

Mobile Phone based Remote Monitoring System

by

Danyi Liu

A Thesis Submitted in Fulfilment of
the Degree of

Master of Engineering

Auckland University of Technology
Auckland

June 2008

i

Acknowledgements

I wish to express my gratitude to my supervisor, Professor Adnan Al-Anbuky, for his

ongoing guidance, his patience, his excellent advice, and most of all his kind

understanding. His high expectations of me encouraged me to perform the best that I

could and I respect him for that.

I would also like to express my gratitude to Dr. Lin Chen, who had been my co-

supervisor for one semester, for his patience and his good advice.

I would also like to thank Murray McGovern at Mobile Control Solutions Ltd for his

technical and project support. His help has been very valuable.

Thanks also to Mr. Hong Zhang at MCS and to Sean Tindle, both of whom tolerated me

and aided me in my quest so supportively.

Thanks to David Parker for his proof reading of my work and his advice.

I appreciate also, so much, my family’s interest and encouragement, without which I

would not have had this opportunity.

ii

Abstract

This thesis investigates embedded databases and graphical interfaces for the MicroBaseJ

project. The project aim is the development of an integrated database and GUI user

interface for a typical 3G, or 2.5G, mobile phone with Java MIDP2 capability. This

includes methods for data acquisition, mobile data and information communication,

data management, and remote user interface. Support of phone delivered informatics

will require integrated server and networking infrastructure research and development to

support effective and timely delivery of data for incorporation in mobile device-based

informatics applications. A key research and development (R&D) challenge is to

support effective and timely delivery of data for incorporation in mobile device-based

informatics applications. Another important aspect of the project is determining how to

develop efficient graphics for the small mobile screen.

The research investigates and analyses the architecture of a mobile monitoring system.

The project developed a generic solution that can be implemented in a number of

commercial sectors, such as horticulture, building management and pollution/water

management. The developed concept is tested using data relevant to the horticultural

area of application. The system also addresses the main issues related to mobile

monitoring, including realtime response, data integrity, solution cost, graphical

presentation, and persistent storage capabilities of modern mobile devices.

Four embedded databases based on J2ME have been investigated. Two of the four have

been evaluated and analysed. The Insert function, Sequence Search, and Random Search

of Perst List and RMS (Record Management System) databases have been tested. The

size of the processed data was limited to 20,000 records when using the wireless toolkit

simulator, and 11,000 records when using a mobile phone. Perst Lite reflects good

performance and has out-performed RMS in all tests.

User interface software such as J2ME Polish for mobile phones has been investigated.

Custom J2ME class for graphical interface is developed. This provides the graphical

presentation of the data collected from the sensors; including temperature, wind speed,

iii

wind direction, moisture, and leaf wetness. The graphical interface, bar charts, and line

charts with trace ball for collected data have been designed and implemented.

The embedded database performance and project performance have been investigated

and analysed. The performances of Perst Lite and RMS are evaluated in terms of the

insert, sequence search, and random search functions based on simulation and real

devices. The record numbers vary from 1,000 to 20,000. The project performance

contains data receiving and storage, and data presentation and configuration. The

performance of data storage and configuration can be negated due to the running mode

and the response time. Thus, data presenting performance is the key focus in this

project. This performance was divided into the categories of initial, data search, data

selection, and charting. The initial performance includes the initialisation of the project

parameters, and the reaching of the welcome interface. Data search performance refers

to the retrieval of the specified data from the embedded database, measured on 48 data

points, which only can be presented on the mobile screen from the retrieved data. These

four performance types are measured in thousands of record numbers, varying from

1,000 to 18,000 record numbers, with the retrieved data range varying from 1 day to 30

days.

iv

Table of contents

Acknowledgements .. i

Abstract ... ii

Table of contents .. iv

List of figures .. x

List of tables .. xii

List of tables .. xii

List of abbreviations ... xiii

Statement of originality ... xvii

1 Introduction ... 1

1.1 Introduction ... 1

1.2 The Project Background .. 1

1.3 Literature Review .. 2

1.3.1 Mobile Application Field and Architecture .. 2

1.3.1.1 Control Applications ... 2

1.3.1.2 Positional Application ... 3

1.3.1.3 Telemedicine Application ... 4

1.3.1.4 Education Application ... 4

1.3.2 Mobile Database Applications .. 5

v

1.3.3 Mobile Application Interface Review ... 6

1.3.4 Wireless Communication Protocol ... 7

1.3.4.1 SMS ... 7

1.3.4.2 Bluetooth ... 7

1.3.4.3 WAP .. 8

1.3.5 Mobile Development Platform .. 8

1.3.5.1 J2ME ... 8

1.3.5.2 Binary Runtime Environment for Wireless (BREW) 10

1.3.5.3 Windows Electric Compact (Windows CE) 10

1.4 Embedded Databases .. 11

1.4.1 Perst Lite ... 11

1.4.2 RMS .. 12

1.4.3 Pointbase ... 12

1.4.4 db4o ... 12

1.5 Mobile User Interface ... 14

1.5.1 Human-machine Communication ... 15

1.5.2 Psychological Considerations ... 15

1.5.3 Hardware for User Interface Communication ... 16

1.5.4 Interface Design Principles ... 17

1.5.4.1 General Principles ... 17

1.5.4.2 Parameter Description Syntax ... 17

vi

1.5.4.3 Screen Layouts .. 18

1.5.4.4 Commands .. 19

1.5.4.5 Menus .. 20

1.6 Project Objective ... 20

1.7 Project Plan ... 21

2 Development Environment and Tools .. 23

2.1 Introduction ... 23

2.2 Environment .. 23

2.2.1 Development Environment ... 23

2.2.2 Mobile handset .. 24

2.2.3 Application Platform ... 25

2.2.3.1 TINI ... 26

2.2.3.2 Wavecom Fastrack .. 26

2.3 Tools .. 27

2.3.1 IDE environment ... 27

2.3.2 Software .. 27

2.3.2.1 J2ME ... 28

2.3.2.2 J2ME Polish .. 29

2.4 Summary ... 30

3 System Design ... 31

3.1 Introduction ... 31

vii

3.2 Requirement Analysis ... 31

3.2.1 User Requirement ... 31

3.2.2 Data Sources ... 32

3.2.3 The Proposed Structure for MicroBaseJ ... 34

3.2.4 Communication Design ... 35

3.2.5 Functional Requirement .. 35

3.2.6 Non-Functional Requirement .. 37

3.2.7 MicroBaseJ Roadmap ... 38

3.2.8 Interface Description ... 39

3.2.9 Data Structure between Components .. 40

3.2.10 Dataflow Model .. 42

3.3 System Design ... 44

3.3.1 Class Diagram ... 45

3.3.2 State Diagram .. 49

3.4 Summary ... 53

4 Mobile Phone Database and User Interface Implementation 54

4.1 Introduction ... 54

4.2 Database Design .. 54

4.2.1 Data Format ... 54

4.2.2 Data Storage .. 55

4.3 User Interface Design .. 57

viii

4.3.1 Hardware for User Interface .. 58

4.3.1.1 Screen Size .. 58

4.3.1.2 Other devices ... 59

4.3.2 Software Chosen for User Interface .. 59

4.3.3 User Interface Design .. 60

4.3.3.1 Screen Layouts .. 61

4.3.3.2 Commands and Menus .. 62

4.3.3.3 The Design for the Graphic User Interface ... 63

4.4 Summary ... 66

5 Evaluation and Discussion .. 67

5.1 Introduction ... 67

5.2 Database Performance Evaluation (Perst Lite & RMS) 67

5.2.1 Simulation ... 68

5.2.1.1 Insert Function .. 68

5.2.1.2 Sequence Search Function .. 69

5.2.1.3 Random Search Function .. 70

5.2.1.4 Database Size Comparison .. 72

5.2.2 Real Device ... 73

5.2.2.1 Insert Function .. 73

5.2.2.2 Sequence Search Function .. 74

5.2.2.3 Random Search Function .. 75

ix

5.2.2.4 JAR Size Comparison ... 76

5.2.3 Comparison on 5,000 Records .. 77

5.2.4 Database Discussion ... 78

5.3 Project Performance Evaluation .. 79

5.3.1 Analysis of the Project .. 79

5.3.2 Initialisation Performance ... 81

5.3.3 Data Search Performance .. 83

5.3.4 Data Selection Performance .. 84

5.3.5 Data Plotting ... 85

5.3.6 Discussion of the Project ... 86

6 Conclusion .. 88

6.1 Introduction ... 88

6.2 Conclusion .. 88

6.3 Future Work .. 90

References ... 91

Appendix I – Sample Mobile Phones and their Resolutions... 96

Appendix II – The Introduction of the User Interfaces ... 98

Appendix III – The Conference Paper for ATNAC’07 .. 107

Appendix IV – The CD contents ... 114

x

List of figures

Figure 1: The Java Platform .. 9

Figure 2: CLDC Wireless Platform .. 9

Figure 3: The Development Environment for MicroBaseJ ... 24

Figure 4: The MicroBaseJ Platform .. 26

Figure 5: The architecture of MicroBaseJ ... 34

Figure 6: The Interface Diagram for MicroBaseJ ... 40

Figure 7: The Dataflow of MicroBaseJ ... 43

Figure 8: The Class Diagram for MicroBaseJ... 45

Figure 9: The Illustration for the ReceiveSMSMsg Class .. 47

Figure 10: The Illustration for the MainMenu class ... 48

Figure 11: The Illustration for the myCanvas Class ... 49

Figure 12: The Statechart Diagram for the ReceiveSMSMsg class 50

Figure 13: Statechart Diagram for the MainMenu class ... 52

Figure 14: The minimum resolution for mobile phones ... 58

Figure 15: The Mobile User Interface Design for Chart ... 64

Figure 16: The Illustration of the Graphic Interface ... 66

Figure 17: The Insert Function Comparison on Simulation ... 69

Figure 18: The Sequence Search Comparison of Perst Lite and RMS 70

Figure 19: Random Search Comparison for Perst Lite with and without index and RMS

 ... 71

xi

Figure 20: The Insert Function Comparison of Perst Lite and RMS on Mobile 73

Figure 21: The Random Search Comparison of Perst Lite and RMS on Mobile 74

Figure 22: The Random Search Comparison of Perst Lite with Index and without Index

and RMS on mobile .. 75

Figure 23: The Initialisation Performance Comparison .. 82

Figure 24: The Data Search Performance Comparison... 83

Figure 25: The Data Selection Performance ... 85

Figure 26: The Data Plotting Performance Comparison ... 86

Figure 27 - The Splash Interface ... 98

Figure 28 - The Main Menu .. 99

Figure 29 - The Item Choice Menu for Chart ... 100

Figure 30 - The Date and Period Entry Menu ... 101

Figure 31 - The Three types of Chart .. 102

Figure 32 – The Alarm Item Choice Menu ... 103

Figure 33 - The Modified Alarm Menu .. 104

Figure 34 - Confirmation for Updated Alarm ... 105

Figure 35 - Sample Rate Modified Menu ... 105

Figure 36 - Confirmation for Sample Rate Updating.. 106

xii

List of tables

Table 1: Database Comparison ... 14

Table 2 - The Schedule for MicroBaseJ .. 21

Table 3: The relation of values and wind direction... 32

Table 4: The functional requirements for MicroBaseJ ... 36

Table 5: The Non-Functional Requirements for MicroBaseJ ... 37

Table 6: MicroBaseJ Roadmap ... 38

Table 7: Data Format for Messages from Sentinel to Mobile Phone 41

Table 8: Sample Rate Format for Configuration to the Sentinel 42

Table 9 - Database format for MicroBaseJ ... 55

Table 10 - The size comparison of RMS & Perst Lite .. 56

Table 11: The Relation of Main Menu Items and Icons ... 61

Table 12 - The Relation of Data Source and Icon ... 61

Table 13: The Database Size Comparison of Perst Lite and RMS 72

Table 14: The Jar File Size Comparison for Perst Lite with Index and without Index and

RMS .. 76

Table 15: The Comparison of Perst Lite and RMS on the Simulation and the Mobile at

5,000 Records .. 77

Table 16: The Maximum of the Random Retrieved Date for Data Search 81

xiii

List of abbreviations

3D Three dimensional

3G The third generation

ACID Atomicity, Consistency, Isolation, Durability

API Application programming interface

BREW Binary Runtime Environment for Wireless

CCU Critical care unit

CDC Connected Device Configuration

CDMA Code Division Multiple Access

CLA Compass location adapter

CLDC Connected Limited Device Configuration

CT Computerised tomographic

DBMS Database management system

DSK Development Software Kit

DTV Digital TV

EDGE Enhanced data rates for GSM evolution

EGSM Extension of GSM

GIS Geographic information system

GPS Global Positioning System

xiv

GPRS General Packet Radio Service

GSM Global System for Mobile communication

GUI Graphical User Interface

HCI Human-computer interaction

HTML HyperText Markup Language

ICU Intensive care unit

IDE Integrated development environment

I/O Input/output

JAR Java Archive

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

JDK Java Development Kit

IRE Information Requirement Elicitation

JSR Java Specification Request

JTWI Java Technology for the Wireless Industry

JVM Java virtual machine

MCS Mobile Control Solutions Ltd.

MIDP Mobile Information Device Profile

MR Magnetic resonance

MSA Mobile Service Architecture

xv

OODBMS Object oriented database management system

OS Operating system

ORDBMS Object relational database management system

OTA Over-the-air

PAN Personal area network

PC Personal computer

PDA Personal digital assistant

PIM Personal information management

PIN Personal identification number

POP3 Post Office Protocol version 3

QAR Question-Answer Relationship

QBE Query-By-Example

QVGA Quarter Video Graphics Array

R&D Research and development

RDBMS Relational Database Management System

RMS Record Management System

UML Unified Modelling Language

UMTS Universal Mobile Telecommunication

US Ultrasonography

VCR Video Cassette Recorder

WAP Wireless Access Protocol

xvi

WCDMA Wideband Code Division Multiple Access

WEHP WAP enabled handphone

WEB A computer programming system

WISMO Wireless Standard Module

WMAPI Wireless messaging API

WML Wireless Markup Language

SD Secure Digital

SDK Software development kit

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SODIMM Small outline dual in-line memory module

TFT Thin-film transistor

XML Extensible Markup Language

xvii

Statement of originality

‘I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the qualification

of any other degree or diploma of a university or other institution of higher learning,

except where due acknowledgement is made in the acknowledgements.’

 Danyi Liu

(signed)

 (date)

1

1 Introduction

1.1 Introduction

The thesis proposes a remotely controlled mobile application for horticulture. This

chapter introduces the project’s background and reviews mobile application areas,

databases, and communication protocols for mobile applications. It also discusses some

embedded databases available for mobile applications. Some topics for user interface

theory and design are presented in this chapter. Next, the project objective and project

plan are proposed.

1.2 The Project Background

Mobile phones have been part of our lives for over a decade. There have been many

research studies on the use of wireless services for remote monitoring and control over

these years [1]. In the early stage of mobile phone usage, however, the growth of mobile

applications had been limited by the non-availability of efficient handsets and secure

wireless networks.

With a global mobile phone user base in excess of 1.3 billion and an acknowledged

need for current information-based management processes it is believed that there is a

current market base for at least 75,000 applications in the Australasian market in the

horticultural and water/irrigation management sectors. Further generic opportunities

exist in chilled assets, industry, energy, pollution, and security related applications. Bass

[2] product adoption models suggest a technology uptake over five to seven years in this

technology sector. In recognition of the importance of the project to the industry, it has

been coordinated by MCS (Mobile Control Solutions) Ltd., a lead developer who has

industry experience and current high level academic contacts in the mobile device

applications development sector.

2

1.3 Literature Review

1.3.1 Mobile Application Field and Architecture

There have been a number of research projects related to the use of the cell phone as a

remote monitor and controller. Most of these projects have focused on telemedicine,

education, control of plant and home appliances, and spatial information services.

Below we discuss concisely some of the popular application areas.

1.3.1.1 Control Applications

Home appliance control is the most popular field for mobile application.

Nikolova, Meijs and Voorwinden [3] developed a technique for interconnecting

home and mobile networks to enable the control of home appliances from a

remote mobile phone, or a web pad. The remote control functions include remote

mobile programming of VCRs (video cassette recorders), remote mobile control

of heating thermostats, and remote mobile monitoring using security cameras.

Another control system for home appliances was presented by Nichols and Myers

[4]. This system can automatically generate interfaces with appliances from

abstract specifications of the functions of the appliances, with the interfaces

allowing users to control all functions of the appliances from their smart phones.

Moreover, Ishikawa, Saito and Cohen [5] introduced a framework to synchronise

avatars and appliances with mobile phone ringtones. The architecture provided an

interface to control home appliances and avatars 1.

Besides common home appliances, set-top-boxes are also involved in control

areas. Lin and Chen [6] developed a framework to let users control set-top-boxes

from mobile devices, such as mobile phones and laptops. The application allowed

mobile users to watch digital TV (DTV) content online and remotely command

the set-top-box to record a DTV program. Furthermore, Sirskanthan, Meher, Ng

and Heng [7] devised a Teletext WAP access system. The system transformed the

Teletext contents from the screen format of a TV to the screen format of a WAP

1 The 3D CG characters which reflect a client’s action.

3

(wireless application protocol) Enabled Handphone (WEHP), and also allowed

WAP enabled mobile phones to access the Teletext-WAP database and show

database information on their screens.

Plant control is another area investigated in mobile applications. Ravi, Chathish

and Prasanna [1] proposed technical and maintenance personnel supervision and

control of machinery and processes from a cellular phone. They used the WAP

protocol to develop an alarm management program for providing alert signals

when any received data exceeds a preset value for the selected process variables.

In addition, a remote monitoring and inspection system for robotic manufacturing

was presented by Pires [8]. This system uses Simple Mail Transfer Protocol

(SMTP) and Post Office Protocol version 3 (POP3) to transmit warnings and

reports to users’ mobile phones and beepers.

1.3.1.2 Positional Application

The positional application is another popular area in mobile applications. A user

can request specific positional information from a mobile phone, or a PDA

(Personal Digital Assistant) with a particular device. Shimada, Tanizaki and

Maruyama [9] presented a structure for providing different spatial information

services. A compass location adapter (CLA) was developed to assess location and

direction into the mobile phone instead of sensor devices, and was mounted on the

cell phone. The mobile user submitted requests for spatial information and the

particular message would be shown on the screen.

A user cannot only retrieve information with CLA devices, but can also request

spatial information from a server, or other device. Rahman and Bhalla [10]

presented an interface for spatial data queries on mobile devices. They created

extensions for Query-By-Example (QBE), so that the interface could support

spatial queries on portable devices. Some positional applications provide different

information in terms of the types of mobile devices. A framework for querying

hyperlinked multimedia cultural inheritance datasets, such as museum photos, was

proposed by Carswell, Eustace, Gardiner, Kilfeather and Neumann [9]. This

framework could provide different information to users based on their devices’

4

categories, such as a mobile phone not receiving image data, and a PDA not

receiving video data.

1.3.1.3 Telemedicine Application

There have been many mobile applications targeting the telemedicine field. Some

applications allow doctors to access the medical records stored in a remote server.

An implementation of a WAP-based telemedicine system was developed by Hung

and Zhang [11]. They utilised WAP devices as mobile access PCs for common

inquiries and patients’ common data. Authorised users could view a patient's data,

monitor blood pressure and electrocardiogram results on WAP equipment in store-

and-forward mode. At the same time, Andrade, Wangenheim, Bortoluzzi and De

Biasi [12] investigated an approach to allow medical staff to access patient

records, such as computerised tomographic (CT), ultrasonography (US), and

magnetic resonance (MR) images, when visiting the patient’s bedside, or in

emergency situations. Koop and Mosges [13] also used mobile devices to store

patient diaries to increase the quality of data and reduce the time needed to close

the database.

