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I 

 

Abstract 

Visual object recognition is one of the most important and tough problems in computer 

vision. It targets various visual objects within realistic and real-time images. In depth, 

deep learning has become a powerful method to extract features directly from input data, 

which has made great progress in identifying visual objects. Recently, machine learning 

methods based on deep neural networks play a pivotal role in the field of visual object 

recognition. In order to identify ships in digital image, the nets need to be trained with a 

set of labelled images. So far, great progress has been made in visual object recognition 

based on deep learning, but developing relevant modules is a thorny job. Therefore, in 

this thesis, we propose a designated methodology based on search neural structure (NAS) 

for the recognition of visual objects by using our own published datasets to improve the 

results of sailboat detection. In addition, we conducted data collection for sailboat and 

kayak detections so as to find the best parameters based on basic model of YOLOv5. In 

this thesis, we also compare the net architectures and seek the best one. We test the 

proposed model and compare it with others.   
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Chapter 1  

Introduction 

 

 

This chapter is composed of five parts. In the first part, we 

introduce the background and significance of ship detection 

based on deep learning methods, other parts contain the research 

questions, followed by the contributions, objectives, and structure 

of this thesis. 
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1.1 Background and Significance 

In the field of maritime traffic management, ship detection is very important for maritime 

monitoring (Bi, Liu, & Gao, 2010). The existing ship detection methods are mainly based 

on continuous virtual police (CFAR). This approach is based on the transportation 

division of land and sea, which limits the speed required by fishing vessels (Kang, 2019).   

As one of the most important applications of remote sensing, ship detection plays a 

pivotal role in commercial, fishery, transportation, and military applications. In particular, 

polarimetric synthetic aperture radar (OSPAR) is very sensitive and effective for detecting 

ships, because it provides excellent sensors, collects a large amount of structure and 

texture information, which can be effectively analyzed in any wild weather. Therefore, in 

recent years, the discovery of ships in POLSAR images has attracted much attention. 

Adaptive detection makes virtual police as one of the most popular ship detectors. 

However, its performance largely depends on the experience of local background noises 

and selected windows of digital images and videos (e.g., target window, protection 

window, and background window).  

As we all know, heterogeneous chaos and interference objects usually lead to 

inaccurate estimation. In order to solve the inherent problems of virtual alarm sensors, an 

improved alarm detector was proposed. By improving the background evaluation method, 

the imbalance of interference is reduced. This can be solved by intercepting statistical 

data (Smith, 2000). 

In recent decades, as one of the most important and difficult tasks in marine 

intelligent transportation, computer-aided marine ship detection has attracted extensive 

attention. As shown in Figure 1.1, from 2012 to 2021, the number of publications on 

marine matters has been increasing. The data in the figure comes from Google scholar 

advanced search. The three achievements of data acquisition, computing power, and 

algorithms have promoted applications of the advanced knowledge in the field of 

maritime management. 
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Figure 1.1: The number of publications in marine object detection 

Deep learning has taken great step in recent decades which is becoming the most 

powerful technology in intelligent transportation. In numerous areas of maritime sector, 

including ship classification, target object selection, collision prevention, risk perception 

and anomaly detection, the methods for training deep learning models have been adopted. 

It is mainly employed for maritime surveillance and ship navigation. At present, the 

focuses are on the aspects of automated machine learning methods.  

However, the methods cannot solve complex problems. Until now, most 

management processes in the shipping field are still dominated by human judgment, 

which is limited and inevitably error prone. Deep learning methods take use of data to 

obtain actionable information, and can provide more accurate classification. Based on this 

point of view, it is necessary to study the applications of deep learning methods in the 

marine and explore how computer vision can be explored or even surpass human ability 

in practice, especially in line with the rapid growth of visual object recognition in recent 

years. 

With the latest progress of deep learning, more and more deep learning methods are 

being applied to smart ships (Khan et al., 2017). In 2020, Pan et al. proposed a deep 
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learning-based RMA classification model that implemented navigation identification for 

intelligent ships and provided accurate navigation (Pan et al., 2019). The vision system, 

which takes use of computer vision to recognize ships and landmarks from digital images 

in navigation environment, has been evolved as an indispensable component of ship 

perception system (Chen, et al., 2017). As a result, an effective ship detection is critical 

for increasing the safety of maritime ships. 

Because of fully automated feature extraction and representation capabilities, deep 

convolutional neural networks have achieved significant success in visual object 

detection via the end-to-end way (Bhandare, et al., 2016). Deep learning detectors are 

generally replying on big data, require little human participations, which are efficient and 

simple (Goodfellow, et al., 2016). The visual object detectors based on CNN can be 

grouped into two categories: One-step methods and two-step methods. The two-step 

methods have two phases: Positioning and classification.  

Region-based CNNs (R-CNNs) for visual object detection outperform most existing 

methods (Girshick, et al., 2014). The two-stage detection algorithms encapsulate Faster 

R-CNN (Ren, et al., 2017), Mask R-CNN (He, et al., 2020), and R-FCN (Dai et al., 2016) 

which have greater accuracy but are very time-consuming and laborious. One-stage 

approaches carry out visual object detection directly while also classifying objects and 

conducting location regression. You Only Look Once (YOLO) is the first one-stage object 

detection method, which tackles the whole input image just once, reduces computing 

redundancy, and increases the detection speed (Redmon et al., 2016). Single Shot 

Detector (SSD) (Liu, et al., 2016), RetinaNet (Lin, et al., 2020), YOLOv3 (Redmon and 

Farhadi, 2018), YOLOv4 (Bochkovskiy, et al., 2020) and the newest YOLOv5 models 

convert pattern classification problems into regression problems.  

Because of the end-to-end characteristic, the one-step methods are relatively fast and 

easy to be trained, which allows for real-time processing that is much suitable for mobile 

deployment. Deep learning approaches are increasingly being used in smart and fast ship 

detection. The focus is on enhancing detection accuracy, a majority of them, like Faster 

R-CNN (Li, et al., 2017) employ a two-stage detection architecture, which has made great 

enhancements to the original Faster R-CNN, such as adding negative mining and dense 
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connection (Jiao, et al., 2018). There are various approaches for constructing a more 

complicated network in order to increase the resilience of particular challenges, such as 

dense tiny ships (Zhao, et al., 2018). Recently, more and more approaches have been 

implemented for high-speed processing of ship identification. Most of them, like the 

YOLO series, were constructed on a one-stage detection framework. Chang et al. firstly 

took use of YOLOv2 for ship recognition in SAR photos, which shortens the 

computational time (Chang, et al., 2019). 

DCNN can automatically extract hierarchical elements from a large amount of 

training data, which has been successfully applied to pattern classification and visual 

object detection (Girshick, et al., 2014). It provides a fast and accurate detector. In other 

words, it is a region-based convolutional neural network (R-CNN). Spatial neural 

network is an artificial neural network composed of hierarchical nodes. The main 

difference is that we assume that the input is an image, which was employed to improve 

the execution time with the accuracy of image classification. Kang et al. proposed an 

improved Fast R-CNN algorithm based on CFAR algorithm.  

In order to improve the detection of small ships, NRCan generated region proposals 

for the CFAR prediction windows more quickly (Kang, et al., 2017). It can also work well 

in homogeneous regions, but its detection performance in heterogeneous regions is poor 

due to the lack of CFAR. In order to further improve detection performance by using 

compression and inducement mechanisms, a new network architecture was proposed 

based on Faster R-CNN (Lin, et al., 2019). The test results show the effectiveness of 

recommended ship detectors, but many ships are missed.  

On the other hand, the accuracy of bounding box detection generated by the 

proposed ship detector is low. Combining the expertise in polarization and object 

scattering mechanism, Chen et al developed a polarization-based object detection and 

classification system (Chen, et al., 2018). By using the idea of deep neural networks, a 

fast region-based convolutional neural network (R-CNN) method was proposed for vessel 

detection via high-resolution images from remote sensing (Zhang, et al., 2019). The 

bottleneck of NRCan lies in local proposals and selective search algorithm. The basic idea 

of accelerating NRCan is that local proposals must work with the characteristics of CDN 
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well.  

Therefore, we are use of feature maps extracted instead of selective search. The 

function mapping is sent to the regional proposal network (RPN), which takes use of the 

sliding windows and the CNN-based feature maps which sends out potential boundary 

boxes and accuracy predictions of these marked rectangles. The only difference between 

these two ways is that the local proposals only rely on Faster R-CNN. Therefore, it 

bypasses the selective search algorithm. 

YOLO is based on Darknet framework (Redmon, 2016). Darknet is an open-source 

neural network programmed in C with the assistance of CUDA (Redmon, 2013). YOLO 

is claimed to be 100  faster than Faster R-CNN. While the detection rate of YOLO is 45 

frames per second, the Tiny YOLO model can be operated at 155 frames per second. This 

Tiny YOLO model only requires 516MB of GPU memory. The frame rates were achieved 

with the NVIDIA Titan X. 

With the advent of deep learning along with the development of big data and 

GPU/FPGA, especially image processing methods have contributed greatly to computer 

vision, which detected ships from digital images as visual objects by using these advanced 

algorithms and facilities.  

1.2 Research Questions 

Ship detection has been employed in recent years. Retrieving the characteristics of a 

vessel and classifying is the basic procedure for detecting and recognizing a vessel. 

Therefore, the research questions of this thesis are as follows.  

Question: What methods can be applied to detect ships effectively?  

There are many factors that influence the detection outcomes, which make the 

detection results much difficult in the process of detecting a vessel. Based on these 

existing reasons, we have explored the following questions: 

Question: Which algorithm is right for ship detection? How can we make ship 

detection faster and better? 

The main idea of this thesis is to find a better way to improve the accuracy of 
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detection results. In order to attain this, a plethora of advanced models and algorithms 

need to be explored and exploited. 

Question: Amongst the ships, which ones are chosen for this research project? 

This thesis was fulfilled in Auckland, New Zealand, so we selected the most 

culturally representative types of boats, which are sailboats and kayaks. There is still a 

research gap in the field of visual object recognition for these two types of ships. 

1.3 Contribution 

The contribution of this thesis lies in deep learning methods for ship detection. We 

experiment with real-time algorithms for ship detection. The experiments consist of five 

parts: 1) Data collection, 2) data augmentation, 3) defining the net structure and 

deployment, 4) model training, 5) algorithm evaluations and comparisons.  

Moreover, in this thesis, we investigate which algorithm is the most suitable one for 

deep learning-based ship detection. Comparisons and analysis of various parameters are 

conducted within the same model.  

In addition, the focus of this thesis is on deep learning models in line with CNNs 

because deep neural networks are developed mainly for pattern classification. At the end 

of this thesis, we will compare the results of our models by using the same dataset to 

prove the effectivity of the proposed algorithms. 

1.4 Objectives of This Thesis 

Firstly, we need to collect large-scale ship datasets. But we think it's too slow and may 

waste our time. In terms of datasets, our goal is to create a number of training datasets by 

segmenting the acquired images using reasonable data augmentation. Secondly, we avoid 

the influence of environment and plan to find out whether the proposed algorithm can 

recognize the position of a vessel. 
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1.5 Structure of This Thesis 

The structure of this thesis is described as follows: 

⚫ In Chapter 2, we conduct a literature review and discuss the relevant issues of R-

CNN. Meanwhile, we will deepen our understanding of attention models and 

Transformers in this thesis.  

⚫ In Chapter 3, we introduce our methodology. In this chapter, we will introduce the 

net design and deployment as well as experimental results and comparisons. 

⚫ In Chapter 4, we implement the proposed algorithm, collect experimental data, 

and demonstrate the research results. In addition, the limitations of the proposed 

methodology are depicted on details. 

⚫ In Chapter 5, we summarize and analyze the experimental results. 

⚫ We draw the conclusion and address our future work in Chapter 6. 
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Chapter 2  

Literature Review 

 

 

The focus of this thesis is on ship detection based on deep learning 

methods. In this chapter, we will introduce a plenty of 

conventional machine learning methods and the relevant 

knowledge of visual object detection, as well as datasets for 

model testing and performance evaluation. 
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2.1 Introduction 

Auckland has a myriad of scenic ports, sailing as an important sport has been widely 

developed. Under the influence of sailing culture in this city, we have an idea to combine 

this modern sport with the in-depth study of artificial intelligence. The sailing object 

recognition from digital images already exists, but it still needs further research work for 

a better sailing object recognition. 

Visual object recognition is one of the solidate foundations in the field of computer 

vision and also an important part of digital image and video processing. It automatically 

seeks the position of visual object in the given image through specific algorithms, and 

further determines the class or characteristics of the object. However, the diversity of 

visual objects, the irregularity of motions, the variety of visual angles and background 

and the styles of visual descriptions in digital videos can affect the final effect of visual 

object recognition. Therefore, the accurate detection and classification of objects are still 

an important research direction and has extremely high value both in academia and 

industry (Wang et al., 2019). 

In computer vision, there are two well-known categories of methods for visual object 

detection that have been proven to be very effective. The first is R-CNN series algorithms 

based on region proposals (Girshick et al., 2014). This series includes R-CNN, Fast R-

CNN, Faster R-CNN, and Mask R-CNN, which are all two-stage algorithms. The two-

step algorithms have high accuracy but run very slowly. In order to resolve this problem, 

YOLO was introduced as single-stage algorithm. YOLO and its family greatly improve 

object detection speed with accuracy decreasing lightly. Since its birth, YOLO has 

received a few improvements and demonstrated betterment from YOLOv2 to YOLOv5. 

Owing to the significant improvement in detection speed and efficiency, YOLO and its 

family have been rapidly developed in recent years.  

Therefore, in this thesis, we follow this series of algorithms and make our 

improvements based on YOLOv5 to balance speed and accuracy for sailboat detection. 

In recent years, Transformers have been developed and mixed into deep learning 

mechanism based on a simple and powerful mechanism, which enables us to focus on the 



11 
 

inputs. Detection Transformer (DETR) is the first application of Transformer in visual 

object detection (Carion, 2019). In Microsoft COCO dataset (Lin et al., 2014), the 

accuracy and speed of DETR are equivalent to the optimized Fast R-CNN (Xu et al., 

2017). However, in terms of large object detection, DETR has a better performance than 

Fast R-CNN. In addition, unlike most existing object detection methods, DETR does not 

require a non-maximum suppression (NMS), which treats visual object detection as a 

prediction problem and thus achieves the model training in the end-to-end way. Our 

experimental results also show that the combination of Transformers and CNN models 

together has generated outstanding outcomes. 

