

input variables (e.g. EEG channels) at different time t of the learning process, providing insights into the input data 

structures and processes. This clustering also was used to investigate the dynamic patterns of spiking activity rate and 

membrane potential inside of each cluster over time.  

The proposed supervised learning clustering method for individual output neurons (representing class or prototype labels)  

reveals  two aspects of the data: 1- the importance of the spatially located neurons in a trained SNNcube to activate an 

output neuron; 2- the temporal order in which neurons in the SNNcube spike to activate the output neuron.  

The proposed clustering methods were applied to a case study of EEG data that measured the brain activity during a 

cognitive task performed by three groups of subjects. Formation of the dynamic clusters of SSTD revealed the activity of 

the corresponding EEG channels at each time t of the SNNcube learning. The time of cluster creation and the evolution of 

the cluster size were found to be meaningful in terms of EEG channel activity over time. Through tracing the sequential 

spikes in the SNNcube, a direct relation between the cluster creation sequence and the consecutively activated brain areas 

can be revealed. Personalised clusters of spiking activities in the trained SNNcube revealed temporal patterns as trajectories 

of functional brain activities. The proposed clustering methods enabled us to comparatively analyse the EEG data recorded 

from different subject groups. We found greater clusters created in frontal areas on healthy group in NOGO task. It 

represents that inhibition responses of the healthy group were stronger in comparison with the M and OP groups.  

As a future work, we will develop an integrated clustering of both static and spatiotemporal data for personalised modelling. 
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