Telemedicine applications not only allow doctors to access relevant records, but

can also provide monitoring of emergent patients. Kogue, Matsuoka, Kinouchi

and Akutagawa [14] proposed a remote patient monitoring system. The system

was designed for use with a 3G mobile phone to observe information of various

patients in an ICU (Intensive Care Unit), or a CCU (Critical Care Unit). Another

application which helped the elderly with dementia was outlined by Lin, Chiu,

Hsiao, Lee and Tsai [15]. They developed a platform, including a web service,

database, message controller, and health geographic information system (GIS)

server, to implement various monitoring schemes, such as indoor residence

monitoring and emergency rescue.

1.3.1.4 Education Application

Education is another hot issue in mobile applications. Ketamo [16] introduced an

adaptable mobile working environment, xTask, for teaching and training. PC, or

PDA, users could access this environment, which was built over software

platforms such as Apache web–server, ActivePerl programming interface and

5

MySql database. In addition, a framework was introduced for collaborative mobile

learning by Black and Hawkes [17]. The framework provided an interface for

PDA users to allow them to carry out reading-comprehension testing using

Question-Answer Relationship (QAR).

Moreover, databases have also been introduced into mobile education

applications. A communication and discussion toolkit, based on sending short

messages, designed for use in schools was presented by Bollen, Eimler and Hoppe

[18]. The messages generated by the students were collected into a database and

then established a basis for discussion and analysis. Meurant [19] reviewed an

application to use cell phones in L2 (second language) classrooms. This

application captured SMS (Short Message Service) into the database, which was

later incorporated into the display on the message board.

Although there are many fields covered in the literature regarding mobile applications,

such as home appliance and plant control, spatial query, telemedicine, and education,

there are none targeting horticulture.

1.3.2 Mobile Database Applications

Many different types of databases have been applied in a variety of mobile applications.

Some database engines are based on the file system. A mobile Web Service system,

which used VS.net tools, C# language, and the Asp.net technique, was proposed by

Gao, Wang, Jiang and Sun [20]. In addition, Bakos, Farkas and Nurminen [21]

proposed a search method for phonebook-based smart phone networks. This search

engine allowed users to search the information in ways that were closer to a universal

human perception of value and reliability.

Some relational and object databases are also introduced. Rahman and Bhalla [10]

proposed an interface that could support queries for spatial data on mobile devices. This

interface was designed for a Relational Database Management System (RDBMS). In

addition, Rahman, Bhalla and Hashimoto [22] developed a Query-By-Object interface

for Information Requirement Elicitation (IRE). This application was built on an Object-

Relational Database Management System (ORDBMS). Furthermore, Lo, Chang,

Frieder and Grossman [23] compared the dynamics of the performance of eight Java

programs; jess, javac, mtrt, compress, db, db4o, smallDB, and ozone; in terms of object

6

size distribution, average object size, object live distribution, and the total garbage

collection cycle. Their results reveal that db, ozone, db4o, and smallDB share several

similarities related to the object size, the object live span, and the object size set.

Some real databases used by the above applications are installed in the server side,

while some installed in mobile phones are based on a file system. Most embedded

databases are designed for PDA, or mobile laptop, with only a few being suitable for

cell phones, due to the resource-constraints.

1.3.3 Mobile Application Interface Review

The user interface is the end point for the user. Hence its appropriate design is very

important to the user. There have been a number of mobile applications focusing on

user interface design over recent years. Imai, Ooga, Yamane, Sadayuki, Iwamoto and

Masuda [24] investigated a monitoring system integrating network cameras, an

integrated web/mail/database server, and web-based high performance mobile phones.

The mobile phone user could access the relevant information located in a server via a

graphic user interface. In addition, Yang and Kou [25] proposed a model for monitoring

and control of PC clusters from a mobile phone. The user interface for mobile phones

was designed in a graphic mode. Further, Rahman, Bhalla and Hashimoto [26] proposed

a high level user interface for Information Requirement Elicitation (IRE). A mobile web

user can access the server information through the Query-By-Object approach.

Some applications provided a generator for the user interface. Howard and Bradford

[27] presented an universal interface generator for a PDA, or mobile phone to control

various devices. Mayyora-Ibarra, Paz-Arroyo, Cambranes-Martinez and Fuentes-Penna

[28] proposed a tool for designing common user interfaces which could be transcoded to

multiple target languages, such as VoiceXML (Extensible Markup Language), J2ME

(Java 2 Micro Edition), HTML (HyperText Markup Language), and WML (Wireless

Markup Language).

Most research focused on generating a generic control interface for the mobile user,

rather than figures or pictures for the interface. Other researches were keen to develop a

user interface to retrieve figures or pictures from a server, rather than generating them

from the mobile phone itself.

7

1.3.4 Wireless Communication Protocol

There are many techniques for communication; including Bluetooth, WAP, and SMS;

that relate to the distance between the client and server.

1.3.4.1 SMS

Short Message Service (SMS) is a communications protocol which allows the

exchange of short text messages between mobile devices. The development and

growth of SMS has been significant since it was first developed. There are many

applications based on the SMS.

Bollen, Eimler and Hoppe [29] explored a communication and discussion toolkit

for use in schools. The environment imitated the sending of short messages using

mobile handsets, and stored the message in a database for later discussion and

analysis. The application presented by Meurant [19] also captured SMSs into a

database in the L2 classroom. These SMS could be displayed on a message board.

1.3.4.2 Bluetooth

Bluetooth is another important protocol for mobile applications. Bluetooth, an

industrial specification for wireless personal area networks (PANs), is built and

licensed by the Bluetooth Special Interest Group. Devices, such as mobile phones,

laptops, personal computers, printers, GPS (Global Positioning System) receivers,

digital cameras, and video game consoles, can use Bluetooth over a secure,

globally unlicensed short-range radio frequency to connect and swap information

[30].

Alhakim, Al-Kittani, Swidan and Zarka [31] presented an infrastructure for remote

control of PCs via a mobile handset through Bluetooth. Users utilised mobile

phones to access PCs’ Internet Explorer, media player, PowerPoint, and MSN

messenger programs. An internet home control structure was also investigated by

Tan and Soh [32]. This architecture allowed subscribers to use a mobile phone to

control home appliances. The protocols used between mobile and server, and

between server and home appliances, are WAP and Bluetooth, respectively.

8

1.3.4.3 WAP

WAP is an open international specification that allows wireless devices such as

mobile phones, or PDAs, to access the Internet [33]. This protocol has become

more and more important because it enables mobile devices to access the Internet

at anytime and from anywhere. An integrated system based on the WEB/WAP

framework for remote monitoring and control of industrial processes was

proposed by Nikolakopoulos, Koundourakis and Tzes [34]. A user could access

the system using a WEB browser, or a WAP-enabled mobile phone.

SMS, Bluetooth and WAP has its advantages and disadvantages. Bluetooth costs

nothing to use, but is limited by a transmission distance of up to 100 metres. In

comparison, using SMS, a particular text or message can be sent to anyone anywhere,

however, there is a cost for using the SMS. Finally, WAP costs the most to use, but it

can not only send text and multimedia messages, but can also receive relevant

information from the Internet through a mobile phone.

1.3.5 Mobile Development Platform

Many different platforms have been used for the development of mobile applications,

such as J2ME, BREW (Binary Runtime Environment for Wireless), and Windows CE.

1.3.5.1 J2ME

J2ME is one of the three Java platforms defined by Sun Microsystems. The others

are J2SE (Java 2 Standard Edition) and J2EE (Java 2 Enterprise Edition). J2ME is

a flexible and robust environment that could be suitable for mobile devices. It

contains a compilation of technologies and specifications for a Java runtime

environment, designed to fit the particular device’s requirements [35]. J2ME

contains stretchy user interfaces, robust security, built-in network protocols, and

support for networked and offline applications that can be downloaded

dynamically. J2ME consists of configuration, profile, and an optional package

[36]. Figure 1 describes an outline of Java ME technology’s components and its

relation with the other Java technologies [37].

9

Figure 1: The Java Platform

Figure 2 presents the platform for Connected Limited Device Configuration

(CLDC). CLDC targets resource-constraint devices such as mobile phones. The

combination of CLDC and the Mobile Information Device Profile (MIDP) can

provide a Java application environment for mobile handsets and other devices

with similar capabilities [37].

Figure 2: CLDC Wireless Platform

10

1.3.5.2 Binary Runtime Environment for Wireless (BREW)

BREW [38], invented by Qualcomm, provides an environment for mobile devices.

It was first designed for use with CDMA devices, but has since been ported to

other handsets, including GSM (Global System for Mobile communication) and

GPRS (General Packet Radio Service). BREW is an environment for downloading

and running small programs, such as playing games, sending messages, and

sharing photos. The major benefit of the BREW environment is that the

developers can easily port their applications between all Qualcomm devices.

BREW-enabled handsets can be developed in C or C++ .

The developer community for BREW is, however, quite small. It is also not

referred to in many books. Users should write their own solution for compressing

resources with BREW. Compared to J2ME, commercial profilers for C/C++ are

expensive.

1.3.5.3 Windows Electric Compact (Windows CE)

Windows CE [39] is a variation of Microsoft's Windows operating system for

mobile handsets. Windows CE is designed for devices with minimal storage. The

development tool [39], Visual Studio, supports projects for Windows CE

/Windows Mobile to generate executable programs and platform images as an

emulator, or attached by cable to a mobile device.

Most applications for mobile phone remote management utilise J2ME (Java 2 Platform

Micro Edition) as a tool for user interface implementation. Yang and Kou [25]

presented two techniques that use J2ME to monitor and control PC clusters from

mobile phones.

Not only has J2ME been deployed in mobile applications, but also in other tools, such

as Windows and C#. Nichols and Myers [4] set out to generate a smart phone interface

generator using Microsoft’s Windows CE-based Smartphone platform. These interfaces

allow users to manage each appliance’s full functionality and are consistent with other

interfaces of the phone.

11

1.4 Embedded Databases

Databases have provided efficient information retrieval engines for a number of

applications for decades. There are many mature databases for mainframes, servers, and

even PCs, such as Oracle, MySQL, DB2, and Sybase. Many of them have been applied

to applications.

There are, however, few applications that have embedded the database into a cell phone,

due to the limitation of resources within the mobile phone. These limitations include the

power source, network connection, and memory size.

In recent years, with the development of technology, the price of hardware has dropped

significantly. The mobile phones have become more functional and powerful, and the

embedded database can now be realised in handsets. Currently, there are a few

embedded databases available for handsets, which include Perst Lite [40], PointBase

[41], db4o [42], and RMS (Record Management System).

1.4.1 Perst Lite

Perst [43] is a simple, object-oriented, embedded database. It is easy to use and

provides high performance compared with other databases for mobile phones. It is

intended to be used in applications which need to deal with persistent data in a more

sophisticated way than the load/store object tree provided by standard serialisation

mechanisms. Perst also provides fault tolerant support; ACID (Atomicity, Consistency,

Isolation, and Durability) transactions; and concurrent access to the database. Tight

integration with programming language is the main benefit of Perst. Perst stores objects

directly without packing/unpacking code (which has to be written for traditional

relational databases), so there is no gap between the database and application data

models. Also, Perst, unlike many other OODBMS (Object oriented database

management system), does not require a special compiler or pre-processor and provides

a high level of transparency. Perst Lite is becoming a particular embedded database for

mobile phones.

12

1.4.2 RMS

RMS (Record Management System) is an API (Application Programming Interface) for

storage data provided by J2ME MIDP. It can store, retrieve, and delete records such as a

file system. It is a small database of simple, oriented-records [44].

1.4.3 Pointbase

PointBase Micro [41] is a platform-independent Java relational database optimised to

run on the Java 2 Micro Edition (J2ME CDC (Connected Device Configuration) and

CLDC/MIDP)) and J2SE platforms. It has an ultra-compact footprint (footprint size

<45KB for J2ME MIDP) and can be easily embedded within a Java application, making

it transparent to users from the time of deployment. PointBase Micro is designed for

notebooks, PDAs, and emerging Java-enabled devices [41]. It provides effective data

management for rapid and efficient mobile enterprise applications created by software

vendors and systems integrators.

1.4.4 db4o

db4o [42] is an open source object database that enables Java and .NET developers to

reduce development time and costs and enhance performance. The unique design of

db4o's native object database engine is suitable to be embedded in equipment and

devices, and in packaged software running on desktop platforms, mobile, and in real-

time control systems - in brief: In all Java and .NET environments without a database

administrator (DBA) [42].

Table 1 provides a comparison of Perst Lite, RMS, PointBase and db4o based on

different features. Based on this comparison, Perst Lite is chosen as the database

embedded into handsets. The Perst Lite J2ME database has simplicity in design and

high performance within the resource limits of most intelligent mobile and embedded

devices. Perst Lite contains B-tree, Patricia Trie, Bit index, T-Tree, and R-Tree indexes,

as well as List, Relation, and Set collections, all protected by transactions supporting the

ACID properties (Atomicity, Consistency, Isolation, and Durability). Perst Lite also

offers additional features of multithreaded access, data encryption, and asynchronous

replication. The query language of Perst Lite is not, however, a standard query

language. In addition, for commercial purposes, Perst Lite costs US$2000 per

application each year.

13

14

Table 1: Database Comparison

 Pointbase Micro Perst Lite db4o RMS
Size 45K for J2ME MIDP,

90K for J2ME CDC
30K~300K 250K Default

component of cell
phone

Support
language

JAVA JAVA & .net JAVA & .net JAVA

Platforms J2EE, J2SE, MIDP,
personal JAVA

J2ME, J2SE JDK 1.1 or later All J2ME

Application
platforms

PDA, mobile handset,
PC

PDA, mobile
handset

PDA, PC PDA, mobile
handset, PC

Database
engine

Relational Object-oriented object-oriented
database

None

Query
language

Subset of SQL92 QBE, perst
search method

QBE OR SOND None

JDBC JDBC subset none none none
Utilities Console, others none Defragment (not

GUI)
none

Reflection yes none no none
Ease of use good Very good Very good none
Flexibility Cross-platform Cross-platform Cross-platform none

Performance good good poor Very poor
Open source none yes yes yes

Security encrypt encrypt none no
Strength Super-small footprint Easy installation Easy installation simple

Weakness SQL and JDBC subset Non-standard
query

mechanism

Non-standard
query mechanism

Without index,
slow search

engine
Cost US$299 US$2000 for per

application per
year

US$100 for
personal, US$

1000 for corporate

none

1.5 Mobile User Interface

The subject of how humans interact with computer systems is referred to as HCI

(human-computer interaction). There are many disciplines that contribute to HCI, such

as computing science, psychology, ergonomics, engineering, and graphic design [45].

The design of a user interface (also called a human-machine interface) is a key part of

computer systems. The goal of a user interface is to ease the exchange of information

between the user and the device (computer or system) to be controlled. A well-

organised interface not only makes a work situation easier to understand, but also

15

reduces errors and, therefore, limits the scope of possible damage caused by interactions

[45].

1.5.1 Human-machine Communication

As Olsson and Piani [46] pointed out, ergonomics is a comprehensive discipline, which

studies how human capabilities are best utilised in workplace surroundings and how

these surroundings can be configured to best adjust to human requirements. It consists

of different fields, such as engineering, physics, physiology, and psychology. In control

system applications, some features of ergonomics are essential. The user must

understand how to approach a system, what to search for, what to expect, and must also

be familiar with the general command principles for a new machine. The designer must

define how data is illustrated on terminals and control panels and must define the

features of commands provided by the user. So, the problem of the user interface from

the perspective of user, or designer, is important to the control system engineer [46].

For a user interface design, Olsson and Piani [46] also stated that there are no

predefined, handbook-written rules. Nevertheless, some principles can be followed to

avoid major mistakes. Experience shows, however, that principles and trends,

ergonomics, and computer user psychology are also fields for research. The features of

the interface need to be correctly defined beforehand. It is estimated that 50 to 70% of

the whole control system software is related to the generation of the user interface [46].

1.5.2 Psychological Considerations

According to estimates, one billion bits of information enter the human body per

second, as described by Piani [47]. Despite this, only 100 bit/sec is processed

consciously. The brain is likely to further reduce the amount of information to be

processed. At the same time, if too much information is presented, human beings lose

their capacity for action and their attention tends to concentrate on only one piece of the

input data [47].

A model of human cognition and information processing is needed to define successful

methods for the user interface design, as discussed by Piani [47]. Sensory storage, short

term memory, and long term memory are the functional blocks identified by modern

psychology in the cognitive process. Perception is the stage in the information

processing conducted by the brain, including storage into the short and long term

16

memory, planning, and transferring of information into control action. The information

from sense storage is transmitted to short term memory and, if there is a voluntary

effort, will be transferred to the long term memory.

Miller [48] declared that 27 ± information items, chunks, could be held in short term

memory. The existing chunks will be erased, or displaced, by new incoming

information. The new information will be handled more easily through organisation and

the relationship with previous knowledge. The relationship to previous experience is

generated using symbols from everyday life in a user-centred system [46]. Visibility has

a direct, realistic application in a user interface. Simple models, possibly connected to

general, daily experience should be chosen. Consistency means that a command will

keep the equivalent meaning, which can help to transmit existing knowledge to new

contexts. Feedback is another key feature of user-oriented design. When a command has

been provided, there should be some reaction to identify the new action. Feedback is not

only a confirmation, but also allows the user to understand if an action has to be halted,

or reversed [46].

Olsson and Piana [46] also stated that perception facility, coding, organising, and

structuring are three ergonomic features influencing the acquisition of information by

the user. Perception facility depends on the hardware equipment; for example, a

terminal screen key’s features include brightness, reflection absence, colour contrast,

and symbol size. Coding is a method to transfer information using symbols and clues.

Organising and structuring illustrate information to relieve the user from the voluntary

effort of creating a mental structure [46].

A good user interface draws the user’s attention to key facts and allows prompt and

accurate reactions on the basis of the information provided. Thus, if a user has to react

rapidly to new information, the presented information should be logically organised and

should not exceed five distinct items at the same level [49].

1.5.3 Hardware for User Interface Communication

There are several kinds of devices for user interface and the most important input/output

(I/O) devices can be divided into four types; direct I/O devices, direct control pointing

devices, indirect control pointing devices, and other devices [46]. The direct I/O devices

cover screen terminal, keyboard, special function keys, printing terminal, printer, and

17

control panel. The direct control pointing devices include lightpen and touchscreen,

while the indirect control pointing devices consist of mouse, trackball, and joystick.

Finally, the other devices contain speech recognition systems, speech generators, and

optical, acoustic alarms [46]. Although there are many choices for user interface

hardware, the limitations of mobile phones are obvious. For example, only 12 keys plus

a few functional keys are provided on mobile phones. Lightpen, touchscreen, and

speech recognition systems are not available in all mobile phones. Thus, it is a

challenge to use the small mobile phone screen for providing the user interface.

1.5.4 Interface Design Principles

Designing a user interface covers many fields and areas of knowledge.

1.5.4.1 General Principles

Olsson and Piani [46] stated that screen displays must be simple and without

unnecessary information. The information content also needs to focus on the user.

The important issue in presenting large amounts of complex data is accurate

structuring and selection. Thus, the original data needs to be divided into smaller

sets for presentation. They also pointed out that only one main concept should be

shown on every screen in the most easily understood way possible [46].

Generally speaking, a good user interface should have the following

characteristics; it should be adequate for the purpose, self-explanatory, and

consistent at many levels [45]. In the interface, as stated by Stone, Jarrett,

Woodroffe and Minocha [45], the key issue is that the user can get an immediate

feeling that a command has been received and accepted, even though processing

has not yet reacted to it.

