
MATRIX FACTORISATION BASED

RECOMMENDATION FOR WEB

MASHUPS

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisor

Dr. Jian Yu

Dr. Sira Yongchareon

September 2020

By

Jacky Ou

School of Engineering, Computer and Mathematical Sciences

Abstract

In recommender systems, the Internet has evolved over the years for recommending

items such as music, movies, books and videos for users to boost the popularity or sales

for a single item. One of the significant challenges is the mashup developers spend much

time to refine their searches to find suitable APIs (application programming interface).

A framework is needed for incorporating the matrix factorisation (MF) recommendation

that recommends APIs for a mashup application. In this project, we intend to build the

recommender systems prototype by implementing machine learning to learn from the

previous data extracted from the API description list. The contribution involves many

processes of data collection, preprocessing, document vectorisation, implicit learning

and recommendation. It should achieve the likelihood for a mashup application to

invoke APIs provided by the data from ProgrammableWeb.

There are many MF algorithms available for use in recommendation systems. How-

ever, we find that many algorithms can suffer from data sparsity and cold-start issues.

The recommendation approaches and filtering methods introduced in the literature re-

view may provide ideas for conducting this investigation. We have employed evaluation

metrics to investigate if the data fits well with the testing set. Finally, we highlight the

limitations and possible future improvements to this study.

2

Contents

Abstract 2

Attestation of Authorship 7

Acknowledgements 8

1 Introduction 9
1.1 Motivation . 9
1.2 Background . 12

1.2.1 Recommender Systems . 12
1.2.2 Collaborative Filtering . 13
1.2.3 Matrix Factorisation . 15

1.3 Research Question . 17
1.4 Contribution . 17
1.5 Thesis Structure . 18

2 Literature Review 19
2.1 Introduction . 19
2.2 Filtering Methods . 20

2.2.1 Collaborative Filtering . 20
2.2.2 Content-Based Filtering . 22

2.3 Matrix Factorisation . 24
2.3.1 Probabilistic Matrix Factorisation 25
2.3.2 Non-Negative Matrix Factorisation 29

2.4 Recommendation Types . 31
2.4.1 Service Recommendation . 31
2.4.2 Social Recommendation . 33

2.5 Conclusion . 37

3 Research Method 39
3.1 Introduction . 39
3.2 Approach Overview . 39

3.2.1 Data Preprocessing . 41
3.2.2 Word Computation . 43

3

3.3 Data Source . 45
3.4 Technical Details of the Proposed Method 46

3.4.1 TF-IDF Calculation . 46
3.4.2 Cosine Similarity Calculation 47
3.4.3 Model Learning and Increasing the Logarithm Function 47
3.4.4 Loss Minimisation . 50

3.5 Conclusion . 50

4 Results and Discussion 52
4.1 Introduction . 52
4.2 Experiments . 53

4.2.1 Experiment Setup . 53
4.2.2 Acceleration of the Performance 53
4.2.3 Exporting Variables to CSV Files 55
4.2.4 Evaluation Metrics . 55
4.2.5 How the Experiment was Conducted 56

4.3 Word Extraction Results . 58
4.4 User-Item Matrix Results . 59
4.5 Experiment Results . 61

4.5.1 Logarithm Function Results . 61
4.5.2 Loss Function Results . 62

4.6 Evaluation Metrics Results . 63
4.6.1 MAE and RMSE Training Graph 63
4.6.2 MAE and RMSE Training Results 65
4.6.3 MAE and RMSE Testing Results 65

4.7 Issues Encountered During Prototype Implementation 66
4.7.1 Equation Flaws from the Journal Article 66
4.7.2 Human Errors Lead to Unintentional Data Overfitting 68
4.7.3 The Dilemma of Matrices A and M 68

4.8 Loss Minimisation Training in Matrices A and M 69
4.9 TF-IDF Word Vectorisation . 69
4.10 Conclusion . 70

5 Conclusion 71
5.1 Introduction . 71
5.2 Answer to Research Questions . 71
5.3 Limitations . 72
5.4 Further Research . 74

References 82

A Glossary and Abbreviations 83

B Prototype Implementation 86

4

List of Tables

2.1 Both matrices of the user-item ratings and friendship relations. 34

4.1 Top 40 words according to the document frequency (DF) values. . . . 58
4.2 The Rprob matrix after MF learning. 60
4.3 MAE and RMSE values in training and testing percentage ratios after

training the loss value. 65
4.4 MAE and RMSE values evaluated from the testing data. 66

5

List of Figures

1.1 ProgrammableWeb. (n.d.). Homepage of the ProgrammableWeb web-
site [Screenshot]. Retrieved from https://www.programmableweb.com 10

1.2 Example of the user, Bob searching for suitable APIs. 11

2.1 Gaussian distribution functions plotted in a graph. 25
2.2 PMF model. 26
2.3 PPMF model proposed by Gai (2014). 28
2.4 Diagram showing the proposed framework recommending suitable

APIs (Fletcher, 2019). 33
2.5 The relationship between users and rated items. 35
2.6 Social circles with strong and weak ties. 36

3.1 Flowchart of overall processes. 40
3.2 Illustration showing the procedure of manual data preprocessing for

manually omitting unnecessary APIs. Screenshot by author. 44
3.3 ProgrammableWeb. (n.d.). Google Maps Engine API is stored in the

ProgrammableWeb API directory [Screenshot].
Retrieved from https://www.programmableweb.com/api/google-maps-
engine . 45

3.4 Diagram showing the Zij latent variable learning from Sij and Wij . . . 49
3.5 Diagram showing Rij is learning from Ai and Mj 51

4.1 Illustration showing the Anaconda prompt window. Screenshot by author. 54
4.2 Illustration showing the Jupyter Notebook user interface. Screenshot

by author. 54
4.3 The example graph depicting the coordinate descent method (X. Wang,

Zhang, Yan, Yuan & Zha, 2018). 57
4.4 Logarithm value over the number of iterations. 61
4.5 The graph depicting the loss value over the number of iterations. . . . 63
4.6 MAE training graph. 64
4.7 RMSE training graph. 64

6

https://www.programmableweb.com
https://www.programmableweb.com/api/google-maps-engine
https://www.programmableweb.com/api/google-maps-engine

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of student

7

Acknowledgements

First and foremost, I would like to express my gratitude to Dr Jian Yu for his guidance
and support during my studies. Without him, this research would be impossible to
continue. Secondly, I would like to thank Thi Thuy Mo Nguyen for sacrificing her
time to evaluate my prototype and her suggestions on improving my programming.
Finally, I would like to thank Dr Sira Yongchareon for clarifying my misunderstanding
of statistical equations and machine learning.

8

Chapter 1

Introduction

1.1 Motivation

Let us recall in our daily activities where we utilise the Web to search for information,

shop online, find friends via social network or watch video clips. Recommender systems

provide a way to recommend items or services to the users without requiring explicit

user inputs and tracks the data between users and items (Kunaver & Požrl, 2017). It can

change how the users interact with the Internet, and the main goal for recommender

systems is to increase sales when the users purchase a product that is interesting to their

preferences (Shakirova, 2017). Recommender systems also a hot topic for research and

was implemented in various items such as movies, TV shows, books, music and more

(Ajoudanian & Abadeh, 2019).

In the era of web computing, not all items are rated because of the recent arrival

of new products or a product has no user rankings. Any item that is not ranked by

users can cause issues because no one has bought and used them before. To overcome

the problem, one can utilise various methods to learn from the previous data and

dynamically implement the results into each unrated item. Recommender systems

use multiple algorithms such as data available in its database (e.g. ratings and social

9

Chapter 1. Introduction 10

relationships), the filtering algorithm used, techniques such as Bayesian networks

and the quality of the results to predict the items for each user (Bobadilla, Ortega,

Hernando & Gutiérrez, 2013). Many algorithms and techniques used for testing the

recommendation accuracy can affect the results positively or negatively. Therefore,

recommender systems provide an exciting topic for investigating how the items are

recommended in the Web.

As the Web has improved over the years, the continuous development of new

software and technologies has shaped the future of the World Wide Web and user

interfaces. Also, as computers are evolving rapidly, users should be able to use the

applications that are user-friendly and can achieve their tasks efficiently. In terms of

mashup applications, the APIs (application programming interface) are used for the

mashup developers to create services that rely on the other sources without needing to

produce their programs for the Web.

Figure 1.1: ProgrammableWeb. (n.d.). Homepage of the ProgrammableWeb website
[Screenshot]. Retrieved from https://www.programmableweb.com

When a developer wants to create a mashup application, one can integrate several

https://www.programmableweb.com

Chapter 1. Introduction 11

APIs produced by other companies to achieve a specific function. The text query from

the mashup application developer will be processed in the system to find the desired

APIs (Zhong & Fan, 2017). For example, Bob wants to produce an application that will

allow the user to check the package status with a map and a notification; however, his

search results have returned nothing (B. Cao et al., 2017).

Figure 1.2: Example of the user, Bob searching for suitable APIs.

One problem for the situation is why did the ProgrammableWeb website search

results display nothing? There are many reasons for returning none of the results. The

common issue with selecting web APIs is a large number of APIs caused the search

results to become vague, and as a result, it makes it difficult to choose correct APIs

(B. Cao et al., 2017; Yao, Wang, Sheng, Benatallah & Huang, 2018). Another issue

is that the search engine cannot handle a large number of keywords. Additionally, the

application developers may remove the web APIs at any time without warning. There are

various reasons for abandoning web APIs, including switching to a superior application

or abandoning it permanently. As a result, it causes problems for mashup developers to

replace the discontinued APIs. To alleviate the problem for developers, existing works

Chapter 1. Introduction 12

from Fletcher (2019), Hao, Fan, Tan and Zhang (2017), Cao et al. (2019) and Zhong

and Fan (2017) could address the solutions for incompetent recommendations produced

by search engines. However, the matrix factorisation (MF) based recommendation is

the core subject of this research.

This thesis provides an insight into a recommendation system that recommends web

APIs for a mashup application. Our aim for this study is to assist application developers

to discover web APIs they require for its functionality, also to allow them to retain their

trust in utilising search engines, and providing further assistance if necessary.

1.2 Background

1.2.1 Recommender Systems

Recommender systems have many methods to retrieve methods not just from the World

Wide Web, but from many sources. The first mention of the term recommender systems

happened in a journal article by Resnick and Varian (1997); however, this term is

generic. Two filtering categories are introduced for recommender systems to address

the generic term: Content-based filtering and collaborative filtering (CF).

Recommender systems have undertaken many improvements over the decades, and

the research has contributed to enhancing the users’ experience. As the history of

recommender systems has shaped the future of computing, the related literature listed

in the journal article by Sohrabi, Toloo, Moeini and Nalchigar (2015) described several

authors have conducted the experiments and discussed the arguments whether the

system is accurate or not. In the Scopus article list, there were more than 9400 articles

and 76 reviews in the past, and it did not stop the growth of this topic (Calero Valdez,

Ziefle & Verbert, 2016). The reason for the high interest of the research is the early

mention of CF caused researchers to investigate the types and properties of the filtering

Chapter 1. Introduction 13

algorithms.

In 2006, the online media streaming service, Netflix announced a competition for

anyone that can build recommender systems to predict movies and rewards $1 million

to lower the root mean square error (RMSE) value by 10% (Amatriain & Basilico, 2016;

Koren, Bell & Volinsky, 2009). Following the competition, at least one person won a

prize for reducing the RMSE value by approximately 8%. With more time spent on

improving the functionality of recommender systems, many algorithms were improving.

In this day of age, recommender systems were not only used in web applications, and it

also can be used for recommending consumable items in the Dota 2 video game (Looi,

Dhaliwal, Alhajj & Rokne, 2019). In another case that recommender systems were used

for exchanging books without needing to utilise the wish list (Pera & Ng, 2018). As

deep learning and artificial intelligence (AI) are continually improving, the computing

systems have improved the CF techniques for recommending new items.

1.2.2 Collaborative Filtering

CF has been around in many years for recommending specific items for users with their

preferences. The first mention of CF is Goldberg, Nichols, Oki and Terry (1992), where

they utilised filtering on emails, and an illustration showed most information filtering

techniques could overwhelm an employee’s mindset. Another mention is Resnick,

Iacovou, Suchak, Bergstrom and Riedl (1994) discussed different CF techniques that

allow users to filter out uninterested news by using the GROUPLENS architecture. As

the early CF algorithms developed to alleviate the problem of unfiltered or unused items,

the CF method should provide insights into shaping the future of consumer interactions.

With the development of CF methods, both works from Goldberg et al. (1992) and

Resnick et al. (1994) shaped the future of recommender systems. Since they have

completed their experiment on the email and news filtering mechanisms, the CF has

Chapter 1. Introduction 14

evolved to extend its use on other applications. As a result, computing technologies

have evolved quickly, and the most significant milestone is that the World Wide Web

has caught the attention of the public eye. Since the users of the World Wide Web

grew, the online retailer, Amazon recommended various items to the customers and has

been around for more than two decades. Additionally, Amazon has implemented the

item-based CF algorithm in 1998 and the user-based CF framework in 2003 (Smith &

Linden, 2017). In the online shopping environment, new items were constantly added

to the database.

In the 2010s, CF is continuously evolving, and numerous research papers proposed

new prototypes that combine itself with other algorithms. There were many cases that

CF was utilised in many situations. In respect to combining content-based filtering and

CF methods altogether, Zhao, Yan, Jin, Yang and Yu (2017) conducted the experiment

on utilising both methods for mobile searching based on user’s behaviour such as

shopping, social network and entertainment. In music recommendation, Iwahama,

Hijikata and Nishida (2004) proposed a prototype that recommends music based on

user ratings and song characteristics such as tone and pitch. Dong and Shen (2013)

used the same hybrid approach for recommending microblogs by collecting data from

Sina Weibo. Finally, Yao, Sheng, Segev and Yu (2013) tested a hybrid framework that

integrates CF and content-based filtering approach for combining data with the newly

added user preferences. Although Xiong, Wang, Zhang and Ma (2018) compared their

work to Yao et al. (2013) for the hybrid approach content-based recommendation, they

proposed a prototype that includes a neural network approach for hybrid CF algorithms.

Not only CF can cooperate with content-based filtering, but this may also be possible

for developing the prototype for this research.

Multiple papers are documenting the combination of unrelated hybrid algorithms

with CF. To give an example, Jain, Liu and Yu (2015) utilised MF that utilises the

CF method of a user-item matrix to predict and create mashups. They have used the

Chapter 1. Introduction 15

user-item matrix assuming the API denotes the user, and the mashup represents the

item. The MF combined with CF method is the main topic of focus in this study. As

authors have combined CF with other methods, it still needs more work to improve the

recommendation results further.