In this thesis, we combine convolutional neural networks (CNNs) with monitoring 

mechanism, so that we can concentrate on regions of interest (ROI) with significant 

potentials. However, designing a suitable model for visual object detection is a tough task 

which takes use of a lot of experiments to get continuous improvement. However, these 

processes do not always produce better results. 

With the advent of neural architecture search (NAS), the research problem has been 

resolved (Elsken et al., 2017). By determining appropriate search and evaluation 

strategies, NAS search can design and evaluate network modules and ultimately obtain 

the best network model. By considering the shortcomings of facility identification, 

monitoring mechanism and solution automatic design, we incorporate them into this 

thesis to achieve the best efficiency. Our contributions are: 

⚫ Trough collecting data manually, we construct a realistic sailboat dataset, which 

allows us to evaluate the robustness of our model in real-time applications. 

⚫ In order to better focus on ROI region, we propose a CNN model that combines 

spatial attention mechanisms together. 

⚫ Faced with the diversity of data collected by various devices, we create the model 

by automating the search and design to make the model much more robust, in 

spite of tedious procedure of attention module design. 

In summary, our proposed model improves the YOLO in terms of the attention 

mechanism which is validated at present based on our own datasets.  
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2.2 Generic Object Detection 

Although our visual environment contains countless objects, the current focus of the 

research community is on identifying highly organized visual objects (e.g., vehicles, faces, 

bicycles, and aircraft) and jointly-related visual objects (e.g., people, cattle, and horses), 

rather than static scenes (e.g., sky, grass, and clouds). 

As shown in Figure 2.1, visual object detection is grouped into two categories: Static 

object detection and dynamic object detection. The first group is to determine a match for 

a particular object (e.g., mountains, the Eiffel tower, etc.). The second one is to inspect 

specific objects (e.g., people, cars, bicycles, and dogs). 

 

Figure 2.1: The types of visual object detection 

Spatial position and size of a visual object can be represented by using bounding 

boxes, which means, accurately segmenting the pixels into content or closure boundaries. 

As far as we know, the bounding boxes are most broadly applied to visual object detection 

as stated in surveyed literature. 

Many problems are closely related to the detection of visual objects. The purpose of 
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object classification is to evaluate whether an object exists in a kind of image sets. This 

means that the specific objects need to be clearly classified into one or more classes with 

their locations.  

The additional requirements of finding objects in images are more difficult than 

object classification. Object detection is a task in image processing, actually it belongs to 

pattern classification. Visual object detection is closely related to image segmentation, 

which specifies the semantic class for each pixel in the image.  

Viola-Jones object detection framework was proposed in 2001 (Viola & Jones, 2001). 

The framework is based on AdaBoost algorithm (Ratsch et al., 2001), which detects 

human faces using Haar-like wavelet and integral graph. The object detection approach 

based on Haar + AdaBoost is also the first real-time framework. Prior to the emergence 

of deep learning, Viola-Jones detector became the industry standard for human face 

detection (Yang, et al., 2014).  

Pertaining to histogram of oriented gradients (HOG), the histograms are calculated 

based on gradients rather than intensity of each pixel (Dalal & Triggs, 2005). It creates 

the feature vector by summing the gradient directions in histograms of local region in the 

given image. HOG features paired with SVM classifiers are incorporated into visual 

object detection, particularly the pedestrian detection (Wang, et al., 2008). Similar studies 

have been conducted to explore the attributes such as the invariants of HOG (Luo et al., 

2015), which encapsulates spatial bins, the radial gradient transform (RGT) provides 

gradient invariance for visual feature descriptors. 

DPM algorithm takes use of the improved HOG detector, SVM classifier, and sliding 

windows (Felzenszwalb et al., 2008), a component model of graphic structures is 

employed to solve the problem of visual object deformation. DPM is a component 

detection method that has a high resistance to deform visual objects. Currently, DPM has 

become the core algorithms for object classification, segmentation, pose estimation, etc. 

(Liu et al., 2016).  

In specific applications, conventional machine learning-based visual object 

detection models, where image data is segmented into smaller blocks and expressed as 

vectors (Dolapci & Ozcan, 2021), may still retain an advantage. The feature vectors are 
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created sequentially by adding components extracted from the colors and textures of the 

given images. A classification accuracy 99.62% was achieved by using the random forest 

method in Pascal VOC2012 dataset. On Apache spark, an average speedup 3.4 times was 

achieved while running each method on a 1 Master + 4 Worker clustering architecture. 

Figure 2.2 shows that this subject has been conducted in the past decades, meanwhile 

tremendous progress has been achieved. 

 

 

Figure 2.2: An overview of visual object detection algorithms 
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2.3 Object Detection Frameworks 

The drastic shift from specified features to DCNN feature maps (Vedaldi, et al. 2009) 

demonstrates consistent improvement in visual object detection and recognition (Dai et 

al. 2016). In contrast, the fundamental “sliding window” (Felzenszwalb, et al. 2010) 

remains popular for searching locations, albeit the efforts to prevent exhaustive search 

(Uijlings et al. 2013). The number of windows, on the other hand, is vast and rises 

quadratically with the number of image pixels. Therefore, it is necessary to search across 

regions with numerous sizes and aspect ratios which will expand the search space. As a 

result, the development of efficient and effective object detection frameworks is critical 

to cut the computational cost.  

In the proposed structures, region proposals are generated from the given images. 

CNN feature maps (Krizhevsky et al., 2012a) are extracted from those regions, then a 

classifier is employed to classify the proposal with a class label. DetectorNet (Szegedi et 

al., 2013), OverFeat (Sermanet et al., 2014), MultiBox (Erkhan et al., 2014), and R-CNN 

(Girshick et al., 2014) were independently and simultaneously proposed to detect visual 

objects through using CNN. 

Girshick et al. was inspired by the end-to-end feature extraction algorithms and the 

success of selectively searching local proposals (Girshick et al., 2016), thus developing a 

R-CNN by combining AlexNet with the regional selective search method. Despite its 

ability to recognize visual objects with great accuracy, R-CNN has following limitations 

(Girshick, 2015): 

⚫ Model training is a multistage process with slow speed which is difficult to be 

optimized, because each stage must be independent on another. 

⚫ Model training for SVM classification and bounding box regressions is expensive 

in both storage and computing, because CNN feature maps must be extracted from 

visual objects specified in each image, which has a series of barriers due to large-

scale dataset, especially in those very deep networks (Simonyan & Zisserman, 

2015). 

⚫ The tests usually spend a long time, because the CNN feature maps are extracted 
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from the input visual objects in each test. 

All of these disadvantages have driven further advancements, result in a variety of 

enhanced object detection frameworks, such as SPPNet, Fast R-CNN, Faster R-CNN, and 

so on. 

The extraction of CNN feature maps is a major bottleneck in R-CNN, which are 

obtained from thousands of distorted regions of each image. As a result, He et al. (2014) 

introduced a spatial pyramid pool (SPP) into CNN architecture (Lazebnik et al., 2006). 

Because the convolutional layer allows arbitrary size of input images, the requirement for 

a fixed-size image is only determined by using fully connected (FC) layer, He et al. added 

a SPP layer before the FC layer to get a fixed size of output based on the FC layer.  

With this SPPNet, R-CNN is able to achieve significant speedup without sacrificing 

detection accuracy, because R-CNN only needs to run the convolutional layers once over 

the entire test image to generate a fixed-size output. Although SPPNet speeds up R-CNN 

through multiple ways, it does not significantly improve the speed in the model training. 

The fine-tuning of SPPNet also limits the accuracy of deep neural networks. 

In Fast R-CNN, the speed and accuracy of visual object detection are improved while 

eliminating the limitations of R-CNN and SPPNet (Girshick, 2015). The fixed-size R-

CNN takes use of the idea of splitting the calculations between region proposals, adding 

an aggregation layer between the convolutional layers and the FC layer to extract the 

fixed-size feature maps. After merging ROI (regions of interest) and FC layer together, 

the branches are associated as a whole output eventually. The probabilities for predicting 

object class and class-specific bounding box regression are supplied eventually.  

Compared to R-CNN/SPPNet, Fast R-CNN significantly improves the computing 

efficiency. Generally, it shows three times faster in training and 10 times faster in testing. 

It has a better search output, and a single training process updates all network layers 

without extra storage requirement. 

Despite Fast R-CNN significantly accelerates visual object detection, it is still 

dependent on region proposals of visual objects, the calculation is a new bottleneck in 

Fast R-CNN. Recent research outcomes have shown that CNN has a unique ability to 

locate visual objects in convolutional layers (Hariharan et al. 2016), which makes it 
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possible to replace selective search by using region proposals. A Faster R-CNN 

architecture provides an efficient and accurate Region Proposal Network (RPN) to 

prepare regional proposals, which is inserted between CNN and ROI pooling layers 

compared with Fast R-CNN to improve the efficiency of the algorithm. 

2.3.1 Convolutional Neural Networks 

Machine learning as a part of Artificial Intelligence (AI), has been utilized to represent 

complicated tasks in computer vision like visual object detection and scene understanding. 

Machine learning can provide effective solutions to a spate of challenging problems by 

substituting specific feature-extraction methods with deep learning algorithms. Machine 

learning is becoming increasingly feasible for computer vision with the generation of 

massive data nowadays. 

Artificial neural network (ANN) is inspired by biological nerves, as a prominent 

artificial intelligence method. The idea is to simulate the signal transmission between 

neurons through input-output connections in computers. An artificial neuron takes 

multiple inputs with matrix multiplication and outputs a result with an activation function. 

A neural network consists of numerous layers, each contains multiple neurons 

between the output and input. Hidden layers are those that exist between the output layer 

and input layer which are called visible layers. Each neuron in the hidden layer of a 

feedforward neural network takes information from the neurons in the preceding layers 

as well as provides next layer with an output based on activation function. A full ANN is 

made up of neurons in each layer that are linked together in layer-based way. Figure 2.3 

depicts a basic feedforward multilayer ANN. 

 

Figure 2.3: A simple feedforward multilayer artificial neural network 
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Deep learning has transformed a broad range of machine learning tasks, including 

visual object detection in digital image and video processing, as well as natural language 

processing and speech recognition. Given this incredibly quick progress, there are a 

plethora of recent surveys on deep learning (Wu et al. 2019). The research work examined 

deep learning approaches from various viewpoints (Zhou et al. 2018), natural language 

processing (Young et al. 2018), medical image analysis (Litjens et al. 2017), remote 

sensing (Zhu et al. 2017), and speech recognition (Zhang et al. 2018). 

Deep learning is also named as deep neural networks or deep net. However, as its 

depth increases, the gradients may be vanished or exploded due to the backpropagation 

and differentiable properties of activation functions. In addition, in order to construct very 

deep networks, the number of samples in the training set ought to be quite huge. 

Furthermore, the computational costs for very deep networks may be very expensive, 

which require a long time to train the network model. 

Deep learning is becoming practical as GPUs have become cheaper and more 

popular. As the growth of data accessibility, replacing conventional feature extraction 

approaches with deep neural networks will bring in a variety of usages. It is demonstrated 

that using the end-to-end way to initiate the layers of deep networks is much effective in 

feature extraction. As a result, the use of convolutional layers and pooling layers has 

become the mainstream for deep networks to extract feature maps. 

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), 

are nonlinear mathematical models which are capable of extracting features for the 

representations of input images. CNN demonstrates the state-of-the-art performance on a 

variety of tasks in computer vision, including semantic segmentation, scene 

understanding, and object recognition, as well as the applications in remote sensing. In 

this section, we describe how to train a CNN model and produce correct results by using 

a majority of CNN advantages. 

CNN is a sort of neural networks that have gained popularity because of its 

outstanding performance in computer vision and image processing. Commercial 

companies such as Microsoft, Google, NEC, AT&T and Facebook have established active 

groups to investigate novel CNN models. Currently, CNN-based models are being used 
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by most of the frontrunners in computer vision (CV),  digital image and video processing. 

Convolutional neural networks are employed in computer vision. When it comes to 

natural language processing, CNN models have shown excellent results in semantic 

parsing, text taxonomy, phrase modeling and classification, search query retrieval, text 

generation and prediction, as well as other classical natural language processing tasks. 

Besides, CNNs have been broadly employed to pattern classification. Medical image 

processing is one of the most popular applications of CNN, especially for cancer 

diagnosis using histological images. Spanhol et al. recently employed CNN to diagnose 

breast cancers and compared its results with a network trained on a dataset consisting of 

feature descriptors.  

An input layer, multiple hidden layers, and an output layer contribute to a 

convolutional neural network. The hidden layer is made up of a sequence of convolutional 

layers. Convolutional layer is mathematically equivalent to a tensor product. Similar to 

the ordinary neural network, after the convolution calculation, the calculations will be 

spent on activation function. ReLU function is a popular activation function in 

convolutional layers of CNN models. A specific convolutional layer known as pooling 

layer is applied to downsampling the input of each convolutional layer. The CNN 

structure is accompanied with the fully connected layer at last after a sequence of 

convolutional layers and pooling layers. 

DNN has demonstrated strong performance on datasets based on time series or grid-

like architectures. However, there are additional issues that need to be addressed, such as 

the use of optimization methods to provide complete and reliable results for creating 

visualization models. 

The primary difference between fully connected neural networks and CNN is that 

the CNN accepts the volume of 3D data or 2D images as the input, but fully connected 

networks treat the input as 1D feature vector.  

2.3.2 Attention 

Attention-guided context feature pyramid network (AC-FPN) is a new deep neural 
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network, which not only expands the field of vision, but also captures discriminative 

semantics as well as locates precise positions through the attention mechanism (Cao et 

al., 2005). Squeeze-and-excitation networks (SENet) provide a multichannel monitoring 

mechanism in which the values between channels are defined by using two completely 

relevant layers (Jie et al., 2017). This will filter out unimportant data. 

DETR is the first algorithm for visual object detection in Transformer model. It can 

better control large facilities, thus adversely affect small facilities. Recently, an oscillating 

Transformer has been proposed for visual object detection, which verifies the importance 

of observation data. 

In addition, NAS has completed the design of monitoring mechanism. NAS modules 

and NAS modules are proposed to verify the weighted results by using the synchronous 

search. The model can search images in different locations by using the same network 

(Liu et al., 2020). 

2.3.3 YOLO Family 

YOLO creatively treated visual object detection as a single-stage regression task 

(Redmon et al., 2016). This model was developed in 2016, YOLOv2 was designed and 

inherited from Fast R-CNN and SSD algorithm, i.e., to classify patterns by using joint 

training activities (Redmon et al., 2017). YOLOv3 improved YOLOv2, deepened the 

network structure by using default model and multiscale structure of FPN (Redmon & 

Farhadi, 2018). YOLOv4 has developed an efficient and reliable model that allows 

anyone to use ultra-fast and accurate object detectors (Bochkovskiy et al., 2004). A series 

of deep learning methods for visual object detection have been verified. YOLO is a 

convolutional neural network that predicts the locations of bounding boxes and the class 

of visual objects at the same time. YOLO selects the whole image as the input rather than 

randomly picking up the sliding windows or region proposals to train the neural networks. 