1.5.4.2 Parameter Description Syntax

Olsson and Piani [46] mentioned that the information presented on the terminal

screen can be divided into a lead text (fixed text) and a variable for the dynamic

variable (actual text). The lead text should generate an expectation satisfied with

the combination with the dynamic information. Also, the lead texts do not need to

give complete information in a grammatical sense, whereas the combination with

dynamic information should make complete sense [46].

18

The difference between static and dynamic information is that the lead texts are

written with normal intensity, with the dynamic variables presented in high

intensity on-screen displays [47]. In static texts the use of words with negative

connotations should be avoided.

1.5.4.3 Screen Layouts

Piani [47] pointed out the principles for screen layout design, which include the

following:

 Because eye movement is from left to right and a drawing developed along

the horizontal direction is easier to notice than one drawn vertically, the

process evolution must be represented from left to right;

 The layouts of the screen must be consistent in their manifestation. A

layout can be divided into four sections, including work (application

related), control section, message section, and static information areas;

 Graphing should be structured as proximity, symmetry, similarity, and

grouping;

 Colours are an influential method to present information. Seven different

colours are the maximum for a screen;

 One colour = one meaning, meaning that colours should be used

consistently;

 Colours can also be used for the demonstration of functional states. For

example, green represents an indication of security, permission, or

correctness. Red means a state of alarm, danger, and prohibition. Yellow is

related to a warning and the presence of some minor problem;

 Colour mixture must be agreeable and not fatiguing. Ease of perception

differs greatly with different colour combinations;

 Make sure not to rely only on colours as a means of presenting vital

information, because a large number of people are blind to some colours

and cannot recognise them. Use redundancy to present the information;

19

 Drawing is the most natural representation for objects;

 Blinking is another method to call for attention, however, a text should

never blink; and

 The display layouts must be interesting and motivate the users of the

control system, rather than bore them.

1.5.4.4 Commands

Furthermore, Piani [47] stated that pushing buttons on a panel, or typing in

command sequences on a keyboard, can implement the communication from user

to machine. He described the following considerations regarding the design of a

user interface:

 A command should describe a reference value for a condition which will

later become equal to the actual value only if the actuators, control system,

sensors, and physical process are correct;

 Actions following the same command should lead to similar results;

 A user interface should be clearly indicated for several input alternatives.

Input commands and data should be checked instantly;

 The current, prior, most frequent, or safest, command should be illustrated

as the default selection for a command;

 String commands which are typed on a keyboard should be as short as

possible, without losing their meaning;

 Only a few mixtures usually make sense in an area where a text input is

requested;

 A command typed from a keyboard needs some consideration and may

lead to errors. So, before execution of a sensitive command, it is necessary

to ask for confirmation;

 Highly sensitive and potentially unsafe commands should be checked with

a PIN (personal identification number); and

20

 In case of an emergency, the application can be stopped immediately.

1.5.4.5 Menus

Piani [47] also mentioned that the menu design should consider the following

principles:

 The menu structure should be obvious to the user;

 An ‘Exit’ command should be illustrated;

 The same abstraction level should be kept for the items in a menu;

 The number of choices should be limited, remember the 27 ± rule [48];

 Take the unrelated questions out of the screen; and

 Use the same keys for similar functions on different menus.

1.6 Project Objective

This project investigates embedded databases and graphical interfaces for the remotely

controlled mobile application – MicroBaseJ for MCS Ltd. The project aims at the

development of an integrated database and GUI (Graphical User Interface) for typical

3G, or 2.5G, mobile phone with Java MIDP2 capability. This includes methods of data

acquisition, mobile data and information communication, data management, graphical

user interface for data presentation and remote user control. Support of phone delivered

informatics will require integrated server and networking infrastructure research and

development, to support effective and timely delivery of data for incorporation in

mobile device-based informatics applications. A key research and development (R&D)

challenge is to support effective and timely delivery of data for incorporation in mobile

device-based informatics applications. Another important point in the project is how to

develop an efficient graphic user interface on the small mobile screen.

This research investigates and analyses the architecture of a mobile monitoring system.

The project aims at generic solutions that can be implemented in a number of

commercial sectors, such as horticulture, building management and pollution/water

management. The developed model is tested with data relevant to the horticulture area

21

of application. The system also addresses the main issues related to mobile monitoring,

including realtime response, data integrity, solution cost, graphical presentation, and

persistent storage capabilities of modern mobile devices.

1.7 Project Plan

This project (MicroBaseJ) is designed according to software engineering pratices, and is

managed using the agile method. To implement MicroBaseJ, there are four steps that

need to be considered in software engineering, including system requirement analysis,

system design, system testing, and evolution. To manage the software process, a time

schedule needs to be organised before implementation.

Table 2 - The Schedule for MicroBaseJ

The stages for MicroBaseJ Duration Start Date End Date
Stage 1. Research 35 days 19/02/2007 6/04/2007
 1.1 Mobile application research 20 days 19/02/2007 16/03/2007
 1.2 Embedded database research 15 days 26/02/2007 16/03/2007
 1.3 User interface research 15 days 19/03/2007 6/04/2007
 1.4 Communication protocols for mobile
application 25 days 2/03/2007 5/04/2007
Stage 2. Requirement analysis 30 days 10/04/2007 21/05/2007
 2.1 Requirement collection 10 days 10/04/2007 23/04/2007
 2.2 High level requirement collection 10 days 24/04/2007 7/05/2007
 2.3 Define software requirement 10 days 8/05/2007 21/05/2007
Stage 3. The generic solution for project 10 days 15/05/2007 28/05/2007
Stage 4. System design 39 days 29/05/2007 20/07/2007
 4.1 Architecture design 5 days 29/05/2007 4/06/2007
 4.2 Class design 8 days 5/06/2007 14/06/2007
 4.3 States design 8 days 15/06/2007 26/06/2007
 4.4 Database design 8 days 27/06/2007 6/07/2007
 4.5 User interface & communication design 10 days 9/07/2007 20/07/2007
Stage 5. System implementing & Testing 111 days 6/07/2007 7/12/2007
 5.1 Structure the order of the implementing
system 10 days 6/07/2007 19/07/2007
 5.2 Coding 60 days 20/07/2007 11/10/2007
 5.3 Testing separate units 50 days 27/09/2007 5/12/2007
 5.4 Combining test 10 days 26/11/2007 7/12/2007
Stage 6. Documentation 30 days 17/12/2007 25/01/2008
Stage 7. Thesis writing 90 days 28/01/2008 30/05/2008

22

Table 2 shows the schedule outline for MicroBaseJ. It describes all activities

throughout all MicroBaseJ development. This project is not only a software engineering

project, but also a research project. So, the first stage of this project is research. It

includes research into mobile applications, embedded database, user interface, and their

communication protocols. The estimate for this part of the project was 35 days.

The next stage is system requirement specification, which was estimated to span 30

days. Requirement collection, high level requirements and definition of software

requirements are the major tasks in this stage. The third stage provides the generic

solution for MicroBaseJ, and the following stage is the key element in this project,

system design. It contains architecture, class, state, database and user interface, and

communication protocol design. It took 39 days to complete.

System implementation and testing follows system design, and lasted about 111 days.

This section includes coding not only for MicroBaseJ, but also for embedded database

testing and performance comparison. This section covers the implementation, testing,

and evaluation.

As mentioned above, the agile method is intended to be used for this project

management. It covers requirement analysis, system modelling, and testing. Agile

software development is an incremental and iterated software development [2].

23

2 Development Environment and Tools

2.1 Introduction

This chapter describes the environments and tools for the project. The environment

section introduces the hardware for development, simulation, and testing, including the

mobile phone, computers, and the application platform for this project. The chapter also

discusses the software tools for this application, including the IDE (Integrated

development environment), J2ME, and a third party software, J2ME Polish.

2.2 Environment

2.2.1 Development Environment

The development environment of MicroBaseJ included two computers one desktop and

one laptop as well as one mobile phone (a Nokia N73). Figure 3 shows the

development environment of this project.

The development desktop was Dell with Pentium D CPU 1400MHz, 256 MB of RAM,

with the operating system being Microsoft Windows XP Professional Version 2002.

Another computer for this application was a laptop, Dell Latitude D600, with

1400MHz, 512MB RAM, and an operating system of Microsoft Windows XP

Professional Version 2002.

These two computers makeup the platform used for the development, testing, and

evaluation. They both run software such as JAVA JDK (Java Development Kit) (jdk-

6u2-windows-i586-p), Eclipse (eclispse-sdk-3.2.2-win32), EclipseME

(eclipseme.feature-1.7.8), J2ME Toolkit (sun_jave_wireless_toolkit-2_5_1), J2ME

Polish (de.enough.mepose.ui_0.7.1), and Perst Lite (perst269). Java, J2ME, Eclipse, and

J2ME Polish will be discussed in a later section of this chapter. Perst Lite was

investigated in Section 1.4.1 .

24

Dell Latitude 600
Dell Desktop

Windows 95
JAVA JDK (jdk-6u2-windows-i586-p)

Eclipse (eclipse-sdk-3.2.2-win32)
 EclipseME (eclipseme.feature_1.7.8)

J2ME Toolkit (sun_java_wireless_toolkit-2_5_1)
J2ME Polish (de.enough.mepose.ui_0.7.1)

Perst Lite (perst-269)

JAR JAR

Figure 3: The Development Environment for MicroBaseJ

The application was developed and tested on both Dell computers. Once the code was

found to work, the application’s JAR (Java archive) file was uploaded to the mobile

phone (Nokia N73) using Bluetooth protocol through a Bluetooth dongle.

2.2.2 Mobile handset

A Nokia N73 was chosen as the mobile handset to test the performance of the

embedded database and the project.

Nokia N73 adopts Symbian version 9.1 as the operating system and S60 3rd Edition as

the user interface. It supports WCDMA (Wideband Code Division Multiple Access)

2100/EGSM (Extension of GSM) 850/900/1800/1900 networks. This N73 has 42 MB

internal dynamic memory plus 1G miniSD (Secure Digital) memory card (hot

swappable) for contacts, text messages, multimedia messages, ringing tones, images,

video clips, calendar notes, to-do list, and applications. It also has video, photos, and

music functions. The N73 screen is a large, bright 2.4 inch QVGA (Quarter Video

25

Graphics Array, 240 x 320 pixels) TFT (Thin-film transistor) colour display with up to

262,144 colours.

The Nokia N73 provides GPRS (General Packet Radio Service), EDGE (Enhanced Data

rates for GSM Evolution), and UMTS (Universal Mobile Telecommunications System)

interfaces. It also provides Internet browsers, XHTML (eXtensible HyperText Markup

Language) and HTML (HyperText Markup Language).

The Nokia N73 supports MIDP 2.0 and CLDC 1.1, 3D (three dimensional) API, PIM

(Personal Information Management) API, File access API, C++ and Java SDKs

(Software development kit). MicroBaseJ was developed as a J2ME application

deployed on Nokia N73 to evaluate the embedded database performance and the project

performance.

2.2.3 Application Platform

Figure 4 illustrates the application platform for the project. The MicroBaseJ application

contains three major components; the Cellular Sentinel, the mobile phone, and the

server. The Sentinel is used for information collection from the sensors, the information

includes temperature, humidity, soil moisture, wind direction and speed, rainfall, and

leaf wetness. These data are also sent to the mobile phone by the Sentinel. The mobile

phone receives data from the Cellular Sentinel and stores these records into the

embedded database. A user can retrieve and present these records as graphs on the small

phone screen. When the record number exceeds a particular limit, the earlier incoming

records can be sent to the server via Bluetooth and be deleted from the embedded

database. The server receives the backup data from the mobile phone and saves them as

a backup file. The following section introduces the Cellular Sentinel. The mobile phone

can be any cell phone with MIDP 2.0 capability. The server can be any computer with a

large storage capacity.

The Cellular Sentinel is a pocket based informatics for asset management and remote

control solution of preference. The Cellular Sentinel uses TINI DS80C400 and

Wavecom Fastrack hardware.

26

TINI Wavecom

Leaf wetness

rainfall

Humidity &
soil moisture

temperatures

Wind direction
& Wind speed

sensors

Sever

Mobile phone

The Cellular Sentinel

SMS

Bluetooth

Figure 4: The MicroBaseJ Platform

2.2.3.1 TINI

The TINI reference board is based on the DS80C400 processor [50]. The

DS80C400 includes 1M RAM, 1M flash, 144-Pin SODIMM (small outline dual

in-line memory module), and the networking includes 1-Wire, serial, and 10/100

connections.

The TINI [50] provides physical connectors to interface with other devices such as

Ethernet networks, serial devices, and a 1-Wire network.

The developers can choose difference languages, such as Java, C, or even coding

in 8051. It is a friendly, remote asset management and control system [50].

2.2.3.2 Wavecom Fastrack

The Wavecom Fastrack modem provides immediate wireless capabilities. Housed

in a rugged metallic casing, the Fastrack modem is built to endure the toughest

environments. Its open interfaces, and OpenAT commands can be embedded into

it, with the applications being able to be run right on the WISMO (Wireless

Standard Module) platform. It is also GSM/GPRS enabled [51].

The Sentinel can collect information-monitoring electronics and sensors. The

application of the Cellular Sentinel can be suitable for security, irrigation,

27

pollution, GIS, temperature, weather, crime, telemedicine, and remote vision

applications. It is compatible with GIS, Bluetooth, and mesh networks.

The Sentinel uses 1-Wire to communicate with the sensors and to collect the relevant

sensor information, with this information edited with a time stamp (adding year, month,

day, hour, minute, and second), then being ready to be sent to the mobile phone by the

Wavecom Fastrack.

2.3 Tools

2.3.1 IDE environment

An IDE is a software application providing wide-ranging facilities to develop software

for computer programmers. An IDE usually contains an editor for source code, a

compiler (and interpreter), tools for build automation, and a debugger. An IDE may

include a version control system and different tools to simplify the GUI construction

[52].

There are a number of IDEs available, such as Eclipse and NetBean. Eclipse is chosen

as the development environment for this project due to its better performance and

features; for example, it has faster initialisation compared with NetBean.

Eclipse is an open source community for construction of Java-based tools and structures

to help programmers solve their problems [53]. The schemes of Eclipse are focused on

creating an extensible development platform, runtimes, and application frameworks for

building, deploying, and managing software across the entire software lifecycle,

including enterprise development, embedded and device development, rich client

platforms, rich Internet applications, application frameworks, application lifecycle

management, and service oriented architecture [52]. The Eclipse version of this project

is Eclipse DSK (Development Software Kit) 3.2.2.

2.3.2 Software

It is very important for a programmer to choose an appropriate language for software

application development.

28

Java, which has been developed by Sun Microsystems, contains various software

products and specifications that provide a system for application software development

and deployment in a cross-platform environment [54]. Java can be used in a number of

computing platforms, including low-end devices to enterprise servers (such as

embedded devices and mobile phones), and even high-end devices (such as

supercomputers). Java can be considered as ubiquitous in mobile phones, Web servers

and enterprise applications, and desktop computers [54].

Java syntax is quite similar to C and C++, but it gets rid of certain low-level constructs

such as pointers and has a simple memory model to allocate every object in the heap

and refer to all variables of object types. JVM (JAVA virtual machine) deals with

memory management through integrated automatic garbage collection.

Java has the following benefits: It starts quickly; it writes less code; it writes better

code; it develops programs more quickly; it avoids platform dependencies; it writes

once and runs anywhere; and it distributes software more easily [55].

There are three Java platforms defined by Sun Microsystems; J2SE, J2EE, and J2ME

[54]. J2SE can be used for developing and deploying Java applications on desktops and

servers. J2SE contains two major parts; Java SE Runtime Environment (JRE) and Java

SE Develop Kit; of the Java SE platform family [35]. J2EE, built on the foundation of

J2SE, is the industry standard for implementing enterprise-class service-oriented

architecture (SOA) and next-generation web applications. J2ME aims to provide a

group of Java APIs for the development of resource-constrained deviceS, including

mobile phones and PDAs [56]. The Java platform in this project is jre1.6.0_01.

2.3.2.1 J2ME

Java ME technology can deal with the constraints associated with building

applications for small mobile devices. Java ME technology allows programmers to

generate Java applications running on small devices with limited memory, display,

and power capacity based on a limited environment. Java ME is a set of

specifications and technologies that can be used for the construction of a complete

Java runtime environment for the requirements of a small mobile device [37].

29

The Sun Java Wireless Toolkit is a set of tools for generating Java applications

that run on devices obedient with the Java Technology for the Wireless Industry

(JTWI, JSR 185) specification and the Mobile Service Architecture (MSA, JSR

248) specification. It includes build tools, utilities, and a device emulator [37].

This project adopts the Sun Java Wireless Toolkit, WTK2.5.1. WTK2.5.1 contains

all of the advanced development features found in WTK version 2.2, 2.3 Beta, and

2.5 Beta 2. For example, it contains MIDlet signing, certificate management,

integrated over-the-air (OTA) emulation, and push registry emulation.

J2ME provides a graphic user interface API for programmer; including low level,

Canvas, and high level API, Screen. Screen contains Form, List, Alert, and

TextBox subclasses. The latter three items are the predefined components,

whereas the former is the open type. It is a container to support multiple items.

The programmer uses the low level API; that is, Canvas’s paint method; to draw a

screen picture. High level API can help the programmer to develop user interfaces

to be faster and more portable [57].

2.3.2.2 J2ME Polish

The programmer cannot change the presentation of the GUI defined by high level

API and low level API. For example, it does not allow the user to define

sharpness, colour, and font. Although the programmer can also use low level GUI

API to generate a good-looking interface, it needs extra work to allow the user

interface to run on all, or most, J2ME devices. Thus, the third party software

J2ME Polish is proposed.

The free third party software, J2ME Polish, which was developed by Virkus, is a

set of open source tools for generating polished wireless Java applications [58].

J2ME Polish provides its build tools and user interface for the programmer. The

J2ME Polish GUI is not only compatible with the high level GUI API, but also

allows the programmer to design the detail of the user interfaces. The J2ME Polish

has the following unique characteristics; easy implementation, automatic porting,

innovative designs, customisation, flexibility, and extensibility. J2ME Polish

provides several features; such as circumventing device bugs and integrating the

30

best matching resources; to help the programmer solve difficulties in the real

world of wireless Java application [58].

J2ME Polish tools can be divided into four layers; build framework, client

framework, IDE plug-ins, and stand-alone tools. The build framework includes

pre-processing, compiling, pre-verification, packaging, device database, logging,

and localisation. Programmers can use it to build their J2ME applications. The

client framework contains high-level GUI, game engine, logging framework,

WMAPI (wireless messaging API), and utility classes. Programmers use APIs

from the client framework to enhance their wireless Java applications. The IDE

plug-ins allows programmers to develop their J2ME application in the popular

Eclipse IDE. It consists of Eclipse, NetBeans, a preprocessing editor, debugging,

emulator invocation, and quick device selection. Finally, there are some stand-

alone tools, such as a binary editor, a bitmap-font editor, and a project manager

[58].

2.4 Summary

This chapter discusses the hardware environments and the software tools used to

develop/implement MicroBaseJ. The application platform is based on three components:

the Cellular Sentinel, the mobile phone, and the server. The Cellular Sentinel includes

sensors, TINI, and Wavecom Fastrack. The development environment is based on two

Dell computers and Nokia N73 mobile phone. This chapter also introduces and

discusses the software tools used; including Eclipse, J2ME, and the third party software,

J2M2 Polish.

31

3 System Design

3.1 Introduction

This chapter investigates the system design for MicroBaseJ in terms of software

engineering. It analyses the requirements of the project and results in the general

architecture. Next, the data sources and communication protocols are described. In

addition, the functional and non-functional requirements are provided. Interface

descriptions, data structures between components, and the dataflow model of the project

are also discussed. Furthermore, class diagrams and state diagrams are proposed and

discussed in terms of UML.

