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Abstract

Measuring the stride length of a pedestrian is an essential task for many applications,

such as augmented reality (AR) applications tracking devices and motion monitoring

devices. In the traditional position estimation method such as the double integral of the

acceleration signal, the signal noise of the acceleration from the Inertial measurement

units (IMU) leads to a cumulative error. It is the bottleneck of the positioning perform-

ance in most of Inertial Navigation System (INS). Moreover, in many applications,

such as AR and tracking devices, sensors are attached to the human body and used

in the indoor environment, which is hard to obtain the position of the device through

GPS or traditional INS. In this paper, we proposed a novel method that transforms the

position information to step length, and then we use Artificial Neural Network (ANN)

to estimate the step length through the data from the IMU. The conducted experiments

show that the proposed method achieved less than 2% error in a distance of 62.3m.

Comparing to the traditional double integral method, it has superior performance and

better ability to handle the signal noise from a low-cost IMU.

Keywords: Neural Network, IMU, Stride Length Estimation
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Chapter 1

Introduction

1.1 Research Background

To measure stride length of a pedestrian is necessary in many applications including

localization of an augmented reality (AR) device through the position of the operator

(Mulloni, Seichter & Schmalstieg, 2011; Ahn & Han, 2012), tracking of firefighter in

search and rescue mission (Faulkner, Alwood, Taylor & Bohlin, 2010; Foxlin, 2005)

and monitoring the motions of people required in the situations in health care or training

etc (Stone & Skubic, 2011; Trojaniello, Ravaschio, Hausdorff & Cereatti, 2015).

For the outdoor pedestrians positioning, Satellite Position System (SPS) is the most

common technologies used. One of the well-known SPS application is Global Position

System (GPS). There are 24 to 32 earth orbit satellites which transmit radio signals

for GPS. Based on these signals, GPS receivers can determine the location, time and

velocity (Grewal, Weill & Andrews, 2007) of the carrier. It not only works in most

weather condition and location, but also provides satisfactory accuracy of the navigation.

What’s more, it is cheaper compared to other navigational systems. The cost of a GPS

chip is under $5 US dollar (Colwell, 2007). In this way, GPS is widely used in various

application such as car navigation, mobile orientation, autonomous vehicle, Unmanned

10
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Aerial Vehicle (UAV) and performance analysis. However, GPS chip is power hungry, it

can drain battery in 8 to 12 hours (Colwell, 2007). GPS signals can be affected by many

atmospheric conditions (i.e. geomagnetic storms) and electromagnetic interference.

This leads to an error of about 5 to 10 meters in positioning accuracy (Terrier, Ladetto,

Merminod & Schutz, 2000). Furthermore, GPS signals can be blocked by obstacles

such as terrain, buildings and water (Grewal et al., 2007). Therefore, GPS is not able

be used indoor, underwater or in dense tree regions (Chiang, Chang, Li & Huang,

2009). Many AR applications (such as games) are designed for the indoor environment.

Without a capability of tracking the position of the device indoor, the application of AR

will be limited. One popular solution is using Inertial navigation system (INS) which is

the most common technology used for indoor positioning (Chiang et al., 2009). The

INS uses the data obtained by the IMU (Inertial Measurement Unit) to estimate the

position of the object(Kong, 2004). An IMU usually contains a cluster of sensors such

as three axis-installed accelerometers, three axis-installed gyroscope and magnetometer

(Mourcou, Fleury, Franco, Klopcic & Vuillerme, 2015). In INS, the position can be

obtained by from its the displacement from a known starting point (Levi & Judd, 1996).

The displacement is derived from the integration of velocity which in terms is got from

the integration of the acceleration with time. The process of a standard INS is shown in

Figure 1.1.
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Figure 1.1: Process of INS

Because of the nature of the human gait, a pedestrian’s travelled distance consists of

strides. Double integration is a common method to estimate the distance. Generally, the

recorded acceleration data collected by the IMU contains significant noises, which will

lead to cumulative error in each step after double integration. Moreover, the magnitude

of the noise is enlarged by the square of time (Levi & Judd, 1996). To solve this problem

is the main motivation of this dissertation.
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1.2 Research objective

Artificial neural network (ANN) is considered as a powerful tool to handle the linear

and nonlinear fitting and classification problems. It has been applied in many fields

such as medical diagnosis (myocardial infarction (Baxt, 1991), tumour prediction

(Khan et al., 2001) and seizure detection (Ahmad, Saeed, Saleem & Kamboh, 2016;

Shoeb, 2009)), atmospheric sciences (Gardner & Dorling, 1998), object recognition

(He, Lau, Liu, Huang & Yang, 2015; Pohtongkam & Srinonchat, 2016) and trajectory

prediction (Payeur, Le-Huy & Gosselin, 1995; Meireles, Almeida & Simões, 2003).

In this dissertation, we use ANN to estimate the stride length. Firstly, a person walks

on the floor in a normal gait. Then the stride length of each step measured by hand is

used as a target data for the ANN. Secondly, the IMU is put on the boots of the same

person. It measures the accelerations and Euler angles corresponding to the person’s

walk. Thirdly, the collected data will be smoothed and filtered. Then the feature points

will be extracted from the processed data and be used as the input data for ANN training.

At last, the trained ANN will be applied to estimate the stride length and the result will

be analyzed.
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1.3 Organization of the Dissertation

This dissertation is organized as follow. Chapter 2 is on the literature review of the

traditional gait detection method, step length estimation technique. Chapter 3 is on the

theory that related to the experiments such as artificial neural network, noise filtering

method and coordinate systems. Chapter 4 is on the description of the methodology, the

equipment and data collection of the experiments. Chapter 5 is on the steps to analyze

and process the collected data in the experiments. In Chapter 6, the experimental

results are presented. In Chapter 7, the conclusions are given and the future works are

discussed.



Chapter 2

Literature Review

2.1 Detection Of The Gait Cycle

In our method, the first task of stride length estimation is to extract the steps from the

data collected. The human bipedal movement can be divided into four steps: stance, heel

off, swing and heel strike (Willemsen, Bloemhof & Boom, 1990; R. G. Stirling, 2004).

In a simpler form, Everett and Kell (2010) simplified the human bipedal movement into

two phases: stand phase and swing phase, as shown in Figure 2.1.

Figure 2.1: Illustration of gait cycle

15
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When the foot is planted on the ground, the sensor that attached to the foot will

remain stationary during the stand phase. The data collected by the inertial sensor

will remain a stable value without large fluctuations. Therefore, the threshold of

fluctuations of the data (e.g. from an accelerometer) can be identified to detect the stand

phase (R. Stirling, Collin, Fyfe & Lachapelle, 2003; Castaneda & Lamy-Perbal, 2010).

Also, Ojeda and Borenstein (2007), Woodman and Harle (2008) used angular velocity

thresholds and Foxlin (2005) used the thresholds of both acceleration data and angular

velocity data to detect the stand phase. Moreover, the threshold of magnetometer data

can also assist the stance phase detection(Jimenez, Seco, Prieto & Guevara, 2009).

Jimenez et al. (2009) reported the stand phase detection error rate of 0.1% and 0.2%

with the thresholding method on accelerometer data and angular velocity respectively.

However, this method requires the sensor mounted to the foot which is affected by the

deformation and bounce of the footwear (Kim, Jang, Hwang & Park, 2004).

There are other techniques such as peak detection, zero crossing detection, auto-

correlation and spectral analysis developed to identify the specific data segmentation as

listed below.

• Peak detection — In this method, gait is detected by hell strikes which are

related to sharp changes in vertical acceleration. However, the large forces cause

the sensor bounce which produces multiple peaks can cause errors in the gait

detection (Fang et al., 2005; Ying et al., 2007).

• Zero crossings — A cheaper way to monitor zero-cross acceleration values. This

method is using the changing rate of the velocity data to determine the stance

phase (Shin, Park, Kim, Hong & Lee, 2007).