The YOLO architecture is shown as Fig 2.4. 

In 2018, YOLOv3 was developed (Redmon and Farhadi, 2018), which introduced 

several new and exciting concepts to deep network, including residual nets (He et al., 
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2016) and feature maps (Lin et al, 2017). Whilst maintaining the speed of YOLO object 

detection, the accuracy of YOLO object detection is also increased. With the constantly 

advancement of deep learning methods, more and more methods have been proposed to 

improve visual object detection performance from various perspectives. Huang et al. 

presented an enhanced YOLOv3 model in 2020 to increase the accuracy of visual object 

detection (Huang et al., 2020).  

In 2020, based on the original YOLOv3, integrated with excellent CNN optimization, 

including backbone, activation function, loss function, etc., YOLOv4 model for single-

stage object detection was proposed (Bochkovskiy et al., 2020). Compared to YOLOv3, 

YOLOv4 model employs a robust data augmentation method, which includes Mosaic data 

augmentation and self-adversarial-training (SAT). In addition, the Mish activation 

function and CSPNet concept were developed based on the YOLOv3 backbone network 

to improve the backbone and feature extraction process.  

Chen et al. (2021) proposed an improved YOLOv3 (ImYOLOv3) using the attention 

mechanism. However, there is no additional improvement of the speed with attention 

model incorporated into YOLOv3. Jie et al. (2021) presented k-means clustering 

algorithm and non-maximal suppression algorithm for YOLOv3 optimization to make it 

much suitable for ship detection, but the improved method is dependent on fine-tuning 

that was not a solution to improve accuracy adaptively in the field of ship detection. 

Compared to YOLOv4, YOLOv5 has faster speed and higher performance, which 

consists of a family of models, including YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, 

and YOLOv5x+TTA. 

 

Figure 2.4: YOLO architecture 
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2.3.4 Neural Architecture Search 

In 2016, Barker et al. proposed an intensive method to solve the design and optimization 

problem of attention model with CIFAR-10 dataset (Baker et al., 2017; Krizhevsky & 

Hinton, 2009). NAS can automatically create powerful neural networks based on multiple 

algorithms (Liu et al., 2018). The principle is that the candidate neural networks need to 

be established in the search space, which is a set containing all possible architectures, and 

then a specific optimization method will be used to search in the space for the best 

performing network structure. In the search process, the network structure is gradually 

optimized till the optimal subsystem is found. This method can save the design cost of 

deep neural networks. 

This method is gradually employed to detect visual objects. Based on the results of 

the one-time NAS (Pham et al., 2018), DetNAS was proposed to conduct structural search 

(Chen et al., 2019). NAS and FPN are applied to solve the problem of how to 

automatically connect the neck and visual function so as to achieve a trade-off between 

accuracy and speed (Ghiasi et al., 2019). In addition, NAS and FPN take use of an 

improved search method, through using RNN as a controller with agents to accelerate the 

search. Auto FPN is related to the neck and head network. The neck is automatically 

integrated into the core functions, auto-head is use of the NAS search network to classify 

visual objects (Xu et al., 2019). 

Overall, NAS has made significant progress in identifying and monitoring visual 

objects, but less progress in integration. In this thesis, we will continue improving the 

efficiency of sailing ship detection. 

2.3.5 Transformer 

Transformer is the approach that has gained popularity after the release of NLP and BERT 

model in 2018 (Devlin et al., 2018). The BERT model is pre-trained in a large text dataset, 

the focus of BERT is on diverse NLP tasks (Zhou & Tao, 2020). Transformer with multi-

head method, on the other hand, is utilized for modeling after 2018 (Zhang et al., 2019). 

In the field of computer vision, there are two types of Transformer backbones. The DETR 
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backbone is a typical approach for implementing Transformer as a pipeline with CNN in 

the object detection (Carion et al., 2020); Vision Transformer is implemented with 

Transformer pipeline with CNN not involved in its backbone structure (Dosovitskiy et al., 

2021).  

Attention is the base of Transformer (Vaswani et al., 2017). The Facebook team 

integrated YOLO with Transformer. The encoder-decoder structure is adopted between 

the backbone and the fully connected layers. There are also many usages of Transformer, 

for example, the original method can be improved by using Transformer (Zhang & Lin, 

2013). 

Seq2Seq approaches based on encoder-decoder scheme are useful for a variety of 

applications, including machine translation, text summary, and question answering. 

However, the contextual representations of encoders are ambiguous while dealing with 

far-reaching dependencies. 

In order to solve these problems, Vaswani et al. proposed a unique architecture, 

called Transformer, which completely relies on self-attention to convert from its input to 

output without the sequence structure like RNN. The system structure of Transformer 

decoder is composed of encoder-decoder attention, self-attention and feedforward 

network. Without encoder-decoder attention, the decoder unit is actually the same. 

Based on the latest NLP operations, the base BERT model consists of 12 blocks (i.e., 

Transformer block), 768 hidden layers, and 12 self-attention heads; while the lager BERT 

consists of 24 blocks, 1024 hidden layers, and 16 self-attention heads. Although the 

performance of BERT model is very excellent, it still has a spate of shortcomings. Firstly, 

like other NLP models having transformers, the input sequences must be independent on 

input words and ignore all information about the location and dependencies between 

words. In other words, in order to predict markers, words and positions are embedded 

even if location information is a key aspect of NLP. 

2.4 Conventional Ship Detection Methods   

Conventionally, ship detection from remote sensing images depends on observation of 
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scenes and theoretical methods based on statistics. The most popular ship detection 

system is based on constant alarm (i.e., constant virtual frequency), which fundamental 

assumption is that the background pixel intensity (non-ocean pixels) matches a known 

distribution, the gamma distribution. The concept of constant false alarm rate (CFAR) is 

calculated based on the self-construction to determine the detection threshold and obtain 

a group of false alarms, which can be implemented by using the algorithms that meet the 

characteristics of so-called CFAR. Therefore, the detectors based on constant false alarm 

rate are use of probabilistic interpretation to simulate the distribution of statistical pixels. 

However, these models are based on the processing of a single pixel, which leads to non-

context decision-making that makes these detectors not suitable for high spatial resolution 

sensors on modern satellites, nor for images with dispersive objects. 

Ship detection is thought as a subset of general object detection. Due to the unique 

properties of maritime environment, ship detection cannot fully conform to the general 

object detection paradigm. Deep learning has achieved outstanding performance in visual 

object detection. The visual detectors based on deep learning can be directly employed 

for ship detection; however, it is worth considering integrating the features of maritime 

surroundings. For clarity, in this thesis, we apply graphics to depict the workflow of ship 

detection, which includes both conventional and deep learning approaches. 

Visual object detection takes use of sliding windows having various sizes on the 

input image to search for potential locations. Detecting the position of ships in the given 

image can efficiently reduce the search range of candidate locations and prevent 

interference. Furthermore, SSL (i.e., self-supervised learning) is employed as a significant 

indicator at the stages of ROI extraction and ship identification. The workflow of ship 

detection is shown in Figure 2.5. Prepossessing, SSL-based detection, ROI extraction, 

and identification are the four processes in traditional ship detection. 
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Figure 2.5: The workflow of conventional ship detection method in marine environment 

2.4.1 Preprocessing 

The initial stage in ship detection is to eliminate or limit negative effects. To filter noises, 

Tang employed Gaussian smoothing (Tang, et al., 2013). To reduce background clutter, 

Li employed morphological reconstruction based on opening-and-closing operation (Li, 

et al., 2019). Lu, et al. (2006) utilized a median filter to remove noises. Sun suppressed 

the background using a wavelet transformation (Sun, et al., 2005). To remove the change 

in the background, Bouma evaluated the background intensity and subtracted it from the 

input images (Bouma et al., 2008). It is difficult to totally remove environmental noises 

during preprocessing.   

The image dataset is with tagged files. The dataset is composed of 3D images with 

a raw file, which contains location information. In order to use the dataset, the first step 

is to convert the MDB/raw file into a .jpg/.txt file, which stores the image information 

and the bounding box information corresponding to the image. 

 

Figure 2.6: Image normalization process 

Deep neural networks often have relatively moderate weights. The input of CNN 

models typically includes pixel intensity in the range [0, 255], which is usually integer. 

Zero-centering and normalization of the training dataset could be applied to improve 

network performance. Zero-centering could be accomplished by subtracting the mean of 

each image from training dataset, normalization could be achieved by dividing the pixel 

intensities of each input image by using standard deviation so that the pixel intensity of 

the training set is mapped between [0, 1]. 

Ship prescreening is one of the most important procedures in ship detection. The 

prescreening and discriminating steps are frequently combined to produce a label of 
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single object detection. It is usually attained for efficiency, as SAR images can be quite 

huge, with the size up to 5240037200 pixels, depending on image resolution. 

After the SAR image has been appropriately referenced, the following step is to 

produce potential tags. The visual objects are recognized by applying a threshold to the 

image, which segments it into ships and non-ships. Due to the fundamental nature of these 

binary classification detectors, which need a trade-off between detection precision and 

false alarm rate, selecting a single threshold that delivers both high detection precision 

and low false alarm rate is sometimes impossible. Hence, SAR ship detection works for 

prescreening and discriminating stages. Image processing and statistical approaches 

based on SAR images are generally used in prescreening to identify regions that are likely 

to contain ships. Discrimination then utilizes the visual data as input to distinguish ships 

from ocean clutter and SAR artifacts to identify false alarms. Prescreening is grouped into 

three major categories: Global, local, and others, which will be addressed on details later.  

The total accuracy of ship detection is heavily influenced by prescreening. Setting 

excessively strict global or local adaptive thresholding algorithm may fail to detect all 

probable ships in a given SAR image. Compared with local adaptive systems, global 

methods generate a larger number of false alarms at lower thresholds. The choice of 

CFAR is greatly determined by the images to be processed. In most instances, a single 

CFAR approach is sufficient for a single SAR dataset, but the criteria become difficult to 

achieve if the CFAR method is applied to a SAR dataset with various sensors, 

polarizations, and resolutions. As detailed in the following chapters, the simplest CFAR 

approach is adopted in this thesis, with an emphasis on decreasing false alarms. 

2.4.2 SSL-Based Ship Detection 

In marine circumstances, SSL serves as the border extractor between the sky and the water, 

which makes it easier to locate the ocean region and narrow down the search region. 

Figure 2.7 shows the process of reducing the candidate search regions after the SSL is 

conducted. Ships typically show around the edges in long-range object detection. The 

SSL-based approaches include additional processes such as ROI extraction. Prasad, et al. 
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(2017) and Lipschutz, et al. (2013) have summarized SSL-based edge detection 

approaches.   

 

Figure 2.7: The reduced candidate regions for ship search  

In transformation-based methods, in order to create an edge map, we firstly extract 

all edges in given images. Hough transform (Chen, et al., 2017) or Radon transform is 

then applied to the image so as to detect all edges. Finally, the SSL-based result will be 

generated and assessed based on a set of criteria. Tang, et al. (2013), for example, 

thoroughly evaluated the prospective sites by using gradient decent, gradient direction, 

and the average grayscale difference between the sea and the sky. 

Visual object detection based on SSL is simple, but image edge extraction is required. 

Therefore, if the contrast of images is low or the sea-sky boundary is blurred, it is difficult 

to obtain a sharp edge image. In this case, the edge detector only responds to local changes 

that are easily perturbed by noises, which leads to the failure of edge detection and even 

the final object detection. Furthermore, uneven sea surface brightness can also lead to 

erroneous results in edge extraction, which in turn affects visual object detection. 

In general, various regions of the sea or sky images may change slowly, but near the 

sea–sky border, the changes are drastic. Thus, the ship's position can be determined from 

changes of the given image. However, it is tough to categorize distinct regional 

description and identify the advantages and disadvantages.  

This approach represents an image with various edges and segmented regions based 

on the differences of visual features. It takes global visual properties and local noises into 
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account. To acquire a precise position of the ships, semantic segmentation can identify 

the pixels and produce a more detailed segmentation of regions (ocean, sky, and mixed 

region). To semantically segment objects from the given image, Yang utilized Gaussian 

mixture model (GMM) (Yang et al., 2019) while Jeong employed a neural network (Jeong, 

et al., 2018). A segmented image may be utilized to determine the sky and ocean regions 

as well as the location of the ships. This approach is typically complicated and requires 

labeled samples for model training. Semantic segmentation may not satisfy the real-time 

requirement of tiny or small devices with low computer resources due to the high 

intensive and amount of computing. 

2.4.3 ROI Extraction 

Followed the extraction of object location, the next step is to locate the region having 

candidate ships, i.e., the ROI. Thus, standard threshold approaches are utilized. Saliency 

detection is applied to extract ROIs from low-contrast images, such as thermal infrared 

images, and frequency-domain approaches are suitable for these images. 

SSL-based detector is a useful way to determine ROI. Reasonable usage of SSL-

based approach can significantly narrow down the scope of a region search. Ship 

detection is generally SSL-based, especially for long-range object detection. The possible 

ROIs are found around the object and generally are integrated with additional visual data 

to determine the correct ROI. Tang employed gradients and shapes (Tang et al.,2013), Lu 

adopted the distance rule (Lu, et al., 2006), while Chen utilized grayscale intensity (Chen 

et al., 2017). In order to extract ROIs, a fixed-height search region was set around the 

visual object (Fefilatyev et al., 2012) or segment the objects exactly near the target region 

(Shan et al., 2019). The placement mistakes, on the other hand, will affect the accuracy 

of ROI extraction. Therefore, the premise of using SSL-based method is to obtain the 

accurate position of the visual object. 

Typically, there is a noticeable variation in intensity between ships and the 

background. A threshold can be employed to distinguish between ships and others. A 

conventional way for calculating ROIs is to use thresholds. In order to identify the right 
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threshold, a variety of effective ways are identified. Wang investigated image complexity 

(Wang et al., 2010). Singh determined the necessary threshold by using language 

quantifiers (Singh et al., 2017). Bouma proposed hysteresis thresholding to evaluate the 

strength of the background and find the target (Bouma et al., 2008). When the contrast 

between a ship and the backdrop is minimal, particularly in thermal infrared images, it 

will be difficult to determine a suitable threshold. Furthermore, marine debris might have 

an impact on the threshold-based methods. 