3.2 Requirement Analysis

The specification is one of main components in software engineering. Sommerville [59]

introduced the user requirement and the system requirement into the requirement

analysis. The user requirement can be considered as being a high level abstract

requirement from the users. The system requirement provides the detail of the system

services and its constraints. The requirement process needs to be dealt with through the

system designer and customers.

3.2.1 User Requirement

From the viewpoint of MCS Ltd, this project relates to the MCS Mobile application

framework for producing quality, portable, compatible, and appealing applications.

MCS aims to develop a generic solution for the mobile remote management. The first

step focuses, however, on the horticultural field, and is designed to explore an efficient

embedded database of mobile phones and develop applications based on this prototype.

The embedded database will store the data gathered from remote sensors, including

temperatures, humidity, soil moisture, wind speed and direction, rainfall, and wetness.

Furthermore, this application also aims to develop a friendly and well-organised user

32

interface to present data collected from sensors. The users of the application include

MCS staff/contractors, farmers, greenhouses, and cool room managers.

3.2.2 Data Sources

The needed data of this project includes four temperatures (three environmental

temperatures and one soil temperature), wind speed, wind direction, humidity, soil

moisture, rainfall, and leaf wetness.

Temperature [60] is a physical property of a system that underlies the common notions

of hot and cold; something that is hotter generally has the greater temperature.

Specifically, temperature is a measure of the kinetic energy of a sample of matter.

Temperature is one of the principal parameters of thermodynamics. In this project, there

are four temperature items. Three of them monitor the environment and plants. One is

used for monitoring soil temperature. In MicroBaseJ, the data range of the temperatures

collected from sensors is -55.00 to +125.00 Celsius, with a resolution of 0.01 Celsius.

Humidity is referred to as relative humidity. Relative humidity is described as “the

(dimensionless) ratio of the actual vapor pressure of the air to the saturation vapor

pressure” [61]. It is expressed as a percentage. Relative humidity is one of the

important parameters in forecasting weather. MicroBaseJ collects relative humidity

from the sensor that monitors the environment of grown plants. In MicroBaseJ, the

humidity collected from the sensor varies from 0.00% to 100.00%, with resolution of

0.01%.

Soil moisture is quite similar to humidity. It is used for measuring the quantity of water

contained in soil on a volumetric, or gravimetric basis [62]. Its unit is a percentage. Soil

moisture in MicroBaseJ is used for monitoring the soil water content to protect grown

plants. The soil moisture collected from the sensor varies from 0.00% to 100.00% in

MicroBaseJ.

Wind speed [63] is defined as the movement of air from one place to the next. Wind

speed is an important factor in weather forecasting. In MicroBaseJ, wind speed is

chosen to work out where plants will be best protected from strong winds. The data

range of wind speed collected from the sensor is from 0 to 200 Km/h.

Table 3: The relation of values and wind direction

33

values Wind direction
1 north (N)
2 north north west (NNW)
3 north west (NW)
4 north west west (NWW)
5 west (W)
6 west west south (WWS)
7 west south (WS)
8 west south south (WSS)
9 south (S)
10 south south east (SSE)
11 south east (SE)
12 south east east (SEE)
13 east (E)
14 east east north (EEN)
15 east north (EN)
16 east north north (ENN)

Wind direction [64] is the measurement of the direction from which the wind is

blowing. It is usually described in terms of the essential direction, or in degrees of

azimuth. Wind direction can be used for identifying where to best protect plants from

strong winds. The data range of wind direction from the sensor in MicroBaseJ varies

from 0 to 15. Digit 1 represents north (N); digit 2 represents north north west (NNW);

and so on. Table 3 describes the relation of the values and the wind directions.

Rainfall [65] is a measurement that calculates the amount of rain falling to the ground. It

is described as the depth of water collected on a smooth surface, and is normally

calculated with accuracy up to 0.1 mm. The value range of the rainfall is measured

between 0 to 200mm, with resolution of 0.1mm.

Leaf wetness [66] is used for the description of the plant’s moisture in a canopy,

because leaves are the essential organs of plant and are infected by most pathogens. In

this project, leaf wetness is collected from a sensor which is placed on the leaf surface.

The health of the plant can be estimated by combining leaf wetness with other

parameters such as temperature and humidity. There are two values set in this project,

digit 0 and 1. Digit 0 represents dry, and digit 1 is wet.

34

3.2.3 The Proposed Structure for MicroBaseJ

According to the user requirement mentioned above, a basic structure for the remote

monitoring application has been proposed as shown in Figure 5. It consists of the

Cellular Sentinel, a mobile phone, a server, and the public wireless network. The

Cellular Sentinel collects the information from the sensors, and sends these data to a

mobile phone. The mobile phone receives the notification information from the Cellular

Sentinel, including temperature, humidity, soil moisture, wind speed and direction,

rainfall, and leaf wetness. If any parameter exceeds the preset alarm limit, an alert

message is generated on the mobile phone screen immediately. The relevant data from

the Sentinel are also stored in the mobile phone’s database locally. One key issue of the

project is to investigate an embedded database for the mobile phone.

Figure 5: The architecture of MicroBaseJ

The mobile phone also provides a user interface for the subscriber to make enquiries to

the local database and plots the relevant data locally. Users access the data from the

database embedded into the mobile phone, through a friendly user interface. The data

are presented as discrete readings, or as trend records, on the mobile screen. The user

interface design presents another challenge in this application, due to resource-

35

constraints of the mobile phone. This application aims to discover a universal user

interface for all MIDP2 mobile phones.

 The relevant data about temperature, humidity, wind speed and direction, rainfall, and

leaf wetness are sent to the server when the total amount in the database exceeds 18,000

records. This can prevent the mobile phone from crashing and improves the efficiency

of the mobile phone. The server receives data from the mobile phone’s embedded

database and saves them in the server’s database as a backup.

3.2.4 Communication Design

There are many choices for communication protocols in the project. However, finding

an appropriate one is a challenge. There are a number of features to be considered, such

as cost, flexibility, and maturation.

MicroBaseJ uses SMS as the communication protocol to transmit the collected data to

the user handset, as it has many advantages. SMS has been widely utilised in the

wireless world. All mobile phones provide SMS API and it is a cost-effective protocol.

Vodafone in New Zealand provides customers with a special service (BestMate),

whereby a mobile phone can text to the preselected handset an unlimited number of

times, costing a total of only $6 per month. Last but not least, the Sentinel has a GSM

module installed in it which can send the collected data to the mobile phone.

On the other hand, the communication protocol chosen for backup of the data from the

mobile phone to the server is Bluetooth. This protocol is chosen for several reasons.

First, the backup is not a real-time operation. Next, it can be done as a one to one

transfer over a short distance. Finally, the most important reason is that the

communication method is free.

3.2.5 Functional Requirement

A system functional requirement provides the functionality, or services, expected for the

system. To satisfy the user requirements of MicroBaseJ, 17 sub-functions are defined.

The ID is labelled as MB (represent MicroBaseJ) plus a sequence number. Table 4

describes the 17 functional requirements, with IDs and comments.

36

The functional requirements include; Data Require & Send, Alarm Reset, Database

Design, Data Stored, Alarm Present, Main Menu, Graphing Main Menu, Graphing

Second Menu, Data Retrieved, Data Present, Sample Main Menu, Sample Confirm

Menu, Alarm Main Menu, Alarm Reset Menu, Alarm Update Confirm Menu, Backup

Data, and Backup Data Stored. Each function carries out a particular task. For example,

the function that the mobile phone receives the normal collected data as background,

and persists the information to the embedded database, is carried out by the Data Stored

function. All the details of the functional requirements are shown in Table 4, below.

Table 4: The functional requirements for MicroBaseJ

ID Requirement Comment
MB.1 Data Require & Send – the Sentinel requests the data from the

sensors. The Sentinel sends the notification collected from the
sensors to the mobile phone.

OpenGL
/SMS

MB.2 Alarm Reset – the Sentinel receives the reset sample rate from
the mobile phone and updates the internal configuration

accordingly.

OpenGL
/SMS

MB.3 Database Design – designs the database structure for the
information from the Sentinel

Perst Lite

MB.5 Data Stored – the cell phone receives the normal collected data
as background and persists the information to the embedded

database.

J2ME /Perst
Lite

MB.6 Alarm Present – the J2ME application must be aware of
incoming alarms and display an alert on the mobile phone screen.

J2ME

MB.8 Main Menu – once the user activates the application a friendly
interface is shown on the mobile screen, allowing the user to
manipulate the data charting and configuration-setting menu.

J2ME

MB.9 Graphing Main Menu – once the user chooses the charting
option, a list of options is shown to allow the user to select two

charting parameters.

J2ME

MB.11 Graphing Second Menu – once the user chooses two items, a
form occurs to allow the user to type in the shown period.

J2ME

MB.12 Data Retrieved – the particular data are retrieved from the
embedded database in terms of the user requirement.

J2ME / Perst
Lite

MB.13 Data Present – the selected data are presented on the mobile
screen (charting).

J2ME

MB.14 Sample Main Menu – once the user chooses the sample rate
configuration option, the old sample rate is presented and allows

user to type in a new one.

J2ME

MB.15 Sample Confirm Menu – asks the user to confirm the new sample
rate and sends it to the Sentinel.

J2ME

37

MB.16 Alarm Main Menu – once the user chooses the alarm
configuration option, a list of options for different items of alarm

setting are provided for selection.

J2ME

MB.17 Alarm Reset Menu – provides a form to the user to update the
alarm setting.

J2ME

MB.18 Alarm Update Confirm Menu – asks the user to confirm the
change of the alarm data and stores it into the mobile phone.

J2ME / SMS

MB.19 Backup Data – provides a form for the user to confirm to backup
the first in 5,000 records to the server and delete them.

J2ME

MB.20 Backup Data Stored – stores the backup data from the mobile
phone into the database in the server.

J2EE /
MySQL

3.2.6 Non-Functional Requirement

The non-functional requirement defines the requirements that are not directly related to

system specific functions. Table 5 shows the non-functional requirements from MCS

Ltd. MCS Ltd suggested that the application was run on mobile phones with MIDP 2.0

capability and expected to investigate an embedded database for MicroBaseJ. Before the

embedded database can be applied to the application, the performance of the databases

needs to be evaluated. Furthermore, a user-friendly interface needs to be considered

either using third-party software, or customising. The final factor is the Sentinel, for

which the TINI was chosen.

Table 5: The Non-Functional Requirements for MicroBaseJ

ID Requirement Comment
MB.21 MIDP 2.0 The use of MIDP 2.0 will allow MCS to

deliver a more compelling user experience.
MB.22 J2ME architecture that will allow

the possibility of other third party
UI API’s to be used in the future.

Attractive and appealing user interface.

MB.23 Embedded database – Perst Lite
evaluation.

Need to evaluate the performance of Perst
Lite and RMS and make a decision on the
use of fast search techniques for the user.
Also, analyse the application foot print.

38

3.2.7 MicroBaseJ Roadmap

To manage this project in terms of the agile method, the application is divided into four

release versions, Release 0.1.0, Release 0.2.0, Release 1.0.0, and Release 1.1.0. Each

release implements particular functions, like a milestone in the project. The programmer

implements the first release, and tests it. It can be considered to be a relatively

independent function of the project. When one release is finished, another is

implemented. The advantage of the agile method is that the function can be

implemented quickly and is adjustable. Users can check whether it has satisfied the

requirements in time, and this helps the programmer to make a decision as to whether or

not there is a need to further improve, or continue. This feature allows the software

development to adapt the updated requirement in a short time frame.

A roadmap of MicroBaseJ is shown in Table 6. This table describes the deadlines,

revision versions of the application, and their functions for each release.

Each release represents a milestone in the application. For example, Release 0.1.0

implements the first step of this project. It covers the embedded database discovery,

analysis, and sensor data collecting, sending and receiving. Release 0.2.0 realises basic

functions for MicroBaseJ, including the user interface and alarm notification.

Configurations such as alarms and the sample rate are implemented in Release 1.0.0.

The last one, Release 1.1.0, backs up the first-in data to avoid mobile phone crashes due

to data overflow.

Table 6 shows that each release version contains several revisions. Each revision

implements a specific function. For example, Revision 0.2.1 allows the user to update

the alarm settings and sample rate settings, with the updated information stored in the

local file system, or sent to the Sentinel for the next data collection.

Table 6: MicroBaseJ Roadmap

Release
version Due date Revision

version Task ID Implement
location Contents

Release
0.1.0

Mid July,
2007

Revision
0.0.1

Data Storage
Analysis MB.23 Simulation

Embedded
database – Perst
Lite evaluation

39

Revision
0.0.2

Mobile Device
Performance

Analysis
MB.23 Mobile phone Perst Lite

evaluation

Revision
0.0.3 Data Delivery

MB.3 Mobile phone Database
Design

MB.1 Sentinel Data require &
send

MB.5 Mobile phone Data stored

Release
0.2.0

Early
September

, 2007

Revision
0.1.1

User Interface
Design for

Mobile Phone

MB.8 Mobile phone Main Menu

MB.9 Mobile phone Graphing main
menu

MB.10 Mobile phone Graphing
second menu

MB.11 Mobile phone Data retrieved
MB.12 Mobile phone Data present

Revision
0.1.2

Alarm
Notification

Delivery
MB.6 Mobile phone Alarm present

Release
1.0.0

Late
October,

2007

Revision
0.2.1

Configuration
Process

MB.14 Mobile phone Sample main
menu

MB.15 Mobile phoneSample Confirm
menu

MB.16 Mobile phone Alarm main
menu

MB.17 Mobile phone Alarm reset
menu

MB.18 Mobile phone Alarm update
confirm menu

Revision
0.2.2

Configuration
Delivery MB.2 Sentinel Alarm reset

Release
1.1.0

Late May
2008

Revision
0.3.1

Backup
Delivery

MB.19 Mobile phone Backup data

MB.20 Sever Backup data
stored

3.2.8 Interface Description

The application contains three components; the Sentinel, the mobile phone, and the

computer server. Figure 6 illustrates the communication among these three components.

The Sentinel sends the notification collected from the sensors to the mobile user every

hour, and receives the updated sample rate from the mobile user. The mobile user

receives the data from the Sentinel and sends the new sample rate setting to the

Sentinel. The mobile phone also sends the backup data; the first-in 5,000 records; to the

server when the amount in the embedded database exceeds 18,000 records and deletes

40

them. The server receives the data from the mobile user and stores them into the

database in the server.

Figure 6: The Interface Diagram for MicroBaseJ

3.2.9 Data Structure between Components

To implement the functional requirements mentioned in Section 0, the application needs

to define the data format between the Sentinel and the mobile phone, and the mobile

phone and the server.

Table 7 defines the data format between the Sentinel and the mobile phone. This

application supposes that the Sentinel sends data to the mobile phone each hour. The

data includes the time stamp with four temperature readings, two humidity readings,

wind speed and direction, rainfall, and leaf wetness. There are eleven attributes. All data

are set as string and each attribute has a format of “title + ‘=’ +value (String type)”. For

example, the temperature 1, t1, is 24.45 °C, and is set as T1=24.45. There is a semicolon

among each attribute. An example of the whole data format is:

DATETIME=22020802000000;T1=23.73;T2=12.34;T3=23.55;ST=15.34;SM=67.45;R

F=23.24;HD=70.45;WD=12;WS=13.23;LW=1

41

where DATETIME is the time stamp for each record; T1, T2, T3, and T4 represent

temperatures t1, t2, t3, and t4; SM is soil moisture; RF is rainfall; HD stands for

humidity; WD and WS are wind direction and wind speed, respectively; and LW is leaf

wetness. The detailed explanations can be seen in Table 7.

Table 7: Data Format for Messages from Sentinel to Mobile Phone

name data type Command format range Unit Comment

date
time string

DATETIME=
DDMMYYHHNNSSZZ
(DD: day; MM: month;
YY: year HH: hour NN:

minute SS: second ZZ: ms)

DD: 1~31, MM:1~12,
YY:00~99, HH:1~24,
NN:0~59, SS: 0~59,

ZZ: 0~59

 ID for each
sample data

space string ";"

t1 string T1=XXXX.XX -55 ~ +125 The first
temperature

space string ";"

t2 string T2=XXXX.XX -55 ~ +125 The second
temperature

space string ";"

t3 string T3=XXXX.XX -55 ~ +125 The third
temperature

space string ";"

st string ST=XXXX.XX -50 ~ +50 soil
temperature

space string ";"
sm string SM=XX.XX 0 ~ 100 % soil moisture

space string ";"
rf string RF=XXXXX 0 ~ 9999 mm rainfall

space string ";"
hd string HD=XX.XX 0 ~ 100 % humidity

space string ";"

wd string WD=XX

1 ~ 16 (1:N, 2:NNW,
3:NW, 4:NWW, 5:W,

6:WWS, 7:WS, 8:WSS,
9:S, 10:SSE, 11:SE,

12:SEE, 13:E, 14:EEN,
15:EN, 16:ENN

 wind
direction

space string ";"
ws string WS=XXX 0 ~ 200 km/h wind speed

space string ";"
lw string LW=X w: wet; d:dry leaf wetness

c°

c°

c°

c°

42

For the backup data from the embedded database to the server, the format is similar to

the data from the Sentinel to the mobile phone, except for the DATETIME item (only

10 bytes in backup format) and the date type (the value in the backup is the integer type,

whereas the value in the Sentinel is the float type).

Table 8 presents the format of the updated sample rate between the mobile phone and

the Sentinel. The format uses the String type, set as SAMPLE=MMM, where MMM is

the value of sampling. The unit is one minute. An example is: SAMPLE=30; meaning

that the sample rate is 30 minutes.

Table 8: Sample Rate Format for Configuration to the Sentinel

name data type Command format range Unit
sample rate string SAMPLE=MMM MMM:1~999 minute

3.2.10 Dataflow Model

According to Sommerville, the user requirement is usually described in natural

language, as the target user may not be a technical expert [67]. A set of system models

has been widely used for the documentation of the system specification; including the

context model, the behavioural model, the data model, and the object model. The

behavioural model defines all behaviours of the system. The dataflow model and the

state machine model are two types of behavioural models. A dataflow model is used for

the system driven by data, while a state machine model is suitable for a real time event

driven system.

From the viewpoint of MicroBaseJ, the application is related to different components,

such as the Sentinel, the mobile phone, and the computer server. Thus, a dataflow

model is described in Figure 7. The figure also identifies sub-functions mentioned in

Table 4 and Table 5. For example, the Data receive and alarm present process includes

the sub-functions MB4, MB6, and MB7, as defined in Table 4.

43

Figure 7 shows that the Data request process collects the sensors’ data and fills in the

time stamp, and then the Sentinel sends it to the mobile phone according to the sample

rate. The mobile phone receives data from the Sentinel and this process is run as

background. If any parameter’s value exceeds the alarm setting, an alarm form is shown

on the screen and notifies the user with specific sound, meanwhile these data is saved

into the embedded database. Otherwise, the process of saving the relevant data in

embedded database is run as background.

Figure 7: The Dataflow of MicroBaseJ

The mobile user can activate the application and select two types of attributes from the

database according to the particular date chosen by the user. The relevant data is

presented as a line chart, or bar chart, on the mobile screen. The mobile user can also

configure the alarm, or the sample rate. The updated alarm, or sample rate, will be

44

stored in the respective files in the mobile phone and the modified sample setting is sent

to the Sentinel. Furthermore, if the user activates the application, a confirm form is

shown on the mobile screen to notify the user to set up the Bluetooth connection with

the computer server when the number of records exceeds 18,000 records. The first-in

5,000 records is sent to the server and deleted from the embedded database if the user

confirms the connection to be ready. Periodically deleting records can prevent the

application from crashing as a result of the memory overloading.

The Sentinel receives the modified sample rate and saves it into the Sentinel. The

computer server receives the backup data from the mobile phone and stores them into

the database in the server.