• Auto-correlation — Regardless of the sensor attachment position, the gait cycle

can result in the strong periodicity of the collected data. The period can be

extracted by searching the maximum value in mean-adjusted auto-correlation of



Chapter 2. Literature Review 17

the sensor data series (Ying et al., 2007). Whether the peak value corresponds

to stride depends on the mounted position of the sensor. In other words, when a

sample data series of a certain stride is previously collected, the same process can

repeatedly be used to identify the stride if the data is cross-correlation with the

previous record. The auto-correlation method depends on detecting the cyclicity

of the sensor signals. However, it is hard to implement this algorithm to handle

variations in walking speed.

Table 2.1: Gait cycle detection summary

2.2 Stride Length Estimation

According to Godha, Lachapelle and Cannon (2006), the distance between the initial

contact point of one foot (s1) and the initial contact point of the “opposite” foot (s2)

is called the stride length. However, in many experiments, as the sensor is attached

on foot, the stride length is usually defined as the distance between the constant initial
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contact points of the same foot (s).

Figure 2.2: The illustration of the stride length

2.2.1 Integration of acceleration

One popular method of estimating the stride length is the double integration of the signal

(acceleration) from the accelerometer. Numerical integration methods like modified

trapezoidal rule and customized Simpson’s rule are usually used (Bamberg, Benbasat,

Scarborough, Krebs & Paradiso, 2008; Truong, Lee, Kwon & Jeong, 2016; Rampp

et al., 2015; Bachschmidt, Harris & Simoneau, 2001; Macdermid, Fink & Stannard,

2015; Shultz, D’hondt, Fink, Lenoir & Hills, 2014). Customized non-linear integration

method is also used (Alvarez, Alvarez, López & González, 2012).

The trapezoidal rule and Simpson’s rule will be described as below.

Trapezoidal Rule

The Newton-Cotes formula is frequently used in numerical integration. In this formula,

the function to be integrated is replaced by its approximation (e.g. a polynomial) which
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can be integrated easier. The Newton-Cotes formula can be described as:

I = ∫
b

a
f(x)dx ≅ ∫

b

a
fn(x)dx (2.1)

Where fn(x) is a polynomial and n is the coefficient of the polynomial. It can be

represented as:

fn(x) = a0 + a1x + ... + an−1x
n−1 + anx

n (2.2)

The trapezoidal rule is known as the first-order Newton-Cotes formula., that is,

fn(x) = f1(x) in Equation 2.1, The trapezoidal rule can be generalized as:

I = ∫
b

a
f(x)dx ≅ ∫

b

a
f1(x)dx (2.3)

The linear equation can be expressed as:

f1(x) = f(a) +
f(b) − f(a)

b − a
(x − a) (2.4)

Using the area under this line as an estimation of the integral:

I = ∫
b

a
[f(a) +

f(b) − f(a)

b − a
(x − a)]dx (2.5)

The result of the integral is:

I = (b − a)
f(b) − f(a)

2
(2.6)

The integral can be divided into a partition of the interval, [xi, xi+1] ∈ [a, b], such

that a = x0 < x1 < ... < xN−1 < xN = b, ∆xn = xn − xn−1, then applying the trapezoidal
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rule to each sub-interval summing the results:

∫

b

a
f(x)dx ≈

N

∑
n−1

f(xn−1) + f(xn)

2
∆xn (2.7)

When the partition increases, a better accuracy of approximation can be achieved.

Anwary, Yu and Vassallo (2017) obtained the velocity and position through trapezoidal

rule. The error was less than 1% in the dataset with the best performance. However, for

some dataset, the error increased to more than 30%.

Simpson’s Rule

The Simpson’s rule corresponds to the three-point Newton-Cotes rule. The three points

a, b and m = a+b
2 are selected to fit the primitive function with a parabola or other

types of simple functions . Considering the computation time and accuracy, a quadratic

function is used in the Simpson’s rule. In Simpson’s rule, f(x) is primitive function

and g(x) is the fit function.

g(x) = Ax2 +Bx +C (2.8)

Then, f(a) = g(a), f(b) = g(b), f(m) = g(m).

∫

b

a
f(x)dx ≈ ∫

b

a
(Ax2 +Bx +C)dx

=
A

3
(b3 − a3) +

B

2
(b2 − a2) +C(b − a)

(2.9)

This formula can be simplified as:

∫

b

a
f(x)dx ≈

(b − a)

6
[f(a) + 4f (

a + b

2
) + f(b)] (2.10)
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2.2.2 Step frequency and acceleration

According to previous researches, the stride length varies with walking frequency,

speed, acceleration or personal feature (weight, age, height, leg length, etc) (Cho &

Park, 2006; Kao, Chen & Lin, 2001; R. Chen, Pei & Chen, 2011). In several pedestrian

navigation systems (PNS), the stride length is estimated base on the walking frequency.

Gusenbauer, Isert and Krösche (2010) considered the step frequency as the important

parameter to estimate the step length. They used a linear equation to describe the

relationship between frequency and stride length.

ls = a + bfs + ω (2.11)

Where ls is the estimated stride length, fs is the step frequency, a and b are constants,

ω is defined as Gaussian noise N(0, σs), σs is the of the Gaussian noise distribution

which is defined as:

σs = 0.24 − 0.09fs (2.12)

Moreover, Qian, Ma, Ying, Liu and Pei (2013); Shin et al. (2007) combined step

frequency with acceleration in the calculation the stride length using the following

equations:

L = αf + βv + γ (2.13)

Where α, β are weighted parameters, γ is a constant, f is the frequency and v is the

acceleration. f and v can be obtained as:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

fk =
1

tk−tk−1

vk = ∑
tk
t=tk−1

(at−āk)2
N

(2.14)

Where ti is the detected time duration of the ith step; at, āk and N represent the
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acceleration data at time t, the average acceleration and the number of outputs on one

step respectively.

2.2.3 Received signal strength

With the development of the Wireless Local Area Networks (WLANs), the WLAN

access points (AP) are equipped in many places such as school, airport, shopping mall

and museum. For indoor localization, the useful data is the received signal strength

(RSS) from each AP. These information are available because the devices can use these

the signal source as beacons when roaming within the network of APs.

In 1988, Motely and Keenan proposed the propagation model to estimate the distance

by the radio signal strength (Motley & Keenan, 1988). It can be given by

Preceived(d) = Preceived(d0) − 10αlog (
d

d0

) (2.15)

where Preceived(d) is the signal strength received by the device at the reference

distance d, Preceived(d0) is the signal strength received at the known distance d0 and α

is a coefficient for modeling of radio propagation in the environment. This model was

used in several experiments but obtained poor results. In 2002, Chen and Kobayashi

proposed the following refinement of this model which takes the effects of walls in the

signal into consideration (Y. Chen & Kobayashi, 2002): .

Preceived(d) = Preceived(d0) − 10αlog (
d

d0

) +
Nw

∑
i=0
niwi (2.16)

where Nw is the number of walls, ni is the number of walls having an attenuation of

wi dB. This improved model obtained a better result.

Furthermore, Bahl and Padmanabhan (2000) provided a different approach called

radio signal strength fingerprinting, it obtained better performance. It consists of
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two step: offline stage and online stage. In the offline stage, it firstly establishes a

map between collected received signal strength and certain positions in the indoor

environment. Secondly, in order to collect fingerprints at various locations and set up

the database, some on-site measurements need to be performed in designated areas. The

offline stage also called training or profiling. In online stage, the location of the device

is estimated by using the database set up in the offline stage.

2.3 Heading angle determination

After the gait cycle and the stride length being estimated, they can be combined with

the heading of the pedestrian to determine his trajectory. So heading determination is

another important issues for indoor navigation. In IMU-based localization system, the

three-axis magnetometer and the three-axis gyroscope are commonly been used for

heading angle measurement. The comparison between these two sensors are shown in

Table 2.2. It can be seen that their advantages and disadvantages are complementary

each other.,The gyroscope can correct the magnetic disturbances while the magnetic

compass can determine and compensate for the errors in the gyroscope readings (Kim

et al., 2004). The turning angle between two continuous steps can be defined as

Table 2.2: The comparison of the compass and gyroscope
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Figure 2.3: The illustration of the turning angle

where x and y are the position coordinates, l is the stride length and θ is the heading

angle. The differences between continuous steps at time k and k − 1 are denoted as

∆θk = θk − θk−1.

