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Abstract 

Health monitoring systems have rapidly evolved during the past two decades and have 

the potential to change the way healthcare is currently delivered. Smart monitoring 

systems automate patient monitoring tasks and thereby improve the patient workflow 

management. Moreover, expert systems have the potential to improve clinicians’ 

performance by accurately executing repetitive tasks, to which humans are ill-suited. 

Clinicians working in hospital wards are responsible for conducting a multitude of tasks 

which require constant vigilance and thus the need for a smart decision support system 

has arisen. In particular, wireless patient monitoring systems are emerging as a low cost, 

reliable and accurate means of healthcare delivery. 

This study focuses on three important areas of healthcare: wireless, remote and real-

time vital signs monitoring, interpreting multiple physical signs and falls detection and 

prediction for hospitalised older adults.  

Vital signs monitoring systems are rapidly becoming the core of today’s healthcare 

deliveries. The paradigm has shifted from traditional and manual recording to computer 

based electronic records and further to handheld devices as versatile and innovative 

healthcare monitoring systems. The system proposed in this thesis aims to aid in the 

diagnosis of patients’ health conditions from the collected vital signs and assist 

clinicians with the interpretation of multiple physical signs. Data from a total of 30 

patients have been collected in New Zealand Hospitals under local and national ethics 

approvals. The system records blood pressure, heart rate (pulse), oxygen saturation 

(SpO2), ear temperature and blood glucose levels from hospitalised patients and 

transfers this information to a web-based software application for remote monitoring 

and further interpretation. Ultimately, this system achieved a high level of agreement 

with clinicians’ interpretation when assessing specific physical signs such as 

bradycardia, tachycardia, hypertension, hypotension, hypoaxemia, fever and 

hypothermia, and was able to generate early warnings. The performance of the vital 

signs interpretation system was validated through off-line as well as real-time tests with 

a high level of agreement between the system and the physician. 

Another aim of this study was to develop a robust falls detection as well as falls risk 

prediction system. The proposed system employs real-time vital signs, motion data, falls 
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history and other clinical information, which is a valuable tool for hospital falls 

prevention. The falls risk prediction model has been tested and evaluated with 30 

patients using the hospital’s falls scoring scale. 
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CHAPTER 1 Introduction 

We are witnessing one of the greatest technological shifts in every area of life, 

especially in daily life activities and healthcare delivery. The use of information and 

communications combined with medical and engineering technologies enable healthcare 

researchers to enhance patient monitoring at home, hospital and outdoors. Customised 

monitoring is also available for children, adults and older adults including people with 

disabilities and people with special healthcare needs. Today, clinicians, nurses and 

family members can receive instant alert/messages about health information of their 

patients on a smartphone, tablet, laptop, personal digital assistant (PDA) or personal 

computer (PC). The most commonly performed monitoring is the collection of patients’ 

vital data using state-of-the-art medical devices, sensors and wearable textiles which 

collect and transmit the data to a remote server or processing unit for analysis, storing 

and generating alerts to other devices [1]. 

Advanced information technology and communication devices enable healthcare 

providers to facilitate complex medical problems, minimise errors and reduce the 

overall healthcare costs. According to the World Health Organization (WHO): 

“The delivery of healthcare services, where distance is a critical factor, by all 

healthcare professionals using information and communication technologies for the 

exchange of valid information for diagnosis, treatment and prevention of disease and 

injuries, research and evaluation, and for the continuing education of healthcare 

providers, all in the interests of advancing the health of individuals and their 

communities” [2]. 

Recent research is highly focused on the area of remote/mobile and wireless patient 

monitoring using body sensors, wireless devices and/or wearable systems. Patient 

monitoring systems (PMS) are playing a critical role in decision support, early diagnosis 

and knowledge-based support to the healthcare professionals. Such systems have been 

established as expanding areas of research using their advanced features and capabilities 

to turn ‘data’ into ‘useful information’. It is reported that an ideal vital signs monitoring 

system should be able to: (i) collect high quality data via medical devices/sensors; (ii) 

interpret and present collected data in a meaningful and valuable manner; (iii) facilitate 

decision support via expert knowledge into real health situations and (iv) perform 
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appropriate actions with clinicians’ feedback to the patient on the basis of collected data 

[3, 4]. Such systems are being designed and developed for every possible healthcare 

scenario i.e. emergency departments and remote monitoring of indoor and outdoor 

locations [5]. Remote monitoring systems, in particular, play an important role when 

patient and doctor are at a distance and such systems are capable of reducing healthcare 

related costs and enhancing the quality of patient healthcare delivery [5]. 

The healthcare focus has been gradually evolving from traditional medical treatment of 

existing conditions to include prediction, prevention and/or early detection [6]. A 

number of reviews, surveys and interviews have been conducted to evaluate the benefits 

of such systems. The use of internet based social and professional services offered 

across computers and smartphones potentially enables such applications. Patient 

monitoring systems (PMS) in particular are playing a critical role in decision support, 

early diagnosis and knowledge-based support to healthcare professionals [1, 7, 8]. 

Email reminders, short messaging services, electronic health records, medical history 

and e-prescriptions are already part of healthcare services and are cost effective and 

reliable [9]. This research focuses on the monitoring and interpretation of vital signs. 

1.1 Need for a Computerised Vital Signs Monitoring System 

There is increasing interest in potentially preventable causes of in-hospital morbidity 

and mortality [10]. Evidence suggests that the management of many critically ill 

patients can be improved with the result that some cardiac arrests, deaths and intensive 

care unit (ICU) admissions may be avoided [11]. It is reported that prior to cardiac or 

respiratory arrest up to 84% of patients have significant physiological deterioration 

(vital signs) [12]. Often insufficient action is taken, despite up to 60% of arrests on 

general hospital wards having potentially correctable antecedent events, such as hypoxia 

and hypotension [12]. 

To assist in the early detection of physical signs, many hospitals now use an ‘early 

warning score’ (EWS) that allocates points to routine vital signs measurements on the 

basis of their changes from a ‘‘normal’’ range [13]. These points provide EWS and the 

outcome from the weighted values requires the appropriate set action to be taken by the 

ward staff. The process by which EWS is obtained involves the accurate vital signs 

collection, the correct recording (manually) of a weighted value according to the degree 

of change and the arithmetical addition of weighted values to form EWS. Each of these 
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stages can introduce error, which may influence the EWS. Errors may also occur in the 

transcription of raw or derived data on to paper charts. There is always the chance of 

over-scoring that may lead to the unnecessary calling of medical staff. Underscoring is 

also possible which may lead to a delay in the detection of patient health deterioration 

[13]. Some of the studies reported that as many as 80% of ward patients have 

physiological parameters outside normal ranges within the 24 hours preceding intensive 

care unit (ICU) admission [14]. 

There is thus an argument for a reliable automated (computerised) early detection and 

vital signs monitoring system in hospitals’ general wards. This research aims to develop 

the remote/wireless vital signs monitoring and early detection system in order to detect 

multiple physical signs in older adults in hospital ward settings. 

1.2 Classification of Patient Monitoring Systems 

Patient monitoring systems (PMS) are classified into various categories according to 

their operation. Remote health monitoring systems (RHMS) refer to those with remote 

access or systems which can send data to/or from a remote location. The function of this 

type of system ranges from a single to multiple parameters which cover a variety of 

symptoms and physical signs and can be utilised in individual homes as well as 

hospitals. Mobile health monitoring systems (MHMS) refer to smartphones, personal 

digital assistants (PDAs) and pocket personal computer (PPC) based systems which are 

used as the main processing station or in some cases as the main working module. 

RHMS and MHMS are considered to be more convenient and cost effective than 

traditional, institutional care, since they enable patients to remain in their usual 

environment whilst receiving professional healthcare services [15]. Wearable health 

monitoring systems (WHMS) refer to wearable devices or biosensors, consisting of 

WHMS, RHMS and/or MHMS that can be worn by patients. Smart health monitoring 

systems (SHMS) are often referred to as advanced technology or a new approach to 

healthcare monitoring, including vital signs monitoring systems (VSMS). They usually 

consist of smart devices or a so-called ‘smart’ approach to address healthcare issues. 

Vital signs include heart rate (pulse) (HR), blood pressure (BP), electrocardiography 

(ECG), oxygen saturation (SpO2), body or tympanic (ear) temperature (Temp. or T) and 

respiratory rate (RR). Figure 1.1 demonstrates the classification of the HMS and its 

subsections. 
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Figure 1.1 Classification of health monitoring systems (HMS), where WHMS is wearable health 

monitoring system, MHMS is mobile health monitoring system, and RHMS is remote health 

monitoring system. 

1.3 Overview of Current Monitoring Systems 

During the past decade there has been rapid growth in advanced health monitoring 

techniques and methods to assist healthcare professionals to more accurately monitor 

older adults [16-18] in relation to age-related diseases such as dementia [19, 20], 

Alzheimer’s Disease [21, 22] and Parkinson’s Disease [23-25]. Since there are no 

restrictions to HMS applications, they can be used in hospital [26-29], residential [18, 

30, 31] and outdoor settings using mobile broadband, global positioning system (GPS) 

[32] or radio frequency identification (RFID) technology [20, 33]. 

Although the technology is becoming more sophisticated and advanced, still there are 

some concerns with quality of medical data, security of patient medical information, 

stability of complex monitoring systems, acceptability by the medical staff, usability, 

comfort and the frequency of false alarms being generated. However, a number of 

studies have been conducted in the last two decades to address these concerns. For 

instance, Imhoff and Kuhls [34] have identified that up to 90% of all alarms in critical 

care monitoring, are false positives. Others researchers have proposed further measures 

to reduce these false alarms, which include; modifying the range of parameters, 
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reducing threshold values, or incorporating a time delay in generating the alarms [35]. 

Current issues and challenges facing by PMS are discussed in Section 1.6. 

The architectural model of smart health monitoring systems with the communication 

technologies are demonstrated in Figure 1.2. In general, most systems employ similar 

behavioural models with some modifications to the software and/or technology. 

 

Figure 1.2 Overall architecture of smart health monitoring systems. 

A definition of the terminology associated with this advanced technology is necessary 

in order to understand these state-of-the-art devices and systems which are now 



6 

 

dominating and revolutionising PMS. In this context, PMS refers to the smart systems 

which monitor, collect or process data on remote/wireless platforms. Wireless sensor 

area network (WSAN), wireless body area network (WBAN), wireless sensor network 

(WSN), body area network (BAN) and personal area network (PAN) are terms for 

wireless wearable telehealth monitoring systems for the collection of vital signs from 

patients by attaching sensors directly to the body or via a garment (e-textile). Figure 1.3 

shows the networking of PMS in a five-layered structure. This model has been 

developed after studying the design concepts of various PMS from the literature. The 

next section introduces the vital sign monitoring systems and their components. 

 

Figure 1.3 Overview of five layered smart patient monitoring system, where PAN represents 

personal area network, BAN is body area network, LAN is local area network, WAN is wide area 

network and MAN represents metropolitan area network. 

1.4 Vital Signs Monitoring 

Vital signs or physiological parameters are the critical factors to determine an 

individual’s health status. For centuries, vital signs measurement has been the very first 

assessment, which includes counting the number of pulses in one minute and checking 

forehead palpation for body temperature manually. The monitoring of vital signs has 

been an important and critical procedure to gain information about the health status of 

patients in any given scenario. There have been continuous improvement and 

enhancement of the vital signs collection equipment, transmission protocols and 
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graphical presentation to the clinician in an informative and easy to understand 

approach. Often, vital signs are considered important in the early detection of health 

related issues only if they are collected and presented accurately [36]. 

Today, vital signs are incorporated in every basic health assessment plan, as the simple 

measurements of physiological parameters that represent a set of objective data used to 

determine general parameters of a patient’s health and viability. These values influence 

the medical professional’s interpretation of a patient’s overall condition and affect the 

course of treatment for each patient individually. Although vital signs monitoring is one 

of the most commonly performed task in healthcare, most of the literature has reported 

that the frequency of obtaining vital signs depends on hospital policy, nursing judgment 

or physicians’ written instruction and is commonly based on the patient’s health 

complaint. For example, acute stroke units have guidelines that require vital signs 

monitoring every 15 minutes during the acute phases of care and most intensive care 

units require a minimum of hourly records of vital signs [37]. 

Motivating factors for engineers, medical professionals and scientists towards 

continuous enhancement and development of advanced vital signs monitoring systems 

are: high healthcare costs, increasing worldwide population, increase of older adult 

population, adoption of mobile phones (smartphones) and the trend of ‘being online’ 

and ‘always connected’. 

The latest, advanced, sophisticated vital signs monitoring systems are useful in early 

detection and early warning in cases of health deterioration [38-43]. These alerts can be 

followed-up by medical professionals with prescribed medical procedures to investigate 

further. One study found that more than half of the 3160 admissions to five acute 

hospitals had at least one recording of early signs of critical illness (e.g. SpO2 < 95%) 

[44]. A recent review recommended that every patient should have a documented plan 

for vital signs monitoring that includes: physiological parameters to assess, time, 

duration and plan [45]. In order to identify and monitor acutely ill patients such systems 

should be used more frequently in clinical settings because critically ill patients 

frequently demonstrate signs of deterioration and that early intervention often reduces 

grave consequences. 

A common example of using vital signs monitoring for early warning generation is a 

widely adopted scoring mechanism called Early Warning Score (EWS). Derangement in 
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any of the parameters is assigned a number and the sum of these is used to calculate an 

overall EWS [46]. There has been rapid growth in techniques and methods to assist 

healthcare professionals in achieving better healthcare delivery for older adults [16-18] 

and people with disabilities [47]. 

Figure 1.4, shows the current trend of vital signs monitoring systems in different types, 

connectivity, categories and places including online integration [48-51]. 

 

Figure 1.4 Current trend and integration of vital signs monitoring system. 

1.4.1 Blood Pressure 

Blood pressure (BP) refers to the pressure exerted by blood against the arterial wall. BP 

is an important physiological parameter to measure the reflection of blood flow when 

the heart is contracting (systole) and relaxing (diastole) [52]. In the acute medical 

setting changes or trends in BP often give the medical professionals an early indication 

to start appropriate medical treatment. For example, a drop in BP has been found to be a 

common sign in patients prior to cardiac arrest [52]. The importance of measuring BP 

accurately cannot be over-emphasised and yet it is one of the most inaccurately 

measured vital signs. If a BP measurement consistently underestimates the diastolic 
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pressure by 5mmHg, it could result in two thirds of hypertensive patients being ignored 

for preventative treatment [52]. 

BP was first measured using a device in the late 18th and early 19th centuries [53]. Since 

then, there has been a steady improvement in BP measuring devices. Figure 1.5, shows 

the evolution of BP measurement devices; Figure 1.5(a) shows a traditional manual 

sphygmomanometer which requires a stethoscope to measure the pressure [54]. This 

device is usually used by trained medical practitioners in a quiet environment. Figure 

1.5(b) shows an automatic Boso-medicus prestige BP monitor, a wireless Bluetooth 

(BT) device which measures BP and HRand wirelessly transmits the recorded data via 

Bluetooth (BT) [55]. It can record the BP data at user-defined time intervals using a 

simple user interface feature. Similar devices have been used in many clinical trials with 

clinically accurate and reliable measurements [56]. Figure 1.5(c) shows the latest 

automatic wrist BP monitor [57] which has a large memory to store the recording, but 

lacks wireless transmission. It is reported that such devices are often at the clinical 

validation and medical trial stage and therefore the adoption of these devices in clinical 

settings is likely to occur in the ‘near future’. The patient’s mobility would be limited 

using most devices due to the cuff inflation feature, which makes the arm immobile. 

There has been some progress in the design of cuff-less BP monitors, such as a wrist BP 

monitor as shown in Figure 1.5(c). 

   

a b c 

Figure 1.5 (a) A manual sphygmomanometer [54], (b) An automatic Boso-medicus prestige BP 

monitor [55] and (c) A latest HL-168B automatic wrist BP monitor [57]. 
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1.4.2 Pulse (Heart Rate) and Oxygen Saturation (SpO2) 

Pulse is defined as the palpable rhythmic expansion of an artery produced by the 

increased volume of blood pushed into the vessel by the beating of the heart [58]. Pulse 

rate is the number of pulses recorded in one minute. In most clinical circumstances 

pulse rate is identical (very similar) to heart rate. Critical factors that affect the pulse 

rate are: age, existing/on-going medical conditions and medication. The duration of 

pulse monitoring for achieving an accurate reading of pulse is a debatable topic often 

reported in the literature as 15 sec or 30 sec or longer [59]. It is reported that counting 

the pulse for 30 seconds or less is potentially problematic as an irregular pulse may not 

be detected during this interval. Moreover, the contradictory findings of studies reported 

on the relationship between the length of pulse assessment and accuracy [60]. It was 

also suggested that some other factors such as irregular pulse or if the person is cold, 

play a significant role in the inaccuracy of reading [61].  

Pulse oximeters usually use red and infrared lights to measure SpO2. These devices 

apply light near to a finger or body part and measure the amount of light received by a 

sensor under the body part. The difference of the absorbed signal can be mapped to a 

SpO2 value. This also provides a plethysmographic signal, from which heart rate and 

further blood flow information can be derived. In the busy medical environment, 

medical professionals are often loaded with many patient specific tasks and often there 

is a chance of missing a critical physiological measurement [62]. Therefore, using an 

accurate pulse oximeter to measure a physiologic parameter often increases the chance 

of early detection of illness or other underlying health issues. It gives medical 

professionals the opportunity to identify and perform further clinical assessments. 

Figure 1.6(a) shows a traditional-manual way of pulse measurement which is still 

considered to be a gold standard because of its 100% accuracy and this is usually 

performed by health practitioners [63]. Figure 1.6(b) shows an accurate hospital grade 

portable hand-held pulse oximeter [64] and Figure 1.6(c) shows a Nonin’s Onyx II 

finger clip oximeter. It is a wireless Bluetooth device which records and transmits the 

pulse (HR) and oxygen saturation continuously to any BT enabled machine [65]. 
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a b c 

Figure 1.6 (a) A manual way of pulse measurement which is still considered as a gold standard 

because of its 100% accuracy [63], 2 (b) A hospital grade portable hand-held pulse oximeter [64] 

and 2 (c) A Nonin’s Onyx II finger clip Bluetooth oximeter [65]. 

1.4.3 Body Temperature 

The balance between heat generated and heat lost is represented as the body’s core 

(internal) temperature. Core temperature is technically difficult to measure (except by 

an anal reading which is distressing for the patient) and in most clinical circumstances it 

is acceptable to approximate core temperature by measurement of peripheral body 

temperature in the mouth, ear (ear drum = tympanic membrane) or skin. Factors that 

may not affect the body’s core temperature but can contribute to the inaccuracy of these 

peripheral measurements are consumption of hot or cold fluids, vasoconstriction of the 

peripheral arteries (e.g. cold hands) or wearing warm clothes. There are several factors 

that need to be considered in order to have an accurate and reliable peripheral 

temperature measurement. One study found significant differences in the accuracy and 

consistency of several commonly used devices for measuring temperature including 

tympanic, oral disposable, oral electric and temporal artery [66]. Figure 1.7 shows the 

evolution of temperature measurement devices over the past years. Figure 1.7(a) shows 

mercury in a glass thermometer which is treated as a gold standard measurement [67]. 

Figure 1.7(b) shows the Omron’s instant ear thermometer measurement device which is 

an instant, reliable and compact ear temperature device and is now in use in many 

healthcare facilities [68]. Figure 1.7(c) shows the G-plus wireless remote body 

temperature used for continuous body temperature measurement which transfers the 

temperature readings remotely to its base unit [69]. 
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Figure 1.7 (a) A mercury in glass thermometer [67], (b) The Omron’s instant ear thermometer 

measurement device [68] and (c) The G-plus wireless remote body temperature used for continuous 

body temperature measurement [69]. 

1.4.4 Respiratory Rate 

The number of breaths taken in a given time (usually 1 minute) is known as the 

respiratory rate and among all the vital signs, the respiratory rate, in particular, is often 

not recorded and/or neglected. This is in spite of the fact that an abnormal respiratory 

rate has been shown to be an important predictor of serious events such as cardiac arrest 

and admission to an intensive care unit (ICU) [70]. It is also considered as one of the 

most sensitive (and early) indicators of critical illness [71]. An increase from the 

patient’s normal rate of even three to five breaths per minute is an early and important 

sign of respiratory distress and potential hypoxaemia. In the acutely ill patient, it is 

recommended that the respiratory rate should be counted for a full minute, rather than 

30 seconds [72]. 

1.5 Motivation 

The emergence of PMS applications can address key issues or challenges such as: the 

increasing worldwide healthcare related costs, the increasing populations of older 

adults, the high usage of ubiquitous devices (smartphone, tablet, laptop, PDA or PC) in 

our daily lives and enhancing overall healthcare delivery. Some of the key reasons that 

motivate this research towards better healthcare delivery are discussed here: 

1.5.1 Worldwide Healthcare Costs 

According to US Bureau of the Census [73], within the next decade, annual U.S. 

expenditure on healthcare is projected to reach $4 trillion/year, or 20% of the gross 
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domestic product [74]. During this period, all United States healthcare spending is 

projected to grow at an annual average rate of 5.8%, 1.1 percentage points faster than 

expected growth in Gross Domestic Product (GDP). By 2020, healthcare spending is 

projected to be 19.8% of GDP, increasing from 17.6% in 2010. All healthcare spending 

will reach $4.64 trillion in 2020 [75, 76]. Health monitoring systems can play a 

significant role in reducing hospitalization, the burden on medical staff, consultation 

time, waiting time and overall healthcare costs. 

1.5.2 Increasing Older Adult Population 

In the last two decades, the rapid increase in the older adult population (those aged 65 

years and over) has proved to be a major challenge in healthcare. The number of 

patients now requiring continuous monitoring has risen proportionally with this increase 

in population and, by 2025, this (65+) group will number approximately 1.2 billion. By 

2050, there will be 2 billion in this age group, with 80% in developing countries [77]. 

Moreover, in developed countries, older adults will constitute nearly 20% of the overall 

population according to the population reference bureau [78]. According to the French 

National Institute of Statistics and Economic Studies (NISE), 24.4% of the French 

population is in the older age group (65+) [79]. In 2006, in the UK, the 75+ age group 

accounts for 41% of the population of state pensionable age. However, by 2056, with 

the increase in age for state pension entitlement, this group will account for 67% of the 

pensionable population [80]. In June 2010, there were 3.01 million people aged 65+ in 

Australia [81] and, in New Zealand, by 2031, one in five New Zealanders will be aged 

65+, compared to one in eight in 2009. It is projected that the proportion of older adults 

aged 65+, in New Zealand will increase from approximately 13.5% in 2011 to 22.3% by 

2031 and 26.3% by 2051 respectively [82]. 

1.5.3 Use of Ubiquitous Devices 

Today the world is witnessing an increase in the use of ubiquitous devices 

(smartphones, tablets, laptops, etc.). A smartphone generally includes advanced 

functionality beyond making phone calls and sending text messages. Users will have 

plenty of personal computer features in their handheld smartphone, accessible with the 

touch of a button or swipe of a finger. The rapid growth of smartphone medical and 

health applications demonstrates that developers/researchers see a current market for 

mobile health [83]. 
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1.6 Issues and Challenges Facing Wireless and Remote Monitoring 

Systems 

A number of critical issues considered important in this research are discussed here. 

1.6.1 Reliability, Efficiency and Acceptability 

With the ever growing wireless/mobile based PMS, end-user acceptability is becoming 

an important aspect in the design of such systems. There is still an open research 

question to be addressed and the opportunity for research to address a particular 

question such as: Do wireless/remote/mobile based patient monitoring systems make a 

difference to the patient’s (end-users) well-being? To answer this important question, 

many researchers have included the views of patients as well as of medical 

professionals at every stage of the design and development [84]. The acceptance of any 

system in the healthcare industry depends on the user awareness and acceptability. The 

adaptation of a device within the clinical field is diminished if it is negatively perceived. 

User-centred design is essential in order to incorporate these perceptions into the 

product, especially at the earlier stages of the project development. When analysing the 

user’s needs, contextual inquiry and the user’s profiling, the designer should consider a 

number of factors such as task analysis, surveys, interviews and focus groups to address 

the user acceptability [85]. This thesis supports the proposal of Steele et al. [86] that 

future studies should document any attitudes, perceptions and concerns of users. It is 

known that highly sophisticated technology and data analysis techniques become 

irrelevant if the users do not wear the sensor systems for the allocated periods of time 

[87]. 

The reliability of monitoring systems is an important and open research question which 

is often considered as a critical parameter for the acceptability of the system. In the 

context of reliability and efficiency, the main purpose is to connect the patient 

monitoring systems to the user within their activity area (range) and model the regular 

activities. An alert is not triggered when the person is outside the coverage area or a 

specific range of more than a predefined threshold. Several methods are proposed for 

determining when an alert/alarm should be triggered [88]. Bergmann and McGregor 

[40] carefully considered several systems and have recommended the best and most 

efficient body-worn sensor design. Current trends in wearable PMS applications have 
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produced an innovative and versatile approach to wearable textile-based monitoring 

systems using smart shirts [89], T-shirts [90], electrode-embedded textiles [91, 92], 

worn at home [18, 22, 31], in bed [93, 94] in the form of headgear [95], or footwear 

[96]. Innovative methods for improving physiological signal processing have also been 

developed [97]. These include, neural networks [98], fuzzy logic [99-101], principal 

component analysis and independent component analysis [102]. In brief, PMS must 

provide reliable and efficient vital signs and algorithms for evaluating the patient’s 

needs. The system should be simple, reliable and user-friendly. 

1.6.2 Platform Variability and Cost Effectiveness 

The software platform is becoming a drawback to the development and implementation 

of mobile based PMS due to its multiple/different operating systems. The development 

environments for handsets cover a wide range of operating systems including: Microsoft 

Windows Mobile, Symbian, Blackberry, Palm OS, Mobile Linux, J2ME, Apple’s iOS 

and the Android platform by Google. Another issue with the use of mobile platforms is 

variability and compatibility between the programming language and application 

environment. At present, efforts to make m-health systems fully functional in all 

available (common) platforms are slowly improving the situation [103]. The 

involvement of healthcare professionals in the development of such systems and their 

participation in the policy discussions is important in order to achieve the full potential 

of such applications [104-106]. Another barrier is the mobility of data as most of the 

mobile PMS transfer patients’ vital data and/or key physiological parameters via mobile 

communication links, such as: GPRS, 2G, 3G, 4G and 5G (under development) 

networks. Costly mobile phone contracts and expensive termination fees could create a 

barrier to accessing for a specific service such as medical data processing [107]. 

1.6.3 Energy Usage and Battery Life 

It is very important to have a low energy consumption device especially for battery 

operated systems, such as a smartphone, tablet or laptop. There is a long lasting debate 

on the effect of cell phone radiation on the human body, which is beyond the scope of 

this research. When a device transfers a considerable amount of raw data to the central 

processing unit of a stationary computer, a large amount of energy is required which is 

normally supplied by a battery. For example, a blood pressure measurement every 10 

minutes requires 35 mA/h (consider data transmission, valve and microcontroller). In 
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this case 1000 mA/h or AAA batteries are required and these batteries will last for a day 

or so. These applications require a high quality of data to be sent to multiple ubiquitous 

devices in real-time [108]. Long term use of such systems can pose a serious threat to a 

device’s battery life and seriously compromise the transmission of essential data [26, 

109, 110]. Researchers are actively developing new low-power, low-energy 

consumption sensors which can be used for long time monitoring and provide more 

battery life [111-114]. A proper frame work has to be developed to address the energy 

consumption issue, which can be a serious threat to the mobile/remote PMS [115]. In 

emergency situations where the patient collapses and has poor connectivity (especially 

in rural areas), or when device is switched off, then self-automated alert systems should 

be activated by the device’s in-built chips [116]. 

1.6.4 User Interface and Quality of Patient’s Medical Data 

From the user’s (clinician and/or patient) point of view, the graphical user interface 

(GUI) is one of the most appealing functions that should be easy to use, simple and 

functional. Such features can be difficult to develop for different types of users 

including the older adult and people with disabilities. Today, mobile devices offer 

simple and easy processes to download an application (by looking at 3-4 screen shots 

shown by the manufacturer). Thus, there is a possibility that if the user dislikes the 

application or finds it complicated then the application will be removed as easily as it 

was downloaded. Therefore it is essential to have a user-friendly application for all 

common mobile platforms. 

Using high quality data (according to medical standards) in remote applications is 

important for reliable communication. Various techniques have been applied to collect 

high quality data [16, 93, 117]. However, in some studies short-time data measurement 

was worrisome [93, 118, 119], because, either the data quality was substandard [120] or 

high false positive alarm rates were reported [121]. It is necessary for the vital sign 

monitoring systems to capture and transfer data of the highest possible quality. For 

example, ECG signals were far more accurate when gel electrodes were used [92] and 

those measuring devices without gel proved to be inaccurate [48]. It is found that in the 

early stages of system development, a theoretical framework should be set in 

combination with data (simulated or trial) to manage physiological parameters. At each 
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stage of the development, the feedback of medical professionals should also be 

considered and discussed in every possible aspect in relation to the end user (patient). 

1.6.5 Security and Privacy 

Security and privacy are the most important functions of any healthcare system and 

often these areas are neglected in the development of wireless/remote PMS; and often 

security is considered as a concept similar to the safety of any system. As transmission 

of data in remote/mobile PMS is wireless, it may result in various security threats. 

Security issues in wireless sensor networks have been a major area of research in recent 

years and many researchers have specifically addressed security issues with respect to 

healthcare applications [122-127]. Some of the security and privacy issues are discussed 

here along with some recommendations for improvement. 

The security issues can be classified into two categories: system security and 

information security. Ng et al. [128] have classified threats and attacks into two major 

categories—passive and active. Kargl et al. [129] have mentioned attacks in health 

monitoring in detail such as: modification of medical data, forging of alarms on medical 

data, denial of service, location and activity tracking of users, physical tampering with 

devices and jamming attacks. Security and privacy vulnerabilities are discussed in detail 

by Williams [130]. Some of the key points mentioned are: ease of network formation, 

complexity of interactions, duplicitous users and leakage to third party servers and 

shared content. 

A number of security and privacy frameworks have been developed, designed and 

tested for their reliability; 22 free web based personal health record privacy and security 

policies have been analysed by Carrion et al. [127] and they reported a high level of 

user’s security with applications such as Google Health, ZeabraHealth, Keas and 

Microsoft Health Vault. Al Ameen et al. [125] divided security and privacy into two 

aspects; firstly, system security, which includes administrative, physical and technical 

level security and secondly, information security, which includes data encryption, data 

integration, authentication and freshness protection [122-125]. 

A strong and robust privacy-preserving scheme against global eavesdropping for e-

health systems called SAGE, works with multiple layer security transit relationship to 

make current remote/mobile healthcare (m-health) safe and secure [124]. It is also 
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essential to consider policymakers, certification bodies, manufacturers, public-key 

infrastructure, distribution and management in order to develop a successful health 

monitoring system. Some of the most reliable security and privacy frameworks 

considered are discussed in detail by Kotz et al. [123] and Avancha et al. [131] which 

include: office of the national coordinator national framework; health privacy project’s 

(HPP) best principle; HPP best practices; Markel’s foundation’s ‘connecting for health’ 

common framework; and the Certification Commission for Healthcare Information 

Technology’s Certification criteria. 

A trust based security framework using encryption and decryption [26], a framework 

designed to secure wireless-networked sensors with a middle ware component to deliver 

sensing data and retrieve patient monitoring information securely using a two tier 

architecture [132], a robust and secure system built on three main functions: data 

protection on the device, secure authentication and data encryption [133], design 

consideration for the long term monitoring of vital signs, and a work presented at [134, 

135] are some of the recent developments carried out by the researchers in addressing 

the most common and vital security and privacy issues. It is advised that, if any of the 

above discussed framework(s) is adopted then the system can be considered to have 

basic security standards. In time to come there will be more and more advancement in 

this area because m-health is attaining high acceptance in the general public and 

development of more secure and reliable applications are under development or already 

available on the market [8, 110, 115, 136-139]. 

1.7 Scope and Bounds of this Research 

1.7.1 Scope of Research 

The research presented in this thesis deals with three main concepts: wireless 

monitoring; falls detection and prediction; and early detection and interpretation of 

abnormal vital signs - these are interrelated and interconnected as illustrated in Figure 

1.8. Moreover, this research investigates various techniques in order to support/justify 

the proposed system. They are: (1) Evaluation of user’s acceptability, mobility, usability 

and comfort of the wireless medical devices [140]; (2) Testing of an early warning 

systems to detect hypotension and hypertension [141]; (3) Implementation and testing 
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of a mobile telehealthcare system [142]; and (4) Web-based vital signs PMS’s 

theoretical framework and design modelling and their issues [143, 144]. 

 

Figure 1.8 Scopes of research as described in the thesis. 