3.3 System Design

System design is a set of descriptions of the implemented software structure, the system

data, and the components’ interface and algorithms [67]. It is also considered to be a

system model process. The most important activities in system design are architecture

design, abstract specification, interface design, component design, data structure design,

and algorithm design.

The application is suggested to be implemented based on Java, an object-oriented

language. There are many important models for an object-oriented project design. One

of them describes the static and dynamic relationships between objects. Another model

explains how objects interact with each other.

In order to design this application, Unified Modelling Language (UML) is selected as

the approach for the standardised specification notation with visualisation. UML has

three different views of a system model, including functional requirements view, static

structural view, and dynamic behaviour view [68]. The functional requirements view

describes the requirements of the system from the user's viewpoint. The functional

requirements and non-functional requirements of the application were discussed in

Section 0 and Section 3.2.6. The static structural view uses objects, attributes,

operations, and relationships to explain the system’s static structure. The examples are

class diagrams and composite structure diagrams. The dynamic behaviour view

illustrates the system’s dynamic behaviour among objects, and changes them to the

45

object’s internal states. Sequence diagrams, activity diagrams, and state machine

diagrams are all examples of this. In the project, two significant diagrams; a class

diagram and a state diagram; are used for the system’s static structure and dynamic

behaviours.

3.3.1 Class Diagram

Sommerville [67] explained that an entity consisted of a state and that a defined group

of operations operated on the state is called an object. The state contains a group of

object attributes. Services to other clients are provided by operations associated with the

object when requested. According to the object class definition, objects are created. An

object definition is a type specification and a temple to create the object. It contains all

attributes’ and operations’ declarations. In terms of the theory, there are eight classes

defined in the application.

Figure 8: The Class Diagram for MicroBaseJ

Figure 8 shows the object class diagram for MicroBaseJ. This figure only contains the

application of the mobile phone side and does not show the functions in the Sentinel and

46

the server. Usually, there is at least 200Kb of storage for each class when the

application is deployed into a resource constrained device such as a mobile phone. To

reduce the application size deployed in the mobile phone, only eight object classes are

defined in this application; ReceiveSMSMsg, MainMenu, HorticultureData,

pushProcess, myCanvas, MyLineCanvas, MyBarCanvas, and MyLineBarCanvas.

Figure 8 also illustrates the attributes and operations for Horticulture and pushProcess,

with other classes introduced in the following sections.

The class pushProcess deals with the message from the Sentinel. This object will be

activated by the ReceiveSMSMsg object as a background process when the message

arrives from the Sentinel. The HorticultureData is the class defined objects for the

database. It has insert and read functions, and defines all attributes for the database,

including time stamp and another ten items from the sensors. It is used for the

ReceiveSMSMsg and the MainMenu classes.

The ReceiveSMSMsg is the main class in the application. It offers an entry to the

application for the mobile user. It implements major functions of the application, such

as receiving the message from the Sentinel, storing the relevant information into the

mobile database, and providing the interface to the MainMenu class. Figure 9 illustrates

the detail of the ReceiveSMSMsg class.

Figure 9 illustrates that the ReceiveSMSMsg has a number of attributes, such as the

command buttons for the mobile user; NEXT_CMD, BACK_CMD, etc.; and

parameters for the alarms of the ten items. The ReceiveSMSMsg also has a number of

normal operations for mobile applications; for example, destroyed(), and startApp(). It

has other operations for the function of receiving the SMS from the Sentinel, processing

them, and storing them into the database. It also provides a connection to the MainMenu

class and shows an alarm form on the mobile screen when the incoming reading exceeds

the alarm limit.

47

Figure 9: The Illustration for the ReceiveSMSMsg Class

The MainMenu provides an interactive interface to the user to manipulate relevant

operations. It allows the user to choose different functions, such as presenting the user

with specific information on the screen, updating the alarm settings and sample rates,

and sending the modified sample rate back to the Sentinel. It also provides an entry to

one of the MyLineCanvas, MyBarCanvas, and MyLineBarCanvas.

Figure 10 shows that the MainMenu contains several attributes, such as the alarms,

units, forms, choicegroups, and textfields for user interfaces. The MainMenu also has a

48

number of operations. For example, the welcomeMenu() provides a splash form to the

mobile user.

Figure 10: The Illustration for the MainMenu class

49

The class myCanvas is an abstract class, which plots the relevant data retrieved from the

database on the mobile screen. It defines the basic chart for the mobile application.

Figure 11 illustrates the class myCanvas. It defines the necessary attributes for the

graphs. It also defines four operations for painting, keyPressed, keyReleased, and

myCanvas itself.

Figure 11: The Illustration for the myCanvas Class

The classes; MyLineCanvas, MyBarCanvas, and MyLineBarCanvas; are inherited from

the class myCanvas. They are used for drawing different types of figures, such as the

line chart, the bar chart, and their combination.

3.3.2 State Diagram

The Statechart diagram is one of state machine models in UML, with state machine

models being dynamic models that describe the actions in the software engineering

process.

50

As can be seen from Section 3.3.1, there are eight classes in the application. The most

important classes are the ReceivesSMSMsg class, the interface classes, MainMenu, and

the three canvases. These classes’ state diagrams are analysed in the following section

Date
receive

 a
ct

iv
at

e
Message arrival Date

process
message Date

store
Edited data

Record num>18000

R
ec

or
d

nu
m

<1
80

00
Data exceed alarm setting Alarm

notification

Confirm
sending

Backup
data

sending

yes

exit

Backup data

exit

exit

no

D
at

a
no

 e
xc

ee
d

al
ar

m

Initialization

MainMenu

Figure 12: The Statechart Diagram for the ReceiveSMSMsg class

Figure 12 shows the statechart for ReceiveSMSMsg. It presents the major states in the

class, ReceiveSMSMsg. The object has two entries, it can be activated by the mobile

user, as well as by a message from the Sentinel. The SMS from the Sentinel is

processed as background if no items exceed the alarm limits. Otherwise, an alert form is

shown on the mobile screen.

51

No matter whether the application is activated by the user, or by a message from the

Sentinel, once a new message arrives, the object ReceiveSMSMsg receives it and

processes it as a particular format, and then stores it into the object -- Horticulture. The

ReceiveSMSMsg also checks whether the items’ value exceeds the alarm settings. If so,

an alarm form is shown on the mobile screen. Otherwise, the application will be

terminated if it has been activated by a message, or the application keeps running

normally if it has been activated by the user.

When the application is activated by the user, it will check whether the record number

of the embedded database exceeds 18,000 records. If so, then a notification is shown on

the mobile screen to allow the user to choose to backup the data, exit the application, or

continue it. If the backup function is chosen, the application asks the user to set up the

Bluetooth connection to the server and then send the first-in 5,000 records to the server.

Finally, the 5,000 records are deleted from the mobile database. If exit is selected, the

application will be terminated. The application calls the MainMenu if the user chooses

to continue.

Figure 13 illustrates the MainMenu class and the three canvases. It presents the major

states in the class MainMenu and the inherent class, myCanvas. This object is called the

ReceiveSMSMsg. The object deals with the major interfaces with the user. It provides

interfaces to users and presents the data charting, the alarm, and the sample rate

configuration. The updated alarm setting and sample rate are stored into the files in the

mobile, and the updated sample rate is sent to the Sentinel for next sampling.

The MainMenu provides four options for the user, including charting, alarm

configuration, sample rate configuration, and exit. The charting process provides several

cascade menus for the user, including an item choice menu, date choice menu, the form

for maximum and minimum values, and the data plotting for a specific date. Each menu

provides two choice buttons, next and back, to allow the user to continue, or return to

the previous menu. The chart item choice menu also checks the user chosen (limited to

two items). While the retrieved date is typed in, the object checks its validity and

searches the specific data from the mobile database. A form identified the max and min

value in the specific date comes on screen after the user presses the Next button.

Finally, the line, or bar, charts are shown on the screen when the subscriber pressed the

52

Next button. The user interacts with the data using the 2, 4, 6, and 8 keys of the mobile

phone.

Figure 13: Statechart Diagram for the MainMenu class

The alarm configuration provides an item choice menu, and an updating form. Once the

alarm is updated, a confirm form is provided for the user. The sample rate configuration

allows the user to update the current parameters and provides a confirm form as well.

The updated sample rate is sent to the Sentinel after the confirmation.

53

3.4 Summary

This chapter, system design, is the crucial element in the project. MicroBaseJ is

designed using software engineering concepts. It covers all features for system design in

software engineering.

This chapter analyses the requirements for this project, including the functional and

non-functional requirements. User requirements are collected and analysed, and then the

general architecture for the application is proposed. The chapter also discusses data

sources for the application; including four temperature values, humidity, soil moisture,

wind direction and speed, rainfall, and leaf wetness. Next, the communication protocols

between the Sentinel and the mobile phone are proposed to adopt SMS, and Bluetooth is

suggested for the communication between the mobile phone and the backup server. The

interface description, data Structure between components and dataflow model for the

project are also discussed. MicroBaseJ roadmap is also discussed.

The class diagram of MicroBaseJ is discussed, including the eight classes

ReceiveSMSMsg, MainMenu, HorticultureData, pushProcess, myCanvas,

MyLineCanvas, MyBarCanvas, and MyLineBarCanvas. The details of the

ReceiveSMSMsg, MainMenu, and myCanvas classes are also investigated. The state

diagrams of ReceiveSMSMsg, MainMenu, and myCanvas are discussed.

54

4 Mobile Phone Database and User Interface
Implementation

4.1 Introduction

This chapter investigates the implementation of the mobile database and the user

interfaces for MicroBaseJ. It discusses the data format and data storage for the database.

Next, the design of the user interfaces is discussed in this chapter. The hardware and

software for the user interfaces are investigated. This chapter also discusses the user

interface design from the screen layout, command, and menu for the application.

4.2 Database Design

4.2.1 Data Format

As mentioned in Section 3.2.2, the data sources of the project include four temperature

readings, wind speed, wind direction, humidity, soil moisture content, rainfall, and leaf

wetness. The details of these items have been fully discussed in Section 3.2.2. The ten

items are collected from sensors in the Sentinel and attached with a time stamp. Table 9

describes the eleven items’ format, data range, unit, size, and comment.

The time stamp is given as ten digit number. The data format of the time stamp is the

string type. The time stamp format is defined as: ddmmyyhhmm; where dd stands for

day, mm is month, yy represents year, hh is for hour, and mm is minute.

The format of the four temperature values is set as the Integer type. The value of the

temperature values vary from -50 to 125. The formats for humidity and soil moisture are

both defined as the Integer type. Their ranges vary from 0% to 100%. The wind speed

format is also defined as the Integer type, its value varying from 0 to 200 km per hour.

The wind direction adopts the Integer type as its format. It has 16 values which

represents 16 different directions of the wind.

55

Table 9 - Database format for MicroBaseJ

Items data type data format range Unit Comment bytes

Time
Stamp string

ddmmyyhhnn
(dd: day, mm:

month, yy: year;
hh: hour, nn:

minute)

dd: 1~31, mm:1~12,
yy:00~99, hh:1~24,

mm:1~59
 ID for each

sample data 10

t1 integer -55 ~ +125 The first
temperature 4

t2 integer -55 ~ +125 The second
temperature 4

t3 integer -55 ~ +125 The third
temperature 4

st integer -50 ~ +50 soil temperature 4
sm integer 0 ~ 100 % soil moisture 4
rf integer 0 ~ 99 mm rainfall 4
hd integer 0 ~ 100 % humidity 4

wd integer

 1~16 (1: N, 2:
NNW, 3: NW, 4:
NWW, 5: W, 6:
WWS, 7: WS, 8:

WSS, 9: S, 10: SSE,
11: SE, 12: SEE, 13:
E, 14: EEN, 15: EN,

16: ENN

 wind direction 4

ws integer 0 ~ 200 km/h wind speed 4
lw integer w: wet; d:dry leaf wetness 4

The rainfall’s format is defined as the Integer type. Its unit is millimetre and its value

from the sensor in MicroBaseJ varies from 0 to 9,999 mm. The format of the leaf

wetness is also defined as the Integer type. It only has two values; 0 or 1; where 0 stands

for dryness in the surface of the leaf, while 1 stands for wetness. The Integer type in

Java only occupies 32 bits, while the Double type needs 64 bits. Thus, all items except

the time stamp are set as the Integer type, rather than the Double type.

4.2.2 Data Storage

There are more than several thousand records in MicroBaseJ. How to manage the

storage and manipulation of records becomes the challenge of the project. Usually, for

mobile applications, there are two ways to store records. One way is to store records in

the server. The mobile user retrieves data, which are stored in the server from the

c°

c°

c°

c°

56

handset. This requires wireless Internet, or a specific connection between them. Another

way is to store records into the mobile phone itself. The mobile phone has been

considered as a resource-constrained device for many years. Nevertheless, with

hardware prices going down significantly, the mobile phone has become more powerful

than ever. Nowadays, the mobile phone is programmable, supports various OSs

(operating systems), and has large sized memory of over 1GB. Hence, data management

in a mobile phone is now realisable.

Several embedded databases have been developed for PDAs, such as db4o and

PointBase, whereas few focus on mobile phones. J2ME provides a file management

system – RMS for the data persistent management of the mobile phone. RMS stores and

manipulates data as records. One drawback of RMS is that it only provides a unique ID

number, rather than an index for data retrieval.

Apart from RMS, Perst Lite is one of the embedded databases available for limited-

resource devices. Perst Lite is an open source object-oriented database, which was

developed by McObject [40]. The object-oriented database can be seamlessly integrated

with object-oriented programming languages, such as JAVA, and renders the

development to be simpler, as well as enhancing the performance of limited-resource

devices, such as mobile phones.

Perst Lite is chosen as the database for MicroBaseJ. It is very easy to use, with high

performance. It stores and fetches data as objects and provides an index for the key

retrieve. Perst Lite does not like the relation database, and it can be integrated tightly

with a programming language, such as J2ME, because it is seamless with the

application.

One advantage of the database is the index. Using the index for data retrieval improves

the search performance. For the database, there are two methods to enhance the

performance; increasing the page pool size and the index. In MicroBaseJ, the page pool

size is set 64KB, and it improves the performance by reducing the access time for data

storage, or retrieval. The other technique is to set the time stamp of the record as an

Table 10 - The size comparison of RMS & Perst Lite

Record numbers(K) Perst Lite(KB) RMS(KB)

57

1 282 111
2 498 222
3 764 333
4 980 445
5 1225 556
6 1635 667
7 1848 778
8 2073 890
9 2314 1001
10 2530 1112
11 2755 1228
12 3378 1340
13 3586 1452
14 3803 1565
15 4024 1677
16 4269 1790
17 4486 1902
18 4707 2015
19 4924 2128
20 5141 2241

index. After storing the record, the time stamp is inserted into the index. The user types

in the particular time with the day, month, and year, in order to locate the relevant

records quickly when retrieving them.

Each database needs a DBMS (database management system), however, which requires

extra expense, in terms of additional space and complexity. Table 10 compares the size

of RMS with Perst Lite based on various record numbers. The record format is

discussed in Section 5.2. As can be seen, the size of Perst Lite is twice that of RMS for

the same record numbers.

4.3 User Interface Design

How to design the user interface efficiently, attractively, and interactively, are among

the important issues in the project. The basic idea of the user interface design in

MicroBaseJ is that user interfaces should be controllable, scalable, flexible, portable,

and affordable. The user interface design covers the hardware and software chosen, and

the interface design itself.

58

4.3.1 Hardware for User Interface

The devices for MicroBaseJ require at least a 2.5G or 3G mobile phone, with MIDP2.0

and CDLC 1.1. The mobile phones provide the user interfaces to users to facilitate

interaction with the data stored in the mobile embedded database in MicroBaseJ.

Cascaded menus are provided to users and the results are presented as a line, or bar

chart.

4.3.1.1 Screen Size

Appendix I compares a number of the models, technology, and screen sizes for

major brand mobile phones. All of them support MIDP 2.0 and CDLC 1.1. As can

be seen, there are four main brands in this table: Motorola, Nokia, Siemens, and

Sony Ericsson. Each brand contains various models. The result shows that various

brand mobile phones have different resolutions. Screen sizes vary across the

various brands as well. Even though they are of the same brand and are

approximal serials, their resolutions are still varied. For example, the Nokia

3220’s resolution is 128 x 128 pixels, whereas the Nokia 3230’s screen size is 176

x 208 pixels, although they are in the same Nokia 3200 series.

Figure 14: The minimum resolution for mobile phones

59

Appendix I shows that the horizontal pixels in these phones vary from 128 to 352

pixels, while the vertical pixels vary from 128 to 420. From this, it can be seen

that it is very important to consider how to fit interfaces to various mobile screens

when the line chart and bar chart are designed.

Suppose a minimum size, 128 x 128 pixels, as a general solution for mobile

phones. Figure 14 shows the supposed minimum resolution for mobile phones.

4.3.1.2 Other devices

There are many devices for the user interface interaction, such as the monitor, the

keyboard, the mouse, the touch screen, and the joystick. In the case of the mobile

phone, however, the limitations are obvious; it only has a small screen and twelve

keys, 0~9, * and #, plus several functional keys. Perhaps a few up-to-date models

provide a touch screen for the user. However, the number of these phones is

limited and they are relatively expensive.

Due to the resource constraints, mobile phones for the project should be

affordable, not expensive. For the average customer, devices must be focused on

common cell phones, rather than the more powerful devices available in the

market.

To allow users to interact with the data presented in the chart, a yellow trace ball is

designed for the project. The yellow trace ball is set as a small, round ball to allow

users to interact with data points. Users use the key 6 to forward the trace ball to

the next data value, whereas the key 4 allows movement backwards to the

previous data point. At the same time, the trace ball can be swapped between the

two charts by using the key 2, and the key 8. The key 2 is for the upper chart,

while the key 8 is set for the bottom figure.

4.3.2 Software Chosen for User Interface

J2ME, the developing language in the application, provides a GUI API for the

programmer, including the low-level API, Canvas, and the high-level API, Screens. The

Screen contains Form, List, Alert, and TextBox subclasses. The last three items are the

predefined components. The former is the open type and it is a container to support

60

multiple items. The programmer uses the low-level API, Canvas’s paint method, to

draw the screen picture.

The high level API helps the programmer develop the user interface to be fast and

portable. The programmer cannot, however, change the presentation of the GUI. For

example, it does not allow the user to define the sharpness, colour, and font. Although

the programmer can use a low-level GUI API to generate an attractive interface, it needs

the programmer to work on much manual porting to allow the user interface to be run

on all, or most, J2ME mobile devices.

The free third party software J2ME Polish was introduced by Virkus [58]. J2ME Polish

provides a user interface and build tools. The J2ME Polish GUI is not only compatible

with the high level GUI API, but also allows the programmer to design the detail of the

user interface. The J2ME Polish has a number of unique characteristics, including easy

implementation, automatic porting, innovative designs, customisation, flexibility, and

extensibility.

In MicroBaseJ, the J2ME Polish GUI is selected to design interfaces except for the data

plotting. It has its disadvantages, however, such as the need for extra space in the JAR

file. Concerning charting, J2ME Polish only provides a line chart. The flexibility of

labels on the x and y axes are limited. Another key disadvantage is that the user cannot

interact with the data in the charts.

Thus, a customer class; to illustrate the data from the embedded database as a chart; is

proposed. The customer class allows the user to interact with the user interface using a

yellow tracing ball. The tracing ball is controlled by the keys in the mobile phone panel.

The class is extended from the low level API, Canvas.

4.3.3 User Interface Design

To design a user interface, there are a number of features that need to be considered,

including simplicity, visibility, and consistency. To implement a good-looking user

interface, the screen layout, commands, and menus need to be well-organised.