In the experiment of Liu, Dashti and Zhang (2013), the measurement error of

magnetic compass as zero-mean Gaussian distributed δθ ∼ N(0, σ2) are considered.

Therefore, according to triangulation rule, the updated coordinates of the position can

be calculated as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

xlk = x
l
k−1 +L

l
ksin(θ

l
k)

ylk = y
l
k−1 +L

l
kcos(θ

l
k)

(2.17a)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Llk = L
l
k−1 + δL

θlk = θ
l
k−1 +∆θk + δθk

(2.17b)

Moreover, Li et al. (2012) also used a similar algorithm to calculate the heading

angle: θi = θei + δθi, where θei is the obtained direction of current step i and eth is the
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ground truth in i step and δ is the noise of compass sensor readings. Particularly, for

long distance estimation, they compared the changes in heading angle δθi with a given

threshold θth. They firstly calculated the mean heading angle of all steps since the

previous turn, then compared the heading angle of current step with the mean heading

angle .

δθi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

θi −∑
i−1
j=1 θj, ∣δθi∣ ≥ θth

0, ∣δθi∣ < θth

(2.18)

It can be seen that if the change of heading angle is larger than the threshold, the

turn at this step will be detected.

2.4 Summary

In this section, several previous works that related to our research are reviewed. Firstly,

we reviewed the gait cycle detection algorithm. Secondly, the stride length estimation

methods basing on different sources have been studied. Lastly, the heading determine

method was reviewed. Most importantly, the previous researches provided us helpful

guidance in different areas for our experiment.
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Theory

3.1 Introduction

In this chapter, theories related to stride length estimation will be reviewed. It includes

an introduction of artificial neural network, several common signal filtering techniques to

process IMU signals, coordinate systems used to describe the motion and the orientation.

3.2 Artificial Neural Network

Artificial neural network is a machine learning technology that simulates the neural

network in a human brain and the associated intelligence. The neural network in the

brain is a complex organization. There are approximately 100 billion neurons in an

adult brain (Shatz, 1992). Typically, a neuron consists of nucleus, dendrites and axons

(Pannese, 2015). A nucleus acts as a processing unit in the neuron. A dendrite acts as a

postsynaptic component of the excitatory synapses in the brain. They played an essential

role in synaptic transmission (Yuste & Denk, 1995). Moreover, an axon connects axon

terminals and dendrites; those terminals are connected to other neurons to transmit

information between the neurons. The neuron structure is shown in Figure 3.1 (Jain,

26
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Mao & Mohiuddin, 1996).

Figure 3.1: The illustration of neuron

3.2.1 McCulloch-Pitts neural model

After examining the structure of the neurons in human brains, McCulloch and Mathem-

atician Pitts proposed a mathematical model , called McCulloch-Pitts (MP) model, of

the neuron form in 1943 (McCulloch & Pitts, 1943). It contains three functions: input,

output and process. They are analogous to dendrites, axon and nucleus respectively.

In the input unit, each input parameter is assigned with a weight depends on the pri-

ority. The Figure 3.2 shows a typical neuron model: three inputs, one output and two

calculation functions, where ai is the input and wi is the weight ( i = 1, 2, 3).

Figure 3.2: McCulloch-Pitts model of neural model

Sgn is a sign function which returns 1 if the output is a positive number, or returns 0
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otherwise.

z = Sgn(a1w1 + a2w2 + a3w3) (3.1)

Generally, the purpose of the neuron model is to predict the unknown attributes

through the known properties (Gerstner & Naud, 2009). The known attributes are called

feature, and the unknown properties to be predicted are called target. However, as the

weights were set manually in advance, the MP model is a computational model other

than a learning model (Buscema, 1998).

3.2.2 Perceptron neural network

In 1949, the neural network, named perceptron, consisting of two layers of neurons was

proposed by Rosenblatt (Jain et al., 1996). The perceptron model was the first neural

network which can be improved through the training process.

The perceptron model contains two layers: the input layer and the output layer,

where the input unit is only responsible for data transmission and the output unit

responsible for processing the information that is transmitted from input layer. The

Figure 3.3 shows a perceptron neural network that contains two output units.

Figure 3.3: Perceptron neural network

Those weights are then associated with a weight matrix. The improved structure is

shown in Figure 3.4.
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Figure 3.4: Improved perceptron neural network

z1 = f(a1w1,1 + a2w1,2 + a3w1,3) (3.2a)

z2 = f(a1w2,1 + a2w2,2 + a3w2,3) (3.2b)

Let a⃗ = [a1 a2 aT3 ] and z⃗ = [z1 z2 z3]
T ; Then, the above formula can be rewrite

as:

f(Wa⃗) = z⃗ (3.3)

Through a training process, the weight of perceptron can be updated . Therefore, it can

be considered as a logistic regression model (Jain et al., 1996) that is only able to do

the simple linear classification task, as shown in Figure 3.5.
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Figure 3.5: Linear classification

3.2.3 Two-layer neural network

The perceptron neural network cannot solve the problem of exclusive dis-junction

(XOR). However, by using two layers neural network, this problem as well as nonlinear

classification is resolved is solved. Rumelhar and Hinton and others proposed the

backpropagation algorithm (BP) for training the neural networkJin, Li, Wei and Zhen

(2000). BP neural network is a feed-forward neural network and is trained through error

backpropagation algorithm. It has the ability to solve nonlinear approximation. The

structure of two layers neural network contains an input layer (with an hidden layer), an

output layer. As shown in Figure 3.6.
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Figure 3.6: Two layers neural network

ai(j) represents the output of the ith node of layer j. The nodes in second layer

can be derived from the output of the first layer with the first weight matrix w(1) and

function f . Where function f is the activation function, that define the output of the

node. And the output z can be derived from the second weight matrix w(2) and the

same activation function f . In the standard two-layer ANN, The activation function f

is a normalizable sigmoid function. This function normalized the output into a range of

(0,1) (Jain et al., 1996).

a1
(2) = f(a1

(1)w1,1
(1) + a2

(1)w1,2
(1) + a3

(1)w1,3
(1)) (3.4a)

a2
(2) = f(a1

(1)w2,1
(1) + a2

(1)w2,2
(1) + a3

(1)w2,3
(1)) (3.4b)

z = f(a1
(2)w1,1

(2) + a2
(2)w1,2

(2)) (3.4c)

When adding node to output layer, we use matrix and vector to express the variable

quantity. a(1), a(2) and z⃗ are vector data that is transmitted in the network; w(1) and

w(2) are weights matrix parameters .
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Figure 3.7: Improved two layers neural network

It can be expressed as:

f(
ÐÐ→
w(1) ∗

Ð→
a(1)) =

Ð→
a(2) (3.5a)

f(
ÐÐ→
w(2) ∗

Ð→
a(2)) = z⃗ (3.5b)

A two layers neural network is able to approximate any continuous function. The

original data is spatial transformed by the hidden layer, especially the parameter matrix

of the hidden layer, then the data can be classified by linear classification. In essence, the

two-layer neural network simulates the nonlinear function by two-layer linear model.

3.2.4 Multi-layer neural network

The multi-layer neural network allows multiple sub-layers in the hidden layer (Svozil,

Kvasnicka & Pospichal, 1997). It. In particular, not only the nodes, but also the sub-

layer number in hidden layer can be changed. As shown in Figure 3.8, there are three

weight matrices in this network, six in w(1), four in w(2) and six in w(3).
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Figure 3.8: Multilayer neural network

As shown in Figure 3.9, we can increase the node number in the hidden layer.