1.7.2 Bounds of Research 

This research had to limit its scope in several aspects, without compromising its 

creditability, because of the long period of time required for each intervention for 

validation in a real-time clinical trial. This research specifically focuses on older adults 

(65+) in hospital ward settings. Thirty patients could be recruited in order to allow 

enough data set collection for each patient so that changes in their vital signs could be 

recorded, which is critical for this research. The falls prediction model has been tested 

and evaluated using data from 20 patients (developed first by using data from 10 

patients) but ‘true clinical’ (prospective) evaluation could not be carried out due to the 

time constraint. Monitoring of falls-related hospital admission for 30 recruited patients 

would require at least several months (depending on the falls incident rate).  

Another important aspect of this project is the use of wireless medical devices. Wireless 

devices available on the market have been considered after extensive market research 

for cost, reliability, accuracy and availability. The main reason for this is to save time by 

not developing/investigating the hardware side for the system (which is beyond the 

scope of this thesis). 
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1.8 Original Contributions 

The original contributions of this thesis are summarised as follows: 

 Development of a wireless vital signs recording and monitoring system: 

Medical devices’ connectivity and real-time vital signs transmission have been 

directed towards improving platform interoperability. 

 

 Development of a vital signs interpretation model 

The proposed system is currently capable of identifying seven physical signs 

that may occur during a patient’s stay in a hospital ward. It has been tested using 

the recorded data from 20 patients at two hospital’s geriatrics wards. The 

proposed system has achieved accuracy of 96%, sensitivity of 100%, specificity 

of 93.75% and predictability of 90.38% in compare with the interpretation by a 

medical expert for the same physical signs. The evaluation of the proposed 

system has been carried out using Kappa analysis, which measures the 

agreement between the proposed system and the medical expert’s interpretation. 

The author is not aware of any such system available or in use in New Zealand 

hospitals. There are few monitoring systems based on threshold setting for 

generating similar alarms. The proposed system is superior to other systems due 

to the fact that it is used for individualised monitoring, evidence based 

reasoning, fuzzy templates and weighted scoring parameters for detection, 

‘diagnosis’ and interpretation of multiple physical signs. 

 

 Development of a falls detection and prediction model 

The use of accelerometer based falls detection is not new. However, the research 

presented in this thesis utilises the above model with motion data to detect 

directional falls (backward, forward, right and left-side falls). The proposed 

detection model has achieved an accuracy of 98%, sensitivity of 96% and 

specificity of 100% when detecting directional falls. In falls risk prediction, the 

model uses real-time vital signs, motion data, falls history and type of 

medications to predict the low, medium or high falls risk in hospitalised older 

adults. The proposed model was compared with the manual falls risk scoring 

tool called Morse Falls Scale [145], used clinically on the hospital wards. The 
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proposed system achieved accuracy of 85%, sensitivity of 100% and 

predictability of 100% when compared with Morse Falls Scale assessment for 

the same patients. 

 

 Designing of an integrated healthcare system framework 

The other major contribution documented in this thesis is the development and 

design of an integrated healthcare monitoring system. The most important 

components required for understanding the current situation/complaint of a 

hospitalised older adult are incorporated into the integrated healthcare system 

including; physical observation, vital signs, motion data (walking patterns), 

medical information and history. The main idea behind the integrated system is 

that the system should seamlessly integrate with other existing/available systems 

or work as a standalone system. Currently, the proposed system can present the 

information about patient’s real-time vital signs, types of medication, falls 

history, clinical notes/medical information, data trends, statistical analysis, 

historical trends, multiple physical signs detection and falls risk prediction. 

1.9 Justification of Methodology Adopted 

 This thesis has identified problems in using two fuzzy models for two different 

priorities. Specifically when using two fuzzy models for the same data, fuzzy 

logic provides no guidance on how to structure diagnostic rules, nor what form 

of fuzzy operators should be used, and it does not provide certainty of 

information that is necessary in priority 1 and priority 2 categories. This research 

has identified expert C based rules combined with the fuzzy model as an 

appropriate way to provide completely different outcomes (P1 and P2). The use 

of evidence-based reasoning has a close analogue in fuzzy logic models but 

forces the use of certain operators and rule structures. In addition, it allows the 

system to convey more (relevant) information to the operator. 

 A multilayer outcome has been adopted to address some critical issues such as 

identifying the underlying knowledge of early detection, to achieve low false 

alarms and allow more flexibility to clinicians in deciding on interventions. 

There are certain facts that this work has identified in terms of early detection; 

the P2 warning is the early detection of physical sign(s), explained in detail in 
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section 5.4.5. The two priorities, P1 and P2, do not overlap each other for 

incoming data, which gives each priority its uniqueness in generating the 

outcome. Expert rules were found to be very effective in detecting P2 warnings 

due to the fact that they consider the individual’s historical data pattern as well 

as real-time vital signs, whereas P1 is based on fuzzy logic variables and is well 

known for its flexibility and accuracy in such settings where data is usually 

incomplete or partial. 

 The design, development and evaluation of the proposed system in three phases 

have proved very effective in terms of accuracy, sensitivity, specificity, 

predictability and overall reliability in the real medical environment. 

Consultation with clinicians throughout the development of the proposed system 

enables the incorporation of their views and requirements in order to assist them 

skilfully. 

1.10 Thesis Outline 

This chapter presents an introduction to different types of monitoring systems, vital 

signs monitoring, motivations, issues and challenges and contributions of the research. 

Chapter 2: Literature Review: gives an overview of the state-of-the-art patient 

monitoring systems, methods of vital signs monitoring and diagnosis with issues and 

challenges. Different vital signs monitoring techniques and methods are reviewed in 

order to establish the research gap and its associated research problems. 

Chapter 3: Wireless and Remote Monitoring System: presents design functionalities, 

methodology behind the proposed system and links between clinicians and patients 

using the wireless and remote systems. 

Chapter 4: Data Collection and Protocols: gives details about the hospital data 

collection process and protocols adopted. Data statistics and related information 

including data transmission, wireless medical devices and data analysis are described. 

The important relationship between vital signs and physical signs is also discussed. 

Chapter 5: Vital Signs diagnosis and Interpretation: presents fundamental concepts 

of crisp and fuzzy set theory that pertain to developments in the second part of the 

proposed interpretation engine. Fuzzy modelling in general and fuzzy logic methods of 
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inference for diagnosis are discussed, particularly with regard to linguistic and relational 

fuzzy models. Discussion on the effects of various design parameters is given along 

with some examples. This chapter also discusses the interpretative ability of the 

diagnostic structure. The main development in this chapter is that of vital signs 

interpretation, which may be used for early detection of multiple physical signs. 

Chapter 6: Falls Prevention and Detection: describes the development of the falls 

risk prediction model with various key components. Also discussed are different 

approaches used in falls risk prediction. The vital signs and motion data based falls 

detection model is also explained, which accurately identifies backward, forward, left 

and right-side falls.  

Chapter 7: Results and Validations: detailed proposed system performance 

evaluations are presented. Kappa analysis is carried out to assess the overall agreement 

between the system and the medical expert when interpreting physical signs. Falls risk 

prediction has been compared with the hospital based falls risk scoring tool. 

Chapter 8: Discussion and Conclusions: provides summaries of the major aspects 

examined in this thesis and is intended to also place these findings in a wider 

environment. 
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CHAPTER 2 Literature Review 

2.1 Introduction 

This chapter divides the literature related to patient monitoring systems into: (1) types – 

smart (wearable and wireless), remote and mobile based solutions; (2) target specific – 

home, hospital or people with disabilities; (3) methodology/technique based approach – 

expert systems, artificial networks or fuzzy logic based systems; and (4) PMS - 

specifically addressing fall detection and prevention. Therefore, this classification gives 

the much needed baseline understanding of this research and its related areas. 

2.2 Types of Monitoring Systems 

2.2.1 Smart Monitoring Systems 

A smart vest [48] is essentially a wearable physiological monitoring system 

incorporated in a vest. A variety of sensors integrated into the garment’s fabric 

simultaneously collects bio-signals in a non-invasive and unobtrusive way. The 

parameters measured by the vest include ECG, photoplethysmography (optically 

obtained volumetric measurement of blood volume changes) (PPG), HR, BP, body 

temperature, and galvanic skin response (measuring the electrical conductance of 

the skin) (GSR). Furthermore, it is reported that ECGs can be recorded without using 

gel, and is also free from baseline noise and motion artefacts due to hardware-

implemented high pass, low pass, and notch filters. Moreover, BP is calculated 

noninvasively via PPG. Results from validation trials confirm the accuracy of measured 

physiological parameters. LOBIN [92], an e-textile wireless healthcare monitoring 

system to record ECG, HR and body temperature, is a wearable wireless sensor. 

Similarly, Blue Box [50] is a novel hand-held device capable of collecting and 

wirelessly transmitting key cardiac parameters such as ECG, PPG and bio-impedance. It 

also measures RR intervals (R wave to R wave interval - R wave is equal to the time 

between systoles i.e. pulse rate) and QRS duration, HR, systolic time intervals as well 

as assessing their values in correlation with cardiac output measured by an echo-

doppler. An in-shoe device has been developed by Saito et al. [96] to monitor plantar 

pressure (measurement between the plantar surface of the foot and a supporting surface) 

under real-life conditions. A pressure-sensitive conductive rubber sensor measures 

http://en.wikipedia.org/wiki/Electrical_conductance
http://en.wikipedia.org/wiki/Human_skin
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plantar pressure and validation is performed by an f-scan system. SMARTDIAB [146] 

is a platform designed to support the monitoring, management, and treatment of patients 

with type 1 diabetes mellitus (T1DM) which incorporates the patient unit (PU) and 

patient management unit (PMU). The pilot version of the SMARTDIAB has already 

been implemented and evaluated in a clinical setting. TELEMON [147] is an electronic-

informatics-telecom and scalable system that allows automatic, complex and real time 

tele-monitoring by mobile communications for monitoring vital signs of chronically ill 

older patients. It employs a WristClinicTM device which is connected to a radio interface 

with a MiniGateTM USB (max radius 100m) and then to a vital parameter monitor wrist 

unit (MiniClinicTM). It is concluded that such systems are gaining acceptance into the 

healthcare settings in home or hospital due to their high reliability and accuracy. The 

technological use of such systems suggests some advance in this area but lack of 

validation and evaluation in a real clinical environment seems to be one of the main 

drawbacks. 

2.2.2 Remote and Mobile Monitoring Systems 

Remote health monitoring systems (RHMSs) are defined as the use of electronic 

information and communication technology to support and enhance the quality of 

healthcare when distance separates the healthcare professionals and patients. RHMSs 

usually transmit the patients’ vital data from a remote location to the clinicians in real-

time using advanced information and communication technology. RHMSs are 

combined with mobile communication systems and wearable monitoring technology. 

This technology has many advantages and provides innovative solutions to deliver 

healthcare by remote monitoring of patients. 

A reliable, intelligent, secure monitoring and management system has been developed 

to focus on efficient communication, improvement in the reliability of data 

communication and effective management of wearable medical devices’ energy [26]. 

Another project developed an embedded mobile ECG monitoring system [16] based on 

client–server architecture where the server (normally located in a hospital) stores ECG 

signals from the patient through a patient monitor (located in the patient’s house) or an 

RFID reader. This embedded system communicates between the medical sensor 

network and the mobile GPRS interface and Prognosis [148] is defined as a 

physiological data fusion model for multisensory WHMS. The latter is based on fuzzy 
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logic for the generation of prognoses for health conditions by identifying the causal 

relationship between various disorders and symptoms.  

Remote monitoring systems not only monitor vital signs but also detect abnormalities 

and transmit the data in real-time to healthcare professionals. Frequently, these systems 

send data with a delay either due to the processing of real-time data and/or wireless data 

transmission. However, a significant threat to these systems is data security and privacy, 

in terms of patient identification and confidentiality of medical information. These 

issues have not as yet been completely addressed and there is room for improvement in 

the design and structure of the system so that it complies with medical and ethical 

standards. 

Mobile monitoring systems are beginning to emerge as a useful technology for 

healthcare delivery. For example, by using a basic cell phone calling service or short 

message service (SMS), people with type 1 diabetes mellitus were assisted in self-

management, by sending a text message on their mobile phone. This method has 

produced favourable changes in diabetes self-efficacy and adherence to treatment [149] 

and behavioural changes [150]. There is also an effective and positive response from 

smokers, smoking being one of the world’s current major problems. This is done 

through mobile phone based projects such as ‘Text2Quit’ and ‘txt2Stop’ [151, 152]. 

Today such applications are available in many areas of healthcare such as: physical 

activity [153], anti-obesity [154], diabetes self-management [42] and asthma self-

management [155]. 

A multi-agent architecture comprising intelligent agents for cardio and weight 

monitoring, based on mobile technology (GSM), has been developed to collate patient 

data. Intelligent agents collectively send diagnostic information and recommend 

medical interventions in a mobile environment. Software was developed using a 

Symbian operating system, Java 2 Micro Edition (J2ME) as mobile programming and 

Java 2 Enterprise Edition (J2EE) for server-side agent programming [110]. Self-

powered WSN [156] monitors ECG, pulse-oximeters and BP from a remote location. 

Crossbow MICAz motes were used to design a robust mesh network that routes patient 

data to a remote base station within a hospital via a router node. The latter consists of an 

energy harvesting circuit board and solar panel set up which is located near overhead 

34W fluorescent lights [156]. Another system [157] whereby a call from a mobile 
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phone to a server computer initiates transmission of a graphical chart via the mobile 

phone was developed specially for older adults. This system uses low power sensors 

and tri-axis accelerometers for mobile phones’ graphical display charts.  

A clinically validated and flexible framework, performing real-time analysis of 

physiological data to monitor patient health conditions has also been developed [121]. 

Physiological parameters were collected by sensors and analysed by means of data 

mining techniques. Real-time processing was performed on mobile devices (pocket PCs 

and smartphones) and a suitable alert could be triggered in emergency situations. A 

system design has been conducted using clustering algorithms, simple K-means (KM), 

farthest first (FF), and expectation maximization (EM) algorithms (default algorithm 

was simple KM), with different sampling intervals and time windows. Deploying 

advanced algorithms to improve the results has been reported. However, the processing 

impact of these computationally intensive algorithms on the mobile devices such as 

battery life and delay in data transmission can be considered as a significant shortfall. In 

a unique approach [120] to measure the heart rate by a non-contact and non-invasive 

device, a CCD camera was employed in a trial of 14 Asian participants. A 30-second 

time-lapse imaging of the body surface was acquired whilst HR was measured by a 

pulse oximeter and RR by a thermistor. A combination of a time-lapse imaging from a 

hand held video camera and PC-based image processing software, indicated a 30-second 

average HR and RR based on changes in the brightness of the region of interest (ROI). 

These changes in brightness or movement of ROI play a critical role in the accurate 

measurement of HR. 

M-PMS would benefit many patients and medical professionals by providing rapid 

access to health information, especially in emergency situations. This technology is 

continuously being enhanced, but there are still challenges to improve its clinical 

application. For instance, raw data can be transmitted efficiently from a mobile device 

but the analysis and processing of that data is still a major concern. This is due to the 

high impact that data processing can impose on the device’s battery runtime and the 

generating delay in the transmission of data. The model of data transmission in M-PMS 

can be presented in two transmission types and three steps as shown in Figure 2.1. In 

type 1, patient data is collated by a mobile device and then transmitted to a remote 

server for processing. Then the data is transmitted to the clinician’s mobile device 

directly or via the patient’s mobile device. In type 2, the patient data is sent directly to a 
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remote station for processing and then transmitted to other devices. In some cases, only 

the results or alerts will be transmitted. Both types can generate delays in producing 

results. As indicated in Figure 2.1, there will be a direct link between the patient and the 

clinician (dashed line). Continuous data transfer both through sending and receiving by 

mobile devices significantly reduces battery life. A brief description of similar systems 

using the latest technology is presented in Table 2.2. 

 

Figure 2.1 Data transfer structure for mobile health monitoring. 

Wireless body area network (WBAN) is the essential part of the wireless PMS. A 

WBAN allows the integration of intelligent systems, miniaturized components and low-

power sensor nodes attached to the body for monitoring physiological activities. For 

instance, ECG data collection has advanced to the extent where several studies have 

successfully investigated contactless [158] and leadless ECG monitoring [159]. 

Concerns around the adverse effect of electrodes on the human body are also addressed 

[160] with recommendations for the best electrode locations [161]. In recognition of 

obstructive sleep apnoea, a low-cost, real-time monitoring system MedAssist has been 

developed [162]. Using shimmer WSBN mote, a low complexity energy-efficient ECG 

compression has been developed for compressed sensing and signal acquisition and 

compression [163]. Continuous and real-time monitoring and recording of a patient’s 

ECG signals have been developed using a Holter-based portable ECG monitoring 

system as well as two smart phones for cardiovascular diagnosis [106]. The issue of 

accuracy and power has been solved to some extent by using lightweight, power-saving 
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and RFID based wireless or USB ECG devices [164], but still there is a constant threat 

of data security [20]. 

Several feature extraction models based on wavelet transform were developed [137] 

including a BSN based context aware QRS detection [165], an image guided ECG 

signal detection [166] and an e-technology in a unified DICOM format [167]. Such 

systems which are completely mobile based are offering advancement in the technology 

and processing capacity in a mobile environment. A new physiological multi-parameter 

remote monitoring system based on the browser/server model has been developed. The 

system consists of a server monitoring centre, Internet network and PC-based multi-

parameter monitors on the world-wide-web, using MMS (multimedia messaging 

service), GPRS (general packet radio service) and global positioning system (GPS) to 

transfer ECG data acquired and stored in the Holter monitor via the Internet. 

A medical embedded device for individualized care (MEDIC) was developed [168] 

based on an innovative software architecture for enabling sensor management and 

disease prediction using a conventional personal digital assistant (PDA) or a cell phone 

[168]. HeartSaver, a mobile medical device was developed [169] for real-time ECG 

monitoring and automatic detection of several cardiac pathologies. This is an Android 

mobile based application software that sends a text message related to the patient’s 

condition and location to a physician. An attachable ECG adhesive bandage sensor was 

implemented for continuous ECG monitoring system by using Planar-Fashionable 

Circuit Board technology. It uses a low cost sensor chip which is bonded on fabric, 

wirelessly powered for safety, has dry electrodes for less skin irritation and is suitable 

for long term monitoring [170]. Wireless ECG monitoring using low data rate ultra 

wideband transmission was also developed. It is currently under consideration for a 

newly formed WBAN group (IEEE 802.15.6) to develop a standard for wireless vital 

sign monitoring [171].  

Table 2.3 showing mobile/wireless ECG monitoring systems clearly indicates that 

system stability is high when implemented on PC or PDA and is usually low for mobile 

devices (smartphones). However, the cost of a mobile device is low when compared 

with a PC and a time delay is also observed when using a mobile device as compared 

with a PC. 
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Figure 2.2 shows the wireless/mobile based architecture of a wearable system. Most of 

the reviewed systems in this section represent a similar design in communication and 

transferring of a patient’s physiological data. A common telemedicine network mesh 

consists of: patient, physician, caregiver, nurse, emergency response unit, local station 

for data processing either locally or remotely, analysis and storage. Usually 

communication will be carried out by wired or wireless using mobile broadband or the 

internet. 

 

Figure 2.2 Communication networking of wireless/mobile wearable systems. 

2.2.3 Mobile based Vital Signs Monitoring Systems 

Collection and processing of physiological parameters using mobile devices for patient 

monitoring is discussed here. Airstrip Technologies [103] has developed an innovative 

patient monitoring solution, using the AppPointTM software development platform, 

which is compatible with most handheld smartphones, tablets and PCs. Figure 2.3(a) 

shows the Airstrip Technologies’ remote continuous vital signs monitoring via iPhone. 

According to Topol [172] acceptance of mobile phones in healthcare is possible because 

of ever-growing use of smartphones, enhanced bandwidth with third and fourth 

generation (3G and 4G) mobile data networks and smartphones with computing power 

equal to that of a personal laptop computer. Ren-Guey et al. [51] have developed a 

smartphone based healthcare system with an alert mechanism using unified modelling 



31 

 

language (UML) via the Nokia 7610 phone. This system detects an abnormal parameter 

and alerts the clinician via SMS using mobile internet data shown in Figure 2.3(b). The 

system achieved R-wave detection of 95% and this rate can be further increased by 

reducing false alarms. This system uses a smartphone as the main processing platform, 

which connects to external hardware/sensor and transmits the alert via mobile data. For 

the purpose of continuous monitoring, the mobile communication link should be ON all 

the time, which is often considered costly and will also have a huge impact on the 

mobile’s battery life. 

By integrating the Holter monitor (which allows continuous ECG recordings) with a 

mobile phone, Oresko et al. [173] have developed a smartphone based cardiovascular 

disease detection system called ‘HeartToGo’. The system employs Windows mobile 

operating system 5 and 6 for smartphones, and MIT-BIH database to test its 

performance. Its core model is built using C++, C# and detects QRS signals with quite 

high accuracy as shown in Figure 2.3(c). The accuracy of this system was analysed by a 

three-way cross-validation method which helps to minimise variations due to random 

sampling of finite-size data samples. It is also reported that the dataset was partitioned 

for each class randomly into three disjoint subsets of approximately equal size. A 

similar system called ‘Blue Box’ [50] has been developed as a novel hand-held device 

capable of collecting and wirelessly transmitting key cardiac parameters: ECG, PPG and 

bio-impedance (Figure 2.3(d)). It also measures RR interval and QRS duration, HR, 

systolic time intervals and assesses their values in correlation with cardiac output 

measured by an echo-doppler. In ECG measurement a 30-60 seconds time delay has 

been reported. Another common issue reported in literature is the simulation or testing 

of the system by using a small sample size and healthy subjects often give low accuracy 

results when tested in real-time [50, 174]. Figure 2.3(e) shows a wrist-worn integrated 

health monitoring device (WIHMD) developed by Kang et al. [175]. WIHMD consists 

of six vital signals; a fall detector, a single-channel electrocardiogram, non-invasive 

blood pressure, pulse oximetry (SpO2), respiration rate, and body surface temperature 

measuring units. It is essential to mention that the size of the WIHMD is 60 × 50 × 20 

mm, except for the wrist cuff, and the total system weighs only 200 g, including two 

1.5-V AAA-sized batteries. The system has achieved high accuracy and works on low 

power consumption, and has been tested using 150 simulated cases and five human 

subjects. 
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The majority of vital sign monitoring systems use built-in Bluetooth technology to 

receive information from various devices and use mobile internet or WiFi to transfer 

information. This typical setup limits the mobility of the user to its Bluetooth (BT) 

range only and continuous use of BT often reduces battery life. 

a 

b 

c 

d 

e 

Figure 2.3 (a) Image courtesy of AirPort Technologies [103], (b) A mobile healthcare system with 

alert mechanism developed by Ren-Guey et al. [51], (c) HeartToGo – a cardiovascular disease 

detection system developed by Oresko et al. [173], (d) A remote patient monitoring system for heart 

failure patients called ‘Blue Box’ [50] and (e) Wrist-worn integrated health monitoring device 

(WIHMD) developed by Kang et al. [175]. 

Today’s smartphones not only serve as key computing and communication mobile 

devices of choice, but they also come with a rich set of embedded and advanced 

sensors, such as an accelerometer, digital compass, gyroscope, GPS, microphone and 

camera. Collectively, these sensors are enabling new applications across a wide variety 

of domains. Tackling diabetes is likely one of the major concerns for the global public 

health community where smartphones can play an effective role. Smartphones using 

GPRS, 3G, 4G and 5G (under development) for data transfer are a technically attractive 

solution in establishing a reliable communication link between patients and clinicians. 

Nowadays smartphones can transmit and receive data in real-time, using their 

widescreen graphical display of data and the keyboard to allow entry of additional data. 
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A brief summary of mobile PMS and its potential benefits is presented in [29, 113], 

where some successful case studies in the areas of electronic patient records, emergency 

telemedicine, tele-radiology and home monitoring are discussed. Various scenarios of 

mobile PMS for managing emergency circumstances can be found in [176]. Recent 

studies and surveys on advancements in this domain are given in [7, 113, 177, 178]. 

Table 2.4 summarises some of the discussed mobile PMS. The most successful and 

widely adopted mobile technology networking architecture is shown in Figure 2.2-4. 

Similar architecture is also adopted by many researchers such as: Liu et al. [136], Lane 

at al. [177], Kumar et al. [176], Alemdar and Ersoy [113], Ming et al. [122], Mughal et 

al. [132] and Kulkarni and Ozturk [88]. The standard wireless communication protocols 

used in the above wireless/wearable HMS are listed in Table 2.1. 

Table 2.1 Wireless communication protocols in wearable health monitoring systems 

Technique/Parameters Range Data Rate Cost Frequency 

Bluetooth 10-100m 1-3 Mbps $3-$5 2.4 GHz 

Zigbee 10-75m 

20 Kbps 

40 Kbps 

250 Kbps 

$2-$3 

868 MHz 

915 MHz 

2.4 GHz 

Infrared 1m 16 Mbps $2 - 

Ultra wideband 2m 500kbps $3-$5 400 MHz 

 

 

Figure 2.4 Widely adopted mHealth technology networking architecture. 
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2.3 Personalised Monitoring Systems 

2.3.1 Overview of Current Systems 

There are several approaches towards assisting the older adults who live independently. 

A smart home for the older adult has been developed, using HR, BP and sensors to 

measure weight, light, temperature, the presence of gas or smoke, falls risk and moisture 

throughout the home. A digital IP camera transmits data via an IP-based Rabbit 

microcontroller with a built-in small web server, and information is accessed via a 

secure web [179]. Although this method has achieved a higher accuracy, it incurs higher 

costs as more sensors need to be deployed around the home setting. Patients exhibiting 

symptoms of cardiac infarction, sleep apnoea or hypopnea were successfully monitored 

by body weight and during sleep [118]. Similar work was also carried out by an ECG 

monitor on patients in the bath [15] or bed [93, 119] without direct skin contact. 

Respiration and pulse were monitored by an air mattress sensor [180], and body 

temperature and movement by a thermistor [181]. A BP monitor [182] installed in the 

toilet seat and a respiration and cardiac beat monitor fitted under a pillow, using vinyl 

tubes, filled with silicon-oil, has also been explored [183].  

Another smart home system for older people developed by the TAFETA group [184] 

provides a framework for the processing and communication of extracted information 

by using intelligent sensors such as magnetic switches, thermistors, accelerometers, 

RFID, infrared motion sensors, microphone array, smart grab bars, pressure sensitive 

mats and electronic noses. Extended duration of monitoring is achievable through 

various sensors without interfering with activities of daily living (ADLs). Another 

framework, ANGELAH [18], integrates the sensors and actuators required for 

monitoring and detecting potential acute situations. It also alerts medical professionals 

to respond to emergency cases. An RFID reader is used for entry-exit and a camera for 

computer vision based emergency detection. Likewise, LAURA [185] performs 

localization, tracking and monitoring of indoor patients with an average localization 

error rate of less than two metres in 80% of cases. In another study, specific to disease 

detection in a simultaneous measurement of ECG and plethysmography (pleth) 

involving 29 subjects, the pulse rate variability extracted from finger photo-pleth 

waveforms can be a substitute for heart rate variability derived from the RR intervals of 

ECG signals during obstructive sleep apnoea [117]. 
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2.3.2 People with Dementia 

Dementia is the most common form of chronic disease in older adults worldwide and 

absolute number of people affected is predicted to increase incrementally as the life 

span of the population increases. Currently, there are an estimated 24 million people 

diagnosed with some form of dementia [186] and many research studies are focusing on 

improving their quality of life. In 2006, a wireless healthcare service system was 

developed [19], which integrated the following technologies: RFID, GPS, a global 

system for mobile communications (GSM), as well as a geographic information system 

(GIS) to construct a stray prevention system without interfering in daily life activities. It 

was specifically designed for indoor, outdoor, emergency and remote monitoring and 

mainly employs resident motion sensors and rescue locators attached to the body. In 

2008, this work was further developed by the same researchers [20], with the use of 

eXtensible-Markup-Language (XML) with RFID technology in disease assessment and 

safety monitoring of people with dementia. The tame transformation signatures (TTS) 

algorithm encrypted tag IDs to preserve confidentiality. Participants willingly wore light 

tags and clinical trialling of the system indicated that the indoor RFID reader had a 

response time of 0.5 seconds with 40 tag sensors, whereas the outdoor reader gave a 

sensing time of approximately 5 seconds due to power save mode being used. 

2.3.3 People with Parkinson’s Disease 

MercuryLive [23] is a web based home monitoring system for people diagnosed with 

Parkinson’s disease. It consists of a central server which collates data and stores it for 

web access, as well as a live video streaming (provided by Red5). It also runs on the 

central server, the patient host computer and a body sensor network (BSN) called 

Mercury. Based on the SHIMMER sensor, Mercury includes multiple body worn 

sensors connected to a base station (laptop) and clinician host computer, as well as a 

web based GUI, which collates the data via video conferencing using 40% video 

compression. A similar system has been developed for the detection and assessment of 

the severity of symptoms in patients with Parkinsonian dyskinesia [24] by using small, 

accurate and robust accelerometers and gyroscopes. A pilot study has been conducted to 

estimate the severity of tremor, bradykinesia, dyskinesia and motor complications in 

Parkinson’s patients using a support vector machine (SVM) classifier [25]. Both 

systems achieved encouraging results when tested in real-time. 
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2.3.4 People with Alzheimer’s Disease 

The Escort System [21], a safety monitoring system for those with Alzheimer’s Disease 

uses a unique approach known as ‘Talking Lights’. This system gives optical location 

information and transmits lights to the patient receiver device via a ZigBee network and 

an alert (SMS) can be sent to a mobile device. In the monitoring of patient safety, Ho et 

al. [22] employed Bluetooth access points (APs) situated in each room of the house. All 

Bluetooth APs are connected to a local database which stores and sends data to another 

server. This Bluetooth-enabled monitoring device should be carried by the patient for 

location updates and monitoring [22]. Therefore, it is the patient’s responsibility to 

carry the device at all times and should the patient not do so or move out of the range, 

then the system fails. 

2.3.5 Review and Critical Analysis 

Smart Vest [48] and LOBIN [92] share a similar approach as wearable physiological 

monitoring systems in terms of using wearable textile, wireless monitoring and patient 

tracking. Smart Vest uses wireless transmission from the textile to a remote station and 

LOBIN uses wireless transmission boards and distribution points in patient living areas 

(indoors). Results show that both systems satisfy medical and usability conditions. 

Despite the advantages of such systems in health monitoring, there are some concerns 

with the smart wearable devices as they must be worn continuously and be restricted to 

a specified range. Moreover, the quality of the data collected by these devices is usually 

poor. Patient comfort is another concern as they may find wearing garments with 

wireless or wired sensors physically uncomfortable, restrictive and even irritating. 

Therefore, further research is required to improve the characteristics of wearable 

devices as well as their real time clinical features. 

The TAFETA [184], ANGELAH [18] and LAURA [185] groups employed a similar 

approach to the health monitoring of older adults by using application specific sensors. 

The TAFETA group utilised nine different sensors in a home setting and collected 

useful data whereas ANGELAH employed RFID technology and LAURA focused on 

the localisation and tracking as the main method for subject monitoring. These three 

systems provided an acceptable performance in assisting older people in their daily 

activities in the long term. 
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Although home-based health monitoring systems can contribute to the advancement of 

healthcare, the level of intelligence of the sensors, area of application and internet or 

mobile data dependency for connectivity require further research and development. 

Where the subject moves out of range, evades sensor contact or is behaving contrary to 

the system, a false alarm will be generated even though he/she is engaging in normal 

daily activities. Furthermore, a delay in the internet connectivity will also result in a 

subsequent delay in real-time monitoring. 

In the advanced technology sphere, LOBIN [92] and MOPET [187] face the most 

common challenge of ECG signal quality and electrodes drying out. In addressing the 

issue of electrodes drying out, a textile integrated active electrode as opposed to a 

commercial wet Ag/AgCl electrode has also been developed and tested with the signal 

integrity during a five-cycle washing test [91]. Blue Box [50], an e-chair [188] and a 

wearable belt [189] are systems that are an advancement in the present state of the art e-

health technologies, monitoring vital signs with high real-time accuracy. Such 

applications addressed some of the common issues of this technology. In the real-time 

scenario, vital data transmission often had some data processing and network delays. 

Some of the systems [190, 191] have produced good results when tested in simulation 

environment, but reported delays when tested in real time. 

Mobile PMS is considered as one of the best ways to have the vital signs from the 

remote/mobile location, but apart from the advantages there are some drawbacks of this 

fast-emerging technology. The most common issues with mobile-based systems are 

delays in providing the results, alerts due to data loss or buffering delay, network 

delays, monitoring delays or processing delays [87]. These systems were mainly 

developed for a specific setup (home or hospital), a fixed place or a small area to meet 

patients’ specific needs but the majority of such systems lack self-learning capability 

[16]. Mobile monitoring systems using 3G data suffer from connectivity problems, 

signal strength issues, short battery life and low transmission speed, thus resulting in 

delays or low quality data for a short time or a high data transmission cost. The next 

section will provide an insight into the latest ECG signal processing, algorithms and 

software tools used for better monitoring and diagnosing. 