Although the CF recommendation is always reforming, many journal authors have

used CF to test the algorithm for use in case studies. For example, Ajoudanian and

Abadeh (2019) have proposed a recommendation system that recommends human

resources to GitHub project leaders. Another example is Zhang, Meng, Kong and Dong

(2019) utilised CF to recommend electricity plan based on single-rate and time-of-use

tariffs. For movies, Pal, Parhi and Aggarwal (2017) conducted the experiment to test

the performance of the mean absolute error (MAE) values for recommending movies

by comparing Hybrid CF, Pure CF and SVD (singular value decomposition) methods.

Not just CF is used in online shopping, music and videos; books are also popular

for bibliophiles. Tewari, Kumar and Barman (2014) presented a new approach for

combining CF and content-based filtering that recommends books based on the book

information, category and order information. In medical fields, Zang, An and Hu (2014)

conducted the experiment that utilises CF to recommend healthy living programs for

patients suffering chronic diseases based on the information such as blood pressure

and body mass index. Many authors mentioned in case studies and experiments have

demonstrated their efforts in promoting CF in the recommender systems research.

1.2.3 Matrix Factorisation

MF was known for its method to solve linear algebra equations (Hubert, Meulman &

Heiser, 2000). It uses the matrix multiplication method to calculate both matrices by

multiplying all rows by each column, similar to the dot product computation. Addition-

ally, MF models implicitly learn from both existing users and items matrices which can

Chapter 1. Introduction 16

generate new predictions (Shi, Larson & Hanjalic, 2014). The earliest mention of MF

could be around the late 1990s; however, Hubert et al. (2000) introduced the idea of util-

ising this method to solve some issues related to various science-related fields. However,

MF is a generic term for using linear algebra to multiply both matrices together. The

algorithms that utilise the MF architecture are probabilistic matrix factorisation (PMF),

non-negative matrix factorisation (NMF) and singular value decomposition (SVD).

MF is essential for this study because we will implement it in our experiment. Many

authors have documented the use of MF in testing the function. One example of the

MF utilisation is G. Wang, Jiang, Wang and Yang (2019) proposed the idea of the PMF

prototype that recommends researchers and postgraduates to the list of groups based on

the information from scholarly articles they interact. That approach could increase the

potentiality of the growth of groups that shares the idea of academic research. Another

example is Zetlaoui, Feinberg, Verger and Clémençon (2011) tested the NMF model

for predicting the assessment of the food choices for the adult population. Their study

could assist many people around the world in being educated by their food choices.

Nonetheless, the authors have listed the limitations of their research, and the sparsity of

the food data may affect the accuracy of the prediction results.

There are many uses of MF, and in most cases, various authors have proposed new

subvariants of MF and not just limited to PMF and NMF. The reason for multiple

authors attempting to create a new model under the existing MF methods is to test

its reliability in comparison to the standard models. In this case, many papers were

published to showcase their studies for integrating other models. Jiang, Li and Xu (2019)

proposed a new NMF algorithm called relative pairwise relationship - non-negative

matrix factorisation (RPR-NMF) that uses the pairwise relationship model to increase

the recommendation accuracy. Another example of NMF variant is S. Zhang, Wang,

Ford and Makedon (2006) modified the NMF algorithm to create weighted non-negative

matrix factorisation (WNMF) to guarantee the shortened time to reach its convergence

Chapter 1. Introduction 17

point. Kim, Park, Oh and Yu (2017) integrated the convolutional neural networks (CNN)

with the PMF model. Their idea of CNN is not relevant to this study; nonetheless, it

could be useful for future studies of recommender systems.

1.3 Research Question

The research questions of this thesis are:

1. How do we integrate context information such as title, description and tags

from APIs in order to fill in the unrelated API-mashup relationships?

The dataset information from API titles, descriptions and tags are sufficient

for learning the missing spots of the API-mashup matrix. We could use data

preprocessing to manipulate information from API lists and adopt the TF-IDF

(term frequency - inverse document frequency) in order to vectorise the set of

numbers.

2. How do existing API-mashup invocations affect the accuracy of the recom-

mendation results?

A reliable recommendation method should produce consistent results. We could

utilise machine learning to allow existing invocations to determine the relationship

strength between APIs and mashups.

1.4 Contribution

The contribution of this thesis is an MF based recommender systems prototype for

recommending web APIs. We will extract contents from the API descriptions and

utilise the machine learning method to recommend APIs for every mashup. Five parts

separate the experiment process: 1) Retrieval of API and mashup information from

Chapter 1. Introduction 18

ProgrammableWeb; 2) Performing data preprocessing of the API dataset; 3) Corpora to

vectorised documents conversion; 4) Utilisation of machine learning to fill in the new

relationship between unrelated APIs and mashups; 5) Recommendation following the

MF algorithm.

Besides, this thesis also discusses different types of recommendation algorithms

related to MF, filtering techniques and recommendation types used to recommend

items or services. The results from recommendation experiment will be presented and

analysed.

1.5 Thesis Structure

In this chapter, we have introduced the background of mashup creation, recommender

systems, CF and MF. The questions were defined in this research.

In the second chapter, we introduce a literature review. To begin, we introduce

filtering methods. We discuss the MF techniques and their variants. Finally, we provide

a background to the recommendation techniques used in recommender systems.

In the third chapter, we discuss the research methodology and the procedures of

preprocessing the data. The equations for this experiment will be provided based on the

article from Yao et al. (2018) to understand the function of the program.

In the fourth chapter, we report and discuss the results from the experiment and

describe the flaws of the paper. Additionally, we will explain how we overcome issues

for the experiment.

In the fifth chapter, we conclude this thesis. We discuss the limitations of this

research and suggest improvements for future works.

Chapter 2

Literature Review

2.1 Introduction

In this chapter, we explore the different methods of recommender systems to understand

how different recommendation algorithms work. We will conduct a literature review

relating to the relevant topics of recommender systems and its indirect connections

to this topic of research. Conducting a literature review not only requires us to read

various papers and summarise past works but also, we need to link their ideas into this

study (Punyabukkana, 2017).

First, we elaborate the filtering methods in this literature review and introduce

their variants. We explain the collaborative filtering (CF) topic and illustrate the

similarity calculations to describe the main points of this filtering method. Second,

we introduce recommendation approaches based on this study. Third, we explain the

recommendation approaches to provide a fundamental understanding of different ways

of recommendation. Finally, we describe the matrix factorisation (MF) methods in

this chapter, and this is important for reflecting other author’s previous works into this

research.

19

Chapter 2. Literature Review 20

2.2 Filtering Methods

2.2.1 Collaborative Filtering

The purpose of CF is to recommend an item based on the data from the user’s rating for

each item. For this type of filtering method, it will be in the form of an m × n matrix,

where m is the rows of users and n denotes the columns of items (Schein, Popescul,

Ungar & Pennock, 2002). As users provided sufficient information to rate an item, the

system can recommend an item for another user based on the submitted ratings and

the most in common groups (Bobadilla et al., 2013; Cohen, Aharon, Koren, Somekh

& Nissim, 2017). While CF can produce consistent results, the downside is that new

users and data sparsity issues can suffer prediction issues and can cause the prediction

of items to halt (Turnip, Nurjanah & Kusumo, 2017). Contrary to the disadvantage

of CF, it undertook many changes to increase the accuracy of predictions in many

ways. With many journal articles and conference papers were published continuously,

many authors have documented their new variants of CF recommendation algorithms.

However, there are many challenges of the CF algorithms, and many questions should be

asked, for example, prediction, rank and classification accuracy; how evaluation should

be executed and selecting the suitable algorithm for performing this task (Cacheda,

Carneiro, Fernández & Formoso, 2011). We will introduce the existing types of CF

methods and describe the works that various authors of multiple journals had done.

The memory-based CF utilises the whole or a sample of the preference database to

predict suggested items for the user based on their past preferences or the neighbours of

the same interest (Kim & Ahn, 2011; Shakirova, 2017; Su & Khoshgoftaar, 2009; Xie

et al., 2007). The standard technique used for the memory-based CF is the k-nearest

neighbours (kNN) algorithm. Its purpose is to select the closest defined number of

neighbours for predictions which the k users with the most extraordinary likeness are

Chapter 2. Literature Review 21

chosen (Shi et al., 2014). Moreover, the three tasks of the kNN algorithm are (Bobadilla

et al., 2013): (1) Select the k number of neighbours; (2) predict the ratings by utilising

the aggregation approach; (3) retrieve the results and select the top N recommendations.

The disadvantage of the kNN algorithm is that if the data is sparse, the algorithm will

produce unwanted results. Because of the sparsity, the users may not have much time

to rate all items. Another drawback is that the low scalability issue can decrease the

recommendation performance due to a large number of users and items (Bobadilla et al.,

2013). As a result, the kNN algorithm may not be stable for predicting a large amount

of sparse data, although it will work well on massive data.

The neighbourhood-based CF uses the similarity calculation and the collection of

the mean ratings of all or specific users or items (Feng, Liang, Song & Wang, 2020;

Yao, Sheng, Ngu, Yu & Segev, 2015). Additionally, it uses various methods to calculate

the similarity values based on the user-item, item-based or user-based ratings. The

item-based CF method is the most common CF approach for recommender systems

(Verma, Mittal & Agarwal, 2013). The correlation-based similarity equations are always

used for computing the similarity between users or items. The Pearson correlation

equation for the similarity computation is mentioned in many articles similar to this

topic (Su & Khoshgoftaar, 2009). The equation for the correlation-based similarity is

wuv = ∑i∈I(rui − raverageu)(rvi − raveragev)√
∑i∈I(rui − raverageu)2

√
∑i∈I(rvi − raveragev)2

(2.1)

where u and v are users denoted as u = {1,2, ..., n} and v = {1,2, ..., n}, i ∈ I are

summations that items were rated by users u and v, r is the actual rating from users,

and raverage is the average rating. The equation from neighbourhood-based CF is

the fundamental block for the filtering algorithm, and it is thought to compensate for

different ratings from various users and items which can cause bias (Hu, Koren &

Volinsky, 2008). Another method to calculate the similarity between two items or users

Chapter 2. Literature Review 22

is the vector-based cosine similarity. The equation for the vector-based cosine similarity

is

sij = V ector(i) ⋅ V ector(j)
∣∣V ector(i)∣∣ × ∣∣V ector(j)∣∣ =

i1i2 + j1j2√
i21 + j21

√
i22 + j22

(2.2)

The difference between Equations 2.1 and 2.2 is the cosine similarity only requires

two vector variables which the numerator calculates the dot product and the numerator

calculates the norm. Likewise, the correlation-based similarity requires variables from

actual and average ratings. Therefore, if similarity computations are mathematically

correct, the recommendation system can produce results in common when two users

have similar tastes (H. Wang, Tao, Yu, Lin & Hong, 2018).

Despite the existing CF techniques introduced in this literature review, there are

many variants of CF created mostly with combining other recommendation techniques.

As a result, it becomes a hybrid approach for CF. Many articles have documented

the creation of the hybrid CF systems that the main goal is to test the effectiveness

of the algorithms. One good example is Yao et al. (2013) integrated the CF and the

content-based filtering recommendation to create a new recommendation model by

combining the web services, its descriptors and the users. They have proposed a hybrid

approach of CF, developed the prototype and compared the results against standard CF

and content-based filtering recommendation.

As CF is most commonly used for recommending items for users, they are the

most crucial aspect of the topic for recommender systems. Despite many variations of

this function, CF is considered the most favourite topic of the recommender systems

research.

2.2.2 Content-Based Filtering

Content-based filtering was used for recommending items based on the user past

behaviours (Bobadilla et al., 2013). Unlike CF, the content-based filtering does not

Chapter 2. Literature Review 23

utilise the user-item rating data to predict recommendations (Su & Khoshgoftaar, 2009).

The vital aspect of content-based filtering method is the aggregation of the user’s

metadata that the filtering system can retrieve the information from his/her interests

(Bogers & Van den Bosch, 2009). For the perspective of an item, e.g. a film has titles,

actors, directors and the publisher, which all of them can be used for content-based

filtering (Salter & Antonopoulos, 2006). Consequently, that leads to recommending

items based on the user’s or item’s metadata.

To elaborate on the early history of content-based filtering, Goldberg et al. (1992)

experimented with filtering electronic documents for the office worker to reduce anxiet-

ies. The overflow of the incoming documents can frustrate an office worker because the

unfiltered items made it overwhelming to read them all. The authors in the Tapestry

journal article proposed a prototype that utilises the client-server architecture to filter

out unnecessary documents, including emails that provide ineffectual information for

an office worker. Another one is Resnick et al. (1994) proposed a GROUPLENS ar-

chitecture for filtering the news articles by the Netnews platform. It provides similar

recommendation systems that use the rating matrix to give better results. The results for

the experiment is the authors of the Netnews journal had a successful experiment that

uses the subgroups to provide a recommendation for the news articles.

Content-based filtering is equally essential with CF because, in the perspective

of the user, the website’s recommender systems need to recommend items for the

user who have used the item from the same category. The content-based filtering

method often works together with CF, and the integration of both methods can enhance

the results of the recommendation (Adomavicius & Tuzhilin, 2005). For the hybrid

filtering algorithm to work, Basilico and Hofmann (2004) combined the kernels from

the variables of identity, attribute, correlation and the quadratic correlation kernels. This

method of combining both filtering algorithms is a hybrid approach for allowing the

two to work together. Despite that combining kernels is a way for utilising a hybrid CF

Chapter 2. Literature Review 24

recommendation, one can simply use metadata of an item and calculate the similarity

values of vectorised corpora.

2.3 Matrix Factorisation

MF is a standard method to provide implicit feedback to any items that are not explicitly

ranked by users and is said to produce high accuracy predictions (G. Wang et al.,

2019; Zhang, Liu, Chun-Gui, Wei & Huiyi-Ma, 2014). It symbolises the users and

items where it represents the vectors from the item rating patterns (Koren et al., 2009).

MF does implement machine learning to train the non-ranked items by utilising the

training data. The past publications regarding recommending TV shows by using MF

has been implemented in the experiment regardless of the inattention it receives in the

research literature (Yang, Guo, Liu & Steck, 2014). As a result, several past works of

literature should influence MF to receive more attention in respect to developing its

ongoing research potential. The main goal of MF is to solve the latent factors from

users and items based on the direct relationship between the two, where the user has

interacted with the item (Kim et al., 2017). In terms of recommending APIs (application

programming interface) for a mashup application, the system should learn from the

existing API co-invocations or API-mashup invocations. Most API pairs may have

little or no relations, and it is problematic. However, if at least one user used an

unranked item and gave a detailed review, the actual rating can replace an implicit one.