61

4.3.3.1 Screen Layouts

In the screen layout, the screen arrangement, colour, and graphing structure are

very important features in the user interface design. As eyes usually move from

left to right, the charts in MicroBaseJ are presented along the horizontal direction.

Data points are also organised from left to right, according to their time sequence.

The background of the user interfaces is set as white, because a white background

presents the chart and menu clearly. Meanwhile, a number of specific icons are

used for the identify of particular items; for example, a figure of the bar chart

represents the plotting function, the alarm configuration uses the tools figure, a

figure of a temperature measurement represents temperature, and the figure of a

cloud with rain represents rainfall.

Table 11 illustrates the relation of items on the main menu and their icons. Table

12 shows the corresponding relation between the data sources and their icons.

Table 11: The Relation of Main Menu Items and Icons

Items Icon Items Icon

Charting

Alarm Configuration

Sample Rate Configuration

Exit

Table 12 - The Relation of Data Source and Icon

Data sources Icons Data sources Icons

temperature1

soil moisture

temperature2
 wind

direction

temperature3

wind speed

soil
temperature

rainfall

62

humidity

leaf wetness

The background colour for icons, including temperature, humidity, soil moisture,

and wind speed, is set as light blue, because it attracts the user and the user feels

comfortable with the colour.

4.3.3.2 Commands and Menus

Due to the small screen of the mobile phone, a cascade menu is proposed for

MicroBaseJ. According to the 27 ± rule [48], the number of chunks on the mobile

screen are set to be less than 9. The user presses the multi, or exclude, choice

button to select the specific item.

The Next button, Back button, and Exit button are provided for the interaction

operations in the user interfaces. The main menu provides the Next button and the

Exit button, whereas the chart menu only displays the Back button. Other

interfaces use the Back button to exit from the current, and back to the previous,

menu, while the Next button is used for entry to the next menu. In case of an

emergency, the application can be stopped immediately by pressing the Exit

functional key on the mobile phone.

The application allows the user to enter the specific date to retrieve the data from

the embedded database. To avoid the entry of too many digits by the user, the

input field is defined as a specific field. The date of the recent stored data is set as

the default for the input field. The entered data and commands are checked for

validity instantly.

After choosing the particular item, the user presses the Next Button to enter the

next menu. The user presses the same keys for simular functions on different

menus during the whole process. The application also provides a confirmation

button for each parameter update, including the sample rate and the configuration

update.

To identify the alarm data, its colour is set as red on the text description at the top

of the mobile screen, while the colour for the normal data is presented in black.

63

4.3.3.3 The Design for the Graphic User Interface

An application with a good-looking and responsive user interface is considered to

be professional and excellent [58]. Thus, the graphic user interface for data

plotting is the most crucial element in the application.

To illustrate the data on the small various mobile phone screens is one of the

challenges in the project. As discussed in Section 4.3.1.1, the resolutions of

mobile phones are noticeably variable. To deal with the problem, a minimum

resolution, 128 x 128 pixels, is assumed in the research. The design for the graphic

user interfaces is based on this minimum resolution.

On the horizontal direction, 20 pixels are used for labels and axes to identify the

data values on the left, and as well as 5 pixels being used on the right. Thus, there

are only 103 pixels remaining for the chart. When drawing the line chart, each

data point needs to use a pixel to identify its value. For a bar chart, each bar needs

at least two pixels to present the data point’s value. Therefore, the maximum

points for the bar chart are 51 (5.512/)520128(=−−). Suppose the sample rate

is per hour. Under this assumption, each day has 24 samples. Thus, the ideal data

points for each bar chart are limited to 48 points for one graph. It is supposed that

either the bar chart, or the line chart, has a maximum of 48 data points in one

figure to unify them.

On the other hand, from the vertical viewpoint, 128 pixels is the minimum size

assumed for the mobile phone resolution. Fifty pixels are used for the illustration

of the date, time, and the value for the cursor data point on the top of the screen.

To manage the data efficiently, two charts are bundled on the mobile screen each

time. Suppose that there is a gap of 15 pixels used for distinguish the two figures.

Thus, the minimum height of each figure is 31 pixels (5.312/)1550128(=−−).

Figure 15 shows the graphical user interface design for the data plot. As can be

seen, the pixels for label, titles, and the cursor point’s value and gap are fixed. The

remaining pixels for the first and second figures can be variable, according to the

various mobile resolutions.

64

The vertical pixels range from 128 to 420 and the horizontal pixels range from 128

to 352, in differing brands and models. Thus, the scalable chart is a challenge to

the application designer. Another key point is that the value of the data sources

varies from -55 to 999.

20 5

50

Label field

The cursor point’s date,
time & value

The gap

Figure 2

Figure 1

15Data field

Space fieldText field for the cursor

Gap field

Figure 15: The Mobile User Interface Design for Chart

In MicroBaseJ, charts are designed to be very flexible and adjustable to various

screen sizes. As mentioned above, the maximum points in each graph is 48. These

points are distributed on the screen according to the currently available screen

size. From the horizontal direction, the design principle is more pixels on screen,

and more spacing between each point. This means that the chart is adjusted to

65

various resolutions. Regarding the vertical axis, the height of the chart can be

scalable to a variety of screens according to the maximum and minimum values of

the items, and the resolution. For example, the more screen pixels there are in the

height, the more the chart is enlarged, while a shorter screen means that the figure

is shortened to fit into the screen.

Figure 16 illustrates one of the customer graphic interfaces based on the WTK

2.5.1 default ColorPhone simulation. As can be seen, a yellow traceball is

provided to the user to interact with the data. The interface can be divided into

three parts, including the text field and other two figures. There is a gap between

each figure. On the left of each figure, several labels are used for identifying the

relevant axes.

Title and cursor
point’s value

Figure 1

Figure 2

gap

Back Command
& button

label

traceball

Control the
traceball to right

Control the
traceball to left

Swap the
traceball to up

Swap the
traceball to down

The button using for
navigating commands

Next Command
& button

66

Figure 16: The Illustration of the Graphic Interface

As mentioned in the previous section, the title, gap, and labels are fixed. The

width and height of two figures can, however, vary according to the resolution of

the mobile phone.

The text field shows the date, time, and value of the cursor point on the screen top.

If the value exceeds the alarm limit, the text colour is set at red, otherwise black

text is shown on the top.

There is a Back button at the left bottom of the screen. The user presses the Key

under the icon to return back to the previous menu. The Key 2 and Key 8 are used

for swapping the yellow traceball between the two figures. The Key 4 and Key 6

are designed to control the yellow traceball to the left and right. The detail of the

menu and operation is given in Appendix II.

4.4 Summary

This chapter discusses the implementation and design of the embedded database and the

user interfaces for MicroBaseJ. It also discusses the data format and data storage for the

embedded database. There are eleven items adopted for the application; including time

stamp, temperature readings, humidity, soil moisture, wind direction and speed, rainfall,

and leaf wetness. The application adopts the object-oriented database called Perst Lite,

as the database embedded into the mobile phone. The time stamp and the index are set

as String type formats. The other attributes’ formats are set as the Integer type.

This chapter also investigates the user interfaces for MicroBaseJ. The hardware and

software for the user interface are discussed. A yellow traceball is proposed for the user

to interact with the data in the data plot. A third party software, J2ME Polish, was

introduced into the graphic user interface design. This chapter also discusses the screen

layout, command, and menu for user interfaces in the application. Finally, the

customised user interface is investigated based on the minimum resolution of 128 x 128

pixels. In general, the customised user interfaces are designed to be controllable,

scalable, flexible, and portable.

67

5 Evaluation and Discussion

5.1 Introduction

This chapter describes the performance studies and results obtained for the embedded

database and MicroBaseJ. It discusses the embedded database performance and

MicroBaseJ’s performance issues. Firstly, the performance of Perst Lite was compared

with RMS, based on both the simulation and the real device. The performance

evaluation covers the insert function, sequence search function, and random search

function. The recorded numbers for these testings varies from 1,000 to 20,000, with

1,000 records’ placed in each evaluation. Their storage sizes were also compared. Next,

the application performance was investigated. The evaluation for this application

focuses on the mobile phone side. The record number for the application ranges from

1,000 to 18,000 at each thousand records. The performance was evaluated according to

the application initialisation, data retrieval, data selection, and data plotting.

5.2 Database Performance Evaluation (Perst Lite & RMS)

Choosing an appropriate embedded database is one of the objectives in the project. To

obtain a satisfactory result, it is necessary to evaluation the performance of embedded

databases. There are several essential operations for a database, such as the insert

function, search function, delete function, and modify function. The insert function is

used for adding a new record into the database. The search function focuses on quickly

locating the specific record. The delete function is used for cancelling the specific

record. The modify function allows the user to update the particular data. From above, it

is obvious that the behaviour of the search function, the modify function, and the delete

function are similar. Their operations are based on locating the specific record. Thus, of

them, only the search function and the insert function need to be evaluated for the

embedded database. The search function of the database includes a sequence search and

a random search.

68

Two embedded databases were evaluated, Perst Lite and RMS, which were discussed in

Section 1.4. The performance of the insert function, the sequence search function, and

the random search function of Perst Lite and RMS were evaluated. These three

functions were assessed in both the simulation and the real device. The data range for

the experiments varied from 1,000 to 20,000 and the evaluations were implemented at

each thousand records. The Perst Lite pool size is set as 64K, 100 records being one

transaction. The outcomes were the average executing time for each record, in each

operation. The outcomes were the average executing time for each record, in each

operation.

There were 20,000 records used for the testing of these operations. Each record contains

several items and the total size is 111 bytes, including the String and Integer type

attributes. One of them is used for identifying the record order. In Perst Lite evaluation,

it is set as an index for the fast location of the specific record through the use of a

random generator.

The experiments were developed in J2ME with J2ME Polish and based on the Java

platform jre1.6.0_01 and the Eclipse DSK 3.2.2.

5.2.1 Simulation

The embedded databases’ performance of Perst Lite and RMS was estimated on the

mobile simulation, Sun Java Wireless Toolkit 2.5 DefaultColorPhone.

5.2.1.1 Insert Function

The executing time only measures the exact insert time for each insert operation,

rather than for the whole application. The outcome is the average time for the

insert operation of each record, at each assessment, and its unit is msec.

Figure 17 compares the performance of Perst Lite and RMS on the insert function.

It can be seen that the time complexity for Perst and RMS are both close to)1(O .

The reason for this is that RMS inserts the new record at the last, and Perst Lite

uses an index. It is interesting to observe that Perst Lite uses around one fifth of

the running time of RMS for the insert function in each assessment. The major

reason for its better performance is that Perst Lite uses 100 records per transaction,

and this can greatly reduce the I/O overhead.

69

1.00

10.00

100.00

1000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r p
er

 r
ec

or
d

(m
se

c)

Perst Lite RMS

Figure 17: The Insert Function Comparison on Simulation

5.2.1.2 Sequence Search Function

The sequence search function includes the operation to fetch all records into a

container, with all of them retrieved. RMS puts all records into the enumerator and

searches them from the beginning to the end. Perst Lite sets all records into the

iterator and retrieves them. The execution time is counted for the search

operation’s time. The outcome is the average time for the sequence search

operation of each record at each assessment and its unit is measured in msec.

The performance comparisons for Perst Lite and RMS in the sequence search

function are shown in Figure 18. The result shows that the performance of Perst

Lite is better than that for RMS in each assessment. It is interesting to note that the

execution time of the sequence search function for RMS increases noticeably with

the increase of the record number, whereas Perst Lite remains stable if the record

number is less than 16,000, however, the search execution time rises significantly

after that.

70

0.10

1.00

10.00

100.00

1000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r
pe

r
re

co
rd

 (m
se

c)

Perst Lite RMS

Figure 18: The Sequence Search Comparison of Perst Lite and RMS

5.2.1.3 Random Search Function

Random search is the important function for the project, because the user usually

types the specific date to search for the relevant data in the database. The

execution time is referred to as the exact operation’s time for the specific date

searched from the database. The outcome is the average time for the random

search operation of each record at each assessment, with its unit measured in

msec.

As mentioned in Section 5.2, a number of random numbers were generated in this

assessment and they were used for locating the specific record in the database.

Firstly, 1,000 random numbers were used for the evaluation of Perst Lite and

RMS. It is observed, however, that it took more than one day to implement 100

random searches in RMS when the number of records exceeded 13,000. It is

obvious that the RMS performance of the random search function is significantly

slower than the Perst Lite performance, either with an index, or without an index.

Thus, the random number for RMS is reduced to 100 in each assessment. The

outcome for RMS is the average time for 100 searches at each assessment. The

outcomes for Perst Lite with an index, and without an index, are the average time

for 1,000 searches at each assessment.

71

The random search function of Perst Lite is set in two ways, Perst Lite with an

index and Perst Lite without an index. Perst Lite with an index uses a random

number to match the index for the search function. Perst Lite without an index

stores the object into a container and matches each record in the container with the

random number. Similarly, RMS puts all records into a container and each record

is matched with the random number.

0.1
1

10
100

1000
10000

100000
1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r
pe

r
ra

nd
om

nu

m
be

r(m
se

c)

Perst Lite (with index) Perst Lite (without index) RMS

Figure 19: Random Search Comparison for Perst Lite with and without index
and RMS

Figure 19 illustrates the comparisons of the random search function for RMS,

Perst Lite with and without index. It is obvious that the random search of RMS

increases drastically in length. The execution time of RMS for 20,000 records is

390 times that for 1,000 records. The random searches of Perst Lite with an index

and Perst Lite without an index also increased markedly with increases in the

record number. The execution time for the maximum record number is 69 times

that of the minimum record number in the random search function for Perst Lite

with an index, while the running time of the maximum record number is 47 times

that of the minimum one in the random search function for Perst Lite without an

index. It is observed that the random search function performance for Perst Lite

with an index and without an index shows a significantly better result than does

72

RMS. The reason for this is that Perst Lite is set at 64K for the pool size, which

helps to decrease the I/O operation. Furthermore, the random search function

without an index takes 10 times the time of the one with an index. The Perst Lite

random search function with an index takes less time because the index helps the

user to locate the specific record more quickly.

5.2.1.4 Database Size Comparison

Table 13 compares the database size of Perst Lite with RMS based on the Sun

Java Wireless Toolkit 2.5 DefaultColorPhone simulation. The record length is

about 110 bytes. It is interesting to observe that Perst Lite needs nearly 2.5 times

the storage space of RMS. This means that Perst Lite needs around 160 bytes extra

in each record for the database overhead.

Table 13: The Database Size Comparison of Perst Lite and RMS

Record numbers(K) Perst Lite(KB) RMS(KB)
1 282 111
2 498 222
3 764 333
4 980 445
5 1225 556
6 1635 667
7 1848 778
8 2073 890
9 2314 1001
10 2530 1112
11 2755 1228
12 3378 1340
13 3586 1452
14 3803 1565
15 4024 1677
16 4269 1790
17 4486 1902
18 4707 2015
19 4924 2128
20 5141 2241

73

5.2.2 Real Device

The following estimations for the embedded database were evaluated on a real mobile

phone; a Nokia N73 with 42M memory and an extra 1G miniSD card. Similar with the

simulation, the assessment includes the performance of the insert function, the sequence

search function, and the random search function of Perst Lite and RMS. The evaluations

of the mobile phone testing are similar to that of the simulation. The Perst Lite pool size

is also set as 64K, with 100 records as one transaction. The data range for the

experiments varied from 1,000 to 20,000, and the evaluations were implemented at each

thousand records.

1.00

10.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r
pe

r
re

co
rd

 (m
se

c)

Perst Lite RMS

Figure 20: The Insert Function Comparison of Perst Lite and RMS on Mobile

5.2.2.1 Insert Function

Similar with the insert function evaluation in the simulation, the execution time in

the mobile is only measured as the exact insert time for each insert operation,

rather than for the whole application. The outcome is the average time for the

insert operation of each record at each assessment and its unit of measure is msec.

Figure 20 shows the insert function performance comparison of Perst Lite and

RMS on the Nokia N73. It is interesting to note that Perst Lite reflects slightly

74

better performance than does RMS because of the pool size set at 64 K in Perst

Lite and its database engine. It is also observed that the running time for both Perst

Lite and RMS rises with the increase in the record number. This is different from

the performance in the simulation. The reason might be the application run in the

memory of the mobile phone, rather than the external disk.

0.10

1.00

10.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r p
er

 re
co

rd
 (m

se
c)

Perst Lite RMS

Figure 21: The Random Search Comparison of Perst Lite and RMS on
Mobile

5.2.2.2 Sequence Search Function

The functionality of the sequence search in the mobile phone is the same as in the

simulation. RMS puts all of the records into the enumerator and searches them

from the beginning to the end. Perst Lite sets all of the records into the iterator and

retrieves them. The execution time is measured for the search operation’s time.

The outcome is the average time for the sequence search operation of each record

at each assessment and its unit of measure is msec.

The sequence search performance of Perst Lite and RMS on the mobile phone is

illustrated in Figure 21. It appears that the Perst Lite performance and the RMS

performance are quite close. RMS performance remains constant, whereas Perst

Lite rises somewhat with increases in the record number. It is obviously different

75

from the result from the simulation. The reason may be in that the database is

stored into the mobile phone memory, whereas in the simulation it is stored in an

external disk. This reduces the I/O operation significantly for RMS.

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Records (K)

Ti
m

e
fo

r p
er

 ra
nd

om

nu
m

be
r(

m
se

c)

Perst Lite(with Index) Perst Lite(without Index) RMS

Figure 22: The Random Search Comparison of Perst Lite with Index and
without Index and RMS on mobile

5.2.2.3 Random Search Function

The execution time, outcome, and unit of the random search operation are similar

to the simulation.

Like the random search function of Perst Lite in the simulation, the real device

evaluation is also evaluated as Perst Lite with an index and Perst Lite without an

index. The operation is the same as in the simulation. There are 1,000 random

numbers generated for the Perst Lite and RMS random search function. The

outcome is the average time for 1,000 search times at each assessment.

Figure 22 illustrates the performance comparisons of the random search function

of RMS, Perst Lite with an index, and Perst Lite without an index. It is obvious

that the random search of Perst Lite with an index increases significantly with the

increase of the number of records, particular from 2,000 to 40,000 records. The

execution time for 20,000 records is 550 times that for 1,000 records. The random

76

search function of Perst Lite without an index also increases noticeably with an

increase in the number of records. The execution time of the maximum number of

records is 150 times that of the minimum. The running time of the RMS random

search rises slowly with increases in the number of records compared with Perst

Lite with an index and without an index. The execution time for the maximum

record number is 20 times that of the minimum.

It is interesting to note that the random search of Perst Lite with an index and

without an index show a significantly better performance than does RMS. The

database engine of Perst Lit is the major reason for this. Furthermore, the Perst

Lite random search without an index takes about 20 times the one with an index.

The random search of Perst Lite with an index takes less time, because the index

engine helps the user to locate the record quickly.

5.2.2.4 JAR Size Comparison

A Java archive (JAR) file contains many compressed files in the stored file. In the

mobile application, this file is created in a test environment and then deployed to

the mobile phone.

Table 14 compares the Jar file sizes of Perst Lite and RMS deployed into the

mobile phone. It is noted that Perst Lite and RMS have the fixed size of 1339 KB

and 1053 KB, respectively. They do not change with an increase of the record

number.

Table 14: The Jar File Size Comparison for Perst Lite with Index and
without Index and RMS

Record
Number Perst Lite (Deployed size,KB) RMS (Deployed size, KB)

1000 1339 1053
2000 1339 1053
3000 1339 1053
4000 1339 1053
5000 1339 1053
6000 1339 1053
7000 1339 1053
8000 1339 1053
9000 1339 1053

77

10000 1339 1053
11000 1339 1053
12000 1339 1053
13000 1339 1053
14000 1339 1053
15000 1339 1053
16000 1339 1053
17000 1339 1053
18000 1339 1053
19000 1339 1053
20000 1339 1053

5.2.3 Comparison on 5,000 Records

Table 15 compares the insert function, sequence, and random search function for Perst

Lite and RMS at 5,000 records.