Murata, Yoshizawa and Amari (1994) found that an important but challenging problem

is to determine the suitable number of hidden units by using only input and output

samples. According to Tetko, Livingstone and Luik (1995), with more neurons in the

hidden layer, if the input samples for the ANN are included in the training data set, the

errors between the output value and the true value will be reduced. On the other hand, if

input samples for the ANN are not included in the training data set, the errors between

the output value and the true value will increase. This is called "over-fitting". Supposing

we have two networks, as described in (Figure 3.8 and Figure 3.9) with same numbers

of hidden layer but different neuron number, if the input data set that included in the

training dataset, the network with fewer neuron number may have worse performance

than the network with more neuron number after enough training. However, if the input

dataset is not included in the training dataset, the network with fewer neuron number

may have better performance.
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Figure 3.9: Multilayer neural network(neuron number increased)

As shown in Figure 3.10 where the number of hidden layers in the neural network

is twice what is in Figure 3.10, , it can be more accurate to extract the features and has

better ability to fit the correlation between the true value and actual output (Panchal,

Ganatra, Kosta & Panchal, 2011).
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Figure 3.10: Multilayer neural network(layer number increased)

3.2.5 ANN MATLAB toolbox

The MATLAB (version 2017b) ANN toolbox is used to perform the ANN classification

and fitting process in the experiment. In the toolbox, there are several training algorithms

for the multilayer neural network can be selected for different tasks such as fitting and

classification problems.
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Figure 3.11: ANN toolbox in MATLAB (version 2017b)

For ANN fitting, there are three algorithms namely, Levenberg-Marquardt back-

propagation Bayesian regularization backpropagation and Scaled conjugate gradient

backpropagation training algorithm. The Levenberg-Marquardt backpropagation train-

ing algorithm uses the Levenberg-Marquardt optimization to update the weight and

bias of input parameters. It calculate the Jacobian matrix of the weight and bias of the

variable and adjust the value according to Levenberg-Marquardt optimization (Roweis,

1996). Bayesian regularization backpropagation training function also uses Levenberg-

Marquardt optimization (Roweis, 1996) to adjust the weight and bias of the input

variable in ANN. Moreover, it uses the Bayesian regularization (Aggarwal, Singh, Ch

& Puri, 2005) in the end of the ANN training to provide a generalized qualities of the

trained network. Instead of using Levenberg-Marquardt optimization to update the

weight and bias, Scaled conjugate gradient backpropagation training algorithm uses the

scaled conjugate gradient method (Møller, 1993) to update the weight and bias of the

input variables.
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For ANN classification, there are three algorithms can be used in the MATLAB

ANN toolbox. Similar to the ANN fitting, Levenberg-Marquardt backpropagation and

Scaled conjugate gradient backpropagation training algorithm also can be used in ANN

classification. Instead of fitting the value, the ANN classification function will use the

fitting value to distinguish the Classes in the input data. ANN classification function

also uses the gradient to update the weight and bias of the variable in the input layer.

Different from ANN fitting, Gradient descent backpropagation can be used for ANN

classification. It uses gradient descent with adaptive learning rate to update the weight

and bias of the input variable in ANN (Hagan, Demuth, Beale & De Jesús, 1996).

Overall, in ANN fitting and classification, there are four different training algorithm

can be used. Experiments will be conducted to test the performance and determine the

optimal algorithms for estimating the stride length.
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3.3 Noise Filtering Method and Smoothing Method

The acceleration and Euler angles signals from the IMU usually contain a small offset

even when the sensor is stationary. This is known as the sensor bias (Cruz, Alouani,

Rice & Blair, 1992). When the sensor attached to the object, the noise of the output

signal is not only influenced by sensor bias, but also the movement of the object. In

order to remove the noise of the output signal from the IMU, noise filtering and signal

smoothing method need to be applied before the data are processed

3.3.1 Moving average filter

The moving average filter (MA filter) generates the output signal by averaging multiple

input signals (Sato, 2001). It can be expressed as:

y(i) =
1

M

M−1

∑
j=0

x(i + j) (3.6)

where y is the output signal, x is the input signal and M is the number of averaged

input points. For example, we take previous three input points and the current point to

calculate the average value of these four points.

y(n) =
1

4
x(n) +

1

4
x(n − 1) +

1

4
x(n − 2) +

1

4
x(n − 3) (3.7)

Alternatively, the input points can be symmetrically selected around the current point.

Moving average filter is a common tool for filtering data. Due to its simplicity, MA filter

is optimal for reducing random noise. However, it ignores the relationships between

these points, which may cause data distortion (Azami, Mohammadi & Bozorgtabar,

2012).
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3.3.2 Savitzky-Golay Filtering

The Savitzky-Golay (S-G) filter, published in 1964, is a specialized digital low-pass

filter also called S-G smoother based on local least-squares polynomial approximation

(Schafer, 2011)Savitzky and Golay (1964). In order to avoid the data distortion, S-G

filter uses the linear least square to continuously fitting a polynomial to a subset of

selected data. This process is called "convolution". Also, Savitzky and Golay (1964)

introduced the "convolution coefficients table" to pair with different polynomial types

and subset size.

The S-G filter can be expressed as:

Yj =

m−1
2

∑
i=−m−1

2

Ciyj+i,
m − 1

2
≤ j ≤ n −

m − 1

2
(3.8)

The data consists of a set of n(xj, yj) points where j = 1,2, ..., n and x is an

independent variable, yj is an observed value and m is the subset size. The convolution

coefficients Ci can be checked in the convolution coefficient table (Table 3.1) that

formulated by Savitzky and Golay (1964).
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Table 3.1: Convolution coefficient

For example, when using a seven-points quartic polynomial for smoothing, m = 7,

i = −3,−2,−1,0,1,2,3 and the jth smoothed data point Yj is given by

Yj =
1

231
(5yj−3 − 30yj−2 + 75yj−1 + 131yj + 75yj+1 − 30yj+2 + 5yj+3) (3.9)

where C−3 = 5/231 and C2 = −30/231, etc.

The principle of the S-G filter can be summarized in three steps:

1. Finding a suitable least-square fit for each subset of the signal.

2. Using the coefficient of the polynomial replaces each data point.

3. Computing numerical derivatives from each fitted polynomial at each data point.
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3.3.3 Local weight regression

The local weight regression (LWR) is a method for smoothing by fitting curves and

surfaces of the data (Cleveland & Loader, 1996). It models the regression functions

of independent and dependent variables without any functional relationship between

the previously specified variables. To use local regression smoothing, we compute the

regression weight wj of each data point. The predictive value x is associated with the

response value that needs to be smoothed, xj are proximal points of x within the span,

d(j) is the span or bandwidth. Then, the LWR filter output is obtained by continuously

fitting a polynomial to the weighted linear least-squares regression.

wj =
⎛

⎝
1 − ∣

x − xj
d(j)

∣

3
⎞

⎠

3

(3.10)

Due to the nature of the least square, the disadvantage of LWR is that it can be

strongly affected by outliers. Since local regression typically involves a subset of a

complete data set, the problem of outliers is exacerbated. To solve this problem, we

use robust local weighted regression which includes an additional calculation of robust

weights to eliminate outliers and smooth the data According to Nurunnabi, West and

Belton (2016). The robust procedure is consisted by the following steps:

1. Calculating the residuals by using the robust procedure.

2. Computing the weights of each point.

wi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1 − ( ri
6MAD

)
2
)

2
, ∣ri∣ < 6MAD

0, ∣ri∣ ≥ 6MAD

(3.11)

where ri is the residual of data at time i which is computed at the first step.

MAD =median(∣r∣) (3.12)
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MAD is absolute deviation of residual. It can reflect the discreteness of dataset.

We compare ri to 6MAD: the weight of the robust is approaching to 1 if ri is

smaller than 6MAD. In the contrary, if ri is larger than 6MAD, the associated

point is excluded and the robust weight is 0. In this way, the effects of the outliers

can be reduced.

3. Using the robust weight that is calculated in the previous steps and local regression

weight to smooth the data.

4. Repeating the previous two steps until the estimated coefficient value is converged.

According to the experiment conducted by Cleveland (1979), by repeating these

two steps twice, the effects of outliers on the fitting process can be reduced.

3.4 Orientation and coordination

3.4.1 Orientation of INS

Euler angles

The Euler angles are the three angles introduced by Euler (Weisstein, 2009) to describe

the rotation of the rigid body. Formally, it is a three-dimensional vector whose values

represent the three-axis rotation angle of the object respectively. Specifically, the Euler

angles follow the Z − Y −X sequence. These three angles are known as roll, pitch and

yaw. Therefore, the sequence of the rotations represents first the yaw angle, followed

by pitch and roll angle.
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Figure 3.12: Euler angles

These three angles and the sequences are defined below:

• The yaw denoted as ψ,represents a rotation around Z-axis. After rotating around

the Z-axis, the new frame axes are called X1, Y1, Z1.