The contrast of images may be low and the intensity distribution might not be 

uniform. In order to identify ships efficiently, visual saliency detection may be utilized to 

determine saliency zones based on global information rather than only local information. 

Visual saliency detection methods based on visual data usually adopt a bottom-up 

approach to reduce the interference caused by local noise. These methods compare the 

color, brightness, edge, and other properties to determine the differences between the 

target region and its surrounding pixels. 

To identify salient objects, a variety of methods are utilized. Li made advantage of 

intensity and contrast characteristics (Li et al., 2019). For low-contrast infrared images, 

Liu presented an enhanced non-local depth feature (NLDF) (Liu et al., 2019). Mumtaz 

employed a graph-based visual saliency system (GBVS) (Mumtaz et al., 2016). Lin 

proposed a number of visual elements, including gradient texture, brightness, and color 

aspects, to create a striking image (Lin C et al., 2020). If there is a vast of regions with a 

lot of marine debris, the saliency regions will be misidentified. As a result, reducing 

marine debris is a critical problem in ship detection. 

In frequency domain, there are frequently noticeable discrepancies between the sea 

surface and a ship. Setting an appropriate threshold allows us to distinguish the saliency 

between the backdrop and the target. Fourier transform and wavelet transform are two 

extensively used frequency domain algorithms. Zhou proposed the fractional Fourier 

transform (FRFT) in conjunction with high-order statistical filtering (Zhou, et al., 2018). 

A high-order statistical curve (HOSC) isolates the target from the sea clutter. Sun 

employed the wavelet transform (Sun et al., 2005). If the sea congestion is dense, it is 

difficult to distinguish the objects between the backdrop and a ship by using only 
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spectrum characteristics in frequency domain; however, if these approaches are coupled 

with morphological operations, the results may be generally better. Zhou has taken the 

characteristics into consideration to produce much accurate findings. 

2.4.4 Object Identification 

False alarms, such as sea clutter and islands, may be appeared in the ROIs. This outcomes 

of ship detection need to eliminate false alarms and select the appropriate candidate ships. 

The classification results are classified into two classes: Ship and non-ship. This kind of 

ship classifications were not paid much attention in the past.  

Ships have defined proportions, lengths, and widths, hence, ships have prior 

information. Tang employed the aspect ratio, contrast ratio, duty ratio, and other factors 

to recognize ships from digital images. Ozertem eliminated false alarms based on prior 

knowledge related to the size of a ship and the size of the edges extracted based on the 

SSL (Özertem et al., 2016). Because a ship is generally close to an object shape and has 

the brightest grayscale intensity in an infrared image, the distance and grayscale intensity 

were coupled to assess whether a target is a ship or not (Lu et al., 2006). However, the 

robustness of ship detection based on past information is low, it is quickly disrupted by 

ocean waves, clouds, and islands, resulting in false alarms. 

To generate more robust findings, feature vectors are employed to describe ships as 

samples. To characterize ships, Xu developed a rotation-invariant descriptor, a circle 

histogram of oriented gradients (C-HOG) (Xu et al., 2017). This description can feature 

infrared ships with various rotation angles. Finally, as a classifier, support vector machine 

(SVM) was employed for ship detection. Lin employed three types of features to 

characterize a ship: Size, form, and texture; a 10-dimensional feature vector was created 

to represent a ship; SVM was applied for offline training to efficiently reduce false alarms 

(Lin et al., 2019). This approach necessitates the selection of appropriate hand-crafted 

features, the classifier's training is dependent on the training samples. 
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2.5 Major Deep Learning Architectures for Ship Detection 

Deep learning offers great opportunities in many fields, including biology and physics, 

not only in computer vision. At present, most modern object detection algorithms take 

use of deep learning network as the main basis to obtain features from digital images so 

as to complete classification and positioning tasks (Jiao et al., 2019). At present, ship 

detection based on deep learning usually adopts CNN-based methods. A slew of deep 

learning frameworks has provided basic components associated with APIs, which makes 

ship detection easier. 

2.5.1 Single-Stage and Two-Stage Detectors 

The conventional object detection methods based on artificial features still have room for 

improvement. Convolutional neural networks (CNN) can extract much detailed semantic 

information from images and produce stronger feature maps, AlexNet succeeded in the 

ImageNet competition (Krizhevsky et al., 2012). Since then, CNN has been applied to 

identify visual objects. Girshick launched R-CNN in 2014 and harnessed it for visual 

object recognition for the first time (Girshick et al., 2014). The current focus is on 

identifying visual objects through deep learning. 

The object detection methods based on deep learning are split into two groups: (a) 

Two-stage detectors, e.g., R-CNN, Fast R-CNN (Girshick, 2015), and Faster R-CNN 

(Ren et al., 2016); (b) single-stage detectors, mainly YOLO (Redmon et al., 2017), 

YOLOv3 (Redmon et al., 2018), SSD (Liu et al., 2016) and DSD (Fu et al., 2017). The 

single-stage detector predicts the object class after feature extraction and returns the 

positions. Figure 2.8 shows the two-stage and single-stage detectors. 



32 
 

 

Figure 2.8: Two-stage detectors & single-stage detectors 

2.5.2 Deep Learning in Ship Detection 

In recent years, more and more academics have embraced deep learning for ship detection 

owing to the exceptional performance of CNNs in the field of visual object detection. The 

single-stage detectors have been widely employed in the research projects. The detection 

speed must be taken into account. For example, for the purpose of ship anti-collision 

warning, there are stringent criteria for real-time ship detection. Single-stage models often 

have faster response time and are able to tackle real-time work. Furthermore, many 

shipborne systems must take into account of the bulk and power consumption of 

computing equipment. Shipborne platforms often employ embedded devices for ship 

detection, as single-stage models require less processing time and consumes less power, 

which make them appropriate for deployment on embedded systems. 

Two-stage detectors often offer higher detection accuracy but need much more 

calculations, thus lead to a low response speed. Shore-static systems often monitor ships 

at a port, where the moving speed of ships is sluggish and there is no need for severely 

limitation the computers and power usage. The two-stage models can be executed on a 

desktop computer. 

Ships in an image have a diversity of scales because the viewing angle and distance 

are various. Ships come in a variety of sizes. The size of ships often changes, posing 

challenges for object detection networks based on pre-designed anchors (Shan et al., 

2020). Furthermore, whilst identifying small marine ships from a distance, the ships 
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usually occupy only a few pixels in the image, which is not conducive to feature 

extraction. Small maritime boats in an image may be overlooked, especially for a single-

stage network. 

In order to increase the effectiveness of detection networks in ship detection, the 

focus is now on two factors: Multiscale features and anchor settings. To increase the 

detection capabilities of deep nets for ships with various sizes, multiscale features or high-

resolution feature maps are employed. In general, feature maps in a neural network 

include a pretty rich of structural and geometric information, which aid in object location 

regression (Oksuz et al., 2020). As a result, integrating multiple layers might yield 

complimentary information. Chen extracted feature maps with various sizes from a 

multilayer perceptron to improve the detecting capabilities of small maritime boats (Chen 

et al., 2018).  

In order to extract feature maps from the detection network, high-resolution feature 

maps are employed. Hu established a feature pyramid network (FPN) using a scale 

transform module to deal with variations of ships induced by various imaging distances 

(Hu et al., 2019). Contextual information was utilized by blending high-level and low-

level characteristics together. Shan utilized ResNet-50 as a backbone network and 

incorporated an FPN structure to overcome the problem of varying scales, which was 

particularly problematic for detecting tiny maritime boats. The feature maps generated by 

using three convolutional layers are fed into three region proposal networks (RPN), which 

improved models’ discrimination ability with various sizes. 

Anchors are a set of fixed-size initial candidate bounding boxes. The accuracy and 

speed of visual object detection and regression are affected by the size of an anchor. The 

variety of shape and size of ship, as well as differences in observation distance, provide a 

chance for anchor selection. The mainstream strategy is to examine the bounding boxes 

of ground truth in the training set and choose appropriate shapes and sizes for the anchor. 

K-means clustering is then harnessed to cluster all ground truth bounding boxes in the 

training dataset, the cluster centers are offered as starting point of anchors. 

SSL is significant in ship detection that may effectively minimize the search area, 

which can remove interference regions. To the best of our knowledge, there is no 
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application of the SSL in deep learning-based ship detection yet. The prospective 

candidate locations are filtered before importing an image to the detection network. Video 

streams are evaluated to identify significant spots of backdrops. Using SSL may 

effectively reduce candidate regions. The estimates are suitable for several lightweight 

SSL extraction techniques. Generating region proposals usually takes longer time in two-

stage detectors. The SSL-based object detection can increase the efficiency of two-stage 

detectors and the detection accuracy. 

2.5.3 Comparison of Conventional Methods and Deep Learning 

Conventional ship detection methods do not require a huge number of training samples, 

a little amount of processing resources is highly interpretable. Conventional methods, on 

the other hand, are less adaptive to complicated settings and necessitate the selection of 

appropriate details of visual features.   

Deep learning methods avoid selecting specific features in favor of automatically 

generating visual feature maps by using backbone networks to locate and detect visual 

objects. Deep learning algorithms are very adaptive to complex scenarios, particularly in 

marine environments where environmental frequently changes. A deep learning model, 

on the other hand, requires a high number of training samples to achieve better prediction 

outcomes; otherwise, overfitting may occur. There are currently few publicly available 

ship datasets. In terms of data scalability, there is still a significant difference between 

existing public ship datasets and generic object detection datasets.  

2.6 Ship Detection Algorithms Based on CNN 

The conventional object detection algorithm has a few shortcomings. Firstly, in order to 

obtain candidate regions, we need slide the windows, which leads to high computational 

complexity and long computational time, generates too many redundancies, and results 

in unnecessary over-computation. Secondly, the visual features lack adaptability to visual 

objects, the description of features may be inaccurate. Before Faster R-CNN algorithm 

was proposed, there were two popular algorithms based on convolutional neural networks, 
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namely R-CNN algorithm and Fast R-CNN algorithm. Faster R-CNN algorithm has 

improved the previously existing algorithms, so before introducing Faster R-CNN 

algorithm, R-CNN algorithm and Fast R-CNN algorithm will be briefly introduced firstly. 

2.6.1 R-CNN 

Krizhevsky et al. showed us promising results of CNNs for the image classification 

challenge in 2012. Girshick et al. developed a model in 2013 that generalized these results 

for visual object detection. R-CNN refers to region-based CNN. There are multiple stages 

to R-CNN computations. Firstly, the regions of interest (ROI) are defined. Class-

independent bounding boxes with a high probability contain an intriguing visual object. 

An approach called selective search is employed, though alternative region creation 

methods can be utilized instead. The visual features are extracted from each region by 

using a convolutional neural network. The bounding-box sub-image is warped to match 

the CNN's input size. The features extracted from the deep networks will be sent into 

support vector machine (SVM) for pattern classification. 

R-CNN is significant since it is the first feasible solution for object detection based 

on CNN. There are three major issues for R-CNN. Firstly, the model training is split into 

multiple levels. Then, training the models requires a lot of computations and computer 

memory resources. The feature maps are generated from each region proposal and saved 

on disk for both SVM and region proposal regression. This will take hundreds of 

gigabytes of storage. Thirdly, the most important one, visual object detection is sluggish, 

it costs about a minute per image on a high-performance GPU. This is due to the CNN 

computing, the proposals for each visual object independently result in slow speed, even 

if the proposals are from the same image. 

Because convolutional neural network is not accurate in feature extraction for visual 

objects, the region proposal method is proposed, which solves the problem of long 

operation time in conventional object detection algorithms. The region proposal method 

finds the candidate regions of a video frame that may be the target in the image by 

analyzing the color, texture, edge and other information. In this way, the number of 
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candidate frames selected will be reduced, the size and position of the candidate frames 

will be relatively accurate, the quality of the obtained candidate regions is higher than 

that obtained ones by sliding the windows on video frames. Among them, selective search 

algorithm is one of the most widely used region proposal methods. The selective search 

is to extract candidate regions from input images according to their color, texture, and 

other features. 

R-CNN algorithm is based on the combination of region proposal method and 

convolutional neural networks, instead of direct operations on extracting the video frames 

through sliding windows. As shown in Figure 2.9, R-CNN algorithm is to select 2,000 

candidate regions by using selective search method. The sizes of the selected 2,000 

candidate regions are not fixed, each region is input into CNN for model training and 

testing. Because the sizes of the input images are identical, after the convolution and 

pooling operations, it can be represented by using fixed-length feature vectors.  

Finally, these feature vectors are classified by using SVM classifier, so as to find out 

whether the candidate region belongs to the visual object and what kind of class the visual 

object belongs to. Each candidate region has the probability that it corresponds to a class 

of objects. It is not necessary that each candidate region contains a visual object, as it may 

contain multiple objects in the same image. Therefore, each candidate region has different 

scores as confidence, we choose the maximum one so as to get the final bounding box 

correspondingly. 

 

Figure 2.9: The block diagram of R-CNN algorithm  

2.6.2 The SPP-Net Network 

In SPP-Net network, pyramid pooling is applied to obtain the corresponding feature 
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vectors of feature maps. Pyramid pooling is very important in accelerating the 

calculational speed and improving the detection accuracy of convolutional neural 

networks.   

In the convolution operations of the convolutional neural networks, there is no 

requirement for the size of input images, but when it comes to classification and other 

operations in the fully connected layer, there is a strict requirement for the length of the 

input feature vectors. This means, the key problem is to make the feature maps of input 

images with the same length, so the spatial pyramid pooling (SPP) is proposed, whose 

structure is shown in Figure 2.10. 

 

Figure 2.10: The pyramid structure diagram  

SPP means splitting feature maps with various sizes into three scales (e.g., 4×4, 2×2, 

1×1) so as to obtain feature vectors like 16×256, 4×256 and 1×256 dimensions. R-CNN 

algorithm needs to extract the feature maps using convolutional neural networks for each 

candidate region during model training and testing. However, the pyramid pooling only 

needs to extract the feature maps once, that is, to extract the feature maps of the whole 

image through convolutional neural networks, and finally to get the feature maps of each 

candidate region through pyramid pooling as well as the spatial correspondence between 

the feature maps and the original image. Because the whole algorithm only needs to be 

executed once through pyramid pooling, which does not forcibly redefine the size of the 

input images, the feature extraction will be much fast and accurate.  
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2.6.3 Fast R-CNN 

The training and testing processes of R-CNN and SPP-Net networks are similar and 

relatively complex. In these two methods, firstly candidate regions are selected through 

selective networks, and then feature maps are extracted through convolutional neural 

networks, and finally are classified by using SVM classifier to get the results of visual 

object detection. However, the running time of R-CNN and the required resources are 

relatively large. Although it has been improved, compared with SPP-Net in the 

computational process, there are still 2,000 selected candidate regions. Therefore, the 

training time of SPP-Net has been shortened, the computer memory and data storage 

required in the training process are still very large. 