The disadvantage of MF methods is that the resulting model becomes static following

the computation of the matrices (Aghdam, Analoui & Kabiri, 2016). Under those

circumstances, recommender systems must update continuously to overcome the static

model issues.

In each subsection, we will also discuss one subvariant of the algorithms that was

proposed by the authors of a journal article. The discussion will illustrate the minor

Chapter 2. Literature Review 25

differences in the slightly modified algorithms discussed in different literature.

2.3.1 Probabilistic Matrix Factorisation

In probabilistic matrix factorisation (PMF), it is based on a Gaussian distribution model.

The Gaussian distribution is used for calculating the probability based on the mean

value of the function. The general formula of the Gaussian distribution is denoted as

f(x) = 1

σ
√
2π
e−
(x−u)2

2σ2 (2.3)

where σ is the standard deviation, σ2 is the variance, x is the x-axis value, and u is

the mean value for the equation. If a Gaussian distribution equation is plotted on the

graph, it should look like a bell-shaped curve in Figure 2.1. The standard deviation of

Figure 2.1: Gaussian distribution functions plotted in a graph.

Gaussian distribution graphs control the spread of the data as it increases or decreases

Chapter 2. Literature Review 26

the interquartile length of the graph. If the standard deviation value is large, it increases

the size of the difference between quartiles (x-value) and decreases the y-value. In

another scenario, if the standard deviation is small, it does the opposite.

Any variables that have unknown values should be assigned with random variables

based on the Gaussian distribution values. To have the easy reference on the Gaussian

distribution expression, the normal distribution notation N(µ,σ2) is used.

PMF is used for calculating the probability by using the Gaussian distribution. Let

Rij be the n×m matrix where it stores the probability of users invoking the items where

Rij ∈ {x ∣ 0 ≤ x ≤ 1 ∣ x ∈ R }. Figure 2.2 shows that Rij is learned from Ui and Vj ,

Figure 2.2: PMF model.

where i is the user row number of the matrix U as i = {1,2, ..., n}, and j is the item row

number of the matrix V as j = {1,2, ..., n}. The standard deviations are applied to all

variables to ensure the suitable spread of the probability distribution. The variables used

for PMF should be assigned a numeric value based on a Gaussian distribution. The

Chapter 2. Literature Review 27

Gaussian distribution for PMF is defined as (Gai, 2014)

p(R∣U,V, σ2) =
M

∏
i=1

N

∏
j=1

[N(Rij ∣UiV T
j , σ

2)]h((u,i)∈D) (2.4)

where i is the row index of a matrix denoted as i = {1,2, ..., n} with the maximum M ,

and j is the column index as j = {1,2, ..., n} with the maximum N . In later equations

with the same notations for referencing rows and columns in a matrix, we do not have to

repeat the statement. To reduce overfitting of the PMF model, the zero mean spherical

vector should be assigned on variables U and V (Y. Cao, Li & Zheng, 2019)

p(U ∣σ2
U) =

M

∏
i=1

[N(Ui∣0, σ2
UIK)] (2.5)

p(V ∣σ2
V) =

N

∏
j=1

[N(Vj ∣0, σ2
V IK)] (2.6)

where h(x) = 1 if x is true, and IK is a K-dimensional identity matrix.

The general equation of the PMF loss function is used where the final value is

minimised by learning the latent variables U and V (Mnih & Salakhutdinov, 2008)

min (U,V) = 1

2

M

∑
i=1

N

∑
j=1
Iij(Rij −UT

i Vj)2 +
λU
2

M

∑
i=1

∣∣Ui∣∣2F +
λV
2

N

∑
j=1

∣∣Vj ∣∣2F (2.7)

The main variables in the loss function are U and V , where U denotes the users and V

is the items. Additionally, the sum of the Frobenius norm in both U and V are appended

to reduce the bias.

Pairwise Probabilistic Matrix Factorisation

One variant of the PMF method should be described in detail. The PMF can be slightly

modified to include more features for testing the pairwise model effectiveness in MF.

Gai (2014) proposed a slightly modified PMF algorithm called pairwise probabilistic

Chapter 2. Literature Review 28

matrix factorisation (PPMF). PPMF is a variant of the PMF framework that includes

another variable for pairwise operations. The PPMF model is most similar to PMF.

Figure 2.3: PPMF model proposed by Gai (2014).

One can notice that Vi has a repeated variable of Vj because of pairwise operations

for the PPMF algorithm. If Vj is omitted, it becomes a standard PMF model. The

general equation of PPMF looked similar to the PMF function. Also, the equation can

be modified to suit the nature of minimising the loss function based on the three main

variables utilised to learn Puij . The Puij variable will become the tensor matrix because

of the three-dimensional shape in a whole framework. The distribution function for the

PPMF model will become

p(P ∣U,V, σ2) =
M

∏
u=1

N

∏
i=1

N

∏
j=1

[N(Puij ∣g(UuV T
i −UuV T

j), σ2)]h((u,i,j)∈T) (2.8)

p(Uu∣σ2
U) = N(Uu∣0, σ2

UI) (2.9)

Chapter 2. Literature Review 29

p(Vi∣σ2
V) = N(Vi∣0, σ2

V I) (2.10)

p(Vj ∣σ2
V) = N(Vj ∣0, σ2

V I) (2.11)

and the cost function should be

min(U,Vi, Vj) = 1

2

M

∑
u=1

N

∑
i=1

N

∑
j=1

(Puij − g(UuV T
i −UuV T

j))2×h((u,i,j)∈T)

+ λU
2

M

∑
u=1

∣∣Uu∣∣2 + λV
2

N

∑
i=1

∣∣Vi∣∣2 + λV
2

N

∑
j=1

∣∣Vj ∣∣2 (2.12)

Notice that the cost function and the conditional distribution function has three variables

needed to learn the latent variable of Ruij . Nevertheless, the PPMF model relationship

diagram would be similar to a standard PMF relationship diagram.

2.3.2 Non-Negative Matrix Factorisation

Non-negative matrix factorisation (NMF) is commonly investigated as it is the most

popular method to determine the ratings of an item. The difference between NMF

and other MF techniques is that NMF does not allow any negative values in a matrix.

Despite the requirement for positive values, a few negative values in every matrix does

not affect the output of the result (Fogel, Hawkins, Beecher, Luta & Young, 2013).

Otherwise, any matrix that has many negative values does not satisfy the properties of

NMF. The drawback of NMF is that it may be possible to contain null values as the zero

values are allowed in the matrix (Zetlaoui et al., 2011). The null values in the matrices

may pose issues with MF procedures to calculate the multiplication of two matrices.

The general equation for NMF defined by Lee and Seung (2001) is

min(U,V) =
M

∑
i=1

N

∑
j=1

(Uijlog(Uij
Vij

) −Uij + Vij) (2.13)

Chapter 2. Literature Review 30

Notice that Uij is the numerator over Vij in the argument of the logarithm operation.

If any negative values are present in the matrix, it can output null or invalid values

from the logarithm operation. To overcome the issue, the refined equation for the NMF

loss function that can accommodate a few negative values as defined by Aghdam et al.

(2016) is

min(U,V) = ω(
M

∑
i=1

N

∑
j=1

(Rij−
K

∑
f=1

(UifV T
fj))2)+φ(

M

∑
i=1

N

∑
j=1

(Rijln(Rij

[UV T]ij)−Rij+[UV T]ij))
(2.14)

where ω and φ dictate the divergence and the Frobenius norm. The defined values of

the learning parameters are ω ∈ {x ∣ 0 ≤ x ≤ 1 ∣ x ∈R} and φ = 1 − ω. In this function,

the variables U denotes users, and I denotes items where U ≥ 0 and V ≥ 0. Note that

UV T is the standard matrix multiplication for both items U and V . Both variables allow

minor amounts of negative values. Thus, the NMF cost function proposed by Aghdam

et al. (2016) reduces the incidence of encountering the negative value argument error in

the logarithm function. In contrast, Equation 2.13 cannot tolerate any elements with

negative numbers in both matrices U and V .

Weighted Non-Negative Matrix Factorisation

There is a subvariant of the NMF method, and it is called the weighted non-negative

matrix factorisation (WNMF). The work of S. Zhang et al. (2006) introduced the WNMF

as the alternative to NMF, and it is said to guarantee for reaching its convergence.

Nonetheless, it is not determined to have optimum values following training. The

logarithm equation for WNMF is

log(A,X) = − 1

2σ2

M

∑
i=1

N

∑
j=1

(Aij −Xij)2 +C (2.15)

Chapter 2. Literature Review 31

where Aij is the rating matrix with some missing entries, Xij is the linear model matrix,

and C is the constant for the function. The constant of this function is optional and can

be substituted by various functions in order to adjust the results if necessary. If matrix

Aij has the unknown values, it will be randomly assigned by the Gaussian distribution

of N(Xij, σ2). The expectation-maximisation procedure is (S. Zhang et al., 2006)

log(A,X) = − 1

2σ2
(∑
Aij∈AO

(Aij −Xij)2 + ∑
Aij∈AU

(X(t−1)ij −Xij)2) +C (2.16)

where AO is the observed A rating matrix and AU is the unknown A matrix. S. Zhang

et al. (2006) results concluded that the WNMF approach performed faster than the

expectation-maximisation procedure. To prove the author’s statement is not contra-

dictory, note the additional summation equation after the first summation used in the

WNMF approach. Computing the difference between X(t−1)ij and Xij may cause the

program to slow down or encounter the array out-of-bound errors that will throw an

exception. However, with careful implementation, the program can work flawlessly.

2.4 Recommendation Types

2.4.1 Service Recommendation

Service recommendation is frequently used for recommending specific web items for

the users. An essential aspect of service recommendation is the process of user interac-

tions and its algorithm for predicting the correct services. In this study, web APIs are

part of the web services. The requirements for the web service recommendation should

have, according to Yao et al. (2015): High recommendation accuracy, recommendation

serendipity and reliable recommendation of newly deployed services. There are many

ways that the system can recommend APIs for the new proposed mashups. The inter-

actions used for recommending API services are: Direct user-to-web API interaction,

Chapter 2. Literature Review 32

direct user-to-mashup interaction and indirect user-to-user interaction (Fletcher, 2019).

The direct user-to-web API interaction method may provide a comprehensive approach

for recommending API services. Also, the direct user-to-mashup interaction method

offers the same way as the user-to-web API interaction procedure. The only drawback

in the direct user-to-item interactions is that if the data is sparse, it may not produce the

best results (Mu, Xiao, Tang, Luo & Yin, 2019). Indirect user-to-user interaction can

follow the social recommendation approach for recommending APIs. However, if there

is insufficient data for users interaction with APIs or mashups, the results produced are

inferior, thus garbage in, garbage out.

To begin with service recommendation, several authors (Cao et al., 2019; Hao et

al., 2017; Yao et al., 2018; Zhong & Fan, 2017) in many articles have documented the

process of extracting every word from API and mashup descriptions and converting

them into vectorised values for API-mashup matrix preparation. By recommending API

services for the newly created mashup, the recommendation system should learn from

the interactions between users and APIs or mashups before the recommendation can

begin (Yu, Wong & Chi, 2017). To address the issue with search engines, performing

the natural language processing (NLP) actions can benefit the mashup developers to

find suitable APIs quickly.

Figure 2.4 shows the processes of recommending the suitable APIs by utilising the

MF algorithm with regularisation mechanism. In the case of Fletcher (2019), he used the

hierarchical Dirichlet process and Jensen-Shannon divergence methods of calculating

the similarity values of both web APIs. However, both methods of calculating the

web API similarity values are outside the scope of this study. There are many ways to

compute similarity values. The method suitable for this study is to utilise the TF-IDF

(term frequency - inverse document frequency) method by (Yao et al., 2018). The

TF-IDF method is simple to compute the frequency of every word in a document.

In respect to user convenience, the CF method is proven useful for referring the user

Chapter 2. Literature Review 33

Figure 2.4: Diagram showing the proposed framework recommending suitable APIs
(Fletcher, 2019).

preference embeddings, which stores the relationship data was stored. It is called the

functional service recommendation which the service requirements should satisfy the

needs of users (Hao et al., 2017). When a user enters the desired keywords, the system

computes the similarity from the search terms, locates the API by similarity results,

utilise MF for learning missing values and finally, the APIs were recommended to the

user (H. Wang et al., 2018).

2.4.2 Social Recommendation

When social networks such as Facebook and Twitter emerged since the 2000s, other

websites have been implementing the method of allowing the users to create their

accounts and review items they have bought on the Internet. In other words, the influence

of social media such as Facebook and Twitter shaped the future of implementing the

social recommendation systems (Tang, Hu & Liu, 2013). The fast-growing development

of social networks contains a variety of information of any users, including the relations

between users, posts, comments and tags (W. Zhang, Liu, Xu & Jiang, 2019). Regarding

posts, comments and likes, every activity has the date and time recorded every time

a user starts publishing an item on social networks (Madani, Erritali, Bengourram &

Chapter 2. Literature Review 34

Sailhan, 2019). Besides, the social network can also add attributes of a user profile such

as the location, educational attendance, groups, income, occupation, gender and age

(S.-D. Liu & Meng, 2015; Xiang, Neville & Rogati, 2010). These attributes about a

user in a social network provide valuable information for the social recommendation,

and they improve the accuracy especially when the data is sparse (Ma, Zhou, Liu, Lyu

& King, 2011; Shi et al., 2014). Depending on the provider, recommender systems may

utilise user profile attributes to enhance recommendation results for a particular user

based on its social space.