• The pitch angle denoted as θ represents a rotation around Y1. With yaw and pitch

rotation, the new frame axes are called X2, Y2, Z2.

• The roll angle denoted by φ, represents a rotation around X2. With yaw, pitch

and roll rotations, the new frame axes are named X3, Y3, Z3.

The graphical illustration is:
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Figure 3.13: Yaw-pitch-roll rotation sequence

The relative rotation matrix are given as follow:

R1(ψ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.13a)

R2(θ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.13b)

R3(φ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.13c)

However, Eluler angles representation has a similarity which is also called gimbal

lock. The gimbal lock occurs when one of the axes in fixed coordinate axes are

concentric with the axes in rotated coordinate. Therefore, Hamilton firstly proposed

quaternions in 1843 to deal with this problem Hamilton (1866).
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Quaternions

The Quaternions are a number system that extends the complex numbers. It can

be generally represented as q = a + bi + cj + dk where i, j, k are the imaginary units,

i2+j2+k2 = ijk = −1 and a, b, c, d are real numbers. Generally, a is called the scalar part

and three components b, c, d taken together as a three-dimensional vector is called the

vector part of a quaternion. Thus quaternions can be written as q = (a, (x, y, z)) = (a, u⃗).

The figure below shows that the point P is rotated around the point Q then obtain a new

point P ′ , the rotated angle denoted as θ. The rotation around point Q can be represented

as a rotation around the axis u⃗, which is passing through that point. Compared with

Euler angles, the quaternions are easier to calculate . By using the Euler angles, all

three rotations must be measured, whereas the quaternions only require to measure one

angle of rotation around an axis. (Hamilton, 1866).

Figure 3.14: Rotation around specified axis

where u⃗ = (ux, yy, uz) and u⃗ is an unit vector, q = (u⃗ ∗ sin θ2 , cos
θ
2). Then we

extended the point P to quaternion space, p = (0, x, y, z). The conjugate complex

number of q is q′ = (−u⃗∗ sin θ2 , cos
θ
2). Finally, we can calculate the coordination of new
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point P ′ by using the formula P ′

= qpq
′

3.4.2 Coordinate systems

Several coordinate systems are widely used to represent the orientation and the position

of the IMU such as the earth-centered earth-fixed (ECEF) coordinate system, the local

north-east-down (NED) coordinate system, vehicle-carried NED frames and body

frame.

Earth-centered earth-fixed coordinate system

The ECEF coordinate system also called earth-centered rotational coordinate system

(Cai, Chen & Lee, 2011). It has been widely used, for example, it is the primary

coordinate system of GPS. The origin and axes of this frame are shown in Figure 3.15.

Figure 3.15: Earth-centered earth-fixed and local north-east-down coordinate systems

where Oecef is the origin point (0,0,0), it is defined as the center of the earth. The

x-axis (Xecef ) intersects the sphere of the equator and prime meridian, z-axis (Zecef )
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extends through the north pole and y-axis (Yecef ) is orthogonal to the z-axis and the x-

axis. This frame rotates with the earth, thus it is convenient for positioning geostationary

objects.

Local north-east-down (NED) coordinate system

The local NED coordinate system is also known as the ground coordinate system (Cai et

al., 2011). The origin and axes are shown at Figure 3.15. In this coordinate system, we

assume the earth is flat. It can be seen that this coordinate system is fixed to the surface

of the earth. Its origin is usually chosen to be the center of gravity of the device. The

x-axis (XLn) represents the position along the geodetic north. The y-axis (YLn) points

toward the geodetic east and z-axis (ZLn) represents vertical position. This coordinate

system is usually used for small areas where the curvature of the earth is not considered.

Vehicle-carried NED coordinate system

The vehicle-carried NED coordinate system is associated with the devices such as

sensor, phone and vehicle (Cai et al., 2011). As shown in Figure 3.16, the origin (Onv)

is located at the center of gravity of the device. The x-axis (Xvn) represents the geodetic

north, the y-axis (Yvn) points toward the geodetic east and the z-axis (Zvn) represents

vertical position.

The axial direction of the vehicle-carried NED coordinate system changes with

respect to the movement of the device, and therefore does not coincide with the axial

direction in the local NED frame. However, many sensor-based devices are mounted on

small vehicles such as micro-rotorcraft, they only operate in a small region with a low

speed and the direction differences is completely ignored. Therefore, in this case, these

two coordinate systems are consistent with each other.



Chapter 3. Theory 48

Figure 3.16: Body coordinate system and vehicle-carried NED coordinate system

Body coordinate system

The body frame is directly defined by the body of the devices (Cai et al., 2011). As

shown in Figure 3.16, this system uses the right-hand rule: the origin (Ob) is at the same

location as (Onv), the center of gravity of the device, the x-axis (Xb) is consistent with

the direction of the device, y-axis (Yb) points forward the right side of the device and

z-axis (Zb) is orthogonal to the x-axis and y-axis.

3.5 Summary

In this section, several related theoretical knowledge relevant to our research are re-

viewed. We firstly studied artificial neural network, followed by the noise filtering

algorithm. Then, different coordinate systems are also reviewed.
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Data collection

4.1 Equipment

The main equipment used in our experiments is the Next Generation IMU (NGIMU).

It equips on-board sensors such as gyroscope, accelerometer and magnetometer. All

measurements in NGIMU are time-stamped and all sensors are pre-calibrated in factory.

The measurements of orientation such as Euler angles, rotation matrix and quaternion

are presented in the vehicle-carried NED coordinate frame. It also provided the linear

acceleration with gravity removed. This device can be accessed by USB and Wi-Fi. In

addition, the data can also be logged to an on-board SD card (x-io Technologies Ltd,

2017). The NGIMU uses Open Sound Control (OSC) protocol to communicate with

the other equipment, it also provides libraries for a number of programming languages,

such as JAVA, C++ and Python (x-io Technologies Ltd, 2017).
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Figure 4.1: The layout of NGIMU

The NGIMU uses a right-handed coordinate system as it is shown in Figure 4.2

(x-io Technologies Ltd, 2017).

Figure 4.2: IMU coordinate system
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4.2 Communication

In our experiments, a Wi-Fi access point (802.11n, 5 GHz, AP mode) is used to transmit

the data from the sensor to the computer in real-time. Data such as acceleration and

Euler angle are collected different OSC addresses. The example of OSC address

interpretation is shown in Table 4.1.

Table 4.1: OSC address interpretation

Furthermore, each OSC address contains different arguments. For example, the

OSC address /quaternion1 contains the first argument which is the a element of the

quaternions. An example of the interpretation of arguments are shown in Table 4.2.
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Table 4.2: Interpretation of the quaternion message arguments

The sampling rates of the gyroscope and accelerometer in NGIMU are fixed at

400 Hz whereas magnetometer is fixed at 100 Hz. However, the data sent rate of the

IMU can be specified by the user. In this project, in order to balance performance and

stability, we set the it to be 40Hz. All data from the IMU are sent as a time-stamped

OSC bundle containing a single OSC message. As shown in Figure 4.3, we can use the

command /rate/OSC address, send rate to reset the send rate (x-io Technologies Ltd,

2017).
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Figure 4.3: Send rates setting

4.3 ANN classification training dataset

First of all the test field is set up. As shown in Figure 4.4, there are several 5cm ×7.5cm

rectangle stickers were attached to the floor. There are three groups of stickers repres-

enting three classes of data sets respectively. From right to left are Class One, Class

Two and Class Three, representing 120 ± 5cm, 130 ± 5cm and 140 ± 5cm respectively.