The feature maps are extracted from the input image by using CNN in an end-to-end 

way, the CNN has been successfully applied to visual object detection in the input images. 

The idea of R-CNN is to still use the selective search method to generate candidate 

regions, then obtain the feature representation through convolutional neural networks, 

and utilize a classifier to get the classification results. However, the efficiency of this 

method is too low. It will take much time to use the generated candidate regions as the 

input of the convolutional neural network, and extract feature maps for visual object 

classification. In addition, the extracted candidate regions often have strong overlapping. 

If each region is input directly into the CNN for object classification, a lot of useless and 

redundant calculations will be carried out. 

In order to save computing time, only one convolution operation is carried out to 

obtain the feature map, the feature maps are extracted from each candidate region based 

on feature maps. Fast R-CNN algorithm grows from Spatial Pyramid Pooling (SPP). By 

further improving pyramid pooling, Fast R-CNN puts forward Region of Interest (ROI).  

An image is treated as the input, a series of region proposal networks are selected by 

using selective search, through a series of convolutional layers and pooling layers (e.g., 

VGG16) to obtain feature maps. Finally, the feature maps are obtained through pooling 

operations, the feature vectors with a fixed-length sub-sequence are treated as the input 

of fully connected layers corresponding to each candidate region. The fully connected 
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layer is applied to visual object classification which has two outputs. One is related to the 

classification, i.e., the class of the visual object. The other output is related to the 

regression, i.e., the location of visual object is shown by the coordinates of the four 

corners of the bounding box of the corresponding region. The result is processed by non-

maximum suppression to obtain class and location of the object. 

The idea of ROI is to map the proposal to the position on the feature map. In this 

thesis, the size of pooling output is 7×7, so as to attain a fixed-size output for the region. 

Many experiments have proved that the image processing by pooling the region of interest 

is faster than the original R-CNN algorithm using pyramid pooling. 

2.7 Datasets and Performance Evaluation 

Throughout the history of visual object detection, datasets have played a pivotal role, not 

only include ground truth for evaluating and comparing the performance of algorithms, 

but also drive the relevant research work forward increasingly. In particular, deep learning 

approaches have brought enormous success to visual object detection in recent years, with 

a vast volume of annotated data which plays a decisive role in deep learning. The 

availability of enormous quantities of photographs on the Internet allows us to create 

comprehensive datasets, which encapsulate a tremendous richness and diversity of visual 

objects, enables exceptional performance in visual object detection and recognition. 

 

Figure 2.11: The public dataset of ships  
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There are four well-known datasets for general object detection: PASCAL VOC 

(Everingham et al., 2015), ImageNet (Deng et al., 2009), MS COCO (Lin et al., 2014), 

and Open Images (Kuznetsova et al., 2018). Figure 2.11 shows a part of what we have 

found from the ship datasets. Creating large-scale annotated datasets needs three major 

steps: Defining the class labels, collecting a wide range of photos to represent the selected 

classes on the Internet, annotating the acquired photographs, etc. (Kuznetsova et al., 2018). 

The four datasets served as the solid foundation for specific object detection. Each dataset 

includes a publicly available image collection, ground-truth annotation, standard 

assessment tools, etc.  

PASCAL VOC (Everingham et al., 2015) is a multiyear project dedicated to the 

production and maintenance of a series of benchmark datasets for pattern classification 

and visual object detection. By starting with only four classes in 2005, the dataset has 

grown into 20 classes including all in our ordinary life. Since 2009, the number of photos 

has increased year after year, but all previous images have been retained to be able to 

compare the test results year after year. PASCAL VOC has increasing disadvantages 

owing to the availability of larger datasets such as ImageNet, MS COCO, and Open 

Images. 

ILSVRC (Rusakovsky et al., 2015) is a derivative of ImageNet (Dan et al., 2009), 

which extends the standard algorithm of visual object recognition as well as evaluations. 

ImageNet1000, a subset of ImageNet images with 1,000 object classes and a total of 1.2 

million images, has been modified to provide a standard test for the ILSVRC object 

classification. 

The MS COCO database (Lin et al., 2014) contains complex scenes with visual 

objects in natural situations. In order to accurately estimate the detector, MS COCO object 

recognition comprises two object recognition processes which use bounding boxes as 

output or object instances as the segmented output. 

Open Image Challenge Object Detection (OICOD) is a derivative of Open Images 

V4 (now V5 2019) (Kuznetsova et al., 2018) which is currently the largest publicly 

available object detection dataset. OICOD differs from earlier large object recognition 

datasets such as ILSVRC and MS COCO in terms of the annotation, as well as a 
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significant increase in the number of classes, image, bounding box annotations, and 

instance segmentation mask annotations. In ILSVRC and MS COCO, all classes of 

instances in the dataset are fully annotated, while in OpenImages V4, a classifier was 

applied to each image, only labels with sufficiently high values are submitted for human 

validation. Therefore, OICOD only comments on positive labels confirmed by humans. 

There are three criteria for assessing the effectiveness of visual object detection 

algorithms: Detection rate, accuracy, recall, and frames per second (FPS). The most 

popular metric is average precision (AP), which is derived from accuracy and recall. APs 

are usually rated by classes of visual objects. That is, it is calculated separately for each 

class of visual objects. To compare performance across all object classes, the mean AP 

(mAP) for all object classes is harnessed as the measure of performance (Everingham et 

al., 2015, Rusakovsky et al., 2015, Hoiem et al., 2012). 

  



42 
 

 

 

Chapter 3  Our 

Methods  

 

 

The main content of this chapter is to clearly illustrate ship detection 

methods and articulate research methods which satisfy the objectives 

of this thesis. This chapter mainly covers the details of research 

methodology for ship detection using deep learning which will be 

clearly introduced with the confidence and imaginative use of the 

feature description methods. 
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3.1 Faster R-CNN 

As shown in Figure 3.1, the framework of Faster R-CNN algorithm is split into four main 

parts, namely, feature extraction of the whole image using CNN, extraction of candidate 

regions using region proposal network (RPN), classification of candidate regions, 

bounding box regression, and non-maximum suppression. The framework of Faster R-

CNN algorithm is firstly to obtain the feature maps of the whole image based on CNN, 

generate the candidate regions through RPN, and then use ROI Pooling to obtain the 

feature maps of each candidate region with a fixed-length feature vector. Finally, softmax 

is offered to classify with its result tackled by using non-maximum suppression (NMS) 

method to obtain the exact class of visual object. 

 

Figure 3.1: The framework of Faster R-CNN  

3.1.1 Feature Extraction Network 

In this chapter, we introduce open source deep neural networks, such as AlexNet, VGG, 

and other network structures, with the parameters trained by using ImageNet dataset. 

Because of the huge size of the ImageNet, the parameters in the network frameworks can 

be initialized well by using transfer learning method. By considering the trade-off 

between complexity and classification accuracy of the network, the feature extraction 

network selected in this thesis is VGG-16, due to the limited number of datasets, the 

weights trained in ImageNet are adopted as initial values for transfer learning. Our 

experiments show that transfer learning is very effective for the initialization of deep 

neural networks. 
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3.1.2 Region Proposal Network 

Generally speaking, Region Proposal Networks (RPN) is an improvement of extracting 

candidate regions. Before its proposal, the traditional method for candidate region 

extraction is based on multiscale windows. However, candidate regions generated from 

these models often are overlapped. Pooling method is used for solving this problem later, 

but it will strongly affect the running speed, so we abandon the strategy in this thesis. 

Another relatively new method for candidate region extraction is selective search, but this 

algorithm will produce redundant calculations. 

In order to reduce the calculations of redundancy, in Faster R-CNN, RPN is 

innovatively proposed to replace original selective search network. The pooling is set 

behind RPN to obtain the exact candidate region. The main structure of RPN is shown in 

Figure 3.2.  

Firstly, the points on the feature maps are mapped to the original image with different 

sizes and shapes. Then the data is applied to train the region proposal network. According 

to the appearance of these bounding boxes and visual objects, whether they are target 

objects or not is identified finally. 

 

Figure 3.2: The suggested structure of regional proposal network  

3.1.3 Classifications 

Before classification, Faster R-CNN still takes use of the pooling method and outputs the 
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fixed-length feature vectors corresponding to the FC layer-based classification. The 

classification is conducted with feature vectors obtained from the pooling operations, 

which are classified through the fully connected layer and softmax classification layer, 

then the model will output which class each region belongs to. Meanwhile, through 

bounding box regression again, the offset between each region and actual object position 

is obtained. This offset will be employed for subsequent regression to bring the bounding 

box of the detected visual object closer to the ground-truth position. 

3.1.4 Non-Maximum Suppression 

Non-maximum suppression (NMS) is applied in a few projects related to computer vision, 

such as edge extraction and visual object detection. After the classification, there will be 

a lot of candidate regions which will be identified as positive samples, that means, a 

number of candidate regions will be converged to visual object as the ground truth, there 

will be overlapping between them, the non-maximum suppression method is applied to 

solve this problem. The essence of non-maximum suppression is to select the maxima in 

the local range and suppress the elements that are not the exact maximum. 

The steps of the non-maximum suppression algorithm are listed as follows: (1) Sort 

the scores of all the boxes and select the box with the highest score. (2) Traverse the 

remaining bounding boxes and set a threshold. If the intersection over union (IOU), is 

greater than this threshold, delete this bounding box. (3) From all the unprocessed 

bounding boxes, select the one with the highest score, and repeat the first two steps. After 

these three steps, we can basically achieve the goal. 

3.2 Training Methods 

There are two training methods for Faster R-CNN algorithm. In this thesis, we are use of 

the complicated training methods, the steps are listed as follows: 

• Step 1: Firstly, we are use of the weights of CNN trained based on ImageNet 

dataset, and train a regional suggestion network independently by using transfer 

learning.  
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• Step 2: Train the Fast R-CNN network with the candidate regions generated in 

Step 1 as the input.   

• Step 3: The region proposal network is retrained with the parameters of Fast R-

CNN. But the parameters of convolutional layers shared by the region proposal 

network and Fast R-CNN are retained. The parameters related to the region 

proposal network are retrained.  

• Step 4: Keep the convolutional layers shared by the region proposal network and 

Fast R-CNN network, fine-tune the parameters of those layers that are then subject 

to the Fast R-CNN, and finally implement the fast and accurate visual object 

detection. 

3.3 Sailboat Detection Based on Automated Search Attention 

Mechanism 

The algorithm that combines convolutional neural networks (CNN) with monitoring 

mechanism enables us to focus on regions of interest (ROI). However, it is problematic 

to design a suitable model for various tasks that require many experiments and continuous 

improvement. This process is arduous and does not always yield better results. With the 

emergence of neural architecture search (NAS), this problem has been solved. By 

determining the appropriate search strategy, search and evaluation space, the network 

module can be designed and evaluated, finally the best network model can be obtained. 

In this thesis, our main contributions are as follows: 

⚫ Based on actual data collection, we have established a reliable sailing ship 

detection dataset, through which we can evaluate the stability of our model in 

practical application. 

⚫ In order to better focus on the ROI of the models, we propose a CNN model that 

combines spatial attention mechanisms together. 

⚫ Considering the different data collected through different devices and the process 

of developing long focus modules, we create the model by automating the search 

and design, which makes it very robust. 
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In summary, our proposed model improves the YOLO family with the attention 

mechanisms which is validated at present based on our own datasets. 

Attention model helps us to create a very accurate method for visual object detection 

by using NAS that will help us correctly design the best network for various datasets and 

solve the problem in visual object detection. Therefore, in this section, we will discuss 

the methods for sailboats detection. 

3.3.1 Backbone 

YOLOv5 is the last model of YOLO series. Although its performance is slightly weaker 

than YOLOv4, its service is quite long (Liu et al., 2021). This is the reason why we choose 

this network as the main supporting network in this thesis.  

Pertaining to YOLOv5, the trunk, neck, and outlet are the same regardless of the 

version of YOLOv5s, YOLOv5m, YOLOv5l or YOLOv5x. The only differences between 

them are the depth and width of the model. 

We provide a module as the first base layer. Its main function is to regularly extract 

pixels from high-resolution images and restore them to low-resolution images. We 

superimpose four adjacent image points, focus on the width and height of channel space, 

improve the recording domain of each point, and reduce the loss of original information. 

This module was designed to narrow down the calculations. 

The third core layer, CSP network (i.e., cross stage partial), is composed of two core 

components: Bottleneck and CSP. The SPP module (i.e., spatial pyramid pooling) takes 

use of the largest pool, in turn, which is used to improve the perception of target objects. 

The neck region allows a framework that provides information propagation based 

on R-CNN and FPN (i.e., feature pyramid networks) to accurately store spatial 

information, thus correctly define the pixels that create the mask. Later, the basic 

experimental model is established. 
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Figure 3.3: NAS attention module  

3.3.2 NAS-Based Spatial and Channel Joint Attention Module 

The design of deep neural networks, especially the combination of interdisciplinary 

networks, requires empirical knowledge and extensive experience. This is undoubtedly a 

time-consuming job. Therefore, we propose an automation model in this thesis, which 

stipulates the use of NAS to search and discover ships. NAS-SCAM consists of “room 

and attention channel” module, in which weighted output is achieved. 

The input feature map is 𝑀 = [𝑚1, 𝑚2, . . . , 𝑚𝑐], which has width W, height H, and 

channel C, M is transformed into spatial weight map 𝑛∈ℝ𝐻×𝑊 by using one or multiple 

convolution operations and nonlinear operations 𝐹𝑁𝑆(·) in NAS search space. In the search 

space, n is related to the spatial weighting information. Finally, we are use of the 

multiplication operation to fuse spatial weight map into the input feature map M and 

generate output feature map M′ as shown in eq. (3.1). 

𝑀′ = 𝑛 ⊗ 𝑀 = [𝑛𝑚1, 𝑛𝑚2, … , 𝑛𝑚𝑐] (3.1) 

Correct choice 𝐹𝑁A𝑆(·) is the key operation that has great influence on the weight 

effect. However, there are many options, it is difficult to find the best one. Therefore, we 

recommend choosing 𝐹𝑁A𝑆(·) by using the NAS to find suitable network structure. 
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In order to produce channel weighting information without changing spatial 

information, suppose the input eigenvalue map is 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑐], 𝑦𝑖∈ℝ𝐻×𝑊, we 

take use of a global average pooling operation along spatial dimensions as shown in eq. 

(3.2) and generate a vector 𝑧∈ℝ1×1×𝐶.  