Table 15: The Comparison of Perst Lite and RMS on the Simulation and the
Mobile at 5,000 Records

It is observed that Perst Lite performance is much better than RMS performance in

terms of the insert function, the sequence search, and the random search with and

without an index based on the simulation. This finding is particularly the case in random

search. The first explanation is that Perst Lite uses 64K as the pool size. It effectively

reduces the load of I/O, which results in a decrease in the access time. Next, Perst Lite

has an index engine, which is efficient in locating records quickly.

Compared Item Perst Lite (ms) RMS (ms)

Simulation

Insert function 19.9 117.78
Sequence search 0.38 32.03

Random search with index 2.25 56222.08 without index 87.66

Nokia N73

Insert function 7.49 18.26
Sequence search 1.17 1.4

Random search with index 18.12 3305.15 without index 286.34

78

In contrast, on Nokia N73, the performance of RMS is improved significantly. The

performance of the sequence search of Perst Lite is similar to that of RMS. The

execution time of the insert function of RMS is only twice that of Perst Lite. The major

reason might be that the databases are stored in the mobile phone memory, rather than

in the extended memory. It reduces I/O operations when manipulating records. On the

Nokia N73, however, the performance difference between Perst Lite and RMS on a

random search with and without an index is still significant. The index engine provided

by Perst Lite and its database engine are the major reasons for this.

Perhaps if the mobile application is stored into the miniSD card in the mobile phone, the

performance difference between Perst Lite and RMS might be similar to that of the

simulation, because it needs all I/O operations. It is, however, not common to use an

extended memory card in the mobile phone, so this project does not investigate this

aspect further.

5.2.4 Database Discussion

In general, Perst Lite shows very good performance for the insert function, the sequence

search, and the random search with an index and without an index at each assessment,

particularly in the random search.

As mentioned in the system design, the data storage process of the application is run as

a background process. Thus, the insert performance can be neglected in the application.

The application allows the user to enter a specific date and retrieve the data related to

that date from the database. So, the random search performance becomes essential for

the choice of the embedded database. As can be seen from the comparisons mentioned

above, the Perst Lite random search performance is much faster than that of the RMS,

particularly when using the index for the search. Thus, Perst Lite is the most suitable

choice for the embedded database in the project.

It is observed that, in the Nokia N73, the performance of the random search with an

index of Perst Lite reduces somewhat if the number of records exceeds 17,000, whilst

the performance of the random search without an index of Perst Lite decreases

noticeably when the number of records reaches 12,000.

79

On the other hand, it is supposed that the sampling of the sensors is set at the rate of

once per hour in the project, so that each day will have 24 records, with two years of

data reaching 17,520 records (17520236524 =××). Considering the features

mentioned above, it is suggested that the maximum record number in the project is

limited to 18,000, based on the per hour sampling.

5.3 Project Performance Evaluation

Once the database has been chosen and the size of the data amount is confirmed, the

performance of the project becomes the most important factor.

5.3.1 Analysis of the Project

To evaluate the project, a number of issues need to be considered, including the

application initialisation, data receiving, data storage, data search, data selection, user

interface response, and data plotting.

Firstly, the initialisation of the application is one of elements used to measure

performance. The initialisation measures the execution time from the beginning of the

application to reaching the welcome menu. It contains parameter initialisation and the

application activation.

Next, the data receiving and data storing process are other attributes used to measure the

project performance. Nonetheless, the data process in the application is set to run as the

background, so the user does not face the performance issue directly. Thus, the

performance of the data receiving and storing is neglected in the project.

The performance of the data search from the database is one of the most important

issues in the application. The execution time for the search of the specific date is

measured from the embedded database entered by the user. It is one crucial performance

of the application.

The performance of the data selection is used for the process of choosing 48 data points

from the retrieved data, as mentioned in the previous paragraph. The results are variable

and dependent on the searching range.

80

The user interface response is another essential topic of the project. It is related to

whether or not users like to use the application. Through the test, it is interesting to

notice that the response time of all interfaces is less than 0.5 seconds. The timing is

taken from the time the user presses the key to the next menu on the mobile screen. The

user interfaces related to the application are designed by J2ME Polish, except for the

data plotting and the customising user interface. Thus, it is not necessary to measure the

performance of user interfaces, except for the data plotting. Obviously, the performance

does not change with the data range.

The last important performance to be considered is that of the data plotting. It plots the

48 data points retrieved from the embedded database on the small mobile screen. The

two types of graphics; line chart and bar chart; are customised for the project. Thus, the

performance is worthy of investigation.

The evaluation was supposed to be implemented in the simulation and in the real

device, a Nokia N73. It is, however, interesting to notice that the evaluation based on

the simulation crashed when the record number exceeded 5,000. The limitation of

defaultColorPhone in the simulation might be the reason for this. Thus, the evaluations

were only run on the Nokia N73.

The record number for the experiments varies from 1,000 to 18,000 and the evaluation

was implemented at each thousand records. The retrieved date range includes one day,

two days, five days, ten days, fifteen days, twenty days, twenty-five days, and thirty

days. The experiment on 1,000 records was not evaluated at the 20, 25 and 30 day

points due to the limited number of records. The unit of measurement of all the

evaluations is msec.

There were 18,000 records generated for the experiments, with the first data point being

from midnight of 1st January, 2007. Each record’s format was generated according to

the database format mentioned in Section 4.2.1. The time stamp attribute was set as the

index. Every date contains 24 data points (sampling is per hour, as mentioned in

Chapter 3). Thus, the retrieved data increases with any increase in the retrieved range.

81

For the evaluation of the data plotting, 100 random dates were generated and the values

were limited to the period from 1st January, 2007 to the last date of the random search

mentioned in Table 16, according to the various numbers of records.

Table 16 shows the maximum of the random retrieved date for the data search. The

duration for the random search is the bound of the random date generated for retrieval.

Table 16: The Maximum of the Random Retrieved Date for Data Search

Numbers of record Days Months Last Date for the random search
1000 41.6 1.3 2007. 01. 20
2000 83.3 2.8 2007. 02. 28
3000 125 4.2 2007. 03. 28
4000 166.6 5.5 2007. 04. 28
5000 208.3 6.9 2007. 06. 28
6000 250 8.2 2007. 07. 28
7000 291.6 9.6 2007. 08. 28
8000 333.3 11 2007. 10. 28
9000 375 12 2007. 11. 28
10000 416.6 13.7 2007.12.28
11000 458.3 15.1 2008.02.28
12000 500 16.5 2008.03.28
13000 541.6 17.8 2008.05.28
14000 583.3 19.2 2008.06.28
15000 625 20.5 2008.07.28
16000 666.6 21.92 2008.09.28
17000 708.3 23.3 2008.10.28
18000 750 24.6 2008.11.28

5.3.2 Initialisation Performance

The initialisation is the first step to the application, and the first measurement for the

application performance. The initialisation is measured from the application start to

reaching the welcome menu. It includes the initialisation of the parameters and the

activation of the application.

Figure 23 compares the initialisation performance of MicroBaseJ. It is observed that the

execution times of the initialisation are approximate. It is interesting to note that the

performance of the initialisation is quite stable, and that it does not change with the

82

increase in the record number, or the increase in the search duration. It is also observed

that the execution times of the initialisation are quite long (between 4.4 and 4.8

seconds), which exceeds the user requirement for a response within 2 seconds. The poor

performance of the Nokia N73 in all applications is one of the major reasons for this

slow speed. Another is that there are a number of parameters to be initialised. The last

reason might be due to the poor performance of JAVA, however, the slow initialisation

can be tolerated by users, because they are very sensitive to the interface response rather

than to the initialisation.

10
00

30
00

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0

1 day

5 days
15 days

25 days

4300
4350
4400
4450
4500
4550
4600
4650
4700
4750
4800
4850
4900

Time (ms)

Number of Records

Retrieved Range

1 day 2 days 5 days 10 days 15 days 20 days 25 days 30 days

Figure 23: The Initialisation Performance Comparison

83

5.3.3 Data Search Performance

The test here generated 100 random dates at the various date range and the various

record number. The range of the 100 random dates was limited to the duration

mentioned in Table 16. The performance of the data search is measured by the whole

process of the data search from the embedded database in terms of the specific date.

10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

1 day

5 days

15 days

25 day

0
500

1000
1500
2000

2500

3000

3500

Time (ms)

Number of Records

Retrieved Range

1 day 2 days 5 days 10 days 15 days 20 day 25 day 30 days

Figure 24: The Data Search Performance Comparison

Figure 24 compares the performance of the data search for MicroBaseJ. It is interesting

to note that the execution time of the data retrieval rises slightly with the increase of the

record number, while the execution time for the data search goes up significantly with

84

the increase of the retrieved range. It is observed that the execution time of the retrieved

data in the 18,000 records is around 20 times that of the 1,000 records in the various

date ranges. In general, the performance of the data retrieval shows that the execution

times are all less than 2 seconds when the retrieved range is limited to 20 days in the

various record numbers, or where the record number is under 12,000 in the various

retrieved ranges.

5.3.4 Data Selection Performance

The evaluation measured the performance of the 48 data points’ selection from the

outcome of the embedded database. There are 24 data points per day in the database,

and the amount of the retrieved data from the database varies in terms of the various

retrieved ranges. The one day range has 24 data points, while the 30 day range has 720

points, however, the mobile phone can only present 48 data points at a time. Thus, it is

necessary to select only 48 points from the retrieved outcomes in the database.

85

10
00

30
00

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0
1 day

5 days
15 days

25 days

0.00
0.50
1.00
1.50

2.00

2.50

3.00

3.50

4.00

Time (ms)

Number of Record Retrieved Range

1 day 2 days 5 days 10 days 15 days 20 days 25 days 30 days

Figure 25: The Data Selection Performance

Figure 25 compares the performance of the data selection. It is interesting to note that

the data selection’s performance reduces with the increase of the retrieved range,

whereas the increase of the record number does not affect the performance of data

selection in the same retrieval range. The explanation accords with the application’s

design principle, where the outcome record numbers are the same at the same retrieval

range. It is observed that the performance of the data selection is excellent, with the

maximum value being less that 0.04 seconds. Thus, the performance can be neglected in

the application.

5.3.5 Data Plotting

The data plotting is another key element contributing to the performance of the

application. It is a customised widget for the graphics of the 48 data points. It measures

86

the execution time for the whole process of plotting the 48 data points on the small

mobile screen. The data plot includes the line chart and the bar chart.

180.00

190.00

200.00

210.00

220.00

230.00

240.00

250.00
10

00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

Number of Records

Ti
m

e
(m

s)

Figure 26: The Data Plotting Performance Comparison

Figure 26 compares the performance of the data plotting for MicroBaseJ. As there are

only 48 data points selected for the graphics on the various retrieved date ranges, using

a 2D figure to present the relation of timing with the record number is adequate. It is

observed that the execution times of the data plotting fluctuate around 0.2 to 0.25

seconds with the increase of the record number. The fluctuation may be due to the

mobile phone running condition.

5.3.6 Discussion of the Project

Overall, the performance of the project satisfies the user requirement for response

within 2 seconds. The majority of the user interface responses are less than 2 seconds,

with the exception of the application initialisation and a large retrieval range, such as

more than 20 days. The poor performance of the initialisation is caused by a number of

factors, such as the mobile phone performance and features, the feature and

87

performance of the development language, and the number of parameters to be

initialised. Usually, the slow performance of the initialisation can be accepted by users.

It is proposed that the retrieved data range is limited to up to 20 days to satisfy the user

requirement for a response within 2 seconds.

88

6 Conclusion

6.1 Introduction

The objective of the thesis is to develop a remote monitoring system based on the

mobile phone. This should integrate embedded database and friendly graphic user

interfaces for the horticulture application. In this chapter the main outcomes of the

research are summarised. This is followed by the conclusion, which is based on the

results obtained. It also includes recommendations for further work.

6.2 Conclusion

MicroBaseJ is a remote monitoring system based on the mobile phone. This thesis

proposed the infrastructure of MicroBaseJ. First, it analysed the requirement for

MicroBaseJ. User requirements were collected and analysed. After that, the general

architecture was proposed. The data sources contain ten items, including four

temperatures, humidity, soil moisture, wind direction and speed, rainfall, and leaf

wetness. The communication protocol between the Sentinel and the mobile phone was

proposed to use SMS, with Bluetooth suggested for the communications between the

mobile phone and the backup server. In addition, functional requirements and non-

functional requirements were analysed. The interface description, the transferred data

format between components, and the dataflow model for the project were also

discussed. The system was designed in terms of UML, and the class diagram and state

diagram were proposed and discussed.

The details of the embedded database, including the data format and the data storage,

were discussed. MicroBaseJ used Perst Lite, the object-oriented database, as the

database embedded into the mobile phone. There are eleven attributes, including a time

stamp plus ten items from sensors, in this application. The time stamp was set as the

String format and the retrieved index. The other attributes’ formats are set as the Integer

type. The hardware and software for user interfaces were investigated. This thesis also

proposed a minimum resolution for the mobile phone based on MIDP 2. The general

89

ideas for the screen layout, the command and the menu of user interfaces were analysed

and discussed based on this. The structure and design idea for one example of the

graphic user interfaces were also analysed and discussed, including the position and size

of each item in the screen. Overall, these graphic user interfaces are flexible, portable,

scalable, and controllable.

The performance of two embedded databases, Perst Lite and RMS, were compared

based on the simulation and the Nokia N73. The evaluations included the insert

function, the sequence search function, and the random search function. The record

number for these tests varies from 1,000 to 20,000, with evaluations implemented at

each thousand records. Their storage sizes were also compared. Overall, Perst Lite

shows a very good performance in the insert function, the sequence search function, and

the random search with an index and without an index at each assessment, especially in

the random search function either on the simulation, or the Nokia N73. The

comparisons show that the Perst Lite random search performance is faster than the

RMS, particularly with an index. Thus, Perst Lite is the most suitable choice for the

embedded database in this project. According to the performance comparisons, it is

suggested that the maximum record number be 18,000 for MicroBaseJ. This allows a

capacity of two years data at a point of one sample per hour.

Finally, the project performance was investigated. The evaluation for this project is

focused on the mobile side. Its performance was evaluated according to the application

initialisation, the data search, the data selection, and the data plotting. These evaluations

were implemented on the Nokia N73. The record number for experiments varies from

1,000 to 18,000 and the evaluation is implemented at each thousand records. The

retrieved date ranges include one day, two days, five days, ten days, fifteen days, twenty

days, twenty-five days, and thirty days. There are 100 random dates created for the data

search evaluation.

For the initialisation, the performance is quite stable. Their values range from 4.4 to 4.8.

For the data search, the execution times are all less than 2 seconds when the retrieved

range is limited to 20 days in the various record numbers, or the record number is under

12,000 records in the various retrieved ranges. The execution times of the data selection

are less than 0.04 seconds. The running time of the data plotting fluctuates around 0.2 to

0.25 seconds. The results show that the response times of most user interfaces are less

90

than 2 seconds, with the exception of the application initialisation and the large retrieval

range exceeding 20 days. It seems that this satisfies the user requirement for a response

with 2 seconds. It was proposed that the retrieved date range was limited to up to 20

days.

6.3 Future Work

The embedded database is an important issue of this project. The object-oriented

database, Perst Lite, was evaluated and compared with RMS, based on the insert

function, the sequence search function, and the random search function run on the

simulation and the Nokia N73. There are several embedded databases. For example, the

SQL embedded database, Pointbase, need to be investigated and evaluated.

Another key topic is the graphic user interface. Only the line chart and the bar chart are

investigated in this application. The pie chart needs to be explored as well. There is an

additional issue of allowing the graphics to be more flexible, portable, and scalable, or

even to generate the customising library for the graphics.

The information collection element is based on the TINI and it is wired. How to migrate

it to a wireless sensor network is another important area of research for the remote

control mobile application.

91

References

[1] Ravi S, Chathish MS, Prasanna H. WAP and SMS based emerging techniques
for remote monitoring and control of a process plant. ICSP '04; 2004 August 31-
September 4; Beijing, China; 2004. p. 2672-5.

[2] Bass FM. A new product growth model for consumer durables. Management
Science 1969;15:215-27.

[3] Nikolova M, Meijs F, Voorwinden P. Remote mobile control of home
appliances. Consumer Electronis. 2003;49(1):123-7.

[4] Nichols J, Myers B. Controlling Home and Office Applances with Smart
Phones. PERVASIVE computing. 2006;5(3):60-7.

[5] Ishikawa S, Saito Y, Cohen M. Mixed-reality "party-line night club" -
synchronization of networked avatars and appliances with mobile phone ringtones:
integrating Java3D and LAN-tap roomware with J2ME. In: Saito Y, editor. CIT 2005
May 23-26; Binghamton University; 2005. p. 553-7.

[6] Lin CC, Chen MS. On controlling digital TV set-top-box by mobile devices via
IP network. In: Ming-Syan C, editor. Multimedia, Seventh IEEE International
Symposium; 2005 December 12-14; Irvine, CA, USA; 2005. p. 8.

[7] Sriskanthan N, Meher PK, Ng GS, Heng CKAHCK. WAP-teletext system.
Consumer Electronics, IEEE Transactions 2004;50(1):130-8.

[8] Pires JN. Remote monitoring and inspection of robotic manufacturing cells.
ASME'01; 2001 July 8-12; Como, Italy; 2001.

[9] Carswell JD, Eustace A, Gardiner K, Kilfeather E, Neumann M. An
environment for mobile context-based hypermedia retrieval. In: Eustace A, editor.
Database and Expert Systems Applications 2002 September 2-6; France; 2002. p. 532-
6.

[10] Rahman SA, Bhalla S. Supporting spatial data queries for mobile services. In:
Bhalla S, editor. IEEE/WIC; 2005 September 19-22; France; 2005. p. 696-9.

[11] Hung K, Zhang Y. Implementation of a WAP-Based telemedicine system for
patient monitoring. Information Technology in Biomedicine. 2003 June;7(2):101-7.

[12] Andrade R, von Wangenheim A, Bortoluzzi MK, De Biasi HH. A strategy for a
wireless patient record and image data. International Congress Series. 2003;1256:869-
72.

92

[13] Koop A, Mosges R. The use of handheld computers in clinical trials. Controlled
Clinical Trials. 2002;23(5):469-80.

[14] Kogure Y, Matsuoka H, Kinouchi Y, Akutagawa M. The development of a
remote patient monitoring system using Java-enabled mobile phones. Engineering in
Medicine and Biology 27th Annual Conference; 2005 September 1-4; Shanghai, China;
2005. p. 2157-60.

[15] Lin C, Chiu M, Hsiao C, Lee R, Tsai Y. Wireless health care service system for
elderly with dementia. Information Technology in Biomedicine. 2006 October
10(4):696-704.

[16] Ketamo H. xTask-adaptable working environment. Wireless and Mobile
Technologies in Education; 2002 August 29-30; Sweden; 2002. p. 55-62.

[17] Black JT, Hawkes LW. A prototype interface for collaborative mobile learning.
IWCMC'06; 2006 July 3-6; Vancouver, British Columbia, Canada; 2006. p. 1277-82.

[18] Bollen L, Eimler S, Ulrich Hoppe H. SMS-based discussions - technology
enhanced collaboration for a literature course. In: Eimler S, editor. Wireless and Mobile
Technologies in Education; 2004 March 23-25; Taiwan; 2004. p. 209-10.

[19] Meurant RC. Cell phones in the L2 classroom: thumbs up to SMS. International
Conference on Hybrid Information Technology; 2006 November 10-11; Korea; 2006.