Regarding social information, the three main goals for researchers to analyse and

implement recommender systems are (Bobadilla et al., 2013): (1) Build new recom-

mender systems, (2) exploit the relationships between users and items and (3) provide

more accurate predictions from machine learning. As a result, the influence of social

networks allows shopping websites to store information about the users and the items

they bought or use. This approach is different from the standard recommender systems

as the system relies on friends to make a recommendation based on the connection

between users (Guo, Wen & Wang, 2018). Both Figure 2.5 and Table 2.1 provides

V1 V2 V3 V4
U1 5 ? ? ?
U2 3 ? 1 ?
U3 ? ? ? 5
U4 ? 4 ? ?
U5 3 ? 2 ?
U6 ? 3 ? ?
U7 ? 4 ? 1

U1 U2 U3 U4 U5 U6 U7
U1 0 0 0 0 1 1 0
U2 0 0 0 0 1 0 0
U3 0 0 0 1 1 0 0
U4 0 0 1 0 1 0 1
U5 1 1 1 1 0 0 0
U6 1 0 0 0 0 0 0
U7 0 0 0 1 0 0 0

Table 2.1: Both matrices of the user-item ratings and friendship relations.

a relationship diagram and their matrices to show the relationship between users and

items. An excellent example of social recommendation is Guo, Ma, Chen and Jiang

(2014) provided an example of the Chinese Weibo’s social networking architecture

which users can follow the pages denoted as items to receive updates. With the social

Chapter 2. Literature Review 35

Figure 2.5: The relationship between users and rated items.

recommendation method, it can utilise both social relations and the item ratings to

produce implicit conclusions for recommending the items for a friend circle (S.-D. Liu

& Meng, 2015). The matrix on the left of Table 2.1 contains the user and item ratings

from 1 to 5, and on the right, the friendship values are only 0 (no connection) or 1

(linked).

In social circles, the relationship strength between users is unequal in different

friend groups (Yang, Steck & Liu, 2012). For example, User A has 5 friends in any

circles: B, C, D, E and F. Users A, B, C, D and E belongs to Circle A, and Users F,

G, H, I and J belongs to Circle B. Social networking can have strong and weak ties

between users. Also, users with strong ties belong within a social circle, and inter-circle

relations are weak (X. Wang, Lu, Ester, Wang & Chen, 2016). A social circle can have

categories that allow discussion of a single topic only, e.g. Circle A concerns about

music and is different from Circle B, which discusses computer sciences. In reality,

social circles are irrelevant because a user can have multiple categories in its whole

Chapter 2. Literature Review 36

social space (Yang et al., 2014). Thus, recommender systems are not concerned with

recommendations within or outside the social circles.

Figure 2.6: Social circles with strong and weak ties.

Social recommendation is thought to be reliable recommender systems. However,

the user’s perspective towards others can ignore the importance of the recommendation

mechanism (Guo et al., 2014). The advantages of social recommendation are (H.-F. Liu,

Jing & Yu, 2018):

• It increases the accuracy for recommendation:

Compared to utilising the traditional methods based on the items only, integrating

social information can greatly enhance recommendation for users.

• It can effectively overcome the cold start issues:

The traditional recommender systems that store the sparse data can result in

uneven distributions. Therefore, social recommendation can partially solve the

cold start problem when new users are added.

• It increases the trustfulness of the recommendation results:

With recommendation based the social or trust information, the system is power-

fully persuasive that a user can trust the outcome of the recommendation.

Chapter 2. Literature Review 37

• The ease of understanding of the recommendation results:

Relying on the social information for the recommendation on the item can signi-

ficantly enhance the user-friendliness of recommender systems.

In regards to the advantages of utilising social recommendation, it is a useful function

to recommend items for users.

The cold start issue in recommender systems is the major problem for the recom-

mendation algorithms not being able to learn the data for consistent results implicitly.

Since new users or items are continually increasing, the system may only predict results

from the existing data. Therefore, any new users without collaborative information like

no prior purchases, ratings or interactions can produce inconsistent results following pre-

diction (Gantner, Drumond, Freudenthaler, Rendle & Schmidt-Thieme, 2010; Madani

et al., 2019; Verma et al., 2013). The pure CF algorithm may seem to alleviate the

problem, but, it requires direct input from the existing users (Sedhain, Menon, Sanner,

Xie & Braziunas, 2017). By asking the other users for their help, it may not worth the

effort when new users are constantly increasing. By overcoming the cold start issue,

Sedhain, Sanner, Braziunas, Xie and Christensen (2014) proposed an idea of integrating

the user and item matrices in the equation that have three variables: U is the user matrix,

I is the item matrix, and P is the user’s personal information. The user’s data could

contain demographic traits such as gender, location, age, friends, likes and comments.

Thus, with the usage of the user’s metadata, it could be similar to the content-based

filtering method.

2.5 Conclusion

This chapter provided a literature review of the recommendation methods and algorithms.

We have covered the filtering methods that affect the quality of the filtered results in

Chapter 2. Literature Review 38

different filtering algorithms. The filtering algorithms have provided an essential under-

standing of how the recommendation system works differently. The similarity equations

in CF has the potential for manipulating the API description list to output the values.

The content-based filtering is not part of our study, but it does increase the knowledge

base for future research in conjunction with CF. The recommendation methods were

introduced with service recommendation and social recommendation. Service recom-

mendation has impacted the potential of this study because the information can provide

some hints to understand how the framework recommends suitable APIs. Although

social recommendation is unrelated to this study, it allowed us to explore the wide

variety of methods that are used for recommendation. Finally, we have explained the

MF methods and their variants in this chapter.

Chapter 3

Research Method

3.1 Introduction

In this chapter, we will begin with an overview of the research process. We will discuss

how the dataset is preprocessed for the experiment, the process of extracting the words

from the API (application programming interface) description list and the calculation of

the similarity values. In addition to preprocessing, we will discuss the natural language

processing (NLP) libraries in this chapter. We will also provide the equations that will

show how the experiment should proceed and the evaluation metrics to test the data

reliability for this research.

3.2 Approach Overview

As the purpose of this study is to produce a prediction result for API mashup relations,

the methodology for this research is quantitative because it is intended for the project

that will produce results that are utilised by numerical methods (Ahmad, Wasim, Gogoi,

Srivastava & Farheen, 2019).

The matrix factorisation-based (MF) service recommendation process is based on

39

Chapter 3. Research Method 40

Figure 3.1: Flowchart of overall processes.

the paper from Yao et al. (2018) titled "Mashup Recommendation by Regularizing

Matrix Factorization with API Co-Invocations". The flowchart in Figure 3.1 depicts the

overall process of converting words into recommendation results. The five main steps

of the approach overview are described:

1. API and Mashup Data Collection:

The data collection process will be described in Section 3.3.

2. Data Preprocessing:

It is the most crucial aspect of handling the data source collected from Program-

mableWeb. It consists of word manipulation processes not limited to tokenising

and stemming words, filtering out unnecessary APIs, omitting and substituting

characters with diacritics, removing stop words, symbols and numbers. How-

ever, the drawback is the preprocessing procedures are vulnerable to accidental

Chapter 3. Research Method 41

deletions, so care must be taken to avoid it.

3. Word Computation:

The algorithm used to calculate the frequency rate of every word is term frequency

- inverse document frequency (TF-IDF). The frequency of every word can measure

the rate of occurrence in a document. It will be used to determine the level of

similarity between APIs and mashups. Since the conversion from corpus to

numbers are essential for producing the recommendation results, we have to save

the data in the CSV (comma-separated values) format.

4. Implicit Learning:

We use the machine learning method of stochastic gradient descent (SGD) rules

to learn the data from the explicit invocations. Before the SGD learning method

is used, we calculate the latent variable by the generic coordinate ascent method

by updating from the required parameters. Afterwards, implicit learning fills up

the gap between the relationship between APIs and mashups.

5. API Recommendation Results:

The results will be presented as an m × n matrix following the implicit learning

procedures. However, this procedure is not the end as the results are not likely to

be reliable for the first time. The repetition of learning processes is necessary for

improving the results and is not limited to trial and error, such as the learning rate

and lambda variables.

3.2.1 Data Preprocessing

To proceed with the data preprocessing, we use the API dataset and the API-mashup

invocation list to implement the functions needed to achieve the results from corpus

Chapter 3. Research Method 42

mining. One of the most important libraries for this process is the NLTK1 libraries

provide many functions for NLP. Additionally, many NLTK libraries support the pro-

cessing of every word in a document such as Porter Stemmer, Punkt Tokenizer, Web

Text Corpus, WordNet, Stopwords Corpus and many more. Therefore, specific word

processing tools will be useful for this project. The whole process of extracting titles

and descriptions from the API lists dataset and converting them into vectorised form is

explained (Hussain et al., 2018).

1. Manual Removal of Non-English Characters and Filter out Unnecessary

APIs:

The removal of non-English characters is a trial-and-error process. Since the

non-English Latin character removal process requires us to search for the culprit

line number, the program should throw an exception when stemming words. As

the specific line numbers were identified, we edit the API descriptions file and

find any words that contain any special or non-English characters. For omitting

the unlisted APIs, there are no libraries available for filtering out unnecessary

APIs based on the mashup-API invocation list. The only way is to write a code

that will loop each line of API names and output the APIs and its descriptions

into the list. This task is tedious because the results may produce repetitive APIs

that will cause us to repeat the process further. Therefore, further processing is

necessary to prevent repetitive names on the list.

2. Remove Stop Words:

Removing stop words such as ’I’, ’is’, ’are’, ’am’, ’when’, ’he’, ’she’, and

’without’ is a necessary process to ensure no meaningless words are counted in

the experiment. The Stopwords Corpus library is part of NLTK that is available

on the Python2 programming language.
1NLTK website: http://www.nltk.org/
2Python website: https://www.python.org/

http://www.nltk.org/
https://www.python.org/

Chapter 3. Research Method 43

3. Remove Symbols and Numbers:

Numbers and symbols such as ’&’, ’@’, ’+’ and ’$’ do not represent any linguistic

meaning in NLP. Consequently, they are excluded from the MF process.

4. Stem words:

Any words formed in one of the linguistic processes has appended with the

suffixes as part of the natural language procedures (Singh & Gupta, 2019). It is a

crucial process to trim the words to its base form, for example, the word legalize

becomes legal, studies becomes studi, apples becomes apple and sensational

becomes sensat (Porter, 1980). However, the drawback of the Porter Stemmer

library is it does not recognise the non-American English -ise suffix (-ize used in

American English) on the word stemming list. Despite the drawback, the Porter

Stemmer library is thought to do an adequate job for trimming word suffixes and

plurals into the lower form in the English language.

3.2.2 Word Computation

Converting corpora into numbers is part of the NLP method that calculate the similarities

between connecting words. Two processes need to be done before the experiment can

begin.

1. Calculate TF-IDF:

The procedure shows that all words in a document can be converted into numbers

signifying the frequency of each word appears in an API list and its descriptions.

In other words, it calculates the TF-IDF values on all words in each list of API

name and description. Each word is paired with the TF-IDF values within an API

list. Therefore, it can be converted into a list of vectors.

2. Vectorise documents:

Chapter 3. Research Method 44

Figure 3.2: Illustration showing the procedure of manual data preprocessing for manu-
ally omitting unnecessary APIs. Screenshot by author.

The list of numbers contained in the list of documents will become vectorised to

ensure that every tokenised word has been assigned as a one-dimensional vector.

This process is part of NLP because it converts words into vectors. Many libraries

will convert words into vectors such as Word2Vec, Dep2Vec, FastText and Glove

(Arroyo-Fernández, Méndez-Cruz, Sierra, Torres-Moreno & Sidorov, 2019). All

word vectorisation programs mentioned can be used for convenience. However,

the Python program allows linking two indices together without the need to utilise

the mentioned libraries.

Chapter 3. Research Method 45

3.3 Data Source

The data source is from ProgrammableWeb. The dataset used for this project contains

about 1549 APIs and 6202 mashups. One can easily search the API and mashups

information, including those that are no longer supported that requires selecting the

tick box. The website also allows developers to upload the APIs, SDKs (software

development kit), sample source codes or mashups to the server, and the general users

can track the APIs and mashups from the website. We have the dataset containing the

list of APIs and its descriptions and the API-mashup invocation list. The screenshot

Figure 3.3: ProgrammableWeb. (n.d.). Google Maps Engine API is stored in the
ProgrammableWeb API directory [Screenshot].
Retrieved from https://www.programmableweb.com/api/google-maps-engine

in Figure 3.3 shows the information of the Google Maps Engine API and described it.

On the ProgrammableWeb API profile, the tags were included for categorisation and

allowed anyone to share the API information to the social networks.

https://www.programmableweb.com/api/google-maps-engine

Chapter 3. Research Method 46

3.4 Technical Details of the Proposed Method

In this experiment, we will denote the users as APIs and mashups as items. To conduct

this, we will use machine learning to apply the techniques based on a journal paper. Yao

et al. (2018) provided the equations to build the prototype and conduct the experiment

for learning the effectiveness of recommendation for the mashups based on the TF-IDF

values of the API-mashup list.

3.4.1 TF-IDF Calculation

TF-IDF calculates the occurrence of a word in a document. TF (term frequency) is the

prevalence of a term in a document. The equation of TF is

TF (t) = Number of t in a document
A combined API title and its description

(3.1)

where t denotes a term in a document. The TF equation looks like the probability that

a word may appear in a document, and it is simple to understand. Additionally, IDF

(inverse document frequency) is calculated by

IDF (t) = log(N
DF

) (3.2)

where N is the number of corpora, and DF is the frequency of a term. If the DF value

is zero, it will cause a divide by zero exception, and the program will stop working

immediately. To overcome the problem, the equation should be

IDF (t) = log(N

DF + 1) (3.3)

where it should compensate against returning invalid values that will cause the program

to throw an exception. By extracting the terms from the API titles and its descriptions,

Chapter 3. Research Method 47

there will be a large number of stop words that will interfere with the experiment and the

recommendation strength. As previously mentioned in Section 3.2.1, those processes

are important to prune unnecessary words and stem them to provide more accurate

results.

3.4.2 Cosine Similarity Calculation

The cosine similarity is used for computing the probability of the API similarities based

on the TF-IDF values calculated. It also used to dictate the similarity between web APIs

and mashup specification (Jain et al., 2015). An API vector is defined as

ai = TF × IDF (3.4)

As aij represents an API vector, the cosine similarity will be calculated as

sij = ai ⋅ aj
∣∣ai∣∣∣∣aj ∣∣ (3.5)

where i = {1,2, ..., n} and j = {1,2, ..., n} are matrix indices as both sets have the same

maximum values. In other words, sij is a square matrix. This equation is also mentioned

in Equation 2.2 in the previous chapter. However, we have to repeat this equation to use

a different expression for this experiment.