𝑍𝑖 = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑦𝑖) =
1

𝐻 × 𝑊
∑ ∑ 𝑦𝑖(𝑝, 𝑞)

𝑤

𝑞=1

𝐻

𝑝=1

 (3.2) 

NAS-SAM and NAS-CAM are employed for generating the feature maps, the two 

output feature maps retain important weights by using max pooling operations in the 

fusion. In order to better fit the attention search mechanism for the channels and spaces, 

a new search space has been created as shown in Table 3.1. 

Table 3.1:The operations of NAS-SAM and NAS-CAM 

 NAS-SAM NAS-CAM 

Zero (No connection) √ √ 

Conv2D 1 √ √ 

Conv2D 3 √ √ 

Conv2D 5 √ √ 

Conv2D 9  √ 

Conv2D 15  √ 

Atrous Conv2D 3 √ √ 

Atrous Conv2D 5 √ √ 

 

Through the structure of NAS-SAM and NAS-CAM systems, we have selected 

multiple operations between the two nodes of the NAS search engine. Therefore, NAS-

SAM and NAS-CAM operations are shown in Table 3.1. Regarding NAS-SAM, since we 

need information from the spatial dimension, we consider taking two-dimensional folds 

with the filters having different sizes to obtain information from the sensory field.  

The NAS-SAM model is use of one-dimensional folding to extract channel 
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information based on the average global pooling. In addition, NAS-SAM and NAS-CAM 

conduct a zero calculation, which indicates a lack of communications between the two 

nodes. The steps of the gradient-based algorithm are shown as follows: 

Algorithm 3.1: Gradient-based algorithm 

Input: Training 

Output: Optimal network structure 

⚫ Step 1: Firstly, determine the number of model nodes. 

⚫ Step 2: While mixing operations, load all operations into the connection path 

nodes to form a neural multi-specialty network. 

⚫ Step 3: Apply different weights to each route so as to solve the discrete 

optimization problem and update the option weight combination of the hybrid 

operation at the same time. 

⚫ Step 4: Select the final network structure according to the possibility of hybrid 

operation.   

In order to better take account of multifunctional combinations, we control the 

variance within a range where gradients can be computed continuously to optimize 

structure and operation. 

Besides, in order to achieve the optimal attention module in the same network, we 

propose a synchronous search strategy to search each attention module separately. In 

general, the modules of the same structure are inserted at the end of each of the following 

units according to the attention module model. However, due to the convolution and 

pooling operations, the feature map has different semantic meanings at the different 

locations of the network. Therefore, while searching for different modules, attention will 

completely match the different points in the network, such as the upper and lower samples. 

The synchronous search strategy supports the development and optimization of the 

only important modules for each of the proceeding and next blocks. Since each structure 

of the module is adjusted through the optimization of 120,572 continuous variables, the 

optimization in multiple directions produces a very suitable structure. 
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3.3.3 Loss Function and Evaluation Function 

We employ a mix of losses in this thesis to better complete the assignment. As a starting 

point, the Binary Cross Entropy (BCE) loss function is employed to compute the loss 

between the prediction and the ground-truth, the cross-entropy loss function is applied to 

generate the class probability score, the Generalized Intersection over Union (GIoU) loss 

function is harnessed to forecast the bounding box. In order to maintain the rapid 

convergence and improve performance, the weights in the combined loss are set as ciou = 

0.05, giou = 1.00, and bce = 0.50, respectively. 

The object detection probability, false detection probability, F1 score, precision, and 

recall are defined as eqs. (3.3-3.5) to assess the performance of the proposed deep neural 

network: 

𝑃𝑑 =
𝑁𝑡𝑑

𝑁
ground_truth

 (3.3) 

𝑃𝑓 =
𝑁fd

𝑁total_target

 (3.4) 

𝐹1 = 2 ×
𝑃𝑑 × (1 − 𝑃𝑓)

𝑃𝑑 + (1 − 𝑃𝑓)
 (3.5) 

where 𝑁𝑡𝑑 is the number of true positive,  𝑁ground_truth is the total number of ground 

truth, 𝑁fd is the number of false alarms, and 𝑁total_target is the number of detections in 

total. 
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Table 3.2: The image samples shot at local harbor 

    

    

    

    

    

 

3.4 Kayak and Sailboat Detection Based on the Improved 

YOLO with Transformer 

With the development of computer vision, its performance is getting better. The object 

detection is a classical task in computer vision. The most popular methods in object 

detection are YOLO and its family, which have been kept improving in the last 5 years. 

The versions of YOLO are already experienced from YOLOv1 to YOLOv5. However, in 

the field of ship detection, especially in the field of sailboat and kayak detection, there 

are few projects, or datasets. Therefore, in this thesis, we provide a dataset for sailboat 

and kayak detection. In addition, we evaluate the performance of YOLO models (Girshick 

et al., 2014) and Transformers (Vaswani et al., 2017) as well as the performance in the 

tasks of sailboat and kayak detection. 
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3.4.1 Unified Detection Model – YOLO 

Joseph et al. launched YOLO in 2016, which is a modern unified object detection model 

based on CNN (He et al., 2017). A single-stage network was employed to carry out the 

layout of neural networks. The object detection problem is treated as a regression problem 

that directly deal with the class probability and location of the input images. Through the 

unified design, the object detection of YOLO is 10 times faster than that of other models. 

Regression models require a fixed-size input, however, when the input image is displayed, 

the network cannot accurately predict the number of visual objects.  

In order to resolve this contradiction, YOLO has predicted a considerable number of 

objects and set a threshold to exclude low probability prediction. The principal structure 

and development of the YOLO model have been detailed in Chapter 2, so we will not 

reiterate it here. In this thesis, YOLO is very suitable as a unified model for visual object 

detection, we will improve and experiment on the basis of the YOLO model. 

3.4.2 Backbone 

The core difference between the YOLO model and other models like R-CNN (Girshick, 

2015) is that YOLO only conducts one shot operation to get the probability of index. 

Regarding the regression problem, other models such as R-CNN decompose the original 

problem into “object detection” as a classification problem and “bounding box” as 

regression problem. Therefore, YOLO is more suitable for object detection than R-CNN. 

The main structure of YOLO is a group of convolution operations, and follows a fully 

connected layer (Redmon et al., 2016). On the other hand, the activate function of 

YOLOv5 model is leaky ReLU function, which contains negative values during the 

training process. It is more suitable for regression than ReLU. The loss function needs to 

consider the errors between prediction coordinate and the ground truth coordinate. Hence, 

a binary loss function will be useful in YOLO model, in this case, we select binary-cross 

entropy (BCE) loss function for YOLOv5. 

⚫ The main structure of Transformer is the encoder and decoder frame, which is an 

end-to-end learning algorithm to solve the sequence to sequence learning problem. 
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⚫ The input is a sequence of data and the output is also a sequence of data. The input 

process is called encoder and the output process is called decoder, all memory will 

be employed to save content and context. 

⚫ Transformer has a multi-head attention method, which simulates human learning 

process. Attention method usually refers to computing convex combinations of 

content-based vector sequences, it tells that the weight itself is a function of the 

input. 

The multi-head attention method can be considered as the integration of low-

dimensional original attention layer which is always better than single head attention. 

Therefore, multi-head attention transformer will be implemented between the YOLO 

backbone and the fully connected layer. 

The main idea of Transformer is attention, whose basic frame is the encoder-decoder 

structure. Therefore, to combine Transformer with YOLO model, we need to split the 

original YOLO model into two parts: Convolution backbone and the fully connected layer. 

The convolution backbone of YOLO is for extracting the image features, the fully 

connected layer is for generating output. In order to combine Transformer and YOLO 

models, we need to connect convolution backbone with the encoder, and connect the 

decoder with the output of fully connected layer. 

YOLO models were employed for visual object detection which only needs to “look 

once” and inferences the index with probability directly. However, before YOLO was 

proposed, region-based fully convolutional networks (R-FCN) had been widely used to 

inference visual object first and then predict the suitable index location. A moving 2D 

window is employed to search on the feature map to find the most suitable position of 

visual object. R-FCN is a typical method of visual object detection, with ResNet-101 

being its convolution backbone structure. 

 

 

Figure 3.4: The backbone of YOLO with Transformer 
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3.4.3 Training Method 

As deep learning methods become stronger and stronger, the max depth of neural network 

and the depth of backbone become stronger and deeper (Dahl et al., 2012). Therefore, the 

optimizer (e.g., Adam) needs a few training samples to avoid overfitting and obtain the 

theoretical target solution (weights of the networks). ImageNet is a popular and useful 

dataset in computer vision, which contains a plenty of images (Maurya et al.,2021).  

After BERT model came out, pre-training has become much usual (Devlin et al., 

2018). The main idea of pre-training is to replace the random weights of feature extraction 

layer with a trained weight. This method can be employed in the similar task. In general, 

pre-trained weights can reduce the total training time for a specific task. 

This method is implemented after getting a completed group of weights of feature 

extraction layer. By using the dataset of specific tasks, training the fully connected layer 

and making a little bit change in feature extraction layer, this method is called fine-tuning 

(Zhang & Hu, 2021). Based on this method, we took use of it in sailboat and kayak 

detection to reduce our model training time. 

3.4.4 Uniform Blending 

As we have seen, if averaging two models together, the generalization error will always 

be equal or less than the weight sum of each single model. Therefore, the blending method 

will be chosen in the end of this project to improve the performance of model. The pseudo 

code of this model is listed as Algorithm (3.1) and Algorithm (3.2). 
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Algorithm 3.1: Training a model 

Input: Training set; N: Number of total training images; CFG: Initial parameters; : Fold 

number; lr: Learning rate 

Output: Optimal Model: M∗; Out-of-fold Prediction set: Poof 

1: Initial random state and model weight W0; 

2: repeat 

3:   Set random seed R; 

4:   Divide dataset into training set and validation set,  

5:   Load the YOLO model structure by using CFG; 

6:   Load the pre-training weight. 

7:   repeat 

8:      Set Adam optimizer and a stable learning rate lr; 

9:      Train the model; 

10:     Compute the target loss Losslocal by using BCELoss 

11:     Update Lossbest if Losslocal < Lossbest 

12:     Update saving if Losslocal < Lossbest 

13:     Loading valid set and compute valid loss; 

14:     Save valid loss with best model as out-of-folder result set Poof; 

15:   until Epoch times OR Lossbest has no change for 3 epochs. 

16: until fn times 

 

Algorithm 3.2: Transformer modeling 

Input: Input image; 

Output: Out: Model Out; 

1: Image resize from Dtr to; 

2: Take Batch Normalization from to BND; 

3: Implement BND Linear Transform and get L1; 

4: Reshape L1 to multi-head from and select 3 dimension: q, k, v; 

5: q × k and implement transpose, gives a1; 

6: Take softmax to a1 and gives a2;  

7: Implement Dropout at a2 and gives a3; 

8: a3 × v and transpose back to original image shape a4; 

9: Take the linear transform to a4 and get a5; 

10: Dropout a5 and gives a6 as attention output; 
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11: Implement Drop path for a6 and gives attention layer out: a7; 

12: Add original input and a7 gives output: Out1; 

13: Take Batch Normalization to Out1 to get m1; 

14: Send m1 into full connected layer 1 and get m2; 

15: Use GELU as activate function to m2 and get m3 ; 

16: Dropout m3 and gives m4 as MLP layer 1 output; 

17: Send m4 into full connected layer 2 and get m5; 

18: Dropout m5 and gives m6 as MLP layer 2 output; 

19: Implement Drop path for m6 and gives MLP layer out: Out2. 

20: Combine two layers together, then gives Out = Out1 + Out2. 

3.4.5 Implementations 

In this section, the model is implemented with details. It will involve the training process 

and the method about how to get the best parameters of each model. A pre-training method 

will be employed for this task. The ImageNet-1k pre-training weight is implemented as 

the initial weight of feature extraction network in YOLO models, which will involve 

convolution operation to easily extract the feature maps of visual objects. We start the 

first run with epoch 10, learning rate 0.0001 and the binary cross-entropy loss. 

As all data samples are tagged, all training set needs to review again to make sure 

there is no wrong labels. The data samples are captured by using mobile cameras, whose 

original resolution is 4K×4K. It will take up a huge amount of computer space and 

computing power, thus, we set the input size of YOLOv5 model as 640×640, which will 

take the bytes of size in GPU (Park et al., 2021). Correspondingly, the input samples are 

also resized as 512×512 and 256×256. 

The modeling environment is with a 6G RAM GPU. From the testing result, we 

determined the input size, which shows 512×512 as the input size will generate a better 

performance. 

Figure 3.5 shows 8.00×10−4 is the best learning rate for YOLOv5 model in this group 

of experiments. Other training methods are set as this group of parameters. Therefore, we 

additionally test the datasets with sizes 640×640 and 256×256. The experimental results 

show that the learning rate is optimal under various sizes of input images. 
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Table 3.3: Training progress with various input sizes  

Datasets Quantity Image sizes Epochs Time (h) 

S&K-1000-Original 2,787 640×640 3 5.7 

S&K-1000-Cleaned 2,749 512×512 3 4.5 

S&K-1000-Cleaned 2,749 256×256 3 3.6 

 

Figure 3.5: The results of learning rate search by previous input size  

To verify the proposed learning rate, the number of epochs is increased up to 50. For 

the resource saving purpose, this process is implemented by using specific rates such as 

0.8, 0.1, 0.08, ..., 0.00008, 0.00001. 

We also test those popular loss functions to replace the cross-entropy function. The 

log loss, exponential loss, hinge loss and cross-entropy loss functions all are applied to 

calculate the accuracy, as this problem is much like a binary classification. According to 

the training results, the cross-entropy function is the best one in this problem with 

YOLOv5 model. 
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Table 3.4: Cross-validation scores with different loss functions 

Loss functions Epochs Minimal Losses CV Scores 

Cross Entropy 5 0.0018 0.2314 

Log loss 5 0.0033 0.3124 

Exponential loss 5 0.0037 0.2928 

Hinge loss 5 0.0089 0.2882 

Categorical Cross Entropy 5 0.0012 0.2135 

 

In Table 3.4, the training process was performed as convergence if the number of 

epochs is set as 5. If we set all methods with the epoch 5, it will save computing time. 

Thus, we use the same parameters in the Transformer-related model. 

3.4.6 Ensemble Learning 

YOLOv5 is determined by its baseline, with input size 512×512, learning rate 0.0008, 

and the binary-cross entropy function for the loss computations. To further improve the 

performance of the baseline model, we ensemble the models to test how to get a better 

score. The ensemble method has the voting and blending operations, where the blending 

method is for calculating the probability(confidence) of each visual object, the voting is 

to decide which object is output.  