Wireless and mobile PMS often create data security and low battery life issues. To 

address the data security problem, a cross-layer framework has been developed based 
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on unequal resource allocation to support secure wireless ECG data encryption and 

transmission [114]. The low battery life issue occurs due to continuous connectivity of 

smart phones with Bluetooth, WiFi or 3G systems using the OS platform for network 

connectivity. Moreover, if the power supply is not an issue then the mobility of the 

device will become problematic. 

Continuous data transmission by mobile devices can significantly reduce battery life. 

This scenario in particular is more challenging when compared to poor signal strength 

or in the case of data transmission charges or delays. Another critical challenge is the 

security and privacy of user data, especially in remote monitoring systems. These 

systems not only monitor vital signs but can also detect abnormalities and transmit data 

to healthcare professionals in real time. However, a significant threat to these systems is 

data security and privacy in terms of patient identification and confidentiality of medical 

information. These issues have not yet been fully addressed and there is a need for 

improvement in the design and structure of these systems to comply with medical and 

ethical standards. However, M-PMS may impact positively on clinical staff in the 

common areas that support some important activities such as patient schedule changes, 

and discussions related to professional feedback and quality control. This impact in a 

surgical department however was found to be negative and additional socio-technical 

mechanisms may be required to overcome these issues [192]. Table 2.5 summarises the 

above mentioned vital signs monitoring systems. 

2.4 Processing Techniques for Monitoring Systems 

2.4.1 Vital Signs Processing Methods 

Computerised signal processing and analysis play a significant role in remote and 

wireless monitoring systems. However, it needs to be improved in terms of diagnosis to 

reduce false alarms and afford extended continuous monitoring. The two major 

concerns related to these wireless systems are processing time and power consumption. 

Battery powered portable wireless devices can be designed to perform most of the 

signal processing locally and transmit results remotely but transmission, in itself, 

normally consumes more power than processing. Innovative methods for improving 

vital sign(s) processing have been developed [97]. Most wireless communications 

between a fixed base station and mobile stations take place within a certain coverage 
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area with an acceptable signal-to-noise ratio. By reducing the implementation 

complexities of the mobile station receiver, the power consumption in a mobile terminal 

can also be decreased. However, this reduction often conflicts with lowering the signal-

to-noise ratio threshold value. Furthermore, the receiving mobile station should follow 

standard medical protocols for diagnosis accuracy. In the following section, algorithms 

and software related to vital sign(s) processing are discussed [112]. 

A novel unbiased and normalized adaptive noise reduction system to suppress random 

noise in ECG signals has been designed. This system includes a two-stage moving-

average filter, an infinite impulse response comb filter, an additive white noise 

generator to test the system’s performance in terms of signal-to-noise ratio [193], low 

cost online acquisition of ECG signal using Matlab and LabView and time-plane feature 

extraction from digitized ECG samples using a statistical approach [194]. A mobile 

based ECG detection and analysis algorithm [195], ARTiiFACT, a software tool for 

processing ECG data [196], ECG signal processing and digital filtering on 8-bit 

microcontroller [197] and a mean shift based self-adaptive model [198] are some of the 

latest systems developed for ECG signal classification and analysis. 

2.4.2 Signal Compression and Enhancement Techniques 

A vital signal processing method using a quad level vector, consisting of compression 

and classification flow has been designed. This software enables both flows to achieve 

better performance with a lower computation complexity. The compression algorithm is 

performed by using ECGskeleton and Huffman coding [199]. Five levels of discrete 

wavelet transform were applied to decompose the signal into six sub-band components 

from higher order statistics [200]. A new wavelet-based signal compression algorithm 

has been developed where each signal frame was first transformed by a DWT and then 

the transform coefficients were quantized with a uniform scalar dead-zone quantiser 

[201]. Vital signal compression techniques, using wavelet packets and an embedded 

zero tree wavelet [202] as well as a novel system-on-chip using CMOS technology for 

signal compression have been developed [203] for faster processing and transmission. 

Annotated ECG data is publicly accessible to support research through different 

resources such as Physionet data bank (http://www.physionet.org). It offers ECG data 

from Medicalgorithmics which has successfully developed an innovative solution 

PocketECG as one of the leading mobile arrhythmia diagnostic technologies 

http://www.physionet.org/
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(http://www.medicalgorithmics.com/). This research uses the Physionet data bank for 

off-line testing of the proposed system and has been found helpful for initial stage 

testing and especially for a trial and error approach. Various methods and techniques 

have successfully been adopted for ECG signal enhancement using adaptive Kalman 

filtering [204], nonlinear Bayesian filtering [205], adaptive filtering [206], discrete 

Fourier transform (DFT) [207] and wavelet transform [105] which resulted in high 

accuracy and reliable outcomes. Among other techniques used are artificial neural 

networks [174], Lyapunov exponents [99], fuzzy wavelet and fuzzy c-means clustering 

[191], self-organising maps [208] and independent component analysis [209]. 

Table 2.6 shows the selected algorithms or software based vital signs PMS and shows 

the real-time data transfer with accurate results when using PC based applications 

(Matlab and LabVIEW) compared to mobile/smart phone based applications. 

Advanced signal processing algorithms for faster processing, low power consumption, 

low cost and less complexity have been developed. Such algorithms are often tested by 

simulation or under fixed conditions. Implementation of these algorithms in the 

wearable, remote or mobile monitoring environment led to poor results due to an 

increase in processing time and delays. A medical grade remote monitoring system with 

a reliability exceeding 99% has been developed but a 2.4 second initial buffering delay 

[210] as well as a small processing and network delay were indicated. On the other 

hand, some algorithms aim for faster and/or secure diagnosis [211]. 

2.5 Fall Detection and Prevention Models 

2.5.1 Overview 

Falls among older adults are very common and their incidence increases with age. The 

proportion of people who sustain at least one fall over a year varies from 28% to 35% in 

the over 65 age group to 32% to 42% in the 75+ age group, with 15% of older people 

falling at least twice a year. Incidence rates in hospitals are higher and, in long-term 

care settings, approximately 30–50% of people fall each year, with 40% falling 

recurrently [212]. Stevens et al. [213] conducted a study which estimated the cost of 

fatal and non-fatal falls amongst older adults, and reported direct medical costs totalling 

0.2 billion dollars per annum for fatal and 19 billion dollars for non-fatal injuries in the 

US. Of the non-fatal injury costs, 63% ($12 billion) were for hospitalizations, 21% ($4 

http://www.medicalgorithmics.com/
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billion) were for emergency department visits and 16% ($3 billion) were for treatment 

in outpatient settings in the US.  

In New Zealand this problem is more serious and needs immediate attention. The 

Accident Compensation Corporation New Zealand (ACC) webpage states that, “If you 

are over 65, you have a one in three chance of falling this year and, if you are over 80, 

you have a one in two (50%) chance of falling this year” [214]. 

According to the Health Quality and Safety Commission’s report ‘Serious and Sentinel 

Events Report 2010/2011’ falls accounted for 52% of all serious and sentinel events 

reported in hospitals in 2010/2011 compared to 35% in 2009/2010 [215]. Hence, there 

is a clear need for a falls detection, prediction and avoidance system to be in place, 

particularly in hospitals to avoid these incidents and reduce the consequences. 

Hauer et al. [216] provide a comprehensive, non-exclusive fall definition that identifies 

a fall as ‘an unexpected event in which the participant comes to rest on the ground, 

floor, or lower level’. Injuries sustained from falls to older adults include fractured 

bones (hip fracture is common), subdural hematoma (‘brain’ haemorrhage), soft tissue 

damage, cuts and also serious wounds [217]. In order to predict falls, it is important to 

incorporate falls risk factors and related contributors. Some of these risk factors are 

described in the next section. 

2.5.2 Fall Detection Systems 

It has been reported that clinical balance assessment scales can assess falls risk. A 

quantitative fall risk assessment [218] using a timed-up-and-go (TUG) test that was 

developed by Mathias et al. [219] and a Berg balance scale (BBS) [220] employs the 

SHIMMER sensors and Matlab for processing raw accelerometer and gyroscope data. 

Systems results indicated that the manual TUG test had an accuracy of 60.6%, BBS an 

accuracy of 61.4% and the mean test, an accuracy of 76.8% when estimating the falls 

risk in 349 older adults. Another fall detection system was developed [221] as a server 

based approach where the data was collated from biomedical sensors for control and 

processing. A linear autoregressive (AR) Burg spectrum estimation was applied as a fall 

detection algorithm. The results from the system reported 100% sensitivity, 95.68% 

specificity with an overall analysis time of four seconds. 
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The two most common falls ‘detection’ (or response) approaches are: automatic falls 

detection (using sensors, accelerometers and video cameras) and personal emergency 

response systems [222]. The latter works with a pendant-like device with an alert button 

which needs to be worn by the user at all times. In case of a fall/accident, the device 

automatically sends a signal to a base station or users have to press the alert button 

manually. Such devices need to be within a certain range from the base unit [223]. The 

push-button pendant system is not efficient because it is often difficult to differentiate 

between a real and false fall [224], the constrained range and also a high rate of false 

alarms [225]. In addition, in clinical experience, many older people fail to wear them, or 

even when wearing them at the time of a fall, are unable or unwilling to activate the 

alarm. 

Tri-axial accelerometers or video cameras have been employed in the majority of work 

in the area of fall detection. However, there was one significant problem related to the 

use of cameras as they only function in a given view angle and in certain lighting 

conditions. Moreover, should the subject move beyond these settings then the system 

cannot record accurately and distinguish a real fall. Even under normal conditions (no 

fall), if the subject moves, a false alarm will be generated due to the lack of other fall 

related parameters such as vital signs. Therefore, it is aimed to integrate motion and 

balance measurement of older adults in the proposed system to improve sensitivity, 

accuracy and responsive balance testing in clinical practice [226]. Figure 2.5 shows a 

generic working model adopted for the proposed system. 

For example, a false alert may be generated if the monitored person makes an 

unpredicted movement which the video camera reports as a fall [227]. Vital signs and 

cognitive function can also be considered as falls-related factors/predictors. This 

research intelligently combines four main vital signs (heart rate, blood pressure, oxygen 

saturation and skin temperature) with motion data to predict falls by early detection 

and/or prevention. 
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Figure 2.5 Falls alert system working model. 

2.5.3 Case Studies 

The most effective strategy in the prevention of falls is to involve a multi-disciplinary, 

holistic and patient-specific approach. Measures should take into account the person's 

medical condition, social circumstances and psychological factors. [228] cites four types 

of successful, published fall prevention trials. 

a) Single factor, single intervention such as the treatment of syncopal falls with 

cardiac pacing. 

b) Multiple factors, systems intervention: a population group of older people with 

different medical histories who were admitted to the emergency department was 

individually assessed by a hospital fall assessment system. Then they were 

advised of appropriate treatments using the resources available to the hospital 

and a significant decrease in the risk of further falls was achieved. 

c) Multiple factors, specific interventions: a range of clearly defined interventions 

were employed in combination to prevent falls in a population group 

experiencing falls from multiple causes.  

d) Multiple factors, single interventions, for multiple aetiological factors, a single 

major risk factor can be very effective for a single intervention such as strength 

and balance retraining. Single intervention trials can also identify effective 

components for multifactorial public health programmes for fall prevention. 
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The results from meta-analyses of trials with the same or similar interventions showed 

that the most effective intervention in reducing falls in older adults is assessment and 

multifactorial interventions with a 95% confidence interval of 0.75 (0.65 to 0.88) [229]. 

In addition, a total of 37 randomised controlled trials for those in rest homes and 

hospitals (both long term care and acute) were identified [229]. Twenty-nine of the trials 

were carried out in long term care facilities on 17,291 residents, 13,481 women, 3,765 

men, 45 gender not specified, and the remaining eight trials were conducted in hospitals 

on 2,862 inpatients: 1,716 women, 1,146 men. A total of 41 interventions were tested: 

 4 multiple intervention programmes (not tested in hospitals) 

 26 single factor interventions (6 tested in hospitals) 

 11 multifactorial programmes (3 tested in hospitals) 

Three trials of multifactorial interventions indicated a high success rate in residential 

care facilities in Europe [229]. Interventional factors included instituting exercise 

programmes, creating a suitable environment, employing assistive technology, 

educating staff on fall prevention, reviewing prescription drugs, providing free hip 

protectors and initiating post-fall problem solving training. Furthermore, it was found 

that falls in hospitals occur three times more than in community living. The findings of 

meta-analyses from trials with the same or similar interventions showed that effective 

interventions can be implemented to reduce falls in older adults, both in residential and 

hospital settings. 

2.6 Summary of Reviewed Systems and Methodologies 

This section summaries the literature review section into types, categories and 

functionality of the above reviewed PMS into their respective tables. 
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Table 2.2 Selected health monitoring systems. 

Title or 

Author 

HW/ 

SW 
Module Parameters 

Medical 

Application 

Place/ 

Type 

TAFETA 

[184] 

Pathway & 

Austco DCS-

2000 

Online 9 sensors 
General 

Monitoring 

Home/ 

Sim 

LOBIN [92] E-Textile PAN 
ECG, HR, 

M, T, L 
WSNM 

Hospital/ 

Tested 

Smart Vest 

[50] 
E-Textile Remote 

ECG, BP, 

T, PPG, 

GSR 

General 

Monitoring 

Outside/ 

Sim 

Blue Box [50] 
Hand-held 

device 
Remote 

ECG, PPG, 

Bio-

impedance 

Congestive 

heart failure 

Remote/ 

Trial 

Lin et. al [20] RFID Online Activity Dementia 
Home/ 

Trail 

The Escort 

System [21] 

‘Talking 

Lights’ 
Remote Activity Alzheimer’s 

Home/ 

Trail 

Mercury-Live 

[23] 
Sensors Remote Activity Parkinson’s 

Home/ 

Trail 

LAURA [185] Localisation PAN Tracking 
General 

monitoring 

Home/ 

RT 

TELEMON 

[147] 

E-health 

services 
Mobile 

ECG, HR, 

AP, OS, R, 

T 

Chronic 

illness 
Pilot 

*Systems trialled or implemented on patient, home or hospital, 

HW/SW=hardware/software, Sim=simulation, RT=real-time, M=movement, 

T=temperature, L=location, PAN=personal area network, WSNM=wireless sensor 

network monitoring, SOFLC=self-organising fuzzy logic controller, SAP=systolic 

arterial pressure, DOA=depth of anaesthesia, DDMS= diabetes data management 

system, AP=arterial pressure, OS=oxygen saturation, R=respiration. 
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Table 2.3 Selected wireless/mobile based systems 

Title or 

Author 
HW/SW Modules 

Medical 

application 

Implement-

ation 

System 

Stability 
Cost 

MedAssist 

[162] 
SVM 

Smartph

one 
Sleep apnoea Simulation N/A Low 

MEDIC 

[168] 
WSN PDA 

Individual 

care 
Home/RT High High 

HeartSav-

er [169] 

Microcontr

oller 
Mobile 

Cardiac 

Diagnosis 
Simulation N/A Low 

Oresko et 

al. [106] 

LabView/M

atlab 

Real-

time 

Cardio 

vascular 

disease 

Simulation N/A High 

Dilmagh-

ani et al. 

[87] 

SimpliciTI Remote 
Chronic 

Diseases 

Home/Proto

col 
High High 

Dong-Her 

et al. [16] 
RFID Mobile 

Older persons 

Monitoring 
Home/Trial Medium Low 

Tan et al. 

[49] 
Linux based Portable 

Signal 

measurement 
Simulation N/A High 

Hsieh et 

al. [167] 
XML Mobile 

ECG and 

Image 

Hospital/Tri

al 
Medium Low 

Bansal et 

al. [230] 
Matlab 

PC/Wirel

ess 

Digital 

processing 

and 

monitoring 

Real-time High High 

SVM represents support vector model, WSN wireless sensor network, PDA personal 

digital assistant, RT real-time, RFID radio frequency identification, XML represents 

extensible markup language and simulations are N/A due to high stability when 

compared with real-time testing. 
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Table 2.4 Smartphone based healthcare delivery systems 

Name Purpose Device 
Wireless 

Technology 
Language 

Ren-Guey 

et al. [51] 

healthcare 

system with 

alert mechanism 

Nokia 7610 

Bluetooth class 2 

application 

programming 

interface, JAVA, 

Borland C++ 6.0 

Active X data 

objects 

HeartToGo 

[173] 

Cardiovasc-ular 

disease 

detection 

System 

Windows 

Mobile 5 

(Amoi E72) 

and 6 (HTC) 

Blue tooth class, 

Matlab and 

LabView 

C#, C++, .NET 

and used MIT-

BIH database 

Blue Box 

[50] 

Heart failure 

patient 

monitoring 

system 

Handheld 

device 

low-power 

Bluetooth 

module 

converter 

(AD5934) 

kang et al. 

[175] 

Wrist-worn 

integrated health 

monitoring 

device 

(WIHMD) 

Samsung 

smartphone 

Personal area 

network, ad hoc 

networking 

 

QRS detection 

algorithms, 

microcontroller 

(ATmega103L, 

Atmel, USA 

Farmer et 

al. [231] 

Phone based 

telemedicine 

system for type 

1 diabetes 

Motorola 

T720i phone, 

 

Bluetooth, GPRS 

(2.5G) 

JAVA 

programming 

Tatara et al. 

[232] 

Self-help tool 

for Type 2 

diabetes 

HTC P3450 
Wireless data 

transmission 

Software 

application 

Breslauer et 

al. [233] 

Clinical 

microscopy 

Nokia N 73, 

(with 3.2 

megapixel 

CMOS 

camera) 

N/A 
sophisticated 

algorithm 
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Table 2.5 Expert systems for vital signs monitoring 

Name Type/Technique Data Used Application Rules 

EMUTEM 

[234] 
Fuzzy logic 

Vital Signs, 

audio and 

sensors 

Older adults 
26 with 20 

scenarios 

Centinela 

[235] 

Naïve Bayes, 

Neural networks 

and Bayesian 

networks 

Vital signs and 

acceleration 

data 

General 

Eight 

classification 

algorithms and 

three window 

sizes 

FLOGERA 

[236] 

 

Fuzzy inference 

system in wireless 

sensor networks 

Vital signs and 

environment 

sensors 

Event 

detection 
19 

Fuzzy 

CARA [237] 

 

Fuzzy logic 

Vital signs, 

medical 

history and 

activity 

Emergency 

situation 

detection 

Fuzzy rules, 

medical 

conditions and 

medical history 

FuzzyARDS 

[238] 
Fuzzy rules 

Vital signs and 

blood glucose 
ARDS Eight 

ARDS= Acute Respiratory Distress Syndrome. 
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Table 2.6 Selected algorithms/software for wearable health monitoring systems 

Name ECG 
Technology/S

oftware 
Technique Platform Time 

Xin et al. 

[239] 
Processing 

CMOS/ASIC 

chip 

Wavelet 

Transform 
Wearable Delayed 

Vullings et 

al. [204] 
Enhancement Matlab 

Adaptive 

Kalman filter 
PC 

Real-

time 

Sufi et al. 

[211] 
Compression 

MMS & 

SMS 

Protocols 

Algorithm 
Mobile 

Phone 
Delayed 

Oster et al. 

[205] 
Denoising Matlab 

Bayesian 

Filtering 
PC 

Real-

time 

Capua et al. 

[240] 
Measurement LabView Algorithm 

Mobile/ 

Web based 

Real-

time 

Kim et al. 

[199] 

Compression 

& 

Classification 

Holter 

System 

quad level 

vector 
PC Delayed 

Marco and 

Chiari [105] 
Delineation 

32 bit integer 

Online 

Processing 

Wavelet 

Transform 

Web 

Based 

Real-

time 

ARTiiFACT 

[196] 

Artefact 

Processing 
Matlab 

Detection 

Algorithm 
PC 

Real-

time 

Tseng [101] 
Signal 

Analysis 
Windows OS 

Fuzzy 

Wavelet 

Mobile 

/Remote 
Delayed 
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CHAPTER 3 The Proposed Wireless and Remote Monitoring 

System 

3.1 Introduction 

Telehealth is one of the emerging areas of today’s healthcare for the delivery of health 

information remotely. The worldwide acceptance of telehealth solutions is due to the 

use of the internet and related services, being ‘online’ at all times and the ease of 

communication anytime and anywhere. Moreover, the need for telehealth is increasing 

in older adults worldwide, for the purpose of reducing the cost and enhancing the 

quality of healthcare delivery. After in-depth market analysis, in this research we have 

collaborated with Medtech Global Limited [241] for the delivery of the advanced 

healthcare solution called VitelMed [242], which acts as the base medium for the 

proposed research project in order to have an overall integrated system: vital signs 

collection and monitoring, video conferencing and multiple physical signs 

interpretation. Telehealth is often considered as the extension of telemedicine and is 

defined as: the use of information, computing, electronics and telecommunications 

technologies to provide healthcare delivery when patient and clinician are separated by 

a distance [243]. Moreover, it employs advanced telecommunications technologies for 

the exchange of medical information via the electronic medium for the delivery of 

healthcare [244]. Telehealth technologies range from simple text messaging and phone 

calls to advanced remote patient monitoring and to the innovative real-time monitoring 

of vital signs and video consulting (two-way video conferencing) [245]. It uses the 

combination of digital video cameras, simple-online questionnaires, medical 

measurement devices and/or sensors. 

The telehealth care solution is capable of enhancing the quality of patient care while 

reducing the cost [5]. It is categorised into three types: remote (home) monitoring, video 

conferencing and store and forward. Some of the telehealth services which are already 

in use are: 

 E-prescription: One of the commonly used services which enables clinicians to 

send prescriptions directly to the pharmacies and eventually helps in reducing 

prescribing errors [62]. 
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 Messaging: Simple text messaging improves the communications 

(appointments, reminders and notes) between clinicians and patients and saves 

time and cost [246]. 

 Medical Imaging: The waiting time and hospital cost is reduced by accessing 

high quality digital images by various specialists and/or departments such as 

radiology and cardiology. 

 Remote monitoring and video consultation: This technology allows clinicians 

and patients to interact virtually (using physiological data and audio/video) and 

efficiently. 

 Email: The increasing use of internet related services enables the integration of 

basic communications such as electronic mail in the healthcare settings which is 

proved to be a low cost, fast and effective medium of communication. 

 Electronic Health Record (EHR): Access, store or transfer of patient’s EHR, 

high resolution images, consultation notes, medical documents and patient’s 

background history are some of the competent telehealth care services currently 

in use [247]. 

The basic functionality and working structure of the selected telehealth system can be 

described from the patient’s and clinician’s points of view. The patient’s side consists of 

a wireless transmission unit, medical peripherals for data collection and a video camera 

(not very common at present) for the transfer of vital signs and video data via the 

internet. The clinician’s side consists of a software application installed on a personal 

computer or laptop with audio/video capabilities. The VitelMed telehealth care solution 

includes medical standard features and technology for better healthcare. Also, it gives 

the patient their own environmental freedom of staying at home while their healthcare 

services continue. 

3.2 Current Healthcare Solutions 

The majority of work in the area of wireless remote patient monitoring can be divided 

into two types of systems: body attached sensor-based monitoring (wired or wireless) 

and medical device-based wireless monitoring. The development of the ‘Electronic 

Doctor’s Bag’ [109], with a mobile communication link, is an example of the latter for 
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home medical services. This system has been tested in two clinics and one hospital with 

three medical doctors and two nurses. It measures physiological data such as ECG, BP 

and blood sugar level as well as performing ultrasonic diagnosis of the patient with 

compressed and coded video images. A case study has been set up with a pilot trial of 

the system in integrating tele-healthcare and decision support in the patient care 

management of chronic obstructive pulmonary disease and chronic heart failure [248]. 

The system was able to identify the risks incurred when an individual’s measurements 

exceeded the predetermined or adaptive thresholds limits. This process was performed 

by its core decision support system and knowledge-base. Up to 24 hours of constant 

monitoring of older adults was proposed with a possible extension to a longer term of 

monitoring and detecting abnormal events and emergency cases. Such events can be 

reported to the relatives or healthcare professionals by telephone, SMS and e-mail. 

Moreover, these systems should be able to deal well with security and privacy issues 

[108].  

A computer-aided bedside vital signal monitoring system consisting of a bedside 

monitor and a central monitor based on an industrial standard has been developed [249]. 

The central monitor allows real-time access to the bedside data via standard software 

interfaces to facilitate the communication between the devices. This system performed 

well in a robust and real-time handling of up to 16 bedside monitors. 

McLean et al. [250] conducted a research to identify the technological impact of 

wireless remote patient monitoring systems on people living with prolonged medical 

conditions and also people living in remote areas with limited mobility. It is reported 

that such systems are cost-effective and can offer significant enhancement in healthcare 

delivery. These systems are evidently useful in early diagnosis [251]; they are low cost 

[252] and in some cases can reduce hospitalisation [139]. Therefore, accuracy, 

reliability, removing delay in communication, security and privacy are some of the 

challenges facing wireless remote patient monitoring systems. More attention to the 

user’s acceptance and feedback should be considered in the design and development of 

such systems. 

TeleHealth Emergency (THE) system has been developed by Minesh et al. [253] based 

on the ‘locate-diagnose-move’ technique. THE system is presented in the form of a 

Wearable Tele-Bio watch which consists of: an alert button for abnormal physiological 
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parameters (BP, HR and body temperature), a speaker for audio services, a manual call 

button to connect to the call centre, a display for time, BP, HR and temperature via two 

navigation keys and a Bio-Belt to collect BP, HR and body temperature. It also contains 

a global system for mobile (GSM)/ a general packet radio service (GPRS) unit for 

location and data transfer. Although, THE concept is innovative, it lacks the key tele-

health standards in the reported model, the physiological parameters often vary when a 

person is at rest and/or in activity, hence there is a fair chance of a false alarm generated 

by a wrist-worn watch with delayed data transmission. 

KeepInTouch, a low cost system developed by Angius et al. [254] is constructed in two 

sections: the patient’s side and the clinician’s side. The patients’ side is a combination 

of a set-top box to collect medical data and a TV-connected user interface (UI). The 

clinician’s side is a web based application which enables access to audio/video and data 

from the patient’s unit using digital video broadcasting terrestrial technology. The 

proposed system is easy to operate on the patient’s side by removing the PC connection, 

and using a TV as the medium. However, medical peripherals are limited to only three 

only specific models/devices. A similar TV-based solution called MOTIVA has also 

been developed by Philips [255] which does not include any medical data collection 

device. 

A low cost, high accuracy and wide availability system, which obtains a patient’s key 

physiological data from a remote location is proposed by Yan et al. [256]. In case of 

emergency, when set parameter limits are exceeded, the clinician will receive an alert 

via the web or SMS. The clinician will then reply with the appropriate measures via the 

same medium. The data quality is reported as high, but time-delayed results can occur 

due to the web and mobile data interfaces and the strength of these. Secondly, it is quite 

difficult for such a system to be implemented in medical settings due to the fact that it 

uses crisp threshold limits for the alert generation, which is one of the biggest 

contributors to false alarms [257]. 

Figure 3.1 shows the basic understanding of four-way (multiple) video conferencing 

managed by a single server for online use of healthcare consultation in real time. The 

four blocks with dotted lines are the external/internal data processes performed on the 

same server simultaneously. The architecture model is adopted from the literature which 

uses similar concepts. Such tele-communication systems are reported useful in the fields 
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of heart disease [258], wound care [259], mental health [260], diabetes management 

[261] and dermatology [262]. 

 

Figure 3.1 Adopted architecture for multiple video consultations for real-time applications. 

3.3 Overview of the Proposed System for Application in this Thesis 

The system consists of an advanced set-top box, which runs the VitelMed software 

application providing connectivity with a wide variety of medical devices. A special 

feature of VitelMed is the one-touch button, for easy and instant connectivity. Users 

press a button to automatically connect to a call centre or their medical professional. A 

TV or other screen can be connected to enable two way video/audio tele-visiting 

(conferencing) using a high resolution camera. It collects vital signs via wired or 

wireless medical devices and sends that information to the medical professional in real 

time without any delay. In parallel, a medical professional can have two-way video 

conferencing, as a virtual face-to-face clinical consultation, using a tilt, pan, zoom high 

resolution camera. VitelMed is fully operational and efficient in several essential points 

of healthcare (places): in emergency care (ambulance), in secondary care (hospital) in 

primary care (medical centres) and also in homes and aged care facilities. 



55 

 

 

Figure 3.2 Doctor and patient consultation using VitelMed solution [242].  

3.4 Connecting Patients and Clinicians 

The simple and easy-to-use patient’s side of the VitelMed system enables the patient 

(user) to quickly become familiar with the solution. Using the one touch button, the 

patient can instantly connect to a call centre, nurse or doctor. In a home setting the 

system is usually connected to a TV (with remote) to give the user a familiar 

technological advantage, without the drawback of using a PC or advanced software 

which may be rejected by older adults due to lack of technological interest or 

understanding. Fully customised medical parameters for the collection of information, 

clear and large multi-media keys and on-screen navigation and control settings gives the 

patient personalised and individual healthcare delivery. The medical professional is 

provided with a software application, which can be installed on any PC or laptop with 

audio and video features, with access to the patient’s electronic health record and 

medical history. A clear, easy to understand and user friendly graphical display helps 

clinicians to provide medical care to the user. On the clinician’s side, the application can 

have two-way video conferencing with real-time physiological data from the patient’s 

side and remote control of the camera at the patient’s end. 
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Figure 3.3 Medical professionals access to VitelMed software application [242]. 

3.5 Interoperability in Medical Devices Connectivity 

VitelMed offers connectivity to a large number of medical devices for patients’ 

physiological data collection. It connects the latest medical devices from almost all 

medical device manufacturers, providers and vendors. The medical devices which are 

fully compatible with VitelMed and available in the market to buy over the shelf are: 

heart rate monitors, ECG monitors, blood glucose monitors, vital sign monitors, peak 

flow meters, blood pressure monitors, weight scales, pulse oximeters and foetal 

monitors. This provides for a wide scope of patient monitoring, especially patients with 

diabetes, congestive heart failure, chronic obstructive pulmonary disease and chronic 

skin ulcers, the early detection of which allows early intervention to avoid potential 

hospitalisation. 
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Figure 3.4 VitelMed Solution kit showing medical devices, speaker, microphone, integrated camera 

and touch screen [242]. 

3.6 Technical Capabilities 

Some of the advanced technical capabilities which make the VitelMed solution a 

reliable, cutting edge and advanced telehealth care solution are: 

 Communication protocols - audio/video with adaptive bandwidth of 16-

2048KBps 

 Network communications - LAN, WAN, IP addressing (static, DHCP or 

PPPoE), TCP/IP protocols 

 Data ports - two RS-232, four USB, one SD card connector, IR remote control 

and Bluetooth class 2 
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 Communication Security-XML based messaging, first key exchange and 

streaming encryption 

3.7 Basic Design Functionalities 

Figure 3.5 shows the overview of the system design and its working model. The system 

consists of two components: a set-top box at the patient’s side and PC based software at 

the medical professional’s side. The key components and some of the features of 

VitelMed are discussed below. 

3.7.1 Set-Top-Box 

The set-top-box is a technologically advanced and reliable machine which can be easily 

connected to TV or screen. It wirelessly connects to medical devices and receives the 

patient’s physiological data as well as audio/video with adaptive bandwidth of 16-2048 

Kbps. This may give a high acceptance rate among patients, especially older adults, who 

are less interested and/or not technically sound enough to use sophisticated computer 

based software program. 

3.7.2 Physiological Data 

The system is fully compatible with more than 20 medical devices. This includes almost 

all vital sign collection devices: ECG, heart rate monitor, BP, P, blood glucose meter, 

etc. This enables the monitoring of patients with several diseases such as diabetes, heart 

diseases and chronic obstructive pulmonary disease. This monitoring can have the 

advantage of early detection of exacerbations and thus may reduce the rate of potential 

hospitalizations. 

3.7.3 Audio/Video Functionality 

A high resolution camera, with pan, tilt and zoom transmits high quality data to medical 

professional in real-time. The medical professional can remotely control the patient’s 

side camera which gives them a realistic and face-to-face consultation experience with 

the patient and eventually helps to assist in much detail. It uses advanced network 

communication such as: LAN, WAN, IP addressing (static, DHCP or PPPoE) and 

TCP/IP protocols. 



59 

 

3.7.4 User-friendly Approach 

The VitelMed system offers patient a one-touch button for direct connectivity to the 

clinician in case of emergency. A single touch button will connect to the medical 

professional’s PC based software and an instant audio/video conference call takes place 

with real-time physiological data available at both ends. It also gives clear on-screen 

information to the patient, which is very useful in system (technology) acceptance and 

reliability. 