3.4.3 Model Learning and Increasing the Logarithm Function

The model learning would be utilised by machine learning. The goal for the function is

to maximise the logarithm function by updating the variable zij

znewij ∶= zoldij − αz
∂L

∂zij
/ ∂2L

∂(zij)2 (3.6)

Chapter 3. Research Method 48

where both first and second derivatives for zij are

∂L

∂zij
= 1

σ2
× (wij × sij − zij) + yij

zij
(3.7)

∂2L

∂(zij)2 =
−1
σ2
− yij
z2ij

(3.8)

Also variable θij

θnewij ∶= θoldij − αθ
∂L

∂θij
/ ∂2L

∂(θij)2 (3.9)

where both derivatives follow

∂L

∂θij
= 1

σ2 ∑
ij∈D

(1

θij
× yij − zij) − λθθij (3.10)

∂2L

∂θ2ij
= 1

σ2 ∑
ij∈D

(−yij
θ2ij

) − λθ (3.11)

To understand what the variables are from the above equations, zij is the latent variable,

wij is the estimated weight vector variable, and sij is the cosine similarity variable. zij

will be initialised from the probability values distributed by N(wijsij, σ2). Afterwards,

the latent variable of zij will be implicitly learned as well as θij . The learning parameters

α and λ controls the pace of the machine learning.

To increase the logarithm function, both z and θ variables determines the value of

the logarithm function.

max(Z, θ) = −1
2σ2 ∑

ij∈D
((zij−wijsij)2+yijlog(θijzij)−θijzij)−λ

2
W T ⋅W−λ

2
θT ⋅θ (3.12)

Variables zij , wij and θij are square matrices. Note the dot product between W T and W ;

θT and θ in the equation. Both variables are reshaped as anm×1 matrix for representing

a one-dimensional vector. If both variables are not reshaped to compute the logarithm

function, then it is impossible to dot product θ and W vectors into a single number.

Chapter 3. Research Method 49

While the logarithm equation increases, the W vector can be computed as

W new = (λW I + STS)−1STZ (3.13)

W new is an m × 1 reshaped matrix following the calculation from the existing S and

Z variables. The equation will be updated each time after the logarithm function has

completed each iteration. The diagram from Figure 3.4 shows the direction of both

Figure 3.4: Diagram showing the Zij latent variable learning from Sij and Wij .

variables Wi and Sj have their direct relationship towards Zij .

Chapter 3. Research Method 50

3.4.4 Loss Minimisation

Loss minimisation is used for learning the effectiveness of the API recommendation for

mashups. The cost function is

min(A,M) = 1

2

M

∑
i=1

N

∑
j=1

(Iij(rij − aTi mj)2) + α
2

M

∑
i=1

P

∑
b=1

(zib∣∣ai − ab∣∣2) + λ
2
∣∣A∣∣2 + λ

2
∣∣M ∣∣2

(3.14)

Note the maximum values M and N can be equal or unequal to each other, as denoted

that i and j can be different. When the loss function decreases gradually, the lesser the

value, the better it is. The variables A and M are optimised by the SGD updating rules

to reach their local minima (Koren et al., 2009)

anewi ∶= aoldi + ηA(δijmj − α∑
b∈J

(zib(ai − ab)) (3.15)

mnew
j ∶=mj + ηM(δijai − λmj) (3.16)

where ηA and ηM denote both learning rates in A and M , δij = 0 if i ≠ j, and δij = 1

otherwise. As both variables are used for learning the model of the equation, they are

dictating the probability that an API invokes the mashups in an m × n matrix. The

m side of the matrix represents the API rows, and the n side denotes the mashup

columns. Figure 3.5 illustrates how the Rij variable is learning from both API and

mashup dimensional matrices. However, the Rij matrix does not have any values

initiated because the equation from 3.14 does not express the Rprob
ij variable and we

should denote the variable as rprobij = aTi mj .

3.5 Conclusion

This chapter provided methods and specifications of this research. The approach

overview provided the overall research processes that allowed us to achieve the API

Chapter 3. Research Method 51

Figure 3.5: Diagram showing Rij is learning from Ai and Mj .

recommendation goals. Also, the data preprocessing procedures were described in detail

for the optimisation of the data input. The technical specifications were comprised

of equations and evaluation metrics to familiarise the background in the MF method.

Additionally, the equations provided in the technical specifications were sourced from

Yao et al. (2018).

Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, we will introduce the results from the experiment we had done in this

study. We provide the setup specification of the experiment and discuss the details of

the procedure. Also, the graphs and tables related to the investigation are provided to

investigate the aftermath of the implementation.

We report all results and describe the features and essential aspects of the experiment.

Most results in this chapter are in graph formats, and the data are based on the equations

in the last chapter we have mentioned in this thesis. First, we introduce the table

concerning the top 40 words ranked from the most common to the least. Afterwards, we

provide the results about an example of a matrix calculated from the matrix factorisation

(MF) algorithm. Additionally, this chapter is also suitable to contribute to the discussion

that relates to the experiment.

52

Chapter 4. Results and Discussion 53

4.2 Experiments

4.2.1 Experiment Setup

To set up the experiment, we installed the required software on a computer to proceed

with the MF experimentation. The computer specifications used for the project were:

• Microsoft Windows 8.1 operating system

• Intel Core i7 6700 CPU

• 16GB of RAM

• 2TB HDD

• NVIDIA GTX 1060 graphics card with 3GB of GDDR5 RAM

As the experiment requires machine learning to implicitly learn from existing API-

mashup (application programming interface) relationships, the software installed for

this project were Anaconda1 in Figure 4.1 and Jupyter Notebook by Jupyter2 in Figure

4.2. The Python programming language was included with the installation of Jupyter

Notebook. Python was the preferred language to implement this experiment because

not only it became a popular programming language; many libraries are suitable for

this project. The libraries in Python such as NumPy3, Pandas4 and NLTK does support

our work for the MF prototype.

4.2.2 Acceleration of the Performance

Due to a large number of APIs and mashups, the performance is likely to deteriorate.

When the system suffers slow performance, it can cause one part of an algorithm to
1Anaconda website: https://www.anaconda.com/
2Project Jupyter website: https://jupyter.org/
3Numpy website: https://numpy.org/
4Pandas website: https://pandas.pydata.org/

https://www.anaconda.com/
https://jupyter.org/
https://numpy.org/
https://pandas.pydata.org/

Chapter 4. Results and Discussion 54

Figure 4.1: Illustration showing the Anaconda prompt window. Screenshot by author.

Figure 4.2: Illustration showing the Jupyter Notebook user interface. Screenshot by
author.

Chapter 4. Results and Discussion 55

spend a long time to finish a portion of the process. To alleviate this problem for

training with MF, the Anaconda Package called Numba5 should be installed on the

computer. Depending on the specifications of the computer, if the motherboard contains

a multicore processor, Numba will utilise them to speed up the process.

The issue with hardware acceleration is the CPU (central processing unit) usage

will rise to nearly 100%, and it can stress the processor to work much harder. Also,

the system would crash if the RAM (random-access memory) runs out of available

space, it will cause the computer to utilise swap memory in the hard disk or solid-state

disk. Using a virtual machine or a home computer is recommended for this experiment.

Therefore, caution should be taken to prevent crashing the system, especially if one

uses Numba on a multi-user server.

4.2.3 Exporting Variables to CSV Files

Saving each data to comma-separated values (CSV) files should be done after prepro-

cessing to prevent the loss of a variable data if the system crashes or there is a power

failure. Besides, the slow performance of the data processing can be frustrating to

wait until it completes. To ensure the variable data is preserved during the experiment,

one can retrieve the saved data if the program starts to throw an exception when an

error occurs. Thus, this action should be considered if the research project requires the

manipulation of huge data.

4.2.4 Evaluation Metrics

The mean absolute error (MAE) and root mean square error (RMSE) evaluation metrics

are used for evaluating whether the training data is underfitting or overfitting. Also,

it evaluates how recommender systems can perform its task of producing accurate

5Numba website: http://numba.pydata.org/

http://numba.pydata.org/

Chapter 4. Results and Discussion 56

predictions (Kluver & Konstan, 2014). For both metrics, lower values mean the data

has better performance in the experiment.

MAE = ∑ij(r
pred
ij − rtruthij)
N

(4.1)

RMSE =
¿
ÁÁÀ∑ij(rpredij − rtruthij)

N
(4.2)

N denotes the number of samples used in both metrics. Despite the better performance

in lower values, overfitting the data can produce very accurate results in prediction.

The last thing we want is to get both MAE and RMSE values down to nearly zero.

The near-zero values are not what we want for the experiment. On the other hand,

underfitting the data can also produce inaccurate results.

4.2.5 How the Experiment was Conducted

The experiment was conducted solely on a computer with the required applications

installed. To record the results, we have utilised the Matplotlib6 library to plot the graphs

from the data. As previously mentioned in Subsection 4.2.3, exporting the results is

essential to prepare for application freezes resulting in data losses. When conducting

the experiment, we used the trial-and-error method to set up the variables needed to

fine-tune the rate of learning. To ensure the learning processes are smooth, we have to

let the learning progresses to print out into the screen. Afterwards, the graph is created

by the Matplotlib library.

The objective for recommending unrelated APIs for a mashup application is to solve

latent variables required for learning the relationship between the two. Furthermore, we

will use the Coordinate Descent method, which is similar to stochastic gradient descent

(SGD), to minimise or maximise latent variables. The illustration of the SGD graph

6Matplotlib website: https://matplotlib.org/

https://matplotlib.org/

Chapter 4. Results and Discussion 57

Figure 4.3: The example graph depicting the coordinate descent method (X. Wang et
al., 2018).

provides an example of how the machine learning method looks like when attempting

to find the minimum or maximum of the function in Figure 4.3.

The θ and Z latent parameters should be minimised to maximise the logarithm value

of the function, according to Yao et al. (2018). Also, the A and M variables should be

learned following the application of latent parameters. We have attempted to try out

different learning rates to observe the quality of the latent parameters. With the process

of trial-and-error, we can observe the details of minimising the latent parameters by

outputting the values of θ, Z,A andM variables. Outputting the values of all parameters

are intended for testing purposes only and will not be recorded on the results. While

we were choosing a suitable learning rate, we have encountered many values bouncing

upwards or downwards quickly. Finally, when the convergence point is stable, we can

use them as our results.

Chapter 4. Results and Discussion 58

4.3 Word Extraction Results

When we extracted the words from the dataset, we processed every word during the

preprocessing phase. The TF-IDF (term frequency-inverse document frequency) is

most commonly used for converting words in each document descending from the most

frequent words to the least. We have used the TF-IDF method to vectorise words from

the API and the description dataset.

As the program began to process every word, including title, description and tags in

the API list, the important process is to remove any stop words. After we have removed

the stop words from the API description list, the meaningless words will not interfere

with the MF experiment. All documents in the dataset contained punctuations, so they

were removed to prevent meaningless recommendations.

Word Document Frequency
api 1108
u 637

service 586
user 554
data 505

allow 494
provid 493
access 480
applic 470

developer 463
web 366

includ 362
inform 359

site 338
search 300
format 283
integrat 275

json 273
description 273

create 268

Word Document Frequency
avail 248
xml 239

restful 232
respons 219
manag 212
base 200

platform 195
also 195

function 195
social 193
new 191
onlin 188

website 187
call 183

content 183
tool 180

custom 179
list 177

return 175
time 172

Table 4.1: Top 40 words according to the document frequency (DF) values.

Chapter 4. Results and Discussion 59

Note that every row in Table 4.1 does not have any stop words after preprocessing.

The most frequent word from the dataset is ’api’ because the word is frequently men-

tioned in most descriptions. However, the issue with the word ’api’ is that it will match

different types of API in various categories, and it could ruin the recommendation

results. Most words in the top 40 list are related to the Web and the computer science

vocabulary which can hinder the recommendation of the APIs for mashups. One of the

root issue with the API descriptions listed in the ProgrammableWeb directory is some

of the APIs are outdated or discontinued, which can hinder the actual development of

the mashups. In addition, mashup developers can spend more time attempting to find

suitable APIs that are not abandoned. Another issue is once an API is discontinued,

the message associated with the description like "this API appears to be no longer

available" can affect the recommendation results. Therefore, the discontinued APIs are

not going to provide consistent results if we use it in an actual experiment.

4.4 User-Item Matrix Results

Let R be the user-item m × n matrix where the row of users represents APIs, and the

column of items are mashups. Each matrix element contains a binary value, which 0

means the API does not invoke the mashup and 1 otherwise. The API-mashup matrix

specifies the relationship between each API and mashup and transposing it does not

affect the contents of it. However, the matrix is more sparse, and as a result, there are

many zero values than ones.

When MF is introduced, machine learning can implicitly apply the likelihood that

an API is invoking with a mashup. If that is the case, we introduced another m × n
matrix as Rprob, which we have once mentioned in Section 3.4.4 in the last chapter. We

selected the first 8 APIs and 5 mashups to demonstrate the values in the matrix Rprob.

All values in the matrixRprob as shown in Table 4.2 were implicitly learned from MF.

Chapter 4. Results and Discussion 60

#API
Christm

#Ask4Stuff:
WorldCat

Twitter
Searc

#BeerMap -
The Top

2,500 Beers
on Twitter

#LinS Stats
on Your

LinkedIn
Social Gr

#S42AT

#blue 0.2665 0.3006 0.2529 0.2847 0.2206
.tel 0.208 0.2606 0.233 0.2275 0.2484
123
ShopPro 0.2095 0.2541 0.1861 0.2397 0.2036

123Contact
Form 0.2384 0.3045 0.2294 0.2563 0.2643

12seconds.tv 0.244 0.3078 0.2647 0.2929 0.2489
140
Proof 0.2654 0.3377 0.2778 0.2792 0.2801

18amail 0.2202 0.2667 0.2219 0.2223 0.2377
1Map 0.2278 0.2699 0.2134 0.2219 0.2256

Table 4.2: The Rprob matrix after MF learning.

Additionally, not all elements in the matrix can reach above 0.5 because the data were

sparse. While the vast majority of the elements contains the values from approximately

0.09 to 0.3, the most common words from Table 4.1 have affected the implicit learning

of the Rprob matrix. Notice that the words ’api’, ’u’ and ’service’ are the main influences

coming from the descriptions of the API list. Therefore, they can increase each API’s

relationship with every mashup.

Regarding the sparsity of the data, we found that it is the most common problem for

recommender systems to recommend APIs for mashups. By looking at the first section

of the Rprob matrix, we noticed that every value is nearly in range with the values from

0.2 to 0.3.

Chapter 4. Results and Discussion 61

4.5 Experiment Results

4.5.1 Logarithm Function Results

In machine learning, we used the SGD method to optimise the model and maximise

the logarithm value in each iteration (Koren et al., 2009; Yao et al., 2018). The Newton

method in machine learning continued to find the local minimum until the next value

increases, or it has reached convergence.