Therefore, the maximum error among each class is ±5cm. As shown in Figure 4.5, the

IMU is attached to the heel of boot of the person who does the test. When collecting

the data, the heel step must be on the sticker . Because the stride length is the distance

between the constant initial contact points of the same foot, and the sticker width is

5cm, when heel step on the sticker, the maximum gap between minimum step length

and maximum step length is 10cm. Therefore, the maximum error of our data collection
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for ANN classification training is 10cm.

Figure 4.4: Test field (left); Step length measurement (right)

Figure 4.5: IMU attached to boot

The data for every three steps are stored in one Excel file. As the IMU is running at
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40Hz and the testing time is 8 seconds, each file contains approximately 320 data points

at an interval of 0.025s. Each datum contains time-stamp, acceleration(body frame),

Euler angles, quaternions, rotation matrix, earth acceleration and linear accelerations.

Shown in Table 4.3.

Table 4.3: Interpretation of ANN classification data

The stride length is considered to be related to linear acceleration and Euler angles

in the movements. Linear acceleration is the gravity-free acceleration in vehicle-carried

NED coordinate frame (sensor coordinate frame). At the beginning, goose step is used

as it is assumed to generate less noises in the sensor readings. The linear acceleration

data of walking in goose step, which the knees are not bent while walking, is shown in

Figure 4.6. It is shown that the goose step actually cannot reduce the noises as the data

contain a number of large spikes in each step. Alternatively the walking in the normal

step, which the knees are bent while walking and the foot landed on the ground softly,

is tested . The linear acceleration in the normal step is shown in Figure 4.7 where there

is not significant spikes. This is due to the fact that in the normal steps, the foot lands

the floor softly.
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Figure 4.6: Three-axis linear acceleration of goose step
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Figure 4.7: Three-axis linear acceleration of normal gait

From Figure 4.7 and Figure 4.8, we can clearly distinguish the first step, the second

step and the third step via the acceleration data. The three-axis linear acceleration shows

that the x-axis acceleration (horizontal acceleration ) and y-axis acceleration (vertical

acceleration) change regularly while the z-axis acceleration changes irregularly. When

one walks along a straight line on the ground, the x-axis acceleration has a significant

influence to the stride length. Therefore, it is a main element in the data processing.
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Figure 4.8: Stride determination based on acceleration in x-axis

Moreover, we can also obtain the pattern of gait cycle based on acceleration in

x-axis as shown in Figure 4.9.

Figure 4.9: Horizontal acceleration (x-axis) signal pattern walking phase

Furthermore, experiments were done to check if Euler angles are related to the stride

length although Euler angles are usually used to represent o the orientation of an object.

Figure 4.10 shows the changes of Euler angles when walking. It is obvious that the

pitch angle (between the heel and the ground) changes regularly. It is also included in

the ANN training dataset.
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Figure 4.10: Euler angles signals in degrees

In order to remove the noises of the extracted acceleration and Euler angle data, the

noise filtering technique is applied. As the movement of the body change irregularly in

every step, the acceleration measurements from the sensor contain some unexpected

error such as large spikes, They are manually removed before the data processing.

Finally, 930 samples were used for ANN training:

• 310 sample for class 1 (120 ± 5cm).

• 310 sample for class 2 (130 ± 5cm).

• 310 sample for class 3 (140 ± 5cm).
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4.4 ANN fitting training dataset

Similar to data collection for ANN classification training, the sensor is running in

40Hz and the collecting duration is 10 seconds. Therefore, each data file contains

approximately 400 data points at an interval of 0.025s. Linear time-stamp, acceleration,

Euler angles, quaternion and rotation matrix from IMU were collected in real-time and

were written these information into Excel files (as shown in Table 4.4).

Table 4.4: Interpretation of ANN fitting data

In order to collect the data for ANN fitting training dataset, the sensor was taped on

the right foot. Then, we walked in normal gait to leave the footprints of every step by

using flour (take five steps at a time), as shown in Figure 4.11. The distance from heel

to heel will be measured and it will be used as the target in ANN fitting training dataset.

Similar to the training dataset for ANN classification, the acceleration and Euler angles

were collected as shown in Figure 4.12 and Figure 4.13.
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Figure 4.11: Measurement of step length for ANN fitting training data
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Figure 4.12: Acceleration signal for ANN fitting

Figure 4.13: Euler angles signal for ANN fitting

Overall 450 input data and corresponding 450 target data were collected for ANN

fitting training
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4.5 Summary

This chapter summarizes the data collection for ANN training through our experiments.

All collected data are for the walking in the normal gait. Overall, 400 paired samples

in the ANN fitting training dataset and 900 samples (300 samples in each class) in

the ANN classification training dataset were collected. Moreover, 50 samples and 30

samples were collected for ANN fitting training dataset and ANN classification dataset

respectively as reserve data.
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Data processing

5.1 Data filtering

As the IMU was affected by the movement of the body, the data may contain several

spikes. As these spikes data will affect the ANN training performance, especially the

detection of stride via x-axis acceleration data. The spikes needs to be removed.

Figure 5.1: Spike data in x-axis acceleration

In our experiment, we use local weight regression method with SPAN = 5 and

Savitzky-Golay method to smooth the data. The smoothed data processed by these two

64
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filtering methods are shown in Figure 5.2.

[Data filtering using local weight regression method]

[Data filtering using Savitzky-Golay method]

Figure 5.2: Two filtering methods

By comparing these two methods, we found that local weight regression method

have better performance because it removed the spike as we expected and also provides

smoother data. As for the Savitzky-Golay method, it reduced the spike, but the smoothed

data still contains several small spikes as well as signal noise.
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5.2 Gait detection

The gait detection is an essential part of stride length estimation. In this part, we extract

each step from the smoothed data. Then, we record the time-stamp of the start point

and the end point of each step. By recording the start and end point time stamp, it can

also be used to calculate the frequency of each stride. Because the sensor was attached

on the right footwear, it sits still on the ground when the left foot moved, the data will

remain stationary during the movement of left foot. The data during this period will

be ignored. By dividing the data into strides, it is easier for extracting the features for

ANN training dataset.

In our experiment, we detect the gait via x-axis linear acceleration using zero

crossing algorithm. Moreover, we add several determine conditions to eliminate the

influence of the sensor noise. The detailed process is described in Figure 5.3:
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Start

Save index s as acceleration start 
point and index move forward

Is Acceleration Start 
Point

Index move forward

If Acc(s) >= Threshold 0.25 
&& 

abs( Acc(s)-Acc(s+2))>=0.5

Else

Is Acceleration End 
Point

Save index e as acceleration end 
point  and e+1 as the deceleration 

start point
and index move forward

Index move forward

Else

If Acc(e)<=0

Is Deceleration End 
Point

Save index d as deceleration end 
point and index move forward

If Acc(d)>=0 && abs(Acc(d)-Acc(d))<0.15

Index move forward

Else
End

Use index s and d select data 
from raw data

Figure 5.3: Step detection process
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When the sensor is stationary, the signal output from the IMU usually has a small

offset and the average of the offset is about 0.25. Therefore we set up a threshold to

remove the offset. The expression abs(Acc(s)−Acc(s+2)) >= 0.5 is to determine that

the acceleration is actually rising. For example, the result of one gait detection shown

as below.

Figure 5.4: Gait detection

5.3 Feature selection

First of all, we need to select features for ANN training. We use similar methods

to extract the features for ANN classification and fitting data. The acceleration is

considered to be an important feature for the stride length estimation. Therefore, we

selected the maximum and minimum of the acceleration data in x-axis as the features.

Also, we calculated the time period of the acceleration is positive and the time period of

when acceleration is negative as the features as shown in Figure 5.5.
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Figure 5.5: Feature selection in x-axis acceleration

In our experiments, we combined the acceleration data and Euler angles data to

estimate the stride length. We believe that the maximum and minimum of the pitch

angle is also the vital features to classify the three classes of stride length. We use

same time-stamp of maximum and minimum acceleration to locate the maximum and

minimum pitch angle of each step (Figure 5.6).

Figure 5.6: Selected features in Pitch angle
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Interpretation of the input data for ANN fitting and classification shows in Table 5.2

and Table 5.1 respectively.