3.7.5 Data Security 

The VitelMed box has a number of data ports for wired connectivity such as: RS-232, 

USB, secure digital card connector and Bluetooth class 2 for wireless connectivity. 

Security and privacy of medical data and the patient’s personal identification is secured 

by using XML based messaging, first key exchange and streaming encryption. The 

collected data is assigned a unique identifier linked with the patient’s medical devices 

and profile. Patient data is encrypted before transmitting over the web-based services 

and data can only be accessed by a unique login and password. Additional firewall/port 

settings were also enforced, to protect patient’s data. Each patient profile is linked with 

a patient-assigned medical device (serial number and MAC address) only to receive the 

wireless medical data directly into the specific patient profile. Additional evaluation and 

validation has been performed to test each and every module of the system, including 

data loss, data accuracy, transmission time and overall reliability of the system. 

3.7.6 Clinician’s Side 

The clinician has a PC based software application which can be installed on any PC, 

with audio/video functionality such as microphone and webcam. During a video visit 

(video-conferencing), the clinician can access the patient’s physiological data in real 

time similar to a face-to-face consultation. Much consideration has been given to the 

clinician’s acceptance of this technology by providing informative, easy and simple to 

use graphical user interface. 
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Figure 3.5 Overview of proposed system design, communication and working model 

3.8 Overall Integrated Healthcare System Model 

Integrated healthcare system plays an increasingly important role in current healthcare 

reform efforts [9, 46, 263]. Economic, political and socio-demographic forces are 

moving the modern healthcare system beyond the largely reactive acute care paradigm 

to a more holistic paradigm emphasizing optimization of the population’s health [264]. 

Many healthcare providers believe that an integrated healthcare system will lead to 

higher quality care at a lower cost while maintaining or improving the recipients’ health 

and satisfaction. Integration of healthcare system can facilitate the optimisation of 

patient data being shared for common services and it minimise the under-use, overuse 

or misuse of patient data [264]. However, monitoring the progress potentially associated 

with the efforts being made, and the gathering and dissemination of evidence-based 

knowledge is hampered by the lack of integration of patient’s information being shared 

among healthcare organisations [265]. One of the main aims of this research is to 

achieve the integrated healthcare system depicted in Figure 3.6 which currently contains 

four main modules (observational, physiological, motion and diagnosis) and has the 

capability to add more similar healthcare services modules, such as medication, history, 

etc. Integration of the proposed system into the existing electronic health records 
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systems in primary and secondary healthcare is being investigated and initial results 

suggested that it is highly possible to integrate the system. 

3.8.1 Video Conferencing/Telehealthcare (Physical Observation) 

Among other advancements of telehealth service is the use of video conferencing 

between the patient and the clinician. This technology is likely to enhance current 

healthcare. The use of video communication in companies (teleconferencing), academic 

institutions (educational videos) and personal or social use (video chat) has enabled the 

technology to be integrated in the medical environment and provide innovative 

healthcare services. Today telehealth systems using video consultation is emerging as a 

cost-effective and efficient platform for the healthcare sector. The efficiency of this 

technology is constantly evaluated in the research studies and literature review. A 

comparison between face-to-face and closed circuit television (CCTV) interviews with 

85 psychiatrically disordered people has found no significance differences between the 

two interview methods [266]. A similar comparison in neuropsychological assessment 

of 98 patients by Schopp et al. showed no significant difference and reported the 

videoconferencing approach is proven to be cost-effective [267]. 

A research study on the use of equipment in telehealth care has reported that a cheap 

computer with basic components including audio/video capabilities is enough to carry 

out the video consultation for basic treatments but suggested more sophisticated 

equipment is required for advanced treatment via video consultation [268]. The system 

is tested for the audio/video conferencing of up to four people. This module of the 

system is not tested in a clinical environment due to the ethical and policy issues 

restricting the use of video in a hospital. Therefore, the methodology, working model 

and testing results are not emphasised in this research. Moreover, this module is beyond 

the scope of the research and it is tested in non-hospital settings only in order to check 

the working and integration of the whole system (other modules). Instead this study has 

adopted the traditional face-face observation method to collect the physical 

observational data, which is inserted manually into the patient’s profile containing other 

information such as vital signs, motion data and medications. 



62 

 

3.8.2 Wireless and Remote Vital Signs Monitoring (Patient Monitoring) 

Observational data combined with vital signs helps the system to accurately interpret 

the possible physical signs. Wireless and remote vital signs monitoring (described in 

this chapter) allows the clinician as well as the patient to access vital signs information 

at anytime and anywhere in real-time. It is reported that the accurate observation of vital 

signs in real time (without long delays) can help reduce grave consequences [29, 36, 43, 

178]. 

3.8.3 Falls Prediction and Detection (Predictive Model) 

The falls prediction and detection module combines the patient motion data with real-

time vital signs and related observational notes in order to help predict falls risk. Instead 

of falls detection this research focuses on falls prediction to avoid falls and their related 

disabilities in hospitals. Currently hospital falls are one of the major healthcare concerns 

worldwide because of the ageing population. Current observational data and vital signs 

gives the critical information related to the patient’s physiology, and motion data 

provide an additional tool in falls detection/prediction. These data combined with the 

patient’s medical history potentially gives the interpretation model high information 

accessibility to predict falls risk (described in detail in the next chapter). 

3.8.4 Interpretation and Diagnosis (Decision Support) 

The next chapter discusses the proposed interpretation model in detail including 

methodology adopted and the framework developed for interpretation of physical signs. 

Early detection of physical sign(s) is also tested and evaluated. 
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Figure 3.6 Overview of the integrated healthcare system of this thesis described in four main 

modules. 

3.9 Summary 

This chapter described the remote and wireless vital signs monitoring module of the 

proposed system of this thesis and its key components. The web access is emphasised in 

order to address the accessibility issue of the patient’s vital data over the web to the 

patient as well clinicians in real time. Security and privacy are also addressed to the 

extent that the system can be considered secure for vital data collection and 

transmission. 

The proposed system incorporates physical observations as text input because, at 

present, hospitals (North Shore Hospital and Waitakere Hospital) do not have any 

computerised ward-monitoring outside the intensive/cardiac/emergency clinical 

situations. Real-time vital signs are the critical inputs that contribute to the multiple 

physical signs interpretation as well as falls risk prediction. Motion data potentially aids 

falls risk prediction in terms of low, medium and high risk. 

This chapter also introduced the overall methodology used to conduct hospital clinical 

trials. The next chapter will discuss the data collection process and protocols adopted to 

collect real-time patient’s vital signs in hospital, including data statistics and analysis. 
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CHAPTER 4 Data Collection and Protocols 

4.1 Introduction 

The managerial aspect of providing health services to patients in hospitals is becoming 

increasingly important. Hospitals want to reduce costs and improve their financial assets 

on one hand, while they seek to maximise the levels of care and patient satisfaction on 

the other. One unit that is of particular interest to this research is the older adults’ wards. 

In fact, health professionals have to anticipate the increasing demand in healthcare 

services caused by the ageing population [269]. These factors clearly emphasise the 

need for efficiency, and the necessity for further enhancements in the hospital wards. 

The past few decades have witnessed a real improvement in the ward setup and patient 

monitoring equipment; this benefits both the clinician and the patient. Even patient 

monitoring while they are being transported to the hospital provides data on such vital 

and complex parameters as electrocardiography (ECG), oxygen saturation by pulse 

oximetry (SpO2), heart rate, and blood pressure [270], which helps with early treatment 

and makes the clinician’s work easier. 

One of the important areas related to this research is the patient’s vital signs, on this the 

whole development is based on. This chapter in-detail discuss the data collection 

methodology, adoption of data collection (including ethical approvals) and discusses the 

test-bed prepared for the real-time hospital clinical trial. 

The vital signs are an essential part of the patient’s medical record. Even the best of 

healthcare cannot be defended or referred to if there is no clear record that such care 

took place. The essential purpose of maintaining the electronic vital data record is to 

analyse the individual’s trends, range, history and known health issues; overall the 

record also helps to understand how an individual patient responds to care.  

The electronic health record (EHR) is a generic document that is used for a wide variety 

of assessments and procedures. An ideal record system is expected to contain relevant 

patient information: procedure, evaluation, intra-operative events/complications, 

medications, history, observation charts, known issues and other instructions. This 

record can be, and has been, used for post data analysis, fault detection, development of 
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monitoring systems, development of warning systems and also in a number of different 

areas of related studies.  

The rapid development of telecommunication and information technologies has 

accelerated development in the EHR [271]. This work also explores the possibility of 

realizing a reliable and efficient remote monitoring system and the development of a 

decision-support system to function in a smart alarm capacity and manage the 

complexity of modern healthcare procedures. Wireless patient monitoring systems in 

the hospital ward not only increase the mobility of patients and medical personnel, but 

also improve the quality of health care [272]. With respect to the remote monitoring of 

patients, many groups have demonstrated the transmission of vital signs using: GPRS, 

2G, 3G, 4G and 5G (under development) networks [107]. Some researchers have used 

cellular phones to transmit vital signs from the ambulance to the hospital, either in 

store-and-forward mode [273] or in real-time mode [274]. In the following sections of 

this chapter, the details of patients’ data collection are discussed, followed by data 

acquisition devices and protocols. 

4.2 Ethics Approvals and Process 

The collection of vital signs from humans (patients) is considered as s clinical trial, and 

it is defined by World Health Organisation (WHO) as, 

‘a clinical trial is any research study that prospectively assigns human participants or 

groups of humans to one or more health-related interventions to evaluate the effects on 

health outcomes. Clinical trials may also be referred to as interventional trials. 

Interventions include but are not restricted to drugs, cells and other biological 

products, surgical procedures, radiologic procedures, devices, behavioural treatments, 

process-of-care changes, preventive care, etc. [275]’ 

The research described in this thesis has successfully obtained ethics approvals in order 

to conduct the hospital clinical trial in New Zealand from the following authorities: 

 Universal trial number obtained from World Health Organisation (U1111-1126-

9410). 

 The proposed clinical trial has been registered at Australia and New Zealand 

Clinical Trials Registry (ANZCTR) – APPENDIX A1. 

(https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347922) 



66 

 

 Northern X Regional Ethics Committee approval number – NTX/12/EXP/073, 

approved March-2012 - APPENDIX A2. 

 Waitemata District Health Board’s (WDHB) Maori Research Review 

Committee, Awhina Research & Knowledge Centre – APPENDIX A3. 

 Auckland University of Technology Ethical Committee (AUTEC) approval 

number – 12/117, approved May-2012) - APPENDIX A4. 

4.2.1 Sample Size 

For sample size calculation it is assumed that the significance level is 0.05, power of 

0.95, the effect size of 0.6 (mean difference 1.2 and SD 2). The calculation returned the 

sample size of 30. This was also consistent with previous research experience 

(Anaesthesia monitoring [276-279] using 30 patients). The above calculation is carried 

out using G*Power 3.1.3 [280]. 

4.2.2 Patient Inclusion and Exclusion Criteria 

Patients on Assessment, Treatment and Rehabilitation (AT&R) wards of North Shore 

Hospital and Waitakere Hospital are all over the age of 65 (male and female). Those 

who refused informed consent (see below); Hodkinson AMT 7/10 or less [281], patients 

deemed unsuitable by medical or nursing staff, terminally ill patients and patients on 

any other monitoring device were excluded from the study. 

4.3 Patient Recruitment Protocol and Process 

Ward-based medical staff identified appropriate patients and approved the patient 

information sheet (APPENDIX B1) that was given to the patient with a verbal 

explanation 24 hours prior to obtaining consent. An approved patient consent form 

(APPENDIX B2) was used to obtain written patient consent, signed by the participant 

and the ward clinician (physician). A ward-based trained registered nurse helped with 

data collection. 

4.4 Hospital Setup 

One of the critical aspects of data collection was the device optimization and 

maintaining the appropriate distance between the set-top-box and the wireless (BT) 

devices. Figure 4.1 shows the hospital ward nursing station where the setup was 

installed. The distance was within the BT range from all corners/rooms to the nursing 
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station as the nursing station is almost in the centre of the ward, connecting all the 

rooms and walk ways. The distance and location of the data collector was critical in 

order to avoid any data loss due to the BT connectivity. This was identified and 

remedied during the pre-hospital trial setup and testing of devices. In the view of this 

research, Figure 4.1 shows the practical setup for the real-time test bed during a real-

time data collection and testing session at the Waitakere Hospital (WDHB). The goal of 

the real-time data collection was to capture the vital signs and related patient 

information/observation with the correct time-stamp, and to evoke suggestions from the 

clinicians for making the prototype alarm more ergonomic. 

 

Figure 4.1 Hospital’s project setup 

4.4.1 Selection of Wireless Medical Devices 

This research adopted market available clinically proven and validated wireless medical 

devices that were incorporated into one system. Development of wireless medical 

devices was beyond the scope of this research. Extensive market research, involving 

senior engineers, clinicians, IT firms and healthcare companies has been conducted to 

refine a reliable, advanced and wireless in-hospital patient monitoring system. The 
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selection of medical devices was made after finalising the system architecture, and a 

number of critical as well as functional requirements were identified as essential for the 

device to be considered for this project.  

Table 4.1 describes the features/functionalities considered in each device before the 

device selection. Device features are divided into five categories; wireless (project 

theme), reliability (for use in hospital), transmission (seamless data transmission to 

other machines), size/power/cost (end user’s ease and affordability) and operational 

usability. 

 Table 4.1 Features identified for inclusion of medical devices. 

Categories Features 

Wireless 

Bluetooth Class II 

Wireless Range 

Standard Data Transmission Protocol 

Reliability 

Clinically Validated 

Stable 

Certified (International Standards) 

High Accuracy 

Transmission 

Continuous/Time based Data Collection 

Automatic Transmission 

Customisable data collection 

Size/Power/Cost 

Small Size 

Light Weight 

Battery Operated 

Low Cost 

Low Maintenance 

Operational 

Simple to Understand 

Easy to Operate 

High Readability 

Multi-Capture 

Fully Customisable 

Clear Message/Indicators 
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4.4.2 Wireless Medical Devices 

Figure 4.2 show the wireless medical devices used in this research after satisfying the 

above selection criteria. The system has the capability of collecting multiple data 

simultaneously from multiple patients. A brief description of the devices shown in 

Figure 4.2 is given below (number 1-8 refers to the medical device shown in Figure 

4.2); 

1. Set-top-box: It runs the software application which receives the patient’s 

physiological data from different medical devices and transmits it in real-time 

over the secure internet connection to the personal PC or laptop. 

2. Blood pressure monitor: Boso-medicus prestige blood pressure monitor [55] is 

a wireless Bluetooth device. It measures blood pressure (systolic and diastolic) 

and pulse, records at user defined time intervals and is easy to operate. 

3. Pulse Oximeter: Nonin’s Onyx II finger clip oximeter [65] is a wireless 

Bluetooth device which records oxygen saturation and heart rate continuously. 

4. Blood glucose meter: Accu-Chek Compact plus blood glucose meter [282] is 

wireless infrared connected device which records the blood glucose level. 

5. Ear temperature: Omron’s instant ear thermometer [68] is an accurate and fast 

ear temperature measurement device. 

6. Body temperature: G-plus wireless remote body thermometer [69] is a 

continuous body temperature wireless device. 

7. Spirometer: nSpire’s Piko-6 meter [283] is a wireless infrared connected device 

which gives FEV6 and FEV1/FEV6 readings. 

8. Accelerometer: Gulf Coasts Data Concept’s accelerometer/Magnetometer Data 

Logger X8M-3mini [284] is a compact, continuous data collection device used 

for falls detection in this project. 
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Figure 4.2 Wireless medical devices used for the proposed patient monitoring system. 

4.4.3 Medical Devices’ Specification and Functionalities 

Table 4.2 describes the specification and functionalities of the wireless medical devices 

described above. 
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Table 4.2 Medical device specifications and functionalities 

Medical 

Device 
Model 

Connectivity/ 

Transmission 

Size/Body 

position 

Blood Pressure Bosco-Medicus Prestige BT [55] 
Wireless/ 

BT 
Small/arm cuff 

Pulse Oximeter Nonin’s Onyx-II [65] 
Wireless/ 

BT 

Compact/finger 

tip 

Blood Glucose Accu-chek Compact Plus [282] 
Wireless/ 

IR 

Small/ 

fingertip blood 

Ear Temp. 
Omron’s Instant ear thermometer 

[68] 
Wireless Small/Ear 

Body Temp. 
G-plus Wireless body 

thermometer [69] 

Wireless/ 

BT 

Compact/ 

armpit 

Spirometer nSpire’s Piko-6 [283] 
Wireless/ 

IR 

Small/ 

air blow 

Accelerometer 8-XM3-mini [284] Wireless 
Compact/ 

chest 

Where BT is class-2 Bluetooth and IR is infrared. 

4.4.4 Data Transmission and Communication 

The generic system architecture is illustrated in Figure 4.3. The set-top-box is capable 

of and responsible for vital data collection from all the wireless Bluetooth (BT) 

connected devices: audio/video (optional) recordings and transmitting the data in real 

time to the clinician’s computer directly or via a central processing system where data 

analysis and fuzzy logic diagnosis was performed. High importance has been given to 

the security and privacy of the system due to the wireless and remote connectivity of the 

system. Security and privacy of patient information in remote monitoring systems is one 

of the biggest concerns and is considered to be a barrier to the adoption of this 

healthcare technology worldwide [125, 126, 133, 138].  

The set-top-box has a secure gateway which allows data connectivity to the devices 

which are registered and linked to the specific patient profile including details of 

devices (serial number and MAC address). Data received at the clinicians’ end can only 

be accessed by use of a unique username and password. This study purposely avoids 
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any public network connectivity due to the possibility of third-party access to the 

sensitive medical information and therefore mobile 3G data has been used via a secure 

router and firewall settings, which connect to the set-top-box and laptop (wired as well 

as wireless). The system can also work on other networks such as WiFi, mobile data 

(GPRS, 2G or 3G), LAN or UMTS. 

 

Figure 4.3 Generic system architecture of proposed monitoring and diagnosis system: three bold 

lines connecting the set-top-box shows the wireless connectivity and instant, real-time data 

transmission to other devices. 

4.5 Data Collection 

This study implemented a three-way cross validation data collection method: firstly, 

vital signs were collected by wireless medical devices and transmitted in real-time to the 

base machine (laptop); secondly, the trained registered nurse performed blind manual 

readings of the same parameters, using standard ward devices. Every measurement 

made by the medical devices was recorded manually by the researcher to check wireless 

transmission data loss, inaccurate data transmission, and transmission delay time. Every 

measurement transmitted wirelessly was stamped for real-time and date with the unique 

patient ID representing that patients profile and their connected device(s). Apart from 

the vital signs, the proposed system allows the clinician to enter additional clinical 

notes/comments, which is regarded as an advantageous feature because physical 

observation during the patient interaction and patient complaint is one of the best ways 
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to diagnose the real health issue. Observational notes such as: wounds, bandage, plaster, 

walking frame, gutter frame, pain complaints, activeness, response, visible mood and 

recent incident/improvement, restriction, special exercise/diet, irregular heartbeat etc, 

combined with real-time vital signs gave the interpretation model high accuracy and 

reliability. A screenshot of a typical patient file containing vital signs and observation 

notes used for advanced processing and interpretation is shown in APPENDIX C. 

4.5.1 Data Statistics 

Statistical information was found to be an important feature in developing a reliable 

interpretation model. Data trends from various viewpoints gave deep insight into the 

pattern modelling, for example, data trends between 65+ males and females are 

different and the 65-79 age group is different from the 80+ age group. The difference is 

minor (Table 4.6) but this data analysis gave the interpretation model high reliability by 

considering minute details such as: gender, age group (65-79 and 80+) and maximum, 

minimum, range and standard deviation (SD) for each individual. 

Table 4.3 below shows the variety of statistical information related to the patient data 

collected. In the tables below BP (Sys/Dia) is blood pressure (systolic/diastolic), HR is 

heart rate in beats per minute, SpO2 is oxygen saturation in percentage, B Glu is blood 

glucose level in mg/dl (mg/dl divided by 18 gives mmol/l and mmol/l times 18 gives 

mg/dl) and Temp is tympanic (ear) temperature in degree Celsius. 
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Table 4.3 Mean values of the whole patient data 

Parameter Mean Value 

Number of Patients 30 

Age  82Y 1M 

Sex (M/F) % 57/43 

BP (Systolic/Diastolic) 125.15/71.81 

Heart rate 77.42 BPM 

Oxygen Saturation 96.12% 

Blood Glucose 134.79mg/dl (7.48 mmol/l) 

Tympanic (ear) Temperature 36.56 oC 

 

 

Table 4.4 Statistical information of the whole patient data 

Parameter Age BP (Sys/Dia) HR SpO2 B Glu Temp 

Maximum 93.7 205/118 130 100 236 37.5 

Minimum 65.9 78/47 49 80 66 35.3 

Range 27.8 127/71 81 20 170 2.2 

SD 6.39 21.35/12.85 16.04 3.51 46.72 0.39 

Median 83.80 122/70 75 97 111.5 36.6 

Mode 72.9 118/70 74 97 101 36.5 
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Table 4.5 Statistical information of male/female 

Parameters Sex/Stats Mean Max Min Range SD Median 

Age 

M=17&F=13 

M 81.57 93.7 65.9 27.8 7.73 82.9 

F 82.74 88.6 72.9 15.7 4.62 84.11 

BP (Sys/Dia) 
M 123.6/67.4 205/94 78/48 127/46 21.4/9.1 121.5/67 

F 126.5/75.7 185/118 81/47 104/71 21.2/14.4 122.5/75.5 

HR 
M 75.73 128 49 79 15.69 74 

F 78.96 130 53 77 16.28 75.5 

SpO2 
M 96.15 100 80 20 3.722 97 

F 96.08 100 82 18 3.32 97 

B Glu 
M 151.73 236 86 150 49.60 157 

F 106.55 149 66 83 23.11 107 

Temp 
M 36.57 37.5 35.6 1.9 0.38 36.6 

F 36.55 37.5 35.3 2.2 0.40 36.6 

Table 4.6 Statistical information for 65-79 and 80+ age groups 

Parameters Stats Mean Max Min Range SD Median 

Age 

65-79 = 9 

80+ = 21 

65-79 74.5 79.11 65.9 13.21 4.12 74.4 

80+ 85.72 93.7 80.5 13.2 3.31 85.7 

BP (Sys/Dia) 
65-79 127.5/71.3 205/94 96/52 109/42 21.2/10.4 123/71 

80+ 124.4/71.9 185/118 78/47 107/71 21.3/13.5 122/70 

HR 
65-79 76.90 128 53 75 14.53 75 

80+ 77.58 130 49 81 16.52 74 

SpO2 
65-79 95.72 100 84 16 4.06 97 

80+ 96.24 100 80 20 3.32 97 

B Glu 
65-79 162.57 210 91 119 50.07 181 

80+ 123.35 236 66 170 41.48 110 

Temp 
65-80 36.5 37.3 35.6 1.7 0.40 36.6 

80+ 36.5 37.5 35.3 2.2 0.39 36.5 

 

The above statistical information is used to develop the basic outline of the proposed 

interpretation model, so that a multi-layered structure can be implemented i.e. multiple 

vital signs associated with multiple physical signs. 
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4.6 Data Associations 

4.6.1 Input and Output Data 

The relationship between the vital signs and physical signs is considered to be the core 

knowledge and theoretical framework for this research. The direct relationship between 

the vital signs and physical signs are shown in Table 4.7 shows the baseline in assigning 

the input-output parameter outlines. However, this study is based on multiple 

input/output data points. 

Table 4.7 Direct association between vital signs and physical signs 

Vital Signs 

Interpretation model for 

multiple input and multiple 

output parameters 

Physical Signs 

Heart Rate Tachycardia/Bradycardia 

Blood Pressure 

(Systolic and 

Diastolic) 

Hypotension/Hypertension 

Oxygen Saturation 

(SpO2) 

Hypoxaemia/Hypovolaemia 

Respiration Rate 

High / Low Respiration 

Rate 

Temperature Fever / Hypothermia 

Body Movement Falls & Accidents 

 

4.6.2 Relationship between Vital Signs and Physical Signs 

Table 4.8 shows the important relationship between the collected vital signs and their 

related possible physical signs. The relationship was established after consulting 

medical experts (Professor of Geriatric Medicine) and widely accepted literature [285]. 

This key relationship is adopted in the proposed vital signs interpretation model to 

detect various physical signs. 
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Table 4.8 Relationship between vital signs and physical signs 

Physical 

Signs/Parameters 

Heart Rate 

(HR) 

Blood Pressure 

(BP) 

Oxygen 

Saturation 

(SpO2) 

Temp. (T) 

Bradycardia L N/A N/A N/A 

Tachycardia H N/A N or L N/A 

Hypotension L/N/H L N/A N/A 

Hypertension N/A H N/A N/A 

Hypoxaemia N/A N/A Often L N/A 

Fever H or N N/A N/A H 

Hypothermia L or N L or N N/A L 

Normal Range 60-90 bpm 
100-140/60-80 

mm/Hg 
94%-99% 

36.5-37.5 

0C 

Normal ranges are adopted from the literature [285] as well as a medical expert 

consultation, and the normal range may be different for some (when clustered into 

groups: age, and/or sex) but it is acceptable for the majority of the population. H = high, 

L = low, N = normal and N/A = not applicable. 

4.7 Summary 

Figure 4.4 shows the generic system architecture for the described scenario. 

Physiological biosensors constitute the front-end components of the system employed to 

measure a variety of vital signals. These wearable physiological sensors available on the 

market consists of wearable devices, such as wrist devices, ear-lobe sensors, finger 

sensors, arm bands, chest belts, waist belts, etc. In the latter case, the distributed 

biosensors are capable of wirelessly communicating their measurements and thus 

constitute a body area network (BAN), which can be formed through Bluetooth-enabled 

devices. Basic signal conditioning operations such as filtering, amplifying, and 
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normalising - even basic feature extraction - are usually performed by dedicated 

hardware (central processing unit).  

The central processing unit (personal computer) performs several key tasks, as follows: 

1. Handling the communication with the on-body-distributed biosensors, which 

involves collecting physiological measurements and voice recordings, 

communication synchronization, sending control signals for adjusting sensors’ 

parameters, e.g., sample rate, accuracy and receiving sensor status data. 

2. Performing additional digital signal processing on the acquired signals for 

feature extraction. 

3. Verifying the received data, e.g., checking the validity of the received data via 

an advanced algorithm and discarding those that are found to be erroneous. 

4. Comparing the extracted features or values from each signal with the thresholds, 

limits, or patterns located in the local signal database, which may contain 

patient-specific information about abnormal states, in order to possibly detect 

any health risks (embedded decision support). 

5. Generating alarm signals for the user. 

6. Displaying the collected measurements on the GUI in real time. 

7. Transmitting the extracted medical information about the user to a remote 

medical station, e.g., to a medical centre or to a physician’s cell phone, either in 

real time or in the form of report forms upon request or upon detection of events. 

The next chapter explores the proposed vital signs interpretation for early detection of 

multiple physical signs. The framework, system modelling and other key components 

are described. The methodology and techniques adopted for the proposed system are 

also explored. 
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Figure 4.4 Data flowchart-block diagram view of the proposed model. 
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CHAPTER 5 Vital Signs Diagnosis and Interpretation 

5.1 Introduction 

Expert systems [286], clinical decision support systems [134, 248] and rule-based 

systems [287] have proved to be useful in medical diagnosis. These techniques have 

been established as expanding areas of research using their features and capabilities to 

turn ‘data’ into ‘useful information’ [178, 190, 288, 289]. Computer programs 

employing fuzzy logic are intended to imitate human thought processes in complex 

circumstances, but to function at greater speed [290]. Fuzzy logic-based expert systems 

have been developed in each and every area of healthcare delivery [100, 101, 208, 237, 

291]. 

Fuzzy logic based vital signs monitoring systems mimic the expert’s behaviour by 

executing a sequence of smart/intelligent algorithms which interpret vital signs in a 

meaningful manner fast and accurately. The expert knowledge systems for making the 

diagnosis are normally implemented using a form of linguistic rules. These rules are 

required to be converted into a programmable set of rules for the development of smart 

computer algorithms. Fuzzy logic based systems have the potential for implementing 

these linguistic rules into logical algorithms with high effectiveness and clinical 

usefulness. By using a fuzzy logic based algorithm, expert diagnostic systems can be 

developed to help the clinicians, as discussed by Grant and Naesh [290]. The proposed 

interpretation model uses the intelligent combination of a C language based classifier 

and fuzzy logic modelling with weighted parameters for vital signs interpretation and 

diagnosis of multiple physical signs. 

5.2 Fuzzy Logic and its Application to Patient Monitoring 

The primary objective of fuzzy logic is to map an input space of ‘data’ to an output 

space of ‘useful information’. This mapping is controlled by using IF-THEN statements 

known as rules. The order in which these rules are applied is irrelevant, since all rules 

run concurrently. It provides a remarkably simple way to draw definite conclusions 

from vague, ambiguous or imprecise data. In a sense, it resembles human decision 

making with its ability to work with approximate data yet find precise solutions [292]. 

Unlike classical logic which requires a deep understanding of a system, exact equations 
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and precise numeric values, fuzzy logic incorporates an alternative way of thinking, 

which allows modelling complex systems using a higher level of abstraction originating 

from our knowledge and experience. It allows the expression of this knowledge with 

subjective concepts such as very hot, bright red and a long time, which are mapped into 

exact numeric ranges. Fuzzy logic has been gaining increasing acceptance during the 

past few years. There are over two thousand commercially available products using this 

logic, ranging from washing machines to high-speed trains. Nearly every application 

can potentially realize some of the benefits of fuzzy logic, such as performance, 

simplicity, lower cost and increased productivity. 

5.2.1 A Fuzzy Pattern 

Fuzzy logic is a logic that arrives at a definite conclusion based on vague, ambiguous or 

imprecise input information. When applying mathematical concepts to our daily lives it 

is often difficult to adhere to the logical constraints of traditional set theory because of 

the vagueness of the real world. The fuzzy logic enables an object to belong to a set 

with a certain degree; unlike traditional logic, it addresses the complexity of the world. 

It can also be used practically to aid systems in decision making. For example, the 

statement, ‘Today is sunny’ may have different degrees of truth. It may be 100 percent 

true if there are no clouds, 80 percent true if there are a few clouds, 50 percent true if it 

is hazy and 0 percent true if it rains all day. Now, let us observe how it aids in decision 

making. Consider the statement ‘If today is not too hot and not rainy then I will go out 

to play’. This suitable condition of the statement can be reached by using basic fuzzy 

propositional logic. It analyses the degree of the suitable condition based on the sets 

designated, i.e. hot and rainy, obtains a crisp value, and then finally outputs a definite 

result [293]. 

Today, computers have a brilliant capacity for decision making for crisp processes. 

However, this is limited to systems which have a mathematical interpretation without 

human reasoning. Computers use binary logic and, prior to Zadeh, could only allow for 

values 1 for true and 0 for false. Statements like ‘this car is not fast enough’ or ‘this 

person is quite smart’ are rather vague statements which cannot be interpreted by 

classical logic. To handle this vagueness, fuzzy logic provides an extension from the 

classical logic [294]. Fuzzy logic starts, and builds on, a set of user-supplied human 

language rules. The fuzzy systems convert these rules to their mathematical equivalents. 
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This simplifies the job of the system designer and the computer, and the results are a 

much more accurate representation of the way systems behave in the real world. 

The concept of Adaptive Neuro Fuzzy Interference system (ANFIS) [295] as system 

identification has been used in this project. The fuzzy-logic defuzzification used by 

ANFIS is based on a zero-order Sugeno fuzzy model (or FIS, Fuzzy Inference System) 

[296]. The following sections will present and develop ideas such as sets, membership 

functions, logical operators, linguistic variables and rule bases. 

5.2.2 Fuzzy Sets, Membership Functions and Logical Operators 

Introduction to Fuzzy Sets, Fuzzy Logic and Logical Operators of the fuzzy control 

systems establishes a strong foundation for designing and analysing fuzzy control 

systems under uncertain and irregular conditions. 

5.2.2.1 Fuzzy Sets 

Fuzzy sets are sets without clear or crisp boundaries. The elements they contain may 

only have a partial degree of membership. They are, therefore, not the same as classical 

sets in the sense that the sets are not closed. Fuzzy sets can be combined through fuzzy 

rules to represent specific actions/behaviour and it is this property of fuzzy logic that 

will be utilised when implementing a fuzzy logic controller in subsequent sections. 

5.2.2.2 Membership Functions 

A membership function (MF) is a curve that defines how each point in the input space is 

mapped to the set of all real numbers from 0 to 1. This is really the only stringent 

condition brought to bear on an MF. A classical set may be, for example, written as: 

 A = {x | x > 3} (5.1) 

 

Now if X is the universe of discourse with elements x then a fuzzy set A in X is defined 

as a set of ordered pairs: 

 A = {x, μ A (x) | x  X} (5.2) 
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Note that in the above expression μ A (x) may be called the membership function of x 

in A and that each element of X is mapped to a membership value between 0 and 1. 