The parameters for maximising the logarithm function were λ = 0.5, αZ = 0.005,

αθ = 0.05, and σ = 1.7. Also, the maximum number of iterations was set to 400. The

α parameters signified the learning rate of the SGD method in both Z and θ. αZ and

αθ had been set a different amount of learning rates, and the reason is θ was slow to

reach its convergence point. If the αθ learning rate is set too low, θ may not reach its

convergence before the logarithm function reaches the maximum.

Figure 4.4: Logarithm value over the number of iterations.

According to Figure 4.4, it did not resemble the actual logarithm graph. The

Chapter 4. Results and Discussion 62

Logarithm function maximisation has reached 134 iterations despite setting the limit

to 400 iterations and the value of approximately 10,027. The line has curved slightly

steeply upwards as it is a good sign the logarithm value increases rapidly until around

the 80th iteration where it started to slow down. In the 80th iteration, it was a sign that

shows the learning of the Z variable has begun to decelerate. Unlike Z, the θ variable

may not have the potential to reach the convergence point even the application of a large

number of the learning rate. As it reached nearly 115th iteration, the logarithm value

slowly increased until it reached convergence. From the starting iteration, the initial

value of the Log value was almost in 2000.

4.5.2 Loss Function Results

The loss function regards the implicit connection of the other APIs as it should increase

the probability that the API may invoke other APIs as close as possible. The value of

the loss value should be minimal after training the A and M variables to find the local

maximum. In this case, the 90% training and 10% testing ratio will be used on the

result.

The parameters we used in the cost function were λA = λM = 0.5, ηA = ηM =
0.00005, α = 0.0001 and λ = 1. We also set the maximum number of iterations as 30.

To justify the smaller values in η and α values, they were assigned smaller amounts

because the learning in both A and M variables are very rapid, and it can produce

inconsistent results. In other words, faster learning of both variables can cause all values

to increase suddenly, thus ruining the potential to reach their minima. The λ and η

values applied to both A and M are equal; therefore, it was unnecessary to repeat the

same values in different variables. As shown in Figure 4.5, the loss value has decreased

a little from approximately 5486 to 5062. As a result, the date is not underfitting nor

overfitting.

Chapter 4. Results and Discussion 63

Figure 4.5: The graph depicting the loss value over the number of iterations.

4.6 Evaluation Metrics Results

We compared the evaluation metrics between the different training and testing set ratios.

For the training ratio, it began from 90% and decreased it to 50% by the multiple of 10.

For the testing ratio, it started at 50% and increased it to 90% in the sample multiple

as the last sentence. We utilised the MAE and RMSE values for this section of this

chapter.

4.6.1 MAE and RMSE Training Graph

During training to reduce the loss value, the MAE and RMSE were implemented to

view the snapshot of detailed training in reducing both values.

Both Figures 4.6 and 4.7 had similar lines in the experiment. Both figures had

parallel lines in each graph. The curves in both graphs were decreasing linearly in each

iteration, and the maximum iterations in the experiment were 12 iterations.

Chapter 4. Results and Discussion 64

Figure 4.6: MAE training graph.

Figure 4.7: RMSE training graph.

Chapter 4. Results and Discussion 65

4.6.2 MAE and RMSE Training Results

In conjunction with training the loss values in different training ratios, the MAE and

RMSE also should be implemented during training in the experiment to examine if the

data was overfitting or underfitting.

MAE and RMSE Training Final Value Results
Training Percentage 90% 80% 70% 60% 50%
MAE 0.7715 0.7707 0.7686 0.7619 0.7478
RMSE 0.7724 0.7714 0.7694 0.7626 0.7488

Table 4.3: MAE and RMSE values in training and testing percentage ratios after training
the loss value.

In Figure 4.3, the 50% training ratio had the lowest MAE and RMSE values in the

last iteration compared to the highest percentage ratios, which contained large values.

If all values had large difference values in all training ratios, then it indicated that

there are issues with the experiment. In this case, the difference between all values

was relatively small, which means the experiment has done correctly. In terms of data

underfit and overfit, the prediction from Rprob matrix produced consistent results from

the MF training. Although both values should have lowered a little further to produce

reliable results, this is a sign of machine learning doing its job to reduce the value of

the cost function.

4.6.3 MAE and RMSE Testing Results

In contrast with the training results, we illustrated the testing ratio to verify if the

training data was consistent with the testing data.

According to Table 4.4, all the MAE and RMSE values in any training ratios

produced the value from 0.7338 to 0.7559. Thus, this proved that the testing data that

compares with the training model had worked properly.

Chapter 4. Results and Discussion 66

Calculation of MAE and RMSE Results Given the Testing Data
Testing Percentage 10% 20% 30% 40% 50%
MAE 0.7550 0.7517 0.7407 0.7338 0.7489
RMSE 0.7559 0.7525 0.7416 0.7349 0.7498

Table 4.4: MAE and RMSE values evaluated from the testing data.

4.7 Issues Encountered During Prototype Implementa-

tion

4.7.1 Equation Flaws from the Journal Article

The paper mentioned in this thesis was Yao et al. (2018) has several errors in the

equations used for the experiment. All the derivatives shown on page 7, equations 13,

15 and 16 on the paper has incorrect expressions. The incorrect equation 13 of the first

derivative for both variables zij and θij are

∂L

∂zij
= 1

σ
∑
(ij)∈D

((wijsij − zij) + yij
zij

) (4.3)

∂L

∂θ
= ∑
(i,j)∈D

(1
θ
yij − zij) − λθθ (4.4)

Part of the second derivative of zij in equation 15 is

∂2L

∂(zij)2 =
1

σ2 ∑
(i,j)∈D

(1 + yij
z2ij

) (4.5)

Part of the second derivative of θij equation 16 is

∂2L

∂(θij)2 = − ∑(i,j)∈D
(yij 1

θ2
) (4.6)

Concerning zij , Equation 4.3 should not have the summation after the 1/σ coefficient.

The reason is adding all of the elements in the first partial derivative can interfere with

Chapter 4. Results and Discussion 67

the prediction and the zij latent variable results. Notice that the 1/σ coefficient is not

squared. Therefore, the summation of the first derivative has caused the program to slow

down, although if we installed Numba. Finally, the second derivative of zij indicated in

equation 4.5 is not correct, so we have provided the correct second derivative shown in

equation 3.8 in the last chapter.

By making θij as the subject, the first derivative is correct except for the θ expression

as it should have the ij appended next to it. Equation 4.6 should have 1/σ2 appended

next to the summation coefficient, and the minus sign next to yij inside the summation

expression. Additionally, the −λθ term should have been appended next to the equation.

Therefore, we have provided the correct functions in equations 3.10 and 3.11 in the last

chapter.

The mistakes of the equation on the paper has caused us to investigate and figure

out what causes the program to slow down or freeze. We spent much time for the

trial-and-error methods to swap variables, substitute different values or introduce the

extra variable that will sometimes alleviate the issues. In other times, introducing

corrections may produce unreliable results. As the summation of the variables for the

Z variable learned using the SGD method caused the program to slow down, we have

removed the summation. For both Z and θ variables, the authors should believe that

they have forgotten to append the learning rate next to the dividing derivatives. If we

did not include the learning rates, the program would assume that the learning rate is 1,

and it will experience the values are bouncing back and forth. Finally, we overcame

the issue by adding the learning rate for both θ and Z variables and testing the suitable

values for the α variable. As a result, the program has started to work flawlessly.

Chapter 4. Results and Discussion 68

4.7.2 Human Errors Lead to Unintentional Data Overfitting

During training to reduce the cost function, we have encountered situations where

both MAE and RMSE values were around zero values, which it signals the data were

overfitting because of the programming error. While we understand the lower both

MAE and RMSE values are, the better they are in terms of performance. To emphasise

the data overfitting issue, we have mistakenly plugged the values of the R matrix (all

elements were zeros and ones) and the Rpred matrix in the MAE and RMSE equations.

As a result, it caused the calculations to produce nearly zero values of MAE and RMSE

values, and both results were mistaken as so-called very remarkable values.

We overcame the accidental data overfitting issue is we assigned all ones to the

Rpred variable of the MAE and RMSE equations. We realised the Rpred variable is set

to predict that the probability of every API-mashup relationship values should be a

little scattered outside the regression value. Once we solved the accidental overfitting

problem, both MAE and RMSE values became normal when implementing the loss

function training.

4.7.3 The Dilemma of Matrices A and M

While we utilised the SGD learning method to lower both values of equations 3.15 and

3.16 in the previous chapter to reach their local minima, it was difficult to determine if

Yao et al. (2018) provided the incorrect operator from equations 18 and 19. We thought

the API and mashup vectors derived from TF-IDF values should represent both A and

M matrices. As a result, the usage of the vectorised values can cause the program to

take a long time to execute the loss function. We have corrected the error by initialising

random variables by aij,mij ∈ {x ∣ 0 ≤ x ≤ 1 ∣ x ∈R} and set the dimensionality of A

and M by 40.

Chapter 4. Results and Discussion 69

4.8 Loss Minimisation Training in Matrices A and M

When the cost function should decrease in every iteration by utilising the SGD method,

the MF framework does allow negative values in both matrices A and M . Unlike

non-negative matrix factorisation (NMF), this study did not specify what values are

allowed in both matrices. NMF has a single rule that only positive values are allowed

in both input variables. When we were training both matrices A and M , we randomly

set the values lower than 0.05. During training, we have noticed that all values in both

matrices were slowly decreasing in each iteration, and it reached negative values in all

elements. However, the negative values in both matrices will not affect the scope of this

study. As the negative values were present, the standard matrix multiplication cancelled

out the negative values and returned the results into positive values. Suppose if we have

used both matrices in the NMF loss function defined by Lee and Seung (2001), the

experiment will fail. In reality, the MF loss function is not specific, so we assume that it

does not belong to any MF subgroups.

4.9 TF-IDF Word Vectorisation

As TF-IDF is commonly used for converting words into numerated vectors, it only

outputs the numbers that represent the importance level of a word in a document. It

does not directly define the semantics of a word. The values are the frequency of

words. By referring to Table 4.1, the document frequency (DF) and inverse document

frequency (IDF) values provided meaningless numeral values. TF-IDF does not provide

the functionality to hash the corpora into identifiable numbers. If one requires a more

accurate approach for recommending APIs for a mashup application, other applications

such as deep learning and AI can outperform the simple word calculation of TF-IDF

method.

Chapter 4. Results and Discussion 70

When natural language processing (NLP) applications can perform the task by

manipulating the metadata or keywords to produce reliable results, it can process the

corpora information in a complicated matter. However, it does not mean that we

abandon TF-IDF. Many authors (Basilico & Hofmann, 2004; Bogers & Van den Bosch,

2009; Dong & Shen, 2013; Salter & Antonopoulos, 2006; Tewari et al., 2014; Yao et al.,

2013) have published articles that conveyed CF works well with content-based filtering

methods and suggests promoting the framework as a hybrid system. Our prototype has

implemented CF to calculate the vector-based cosine similarity for a square matrix sij .

However, we did not utilise any content-based filtering in our prototype; it resulted in

partially unreliable predictions for the trained Rprob matrix.

4.10 Conclusion

In this chapter, we have discussed the experiment set up and the possible difficulties of

conducting the procedure for producing the results. We illustrated the graphs and tables

to show the results. Additionally, we have reported the details of the charts and tables

to convey information about the experiment of this research. For both MAE and RMSE

training result in a graph format, the results were consistent with the fitting of the data

as it did not underfit or overfit. Although the loss value could be lowered further, the

mashup and API invocation worked adequately.

Chapter 5

Conclusion

5.1 Introduction

In this research, we built the matrix factorisation (MF) based recommender systems

program that will implicitly increase the probability of an API (application programming

interface) invoking other mashups in a matrix. This study has provided answers on how

the MF algorithms worked for predicting the probability relationships between an API

and every existing web mashup. We will answer the research questions, as defined in

Chapter 1. There are limitations for this study and, they have impacted our time used

for building the prototype and diagnose the issues encountered during this research. In

addition to the drawbacks, we describe possible methods and improvement for future

research.

5.2 Answer to Research Questions

1. How do we integrate context information such as title, description and tags

from APIs in order to fill in the unrelated API-mashup relationships?

The latent values required for implicit learning was obtained from TF-IDF (term

71

Chapter 5. Conclusion 72

frequency - inverse document frequency) and cosine similarity calculations. Fur-

thermore, the TF-IDF and cosine similarity calculations are based on the rate of

occurrence in every word. With the required latent variables in place, the equa-

tions sourced from Yao et al. (2018) were suitable to enhance the recommendation

results in addition to slight modifications.

2. How do existing API-mashup invocations affect the accuracy of the recom-

mendation results? The machine learning method was used to provide some

clues from the existing invocations. Since the stochastic gradient descent (SGD)

rule was used for MF, we have observed the increase of relationship between

APIs and mashups. Therefore, the results indicated that there is some relationship

between unrelated APIs and mashups.

5.3 Limitations

In this study, we have utilised methods to manipulate the API list and the API-mashup

invocation dataset to implicitly increase the probability of explicitly unrelated API-

mashup invocations. Nevertheless, there are limitations for this research ranging from

the manual data preprocessing to experiment results. Because of research constraints,

the computing technologies are rapidly evolving, and they may not be guaranteed to

work correctly at the first attempt.

• Selecting the Suitable Quantity of API and Mashup Services

Selecting the suitable number of API and mashup services is problematic because

it may affect the performance of the program attempting to process and implicitly

learn the unrelated APIs. If the number of API and mashup service is small, the

results from the experiment can seriously impact the value of the API-mashup

invocations. On the other hand, if the number is large, it can decrease the program

Chapter 5. Conclusion 73

performance, and it will take days to complete a section of an algorithm.

• Data Sparsity Issues

Data sparsity problems can result in underfitting of the data. As mentioned in

the previous bullet point, the amount of API and mashup services can dictate the

reliability of the implicit data following training. It is not easy to guarantee the

reliability of the prediction.

• Dataset Character Mapping Issues

Since the dataset can support many characters encoding in Unicode-8, it can

cause a problem for the word tokeniser and lemmatiser program to trim and stem

words. For example, words containing diacritic symbols such as café can cause

the program to stop immediately. This issue will force us to replace diacritic

letters by the non-diacritic ones. Another example is the trademark symbol (™)

can also halt the process of word processing. Therefore, it can take some time

to diagnose and fix this problem by removing the unnecessary symbols from the

dataset.