Each model will eventually output a group of prediction results with probabilities. 

To blend the results of object detection, we need to count the overall indices, and set 

probability 0 to each index with other objects. It is essential to make sure that all indices 

have a series of predictions with “Kayak”, “Sailboat”, and “Other Boats”. Then, ensemble 

learning will calculate the average of each model and give every model a weight. The 

next step is to take the weighted mean as the final probability. In order to find the best 

weight of each model, we search for the best value by using the cross-validation 

prediction result. 
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Figure 3.6: A valid predicting label which was used for calculating the losses with true 

label 

Table 3.5: Ensembled results 

Model Structure Number CV Score Test set Score 

YOLOv5 1 0.2298 0.3014 

Transformer 2 0.2043 0.2833 

1+2 Ensemble 3 0.1989 0.2798 

 

After obtained the probability of each model, the next step is to vote these models. 

Each model has the votes as same as its probability, the class will be determined through 

the votes. The final output will be marked as its label. To increase confidence, if the 

probability is too low, it will be regarded as a wrong prediction and removed. Table 3.5 

shows the ensembled results which reduce the cross-validation errors and attain a better 

outcome. 
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Chapter 4  

Results 

 

 

The main content of this chapter is to describe the experimental 

setup and demonstrate the experimental results. In this chapter, 

we will also brief the limitations of this project. 
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4.1 Experimental Setup 

The main task of this chapter is to introduce an object detector, test the output results of 

the ship detectors based on the datasets. These tasks and the conditions are related to the 

criteria for selecting experimental methods. 

4.1.1 Faster R-CNN 

The three ship detectors are R-CNN, YOLOv2, and SSD with Transformers. Fast R-CNN 

is the most advanced detector. YOLOv2 makes use of the deep net to achieve the real-

time testing goal of SSD by using a hierarchical structure characterized by a pyramid net 

while ensuring accuracy and computational speed. 

Faster R-CNN model was trained by using nine region proposals for each sliding 

window in the RPN. These nine region proposals include the scales 64, 128, 256 as well 

as the aspect ratios 1:1, 1:2, 2:1. The aspect ratios are adopted from those existing methods 

(Ren et al. 2015). The SuperView dataset is with larger scale than the multiobject class 

datasets. 

Fast R-CNN resolves the counting problem based on R-CNN and SPP nets. In order 

to improve speed and accuracy, it takes advantage of pooling operations and a small 

number of samples. However, it still needs a long time due to using the selective search 

method. In contrast, it is faster and more creative to use CNN and extract the region 

proposals through region proposal network (RPN).  

Fast R-CNN detects visual objects according to the proposals obtained from the RPN 

network. This increases the network speed to detect visual objects. The initial RPN net 

usually produces nine anchors in one place, with 3 learning rates, the aspect ratio between 

width and height is less than 1.0. Based on our experiments, a confidence score threshold 

0.6 has proven to be appropriate for this problem which was taken into account during 

experimentation.  

In order to improve generalization, dropout is included in the classifier for visual 

object detection. Similar to the activation function in Faster R-CNN architecture, ReLU 

function has been employed. The regression layer takes use of a simple linear activation 
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function, so all ships are marked as bounding boxes (i.e., BBox). 

4.1.2 YOLO 

YOLO and YOLOv2 algorithms were employed to visual object classification and 

positioning through deep neural networks. This makes ship detection becomes a 

regression process at the final stage of visual object detection. YOLO algorithm is much 

faster than region-based CNN. However, its detection rate is relatively low, thus with a 

lot of object detection errors. 

Based on a dataset with a small number of samples, this needs data augmentation. If 

an image is chosen, it needs three operations: Horizontal flipping, vertical flipping, and 

Gaussian noising. YOLOv2 model was trained with Adam optimizer and a learning rate. 

There are no pre-trained weights in visual object detection. The initialization is 

conjunction with ReLU function or Leaky ReLU function. The confidence probability is 

subject to the sigmoid activation function σ(x). 

YOLOv5 and YOLOv4 are relatively new, YOLOv5 is only one month after 

YOLOv4. Therefore, the structures of YOLOv5 and YOLOv4 are very similar.  

YOLOv5 has not changed too much compared with the previous YOLOv4. It is very 

tough to find relevant publications related to YOLOv5. 

Using 3D convolutional neural networks, YOLOv5 was developed to leverage 

temporal information. The feature component of YOLOv5 is unchanged. The last layers 

are utilized to extract spatiotemporal feature of visual objects with small, medium, or big 

size. Figure 4.1 depicts the detailed structure, each block is detailed as follows. 



64 

 

Figure 4.1: The proposed YOLOv5-temporal structure 

 

Figure 4.2: The proposed YOLOv5-LSTM structure 
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By using Convolutional LSTM, YOLOv5-LSTM model was developed to leverage 

temporal information. The feature extraction of the YOLO stays unchanged. In YOLOv5, 

the last layers are adjusted during regression to extract spatiotemporal properties of visual 

objects for small, medium, and big size. Figure 4.2 depicts the details of this structure. 

YOLOv5 was developed based on Python, rather than C as previous versions. This 

simplifies the useability of integration and installation. Because they were developed with 

two different languages, it is a difficult task to compare YOLOv4 and YOLOv5 from the 

viewpoint of crossing platform development. 

4.2 Results of Sailboat Detection Based on Deep Learning 

Models 

4.2.1 Experimental Setup 

(1) Datasets 

Typically, in this thsis, visual objects in an image are marked as boats or backgrounds. 

Although different types of ships have the same elements, such as deck and stern, most 

of ships still differ obviously in shapes and appearances. The differences make it difficult 

to find specific class of ships. 

Several datasets were utilized to train deep nets throughout this thesis. The offer of 

this thesis is to either pretrain or train the deep neural network models. Ship-specific 

datasets are utilized to fine-tuning a network. 

The first dataset presented in literature was to match a ship silhouette as database 

records. It is made up of a variety of ship images. Each image is labeled with the ship 

classes and a per-pixel segmentation. For each image, segmentations are supplied that 

have been annotated by three individual human operators. Consequently, each image has 

three slightly distinct segmentations. A majority vote was employed to create a single 

ground truth of segmentation map for each image. 

The collection is made up of ship images captured at various view angles and 

distances, with various backgrounds. Because the ship backdrop offers minimal 

information about the ship classes and brings substantial noises to the image, we removed 
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this randomness by cropping a region of the image that only includes the ships. The goal 

of this thesis is to crop the ship images without removing any ship-related pixels. Because 

the ship has well-defined borders, we firstly conduct edge detection based on the first 

image. 

Because the ship borders are precisely defined, the aim is to identify the rows and 

columns of pixels in the image corresponding to these edges. As a result, we add the pixels 

along a row in the image and compare them to the sum in the next row. If the values in 

the two rows differ significantly, this indicates an edge in that row. Edge detection 

identifies random artifacts because of random backdrop. We find the sum across a few 

rows, which overcome noises and make the approach resilient against mistakes. We crop 

the images after locating the row and columns of pixels where there is an obvious change 

in edge detection. 

In this thesis, we firstly created a real dataset using the videos from surveillance 

cameras. It was used to evaluate the effectiveness of our proposed deep learning models. 

Secondly, we converted the video frames from America’s Cup in the past three years to a 

standard size. In the training dataset, 1,484 images with labels were included for model 

training, 348 ships were contained for the test. For the training dataset, we select the 

image resolution 512x512. Ship patches were sent to the deep network as the training 

input. We tackled the test images in the same way to ensure the fast and correct operations 

of deep learning models. Our dataset also includes the frames from the America’s Cup 

videos, as shown in Table 4.1. 

(2) Dataset splitting 

In order to evaluate the performance of a network, we must firstly create a test dataset. 

This guarantees that the performance is unaffected by samples for network training. While 

most datasets include a wide range of images, a huge dataset comprises several subsets 

of images, the images of the same vessel are also included. Each image is labeled with a 

unique ID that corresponds to the ship in the image. Splitting the dataset based on this ID 

ensures that the same ship appears in both the training set and test set with slight 

difference. A difficulty for this splitting is that numerous ships might belong to the same 

class, that means, they have the same classification output. To correct this, a division 
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based on classes was created. 

(3) Experiment setup 

We carried out our experiments by using PyToch. The baseline of the proposed net is 

YOLOv5. Regarding NAS search, the process is appended at the end of each downward 

or upward sampling block. The total iterations are 120, where W is updated as 120. After 

the optimization training, we restored the network according to the training level. In the 

recovery process, the total number of iterations is 300, the learning rate is 1.00×10-3. After 

the verification, we retained the most powerful model and treated it as the best one for 

our experiments.   

(a)  (b) 

(c) 

Figure 4.3: The screenshots of demo videos (a), video (b) & video (c) 

In Figure 4.4, we show various results of sailboat detection in our test. Figure 4.4 (a) 

is a video from our harbor, Figure 4.4 (b) is a video from America’s Cup 2021, Figure 

4.4 (c) is a video to detect various sailboats. 

4.2.2 Experimental Results 

The small ship dataset is gathered in two ways. Firstly, we captured the images of real-

world tiny ships (positive samples) and images without ships (negative samples) near the 

wharves. At the same time, because the images of small ships acquired is not enough for 

us to conduct training and testing, we augment the positive training 99 samples using tiny 

ship images gathered online. The samples were designated as the baseline dataset. Table 
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4.1 shows the examples of obtained samples from the baseline dataset. 

In order to complete this task, the suggested dataset GMWGAN-GP was utilized in 

the tests to create positive samples (i.e., fake images of small ships). LabelImg, an open-

source program, was applied to annotate the actual data as well as the samples created by 

GMWGAN-GP. The image name, object classes, coordinates and sizes of the bounding 

boxes or rectangles are all included in the created annotation labels.  

Theoretically, the number of images generated through the network is unlimited. 

However, if the number of images is too large, the quality of image samples cannot be 

guaranteed, which will eventually affect the detection ability of the ship. Therefore, in the 

experiment, the basic dataset was collected, the positive samples are split into several 

groups to study the relationship between the proportion of positive samples and the test 

results. 

As part of this work, we have made horizontal and vertical comparisons to better 

compare the effectiveness of our proposed model with others. Horizontal matching means 

that we compare the properties of the shared. On the other hand, we compared the 

characteristics of different models based on the same dataset, which represents a vertical 

comparison. Firstly, we look for models in a centralized search of public data. In order to 

verify the effectiveness of our proposed NAS-SCAM and synchronous search strategy, 

we compare the characteristics of the proposed model. 

 

Table 4.1: Comparisons of ship detection based on a public dataset. 

Models 𝐏𝐝(%) 𝑷𝒇(%) 𝑭𝟏 

Baselines 71 18.5 0.75 

NAS-SAM + Baseline 72.49 19.30 0.77 

NAS-SAM + Baseline 73.50 20.50 0.78 

NAS-SCAM + Baseline 72.50 18.60 0.76 

 

 



69 

Table 4.2: Comparisons of ship detection based on our own dataset 

Model 𝐏𝐝(%) 𝑷𝒇(%) 𝑭𝟏 

Baseline 67.00 17.00 0.69 

NAS-SAM + Baseline 68.49 18.30 0.72 

NAS-SAM + Baseline 66.00 16.50 0.70 

NAS-SCAM + Baseline 71.00 19.60 0.77 

 

In Table 4.1, we see that NAS works more efficiently than basic types of machine 

learning algorithms without attentions. In addition, we see that the channel-based 

monitoring mechanism is better than the local monitoring mechanism. In order to further 

verify the characteristics of our model from the perspective of generalization, the 

accounting-based model is verified based on actual image acquisition. 

In Table 4.2, the model based on structure search is more perfect than the typical 

CNN mode. In the comparative experiment, because other parameters remain unchanged, 

we see that the effectiveness of the model is reduced by comparisons, thus we eliminate 

the searching mechanism of neural structure. This confirms the effectiveness of the 

proposed method. 

4.3 Results of Sailboat Detection Based on the Improved 

YOLO with Transformer 

4.3.1 Experimental Setup 

The structure of YOLOv5 model is identical to that of the previous YOLO series, which 

is split into four parts: Backbone, input, prediction, and neck. The primary structure of 

YOLOv5s is seen in Figure 4.4. 
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Figure 4.4 The main structure of the YOLOv5s model 

The input component is capable of performing data augmentation, adaptive anchor 

frame computations, and adaptive image scaling. The focus structure, which can complete 

convolution and slicing operations, the CSP structure, which improves the feature 

network's learning capacity, is used mostly in the feature extraction section. 

Because the number of convolution kernels in the Focus and CBL of various 

networks varies, the model performance can vary by adjusting the network breadth and 

depth. The neck section employs PAN and FPN structures, applying information retrieved 

from the backbone part to improve network feature fusion. The output layer is separated 

into convolutional layer that is generated by using the loss function which is subject to 

the maximum value suppression process to get the prediction outcome.  

The datasets of this thesis are separated into two groups: Self-created datasets and 

public datasets. The public dataset is the SeaShips dataset (Shao et al, 2018), which 

contains images from surveillance camera installed along coastline, as well as images 

from every frame of the surveillance videos. The dataset was compiled from ships on 

water. The mosaic enhancement approach was applied to randomly choose four images 

for random scaling as well as randomly distribution for splicing, considerably enriching 

the detection dataset, particularly due to the random scaling introduced many small 

objects, making the network much resilient. 

In Figure 4.5 (a), we depict a map of anchor and the intuitive situation of data labels, 

as well as an overall analysis of the object size and position on the labelled image as 

shown in Figure 4.5 (b), a relative size map of visual objects as shown in Figure 4.5 (c). 
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(a) 

(b)  (c) 

Figure 4.5: Statistical results of visual samples, (a) anchor distributions, (b) normalized 

object locations; (c) normalized object size in width and height 

Figure 4.6 (b) shows that the coordinate origin was placed at the bottom left corner, 

the relative coordinates consist of ordinates y and x which were applied to describe the 

relative location of visual objects. Figure 4.6 (c) indicates that the object width generally 

filled 25% of the image width as well as the object height mostly occupied 58% of the 

height of image. 

There was a significant gap between the distribution of the dataset and the initial set 

of regional candidates, the dataset contains a wide range of visual objects with varying 

sizes, which leads to unbalance of object distributions. As a result, the initial objects were 

clustered, the receptive field and loss functions were enhanced. 
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4.3.2 Experimental Results 

 

Figure 4.6: The result with a high confidence and the output with a high probability 

 

Figure 4.7: The test image from the Olympic Games 

 

Figure 4.8: The output of sailboat class of the testing result 
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    Figure 4.6, Figure 4.7, Figure 4.8 show that the index is correct, but it gives a 

probability around 80%. In this case, the final accuracy will be good, but the cross-

validation error and generalization error will be influenced by this “un-confidence” 

probability. 