Typical membership function shapes include triangular, trapezoidal and Gaussian 

functions. The shape is chosen on the basis of how well it describes the set it represents.  

Figure 5.1 shows the example of fuzzy sets created in the triangular shape. In this 

example the MFs are created as S is small; MS is medium small; M is medium, ML is 

medium large and L is large. The values of these sets vary from 0 to 1 in both the axes. 

 

Figure 5.1 Example of Fuzzy Set. S is small; MS is medium small; M is medium, ML is medium 

large; L is large. 

Figure 5.2 shows the example of fuzzy sets created in the Gaussian shape. In this 

example the MFs are created as poor, good and excellent. The value of these sets on x-

axis is 0 to 100 and on y-axis is 0 to 1. 

 

Figure 5.2 Example of a three-part Gaussian shaped MF. 

5.2.2.3 Logical Operators 

Fuzzy logic reasoning is a superset of standard Boolean logic, yet it still needs to use 

logical operators such as AND, OR and NOT. Firstly, note that fuzzy logic differs from 

Boolean yes/no logic in that although TRUE is given a numerical value ‘1’ and a 
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FALSE numerical value is given ‘0’, other intermediate values are also allowed. For 

example the values 0.2 and 0.8 can represent both not-quite-false and not-quite-true, 

respectively. 

It will be necessary to do logical operations on these values that lie in the [0, 1] set, but 

two-valued logic operations like AND, OR and NOT are incapable of doing this. For 

this functionality, the functions min, max and additive complement (1-A) will have to 

be used.  

5.2.3 Linguistic Variable and Rule Bases 

Linguistic variables are values defined by fuzzy sets. The conditional statements that 

make up the rules that govern fuzzy logic behaviour use these linguistic variables and 

have an IF-THEN syntax. These IF-THEN rules are what make up fuzzy rule bases. 

An IF-THEN rule can contain multiple premises or antecedents. For example, 

 IF speed is high and the road is wet and brakes are poor THEN…. 

Similarly, the consequent of a rule may contain multiple parts. 

 IF the temperature is very high then the fan is on and throughput is reduced 

THEN 

Rule bases involve a number of distinct steps such as: 

1. Firstly, the inputs must be fuzzified to a degree of membership between 0 

and 1. This means that if the antecedent is true to some degree of 

membership, then the consequence is also true to that same degree. 

2. Secondly, fuzzy operators are applied for antecedents with multiple parts to 

get a single number between 0 and 1.  

3. Thirdly, the result is applied to the consequence. This step is also known as 

implication. The degree of support for the entire rule is used to shape the 

output of a fuzzy set.  

4. The outputs of fuzzy sets from each rule are aggregated into a single fuzzy 

set output. This final set is evaluated (or defuzzified) to get a single number. 
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The process of fuzzifying a single crisp input, applying fuzzy operators and then 

defuzzifying it to produce a single crisp output is known as fuzzy inference. This 

progression of modelling is discussed in detail in Section 5.4. 

5.3 Current Expert/Decision Support Systems 

Environmental Multimodal for Tele-vigilance Medical EMUTEM for home monitoring 

has been developed [234]. It consists of three subsystems: the Anason [234] subsystem 

includes a set of microphones that allow sound remote monitoring of the acoustic 

environment of the older adult; the RFpat, a wearable device that can measure 

physiological data, such as heart rate, activity, posture and a fall; infrared sensors called 

Gardien [234] which detect the presence of the person. The EMUTEM fuzzy inference 

engine is developed using two groups of fuzzy IF-THEN rules: the output variable 

localization and the output variable alarm according to all inputs. As a result the system 

has achieved 95% accuracy for alarm generation and 97% accuracy for localisation. 

Centinela [235], a mobile phone-based sensing device combines acceleration data with 

vital signs to achieve highly accurate activity recognition. Centinela recognises: 

walking, running and sitting. After an extensive evaluation on statistical, structural and 

transient features, using eight classification algorithms, and three different window 

sizes, the system achieved the highest overall mean accuracy of 95.7% with a window 

size of 12s (including vital signs and acceleration data). It is also reported that the vital 

signs combined with acceleration data can be useful for recognizing certain human 

activities more accurately than by considering acceleration data only [235]. 

FLOGERA [236] has been developed with a special focus on accurate and reliable 

event detection in wireless sensor networks (WSN) using the fuzzy inference system 

(FIS), implemented in a TelosB [236] mote for a wide range of communication 

protocols. The system has achieved high rule verification for the FIS with 85% success 

rate when two out of five inputs were tested but the system performance was poor when 

more than three inputs were given. This poor performance is a concern for vital signs 

monitoring system with three basic inputs: HR, BP and P. Fuzzy CARA [237] has been 

developed to detect four real life situations: ‘normal’, ‘abnormal’, ‘dangerous’ and 

‘emergency’ using vital signs and activities of daily life (ADLs). Real-time vital signs 

are collected from wearable Bio-Harness sensors while environmental sensing is 

simulated by an Android operating system. The system achieved higher accuracy by 
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using a fuzzy logic based classification model for using 12 fuzzy set inputs when 

compared with seven in a simulation environment. This system combines medical 

history and the current medical condition. 

An intelligent on-line monitoring system for patients with Acute Respiratory Distress 

Syndrome (ARDS) has been developed using fuzzy logic - FuzzyARDS [238] and 

GlucoNotify [238]. This fuzzy knowledge-based hyperglycaemia control program was 

established as a real-time application in an Intensive Care Unit (ICU). The system can 

identify severe ARDS patients based on the fuzzy set theory, which is useful to evaluate 

patients for ARDS-therapy. Two reported issues with this system are the consideration 

of idle and delay functions and the lack of a combination of different vital data. To 

improve this approach MobiFuzzy [291] has been developed as a fuzzy remote patient 

monitoring mobile decision support system using Java micro edition fuzzy library. 

5.4 Proposed Model Overview 

A unique yet clinically successful model has been designed and developed. High 

importance has been given to the accuracy and reliability of the overall system. Figure 

5.3 shows the model overview with its key modules. This section discusses in detail the 

core modules (methodologies) integrated into the interpretation engine. 
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Figure 5.3 Overview of interpretation model. 

5.4.1 Individualised Monitoring 

The majority of systems used today have adopted the generalised monitoring model 

based on either set threshold ranges or standard deviation changes which are 

implemented specifically for certain age groups (older adults, adults and children) [111, 

255] and/or particular illness/health issue(s) [21, 297]. The proposed (thesis) model has 

adopted individualised monitoring because of the fact that physiological parameters are 

different in each individual, hence threshold or SD based monitoring models often give 

high false alarms [34] eventually reduce the reliability of the overall system. Table 5.1 

shows the blood pressure statistics for the whole data vs. randomly selected patient data 

(patient #10 from the current thesis). 
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Table 5.1 Blood pressure statistics of whole data vs. patient #10 

BP (Systolic/Diastolic) Whole Data Patient #10 Difference (%) 

Mean 125.15/71.81 128.72/66.63 2.85/7.21 

Maximum 205/118 151/75 26.34/36.44 

Minimum 78/47 106/56 26.41/16.07 

SD 21.35/12.85 12.37/7.55 8.08/13.24 

 

The implementation of the threshold or SD range based model would have definitely 

given high false alarms due to the difference between the mean, maximum and 

minimum values of patient #10 when compared to the whole data, especially the SD 

difference (last row) of 8.08/13.24 in systolic/diastolic blood pressure. The proposed 

model uses the individual data for the interpretation called ‘individualised monitoring’ 

and the whole data set only serves as the outline boundary of the framework for the 

whole age group. The unique feature of the individualised monitoring module is that its 

adaptive boundary limits will be changing throughout the monitoring phase. Every 10th 

recording, or every 10 minutes, the engine updates the limits and compares this with the 

previous ones so that any considerable changes can be detected. The adaptive limits 

have an accuracy advantage over the set limits; in cases of transient hypertension where 

BP will be high (higher than normal for that particular patient) and upon treatment 

(medication) BP may be normal, this doesn’t mean that the patient will always have 

normal BP from now on. While set individual limits will detect the transient 

hypertension, it resets the status to normal upon/after medication because no attempt has 

been made to update/change the set limits. Whereas, the proposed adaptive limits will 

detect the transient hypertension and upon continuous update of the limits, will have a 

higher accuracy for transient or persistent hypertension detection if that particular health 

issue persists in the future for that patient (iterative optimisation). 

Figure 5.4 shows the systolic blood pressure sample taken randomly from a patient’s 

data to show the working of individualised monitoring. For every 10 recordings there is 

a window to capture the adaptive limits as shown in Figure 5.4. For 11-20 recordings 

the ‘MAX1’ is the maximum limit update, at ‘MAX1’ the current maximum (cMAX) 

value is checked against the maximum value for the last 10 recordings and any 

considerable changes will be detected. Similar processing has been carried out for mean 
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(ME1 to MEn) and minimum (MIN1 to MINn) values. In the 21-30 recordings window 

there is a considerable change detected when calculating the difference between ‘Max2’ 

and current ‘cMAX’. In this case the BP (systolic) time stamped data is sent to the next 

module (evidence based/features extraction) for further processing. The same process is 

followed for all the vital sign(s). 

 

Figure 5.4 Systolic blood pressure sample for individualised monitoring 

5.4.2 Evidence Based Reasoning 

Evidence based reasoning (EBR) has become a successful technique for knowledge-

based systems in this context. Briefly, EBR means retrieving former, already solved 

problems similar to the current ones and attempt to modify their solutions to fit the 

current problems. The underlying idea is the assumption that similar problems have 

similar solutions. Though this assumption is not always true, it holds for many practical 

domains. EBR fulfils two main tasks: the first is the retrieval, which means to search for 

or to calculate the most similar events. If the event base is small, a sequential 

calculation is possible, otherwise faster non-sequential indexing or classification 

algorithms are applied. The second task, the adaptation (reuse and revision), means a 

modification of solutions of former similar events to fit a current one. If there are no 

important differences (defined by the system) between a current and a similar previous 

event, a simple solution transfer is sufficient. Sometimes only a few substitutions are 

required, but in other situations the adaptation is a very complicated process. 

In this context, evidence to support the event (outcome) is critical in order to achieve 

high accuracy and reliability. This module compares the current event (health issue) 
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within that patient’s data for similar, former, solved or learned events. Figure 5.5 shows 

the outline of the EBR module. It can be said that this module works on the foundation 

of iteration optimisation for the repeated health events with in the same data pattern. 

‘The longer the use the higher the accuracy’ can be claimed due to the continuous 

update-iteration cycle, which uses the extracted evidence for a data set and combines 

current as well as previous cases to match the best outcome association. 

 

Figure 5.5 Similarity association matrix between current event and knowledge base. 

The evidence based reasoning module sets the universal (already known) facts as 

standards and establishes the main association link between the input and the output 

parameters.  

5.4.2.1 Combination of Evidence 

Sources of evidence can be described as independent when they appear without any 

association to each other. A common example is the prime witness in the court of law or 

clinician providing a second opinion. If the evidence so provided can be stated as a 

body of evidence and equal weight is given to each source then Dempster’s rule of 

combination can be used to calculate the consensus of opinion. Dempster’s rule 

essentially calculates the joint probability distribution of two marginal bodies of 

evidence, and then normalises this result to ensure that the forming of the solution is 

itself a body of evidence. The formative work on the subject is [298], which is an 

expansion of [299]. In a finite discrete space, the Dempster-Shafer theory (DST) [298, 

299] can be interpreted as a generalisation of probability theory where probabilities are 
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assigned to sets as opposed to mutually exclusive singletons. In traditional probability 

theory, evidence is associated with only one possible event. In DST, evidence can be 

associated with multiple possible events, e.g., sets of events. As a result, evidence in 

DST can be meaningful at a higher level of abstraction without having to resort to 

assumptions about the events within the evidential set. Where the evidence is sufficient 

to permit the assignment of probabilities to single events, the Dempster-Shafer model 

collapses to the traditional probabilistic formulation. One of the most important features 

of the Dempster-Shafer theory is that the model is designed to cope with varying levels 

of precision regarding the information and no further assumptions are needed to 

represent the information. It also allows for the direct representation of the uncertainty 

of system responses where an imprecise input can be characterised by a set or an 

interval and the resulting output is a set or an interval. There are three important 

functions in the Dempster-Shafer theory: 

The basic probability assignment function (bpa or m), the Belief function (Bel), and the 

Plausibility function (Pl). 

The basic probability assignment (bpa) is a primitive form of evidence theory. 

Generally speaking, the term “basic probability assignment” does not refer to 

probability in the classical sense. The bpa, represented by m, defines a mapping of the 

power set to the interval between 0 and 1, where the bpa of the null set is 0 and the 

summation of the bpa’s of all the subsets of the power set is 1. The value of the bpa for 

a given set A (represented as m(A)), expresses the proportion of all relevant and 

available evidence that supports the claim that a particular element of X (the universal 

set) belongs to the set A but to no particular subset of A. Any further evidence on the 

subsets of A would be represented by another bpa, i.e. B Ì A, m(B), this would be the 

bpa for the subset B. Formally, this description of m can be represented with the 

following three equations: 

 m: P (X) [0,1] (5.3) 

 

 m(Ø) = 0 (5.4) 
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 ∑ 𝑚(𝐴) = 1
𝐴∈ 𝑃 (𝑋)

 (5.5) 

 

Where, P (X) represents the power set of X, Ø is the null set, and A is a set in the power 

set (A∈ P (X)).  

From the basic probability assignment, the upper and lower bounds of an interval can be 

defined. This interval contains the precise probability of a set of interest (in the classical 

sense) and is bounded by two non-additive continuous measures called Belief and 

Plausibility. The lower bound Belief for a set A is defined as the sum of all the basic 

probability assignments of the proper subsets (B) of the set of interest (A) (B Í A). The 

upper bound, Plausibility, is the sum of all the basic probability assignments of the sets 

(B) that intersect the set of interest (A) (B ∩ A ≠ Ø). Formally, for all sets A that are 

elements of the power set (A∈ P (X)), 

 Bel(𝐴) = ∑ 𝑚(𝐵)
𝐵|𝐵⊆𝐴

 (5.6) 

 

 Pl(𝐴) = ∑ 𝑚(𝐵)
𝐵|𝐵∩𝐴≠∅

 (5.7) 

 

The two measures, Belief and Plausibility are non-additive. This can be interpreted as 

not being required for the sum of all the Belief measures to be 1 and similarly for the 

sum of the Plausibility measures. 

It is possible to obtain the basic probability assignment from the Belief measure with the 

following inverse function: 

 m(𝐴) = ∑ (−1)|𝐴−𝐵|𝐵𝑒𝑙(𝐵)
|𝐵|𝐵⊆𝐴

 (5.8) 

 

Where |A-B| is the difference of the cardinality of the two sets. 



93 

 

In addition to deriving these measures from the basic probability assignment (m), these 

two measures can be derived from each other. For example, Plausibility can be derived 

from Belief in the following way: 

 Pl(A) = 1- Bel(Ā)  (5.9) 

 

Where A is the classical complement of A. This definition of Plausibility in terms of 

Belief comes from the fact that all basic assignments must add up to 1. 

 

𝐵𝑒𝑙(Ā) = ∑ 𝑚(𝐵)

|𝐵|𝐵⊆Ā

=  ∑ 𝑚(𝐵)

(𝐵|𝐵 ∩ 𝐴 = ∅)

 

(5.10) 

 

 

∑ 𝑚(𝐵)

(𝐵|𝐵 ∩ 𝐴 ≠ ∅)

= 𝟏 − ∑ 𝑚(𝐵)

(𝐵|𝐵 ∩ 𝐴 = ∅)

 

(5.11) 

 

From the definitions of Belief and Plausibility, it follows that Pl (A) = 1- Bel (Ā). As a 

consequence of Equations (5.8) and (5.9), given any one of these measures (m (A), Bel 

(A), Pl (A)) it is possible to derive the values of the other two measures. The precise 

probability of an event (in the classical sense) lies within the lower and upper bounds of 

Belief and Plausibility, respectively. 

 Bel(A) = P(A) = Pl(A)  (5.12) 

 

The probability is uniquely determined if Bel (A) = Pl (A). In this case, which 

corresponds to classical probability, all the probabilities, P(A) are uniquely determined 

for all subsets A of the universal set X. Otherwise, Bel (A) and Pl (A) may be viewed as 

lower and upper bounds on probabilities, respectively, where the actual probability is 

contained in the interval described by the bounds [298, 299]. 
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5.4.3 External Medical/Historical Knowledge 

The use of a patient’s clinical information which usually consists of history, known 

health issues, allergies, medication and other related information to the interpretation of 

vital signs to predict/claim possible physical signs. There is a large amount of research 

currently ongoing in this area known as ‘Big Data Analysis’ (due to the huge amount of 

patient data available) [300]. In this context, the patient’s clinical information is entered 

by the clinician as an additional input (text formatted) and the system assigns each input 

with its related vital sign so that the parameter weighting can be calculated and 

assessed.  

For example, if the patient has a history of hypertension, this information will be 

entered by the clinician into the system via graphical user interface (GUI) text input 

spaces. To limit the complexity in this module only the above-mentioned history is 

linked to the corresponding vital sign(s) in order to support the outcome; all other 

information is displayed as ‘observational notes’.  

This module can be incomplete or partially complete; in that case the outcome result 

will not be affected and in the case where the clinical information is presented, then the 

confidence level of the predicted outcome will be higher. Therefore, the more 

information that is presented the higher will be the outcome confidence level. The 

extension of this module is used for the fall prediction score, which is explained in the 

next chapter. 

Figure 5.6 shows the external clinical information incorporation into the interpretation 

engine. The clinical information inserted into the engine is looped into the execution 

(feedback-linking-estimate-evaluate) cycle. The linking of vital signs with the available 

information and estimating the possible physical signs are initiated with the continuous 

flow of information from the previous module (evidence based reasoning). Evaluation 

of gathered data will be linked to the next module (parameter weighting) in which each 

parameter is assigned weight (explained in the next section) depending on the 

information concerning similar health events assembled from various sources. 
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Figure 5.6 External clinical information flow and incorporation into interpretation engine. 

Integration of the clinical information module with its learning capabilities into the 

interpretation engine will help engender a medical culture in which clinicians and 

engineers work together in a mutually supportive environment where cross-specialty 

communication is not only possible but intrinsic and continuous. The vision is for the 

development of an intelligent system consisting of “clinical informatics without walls” 

(Figure 5.6), in which the creation of evidence and clinical decision support tools is 

initiated, updated and enhanced by input from the clinicians. In this collaborative 

medical culture, knowledge generation would become routine and fully integrated into 

the clinical workflow. This module would use individual data to benefit the care of 

populations and population data to benefit the care of individuals. 

5.4.4 Weighted Parameters 

A robust scoring mechanism is proposed in this module (Figure 5.3), where information 

from various sources is grouped into the respective health event. Each time the 

information is collected from the credibly sourced evidence, a score is assigned to the 

corresponding health event. In this framework, there are primarily seven health events 

which are defined from E1-E7 where, 

E1: Bradycardia. 

E2: Tachycardia. 

E3: Hypotension. 

E4: Hypertension. 

E5: Hypoaxemia. 
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E6: Fever. 

E7: Hypothermia. 

 

Let us consider hypertension, which is directly related to blood pressure (BP). Similarly 

all the other direct links are established based on the medical literature and standard 

vital signs and physical signs relationship (Table 4.8). Figure 5.7 shows the direct 

association between the vital signs and their related possible physical signs. The direct 

association bounds the core boundaries and sets each parameter into its respective group 

for the evidence-based weighted scoring. 

 

Figure 5.7 Direct link between vital signs and physical signs. 

Figure 5.8 shows the second tier (indirect) linking between the vital signs and physical 

signs in the dotted ellipse. Let us consider the vital sign BP, for E3 (hypotension) and 

E4 (hypertension); BP is the direct association. From the gathered evidence of the above 

modules, the weighted scoring for indirect linking suggested that BP (at least in the in-

patient setting) is also often associated with E2 (Tachycardia) and E5 (Hypoxaemia). In 

this case E2 and E5 has two layers of vital sign support, both direct (E2-HR and E5-

SpO2) and indirect (E2-BP and E5-BP). 
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Figure 5.8 Second tier linking between the vital signs and physical signs. 

5.4.5 Multilayer Diagnosis 

Early detection of physical sign(s) can reduce adverse events [46, 288, 301]. The 

multilayer diagnostic module can improve the interpretation engine performance in the 

early detection of multiple physical signs by dividing the outcome into two priorities, 

instead of a simple ‘yes’ or ‘no’ classification. Figure 5.9 shows a sample of systolic 

blood pressure data selected randomly from a patient’s data record to show the working 

of the multilayer priority model. The whole data set is completely divided into four 

states i.e. normal (pre-event), P2 (priority 2), P1 (priority 1) and Normal (post-event) 

states respectively. The sign of deterioration (P2) can be detected before the actual event 

(P1) occurs. In this case, the hypertension is detected in the area of ‘P2’ which is before 

the actual alarm point of ‘P1’. 
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Figure 5.9 Multiple priorities based diagnosis. 

The multi-priority approach is adopted using two different techniques; P1 alarm is a 

fuzzy logic based model, which employs the fuzzy inference model to detect the P1 

level alarms while P2 warning is a C language based classifier, which uses expert rules 

with weighted parameters to detect the P2 level warnings. 

Priority-1: For interpretation of seven different physical signs (Table 4.8) using four 

basic physiological parameters. Fuzzy logic modelling is used to map several degrees of 

membership functions from each vital sign to several physical signs. Due to its non-

crispiness and flexibility, it can achieve low false alarms. 

Priority-2: A C-based weighted parameter classifier; it has been optimized using 

standard deviation (SD) (calculated from each patient) either side of the mean value of 

physiological parameters. This mode can reduce false alarms by continuous changing of 

limits and boundaries (see section 7.5). 

Both priorities use their own classification rule base to detect the respective priority (P1 

or P2) using a different set of limits and ranges with no overlap as shown in Figure 5.10. 

Priorities are assigned with different alert mechanisms such as; messages/warnings and 

alarms that can be transmitted to the clinician’s or nurse’s devices. Table 5.2 shows 

vital signs handling according to the proposed two priorities. 
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Figure 5.10 Priority based blood pressure sample. 

Table 5.2 Vital signs data handling and classification using two priorities. 

Priority Type of monitoring Type of Messages Outcome Message* 

Priority 

1 

Fuzzy logic based 

interpretation of physical 

signs 

Alert 
‘Possible Physical 

sign(s)’ 

Priority 

2 

Change of SD with 

weighted parameter for 

each parameter 

Warning Message 

No Alert 

 

‘Possible Physical 

sign(s)’ with change 

in data 

*Data represents the appropriate abnormal vital sign(s) and its related possible physical 

sign(s). Possible physical signs are: Bradycardia, Tachycardia, Hypertension, 

Hypotension, Hypoxaemia, Fever or Hypothermia. 

5.4.5.1 Data Handling 

The aim of the proposed model is to provide multiple combinations of extracted 

parameters in order to help clinicians with detection and estimation of health conditions 

and/or with early ‘diagnosis’. Physical signs are classified as priority-2-warnings and 

priority-1-alarms. Priority 2 warnings are generated when the vital sign(s) changes 

above the set SD limit (individualised optimised limits). The vital sign(s) may be 

reversed to the normal state but if considerable changes are detected then the priority-1 

type alarm will be generated. The proposed system is designed to reduce false alarms 

and to achieve high clinical reliability. Due to the nature of physiological parameters, 

which are variable and changing throughout monitoring, fuzzy logic is one of the best 
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approaches (see chapter 2 for other methods) in this type of monitoring and ‘diagnosis’ 

[302]. 

Figure 5.11 shows the proposed system flow chart. It effectively represents the 

acquisition and processing of linguistically described concepts using fuzzy logic. The 

main aim is to mimic medical specialists’ views, i.e. reasoning based diagnosis with 

evidential support using multiple parameters for a robust health event indication. 

Another important aspect is the incorporation of medical knowledge into the model 

regarding how the occurrence of several events is related to a variety of physiological 

parameters and to what degree the presence of a specific health event under a certain 

context points toward a specific medical health condition. This is usually considered as 

external medical knowledge. A medical professional’s input is incorporated into the 

system’s basic design model to define the accurate relationships between each vital sign 

and its related possible interpretations. 

 

Figure 5.11 System model flow chart with data handling and outcome classification. 
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5.5 System Modelling and Framework 

To remove the noise and artefacts: low pass filtering, removing missing values (zeroes 

or negative), sampling the data, checking and removing outliers from the data set have 

been performed. The calculation of statistical/descriptive values such as: maximum, 

minimum, mean, median, mode, standard deviation and range were also performed, in 

order to have a normalised data set throughout the ‘diagnosis’. Detailed pre-processing 

and data analysis have been carried out in order to achieve the unique data set 

throughout ‘diagnosis’ phase [276-279, 303]. Systolic blood pressure sample of pre-

processing is shown in APPENDIX D. Figure 5.12 shows the main blocks of the fuzzy 

model which is explained in detail in this section. 

 

Figure 5.12 Fuzzy model overview and description. 

A robust six layer adaptive neuro fuzzy inference system (ANFIS) has been employed 

to set the parameters and limits automatically according to the input data and to analyse 

the membership functions and rules. Figure 5.15 shows this six layer network 

architecture with a discussion of each layer in detail as follows. 

5.5.1 Layer 1: Input layer (V1, V2…Vn) 

The vital data input obtained after performing the pre-processing and normalisation, is 

now fed to the fuzzy neural network system. This layer is called input node and 

corresponds to one input variable. 

5.5.2 Layer 2: Clustering (c1, c2…cn) 

Clustering of numerical data forms the basis of many classification and system 

modelling algorithms. The purpose of clustering is to identify the natural grouping of 
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data from a large data set to produce a concise representation of a system’s behaviour. 

Clustering is used to achieve a highly accurate and reliable medical data classification 

for the proposed expert system (event diagnosis, decision support or patient 

monitoring). It is simply known as the unsupervised classification of patterns, 

observations or data items into groups (clusters) [304]. Cluster analysis has been 

extensively used in several applications, including segmentation of medical images, 

pattern recognition, and image processing. This thesis discusses two widely-used fuzzy 

clustering techniques in respect of the highly important medical/clinical data (patient’s 

physiological data); ‘fuzzy c-means’ clustering (FCM) and ‘fuzzy k-means’ clustering 

(FKM). Many authors have proposed different standards based on fuzzy set theory as the 

appropriate approach towards the clustering techniques [305]. Fuzzy clustering 

techniques, such as FCM and FKM have been successfully applied to conduct image 

segmentation, pattern detection, and physiological data analysis [306]. 

A hybrid fuzzy ARTMAP (FAM)-FCM neural network has been proposed to detect 

pattern classification tasks with missing features. This technique does not reject the 

incomplete data set rather it estimates and replaces missing features using a number of 

FCM-based strategies [307]. The F2CM algorithm has been developed to allow direct 

clustering of asynchronously sampled data [308]. In a similar approach, a fuzzy item 

response model (FIRM), combined item response theory and fuzzy set theory using a 

partial credit model (PCM) for outpatient diagnosis of depression [309]. A Possibilitic 

Latent Variables (PLV) clustering algorithm has been developed for pattern recognition 

of medical data for complex diagnosis [310]. After studying several clustering 

techniques and methods the two most common clustering techniques (FCM and FKM) 

were adopted and tested in our medical scenario. The step-by-step performance of both 

the techniques follows. 

5.5.2.1 Fuzzy c-means clustering (FCM) 

Fuzzy c-means clustering (FCM) is a data clustering technique in which a set of data is 

grouped into n clusters to a certain degree. For example, a cluster will have a high 

degree of membership if it lies close to the centre of a data set and vice versa. FCM 

gives the best result for the overlapped data set whereas what this technique lacks in 

Euclidean distance measures can unequally weight underlying factors. FCM works 

according to the following steps: 
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1. Starts with an initial estimation for the cluster centers. 

2. Each cluster will be assigned a membership grade for every data point. 

3. Iteratively updates the cluster centers and the membership grades for each data point. 

4. Cluster centers will be located to the right location within a data set. 

5. Finally a large set of data is grouped into clusters of smaller sets of similar data. 

The above five steps are based on minimization of the following objective function 

[311, 312]: 

 𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑖 −  𝑐𝑗‖

2
 , 1 ≤ 𝑚 < ∞

𝐶

𝑗=1

𝑁

𝑖=1

 (5.13) 

 

where N is the total number of data, C is the total number of clusters, uij is the degree of 

membership of xi in the cluster j, xi is the ith of d-dimensional measured data, cj is the 

d-dimension centre of the cluster, and ||*|| is any norm expressing the similarity between 

any measured data and the centre. The fuzzy c-means algorithm consists of the 

following three steps: 

Step 1 – Parameter initialization  

The initial values of the membership function are randomly selected according to the 

given dataset. 

Step 2 – Cluster centre calculation 

Obtaining the cluster centroids (the centroid of a cluster is the mean of all points, 

weighted by their degree of belonging to the cluster group) from step 1, new values are 

calculated and updated. With the change in the cluster centroids the membership values 

will also change. 

Step 3 – Dissimilarity Computation 

The difference between the cluster centroids and the patterns are calculated. 

5.5.2.2 Fuzzy k-means clustering (FKM) 

Fuzzy k-means clustering (FKM) is one of the simplest unsupervised learning 

algorithms linked each other with well-distributed outlines. FKM is also adoptable in 

the situation where one data group belongs to one or more than one cluster group, such 

as in our case, multiple physiological signs are assigned to similar patterns or groups or 
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symptoms that they belong to. Several studies also reported that the FKM algorithm 

cannot be applied to the real-life clustering problems when the data contains missing 

values [313]. FKM works according the following steps: 

1. Initializes the centroids by randomly selecting points among all the data points. 

2. Calculates the distance between each data point and cluster centres. 

3. Determines the membership function of each data point and associates it to the 

nearest cluster centre. 

4. After assigning the objects, it recalculates the positions of the K centroids. 

5. Repeats steps 2, 3 and 4 till the centroids are stable. This results in separation of 

the objects into groups. 

FKM aims at minimizing an objective function known as squared error function given 

by: 

 𝐽(𝑉) = ∑ ∑(‖𝑥𝑖 − 𝑣𝑗‖)
2

𝐶𝑖

𝑗=1

𝐶

𝑖=1

 (5.14) 

 

Where, ‘||xi - vj||’ is the Euclidean distance between xi and vj, ‘ci’ is the number of data 

points in ith cluster and ‘c’ is the number of cluster centres. FKM consists of three main 

steps: 

Step 1 – Initialization 

FKM is functional to the set of applicable patterns which relates to the initial cluster 

number. 

Step 2 – Detecting and Removing Outlier 

Data points which appear to dramatically differ from the rest of data or any missing 

values or any unexpected error value are outliers. 

Step 3 – Assessment 

If the available patterns fail to improve the current cluster arrangement, the algorithm 

will increase the number of clusters and resume execution from the previous step (step 

2). 
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From Figure 5.13 and Figure 5.14, it is evident that both techniques performed well 

when detecting normal and abnormal data from the given data sets. The clustering and 

partitioning of raw data into normal and abnormal data is the key module for the 

proposed system. 

 

Figure 5.13 FCM performed on the HR, BP and PV dataset, where 1 represents the centre of the 

normal data and 2 is the centre of the abnormal cluster group represented as HR-BP, HR-PV and 

BP-PV respectively. 

 

Figure 5.14 FKM performed on HR, BP and PV dataset, ‘blue cross’ is normal data and ‘red dots’ 

are abnormal data with its centroid as ‘cross-in-a-circle’ and it is represented as HR-BP, BP-PV 

and PV-HR respectively. 

5.5.3 Layer 3: Grouping (g1, g2….gn) 

Groups in this layer are called input group terms, each of which corresponds to one 

linguistic label (high, normal, low) of an input variable; each group in this layer 

calculates the membership function value specifying the degree to which an input value 

belongs to a fuzzy set. A local membership function is used in this layer. 

5.5.4 Layer 4: Rules (r1, r2…rn) 

This layer is called a fuzzy rule. A rule set represents one fuzzy logic rule and performs 

the preconditioned matching of a rule. The knowledge of a fuzzy rule comes from two 

sources: one from layer 2 and the other from the medical experts’ knowledge (external 

layer).  