• API Description Dataset Typos

The API description dataset contains some typos which can affect the outcome

of the prediction. There are some words of the API names or descriptions were

truncated. Truncated words were not done intentionally, but an accident caused

by human errors. Therefore, finding the full name of the APIs can sometimes

become impossible if the description does not mention it.

• Scalability Issues

The addition of the new APIs can cause problems for the recommendation of

web APIs. As the never-ending growth of new APIs are added to the Program-

mableWeb repository, the cold-start issue in recommender systems can affect the

Chapter 5. Conclusion 74

implicit learning of API-mashup invocations.

5.4 Further Research

We have utilised the combined MF technique to recommend APIs based on the implicit

invocation of existing mashups. The model still needs some improvements and optim-

isation to ensure the enhancement of recommender systems. This research has provided

us with the fundamentals of the MF algorithms. For future work, we could consider

adding more features to the existing MF model to investigate what they can improve for

recommender systems. After we have described the limitations of the previous section,

we will define possible improvements and future developments for the research.

• Integration of Neural Networks

Including neural networks can be a remarkable idea to enhance the algorithm

for improving the results of the recommendation for creating web mashups. By

integrating convolutional neural networks (CNN) with the MF cost function (Kim

et al., 2017), this allows further investigation of the neural networks and utilise

the opportunity to explore its properties in further studies. Also, the latent factor

model can be applied to CNN as proposed by Mongia, Jhamb, Chouzenoux and

Majumdar (2020) to investigate if it can perform better than collaborative filtering

(CF).

• Tensor Factorisation

The tensor factorisation is another possible function to combine with the existing

MF framework (Smith, Huang, Sidiropoulos & Karypis, 2018). It allows extra

attributes such as time and location to be included in the loss function to ensure the

model can learn with the additional features. Besides, it can help to recommend

APIs that were based on the timeline or location where users are curious to

Chapter 5. Conclusion 75

investigate what the recent popular items are within the previous timeframe.

• Corpora to Vectors Processing

Since we have used TF-IDF to extract words from the API descriptions dataset, it

is possible to use other methods to process every word from the document. The

Word2Vec framework is part of the neural architectures that extracts corpora with

the self-learning Skip-gram classifier (Arroyo-Fernández et al., 2019). In future

research, the Word2Vec architecture will be suitable with the integration of neural

networks.

• Reduction of Data Sparsity

As data sparsity is the most common issue with recommender systems, it affected

the recommendation performance in the experiment. To combat serious data

underfitting, we could combine both CF and content-based filtering methods to

reduce the incidence of data sparsity and enhance the likelihood that a possible

matching API implicitly invokes with suitable mashups (Yao et al., 2013). Another

possible method to attempt is to use the linked open data to calculate the similarity

from information mining (Natarajan, Vairavasundaram, Natarajan & Gandomi,

2020).

References

Adomavicius, G. & Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749. doi:
10.1109/TKDE.2005.99

Aghdam, M. H., Analoui, M. & Kabiri, P. (2016). Collaborative filtering using non-
negative matrix factorisation. Journal of Information Science, 43(4), 567-579.
doi: 10.1177/0165551516654354

Ahmad, S., Wasim, S., Gogoi, S. I. S., Srivastava, A. & Farheen, Z. (2019). Qualitative
v/s. quantitative research - a summarized review. Journal of Evidenced Based
Medicine and Healthcare 2019, 6(43), 2828-2832. doi: 10.18410/jebmh/2019/
587

Ajoudanian, S. & Abadeh, M. N. (2019). Recommending human resources to project
leaders using a collaborative filtering-based recommender system: Case study of
gitHub. IET Software, 13(5), 379-385. doi: 10.1049/iet-sen.2018.5261

Amatriain, X. & Basilico, J. (2016). Past, present, and future of recommender sys-
tems: An industry perspective. In Proceedings of the 10th ACM Conference on
Recommender Systems (p. 211–214). doi: 10.1145/2959100.2959144

Arroyo-Fernández, I., Méndez-Cruz, C.-F., Sierra, G., Torres-Moreno, J.-M. & Sidorov,
G. (2019). Unsupervised sentence representations as word information series:
Revisiting TF–IDF. Computer Speech Language, 56, 107-129. doi: 10.1016/
j.csl.2019.01.005

Basilico, J. & Hofmann, T. (2004). Unifying collaborative and content-based filtering. In
Proceedings of the Twenty-First International Conference on Machine Learning
(p. 9). doi: 10.1145/1015330.1015394

Bobadilla, J., Ortega, F., Hernando, A. & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-Based Systems, 46, 109-132. doi: 10.1016/j.knosys.2013.03
.012

Bogers, T. & Van den Bosch, A. (2009). Collaborative and content-based filtering for
item recommendation on social bookmarking websites. Journal of Philosophical
Logic, 532, 9-16.

Cacheda, F., Carneiro, V., Fernández, D. & Formoso, V. (2011). Comparison of
collaborative filtering algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM Transactions on the
Web, 5(1). doi: 10.1145/1921591.1921593

76

REFERENCES 77

Calero Valdez, A., Ziefle, M. & Verbert, K. (2016). HCI for recommender systems:
The past, the present and the future. In Proceedings of the 10th ACM Conference
on Recommender Systems (p. 123–126). doi: 10.1145/2959100.2959158

Cao, B., Liu, X., Rahman, M. D. M., Li, B., Liu, J. & Tang, M. (2017). Integrated
content and network-based service clustering and web APIs recommendation
for mashup development. IEEE Transactions on Services Computing, 1-1. doi:
10.1109/tsc.2017.2686390

Cao, Y., Li, W. & Zheng, D. (2019). A hybrid recommendation approach using LDA
and probabilistic matrix factorization. Cluster Computing, 22(4), 8811-8821. doi:
10.1007/s10586-018-1972-y

Cao, Y., Liu, J., Shi, M., Cao, B., Chen, T. & Wen, Y. (2019). Service recommendation
based on attentional factorization machine. In 2019 IEEE International Confer-
ence on Services Computing (SCC) (p. 189-196). doi: 10.1109/SCC.2019.00040

Cohen, D., Aharon, M., Koren, Y., Somekh, O. & Nissim, R. (2017). Expediting explor-
ation by attribute-to-feature mapping for cold-start recommendations. In Proceed-
ings of the Eleventh ACM Conference on Recommender Systems (p. 184–192).
doi: 10.1145/3109859.3109880

Dong, K. & Shen, Y. (2013). A hybrid content-based filtering approach: Recom-
mending microbloggers for web-based communities. In 2013 IEEE International
Conference on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing (p. 1254-1258). doi:
10.1109/GreenCom-iThings-CPSCom.2013.218

Feng, C., Liang, J., Song, P. & Wang, Z. (2020). A fusion collaborative filtering method
for sparse data in recommender systems. Information Sciences, 521, 365-379.
doi: 10.1016/j.ins.2020.02.052

Fletcher, K. (2019). Regularizing matrix factorization with implicit user preference
embeddings for web api recommendation. In 2019 IEEE International Conference
on Services Computing (SCC) (p. 1-8). doi: 10.1109/SCC.2019.00014

Fogel, P., Hawkins, D. M., Beecher, C., Luta, G. & Young, S. S. (2013). A tale
of two matrix factorizations. The American Statistician, 67(4), 207-218. doi:
10.1080/00031305.2013.845607

Gai, L. (2014). Pairwise probabilistic matrix factorization for implicit feedback
collaborative filtering. In Proceedings 2014 IEEE International Conference on
Security, Pattern Analysis, and Cybernetics (SPAC) (p. 181-190). doi: 10.1109/
SPAC.2014.6982682

Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S. & Schmidt-Thieme, L. (2010).
Learning attribute-to-feature mappings for cold-start recommendations. In 2010
IEEE International Conference on Data Mining (p. 176-185). doi: 10.1109/
ICDM.2010.129

Goldberg, D., Nichols, D., Oki, B. M. & Terry, D. (1992). Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
doi: 10.1145/138859.138867

Guo, L., Ma, J., Chen, Z.-M. & Jiang, H.-R. (2014). Incorporating item re-
lations for social recommendation. Chinese Journal of Computers, 37(1).

REFERENCES 78

Retrieved from http://cjc.ict.ac.cn/online/onlinepaper/gl
-201411595219.pdf

Guo, L., Wen, Y.-F. & Wang, X.-H. (2018). Exploiting pre-trained network embeddings
for recommendations in social networks. Journal of Computer Science and
Technology, 33(4), 682-696. doi: 10.1007/s11390-018-1849-9

Hao, Y., Fan, Y., Tan, W. & Zhang, J. (2017). Service recommendation based on targeted
reconstruction of service descriptions. In 2017 IEEE International Conference
on Web Services (ICWS) (p. 285-292). doi: 10.1109/icws.2017.44

Hu, Y., Koren, Y. & Volinsky, C. (2008). Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining (p. 263–272). doi: 10.1109/ICDM.2008.22

Hubert, L., Meulman, J. & Heiser, W. (2000). Two purposes for matrix factorization:
A historical appraisal. SIAM Review, 42(1), 68-82. Retrieved from http://
www.jstor.org/stable/2653377

Hussain, S., Keung, J., Khan, A. A., Ahmad, A., Cuomo, S., Piccialli, F., . . . Akhunzada,
A. (2018). Implications of deep learning for the automation of design patterns
organization. Journal of Parallel and Distributed Computing, 117, 256-266. doi:
10.1016/j.jpdc.2017.06.022

Iwahama, K., Hijikata, Y. & Nishida, S. (2004). Content-based filtering system for music
data. In 2004 International Symposium on Applications and the Internet Work-
shops. 2004 Workshops. (p. 480-487). doi: 10.1109/SAINTW.2004.1268677

Jain, A., Liu, X. & Yu, Q. (2015). Aggregating functionality, use history, and popularity
of APIs to recommend mashup creation. In 13th International Conference, ICSOC
2015 (p. 188-202). doi: 10.1007/978-3-662-48616-0_12

Jiang, S., Li, K. & Xu, R. Y. D. (2019). Relative pairwise relationship constrained
non-negative matrix factorisation. IEEE Transactions on Knowledge and Data
Engineering, 31(8), 1595-1609. doi: 10.1109/TKDE.2018.2859223

Kim, D., Park, C., Oh, J. & Yu, H. (2017). Deep hybrid recommender systems via
exploiting document context and statistics of items. Information Sciences, 417,
72-87. doi: 10.1016/j.ins.2017.06.026

Kim, K.-J. & Ahn, H. (2011). Collaborative filtering with a user-item matrix reduction
technique. International Journal of Electronic Commerce, 16(1), 107-128. doi:
10.2753/JEC1086-4415160104

Kluver, D. & Konstan, J. A. (2014). Evaluating recommender behavior for new users. In
Proceedings of the 8th ACM Conference on Recommender Systems (p. 121–128).
doi: 10.1145/2645710.2645742

Koren, Y., Bell, R. & Volinsky, C. (2009). Matrix factorization techniques for recom-
mender systems. IEEE Computer Society.

Kunaver, M. & Požrl, T. (2017). Diversity in recommender systems – a survey.
Knowledge-Based Systems, 123, 154-162. doi: 10.1016/j.knosys.2017.02.009

Lee, D. D. & Seung, H. S. (2001). Algorithms for non-negative matrix factoriza-
tion. In Advances in Neural Information Processing Systems 13 (p. 556-562).
Retrieved from http://papers.nips.cc/paper/1861-algorithms
-for-non-negative-matrix-factorization.pdf

http://cjc.ict.ac.cn/online/onlinepaper/gl-201411595219.pdf
http://cjc.ict.ac.cn/online/onlinepaper/gl-201411595219.pdf
http://www.jstor.org/stable/2653377
http://www.jstor.org/stable/2653377
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

REFERENCES 79

Liu, H.-F., Jing, L.-P. & Yu, J. (2018). Survey of matrix factorization based recom-
mendation methods by integrating social information. Journal of Science, 29(2),
340-362. doi: 10.13328/j.cnki.jos.005391

Liu, S.-D. & Meng, X.-W. (2015). Recommender systems in location-based social
networks. Chinese Journal of Computers, 38(2). Retrieved from http://cjc
.ict.ac.cn/online/onlinepaper/lsd-201523212539.pdf

Looi, W., Dhaliwal, M., Alhajj, R. & Rokne, J. (2019). Recommender system for
items in dota 2. IEEE Transactions on Games, 11(4), 396-404. doi: 10.1109/
TG.2018.2844121

Ma, H., Zhou, D., Liu, C., Lyu, M. R. & King, I. (2011). Recommender systems with
social regularization. In Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining (p. 287–296). doi: 10.1145/1935826.1935877

Madani, Y., Erritali, M., Bengourram, J. & Sailhan, F. (2019). Social collaborative
filtering approach for recommending courses in an e-learning platform. Procedia
Computer Science, 151, 1164-1169. doi: 10.1016/j.procs.2019.04.166

Mnih, A. & Salakhutdinov, R. R. (2008). Probabilistic matrix factor-
ization. In Advances in Neural Information Processing Systems 20
(p. 1257-1264). Retrieved from http://papers.nips.cc/paper/3208
-probabilistic-matrix-factorization.pdf

Mongia, A., Jhamb, N., Chouzenoux, E. & Majumdar, A. (2020). Deep latent factor
model for collaborative filtering. Signal Processing, 169, 107366. doi: 10.1016/
j.sigpro.2019.107366

Mu, Y., Xiao, N., Tang, R., Luo, L. & Yin, X. (2019). An efficient similarity measure
for collaborative filtering. Procedia Computer Science, 147, 416-421. doi:
10.1016/j.procs.2019.01.258

Natarajan, S., Vairavasundaram, S., Natarajan, S. & Gandomi, A. H. (2020). Resolving
data sparsity and cold start problem in collaborative filtering recommender system
using linked open data. Expert Systems with Applications, 149, 113248. doi:
10.1016/j.eswa.2020.113248

Pal, A., Parhi, P. & Aggarwal, M. (2017). An improved content based collaborative
filtering algorithm for movie recommendations. In 2017 Tenth International
Conference on Contemporary Computing (IC3) (p. 1-3). doi: 10.1109/IC3.2017
.8284357

Pera, M. S. & Ng, Y.-K. (2018). Recommending books to be exchanged online in the
absence of wish lists. Journal of the Association for Information Science and
Technology, 69(4), 541-552. doi: 10.1002/asi.23978

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137. doi:
10.1108/eb046814

Punyabukkana, P. (2017). Teaching research methods for computer science students
using active learning approach. In 2017 IEEE 6th International Conference on
Teaching, Assessment, and Learning for Engineering (TALE) (p. 256-260). doi:
10.1109/TALE.2017.8252343