Table 5.1: Interpretation of the input data for ANN fitting

Table 5.2: Interpretation of the input data for ANN classification

In terms of ANN fitting dataset, as shown in Figure 5.7 , the box plot displays 4

features we used for ANN fitting training dataset. According to Figure 5.7, there are 23

outliers in the acceleration time data and 8 outliers in the deceleration time data. We

removed total 31 samples from the ANN fitting training dataset.
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[Boxplot of maximum and minimum of the acceleration in ANN fitting training dataset]

[Boxplot of acceleration time and deceleration time in ANN fitting training dataset]

Figure 5.7: Boxplot of four features in ANN fitting training dataset

In terms of ANN classification dataset, we can display the maximum and minimum

acceleration of each step in box plot to exam the distribution and difference between

these three classes in ANN classification training dataset(Figure 5.8). Each box visually

represents the maximum and minimum acceleration data of each sample from three
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classes.
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[Boxplot of Maximum acceleration grouped by Class]

[Boxplot of Minimum acceleration grouped by Class]

Figure 5.8: Boxplot of acceleration grouped by Class
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For example, as the box plot of class 1 shown in the first figure in Figure 5.8,

the median value was 16.4768 while the maximum and the minimum value were

25.058m/s1 and 10.3452m/s respectively. There were also five outliers in Class one,

we will remove the outliers from the ANN training data. We extract the information

from these two figure into Table 5.3 and Table 5.4.

Table 5.3: The Overview of Maximum Acceleration grouped by Class
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Table 5.4: The Overview of Minimum Acceleration grouped by Class

Another important feature that we used for the ANN classification is the pitch angle.

As shown in Figure 5.9. Then, we plot the maximum and minimum of the pitch angle

grouped by class in box plot to observe the distribution of each class.

For example, as the box plot of class 1 shown the first figure in Figure 5.9, the

median value of Pitch angle was 56.0728 while the maximum and the minimum value

were 62.9733 degree and 23.7458 degrees respectively. We extract the information from

these two figure into Table 5.5 and Table 5.6.
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[Boxplot of Maximum Pitch Angle grouped by Class]

[Boxplot of Minimum Pitch Angle grouped by Class]

Figure 5.9: Boxplot of Pitch Angle grouped by Class

The information of these "box" can be sorted into Table 5.5 and Table 5.6.
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Table 5.5: The Overview of Maximum Pitch Angle grouped by Class

Table 5.6: The Overview of Minimum Pitch Angle grouped by Class

Finally, after removed the outliers, a dataset of 400 samples with four features was

created for ANN fitting and a dataset of 900 samples with 6 features (300 samples for

each classes) was created for ANN classification.
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5.4 Summary

In this section, we used the local weight regression method and Savitzky-Golay method

to filter the data collection at first. Then the filtered data was used to extract each

gait by using the zero crossing method. Moreover, we selected four features for ANN

fitting training, namely, acceleration peak, deceleration peak, acceleration time and

deceleration time; and six features for ANN classification training, namely, acceleration

peak, deceleration peak, acceleration time, deceleration time, the maximum of the pitch

angle and the minimum of the pitch angle. After data processing, the training data set

for ANN fitting consists of 400 samples with 4 features and the training dataset for

ANN classification consists of 900 samples with 6 features.
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Results and Discussions

6.1 Step length estimation using double integration of

acceleration

One of the traditional methods of the stride length estimation is using double integra-

tion. In double integration method, the velocity can be obtained by integration of the

acceleration data, and the displacement of the position can be obtained by integration

of the velocity. In this part, we estimate the distance within the gait cycle by using the

trapezoidal rule and Simpson’s rule to integrate the acceleration data.

We use the acceleration data in Class 2 (130 ± 5cm) of the dataset for ANN classi-

fication to testing the performance of the double integration method. Firstly, we applied

the trapezoidal rule to the filtered and smoothed acceleration data (the dataset collected

for ANN classification training ). As shown in Figure 6.1, we tested samples from each

class and found that the performance is not satisfactory with the error is more than 20%.

When using the trapezoidal rule, when the pedestrian stands still, the obtained velocity

is not 0 and the position is still drafting.
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[IMU Recorded Acceleration (meter/second2)]

[Estimated Velocity using trapezoidal rule (meter/second)]

[Estimated Position using trapezoidal rule (meter)]

Figure 6.1: Double integration using trapezoidal rule
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Better results are got when the Simpson’s Rule is applied (e,g. estimated velocity is

close to 0 when the pedestrian does not walk and the estimated position does not drift)

However, the accuracy of measurement is still unsatisfactory. As shown in Figure 6.2,

the error is still significant
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[IMU Recorded Acceleration (meter/second2)]

[[Estimated Velocity using Simpson’s Rule (meter/second)]

[Estimated Position using Simpson’s Rule (meter)]

Figure 6.2: Double integration using Simpson’s Rule
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Due to the nature of the human gait, the feet will continuously rotate in Y-axis,

which will cause significant noise in the acceleration recording. As shown in Figure 6.3,

the target in class 2 is 130± 5cm. However,the mean value of estimated stride length by

Simpson’s Rule is about 100cm and vary in a range of 30cm.

Figure 6.3: Estimated stride length by Using Simpson’s Rule

6.2 Step length estimation using ANN fitting function

We adopted the ANN fitting function for step length estimation. Three different training

algorithms in the MATLAB neural network toolbox, namely Bayesian regularization,

Levenberg-Marquardt and Scaled Conjugate Gradient training algorithm are applied

(Demuth, Beale & Hagan, 2008). We use 70% of the training data for training, 15%

for validation and 15% for testing, as shown in Figure 6.4. The testing and validation

dataset has same features as the training dataset, but are not contained in the training

dataset. The training performance will be measured by mean squared error (MSE).

MSE =
1

n

n

∑
i=1

(x̂i − xi)
2 (6.1)
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Figure 6.4: ANN fitting tool box

The input dataset for the ANN training is as shown in Figure 6.5. Column One

and Column Two are the maximum and minimum values of the acceleration data of

each step; the last two columns are the acceleration period and deceleration period

respectively. The input dataset is a 400*4 matrix, representing 400 samples with four

features.
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Figure 6.5: Input dataset for ANN fitting

6.2.1 Parameter Optimization for ANN Fitting

Levenberg-Marquardt backpropagation

An example of the error between the target data set and output data set (ANN fitting

result) using 10 neurons are shown in Figure 6.6.
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Figure 6.6: The error between target and output dataset (unit: cm)

Firstly, we use the Levenberg-Marquardt training algorithm for ANN fitting. Table 6.1

shows the average results in ANN fitting.

Table 6.1: Levenberg-Marquardt (LM) with Different Neuron Number

As shown in Table 6.1, with the LM training algorithm, the MSE of the result of the

test with the training data is decreasing when the neuron number increases. However,
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the MSE of the result of fitting testing data, which not included in the training dataset

shown a different trend. When the neuron is increased from 1 to 30, the MSE of the

testing data decreases; then it increases when the neuron number is increased from 30

to 150, which indicated the over-fitting.

Scaled Conjugate Gradient backpropagation

Secondly, the performance of ANN estimation using Scaled Conjugate Gradient al-

gorithm is shown in Table 6.2.

Table 6.2: Scaled Conjugate Gradient (SCG) with Different Neuron Number

As shown in Table 6.2, similar to LM training algorithm, after the neuron number

is increased to 50, the MSE of the result when using the testing data declined, which

indicated that SCG training algorithm is over-fitting. The result shows 50 is the suitable

neuron number for our neuron network with SCG training algorithm.
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Bayesian Regularization

The performance of ANN estimation using Bayesian Regularization training algorithm

is shown in Table 6.3.

Table 6.3: Bayesian Regularization (BR) with Different Neuron Number

When using the Bayesian Regularization as the training algorithm in ANN, the

MSE of the result of fitting the training data and testing data were decreased with the

neuron number increase from 1 to 10; then they slightly changed when neuron number

is continuously increased. Unlike SCG and LM training algorithms, the MSE of the

result of the testing data did not effected by the increment of the neuron number, when

over-fitting.