106 

 

1. If (HR is L) and (BP is L/H) then (Diagnosis is P2-Bradycardia) (1) 

2. If (HR is VL) and (BP is VL/VH) then (Diagnosis is P1- Bradycardia) (1) 

3. If (HR is H) and (BP is L/H) and (SpO2 is L) then (Diagnosis is P2- 

Tachycardia) (1) 

4. If (HR is VH) and (BP is VL/VH)) and (SpO2 is VL) then (Diagnosis is P1- 

Tachycardia) (1)  

5. If (HR is L) and (BP is L) then (Diagnosis is P2-Hypotension) (1) 

6. If (HR is VL) and (BP is VL) then (Diagnosis is P1-Hypotension) (1)  

7. If (HR is H) and (BP is H) then (Diagnosis is P2-Hypertension) (1) 

8. If (HR is VH) and (BP is VH) then (Diagnosis is P1-Hypertension) (1) 

9. If (HR is L/H) and (BP is L/H) and (SpO2 is L) then (Diagnosis is P2-

Hypoaxemia) (1) 

10. If (HR is VL/VH) and (BP is VL/VH) and (SpO2 is VL) then (Diagnosis is P1-

Hypoaxemia) (1)  

11. If (HR is H) and (BP is L/H) and (SpO2 is L/H) and (T is H) then (Diagnosis is 

P2-Fever) (1) 

12. If (HR is VH) and (BP is VL/VH) and (SpO2 is VL/VH) and (T is VH) then 

(Diagnosis is P1-Fever) (1)  

13. If (HR is L) and (BP is L) and (SpO2 is L/H) and (T is L) then (Diagnosis is P2-

Hypothermia) (1) 

14. If (HR is VL) and (BP is VL) and (SpO2 is VL/VH) and (T is VL) then (Diagnosis 

is P1-Hypothermia) (1) 

5.5.5 Layer 5: Output Sets (E1, E2…En) 

In this layer the output sets will be clubbed together according to their membership 

functions and event rules execution. This layer is also called the consequent layer and 

the sets in this layer are called output term sets. Each output term set represents a multi-

dimensional fuzzy set obtained during the clustering operation in structured learning 

phase (layer 2). 

5.5.6 Layer 6: Diagnosis and Interpretation (D) 

Each output set in this layer is called linguistic output and corresponds to one output 

linguistic variable. This layer performs the defuzzification operation. The output sets in 

this layer together with the membership values and the relationship between the input-

output rules will present the event diagnosis as a message, warning or alert one at a time 

as output (D), such as Bradycardia, Tachycardia, Hypotension, Hypertension, 

Hypoxaemia, Fever or Hypothermia detected in a patient using the given vital 

physiological parameters. 
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Figure 5.15 Six layer adaptive neuro fuzzy network designed for the proposed diagnostic module. 

5.5.7 Physical Signs Extraction and Classification 

Vital signs have been categorised into two outcome priorities (Table 5.2) in order to 

have a reliable, robust interpretive system with high clinical accuracy. Each vital sign 

has been given several levels of importance in relation to the health event. For example: 

blood pressure has more weight/importance when considering Hypotension and 

Hypertension. The mapping and linking of multiple vital signs for detecting a single 

event using the fuzzy model provide a higher accuracy with a reliable indication of 

health events. For example, Hypotension is defined as ‘low blood pressure’, irrespective 

of the other parameters. Whether the Hypotension is of any clinical relevance will 

depend on (to some degree) the other parameters measured. When the proposed fuzzy 

model classifies a health event as Hypotension, it is due to giving a higher weight to the 

blood pressure, instead of considering blood pressure as only one of the possibilities of 

Hypotension. Moreover, ‘High heart rate’ should be considered as other possible 

clinical relevance of Hypotension from the clinician’s point of view. This criterion is 

applied to all other possible physical signs which can provide a robust indication of 

possible or clinically relevant Hypotension. 
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Instead of setting crisp numeric limits, linguistic variables have been employed, such as 

fuzzy sets, membership functions (MFs) and rules [314], to describe the degree of 

occurrence of a certain medical event. Fuzzy sets are defined as:  

 Low BP (Lbp) and High HR (Hhr) for priority-2 Hypotension, 

 Very Low BP (VLbp) and Very High HR (VHhr) for priority-1 Hypotension. 

5.6 Physical Signs Detection and Working Details 

Patient physical signs are assigned as E1-E7 with priorities (P1-P2) for each of the 

physical signs. This section shows the detection and identification of physical signs with 

respect to one input, two inputs and all inputs when interpreting the physical signs. 

E1: Bradycardia. 

E2: Tachycardia. 

E3: Hypotension. 

E4: Hypertension. 

E5: Hypoaxemia. 

E6: Fever. 

E7: Hypothermia. 

5.6.1 Physical Sign Detection using One Input 

Bradycardia: Let us consider the physical sign E1 to demonstrate the working of the 

proposed model using one input. Figure 5.16 shows the initial patient status as normal 

(N in green); when there is a low heart rate (denoted as ‘Lhr’) the status changes to 

E1P2, i.e. possible ‘bradycardia’ with priority-2 warning. Further, if the heart rate goes 

‘very low’ (denoted as ‘VLhr’) then the current status changes to possible ‘bradycardia’ 

with priority-1 alert and returns to the normal state when the heart rate is back to the 

normal range for that particular data pattern (patient). This case has a single input (HR) 

on which the interpretation is predicted. 
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Figure 5.16 Possible Bradycardia using two categories of heart rate: low and very low with two 

levels of priority. 

5.6.2 Physical Sign(s) Detection using Two Inputs 

Hypertension: Let us consider the physical sign E4 to demonstrate the working of the 

proposed model using two inputs. Figure 5.17 shows the initial patient status as normal 

(N in green), when there is a high blood pressure (denoted as ‘Hbp’) and high heart rate 

(denoted as ‘Hhr’) then the status changes to E4P2, i.e. possible ‘hypertension’ with 

priority-2 warning. Furthermore, when ‘very high’ blood pressure (denoted as ‘VHbp’) 

and ‘very high’ heart rate (denoted as ‘VHhr’) are detected then the current status 

changes to possible ‘hypertension’ with priority-1 alert and returns to the normal state 

when the heart rate is back to the normal range for that particular data pattern (patient). 

This case has two inputs (BP and HR) on which the interpretation is predicted. 
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Fever: Let us consider the physical sign E6 to demonstrate the working of the proposed 

model using two inputs. Figure 5.17 shows the initial patient status as normal (N in 

green). When there is a high heart rate (denoted as ‘Hhr’) and high temperature 

(denoted as ‘Ht’) then the status changes to E6P2, i.e. possible ‘fever’ with priority-2 

warning. Further, when a very high heart rate (denoted as ‘VHhr’) and a very high 

temperature (denoted as ‘VHt’) are detected, then the current status changes to possible 

‘fever’ with priority-1 alert and returns to the normal state when the heart rate is back to 

normal range for that particular data pattern (patient). This case has two inputs (HR and 

T) on which the interpretation is predicted. 

 

Figure 5.17 Possible hypertension (E4) and fever (E6) using two inputs with two priorities. 

5.6.3 Physical Signs Detection using All Vital Signs 

Now, let us consider E1-E7 physical signs, depicted in Figure 5.18, using the 

combination of four vital signs: HR, BP, SpO2 and T with two levels of priority (P1 and 

P2). In this case, let us consider all possible scenarios where the physical signs extracted 

from any physiological measurement include additional and finer fuzzy sets, with the 

inclusion of Very Low (VL), Low (L), High (H) and Very High (VH). For example, 
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priority-1 Hypotension (E3P1) is possible when the combination of vital signs indicates 

Very Low BP (VLbp) and Very High HR (VHhr), as shown in Figure 5.18. In some 

other cases such as Hypoxaemia, it is necessary to consider Low SpO2, but also, HR 

and BP which can be high or normal or low. In this case, the proposed model gives 

more weight to SpO2 for ‘Low’ and assigns normal weight to HR and BP. Centre N 

(green) is the initial status and E1-E7-with P2 (orange) are the priority 2 classified 

physical signs and P1 (red) is the priority-1 health outcomes as an alert. Prioritisation of 

outcomes gives clinicians a high degree of control over the system’s outcome because 

of two levels of priorities. This structure potentially gives high reliability and stability 

with only priority 1 generating alarms. 

 

Figure 5.18 System working model with all possible seven physical signs using four vital signs and 

two levels of priority and a centre green normal state as the initial patient’s condition. 

The terms ‘very high’, ‘high’, ‘very low’ and ‘low’ are automatically/continuously 

optimised using the individualised monitoring module, where each vital sign is divided 

into four abnormal categories with respect to that particular patient. In the case of E6 

(fever) the system uses two input HR and T as shown in the Figure 5.18. In direct 

association with fever is the body temperature; hence in this case the T has more weight 

when predicting ‘fever’. For example if T is missing then there will be no prediction for 
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‘fever’ whereas ‘fever’ will be predicted if HR is missing but not T, due to the indirect 

association with ‘fever’. A similar mechanism has been adopted for all vital signs for 

the interpretation of multiple physical signs. 

5.7 Summary 

Fuzzy Logic provides a completely different, unorthodox way to solve problems related 

to this patient monitoring system. Tuning of the monitoring system is done by changing 

the rule antecedents, changing the centres of the input and/or output membership 

functions, adding additional degrees to the input and/or output functions such as ‘very 

high’, ‘high’, ‘very low’ and ‘low’ levels and several physical signs as output responses 

of the system. These new levels generate additional rules and membership functions 

which overlap with adjacent functions, forming longer ‘mountain ranges’ of functions 

and responses. Implementing different techniques to make these changes systematically 

is one of the turning points for the work of this project. 

The logical product of each rule is inferred, so as to arrive at a combined magnitude for 

each output membership function. Once inferred, the magnitudes are mapped into their 

respective output membership functions, delineating all, or part, of them. The ‘fuzzy 

centroid’ of the composite area of the member functions is computed and the final result 

taken as the crisp output. Tuning the system involves ‘tweaking’ the rules and 

membership function definition parameters to achieve an acceptable system responses.  

A fuzzy logic monitoring system has been developed and tested successfully. Before the 

final development phase each MF, the rules and structure, were checked several times 

with necessary changes according to its performance. 

Figure 5.19 shows a block diagram overview of the interpretation engine and the 

proposed multi-layered outcome for early detection of several physical signs. The 

proposed system has been tested for both real-time as well as offline data. Extensive 

data analysis and pre-processing were carried out so that the input feeding data has a 

unique path and features throughout the monitoring phase. The interpretation engine 

consists of four key components which complement each other when the information is 

complete and each component works individually when information is limited and/or 

incomplete. A multilayer concept has been introduced to enhance the overall outcome 

reliability and accuracy of the proposed system. The multilayer outcome has the 
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potential of early detect of physical sign(s) as the priority-2 warning and at the time of 

the actual health event the priority-1 alarm will be activated. This mechanism is best 

utilised in this context by feeding a multiple input-output combinational relationships in 

real time. Detailed results and validation of testing and enhancements are described in 

Chapter 7. 

 

Figure 5.19 Block diagram overview of interpretation engine. 
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CHAPTER 6 Falls Prevention and Detection 

6.1 Introduction 

Falls and fall-induced injuries in older adults are common worldwide and ageing 

populations will further contribute to the increasing number; therefore fall-induced 

injuries represent one of the most common causes of long-lasting pain, functional 

impairment, disability and death in the older adult populations [315]. 

Falls are prominent among the external causes of unintentional injury. They are coded 

as E880-E888 in the International Classification of Disease-9 (ICD-9), and as W00-

W19 in ICD-10, which includes a wide range of falls specifying those on the same 

level, upper level, and other unspecified falls. 

According to the WHO, Falls are commonly defined as “inadvertently coming to rest on 

the ground, floor or other lower level, excluding intentional change in position to rest in 

furniture, wall or other objects” [316]. 

In this context, the operational definition of a fall is critical in order to predict a fall in 

an older adult [218, 315]. Therefore, the operational definition of a fall with explicit 

inclusion and exclusion criteria is highly important, and this can create an ultimate 

boundary between direct factors and indirect factors. The rate of hospital admission due 

to falls for people aged 60 and older in Australia, Canada and the United Kingdom 

ranges from 1.6 to 3.0 per 10000 population [316]. Fall injury rates resulting in 

emergency department visits of the same age group in Western Australia and in the 

United Kingdom are higher: 5.5-8.9 per 10,000 population. Therefore, there are areas in 

hospital practice that would benefit from interventions to reduce the number of falls and 

consequent injury (see chapter 1) [316]. 

One of ten falls in older adults results in injuries such as hip fractures, subdural 

hematoma, serious soft tissue injuries and head injuries [317]. In addition to physical 

injury, falls can also have psychological and social consequences. Fear of falling and 

post-fall anxiety syndrome are well-recognised negative consequences of falls. The loss 

of self-confidence that leads to an inability to ambulate safely can result in self-imposed 

functional limitations [216]. 
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6.2 Falls Risk Assessment and its Effectiveness 

Multi-disciplinary risk assessment and management strategies are the most effective 

preventative tools. In most inpatient settings, a member of the nursing staff is generally 

the first provider to assess the patient for falls risk. Nurses typically perform an initial 

falls risk screening within the first few hours after an older patient is admitted to care 

[318]. 

There is no single assessment tool for all facilities or patients; however, comprehensive 

standardised tests and measures with reliability and validity, especially predictive 

validity, are recommended for use in every setting [216]. In other words, to accurately 

assign a risk value based on the outcome of a standardised risk screen or assessment, the 

implement should be employed in populations and settings equivalent to those in which 

it has been investigated. In the acute care setting, popular tools include the Morse Fall 

Scale (MFS) [145], the STRATIFY risk assessment tool [319], and the Hendrich Falls 

Risk Model II (HFRM-II) [320]. 

The Morse Fall Scale (MFS) [145] scores six areas in the ranges of no risk, low risk, 

and high risk. The areas include: 

 History of falling; immediate or within 3 months 

 Secondary diagnosis 

 Ambulatory aid 

o Bed rest/nurse assistance 

o Crutches/cane/walker 

o IV/Heparin Lock 

 Gait/transferring 

o Normal/bed rest/immobile 

o Weak 

o Impaired 

 Mental Status 

o Orientated to own ability 

o Forgets limitations 
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The Hendrich II Falls Risk Model [320] has been validated in acute care, skilled nursing 

and rehabilitation settings. Similar in many ways to the Morse Scale, the Hendrich II 

Falls Risk Model assesses: 

 Medications 

 Confusion 

 Vertigo 

 Elimination 

 Depression 

 Gender 

 Mobility (Get Up and Go test) 

A score of five or greater on the Hendrich II Falls Risk Model [320] indicates a high 

risk for falls. The Mini-Mental State Exam [321] and the Geriatric Depression Scale 

[322] have also been analysed to extract the most common features used by such tools. 

Overall, standardised tools have shown varying effectiveness in falls prediction. 

Prediction tools mainly aim to predict risk in categorical terms (‘high’ ‘medium’ or 

‘low’ risk of falling or ‘at risk of falling – yes/no’). The main idea behind the predictive 

tools is that once the patient is identified as ‘likely’ to fall, then the clinician and/or 

multidisciplinary team can intervene to prevent falls. Examples of numerical risk 

prediction tools used in falls prevention include STRATIFY, The Hendrich II Falls Risk 

Model and Morse Falls Scale [323]. Oliver and Healey [318] specified four key 

elements required for a falls prediction tool (1) High sensitivity – ‘true positive’ rate; 

(2) High specificity – ‘true negative’ rate; (3) High positive predictive value and (4) 

High negative predictive value. 

Regardless of the tool used, the initial screening is only the first step in falls risk 

identification. The nature of an inpatient's status is often evolving; therefore, ongoing 

assessment and the clinical judgment of the care providers at each encounter are key 

factors in preventing falls. All healthcare providers working with patients at risk of 

falling in inpatient settings should recognise that patients have the potential throughout 

their hospital stay to change the status regarding falls risk. Those who were at a high 

risk for falls on the initial assessment may reduce their risk, while a patient with a low 

falls risk upon admission may require increased falls prevention strategies with a 
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change in condition. Regardless of when the risk for falls is identified, practitioners 

should further evaluate patients or residents considered as at-risk; they should develop 

individualised approaches and continue prevention strategies throughout the patients’ 

stay. 

6.3 Falls Prevention Strategies and Common Risk Factors 

Several studies have shown that the risk of falling increases considerably as the number 

of risk factors increases. Stevens [317] categorised falls risks factors as personal or 

environmental. Personal factors include characteristics of the individual (such as age, 

functional abilities and chronic conditions) while environmental risk factors usually 

refer to fall hazards in and around the home (such as tripping hazards, lack of stair 

railings or grab bars, unstable furniture and poor lighting). The risk of falling increases 

with the number of risk factors present and the prevalence of many risk factors increases 

with age [317].  

Fall risk can be reduced by modifying risk factors such as lower-body weakness, 

problems with gait and balance, use of psychoactive medications and visual impairment. 

Identifying and treating symptoms of certain chronic diseases such as Parkinson’s 

Disease, a history of stroke and arthritis may also reduce the risk of falling as indicated 

by Stevens [317] as well as Oliver and Healey [318]. 

The Rand Report [324], a systematic review of fall interventions, concluded that fall 

prevention programs as a group reduced the risk of falling by 11% and the monthly rate 

of falling by 23%. Interventions that focused on high-risk individuals (e.g., those who 

had fallen and were at increased risk of falling again) were more likely to be effective 

than were those that targeted an unselected group of seniors. Based on a meta-analysis 

of randomized controlled trials, the Rand Report [324] concluded that the most effective 

intervention strategies used clinical assessment combined with individualized fall risk 

reduction and patient follow-up. Such an assessment includes testing gait, balance and 

neurological function, reviewing all medications, developing a tailored medical 

management approach and making appropriate referrals. When analysed as a group, 

interventions that used clinical assessment and risk reduction lowered the risk of falling 

by 18% and reduced the average number of falls by 43% [324]. 
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Prevention of falls and injuries is not easy, however, because they are complex events 

caused by a combination of intrinsic impairments and disabilities (i.e. increased liability 

to fall) with or without accompanying environmental hazards (i.e. increased opportunity 

to fall) [297]. A fall is classified as a ‘complex event’ involving more than ‘hundreds’ 

of contributing factors. There is some success in falls and/or injury prevention reported 

in the literature when the some (usually more than one) or all of the following 

components are included: strength, balance and gait training, improving transferring and 

ambulation, footwear improvements, investigation and management of untreated 

medical problems, medication review and adjustment (especially psychotropic drugs), 

vision tests, hip protectors, patient and staff education about fall prevention, fall risk 

alert cards, post-fall assessments, and environmental and home risk assessment and 

management [297, 315, 318]. 

6.3.1 Fall Risk Factors 

Recognised falls risk factors can number up to a hundred and vary from one individual 

to another. Some commonly reported risk factors are [325, 326]: 

 Advanced age 

 Pyrexia (high temperature)  

 Previous history of falls 

 Medications (especially psychotropic drugs) 

 Alcohol abuse 

 Diabetes mellitus 

 Disturbed vision 

 Gait disorders 

 Confusion (especially delirium [acute confusion] but also dementia) 

In addition, falls produce psychological damage and a continued fear of falling, with 

consequent self-imposed mobility restriction and a further increase in risk of falls [327]. 

A common scenario for falls in older adults occurs when rising from a chair or bed to 

get moving, which requires rapid autonomic reflexes to maintain (or increase) blood 

pressure on standing, balance, muscular power and whole-body and joint position sense. 

Lack of activity and intrinsic ageing can adversely affect all of the above risk factors. 

http://www.patient.co.uk/DisplayConcepts.asp?WordId=ALCOHOL%20ABUSE&MaxResults=50
http://www.patient.co.uk/DisplayConcepts.asp?WordId=GAIT%20DISORDERS&MaxResults=50
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In the context of this work, which is based on real-time vital signs recording, 

monitoring and interpretation, the proposed model is more of a prediction tool than a 

prevention program/intervention. Falls prevention (as an outcome) can be claimed by 

predicting the falls, and followed by appropriate medical assessment/treatment. From 

the above-mentioned studies, trials and successful interventions, the most common and 

critical risk factors identified and considered for the proposed (thesis) model are: 

 Vital signs (Hypotension or Pyrexia) 

 Falls History (Multiple falls, recent falls or injurious fall) 

 Medication (for example Antiarrhythmics, antidepressants, antihypertensives, 

diuretics, hypoglycemics, neuroleptics, psychotrophics, sedatives and 

vasodilators) 

Apart from the above risk factors the proposed model intelligently incorporates motion 

data as a unique feature in order to predict falls continuously throughout the patient’s 

stay in hospital. Real-time vital signs and motion data (walking pattern) were added into 

proposed predictive model. Real-time information of a patient’s vital signs and motion 

data combined with the above mentioned risk factors is hypothesised as helping in 

predicting the falls risk in a hospitalised older adult patient. 

6.4 Overview of the Proposed Falls Prevention Model 

The patient’s stationary (fixed) information such as: falls history, age, gender and types 

and number of medications, combined with real-time and continuously changing 

information such as vital signs and motion data provide the proposed model with 

uniqueness in falls risk prediction. Figure 6.1 shows the overview of the falls prediction 

model and its key components. Motion data is incorporated into the falls prediction 

model in by using a tri-axial accelerometer which gives walking and daily life activity 

(ADL) data. Moreover, real time vital signs are also integrated from the medical devices 

as well as from the outcome of the physical sign interpretation model. Falls history and 

types of medication features are fed to the parameter weighted module for the 

confidence scoring and falls risk assessment (high, medium or low). The next section 

describes each module in detail with their working and data models.  
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Figure 6.1 Overview of falls prediction model. 

6.4.1 Motion Data Analysis 

The device used to collect motion data is the 8XM-3 mini, tri-axial 14-bit ±8g 

accelerometer from Gulf Coast Data Concepts [284] shown in Figure 4.2 device #8. 

This device is attached to the patient’s chest/arm/waist for 24 hours and data is stored in 

the device with a real-time-stamp. The device is compact in size with the sampling rate 

of 6 to 200 Hz and can work up to four days continuously. The captured data is stored in 

the internal 2GB flash memory. To best extract the motion features from the tri-axial 

accelerometer, a number of methods have been proposed in the literature [328] and their 

effectiveness varies in terms of successful prediction, but there are numerous algorithms 

which proved successful in detecting a fall using a similar accelerometer. However, the 

area of focus in this thesis is to predict falls in order to prevent them rather than detect 

the falls ‘after the damage (fall) has been done’.  
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Initially normal motion data patterns from older adults (Table 7.10) (who don’t have 

any fall history or walking issues) were collected including walking, sitting, stumbling, 

falling (right, left, backward and forward) with daily life activity (ADL). This database 

serves as the core framework for the proposed model. A unique two-way classification 

model was adopted based on the collected information. Firstly, threshold based 

detection is adopted, where threshold limits are set by analysing the collected data 

patterns comprising: gait speed, step length, sway and asymmetry of gait; data points 

exceeding those set threshold limits for each activity were considered ‘not normal’ 

motion data patterns and can be further elaborated into low, medium or high risk 

depending upon the mean or SD values of exceeded limits. 

Secondly, motion data from the accelerometer was compared against the already 

collected database in a moving window analysis (5sec, 10sec or 15sec window) in each 

particular activity (sitting, walking, standing, etc.). The falls prediction model uses both 

methods; in the case of incomplete information the earlier method (standalone) works 

well and if the information is complete (at the end of each time window), then both 

methods will contribute towards the falls prediction.  

6.4.1.1 Features Identification and Working Model 

To detect the negative changes from categorised (activity based) continuous sampled 

accelerometer data and comparing that data against the collected data for any changes 

requires trend based prediction exponents analysis. One of the most successful and best 

suited methods is Lyapunov’s direct method (also called the second method of 

Lyapunov) best described in [329]. Lyapunov exponents measure “exponential rates of 

average divergence or convergence of nearby trajectories as a system evolves in time” 

[330]. The proposition for this work is that these Lyapunov coefficients will track the 

instability of a user and allow the system to extrapolate a user’s propensity for a fall 

based on current and past data. This behaviour can be modelled by the expression, 

 V(t) = Xeγt (6.1) 

 

where, V (t) represents the average divergence at time t, X is the initial separate 

normalisation constant, and γ is the spectrum of Lyapunov exponents. The spectrum of 

exponents can be calculated by realising that “Two randomly selected initial trajectories 
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should diverge, on average, at the rate determined by the largest Lyapunov exponent,” 

or LLE. Calculating the LLE can accurately evaluate the stability of a system – in this 

case, the identification of falls risk features from the motion data. 

The basic proposition of Lyapunov methods is best described by assuming V (x, t) to be 

a non-negative function with derivative V along the trajectories of the system. 

 If V (x, t) is locally positive definite and ˙V (x, t) ≤ 0 locally in x and for all t, 

then the origin of the system is locally stable (in the sense of Lyapunov). 

 If V (x, t) is locally positive definite and decrescent, and ˙V (x, t) ≤ 0 locally in x 

and for all t, then the origin of the system is uniformly locally stable (in the 

sense of Lyapunov).  

 If V (x, t) is locally positive definite and decrescent, and −˙V (x, t) is locally 

positive definite, then the origin of the system is uniformly locally 

asymptotically stable.  

 If V (x, t) is positive definite and decrescent, and −˙V (x, t) is positive definite, 

then the origin of the system is globally uniformly asymptotically stable. 

A focus on this exponent implies that if the patient’s trajectory deviates from the 

expected (ideal) trajectory, the system may be unstable, indicating that the patient’s 

motion data has falls risk features, and it may predict that this patient may fall in the 

near future or has a high risk of falling. In other words, the value of an exponent 

indicates how quickly the trajectory departs from the nominal trajectory. Therefore, if 

the model yields a higher, positive value of the LLE, the trajectory will be assumed to 

exponentially deviate even more quickly, indicating a more unstable system. If the LLE 

is equal to (or very close to) zero, the system is stable, and if it is negative, the system is 

stationary.  

When the average expansion rate of the trajectory demonstrates a strong linear increase 

in the given time series, the slope will be used to calculate the LLE. Factors such as 

noise, undersized time series, and small embedding dimensions can result in an absent 

linear region, resulting in a miscalculation of an LLE. Many Lyapunov methods can be 

utilized to analyse the stability of patient dynamics, but Rosenstein’s method to 

calculate LLEs is most appropriate for this situation. This is because Rosenstein’s 
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approach is more reliable with small data sets, less computationally expensive, and less 

sensitive to noise compared to other similar models [331]. 

The accuracy of Rosenstein’s method [331] to calculate LLEs depends on several 

factors, such as the size of the embedding dimension, the embedding lag and the length 

of the time series. Each of these factors can be calculated or estimated, depending on the 

sample data. Since the LLE could potentially be calculated up to several hundred times 

per second for this application, the length of the time series data set inserted into the 

algorithm is important. A greater number of time series samples used for each LLE 

calculation yields greater accuracy. However, while a smaller time series leads to faster 

computations, the resulting LLEs may be inaccurate. 

6.4.1.2 Detection of Unstable Pattern 

Accurate identification of normal and abnormal or unstable patterns are critical in this 

system an over-prediction can lead to a ‘normal’ patient being exposed to high falls risk 

management (with potential adverse consequences). Under-prediction can lead to grave 

consequences, where a high falls risk patient can be classed as a low or no falls risk. 

Data captured from the accelerometer in readable file format is shown in the 

APPENDIX E and visual representation of various data patterns are displayed here. 

Figure 6.2 displays the short time series for all three axes of accelerometer data for a 

patient walking consistently and stably, while Figure 6.3 displays similar data for a 

patient walking unstably. 

 

Figure 6.2 Patient’s normal walking pattern. 
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Figure 6.3 Patient’s abnormal walking pattern. 

It is important to note that the visually similar pattern emerges from the sensor data in 

both cases. Therefore, when applying Rosenstein’s method for the Lyapunov algorithm, 

the calculated LLEs tend to be very small because very little deviation and few 

inconsistencies exist in the time series data. However, inconsistent data, as shown in 

Figure 6.3, yield higher LLEs because of deviations from the nominal trajectory (see 

section 7.5). This phenomenon is further explored through different activities under 

both stable and unstable conditions. 

6.4.1.3 Detection of Sitting vs. Stumbling vs. Fall Patterns 

Classifying each event accurately is critical for this model to predict the deterioration in 

the patient’s motion data when compared to the normal data trajectories. The model 

accurately classifies various events with unique activity-based classifiers for each 

activity/event. Figure 6.4 shows the accurate classification of sitting on a chair, 

stumbling to the left and an intended forward fall in a ‘normal’ patient data pattern. 

Each classified event is validated and confirmed with the manually maintained 

observational notes throughout the walking activity. Figure 6.5 shows the detection of 

stumbling to the left and a fall on the bed (which may indeed be a risk factor for falls 

but is not within the accepted definition of a fall), it is important to annotate that the 

classifier accurately detected the fall on the ground as well as the fall on the bed; a 

detailed explanation is in Section 6.5. 
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Figure 6.4 Identification and classification of sitting, stumbling and falls patterns in a healthy 

person. 

 

Figure 6.5 Identification and classification of stumble and fall in a hospitalised patient. 

6.4.1.4 Detection of Stumbling vs. Backward Fall 

Figure 6.6 shows the corresponding accelerometer data for stumbling to the right and a 

backward fall on the chair. The classifier calculated the time of change in trajectory in 

both cases, because the falls have faster changes than sitting on the chair. Therefore the 

speed, change and diversion from normal trajectory are the unique features incorporated 

into the classifiers when detecting various activity-based events. The classifiers also 

accurately identified the direction of falls or stumbles (forward, backward, left or right) 

from the X, Y and Z axis. 
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Figure 6.6 Detection of stumble and backward fall on a chair in a healthy person. 

6.4.1.5 Walking Pattern of a Patient with Gutter Frame and Weak Lower Body 

Figure 6.7 shows the data pattern of a patient walking with a gutter frame (a tall walking 

frame with high arm rests shaped like gutters) with the assistance of a helper. From the 

clinical notes, this patient had a lower body weakness as well as a history of falls. The 

classifier was unable to detect any events, though the visual data pattern resembles the 

stumble or fall, due to the absence of the speed and changes in the trajectory. The core 

boundary framework integrated the already-known fact and identified features such as 

speed, change in trajectories, free falls and instant peaks followed by a stable median. It 

was found that considerable changes in the trajectories are the important phases which 

can be compared with the existing database of falls. This classifier will contribute 

towards the confidence scoring for a weighted parameter module when predicting the 

falls risk. 
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Figure 6.7 Sample of walking pattern of a hospitalised patient with weak legs using gutter frame. 

6.4.2 Real-time Vital Signs 

Integration of vital signs into the falls prediction system gives an enormous advantage 

to the proposed prediction model in identification, detection and classification of falls 

risk. Integration of vital signs has not been given much attention and has been poorly 

addressed in the literature [318, 332]. However, there is a good report for concrete 

association between the vital sign(s) and falls [333]. One of the expert rules/conditions 

adopted here is the case of postural hypotension where: 

‘A fall of more than 20 mmHg in systolic blood pressure and/or more than 10 mmHg in 

diastolic blood pressure when standing (compared to the sitting blood pressure) 

indicates risk of fall’ [333]. 

Figure 6.8 is the extended version of the Figure 5.19 which shows the model design 

overview. A direct link between the vital signs and the falls prediction model was 

implemented as well as a link between identified physical signs and overall weighted 

parameters which also contribute to the falls risk prediction. Direct and indirect links 

between the input and the output have been maintained throughout the design and 

development due to the fact that the clinical situation, particularly of hospitalised 

patients, is often variable (unstable) over days or even hours. As this work revolves 

around the real-time wireless vital signs recording, monitoring, diagnosis and 

interpretation, the integration of outcomes from the interpretation model and/or direct 
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incorporation of real-time vital signs towards the falls prediction has given the proposed 

model a unique tool in predicting falls risk. 

 

Figure 6.8 Block diagram of vital signs linkage with falls prediction model. 

6.4.3 Falls Detection using Motion Data and Vital Signs  

Apart from falls prediction, the proposed model also detects the falls using the unique 

combination of the accelerometer based motion data and real-time vital signs. Figure 6.9 

shows the falls detection model using tri-axial accelerometer data with real-time vital 

signs. The proposed falls detection model has two mechanisms; falls detection based 

only on motion data and falls detection based on combined motion data and vital signs.  

The motion data based model has three important conditions to satisfy before the 

generation of an alert; the classifier identifies the event as a fall (excluding stumbling 

and sitting on a chair), then the model waits for any changes in the next five seconds to 

check any movement in the subject after a fall. If there is a detected change, then the 

system waits for a change in position which indicates that the person is conscious and 

can respond to the fall (irrespective of the movement, the warning will be generated as 

soon as the fall is detected, to avoid underestimation of a genuine fall). If there is no 

change after the fall, it indicates that the person is possibly unconscious (or more 

seriously ill) and a fall detection alarm will be generated. 

When considering motion data as well as vital signs, the system simultaneously 

processes both data; in the case of motion data, the model detects a fall. Then, changes 
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in the vital signs model will be checked for any considerable changes in the vital signs 

from the point of fall so that the person’s status can be recognised before generating the 

alert. Vital signs are considered to be an indirect link in this model, so processing the 

fall is not only based on the vital signs. 
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Figure 6.9 Falls detection model flowchart using motion data and vital signs, AN stands for 

abnormal. 