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. & Riedl, J. (1994). Grouplens:

http://cjc.ict.ac.cn/online/onlinepaper/lsd-201523212539.pdf
http://cjc.ict.ac.cn/online/onlinepaper/lsd-201523212539.pdf
http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf
http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf

REFERENCES 80

An open architecture for collaborative filtering of netnews. In CSCW ’94: Pro-
ceedings of the 1994 ACM conference on Computer supported cooperative work
(p. 175-186). doi: 10.1145/192844.192905

Resnick, P. & Varian, H. R. (1997). Recommender systems. Communications of the
ACM, 40(3), 56–58. doi: 10.1145/245108.245121

Salter, J. & Antonopoulos, N. (2006). Cinemascreen recommender agent: Combining
collaborative and content-based filtering. IEEE Intelligent Systems, 21(1), 35-41.
doi: 10.1109/MIS.2006.4

Schein, A. I., Popescul, A., Ungar, L. H. & Pennock, D. M. (2002). Methods and metrics
for cold-start recommendations. In Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(p. 253–260). doi: 10.1145/564376.564421

Sedhain, S., Menon, A. K., Sanner, S., Xie, L. & Braziunas, D. (2017). Low-
rank linear cold-start recommendation from social data. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) (p. 1502-1508).
Retrieved from http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14828

Sedhain, S., Sanner, S., Braziunas, D., Xie, L. & Christensen, J. (2014). Social
collaborative filtering for cold-start recommendations. In Proceedings of the
8th ACM Conference on Recommender Systems (p. 345–348). doi: 10.1145/
2645710.2645772

Shakirova, E. (2017). Collaborative filtering for music recommender system. In 2017
IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus) (p. 548-550). doi: 10.1109/EIConRus.2017.7910613

Shi, Y., Larson, M. & Hanjalic, A. (2014). Collaborative filtering beyond the user-item
matrix: A survey of the state of the art and future challenges. ACM Computing
Surveys, 47(1). doi: 10.1145/2556270

Singh, J. & Gupta, V. (2019). A novel unsupervised corpus-based stemming technique
using lexicon and corpus statistics. Knowledge-Based Systems, 180, 147-162.
doi: 10.1016/j.knosys.2019.05.025

Smith, B. & Linden, G. (2017). Two decades of recommender systems at Amazon.com.
IEEE Internet Computing, 21(3), 12-18. doi: 10.1109/MIC.2017.72

Smith, S., Huang, K., Sidiropoulos, N. D. & Karypis, G. (2018). Streaming tensor fac-
torization for infinite data sources. In Proceedings of the 2018 SIAM International
Conference on Data Mining (p. 81-89). doi: 10.1137/1.9781611975321.10

Sohrabi, B., Toloo, M., Moeini, A. & Nalchigar, S. (2015). Evaluation of recom-
mender systems: A multi-criteria decision making approach. Iranian Journal of
Management Studies (IJMS), 8(4), 589-605. doi: 10.22059/ijms.2015.55003

Su, X. & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 1-9. doi: 10.1155/2009/421425

Tang, J., Hu, X. & Liu, H. (2013). Social recommendation: A review. Social Network
Analysis and Mining, 3(4), 1113-1133. doi: 10.1007/s13278-013-0141-9

Tewari, A. S., Kumar, A. & Barman, A. G. (2014). Book recommendation system based

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14828
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14828

REFERENCES 81

on combine features of content based filtering, collaborative filtering and associ-
ation rule mining. In 2014 IEEE International Advance Computing Conference
(IACC) (p. 500-503). doi: 10.1109/IAdCC.2014.6779375

Turnip, R., Nurjanah, D. & Kusumo, D. S. (2017). Hybrid recommender system for
learning material using content-based filtering and collaborative filtering with
good learners’ rating. In 2017 IEEE Conference on e-Learning, e-Management
and e-Services (IC3e) (p. 61-66). doi: 10.1109/IC3e.2017.8409239

Verma, S. K., Mittal, N. & Agarwal, B. (2013). Hybrid recommender system based on
fuzzy clustering and collaborative filtering. In 2013 4th International Conference
on Computer and Communication Technology (ICCCT) (p. 116-120). doi: 10
.1109/ICCCT.2013.6749613

Wang, G., Jiang, J., Wang, H.-R. & Yang, S.-L. (2019). Study of group recommendation
based on probabilistic matrix factorization. Chinese Journal of Computers, 42(1).
doi: 10.11897/SP.J.1016.2019.00098

Wang, H., Tao, Y., Yu, Q., Lin, X. & Hong, T. (2018). Incorporating both qualitative
and quantitative preferences for service recommendation. Journal of Parallel and
Distributed Computing, 114, 46-69. doi: 10.1016/j.jpdc.2017.12.005

Wang, X., Lu, W., Ester, M., Wang, C. & Chen, C. (2016). Social recommendation
with strong and weak ties. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management (p. 5–14). doi: 10.1145/
2983323.2983701

Wang, X., Zhang, W., Yan, J., Yuan, X. & Zha, H. (2018). On the flexibility of block
coordinate descent for large-scale optimization. Neurocomputing, 272, 471-480.
doi: 10.1016/j.neucom.2017.07.024

Xiang, R., Neville, J. & Rogati, M. (2010). Modeling relationship strength in online
social networks. In Proceedings of the 19th International Conference on World
Wide Web (p. 981-990). doi: 10.1145/1772690.1772790

Xie, B., Han, P., Yang, F., Shen, R.-M., Zeng, H.-J. & Chen, Z. (2007). DCFLA:
A distributed collaborative-filtering neighbor-locating algorithm. Information
Sciences, 177(6), 1349 - 1363. doi: 10.1016/j.ins.2006.09.005

Xiong, R., Wang, J., Zhang, N. & Ma, Y. (2018). Deep hybrid collaborative filtering for
web service recommendation. Expert Systems with Applications, 110, 191-205.
doi: 10.1016/j.eswa.2018.05.039

Yang, X., Guo, Y., Liu, Y. & Steck, H. (2014). A survey of collaborative filtering
based social recommender systems. Computer Communications, 41, 1-10. doi:
10.1016/j.comcom.2013.06.009

Yang, X., Steck, H. & Liu, Y. (2012). Circle-based recommendation in online social
networks. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (p. 1267–1275). doi: 10.1145/2339530
.2339728

Yao, L., Sheng, Q. Z., Ngu, A. H. H., Yu, J. & Segev, A. (2015). Unified collaborative
and content-based web service recommendation. IEEE Transactions on Services
Computing, 8(3), 453-466. doi: 10.1109/TSC.2014.2355842

Yao, L., Sheng, Q. Z., Segev, A. & Yu, J. (2013). Recommending web services via

REFERENCES 82

combining collaborative filtering with content-based features. In 2013 IEEE 20th
International Conference on Web Services (p. 42-49). doi: 10.1109/ICWS.2013
.16

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B. & Huang, C. (2018). Mashup
recommendation by regularizing matrix factorization with API co-invocations.
IEEE Transactions on Services Computing, 1-1. doi: 10.1109/tsc.2018.2803171

Yu, Z., Wong, R. K. & Chi, C.-H. (2017). Efficient role mining for context-aware
service recommendation using a high-performance cluster. IEEE Transactions on
Services Computing, 10(6), 914-926. doi: 10.1109/tsc.2015.2485988

Zang, Y., An, Y. & Hu, X. T. (2014). Automatically recommending healthy living
programs to patients with chronic diseases through hybrid content-based and
collaborative filtering. In 2014 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM) (p. 578-582). doi: 10.1109/BIBM.2014.6999224

Zetlaoui, M., Feinberg, M., Verger, P. & Clémençon, S. (2011). Extraction of
food consumption systems by nonnegative matrix factorization (NMF) for the
assessment of food choices. Biometrics, 67(4), 1647-1658. doi: 10.1111/
j.1541-0420.2011.01588.x

Zhang, R., Liu, Q., Chun-Gui, Wei, J. & Huiyi-Ma. (2014). Collaborative filtering for
recommender systems. In 2014 Second International Conference on Advanced
Cloud and Big Data (p. 301-308). doi: 10.1109/CBD.2014.47

Zhang, S., Wang, W., Ford, J. & Makedon, F. (2006). Learning from incomplete
ratings using non-negative matrix factorization. In Proceedings of the 2006
SIAM International Conference on Data Mining (p. 549-553). doi: 10.1137/
1.9781611972764.58

Zhang, W., Liu, F., Xu, D. & Jiang, L. (2019). Recommendation system in social
networks with topical attention and probabilistic matrix factorization. PLoS One,
14(10), 1-18. doi: 10.1371/journal.pone.0223967

Zhang, Y., Meng, K., Kong, W. & Dong, Z. Y. (2019). Collaborative filtering-based elec-
tricity plan recommender system. IEEE Transactions on Industrial Informatics,
15(3), 1393-1404. doi: 10.1109/TII.2018.2856842

Zhao, F., Yan, F., Jin, H., Yang, L. T. & Yu, C. (2017). Personalized mobile searching
approach based on combining content-based filtering and collaborative filtering.
IEEE Systems Journal, 11(1), 324-332. doi: 10.1109/JSYST.2015.2472996

Zhong, Y. & Fan, Y. (2017). Extracting relevant terms from mashup descriptions for
service recommendation. Tsinghua Science and Technology, 22(3), 293-302. doi:
10.23919/TST.2017.7914201

Appendix A

Glossary and Abbreviations

Algorithm: A sequence of ordered instructions to achieve its computing solutions.

Application programming interface (API): A computing interface that provides a

set of instructions to run an application by another, equivalent to a restaurant

menu.

Artificial intelligence (AI): A computing method which resembles a human brain

that can execute tasks and learn artificially without needing manual intervention.

Central processing unit (CPU): A computer hardware is located in the heart of a

motherboard that executes commands from a program.

Coefficient: A number, known or unknown that is to be multiplied.

Collaborative filtering (CF): A filtering method that outputs results based on the

users’ tastes.

Comma-separated values (CSV): The file format that stores text separated by a

comma.

Content-based filtering: A filtering method that provides outcomes based on attrib-

utes such as name, age and tags.

Convergence: The end point (minimum or maximum) following the implicit learning

of a cost function.

83

Appendix A. Glossary and Abbreviations 84

Convolutional neural networks (CNN): A class of neural networks that utilises the

complex neurons based on deep learning motivated by the biological nervous

system.

Corpus: The text of a document.

DDR4: Double data rate 4

Derivative: A reduced mathematical function produced following the calculus differ-

entiation of an original one.

DF: Document frequency

Equation: A mathematical expression that calculates the output value equal to the

opposite side.

Function: A set of mathematical instructions, usually equations that manipulates the

input values and provides a resulting outcome.

GB: Gigabytes

GDDR5: Graphics double data rate 5

HDD: Hard disk drive

IDF: Inverse document frequency

k-nearest neighbours (kNN): The algorithm that finds a finite quantity of nearest

items based on the k number of values.

Latent variable: A variable that is not explicitly known.

MAE: Mean absolute error

Mashup: A computer application that relies on external software in order to achieve

the purpose of its function.

Matrix: A rectangular array that stores a set of numbers.

Matrix factorisation (MF): A method of computation that utilises the matrix multi-

plication method.

Metadata: Attributes of a file.

Natural language processing (NLP): A process part of artificial intelligence that

Appendix A. Glossary and Abbreviations 85

processes human languages by speech and written words.

NMF: Non-negative matrix factorisation

Overfitting: Data that corresponds very close to a regression curve.

PMF: Probabilistic matrix factorisation

PPMF: Pairwise probabilistic matrix factorisation

Random-access memory (RAM): A computer memory that is installed on a mother-

board that stores current temporary data of a running application.

Recommender systems (RS): The framework for recommending items to users.

RMSE: Root mean square error

RPR-NMF: Relative pairwise relationship - non-negative matrix factorisation

SDK: Software development kit

Stochastic gradient descent (SGD): A machine learning method that lowers the value

until it reaches its convergence point.

SVD: Singular value decomposition

TB: Terabytes

TF: Term frequency

TF-IDF: Term frequency - inverse document frequency

Tokenise: The procedure for dividing all words and symbols from a large text into a

list of separated words and symbols.

Underfitting: Data that are scattered outside a regression curve.

Variable: A computing or programming storage location for storing any data.

WNMF: Weighted non-negative matrix factorisation

Appendix B

Prototype Implementation

The prototype for this research is in cloud storage, and the link for the zip file is:

https://www.dropbox.com/sh/8xbvc9zjvcpoa43/AAA1ZdHgq0qssjZ9dDBwG9y8a?dl=0

86

https://www.dropbox.com/sh/8xbvc9zjvcpoa43/AAA1ZdHgq0qssjZ9dDBwG9y8a?dl=0

	Abstract
	Attestation of Authorship
	Acknowledgements
	Introduction
	Motivation
	Background
	Recommender Systems
	Collaborative Filtering
	Matrix Factorisation

	Research Question
	Contribution
	Thesis Structure

	Literature Review
	Introduction
	Filtering Methods
	Collaborative Filtering
	Content-Based Filtering

	Matrix Factorisation
	Probabilistic Matrix Factorisation
	Non-Negative Matrix Factorisation

	Recommendation Types
	Service Recommendation
	Social Recommendation

	Conclusion

	Research Method
	Introduction
	Approach Overview
	Data Preprocessing
	Word Computation

	Data Source
	Technical Details of the Proposed Method
	TF-IDF Calculation
	Cosine Similarity Calculation
	Model Learning and Increasing the Logarithm Function
	Loss Minimisation

	Conclusion

	Results and Discussion
	Introduction
	Experiments
	Experiment Setup
	Acceleration of the Performance
	Exporting Variables to CSV Files
	Evaluation Metrics
	How the Experiment was Conducted

	Word Extraction Results
	User-Item Matrix Results
	Experiment Results
	Logarithm Function Results
	Loss Function Results

	Evaluation Metrics Results
	MAE and RMSE Training Graph
	MAE and RMSE Training Results
	MAE and RMSE Testing Results

	Issues Encountered During Prototype Implementation
	Equation Flaws from the Journal Article
	Human Errors Lead to Unintentional Data Overfitting
	The Dilemma of Matrices A and M

	Loss Minimisation Training in Matrices A and M
	TF-IDF Word Vectorisation
	Conclusion

	Conclusion
	Introduction
	Answer to Research Questions
	Limitations
	Further Research

	References
	Glossary and Abbreviations
	Prototype Implementation