6.2.2 The Result of ANN fitting

According to previous experiments, we found the optimal parameters for ANN fitting

process is using the Levenberg-Marquardt training algorithm with 30 neurons. There-

fore, we use 10 step as one trail, then we used a trained ANN (Levenberg-Marquardt
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with 30 hidden neurons) to estimate the step lengths of 50 steps in 5 trails, the result

shown in Table 6.4.

Table 6.4: ANN fitting result

As the Table 6.4 shows, the target distance is 61.92 meters and the ANN estimated

distance is 60.35 meters, the error between the target and ANN output is less than 2

meters. In particular, the error rate is only 2.53%.

6.3 Step length estimation using ANN classification func-

tion

In the ANN classification function, we use three different training algorithms in the

MATLAB neural network toolbox, namely Scaled Conjugate Gradient, Gradient descent

with momentum and adaptive learning rate and Levenberg-Marquardt training algorithm

(Demuth et al., 2008). We used the MATLAB MSE function (plotperform) to determine

the performance of the ANN. Similar to the ANN fitting function, we use 70% of

the training data for training, 15% for validation and 15% for testing, as shown in

Figure 6.7.
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Figure 6.7: ANN classification toolbox

The training stops when any of these conditions occur:

• The epochs reached to the maximum number (1000).

• The time is exceeded the maximum time to train in seconds (3600 seconds).

• The performance gradient falls below the minimum performance gradient (gradi-

ent = 0).

• The performance reached the goal (Error = 0).

• The validation performance has increased more than maximum validation failures

times since the last time it decreased (maximum validation failures = 6).

The input data set for ANN training is shown in Figure 6.8. The interpretation of

each column is shown in Table 5.2. The input dataset is a 900∗ 6 matrix, that represents

900 samples with 6 features.
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Figure 6.8: Input dataset for ANN classification

6.3.1 Parameter Optimization for ANN Classification

Scaled Conjugate Gradient backpropagation

The average MSE (in 10 steps) in the ANN training using Scaled Conjugate Gradient

backpropagation shown in Table 6.5.
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Table 6.5: The average MSE using Scaled Conjugate

As shown in Table 6.5, the average MSE decreases with the increase of the neuron

number. The performance of classification is shown in the confusion matrix (Figure 6.9

and Figure 6.10).

Figure 6.9: Confusion matrix using Scaled Conjugate
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The confusion matrix reports the information about the actual and predicted clas-

sifications done by a ANN classification (Provost & Kohavi, 1998). In the confusion

matrix, there are total 42 samples of Class 1, the system miss predicted that 1 sample to

Class 3, and for 51 Class 2 sample, it wrongly predicted that 3 samples to Class 1 and 1

samples to Class 3. As for 42 Class 3 sample, it miss predicted one sample to Class 1

and four samples to Class 2. Overall, the accuracy of Class 1 ,Class 2 and Class 3 were

97.6%, 92.2% and 88.1% respectively. The overall accuracy is 92.6%.

Figure 6.10: Receiver Operating Characteristic using Scaled Conjugate training al-
gorithm

The ROC curve represents the false positive rate on the X − axis and the true

positive rate on the Y −axis. The more each curve hugs the upper-left corner, the better

performance the classification have.
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Gradient Descent backpropagation

The average MSE(in 10 samples) in the ANN training using Levenberg-Marquardt

backpropagation is shown in Table 6.6.

Table 6.6: The average MSE using Gradient Descent training algorithm

As shown in Table 6.6, the average MSE changes lightly with the different neuron

number. Furthermore, we can demonstrate the performance of classification in each

class by using confusion matrix ( Figure 6.11).
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Figure 6.11: Confusion matrix using Gradient Descent

By using Gradient Descent training algorithm, the overall accuracy of classification

was 85.8%, which is lower than the accuracy by using Scaled Conjugate training

algorithm. The accuracy of Class 2 samples classification was 62.5% in this confusion

matrix. For Class 2 samples, the system mis-predicted one sample to Class 1 and

14 samples to Class 3.) while it was 92.2% by using Scaled Conjugate. In contrast,

the accuracy of Class 3 sample classification represented 100%, which have a better

performance than that by using Scaled Conjugate training algorithm. We can see from

the matrix that this algorithm cannot accurately distinguish Class 2 and Class 3.
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Levenberg-Marquardt backpropagation

The average MSE (in 10 samples) in the ANN training using Levenberg-Marquardt

backpropagation is shown in Table 6.7.

Table 6.7: The average MSE using Levenberg-Marquardt training algorithm

As shown in Table 6.7, the average MSE increases with the increase of the neuron

number. We found that Levenberg-Marquardt backpropagation produces the low-

est MSE among three training algorithms. The confusion matrix using Levenberg-

Marquardt training algorithm is shown in Figure 6.12
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Figure 6.12: Confusion matrix using Levenberg-Marquardt training algorithm

In this confusion matrix, there are total 40 actual Class 1 samples, the system miss-

predicted that two samples to Class 3, and for 40 Class 2 samples, it miss-predicted that

one sample to Class 1 and 11 samples to Class 3. And for 40 Class 3 samples, it miss-

predicted one sample to Class 2. Compared with the other two algorithms, the overall

accuracy by using Levenberg-Marquardt training algorithm is lower than using Scaled

Conjugate training algorithm but higher than Gradient Descent training algorithm, at

87.5%. The same as using Gradient Descent, Levenberg-Marquardt training algorithm,

LM training algorithm also has trouble to distinguishing Class 2 samples from Class 3

samples.
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6.3.2 The Result of ANN classification

According to previous experiments, we found the best algorithm for ANN is Gradient

Descent with 20 neurons. The testing result is shown in Table 6.8.

Table 6.8: ANN classification result

The result shows that there are four samples are incorrectly classified. These miss-

classification caused the error of about 28cm, which is nearly 40% of the overall error

in 50 steps. The ANN classification shows a satisfactory result, the error rate is 1.189%.

6.4 Summary

By using the double integration method, the error was significant, though the perform-

ance of Simpon’s Rule was better than trapezoidal rule. The mean error of estimated

stride length was about 30cm for each step.

By using the ANN fitting function in MATLAB neural network toolbox, we found

that different training algorithm with different neurons can significantly affect perform-

ances. According to these experiments, the optimal parameters for ANN fitting process

is Levenberg-Marquardt training algorithm with 30 neurons. We tested this network

with 50 steps, the total distance was about 61.92m and the estimated length was 60.35m,

the error was 1.57m which is equivalent to 3.1cm for each step, a drastic improvement

from double integration method
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For ANN classification function, the overall classification accuracy of Scaled Con-

jugate training algorithm was 92.6% and the overall classification accuracy of Gradient

Descent training algorithm was 85.5%. , Then, Levenberg-Marquardt training algorithm

also has trouble to distinguishing Class 2 as the accuracy of Class 2 sample classification

was only 70.0% while the overall accuracy was 87.5%. According to these experiments,

we used the same testing data set used in ANN fitting to test the performance of the

ANN classification function. The result showed that in the total distance of 61.62m, the

neural network estimated that the distance was 62.3m, the error rate was only 1.1885%

which is equivalent to an error of 1.9cm for a step

Compared the above results, we found that the ANN classification function had

a better performance than the ANN fitting function. The results of these two ANN

estimation methods are satisfactory, the error rate is 2.5339% for the ANN fitting

function and 1.1885% for the ANN classification function.



Chapter 7

Conclusion and Future Work

In this thesis, we demonstrated the ability of using ANN to estimate the step length

with low error and variance. Our method has the ability to handle the acceleration and

Euler angle data with noise from the low-cost IMU. The experiment result indicated

that at a distance of 62.3m, the error was only 1.1885% by using ANN classification

and 2.5339% by using ANN fitting. Compared with traditional double integration

methods, due to the step length estimation using trained ANN do not require zero

velocity detection and integration. Our method only require a trained ANN to estimate

the step length, which simplified the computational procedure.

Due to the limitation of time, we do not implement the method for orientation

detection. Moreover, in the ANN classification, we only covered the step length from

115cm to 145cm. In the future work, we will integrate the orientation detection to our

method as well as broaden the range of the ANN classification. In this way, our neural

network model has the potential to be used as a completed navigation system.
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