6.4.4 History of Falls 

Information about the previous falls is advantageous for the future prediction of falls 

[214, 315, 318, 332]. In the proposed model, three main phases are considered for falls 

risk assessment; past history, current status and any ongoing falls-related illness as 

shown in the Figure 6.10. 

Firstly, the ‘recent falls’ tab checks falls less than three months or six months from 

hospital admission, then the model also makes notes of the walking aid (if any) the 

patient is currently using. Secondly, the number of previous falls is considered 

(excluding the ‘recent falls’) in order to categorise the risk of future falls. Finally, the 

injurious falls tab identifies the type (if any) of injury or injuries due to the previous 

fall(s). This can indicate any short, medium or long term disability in relation to the 

recent or the previous falls. 

 

Figure 6.10 Flow diagram of patient's fall history. 
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6.4.5 Medications 

Another critical factor that has been widely adopted in the majority of falls risk 

assessment tools is the relationship between falls risk and the use of different types of 

medications. It is reported in the literature that there is an association between falls and 

medication, which indicates that falls risk increases with the increase in the number and 

types of medication. Some studies have classified the drugs into low, medium and high 

risk for falls as described below [334]; 

Table 6.1 Classification of drugs into low, medium and high falls risk. 

Falls Risk Medication 

High 

Antidepressants 

Antipsychotics including atypicals 

Anti-muscarinic drugs 

Benzodiazepines & Hypnotics 

Dopaminergic drugs used in Parkinson’s disease 

Medium 

ACE inhibitors / Angiotensin 

II antagonists 

Alpha – blockers 

Anti-arrhythmics 

Anti-epileptics 

Anti-histamines 

Beta-blockers 

Diuretics 

Opiate analgesics 

Low 

Calcium 

Channel Blockers 

Nitrates 

Oral anti-diabetic drugs 

Proton Pump Inhibitors (PPIs) & H2 Antagonists 

 

Figure 6.11 shows the basic classification adopted by the proposed model in falls risk 

prediction. The inclusion of all drugs is beyond the scope of this research and requires 

the inclusion of a complete list of drugs legally allowed in New Zealand hospitals by the 
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Ministry of Health and running of that list into the structured query language (SQL) 

database (server), which is a big task by itself. Instead the proposed model classifies the 

risk factors as low for 0 to 4 for different types of medications and medium for 4 to 6 

and 6+ are categorised as high risk [317]. The number of different types and number of 

medications will be entered by the clinician into the system. 

 

Figure 6.11 Graphical illustration showing increase of falls risk with increase in number of 

different types of medications [317]. 

6.4.6 Weighted Parameters 

Outcome information is gathered from all of the modules described above to calculate 

the confidence score. This module works on the similar principle which is explained in 

detail in Section 5.4.4. Specifically, for falls prediction scoring, the calculation carried 

out by the weighted parameters module is by assigning direct and indirect links. For 

instance, high weightage is given to ‘Low BP’ because of the direct relation to falls, 

whereas less weight is given to T or SpO2 because of their indirect (not absent e.g. 

pneumonia) relationship to falls. All the scores from other modules are summed up and 

confidence ratings are given to each factor in predicting low, medium or high falls risk. 
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From all gathered information, for each module the system sets points that will be 

forwarded to the weighting parameter module for possible risk assessment scoring. 

Figure 6.13 shows the overall data flow model showing weighted parameter module 

linkage with other key modules in order to predict falls risk. 

6.5 Falls Detection and Classification Mechanism 

When falling, the person frequently hits the ground or an obstacle. The ‘sudden rise’ 

results in an intense inversion of the polarity of the acceleration vector in the direction 

of the trajectory, which can be detected with an accelerometer or wave peak detector, 

with a previously determined fixed threshold limit/range. Even if most of the falls occur 

in the "frontal" plane (forwards or backwards), the direction of the fall trajectory is 

obviously variable from one fall to another. Also the location of the sensor on the body 

related to the point of impact modifies the "signature" of the signal recorded at the time 

of the falls. Lack of movement is also used to detect the fall as, after a "serious" fall, 

where the person may be seriously injured, they frequently remain immobilized in a 

posture and/or a place. A movement classifier is used to detect that ‘silent phase’.  

It is observed that during a fall there is a temporary period of "free fall", during which 

the vertical speed increases linearly with time due to gravitational acceleration. The 

vertical speed of controlled movements of the person (to rise, bend down, sit down) is 

measured to discriminate these speeds from those occurring during a fall, which exceed 

an appropriate fixed threshold as well as considerable changes being observed from the 

normal data pattern. The range gap is very narrow and the difficulty lies in the choice of 

this threshold, if it is too low the device also detects negative events ("false positive"); 

when the threshold is too high it does not detect positive events ("false negative"). This 

threshold is also dependent on the subject-to-subject variability (see section 5.4.1 for 

individualised monitoring). 

Fall detection is either positive if the detector properly recognises a fall, or negative if it 

does not. As the output is a binary one, the quality of the detector cannot be evaluated 

simply from a single test; instead it is necessary to carry out a statistical analysis on a 

series of tests. There are four possible cases: 

 True positive (TP): a fall occurs, the device detects it 

 False positive (FP): the device announces a fall, but it did not occur  
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 True negative (TN): a normal (no fall) movement is performed, the device does 

not declare a fall 

 False negative (FN): a fall occurs but the device does not detect it 

To overcome this critical issue, a learning period of either "supervised" or 

"unsupervised" learning is adopted using the database which has various activities and 

patterns for model learning. During data collection of normal walking patterns, the 

statistical information such as: normal speed of sitting on a chair, lying on a bed and 

standing are recorded. Then in real-time data analysis, each recorded measurement is 

checked and synched to carry out a statistical analysis on measured speeds of each 

patient individually. 

Figure 6.12 shows a block diagram overview of falls risk assessment with a multilayer 

outcome (low, medium and high) for falls risk prediction. The proposed model consists 

of four key components: motion data, vital signs, falls history and types of medication 

(Figure 6.12), which complement each other when the information is complete, limited 

and/or imperfect. A multilayer concept has been introduced to enhance the overall 

outcome reliability and accuracy of the proposed system. The multilayer outcome has 

the potential to indicate early the level of falls risk. This mechanism is best utilised in 

this context by feeding multiple input-output combinations using two stationary 

modules: falls history and types of medications as well as real-time and changing data 

for motion and vital signs for falls risk prediction. Multiple outcome categorisations 

(low, medium and high) gave the proposed model a potential advantage of achieving 

high accuracy and reliability. 

 

Figure 6.12 Block diagram overview of falls risk prediction model. 
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6.6 Summary 

Falls and fall-related injuries represent an enormous burden to individuals, society and 

health care providers. Because the population is ageing, this problem will increase 

unless vigorous preventive action is taken. There is a need to refine, promote and 

implement effective interventions. In addition, more information is needed in order to 

tailor interventions for populations with differing characteristics and risk factors. 

The pattern recognition classifier accurately detects and classifies the difference 

between a fall on the ground and a fall on the bed, a stumble to the right and left, sitting 

on the chair and a fall onto a chair. A falls detection model using motion data alone as 

well as a combination of motion data and vital signs was also explored. More focus has 

been given to the falls risk prediction and classification model when compared with the 

detection of falls. Figure 6.13 shows the overall architectural data model of the 

proposed system representing key modules and their linkage. Each module represented 

is explained in its respective sections. 

 

Figure 6.13 Architectural data model of the proposed system representing key modules and their 

linkage. 

The proposed model has been tested with healthy older people, hospitalised patients, 

intentional falls and other daily life activities. Extensive data analysis and pre-
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processing is carried out on the tri-axial accelerometer data so that the input data carries 

maximum features for the classifiers to detect. Detailed results, validation, testing and 

system enhancements are described in the next chapter.  
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CHAPTER 7 Results and Validation 

7.1 Introduction 

The objective of the proposed project was to develop automated (computer) software 

that would help in assisting hospital based clinicians to reduce their work load as well as 

enhancing ward-based patient monitoring. The proposed system is designed as an 

assistant device to the clinicians in that it aims to record, monitor, detect, interpret and 

‘diagnose’ problems that can occur during a patient’s hospital stay by analysing vital 

signs and motion signals. In addition, as an expert system it can incorporate the 

knowledge of many consultant clinicians. It is also capable of suggesting reasons for its 

conclusions. The final management decisions, however, are left to the clinicians. 

Specifically, the proposed system is distinguished from other medical monitoring 

systems by the following characteristics: 

 Designed for use in hospital ward for a wide variety of daily-routine procedures 

 Use of fuzzy logic for representing domain knowledge 

 Capable of predicting a multilayer outcome for physical signs as well as falls 

risk 

The above three points relate to the real-time physiological information environment, 

medical knowledge representation, and knowledge processing/interpretation methods; 

overall ‘knowledge’ can be considered as belonging to one of those three classes. The 

proposed system makes use of all three types of knowledge. The core mechanism 

adopted throughout the processing and development is that every module should work 

independently as well as being integrated; this step is taken due to the constant 

variability of vital sign data in the medical information and processing of partial 

information in an integrated system which would severely jeopardise the prediction 

accuracy and overall reliability of the system (refer to section 5.4). 

7.2 Proposed System Implementation 

Currently the proposed system is not integrated into any other medical system because 

the geriatrics ward on which it was initially tested has a manual patient monitoring 

policy using a national early warning score, periodically maintained by on-duty ward 
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staff. The proposed system uses external medical knowledge as text input and adopts a 

scoring mechanism based only on the information inserted by the clinician. 

Design, development, testing, validation and enhancement of the system were carried 

out in three phases. Phase-1 of the proposed system was tested using a clinical database 

(physionet) with limited input/output to check accuracy, complexity and stability. 

Phase-2 comprised the pre-hospital enhancements and modification of phase-1 in which 

data from ten real patients was used as off-line testing. In phase-3, real-time data 

collection and testing were carried out with 20 patients. Evaluation of the devices was 

also carried out (with 30 older individuals) in terms of mobility, usability, comfort and 

acceptability; this is explained in the next section in detail. 

7.3 Performance Validation and Evaluation 

7.3.1 Technical Verification of Medical Devices 

Medical devices shown in Figure 4.2 were tested individually with the manual meters 

before the start of the experimental data collection. The automatic blood pressure meter 

was evaluated with the (standard) manual mercury column meter, and it was found that 

the wireless BP meter is more accurate on the left hand and in a relaxed (2 minutes) 

sitting position. The pulse oximeter was verified using a manual one minute test which 

showed an accurate result but in some cases the wireless meter takes longer than 10 

seconds to give stable measurements due to the finger position. The ear thermometer 

was verified with the mercury thermometer and was found to be accurate when used in 

both ears. All the devices were tested and verified in order to conduct the experimental 

data collection using 30 individuals. The wireless data transmission test showed no 

errors in real-time patient physiological data transmission from patient to set-top-box to 

PC based software. Few connection losses occurred due to signal interference and/or 

bad location. 

7.3.2 Evaluation of Medical Devices 

It is important to take note that here the researcher is not trying to verify the clinical 

usability, accuracy and product validation of these devices, because it is not the scope of 

this research. In fact all devices have been certified (accurate and safe for use) and 

tested before being available on the market. Instead, evaluation is carried out on these 
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devices in terms of user (patient) acceptability of the device, usability and comfort with 

their feedback on each device and its usage. 

30 individuals (P1 – P30) were asked to participate in the evaluation of the proposed 

system. These 30 individuals (18 males and 12 females), with an average age of 60 

years were given a 10 point scale (10 is completely satisfied, 5 is neutral and 0 is 

completely unsatisfied) to rate the medical devices for mobility (size and weight), 

usability (how easy the device can be operated), comfort (how comfortable they feel 

when using the device) and overall acceptability. The 10 point evaluation scale and 

sample assessment questionnaire is shown in APPENDIX F. Each participant was given 

the basic instructions on how to operate the device before every measurement. 

However, average age of inpatients on our chosen ward is 82 years 1 month, which is 

much more than that of above population; further (self-evidently) inpatients, in contrast 

to P1-P30, are unwell: hence the evaluation results may not be fully representative of 

older inpatients. 

A score above seven seems acceptable (after analysing maximum, minimum and mean); 

however, there are several aspects where the outcome has been recorded as six or less. 

Comfort in using a blood glucose monitor is recorded as an average score of six, due to 

the (unavoidable and common to all testing systems) use of the needle into the finger 

tip. Usability and comfort of a spirometer is recorded as five for the reason that the 

majority of participants have difficulty in using the device and blowing air without any 

error; almost everyone took more than one attempt to get the reproducible reading 

(again an almost universal [patient-related rather than device-related] feature of 

spirometry itself rather than of individual spirometers). The usability of the 

accelerometer has rated six, because of the difficulty in operating the device, which 

requires a magnet to be held near the device for two seconds and when both the lights 

(blue and red) stop flashing, then the magnet should be immediately removed, or else it 

will switch off the device again. 

Table 7.3-1 shows the medical device evaluation in terms of mobility, usability, comfort 

and overall acceptability. The most widely used vital sign monitoring devices (blood 

pressure and pulse oximeter) have been compared with other similar systems (wireless 

devices, end-user acceptance and device usability/operation) reported in the literature 

for in-depth evaluation.  
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Table 7.1 Evaluation of elected medical devices for mobility (M), usability (U), comfort (C) and acceptability (A) with 30 participants (P1-P30). 

User/Devices Blood Pressure [55] Pulse Oximeter [65] Blood Glucose [282] Ear Temp. [68] Spirometer [283] Accelerometer [284] 

Categories M U C A M U C A M U C A M U C A M U C A M U C A 

P1 5 9 8 7 9 9 10 10 8 6 6 9 8 8 9 5 7 5 4 8 9 3 9 9 

P2 8 9 7 9 9 9 9 8 9 8 5 8 5 9 8 7 8 4 6 8 8 8 9 8 

P3 5 9 8 8 8 9 9 9 8 7 8 5 8 5 7 8 9 5 5 7 9 7 6 9 

P4 5 8 9 7 7 8 8 8 9 8 6 9 6 9 8 9 5 7 4 4 8 8 8 8 

P5 8 10 10 8 10 7 7 8 8 6 5 8 6 6 9 8 6 4 8 5 7 6 9 9 

P6 8 9 9 9 9 5 9 8 7 8 4 7 9 8 8 7 8 5 7 8 8 8 7 8 

P7 7 9 9 5 8 6 8 8 9 9 5 8 8 9 7 8 4 6 5 7 9 5 8 9 

P8 6 7 8 7 10 10 9 9 8 8 5 5 8 8 8 8 7 5 4 5 8 7 9 8 

P9 6 8 9 6 9 8 9 9 7 7 6 8 5 7 9 7 8 8 7 6 8 5 5 9 

P10 5 10 9 7 8 9 10 9 8 8 8 9 8 8 8 4 5 7 8 8 8 5 6 9 

P11 6 6 7 5 9 9 10 9 9 9 7 8 7 5 7 5 6 4 5 5 9 7 9 8 

P12 6 9 9 6 8 9 10 7 5 6 5 8 8 6 5 8 8 5 6 4 9 5 8 9 

P13 8 8 8 8 9 8 8 7 7 5 5 9 5 7 6 7 7 8 6 7 9 8 7 9 

P14 9 9 9 9 10 7 9 5 8 6 8 6 9 8 8 9 4 6 6 8 8 6 8 9 

P15 8 7 7 7 8 10 9 5 9 8 7 6 6 5 6 6 5 6 4 5 8 8 9 8 

P16 7 9 8 7 10 9 10 10 6 8 5 9 5 5 4 8 8 6 5 6 8 6 6 9 

P17 5 8 6 5 9 8 10 10 8 9 6 8 9 8 8 5 9 5 4 9 7 7 9 8 

P18 6 8 8 5 8 10 10 9 9 8 5 7 7 7 4 7 6 4 7 8 8 5 8 8 

P19 8 8 9 5 10 8 10 8 7 7 7 8 8 5 7 4 9 4 4 5 9 7 9 9 

P20 8 9 7 6 7 9 9 9 9 5 8 9 5 8 5 8 9 5 4 8 6 6 6 8 

P21 9 7 9 7 9 8 8 8 8 8 5 8 6 9 8 6 8 4 4 7 9 5 9 7 

P22 5 9 6 8 9 9 9 9 7 8 4 7 5 5 6 5 8 7 5 4 6 7 8 9 

P23 7 7 8 9 9 7 9 7 8 5 5 8 8 5 9 8 7 5 5 5 9 5 7 8 

P24 4 8 7 5 8 5 8 8 9 8 5 9 8 7 8 7 8 4 5 7 8 5 8 9 

P25 7 6 8 7 7 9 9 9 6 5 5 8 5 8 7 8 8 2 4 8 9 5 9 8 

P26 7 8 9 8 9 10 7 7 8 5 4 7 8 5 8 6 9 5 7 5 8 7 6 8 

P27 6 7 7 9 8 9 9 9 9 4 5 8 5 8 5 8 7 4 5 5 9 5 9 7 

P28 7 4 8 4 10 8 9 8 7 5 5 7 8 7 4 7 8 5 4 5 8 4 8 8 

P29 6 5 6 5 9 9 9 7 9 8 5 8 8 5 8 9 9 7 5 6 8 6 7 6 

P30 5 4 8 8 9 9 9 8 6 5 2 7 5 8 9 8 8 5 5 8 9 5 9 8 

Average Score 7 8 8 7 9 8 9 8 8 7 6 8 7 7 7 7 7 5 5 6 8 6 8 8 
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7.3.2.1 Blood Pressure Device 

The Boso-medicus prestige blood pressure monitor [55] has achieved mean mobility 

score of 70%, usability of 80%, and comfort of 80% and acceptability of 70%. The 

mobility score is given as seven, because the participants felt constrained when carrying 

the devices’ base unit and cuff attached to their arm. Table 7.2 compares similar blood 

pressure monitoring devices. 

Table 7.2 Comparison of similar Blood Pressure monitoring devices in a clinical context. 

Name/ 

Device 
Model Purpose 

Evaluation 

type 

Particip-

ants 
Result Limitations 

Takayuki 

et al. [335] 

Jentow, 

Japan 

Arterial 

Tonometry 
Accuracy 30 

Acceptance 

50% 

Movement 

artefacts 

Shennan et 

al. [336] 

Space Labs 

90207 

Use in 

Pregnancy 
Accuracy 122 

Reasonably 

accurate 

Arm cuff too 

tight 

Nakano et 

al. [337] 

Microlife 

WatchBP 

O3 

Self-usage 
Accept-

ability 
37 

86% feels very 

easy 

Un-

comfortable 

Used here 

Boso-

medicus BP 

monitor [55] 

Vital sign 

Monitoring 

Accept-

ability 
30 

Acceptance 

70% 
Low mobility 

 

7.3.2.2 Pulse Oximeter 

Nonin’s Onyx II finger clip pulse oximeter [65] has achieved a mobility score of 90%, 

usability of 80%, and comfort of 90% and acceptability of 80%. Table 7.3 compares 

similar pulse oximeter devices. 
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Table 7.3 Comparison of similar Pulse Oximeter devices in a clinical context. 

Name/ 

Device 
Model Purpose 

Evaluation 

type 

Number of 

Participants 
Result Limitations 

Fisher et 

al. [338] 

Pulse 

Oximeter 

Tester 

(POT) 

Arterial 

Tonometry 
Simulation - 

2 SD 

difference 

Faulty 

sensor 

Ibáñez et 

al. [339] 

biox 3700 

pulse 

oximeter 

vasoactive 

therapy 
Accuracy 24 

4% 

difference 
Not reliable 

Kathryn 

Aughey 

et al. 

[340] 

Baxter 

ASAT 

pulse 

oximeter 

Pre-

hospital 

Care 

Accuracy 30 100% 
Lack of 

depth 

Used 

here 

Nonin’s 

Onyx II 

Pulse 

Oximeter 

[65] 

Vital sign 

Monitoring 
Acceptability 30 

Acceptance 

80% 
- 

 

7.3.2.3 Blood Glucose Meter, Ear Thermometer and Spirometer 

The Accu-Chek Compact plus blood glucose meter [282] has achieved a mobility score 

of 80%, usability of 70%, comfort of 60% and acceptability of 80%. Participants felt it 

was difficult not only to take the measurement, but also to transfer the readings 

remotely. The comfort rate is low because of the use of a needle. Omron’s instant ear 

thermometer [68] has achieved a 70% score for mobility, usability, comfort and 

acceptability. It is reported that initially it was difficult to understand how to use the 

device, especially knowing on which beep the device should be removed from the ear 

while pressing the top button. 

nSpire’s Piko-6 meter [283] has achieved a mobility score of 70%, usability of 50%, 

and comfort of 50% and acceptability of 60%. In order to achieve high measurement 

accuracy, the user has to be in a standing position, has to take a deep breath in and then 

has to blow out fast into the mouth piece of the device and initially participants found it 

difficult to achieve reproducible results (this is the case for all spirometers). 
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The Gulf Coasts Data Concept’s accelerometer/Magnetometer Data Logger X8M-3mini 

[284] has achieved a mobility score of 80%, usability of 60%, and comfort of 80% and 

acceptability of 80%. In some body positions participants felt uncomfortable while 

mobile but suggested changing the body position for better mobility. Finally, the chest 

or upper back side was comfortable for the users. Operating the device was found to be 

difficult, especially switching on and off using the external magnet and its exact 

timings. 

Evaluation of medical devices and systems is important to achieve a high level of 

acceptability. Tamura et al. [341] conducted a home healthcare system trial to monitor 

blood pressure at two different locations for about one year; 42% and 55% of 

participants at each location continuously monitored their blood pressure. BP was 

measured with a commercially available BP monitor (CH-462E, Citizen Japan), and a 

modified semiautomatic oscillometric device was used for data communication; all data 

were automatically transmitted to the healthcare centre via a home gateway. It was 

reported that many participants could not understand the user manual, and found the 

system cumbersome and troublesome, which discouraged them from participating. 

Freund et al. [342] conducted a research study in hospital to investigate the failure of 

pulse oximetry at four different hospitals. Bitterman [343] surveyed the monitoring 

devices from a home perspective, where special focus was given to the patients’ need 

for a patient acceptable monitoring system in their home. Bergmann and McGregor [40] 

reported that the successful design of a healthcare system is only possible when medical 

professionals as well as patients are consulted at every stage of the system design and 

development. Sixsmith [344] evaluated an intelligent home monitoring system in terms 

of user acceptability and usability and reported that the system achieved 50% 

acceptance from the users. 

7.3.3 Evaluation of Data Transmission Precision, Delay and Data Loss 

As discussed earlier, a three-way cross validation data collection approach is adopted 

here to achieve high data accuracy i.e. initially vital signs were collected using wireless 

medical devices, secondly a (double-blinded) manual record of each and every 

measurement was made immediately. Thirdly, vital signs were recorded (double-

blinded) using hospital devices for the same parameters within 10sec, and those 

readings were also recorded manually. Table 7.4 shows the mean value of the data 
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collected and the comparison of wireless transmitted data vs. manual recorded data as 

well as wireless transmitted data vs. hospital collected data (using different devices) 

with an overall transmission delay. 2160 measurements were collected from 30 

hospitalised patients for this thesis (see section 7.5.2). 

Table 7.4 Accuracy evaluation with transmission delay and data loss. 

Parameters 
Mean Value 

(WTD) 

WTD vs HRD 

(diff.) 

Delay 

(Sec) 

Data Loss 

(%) 

BP (Systolic/ Diastolic) 125/71 ±7/5 1.82 0.80 

Heart Rate 77 BPM ±5 BPM 1.82 0.80 

Oxygen Saturation 96% ±1.5% 0.51 0.44 

Blood Glucose 134.7mg/dl ±3 mg/dl - 0.20 

Tympanic (ear) 

Temperature 
36.5 oC ±0.2 oC - - 

WTD is wireless transmitted data; HRD is hospital recorded data; WTD vs. HRD difference was 

calculated to identify the measurement difference between the devices for the same patient and parameter; 

transmission delay was calculated after allowing device stabilising time for each device of approximately 

7 seconds and all the values were calculated from the total of approximately 2500 wireless data 

transmissions. 

The difference between the wireless blood pressure monitor and the hospital’s blood 

pressure device was found to be ±7 mmHg for systolic and ±5mmHg for the diastolic. 

However, it was found that there was a difference of ±10/8 mmHg for three patients 

who had a sore arm or tremor. It was found that the data transmission delay was due to 

poor signals, signal drops, connection loss (at the time of transmission) and/or poor 

location.  

7.4 Result Validation Criteria 

Kappa analysis [345] was used to measure the level of agreement/disagreement between 

the proposed system and a medical expert (Professor of Geriatric Medicine) i.e. as the 

measure of how accurately the system can mimic human performance. Accuracy is 

generally used to assess the performance of classifiers. However, on its own it is not a 

realistic metric that should be used to assess classifiers’ performance for the used data 

set, as the influence of negative samples on overall accuracy is much higher than that of 
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positive samples. Precision, as it pertains to agreement between observers (inter-

observer agreement), is often reported as a Kappa analysis [345].  

Kappa is intended to give the reader a quantitative measure of the magnitude of 

agreement between two or more observers, in this case the system and the medical 

expert. The positive agreement (Ppos) and negative agreement (Pneg) indices were 

calculated as follows.  

 𝑃𝑝𝑜𝑠 =  
𝑇𝑃 + 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁)
 (7.1) 

 

 𝑃𝑛𝑒𝑔 =  
𝑇𝑁 + 𝑇𝑁

(𝐹𝑃 + 𝑇𝑁) + (𝐹𝑁 + 𝑇𝑁)
 (7.2) 

 

The third index of agreement gives the overall agreement (Po) level between the expert 

and the system and (Pe) is the agreement by chance. 

 𝑃𝑜 =  
𝑇𝑃 + 𝑇𝑁

∑(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (7.3) 

 

𝑃𝑒 =  (
((𝑇𝑃 + 𝐹𝑃) X (𝑇𝑃 + 𝐹𝑁)) + ((𝐹𝑁 + 𝑇𝑁) X (𝐹𝑃 + 𝑇𝑁))

∑(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
) (7.4) 

 

Kappa (k) is calculated by subtracting the proportion of readings that are expected to 

agree by chance (Pe) from the overall agreement (Po) and dividing the remainder by the 

number of cases on which agreement is not expected to occur by chance. 

 𝐾 =  
𝑃𝑜 − 𝑃𝑒

(1 − 𝑃𝑒)
 (7.5) 

The standard error (SE) of k is, 

 𝑆𝐸 =  √
𝑃𝑜(1 − 𝑃𝑜)

𝑛(1 − 𝑃𝑒)2
 (7.6) 
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The 95% confidence intervals (CIs) for k could be calculated with the following 

equation. 

 𝐶𝐼95% = 𝐾 ± 1.96 × 𝑆𝐸 (7.7) 

 

Table 7.5 Kappa value against the strength of agreement classification. 

K – Value Strength of Agreement beyond chance 

<0 Poor 

0 - 0.2 Slight 

0.21 – 0.40 Fair 

0.41 – 0.6 Moderate 

0.61 – 0.8 Substantial 

0.81 - 1 Almost perfect 

 

The quantitative categories like accuracy sensitivity, specificity and predictability can 

be calculated by the following standard equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 

7.5  System Results 

The evaluation of the proposed system has been directed towards three primary aspects. 

These are: 

• Utility as a remote and wireless vital signs recording and monitoring – is 

reflected in the sensitivity and specificity of the proposed system – that is, 

whether it generates an alarm or prompt in response to an adverse condition in 

the patient, and the rate of false alarms. Moreover, identified problems should be 

correctly classified. Results pertaining to this aspect are presented in this section. 

• Usefulness for physical signs interpretation – the usefulness of the system as an 

aid to interpreting multiple physical signs is explained in Chapter 5 in detail and 

results are discussed in this section. 

• Precise enough to predict falls risk – precision of the falls risk assessment is 

somewhat difficult to determine due to the fact that the patients who were 

identified as having a low, medium or high risk of falls cannot be tested in a 

real-time hospital environment due to the project time constraints. Such a project 

would require at least several months (possible longer depend on the falls 

incident rate) of patient monitoring with respect to falls. 

The results shown in this section are collated from more than 200 hours of data 

collected by a ward-based trained registered nurse and the student researcher over 

approximately 24 months. The nurse and researcher were mutually blinded to each 

other’s activities/observations and the nurse was blinded to the automatic recordings 

and alarms generated. Data collection was performed at North Shore Hospital and 

Waitakere Hospital, which come under the Waitemata District Health Board (WDHB). 

The data collected thus represents a sampling of daily routine activities performed on 

older adult patients during their hospital stay. During the collection of the data, the 

attending nurse could make annotations regarding any potentially clinically significant 

observations and by verbal discussion of factors such as visible wounds, weakness, 

pain, dizziness, intake of food or medicine, exercise/physiotherapy, etc. These 

annotations were then included in the external medical module of the proposed system 

for weighted parameter scoring. The data was also examined for any events not 
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annotated at the time by the staff. These sets of events provided justification for any 

alarms or warning/prompts generated by the system. Furthermore, the justified events 

were also categorised according to their diagnoses. This information was used to test the 

accuracy of the system in correctly identifying problems. No events of types outside the 

system’s diagnostic/interpretive capabilities were encountered. 

7.5.1 Pre-testing of Physical Sign Detection 

Figure 7.1 shows the block diagram (initial) of the proposed remote patient monitoring 

system and the flow chart of the diagnostic module using fuzzy logic for the detection 

of two physical signs. The aim of this project was to develop a ‘universal’ diagnostic 

module based on vital signs. The diagnostic module should be compatible with existing 

monitoring systems and/or medical devices. Two physiological parameters, blood 

pressure and heart rate, contributed to the early diagnosis of hypertension and 

hypotension. The diagnostic module as shown in Figure 7.1 is described below. 

Data conversion, file read and pre-processing modules convert the incoming data from 

an external monitor to a readable format. The diagnostic module was tested by 

integrating several alarm monitors such as: GE Healthcare’s Datex-Ohmeda S/5 

monitor (currently in use at Auckland City Hospital) and Boso-medicus BP monitor, 

which send data in a digital format. After converting the raw data to a readable format 

the next step is to read the file for pre-processing, this includes: filtering, averaging, 

normalization, calculating statistical values (mean, median, mode, and range) and 

standard deviation (SD) to identify changes in the physiological parameters. 

Batch processing: This part creates batches of one to five minute time frame windows to 

batch process the incoming data. This method provides a more accurate diagnostic 

output because it incorporates the changes in the parameters, by calculating the SD, 

instead of crisp numerical limits. By this method, the number of false alarms is reduced 

(physiological data has high variability among individuals). 

As discussed earlier in detail, fuzzy logic is found to be one of the most valuable 

techniques when numerical values, such as vital signs, are associated with concepts, 

such as ‘Hypertensive’ and ‘Hypotensive’ instead of a set range/limit. Using fuzzy 

logic, the continuous coinciding shift from ‘Hypertension’ to ‘normal blood pressure’ 

feeds the module to sense that 150 mmHg (mean arterial pressure) is 70% 
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‘Hypertension’ and 30% ‘normal’, expressed as ‘somewhat hypertensive’. But other 

methods are usually forced to express the above scenario as 100% ‘hypertension’ and 

0% ‘normal’. Fuzzy sets, membership functions and rules are derived using normal and 

abnormal vital data range from a physician as well as from the literature [346]. 

 

Figure 7.1 The block diagram of the proposed remote patient monitoring system and fuzzy 

diagnostic module. 

Alert/warning display and file write: The system displays an alert based on the changes 

in parameter (SD) as well as user-defined limits. However, there will be no alarm 

generated solely based on the user-defined limits. The module will compose and save 

(write) all key information such as: date, time, data value, SD change, generated alarm 

and display message (hypertension or hypotension) in a readable formatted file for 

future analysis and patient’s record. Sample processing is shown in Figure 7.2 where 

logic is running on the left side and the output window can be seen on the top right with 

possible hypertension detected in batch 24 of the patient data (database). The bottom 

right window shows the output file read with date (column A), time (column B), mean 

BP value detected (column C), pulse value (column D), possible outcome (column E), 

SD of BP (column F) and SD of Pulse (column G). 

Results of the proposed system (using database) for detecting hypotension and 

hypertension are shown in Table 7.6. The results are compared with other similar 
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monitoring systems for evaluation of the alarm accuracy, sensitivity, specificity and 

predictability. 

 

Figure 7.2 Processing and detection of hypotension and hypertension with file read/write. 