[20] Gao BK, Wang XF, Jiang JG, SUN ZQ. Development of the mobile Web
service distribution system platform-independence. Machine Learning and Cybernetics;
2004 August 26-29 Shanghai, China; 2004. p. 7-9.

[21] Bakos B, Farkas L, Nurminen JK. Search engine for phonebook-based smart
phone networks. In: Farkas L, editor. Vehicular Technology Conference 2005 May 30 -
June 1; Stockholm, Sweden; 2005. p. 2795-9 Vol. 5.

[22] Rahman SA, Bhalla S, Hashimoto T. Query-by-object interface for dynamic
access and information requirement elicitation. In: Bhalla S, editor. ICMB 2005 July
11-13; Sydney, Australia; 2005. p. 667-70.

[23] Lo CTD, Chang M, Frieder O, Grossman D. The object behavior of Java object-
oriented database management systems. In: Chang M, editor. Information Technology:
Coding and Computing 2002 April 8-10; Nevada, USA; 2002. p. 247-52.

[24] Imai Y, Ooga M, Yamane D, Sadayuki O, Iwamoto Y, Masuda S. Mobile
phone-enhanced user interface of remote monitoring system. In: Ooga M, editor. ICMB
2005 July 11-13; Sydney, Australia; 2005. p. 63-8.

[25] Yang C, Kou M. Remote Monitoring and Control of PC Clusters Using Mobile
Phones with J2ME. ITRE; 2005 June 27-30; Taiwan; 2005.

[26] Rahman SA, Bhalla S, Hashimoto T. Query-by-object interface for information
requirement elicitation in m-commerce. CEC; 2005 July 19-22; Germany; 2005. p.
143-50.

93

[27] Howard T, Bradford PG. PUC to J2ME interface generator. SoutheastCon;
2007 March 22-25; VA, USA; 2007. p. 116-20.

[28] Mayora-Ibarra O, Paz-Arroyo Odl, Edgar Cambranes-Martinez, Fuentes-Penna
A. A visual programming environment for device independent generation of user
interfaces. CLIHC. Rio de Janeiro, Brazil: ACM 2003.

[29] Bollen L, Eimler S, Hoppe HU. The use of mobile computing to support SMS
dialogues and classroom discussions in a literature course. ICALT; 2004 August 30 -
September 1; Joensuu, Finland; 2004. p. 550-4.

[30] Bluetooth SIG. Basics. N. D. [cited 2007 May 12, 2007]; Available from:
http://www.bluetooth.com/Bluetooth/Technology/Basics.htm

[31] Alhakim MM, Al-Kittani I, Bakleh A, Swidan M, Zarka N. Bluetooth remote
control. ICTTA; 2006 April 24-28 Syria; 2006. p. 2674-7.

[32] Tan K, Soh CY. Internet home control system using Bluetooth over WAP.
Engineering Science and Education. 2002 August 2002;11(4):126-32.

[33] Open Mobile Alliance. WAP White Paper. 2000 [cited 2007 May 18];
Available from: http://www.wapforum.org/what/WAP_white_pages.pdf

[34] Nikolakopoulos G, koudourakis M, Tzes A. An integrated system based on
WEB and/or WAP framework for remote monitoring and control of industrial
processes. International Symposium on Virtual Environments, Human-Computer
Interfaces, and Measurement Systems; 2003 27-29 July; Lugano, Switzerland; 2003.

[35] Sun Microsystems. Java SE at a glance. N. D. [cited 2007 February 12];
Available from: http://java.sun.com/javase/

[36] Zan J. Java ME core technology and best practices. Beijing: Publishing house of
Electronics Industry 2007.

[37] Sun Microsystems. Java ME Platform Overview. N. D. [cited 2007 April 2];
Available from: http://java.sun.com/javame/technology/index.jsp

[38] Qualcomm Incorporated. BREW: bring wireless services to life. 2008 [cited
2008 May 20]; Available from:
http://brew.qualcomm.com/brew_bnry/pdf/BREW_brochure.pdf

[39] Ziff Davis Enterprise Holding Inc. Microsoft opens full Windows CE kernel
source. 2006 [cited 2007 March 20]; Available from:
http://www.linuxdevices.com/news/NS6932977445.html

[40] McObject. McObject releases Perst Lite, an open source embedded database for
intelligent devices on Java’s J2ME platform. 2006 [cited 2007 March 15]; Available
from: http://www.mcobject.com/pressroom.php?step=3&article=75

[41] DataMirror. POINTBASE MICRO: the ultra-compact database for enterprise
mobility. 2004 [cited 2007 March 11]; Available from:
http://www.pointbase.com/resourcecenter/pdfs/micro.pdf

94

[42] db4objects. db4o open source object database. N. D. [cited 2007 March 12];
Available from:
http://www.db4o.com/about/productinformation/db4o%20Product%20Information%20
V6.0.pdf

[43] McObject. Perst Documentation. 2006 [cited 2007 March 18]; Available from:
http://www.mcobject.com/downloads.php?step=6&id=51

[44] Knudsen J. Wireless Java: developing with J2ME. Berkeley, CA Apress 2003.

[45] Stone D, Jarrett C, Woodroffe M, Minocha S. User interface design and
evaluation. Amsterdam: Elsevier : Morgan Kaufmann 2005.

[46] Olsson G, Piani G. Computer systems for automation and control. Hertz:
Prentice Hall International (UK) Ltd. 1992.

[47] Piani G. Computer-supported complexity reduction in process control: a
cognitive approach to user interface design. Sweden: Department of Industrial Electrical
Engineering and Automation, Lund Institute Technology 2003.

[48] Miller GA. The magical number seven, plus or minus two - some limits on our
capacity for processing information. The Psychological Review. 1956;63(2):81-97.

[49] Marcus A, Smilonich N, Thompson L. The cross-GUI handbook: for
multiplatform user interface design. New York: Addison-Wesley Publishing Company
1995.

[50] Maxim Integrated Products. Getting started with TINI. 2004 [cited 2007 May
12]; Available from: http://www.maxim-ic.com/products/tini/pdfs/TINI_GUIDE.pdf

[51] MOBITEK System Sdn. Bhd. GSM modem - Wavecom Fastrack M1306B. N.
D. [cited 2007 May 1]; Available from: http://www.mobitek-
system.com/Wavecom/Fastrack.html

[52] D'Anjou J, Fairbrother S, Kehn D, Kellerman J, McCarthy P. Java developer's
guide to Eclipse. 2nd ed. Boston: Addison-Wesley 2004.

[53] McAffer J, Lemieux J-M. Eclipse rich client platform: designing, coding, and
packaging Java applications. Upper Saddle River, NJ: Addison-Wesley 2006.

[54] Sun Microsystems. Sun opens Java. N. D. [cited 2007 April 1]; Available from:
http://www.sun.com/2006-1113/feature/story.jsp

[55] Sun Microsystems. The Java Programming Language. N. D. [cited 2007 March
25]; Available from:
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html

[56] Sun Microsystems. Java ME at a glance. N. D. [cited 2007 March 23];
Available from: http://java.sun.com/javame/index.jsp

[57] Liu B. Master Java ME: use Eclipse for mobile development. Beijing:
Pubulishing House of Electronics Industry 2007.

95

[58] Virkus R. Pro J2ME Polish: open source wireless Java tools suite. NY: Apress
2005.

[59] Sommerville I. Software engineering. 8th ed. New York: Addison Wesley 2007.

[60] National Snow and Ice Data Center. Temperature. N. D. [cited 2007 March
18]; Available from: http://nsidc.org/arcticmet/glossary/temperature.html

[61] National Snow and Ice Data Center. Relative humidity. N. D. [cited 2007
March 21]; Available from: http://nsidc.org/arcticmet/glossary/relative_humidity.html

[62] Answers Corporation. Soil moisture. N. D. [cited 2007 March 22]; Available
from: http://www.answers.com/topic/soil-water?cat=technology

[63] Answers Corporation. Wind speed. N. D. [cited 2007 March 23]; Available
from: http://www.answers.com/topic/wind-speed?cat=technology

[64] Answers Corporation. Wind direction. N. D. [cited 2007 March 24]; Available
from: http://www.answers.com/wind+direction?cat=technology

[65] Answers Corporation. Rainfall. N. D. [cited 2007 March 20]; Available from:
http://www.answers.com/rainfall?cat=technology

[66] New York State Agricultural Experiment Station. Surface wetness duration. N.
D. [cited 2007 April 3]; Available from:
http://www.nysaes.cornell.edu/pp/faculty/seem/magarey/leafwet/definition.html#swlw

[67] Sommerville I. Software engineering. 6th ed. Harlow, England; New York:
Addison-Wesley 2001.

[68] Object Management Group. Introduction to OMG's unified modeling language.
2007 [cited 2007 November 11]; Available from: http://www.uml.org/

96

Appendix I – Sample Mobile Phones and their Resolutions

Model Technology Screen Size
Motorola A1000 GSM 208x320
Motorola A760 320x240
Motorola C380 GSM/GPRS 128x128
Motorola C650 GSM/GPRS 128x128
Motorola E398 GSM/GPRS 176x220
Motorola i335 128x128
Motorola i355 128x128

Nokia 3152 AMPS, CDMA 128x160
Nokia 3155i AMPS, CDMA 128x160
Nokia 3220 GSM 128x128
Nokia 3230 GSM 176x208
Nokia 3250 GSM/GPRS/EDGE 176x208
Nokia 6560 AMPS, TDMA 128x128
Nokia 6600 GSM 176x208
Nokia 6651 GSM 128x160
Nokia 6670 GSM 176x208
Nokia 6822 GSM 128x128
Nokia E50 E-GSM 240x320
Nokia E60 GSM 352x416
Nokia E61 GSM 320x240
Nokia E62 GSM 320x240
Nokia E70 GSM 352x416
Nokia N70 GSM 176x208
Nokia N71 GSM 320x240
Nokia N72 176x208
Nokia N73 240x320
Nokia N76 GSM/GPRS/EDGE, W-CDMA 128x160
Nokia N80 GSM, W-CDMA 352x416
Nokia N91 GSM, W-CDMA 176x208
Nokia N93 GSM/GPRS/EDGE, W-CDMA 240x320
Nokia N95 GSM, W-CDMA 320x240

Siemens S65 GSM/GPRS 132x176
Siemens S66 GSM/GPRS 132x176
Siemens S6C GSM/GPRS 132x176

Sony Ericsson K500c GSM/GPRS 128x160
Sony Ericsson K510 GSM/GPRS 128x160
Sony Ericsson K550 GSM/GPRS/EDGE 176x220
Sony Ericsson K600 GSM/GPRS 176x220
Sony Ericsson K660i GSM/GPRS, UMTS/HSDPA 240x320

97

Sony Ericsson K790 GSM/GPRS/EDGE 320x420
Sony Ericsson K800 GSM/GPRS 320x420
Sony Ericsson P900 GSM/GPRS 208x320
Sony Ericsson P908 GSM/GPRS 208x320
Sony Ericsson W300 GSM/GPRS/EDGE 128x160

98

Appendix II – The Introduction of the User Interfaces

User interface design is one of the most important research works for MicroBaseJ. User

interfaces in MicroBaseJ are designed as a cascade. There are a number of user

interfaces in MicroBaseJ, including a splash welcome form, the main menu, the items

chosen menu, the date selected menu, the data plot menu, the alarm, and the sample rate

configuration menu. A splash form is shown on the mobile screen when the application

is activated. Figure 27 is the splash form based on the WTK 2.5.1 default ColorPhone

simulation.

 Figure 27 - The Splash Interface

 This form is designed according to the requirement of the industrial partner, MCS Ltd.,

in order to promote and catch the customers’ eyes. It lasts only five seconds and then

the main menu is shown on the mobile screen.

Figure 28 shows the main menu of the application. A menu title is shown on the top of

the screen. Several graphic items, with brief text for item choice, are presented on the

screen to allow user selection. White is set for the background of the screen. The colour

99

of the graphic items is set at light blue, allowing the user’s perception to be more

comfortable.

Figure 28 - The Main Menu

There are four functions in this screen, including Charting, Alarm configuration,

Sample Configuration, and Quit. The customer uses the Keys Up, Down, Right, and

Left, to navigate among these functions. There are two command buttons provided for

the user; Select and Quit; on the screen’s bottom right and left sides, respectively. The

user chooses the particular graphic item and then presses the Select button, then the

application is turned to the next menu. If the user chooses Quit + Select, or presses the

Quit button, this application is terminated.

100

Figure 29 - The Item Choice Menu for Chart

If the user chooses Charting and presses the Select button, an interface for charting is

shown on the mobile screen. Figure 29 shows the interface that allows the user to select

the two specific items for charting. There are ten items in this screen, including four for

temperature, two for humidity, wind speed and direction, rainfall, and leaf wetness.

Similar to the main menu, all of the icon backgrounds are set as light blue. The

customer uses the key Up, Down, Right, and Left to navigate among these icons.

Here two command buttons are provided for the user; Next and Back; on the screen

bottom right and left side, respectively. The user chooses the particular two graphic

items and then presses the Next button, then the application is turned to the next menu.

If the user presses the Back button, the application goes back to the main menu. When

the user chooses less, or more than, two icons, an alert form is given to notify the user.

After the user’s confirmation, Figure 29 is shown on the screen again.

Whenever two items are chosen and the Next button is pressed, another form is shown

on the small screen. Figure 30 is the menu to allow the user to type in the specific date

and the period for the search. This menu also provides a choice for illustrating the data,

as to whether it is to be set as the average value of the data points when their number

exceeds 48.

101

There are three items in this interface; the entered date, the period, and the average

choice. The customer uses the key Up, Down, Right, and Left to navigate among these

items.

The date of the most recent message is set as the default on the date item, and it also

accepts the user’s entries. This application checks the validity of the input date. If there

is an error, an alert is presented on the screen. After the confirmation, Figure 30 is

shown again.

There are two command buttons provided for the user in this interface; Next and Back;

on the screen bottom right and left side, respectively. The user clicks on the Next

button, and the application turns to the next menu. If Back is pressed, this application

moves back to the previous menu.

After the date and the period are selected, the user presses the Next button and the new

interface is shown on the screen. The menu illustrates the maximum and minimum

value of two items in the specific date and period.

Figure 30 - The Date and Period Entry Menu

There are two command buttons provided for the user in this interface; Next and Back;

on the screen bottom right and left side, respectively. The user presses the Next button

102

and the application moves to the next menu. If Back is pressed this application moves

back to the previous menu.

After the user presses the Next button on the maximum and minimum menu, the chart

for the two specific items is shown on the screen.

Figure 31 shows three types of chart for this application. Each screen presents two

figures. There are two types of chart; the line chart and the bar chart. Any two figures

can be combined to form a chart screen.

The line chart is designed for temperature, humidity, soil moisture, wind speed, and

direction. Rainfall and leaf wetness are illustrated by the bar chart.

This chart allows the user to interact with the interface using a yellow traceball. The

traceball is controlled by the keys on the mobile phone panel. Key 2 and Key 8 are used

for the movement of the up and down figures, while Key 4 and Key 6 are used for the

navigation of data points to the left or to the right.

When the user controls the trace ball through the key, the text information for that data

point’ value, including date, time and value, are shown on the top middle of the screen.

The colour for the normal data is set as black, whereas the alarm data is presented as

red.

Figure 31 - The Three types of Chart

103

This interface provides only one button, the Back button. The user clicks it, and the

application moves back to the data and period entry menu.

When the user selects the alarm configuration option in the main menu, the item choice

menu for the alarm configuration is presented on the screen.

Figure 32 – The Alarm Item Choice Menu

Figure 32 is the interface to allow the user to select the specific alarm item to reset.

There are 8 items in this screen, including four for temperature, two for humidity, wind

speed, and rainfall. Similar to the main menu, all of the icon backgrounds are set as light

blue. The customer uses the key Up, Down, Right, and Left to navigate among these

icons.

There are two command buttons; Next and Back; on the screen bottom right and left

side, respectively. The user chooses the graphic item and then presses the Next button.

The application is then turned to the alarm configuration menu. If the Back button is

pressed the application moves back to the main menu.

Figure 33 shows the alarm configuration form. The updated alarm menu shows the

current high alarm and the low alarm’s value for the specific item, and also allows the

104

user to change them. The customer uses the key Up, Down, Right, and Left to navigate

among the items.

Figure 33 - The Modified Alarm Menu

This interface has two buttons; Next and Back; on the screen bottom right and left side,

respectively. The user clicks the Next button and the application is turned to the alarm

updated confirmation menu. If the Back button is pressed this application moves back to

the alarm item choice menu.

After the user configures the alarm and presses the Next button, Figure 34 is shown on

the screen.

Figure 34 shows the updated alarm confirmation interface. It has only one button, the

Back button. The user clicks the Back button and this application moves back to the

alarm item choice menu.

105

Figure 34 - Confirmation for Updated Alarm

When the user selects the sample rate configuration option in the main menu, the

sample rate configuration menu is presented on the screen, as shown in Figure 35.

Figure 35 - Sample Rate Modified Menu

106

The sample rate updated menu shows the current sample rate and allows the user to

change to a new one. There are two command buttons; Next and Back; on the screen

bottom right and left side, respectively. The user hits the Next button and the

application turns to the sample rate updated confirmation menu. If the Back button is

pressed this application moves back to the previous menu.

After the user modifies the sample rate and presses the Next button, Figure 36 is shown

on the screen.

Figure 36 shows the updated sample rate and the Send button and is provided to confirm

that this new sample rate is sent to the Sentinel for the next sampling. After the Send

button is pressed the sample rate configuration menu is shown on the screen.

Figure 36 - Confirmation for Sample Rate Updating

107

Appendix III – The Conference Paper for ATNAC’07

108

109

110

111

112

113

114

Appendix IV – The CD contents

There is a CD attached. It contains the thesis, the conference paper for ATNAC’07, and

the code of the application.

A. The Code Introduction

The code includes the 7 classes, ReceiveSMSMsg, MainMenu, HorticultureData,

pushProcess, MyLineCanvas, MyBarCanvas, and MyLineBarCanvas. These codes can

be run on the

The ReceiveSMSMsg is the main class in the application. It offers an entry to the

application for the mobile user. It implements major functions of the application, such

as receiving the message from the Sentinel, storing the relevant information into the

mobile database, and providing the interface to the MainMenu class.

The MainMenu provides an interface to the user to manipulate relevant operations. It

allows the user to choose different functions, such as presenting the user with specific

information on the screen, updating the alarm settings and sample rates, and sending the

modified sample rate back to the Sentinel. It also provides an entry to one of the

MyLineCanvas, MyBarCanvas, and MyLineBarCanvas.

The class pushProcess, deals with the message from the Sentinel. This object will be

activated by the ReceiveSMSMsg object as a background process when the message

arrives from the Sentinel. The HorticultureData is the class defined objects for the

database. It has insert and read functions, and defines all attributes for the database,

including time stamp and another ten items from the sensors. It is used for the

ReceiveSMSMsg and the MainMenu classes.

The classes; MyLineCanvas, MyBarCanvas, and MyLineBarCanvas; are used for

drawing different types of figures, such as the line chart, the bar chart, and their

combination.

115

B. The Operating Environment

The application can be run on the computer with software such as JAVA JDK (Java

Development Kit) (jdk-6u2-windows-i586-p), Eclipse (eclispse-sdk-3.2.2-win32),

EclipseME (eclipseme.feature-1.7.8), J2ME Toolkit (sun_jave_wireless_toolkit-2_5_1),

J2ME Polish (de.enough.mepose.ui_0.7.1), and Perst Lite (perst269).

This project adopts the Sun Java Wireless Toolkit, WTK2.5.1. The Eclipse version of

this project is Eclipse DSK (Development Software Kit) 3.2.2.

