Free-body and flexural motion of a floating elastic plate under wave maker forcing

Luke Bennetts² and Hyuck Chung¹

 School of Computing and Mathematical Sciences, Auckland University of Technology
 Department of Mathematics, University of Otago

July, 2011

Outline

Introduction

Mathematical modelling

Numerical method

Numerical simulations

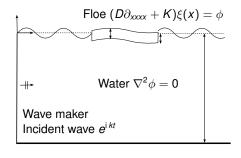
Summary

Elastic plate floating on water

Modelling regimes

Zero-thickness VS Lateral forcing

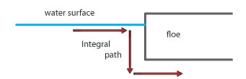
Need the velocity potential along the draft: vertical distance between the waterline and the bottom of the plate.


Elastic plate floating on water

Mathematical Model

Green's function

$$abla^2 G(x,z|x_0,z_0) = \delta(x-x_0)\delta(z-z_0)$$
 $alpha_z G = rac{\omega^2}{g}G ext{ on the surface}$
 $alpha_n G = 0 ext{ on other boundary}$


$$G = \frac{1}{2i} \sum_{n=0}^{\infty} \frac{e^{i k_n(x+x_0)} + e^{i k_n|x-x_0|}}{k_n c_n} w_n(z) w_n(z_0)$$

 $w_n(z) = \cosh k_n(z+h)$ are eigenfunctions.

The boundary integral equation

$$\epsilon \phi = \phi_{ ext{Incident}} - \int_{ ext{boundary}} \{ (\partial_{n_0} \textit{G}) \phi - \textit{G}(\partial_{n_0} \phi) \} \textit{ds}_0,$$

 $\epsilon=\theta/2\pi,$ where θ is the angle of the corner.

Amplitude of the surge

$$u \propto \int_{-d}^{0} \left(\phi(b,z) - \phi(a,z)\right) dz$$

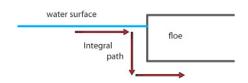
Green's function

Log-like singularity of the Green's function

$$G \sim \log(|x-x_0|+|z-z_0|)$$
 as $x \to x_0, z \to z_0$, for (x_0, z_0) on the corner.

Replace the singular part with a known singular series

$$\sum_{n=1}^{\infty} e^{-n\gamma|x-x_0|} \cosh \frac{\mathrm{i} \, n\pi}{h} (z+h) \cosh \frac{\mathrm{i} \, n\pi}{h} (z_0+h)$$


Separating of singular part

Separating the Green's function

$$G = \widetilde{G} + \log \mathcal{R}$$

 \widetilde{G} is bounded

The integrals involving $\log \mathcal{R}$ can be evaluated analytically.

Modes of the motion

Expansion of the surface deflection

$$\xi(x) = \sum_{m=0}^{M} \xi_m X_m(x)$$

where X_m are the eigenfunctions of

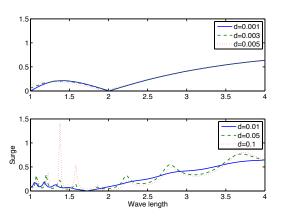
$$X'''' - \alpha_m^4 X = 0$$
, for edges $X'' = 0, X''' = 0$

$$X_m \propto \{\cos \alpha_m x, \cosh \alpha_m x, \sin \alpha_m x, \sinh \alpha_m x\}$$

Heave and pitch

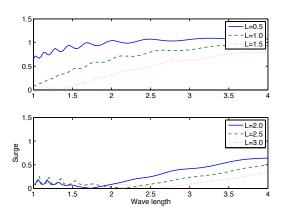
- \blacktriangleright ξ_0 represents heave motion
- ξ_1 represents pitch motion

Computation method

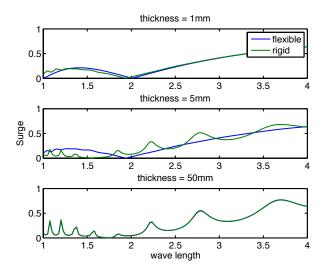

Expansion of the potential

$$\phi(a,z) = \sum_{n=1}^{N} c_n(a) C_{2n}(z), \quad \phi(b,z) = \sum_{n=1}^{N} c_n(b) C_{2n}(z)$$

where $C_{2n}(z)$ is the Gegenbauer polynomial with a weighting function.


Solving the BIE

- 1. Formulate a system of equations with X_n and C_{2n}
- 2. Solve for the system of equations for $\{\xi_n\}$ and $\{c_{2n}\}$


Amplitude of the surge motion of various thicknesses ranging

- from very thin 1mm
- ▶ to thick 100mm

Amplitude of the surge motion of various length ranging

- from short 0.5m
- ▶ to long 3m

Comparison between flexible and stiff plates

- very thin 1.0mm
- medium thickness5.0mm
- thick 50mm

Summary

- Complete description of the hydro-elastic motions of a finite floe.
- Include the draft of the plate and compute the surge motion.
- Analytical treatment of the singularities at the corners of the plate.
- Reduction of computation using the orthogonal polynomials and eigenfunctions.