Table 7.6 Results of the proposed system and comparing with other systems 

Alarms Proposed System Oberli et al [286] 

 
Diagnostic 

Module 

Datex-Ohmeda S/5 

Monitor 

Expert 

System 

Space Labs TM 

Monitor 

TP 117 104 169 149 

TN 296 327 112 181 

FP 26 82 8 737 

FN 7 35 24 88 

Total Alarms 446 548 289 1067 

Accuracy (%) 92.60 78.64 89.77 28.57 

Sensitivity (%) 94.35 74.82 87.56* 62.86* 

Specificity (%) 91.92 79.95 93.33 19.71 

Predictability (%) 81.81 55.91 95.48* 16.81* 

Where TP is true positive, TN is true negative, FP is false positive and FN is false 

negative. * The authors used TP and TN to calculate the sensitivity and predictability. 
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7.5.2 Real-time Testing of Physical Signs Detection Model 

On an average each patient was visited three times during the trial. During each visit, 

four sets of vital signs were collected. Each set contained seven measurements: two 

blood pressure measurements – one standing and one sitting with the time difference of 

one minute on an average, heart rate, oxygen saturation, ear temperature and blood 

glucose readings. Overall, for data collection each patient was visited three times, four 

sets of measurements were collected and each set had six recordings. Therefore, a total 

of 1patient X 3visits X 4data sets X 6recordings = 72 recordings for one patient were collected. 

Finally, for 30 patients, a total of (72recordings X 30patients) which is equal to 2160 

recordings was collected. 

Figure 7.3 shows the overall performance of the proposed system as a physical signs 

detection system. The proposed system raised a total of 356 alarms and of these, 127 

alarms were promoted to P1 (priority-1) alarms and the rest were P2 warnings (229). It 

is important to mention that only P1 alarms are considered for Kappa analysis compared 

with a medical expert’s diagnosis, due to the fact that P1 were designed as an alarm and 

P2 were designed as prompts or message, for more flexibility to the clinicians. From 

another viewpoint, P2 (229) represents 64% of total alarms (356) when compared to 

36% P1 (127), which suggests that for 1 P1 there was 1.8 P2, indicating that the 

proposed system successfully detects the P1 early by means of P2, as explained in detail 

in section 5.4.5. This evidence demonstrates the early detection of multiple physical 

signs as well as high predictability of the proposed system. 
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Figure 7.3 Total number of alarms generated by the proposed system with P1 and P2 classification. 

Table 7.7  below details the P1 alarms categorised according to the physical signs and 

compares it with the medical expert’s diagnosis for the same data. 

Table 7.7 P1 alarms generated by the proposed system compared with the medical expert's 

diagnosis. 

Physical Signs Proposed System Medical Expert 

Hypotension 8 8 

Hypertension 11 9 

Tachycardia 12 12 

Hypoxaemia 15 15 

Hypothermia 6 3 

Total 52 47 

 

The results are summarised that in 47 out of 52 instances, the system and the expert 

were positive (true positive) and for the remaining five instances the system was 

positive but the expert was negative (false positive). There were no instances recorded 

where the system was negative and the expert was positive (0 – false negative) and the 

rest of the alarms were characterised as true negative (75) where the system and expert 

were both negative; this classification is defined in Table 7.8. 

 

Alarms

356

P2

229

P1

127
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Table 7.8 TP, TN, FP and FN values extracted from 20 patients’ data for Kappa analysis. 

System/Expert Expert (+ve) Expert(-ve) Total 

System (+ve) 47 (TP) 5 (FP) 52 

system (-ve) 0 (FN) 75 (TN) 75 

Total 47 80 127 

 

Based on values from Table 7.8, Kappa analysis was carried out using the standard 

calculations as explained in detail in section 7.4 of this chapter. Agreements between 

the two diagnoses may be affected by chance. Kappa (k) is a measurement of agreement 

between the expert and the system which has been corrected for error by chance. Kappa 

(k) was calculated by subtracting the proportion of readings that are expected to agree 

by chance (Pe) from the overall agreement (Po) and dividing the remainder by the 

number of cases on which agreement is not expected to occur by chance. The Kappa 

analysis results for the proposed system’s performance are described in Table 7.9; Po, 

Ppos, and Pneg are overall, positive, and negative agreements, respectively. SE represents 

the standard error and CI95% is 95% confidence intervals for Kappa. 

Table 7.9 Results from Kappa analysis and agreement evaluation. 

Overall 

Agreement 

Positive 

Agreement 

Negative 

Agreement 

Agreement by 

Chance 

Standard 

Error 
95% Confidence Intervals for K 

Po Ppos Pneg Pe SE CI95% 

0.96 0.94 0.96 0.52 0.03 0.98 and 0.83 

 

The overall Kappa value is calculated as K = 0.91 and according to Table 7.5 the 

strength of agreement beyond chance lies in the range of 0.81 to 1 described as ‘almost 

perfect’. The Kappa based statistical analysis showed a substantial level of agreement (k 

= 0.91 or 91%) between the expert’s and the system’s diagnoses. Table 7.9 shows that 

the proposed system achieved an overall agreement of 96% with Kappa K with a value 
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of 91%. Now, the quantitative categories were calculated such as accuracy, sensitivity, 

specificity and predictability using the standard equations (refer Table 7.8 for TP, TN, 

FP and FN values). The proposed system achieved an accuracy of 96%, sensitivity of 

100%, specificity of 93.75% and predictability of 90.38% compared with the diagnosis 

of an expert for the same physical signs. 

7.5.2.1 Alarms Justification 

The proposed system achieved an overall positive agreement (Po) and accuracy 95% and 

Kappa value 91%. There are five disagreements (FP) with the medical expert (post data 

collection evaluation by Professor Martin J. Connolly, Freemasons’ Professor of 

Geriatric Medicine, University of Auckland and North Shore Hospital) (Table 7.8) 

which are briefly discussed here. On three occasions ‘possible hypothermia’ was 

detected because the detected ear temperature value was below normal for that 

particular patient. The system generated a possible alert but the medical expert 

disagreed and reported that it was a borderline value and would have a delay to see the 

next few temperature readings before actually considering this as a possible alert. On 

two occasions the system detected ‘possible tachycardia and hypertension’ for each of 

two particular patients based on their individual values. The blood pressure was slightly 

on the high side and the heart rate was very high, which indicated possible considerable 

changes in the patient’s vital sign values when compared with previous values and the 

overall normalised data trend. The medical expert agreed with the alert for ‘tachycardia’ 

but disagreed with the ‘hypertension’ conclusion explaining that the blood pressure 

values were borderline, it was not justifiable to say ‘possible hypertension’ at that stage, 

but instead they would go for possible tachycardia. It is expected that the proposed 

optimally designed alarm system generates warnings within a short interval in order to 

provide the opportunity for clinicians to take appropriate action before a critical 

pathological event occurs. On the other hand, the system should limit its false alarms 

(false positives), as discussed in detail in the next chapter. 

7.5.3 Accuracy Evaluation of Falls Classifiers 

In order to evaluate the falls detection classifiers of the proposed model, four healthy 

male individuals (aged 62Y7M, 69Y9M, 72Y3M and 75Y9M respectively) performed 

intentional falls and normal activities of daily life (ADLs). For testing and evaluating 

the system individuals with impaired vision, imbalance, walking with any support or 
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cognitive impairment were excluded. Activities performed included forward, backward, 

right-side and left-side falls as suggested by Noury et al. [347]. A total of 80 intentional 

falls and 40 ADLs were simulated as shown in Table 7.10. 

Table 7.10 Accuracy results of the proposed system when detecting backward, forward, right side 

and left side falls. 

Category TP TN FP FN Accuracy % 

Forward Fall 20 20 0 0 100 

Backward Fall 18 18 0 4 90 

Left-side Fall 17 17 0 6 85 

Right-side Fall 19 19 0 2 95 

Total 74 74 0 12  

 

7.5.4 Testing of Falls Risk Prediction Model 

As mentioned earlier, a similar data processing process was followed here with 10 

patients’ data used for initial testing and training of the falls prediction model. The 

remaining 20 patients’ data was used for real-time testing. Figure 7.4 shows the falls 

risk prediction results by the proposed system and categorises them into high, medium 

and low falls risks. The numbers in the bracket are the falls risk results obtained from 

the Morse falls scale (MFS), performed by (blinded) medical staff on the same 20 

patients. 
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Figure 7.4 Total number of falls risk prediction by the proposed system with high, medium and low 

classification. Numbers in the bracket are blinded Morse Falls Risk results for the same patients. 

Table 7.11 shows the both proposed system and MFS agreed and were positive 15 times 

for high risk and twice for medium falls risk (TP = 15) while the system was positive 

and MFS showed negative assessment three times (one for medium risk and two for low 

risk) (FP = 3). There were two incidents recorded where the system was negative and 

MFS was positive (FN = 2), and there were no incidents recorded where the system and 

MFS were both negative (TN = 0). 

Table 7.11 TP, TN, FP and FN values extracted from 20 patients’ data for qualitative analysis. 

System/MFS MFS (+ve) MFS* (-ve) Total 

System (+ve) 15 (TP) 3 (FP) 18 

System (-ve) 2 (FN) 0 (TN) 2 

Total 17 3 20 

*MFS is Morse Falls Scale 

High

15 (18)

Low

2 (0)

Medium

3 (2)



157 

 

From the above obtained values the proposed system achieved an accuracy of 75%, 

sensitivity of 88% and predictability of 83%. The best available option for the 

evaluation of the proposed system results is comparing them with MFS risk assessment 

scores. The MFS categorised the falls risk scoring as: everyone (0-24), medium (25-44) 

and high (45+). It should be mentioned that from the whole 30 patient data, the MFS 

indicated only two patients as medium risk and the remaining patients (28) as high risk, 

giving the high risk indication of 93%. As mentioned earlier, further prospective 

validation of the system (i.e. its ability [vs the MFS] to predict actual falls) was not 

possible for the proposed system in real time as this would have required requires a 

larger study over a longer time period (the duration of inpatient stay for many more than 

30 patients). 

MFS is a manual falls scoring scale which uses falls history, secondary diagnosis, aid, 

IV infusion, gait and mental status to predict the risk of falls, whereas the proposed 

monitoring system uses real-time vital signs, real-time motion data (walking pattern), 

falls history and types of medication and integrates the gathered information into the 

weighted parameter module for the falls risk prediction. The above-mentioned results 

can be considered as the comparison between two (technically) different 

methods/models and it is not possible (in the absence of the prospective study discussed 

above) to conclude which one is more accurate. However the system described in this 

thesis has reasonable agreement with the MFS, a previously validated and widely 

adopted scoring tool in hospitals. The proposed model has the advantage of using real-

time component and it is a real-time computerised monitoring system. This is discussed 

in detail in the next chapter.  

7.6 Summary 

In this chapter, results from vital signs interpretation and the falls detection and 

prediction system were reported with the evaluation of medical devices in terms of 

mobility, usability, comfort and acceptability. One of the main reasons for the 

evaluation of wireless medical devices was to address the lack of medical professionals’ 

or patients’ (user) involvement throughout the design and development phase, thus, with 

the consequent risks of low user acceptability and minimum clinical efficiency (from 

the clinician’s point of view) [40, 104]. It has also been reported that patients cannot use 

the devices/system independently because they are too complex to use and difficult to 
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operate [341]. Therefore, such devices or systems are of little use outside a hospital 

(inpatient) setting even though the system’s overall performance is acceptable. Thus, the 

clinicians’ as well as the users’ involvement and feedback are critical at every stage of 

design and development. 

The proposed falls detection model was developed to establish a robust method in 

which effective fall prediction can be used to minimise the personal and financial cost 

of associated injuries in older adults. The aim was also to minimise false predictions 

which are a nuisance for patients as well as for caregivers and can greatly compromise 

effectiveness of care [140]. The users’ needs and clinicians' preferences were taken into 

account and non-invasive, wireless and body-worn sensors were employed in the design 

of the proposed system [40]. There is now strong evidence that a clinically important 

proportion of falls experienced by older adults are preventable. However, further 

research needs to be done to determine the actual predictive value of the new system in 

a prospective trial, what type of falls can be prevented and if/how older adults can 

benefit from interventions by computerised systems. Those who could benefit may be 

identified by individual assessment and by studying the characteristics of falls. Current 

monitoring devices are not designed to replace healthcare professionals but rather to 

support them in making decisions in complex situations through more rapid processing 

of patient information and thus speedier delivery of treatment. A more effective means 

of delivering proven interventions and treatments to reduce the risk of falls is required.  
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CHAPTER 8 Discussion and Conclusions 

8.1 Overview 

The use of computerised monitoring systems to automate medical diagnoses may 

improve quality of care as well as reduce staff work load. With the advancement of 

wireless sensor technologies, the acquisition of characteristics of people’s behaviour 

(physical as well as physiological) becomes much easier than before. The proposed 

monitoring system could be customised to suit the most common diseases and 

symptoms encountered in New Zealand hospitals. This research work will yield a highly 

specialised system that has the potential to lower the mortality rates of the nation’s 

population due to medical errors and the heavy work load of medical professionals. This 

research is aimed to evaluate and develop an intelligent monitoring system combined 

with physiological data for patient monitoring and motion data for falls prevention. It 

also aims to improve the performance of current patient monitoring systems by 

identifying the shortfalls of existing technology and developing a system for providing 

alerts to the healthcare professionals as well as to the user in the event of detecting a 

serious illness or symptoms. Three main concepts have been addressed in this thesis: 

wireless/remote monitoring, detection of multiple physical signs and falls risk 

prediction – that could be used in a geriatrics ward in hospital (currently being tested) to 

monitor older adults. This section serves to present the major conclusions of this thesis. 

It summarises important concepts and justifies the adopted methods. 

8.1.1 Wireless/Remote Monitoring 

The proposed system was evaluated with 30 individuals for mobility, usability, comfort 

and users’ acceptability. The crucial aspect is the configuration of different medical 

devices in one system (set-top-box), to collect and transmit the patients’ physiological 

data in real-time. In addition, the collected data is diagnosed and an alert/warning for 

any potential physical signs are sent to medical professionals in real time. This thesis 

focuses on addressing the current limitations of this technology, such as interoperability, 

complexity, high cost and user acceptability using the proposed solution [242]. 

It is expected by the healthcare technologist [5] that such a solution will play an 

important role in the ever-growing automated medical diagnostic area by providing a 
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cutting-edge and state-of-the-art solution. Moreover, the thesis addresses the current 

challenges and limitations reported in the literature and reports on an advanced 

telehealth care system to benefit the overall healthcare sector. Special emphasis has 

been given to the evaluation of medical devices and their use in clinical settings. 

Medical device interoperability has been addressed to a great extent with advanced 

features for both medical professionals as well as for patients (users). 

Currently, the majority of systems focus on capturing information related to a specific 

health condition and/or a single parameter monitoring of users’ health and physical 

activities [115, 348]. Lin’s survey [7] on wireless/remote/mobile monitoring gives an 

insight into the various mobile platforms and technologies. With the ever-growing 

research in wireless/remote healthcare applications, end-user consideration is often 

ignored or neglected in the design of such applications. There is still an open research 

question to be worked on to address user acceptability issues. Moreover, there is room 

for research on the quality of such healthcare applications related to patient’s (end-

users) well-being.  

To answer these important aspects, many researchers have included patients’ as well as 

medical professionals’ feedback at every stage of the design and development [84, 147, 

233]. It is believed that acceptance of any system in the healthcare industry depends on 

the perception of the user. User-centred design is essential in order to transfer the 

concept into the product, especially at the earlier stages of a project [85]. As suggested 

by Steele et al. [86], the theoretical framework should be built based on user 

preferences. It is evident that even with advanced healthcare systems, if the user does 

not fulfil the requirements such as wearing the sensor for the allocated periods of time, 

then the application becomes irrelevant [19, 87]. Nonetheless, the most successful 

techniques and guidelines proposed in the literature reviews [24, 349], surveys [7, 113, 

176, 177], frameworks [77, 85, 115, 123, 348] and end-user acceptability [39] have 

been carefully considered in the design and development of the proposed monitoring 

system in the current thesis 

8.1.2 Vital Signs Interpretation 

The developed vital signs interpretation system has shown that evidence-based expert 

diagnostic systems can accurately diagnose multiple physical signs in hospitalised older 

adults and could be useful in providing decision support to clinicians. The complete 
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validation of the system, as a clinically useful diagnostic alarm system, has been carried 

out with real-time hospital testing. 

There is also a major concern regarding the false alarms generated by the clinical 

decision support system (CDSS). Several authors in the literature have reported a 

continuous increase in the generation of false alarms from the CDSS and expert system. 

Imhoff and Kuhls reported a false alarm rate of up to 90 percent [34]. Chambrin et al. 

[350] and Tsien and Fackler [351] reported the highest alarm rates in noisier 

environments, including simple threshold based systems [34, 350]. 

The proposed decision support system will be an advantage to clinicians in the hospitals 

in early detection of seven key physical signs and their related critical events. The 

system was developed in consultation with medical experts throughout the system 

design and development, which gave full insight into the medical professional’s needs 

and key clinical requirements. The other main focus was to minimise the false alarms, 

because, from the literature it is clear that the medical professionals’ biggest perceived 

problem in using the CDSS/expert system is the generation of false alarms. The use of 

the fuzzy logic model is to enhance the accuracy and prediction of the system. It is a 

well-known fact that physiological parameters vary considerably from one person to 

another. For example, the key physiological parameters vary with age, gender and 

disease; hence the normal value of one person will not be accurately normal for others, 

so using the crisp limits in this scenario will definitely generate high false alarms. The 

proposed model will behave according to the individual’s vital data (physiological 

parameters) and this will give an advanced ‘diagnosis’ of the different physical signs. 

The proposed system was tested with two clusters of normal and abnormal data. 

Authentic diagnosis datasets have been clustered using the MIMIC II waveform 

database from physionet. The number of training epochs chosen for the proposed 

system in each scenario is determined based on the desired accuracy. In simple terms, 

the training of the proposed system is stopped once it has achieved high learning 

efficiency. The proposed system is constructed by expanding the powerful ability of a 

neural fuzzy network to deal with pattern recognition, data classifications and temporal 

problems. The system itself realizes the dynamic fuzzy reasoning by creating recursive 

fuzzy rules, which are generated automatically and optimally during the process 

(training) via pattern recognition and parameter learning. The fuzzy structure 
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identification process proposed can effectively reduce the number of rules, membership 

functions and network size. Moreover, the proposed system was also tested in a real-

time hospital setting and results were compared with the medical expert’s diagnosis. 

8.1.3 Falls Detection and Risk Prediction 

The proposed falls detection model was developed to establish a robust method in 

which effective fall prediction can be used to minimise the personal and financial cost 

of associated injuries in hospitalised older adults. It also aimed to minimise false alarms 

which are a nuisance for patients and caregivers and can compromise effectiveness of 

care [140]. Users’ needs and clinicians' preferences were taken into account and non-

invasive, wireless and body-worn sensors were employed in the design of the proposed 

system [40]. 

In many fall detection research studies, the starting point of algorithm design has been 

to set the threshold(s) to the same level as the slowest fall event. By doing this, a 

sensitivity of 100% is obtained by allowing some false alarms to arise. The proposed 

system introduced a novel method by including real-time vital signs and motion data 

with falls history and types of medication to reduce the false alarms, which can be a 

serious problem for nurses looking after several patients. This can be done by 

categorising falls by means of directional/postures sub-categories combined with 

incoming real-time vital signs. Reducing false alarms makes the fall detection system 

comfortable to use for the clinicians. Another addition to the existing falls prevention 

model could be the inclusion of more structured input information from clinicians as 

well as patients, such as: body mass index, height, weight, urinary frequency, confusion, 

footwear and clothing and other known health issues, specially arthritis, osteoporosis, 

diabetes and high blood pressure. 

8.1.4 Data Processing Issues 

More improvements to the overall quality of healthcare delivery raise difficulties in 

processing both the dense and heterogeneous biomedical data. For example, the high-

resolution and dynamic data of medicinal images result in the data transfer and image 

analysis being extremely time-consuming. Several works leverage the cloud approach to 

tackle the difficulties.  
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As to the clinical informatics, a major challenge is to integrate a wide range of 

heterogeneous data into a single and space-saving database for further queries and 

analyses. Electronic health record (HER) could be an ideal solution because it is the 

patient-centred record that integrates and manages personal medical information from 

various sources. EHRs are built to share information with other healthcare providers and 

organizations, while the cloud technologies can facilitate EHR integration and sharing. 

Developing EHR services on the cloud can not only reduce the building and operation 

costs, but can also support interoperability and flexibility. There are a great number of 

systems contributing to different cloud-supported frameworks to improve EHR services. 

For instance, an e-health cloud system is defined capable of adapting itself to different 

diseases and growing numbers of patients, i.e. improving the scalability [9]. Rothman et 

al. [9] proposed an intelligent cloud-based EHR system, and claimed that it has the 

potential to reduce medical errors and improve patients’ quality of life. A recent work 

introduces the state of cloud computing in healthcare [352]. However, there are a 

number of security issues/concerns associated with cloud computing, which is one of 

the major obstacles for commercial considerations. As the emerging cloud technology is 

used in the healthcare system, more recent studies have investigated the security and 

privacy issues [352]. 

8.2 System Implications 

The healthcare of the community in general and of older people in particular is now one 

of the major concerns globally. In New Zealand the ageing population has grown fast 

with more cases of chronic illnesses which involving higher healthcare costs. The 

proposed system can complement the role of nurses in monitoring patients’ vital signs. 

Nurses will be able to focus on the holistic needs of patients thereby providing better 

personal care. Advanced and complex medical algorithms are developed in order to 

detect several physical signs. 

Following further validation as discussed above the research presented here may benefit 

the New Zealand healthcare system in terms of: (1) Early diagnosis and early warnings 

or alarms to assist clinicians to avoid any critical situations in the care of their patients. 

(2) Patient’s information such as falls history, medical information, history, allergies 

and other known information can be loaded in to this system to minimise medical 

related errors. (3) Older people can be monitored continuously or periodically from a 
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remote place (home, rest home, or hospital) and (4) Early detection of physical signs 

and falls, by giving a warning or alarm, so that critical situations can be minimised or 

avoided. 

Moreover, this research will be able to contribute to the development of intelligent 

patient monitoring at hospitals and older adults community centres. Collecting, 

monitoring and analysing medical data to generate alerts/warnings to medical staff is a 

considerable change in the current healthcare system and this will be a new and 

advanced technology that this research can deliver.  

8.3 Conclusion 

Wearable monitoring systems for older adults are getting good clinical acceptance due 

to versatile nature of the connectivity with the patient. It gives the patient freedom and 

flexibility while they are monitored. Very few studies have reported a high percentage 

of acceptance for wearable monitoring systems mainly due to its low-invasive nature 

and non-interference in their normal daily activities [353]. Bergmann and McGregor 

[40] reported that the overall quality of individual studies was relatively low, a small 

number of participants were included, there was limited methodology and the reporting 

of research processes was restricted. Likewise, the author agrees with the three main 

challenges proposed by Chan et al. [4]. 

 Proposed solutions must match or exceed the patient’s quality of live. 

 Patient and clinician usage and intentions should be studied in detail and 

considered. 

 Further research is required into legal and ethical issues, user and provider 

acceptance, requirements and satisfaction. 

Lin [7] recommends that mobile telemedicine engineers should consider the 

performance of wireless multimedia networks according to the health level-7 (HL7) 

(HL7 and its members provide a framework (and related standards) for the exchange, 

integration, sharing, and retrieval of electronic health information) standard based 

design model. He also advocates the involvement of medical experts throughout the 

developmental stage in order to facilitate usage by clinicians and thereby, increase the 

quality of medical services delivered. A wireless sensor network survey conducted by 
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Alemdar and Ersoy [113], identified the hardware challenges as well as those related to 

security, privacy, mobility and user-friendliness. 

Although, vital signs based hospital monitoring systems are still in the developmental 

stage and the realization process has only just begun [178], the future work will help to 

fine tune the concept and bring forth the realisation of a reliable healthcare environment. 

The majority of the literature reported that there are several factors discouraging the 

adaptation of these systems by medical professionals. Some of these factors include: 

difficulty in operation, poor usability (size and excess weight), difficulty in medical 

implementation and lack of clinical significance. Due to the wireless nature of remote 

and mobile monitoring systems, there is room for further research to incorporate user 

preferences. 

8.4 Suggestions for Further Research 

A number of studies support the effectiveness of patient monitoring systems both in a 

hospital setting as well as in the home environment. The standardisation of and demand 

for such systems and their applications are a fast growing area for research. For 

instance, a vital signs transmission system, based on VITAL and DICOM standards for 

telemedicine applications has already been developed [356]. It was identified that online 

monitoring and real-time transmission of bio-signals, and related systems require high 

quality signals without artefacts to be capable of operating without delay. To address 

such challenges, online monitoring systems needs to be developed. The development of 

a trend detection algorithm for EEG monitoring is one example. Such online or web 

based monitoring systems are playing a major role in remote patient monitoring, 

producing high quality data and accuracy [16, 93, 117]. 

Panescu [354] identifies several commercial wireless remote monitoring systems and 

stipulates the requisite design factors. These include power consumption, 

communication range, size, cost and security. Moreover, such systems are dependent on 

the internet (connectivity and speed) or mobile communications (transfer rate and signal 

strength) using GPRS or 3G and further, development of new generation 4G [176] and 

5G infrastructure for a mobile devices is also proposed . William and Michael [355] 

explored methodological guidelines and the importance of data accuracy in computer-

based patient records, essential for any healthcare system. Like any other technological 

advance, smart health monitoring systems have both benefits and limitations and 
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currently, there is on-going research to improve these systems [178]. Another 

challenging aspect in the field of patient monitoring system is to design further clinical 

trials to ascertain the value, practicality and efficacy of monitoring different patient 

groups according to age, ethnicity, gender, specific disease, and situation (hospital, aged 

care facility, persons’ own home, emergency situations [e.g. road traffic accident etc). 

Similarly predictive algorithms (e.g. for falls prediction as in the current thesis) need 

evaluation in prospective studies (as discussed in detail above). 

The application of wireless patient monitoring is likely to be expanded in future due to 

the following reasons. Firstly, the advancement of embedded sensors (e.g., the 

accelerometer used to change the display orientation) is changing the scope of possible 

applications. The technology will soon be programmed to support new disruptive 

sensing applications wirelessly such as sharing the user’s real-time activity with friends 

on social networks such as Facebook, keeping track of a person’s carbon footprint, or 

monitoring a user’s well-being. Secondly, there is increasing awareness of chronic 

diseases, the growing market for smart devices, advanced mobile connectivity and the 

expansion of 3G and 4G networks, augurs a promise of cost-effective healthcare. 

Thirdly, the programmability feature of such technologies will lead to developing a 

variety of healthcare applications with high acceptance among diverse users. This 

provides healthcare researchers with additional resources for computing collections of 

large-scale sensor data with supporting advanced features such as persuasive user 

feedback based on the analysis of big sensor data. The combination of these advances 

opens the door for innovative research and will lead to the development of wireless 

patient monitoring systems that are likely to revolutionise current healthcare delivery as 

well as our everyday lives. 

As stated in the introduction to this thesis, the research presented here sits at the 

intersection of a number of domains. The potential for further research in related areas 

is therefore enormous. The above paragraphs outline the possibilities ranging from the 

theoretical to the practical. However, the research presented in this thesis would be an 

investigation of other suitable approaches applied to hospitalised older adults’ 

monitoring, but using a deep knowledge representation. 
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APPENDIX B2 – Patient Consent Form 
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APPENDIX C – Collected Vital Signs and Observational 

Notes in Readable File Format 
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APPENDIX D – Sample Pre-processing of Systolic Blood 

Pressure (Raw Data) 

  

Date Time BP(SYS) BP(SYS)-10th AVG BP(SYS)-AVG BP(SYS)-SD 

12/12/2012 10:45 116  2 2.83 

12/12/2012 11:00 120  -2 1.41 

12/12/2012 11:15 118  0 0.71 

12/12/2012 12:00 117  1 2.12 

12/12/2012 12:15 120  -2 3.54 

12/12/2012 12:30 125  -7 5.66 

13/12/2012 17:42 117  1 6.36 

13/12/2012 17:45 126  -8 4.24 

13/12/2012 17:50 120  -2 4.95 

13/12/2012 17:52 127 118 -9 6.36 

13/12/2012 17:55 118  -5.5 4.24 

15/12/2012 11:50 124  -11.5 0.71 

15/12/2012 11:55 123  -10.5 1.41 

15/12/2012 12:00 125  -12.5 16.26 

15/12/2012 14:50 102  10.5 8.49 

15/12/2012 14:55 114  -1.5 5.66 

15/12/2012 15:00 106  6.5 5.66 

12/12/2012 12:00 98  14.5 19.80 

12/12/2012 12:15 126 112.5 -13.5 12.02 

12/12/2012 12:30 109  15 6.36 

12/12/2012 12:30 118  6 4.95 

13/12/2012 17:32 111  13 2.12 

13/12/2012 17:32 114  10 2.83 

13/12/2012 17:45 118  6 6.36 
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13/12/2012 18:30 127  -3 4.95 

13/12/2012 18:33 120  4 1.41 

13/12/2012 18:40 122  2 14.14 

15/12/2012 10:35 102 124 22 7.07 

15/12/2012 10:40 112  -5 2.12 

15/12/2012 10:45 115  -8 13.44 

15/12/2012 12:00 96  11 8.49 

15/12/2012 12:15 108  -1 7.07 

15/12/2012 12:30 118  -11 4.95 

15/12/2012 12:45 111  -4 7.07 

15/12/2012 12:50 121  -14 6.36 

16/12/2012 9:35 112  -5 4.24 

16/12/2012 9:40 118 107 -11 17.68 

12/04/2013 11:30 93  14 10.61 

12/04/2013 11:45 78  29 31.82 

12/04/2013 17:30 123  -16 12.02 

12/04/2013 17:35 106  1 0.71 

12/04/2013 15:15 105  2 7.78 

12/04/2013 15:30 94  13 14.14 

12/04/2013 17:20 114  -7 17.68 

12/04/2013 17:30 89  18 46.67 

12/04/2013 14:40 155  -48 24.04 

12/04/2013 14:45 121  -14 0.71 

12/04/2013 17:40 122 107 -15  
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APPENDIX E – Sample Accelerometer Data in Readable 

File Format 

Time Ax Ay Az Mx My Mz 

1.282 0 -164 -1016    

1.3 16 -200 -1012    

1.32 -16 -164 -976    

1.338 8 -192 -1004    

1.358 -4 -180 -976 -140 -12 -146 

1.377 -8 -188 -936    

1.396 -20 -164 -1028    

1.415 -12 -160 -1020    

1.434 0 -196 -1032    

1.453 -16 -176 -1008    

1.473 -12 -164 -984    

1.491 -52 -180 -996    

1.511 -56 -160 -1052    

1.529 20 -180 -972    

1.549 -32 -180 -1048 -140 -12 -146 

1.569 -12 -184 -1016    

1.587 -20 -160 -972    

1.607 -16 -184 -1032    

1.626 -28 -156 -1004    

1.648 -20 -172 -992    

1.668 -16 -180 -980    

1.686 0 -164 -1036    

1.706 4 -172 -1004    

1.724 -4 -172 -1020    

1.744 0 -152 -992 -139 -12 -145 

1.763 -28 -164 -1032    

1.782 -4 -204 -1032    

1.801 36 -160 -1008    

1.821 12 -176 -988    

1.839 0 -164 -1004    

1.859 -32 -164 -1016    

1.878 0 -168 -996    

1.897 0 -180 -988    

1.917 -12 -152 -1004    

1.935 4 -180 -1028 -139 -9 -146 

1.955 4 -148 -1000    

1.973 4 -188 -1016    

1.993 12 -140 -1008    
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2.012 -16 -156 -1000    

2.031 -36 -172 -1004    

2.05 -12 -176 -1008    

2.069 -20 -180 -992    

2.088 -40 -192 -972    

2.108 -20 -176 -996    

2.126 -40 -200 -1000 -138 -7 -146 

2.146 -36 -188 -1032    

2.165 -64 -180 -1016    

2.184 -60 -180 -1040    

2.203 -40 -160 -1004    

2.222 -32 -172 -1000    

2.242 -76 -164 -1012    

2.261 -84 -160 -1000    

2.28 -68 -160 -992    

2.299 -72 -160 -1004    

2.318 -48 -164 -1060 -138 -11 -147 

2.337 -44 -136 -996    

2.357 -68 -144 -1052    

2.375 -48 -156 -1016    

2.395 -48 -164 -1004    

2.414 -8 -188 -1012    

2.433 -48 -176 -984    

2.452 -48 -148 -988    

2.471 -20 -160 -1032    

2.49 -20 -164 -976    

2.51 -24 -128 -1004 -135 -32 -149 

2.528 -20 -136 -1052    

2.548 -28 -136 -1032    

2.567 28 -140 -1008    

2.586 -24 -140 -1012    

2.606 16 -128 -1012    

2.624 20 -140 -1044    

2.647 8 -136 -996    

2.666 -16 -128 -1028    

2.685 0 -148 -1004    

2.705 -4 -116 -1020 -125 -63 -149 

2.723 12 -148 -1036    

2.743 8 -156 -1004    

2.761 0 -128 -984    

2.781 0 -136 -1012    

2.8 -8 -144 -1028    
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APPENDIX F – 10 Point Scale Used for Medical Device 

Evaluation 

 

 