The accuracy of the proposed method is utilized as the assessment metric. Based on 

all datasets, we additionally report the Intersection over Union (IOU). IOU is defined as 

the ratio of the area of overlap to the area of union which represents the intersection of 

the truth ground bounding box and the bounding box of the regression result. 

In addition, for a more thorough comparison, we present the recall rate across all 

datasets. It indicates that the object detection results of the proposed method based on 

supplemented datasets are all greater than those based on the basic dataset. On enhanced 

dataset, the detection results of the proposed method achieved the highest accuracy 

(97.2%), IOU (84.2%), and recall (92.3%). As a result, in the next part, the enlarged 

dataset is utilized as the training and test dataset for comparisons. Table 4.4 shows that 

the results of different cases based on the same proposed approach. 

Table 4.3: Comparisons between different results 

CASE numbers CASE accuracy 

1 1.000 

2 0.972 

3 1.000 

4 0.999 

5 0.998 

6 1.000 

7 0.999 

8 1.000 

 

In Table 4.3, we see all the research cases show high accuracy based on same method. 

Furthermore, each parameter of YOLO5x model fluctuated significantly in the 0~50 

rounds, which indicates that the model was highly unstable for detecting tiny objects. 
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Figure 4.9 depicts the precise circumstance. In the two images, the abscissa represents the 

epoch, while the ordinates represent the loss and mAP values.  

(a)  (b) 

Figure 4.9: YOLO v5x training results: (a) Loss function curve of YOLO v5x, (b) 

YOLO v5x mAP@0.5 curve. 

The durations of visual object detection using YOLOv5l and YOLOv5m models 

were too long which could not meet real-time needs; YOLOv5s model had a quick 

detection speed and met real-time requirement. One explanation is that its poor accuracy 

might be the reason why the model is ineffective at recognizing tiny objects, and the 

output has biase.   

4.3.3 Analysis and Comparison of the Improved Model 

Figure 4.10 shows the PR curve of YOLOv5s model. The modified model obtained strong 

outcomes for detecting all kinds of ships, the AP rate for all ships reaches 99.6%. The 

confusion matrix is depicted in Figure 4.11.  
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Figure 4.10: PR curve of YOLOv5s 

 

Figure 4.1: Confusion matrix of YOLOv5s 
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In next step, we increase the capacity for tiny object detection according to the 

comparison. Table 4.4 shows the increase of accuracy after we include this tiny object 

detection method. 

Table 4.4: Accuracy increase after including tiny object detection 

CASE number CASE accuracy 

1 0.831 

2 0.543 

3 0.279 

4 0.777 

5 0.862 

6 0.242 

7 0.344 

8 0.92 

 

As the results shown in Table 4.4, the capacity of the proposed algorithm to 

recognize tiny visual objects was much enhanced, the error rate was lowered. Although 

the time of ship detection rose 2.2 ms, the mAP improved up to 4.4% than the original 

method, which indicates that the enhanced network could fulfill the demands of accuracy 

and outperforms YOLOv3 and YOLOv2.  
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Chapter 5  

Analysis and Discussions 

 

 

In this chapter, experimental results are evaluated and 

analyzed. Comparisons of the results under various 

conditions will be conducted. 
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5.1 Analysis 

In this thesis, we proposed YOLO models for sailboat detection, we introduced the 

monitoring mechanism of automatic search: NAS-SCAM-YOLO. This algorithm needs 

less time on improving the accuracy of ship detection. The sailboat images can distinguish 

them from other vessels. Our basic idea is to select our own extracted vectors and 

optimize the attention of the model connection while maintaining the rapid prediction of 

the regression algorithm, so that the whole network can better filter out its own vectors 

for subsequent verification. At the same time, in the feature extraction networks, the 

observation mechanism improved integration method of features described in NAS-

SCAM-YOLO. 

The next step of this project is to investigate in-depth visualization of the attention 

mechanism and present an intuitive representation of the visual features within the model. 

In the project, we implement kayak and sailboat detection, and successfully mix 

YOLOv5 and Transformer Backbone together for visual object detection. For each model, 

we conduct experiments to find the best parameters such as input size, learning rate, and 

the best loss function. Finally, we ensemble these models and get a model with a less 

cross-validation error and generalization error. The next stage of this work will keep 

looking for other suitable backbone structure to expect a better result. 

As a result, in this thesis, we discuss the best result of YOLO models and 

successfully improve the YOLO performance by using ensemble method. In the next 

stage, in order to improve the model performance, we are able to: 

⚫ Implement more models and ensemble them together. 

⚫ The dataset has repetitive images, so cleaning dataset could also uplift the 

performance. 

⚫ In blurry image, the confidence will reduce. Hence, we will conduct data 

augmentation, e.g., blurring, sharpening to increase the robust of the training 

models.   

⚫ After the data augmentation, TTA can also be considered in the test set.  

⚫ According to the first stage process, the general structure of object detection is a 
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convolution backbone for image feature extraction, the output is a feedforward 

neural network. In this case, there may be other methods that could be used to 

replace the attention model. 

 

Figure 5.1: The condition with blurry image with all types of boats 

 

Figure 5.2: A scene with overlapping goals 

5.2 Discussions 

5.2.1 Comparison between Models 

Model selection is frequently influenced by the speed of object detection. Depending on 

picture resolution and model complexity, processing time per image generally ranges 
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from tens milliseconds to a second. Longer time may yield more exact findings, and vice 

versa. A few of proposal-based object detectors are initially slower but more accurate, 

though they may attain faster inference if the maximum number of region proposals is 

limited. This is not practical for ship identification problem, because harbor images are 

similar to the one occurred often. Real-time analysis is conducted based on the region of 

interest. As a result, a simple and non-complex model is frequently deemed for specific 

issues. A methodology like this would often result in a greater false alarm and miss rate 

if it is applied to ship detection.  

    The studied reference models include Faster R-CNN and YOLOv5. Faster R-CNN 

and YOLOv5 achieved the highest and lowest AP results, respectively. Model selection 

is frequently influenced by the speed of visual object recognition. Depending on image 

resolution and model complexity, processing time of every image generally ranges from 

ten milliseconds to a second. Longer time may yield more exact results, and vice versa. 

Visual object detectors related to proposals are initially slower but more precise, though 

they may attain faster detection if the maximum number of region proposals is limited.  

We compared the approach to others, including Fast R-CNN, Faster R-CNN, 

YOLOv2, and SSD. We chose the VGG training detection model for the Fast R-CNN 

algorithm. Regarding Faster R-CNN, we made use of a pre-trained convolutional neural 

network on ImageNet as the pre-trained model, then we adopted ZF net (3 fully connected 

layers and 5 convolutional layers) as well as VGG-16 net (3 fully connected layers and 

13 convolutional layers) to retrain the detection model.  

In order to achieve the goal, we utilize VGG-16 net and MobileNet. Regarding 

YOLOv2, we retrain the detection model by using the pre-trained weights while 

increasing the quantity of data and improving model resilience with typical data 

augmentation methods like as hue, saturation, and exposure changes. Pertaining to model 

training, these parameters have been taken into account. All experiments were carried out 

based on Titan XP computers. We documented the outcomes of each model based on the 

prior indicators of evaluation. The proposed model relied on YOLOv5, the mAP of every 

model has been improved significantly. 

The conventional object detection methods cannot work in real time. Fortunately, 
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the emergence of deep learning has opened a new era of visual object detection. The 

experiments using basic deep learning methods show that the single-stage object 

detection method has significant advantages in visual object detection, the accuracy has 

made significant progress, which is conducive to improving the efficiency of object 

detection in real time.   

One of the main aims of this thesis is to evaluate the appropriateness of algorithms 

of YOLO models in computer vision. The accuracy of YOLO is measured by comparing 

YOLO detections to observational methods. Human observation with video records 

determines the amount of passing boats. If the findings of human observation and 

machine observation were compared, it was discovered that there are several disparities 

in evaluations between these two approaches.  

Human observation and YOLO models have the same assessment settings, which 

utilizes human observations as the baseline which is more logical. Due to human errors, 

a machine observation like YOLO models may potentially fail to visual object detection 

(Woods, Dekker, Cook, Johannesen, & Sarter, 2017). The detections were re-evaluated 

numerous times with various settings to reduce the mistakes of machine classification.  

The results revealed that there is a significant disparity between human object 

detection and machine classification. Because human observation is a more exact source 

than machine classification, it will be utilized as the baseline (ground truth) for calculating 

the accuracy of YOLO. However, two sorts of errors are conceivable for calculating 

YOLO accuracy: Misclassification and misdetection, both are considered faults in the 

accuracy computations. YOLO models can accurately detect visual objects spotted by 

human observations. Visual object detection was carried out by using computer vision 

algorithms based on the distinguishing features from YOLO models (Kapur, 2017). 

Despite of various problems, sailboat classification has achieved a high accuracy by using 

YOLO models.   

The effectiveness of ship detection by using YOLO models demonstrates its 

enormous potential in a variety of settings, including wind speeds, incident angles, ocean 

dynamic characteristics, and sea states, which primarily impact the backscattering 

coefficient between the ship and the ocean surface.  
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To get improved ship detection results, further effort will be required to identify the 

ships from images obtained from the satellites. In order to produce more precise detection 

results, the model can be updated, a new model can be sent to the satellite.  

5.2.2 Validity and Reliability 

In this thesis, the dependent variable is YOLO accuracy, the independent factors are the 

amount of training inputs. The validity approach is applied to examine the possibility of 

the ship detection methods. Counting the vessels and classifying them are possible by 

using the tools within the validity context. 

In order to evaluate YOLO accuracy, it must be compared to benchmarks. The 

datasets such as PASCAL VOC (PASCAL, 2019) and COCO (COCO, 2019) are 

unsuitable for comparisons. These datasets were designed for general purposes of object 

detection, and no particular dataset for marine applications is provided. Furthermore, with 

these datasets, the accuracy of visual object detection and localization as a single metric 

is given, whereas the current research focus is only on visual object detection. As a result, 

a comparison of accuracies is needed. 

Rodin et al. (2018) employed a CNN algorithm for visual object recognition during 

a marine search and rescue mission utilizing data gathered by an unmanned aerial vehicle 

and obtained 92.5% accuracy of visual object detection, as described in the literature. 

Furthermore, Yang et al. (2019) took use of YOLOv2 for visual object detection based on 

SAR photos for marine traffic surveillance and achieved a detection accuracy 90%. In 

this thesis, YOLO was employed for the detection task. As shown in Figure 4.6, Figure 

4.7, Fgiure 4.8, it achieved an accuracy within the same range by utilizing a slightly 

different configuration. 

5.2.3 Misclassification and Misdetection Errors 

Misclassification and misdetection errors are the two types of YOLO detection faults. 

Misclassification occurs if YOLO assigns a vessel to the incorrect class, whereas 

misdetection occurs if YOLO is unable to identify a vessel. Both errors were treated as 

system faults in the accuracy computation. Assuming YOLO models were given sensory 
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data to a collision avoidance system aboard an autonomous vessel, two degrees of 

repercussions are expected. In the instance of misdetection, the feedback is potentially 

more severe than in the case of misclassification. Misdetection of a rowboat with four 

paddlers, for example, has greater damaging consequences than misclassification of a 

rescue craft as a motorboat. 

In this thesis, YOLO models obtained 94% accuracy in the test phase and 95% 

accuracy in the assessment phase. These results are regarded to be in the same ballpark 

as the benchmarks, but the inaccuracies must also be assessed from a safety standpoint. 

The mistakes occurred among those groups who are most vulnerable to severe effects in 

the event of an accident. This raises safety issues about the implementation.   
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Chapter 6  

Conclusion and Future Work 

 

 

In this chapter, we will summarize the various methods of this 

research project, analyze the shortcomings and gaps, and point 

out the directions of future improvement. 
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6.1 Conclusion 

With the emergence of deep learning for evaluating visual object detection, the goal of 

this research project is to examine the available methods for ship detection. The key points 

of this thesis are as follows: We have reviewed image segmentation with specific 

applications, the related work has thoroughly reviewed with various applications, we 

presented our technical insights; we update deep learning methods for image 

segmentation; we review the work closely related to research gaps.   

The first experiment in this thesis described the detection algorithm YOLO. The 

method is based on the automatic search, which has low costs on improving the detection 

accuracy and efficiency. Using sailboat images can distinguish them from other vessels, 

whether there are other vessels in this image.  

The basic idea is to select our own feature vectors and optimize the attention of the 

model connection while maintaining the accurate prediction by using the regression 

algorithm, the whole network can better filter out its own vectors for subsequent 

regression. At the same time, in feature extraction networks, the observation mechanism 

and improved methods in NAS-SCAM-YOLO are transferred to the next step, this will 

be to visually explain the attention mechanism and more intuitively detail the overall 

characteristics of the models. 

In the second project, we implement kayak and sailboat detection, we successfully 

mixed YOLOv5 and Transformer Backbone together for visual object detection. For each 

model, we find the best parameters such as input size, learning rate, and the best loss 

function. Finally, we ensemble these models and get a model with a few of cross-

validation errors and generalization errors. The next stage of this project is to keep looking 

for other suitable backbone structures and attain a better result. 

In this thesis, we discuss the result of YOLO parameters and successfully improve 

the YOLO performance by using ensembled models. In the next stage, we will keep 

improving the model performance by: 

⚫ Implementing more models and ensemble them together. 

⚫ The dataset has repetitive images, so cleaning dataset could also improve the 
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performance. 

⚫ Data augmentation will be further conducted, e.g., blurring, sharpening to increase 

the robust of the training set. It will make the unclearly images much better. 

⚫ After the data augmentation, TTA will also be conducted in the test set, which may 

improve the performance of ship detection. 

⚫ The general structure of visual object detection is a convolution backbone for 

image feature extraction, the output of the feedforward neural network is to 

generate the result of visual object detection. In this case, there may have other 

methods that could be applied to replace the attention method. 

6.2 Future Work 

Future work will be conducted to fill the existing research gap. Expanding the database 

will bring richer comparable data to this research, such as accuracy comparisons in 

scenarios with different levels of complexity. In addition, the trade-off between time and 

accuracy is also a valuable research topic in the field of navigation. A computational 

framework may be constructed to take into account of artifacts at this moment, which has 

never been done before. This will provide an opportunity to improve the preprocessing 

strategy and contribute to the process of visual feature extraction. Furthermore, a new 

deep learning model emphasizing on decreased training is needed to reduce the 

processing time.  
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