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Introduction

Basic problem :
Simplest case, X1, X2, -+, X, ~ F. Require accurate inference on

tail F.
» Few observations in the tail of the distribution.
» Standard density estimation technique is often biased in
estimating tail probabilities.
» Base tail models on asymptotically-motivated distributions :
Statistics of extremes
Applications :

» Environmental : sea levels, pollution concentration,
precipitation levels (rainfall, snow), river flow

» Reliability modelling : finance, insurance, telecommunication,
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Univariate extremes

Framework for block maxima distribution Let Y1,---,Y, ~ F and

define
My, =max{Yy, -, Yn}.

The distribution of M, is
PriM, < x} = Pr{Y1 <y,---, Yo <y} = F(y)"

Approximate F" by limit distribution as n — oc.
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Extremal types theorem

For an i.i.d. sample Y1,...,Y, € R.
If there exist sequences of constants {a, > 0} and {b,} such that

i (B (m""x{y}_b < z) S 6(2)

n—00 an

is a non degenerate distribution function, then G is a generalised
extreme value distribution (GEV)

G(2) = exp {— [1 i <z - “)]:K}.

> In analogy with central limit theorem for mean of samples
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» In practice: fit GEV to sample maxima & predict levels of
future extremes

» E.g. prob of maximum daily (n=365.25) rainfall exceeding a
given level in the next 100 years
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» Extension to spatial data via hierachical models

e Spatially/temporally varying parameters
e Spatial dependence through parameters only
e No dependence at data level

» Annual maxima of daily spatial rainfall might be approximated
by a stationary max-stable process

e Still spatially/temporally varying parameters
e Dependence at data level retained

7/21



Multivariate extremes

Max stable process (de Haan 1984)

A max-stable process Z(x) is the limit process of maxima of i.i.d.
random fields Y;(x), x € R?

Z(x) = lim max{ Yi(x)} — bn(x)

lim_ () x € RY (1)

)

for two sequences of functions a,(-) > 0, b,(-) (where they exist).

v

» Max-stable processes generalize multivariate extreme value
distributions to the infinite dimensional case

> Incorporates dependence between locations x

» Can obtain GEV margins for each x € RY (assume unit
Fre¢het margins for the moment .. .)
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Max stable process (de Haan 1984)

A max-stable process Z(x) is the limit process of maxima of i.i.d.
random fields Y;(x), x € R?

200 1im M09  bn()

n—o0 a,,(x) x € Rd (2)

)

for two sequences of functions a,(-) > 0, b,(-) (where they exist).

v

» Without loss of generality, if a,(x) = n, by(x) =0,
{Z(x)} ere has a unit Fréchet margins with distribution
function F(z) = exp(—1/z), z > 0.

> If {Z(x)}«cre is a stationary process, it can be expressed
through spectral representation (de Haan and Pickands 1986).
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Spectral representation
» Smith’s storm model (Smith 1990)
» Schlather’s model (Schlather 2002)
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Smith's model

Let {7}, ki} denote a non-homogeneous Poisson process on
R? x R, with intensity measure k=2dk x p(d7) (u is a +ive
measure) then

Z(x) = max k;f(x — 7;) x € R?

where f is a unimodal continuous pdf.
“Storm profile model” interpretation:
ki=storm magnitude, T;=storm location, f=storm shape.

For f = Ng(0, %), the bivariate CDF is
Pr(Z(x1) < z1,Z(x) < z) =
oo (34 Toe) - o (24 g2 )]
z 2 a z Z 2 a Z>
where ® is a standard normal CDF and a2 = AxT¥1Ax,
h=(x—x1).
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Schlather's model

Let {Y;} denote a stationary process on R? such that
E[max{0, Y(x)}] =1 and {k;} be the points of a Poisson process
on R with intensity measure k—2dk then

Z(x) = max ki max{0, Y;i(x)} .

Taking Y; to be a stationary standard Gaussian process with
correlation function p(h), the bivariate CDF is
Pr(Z(0) < z;,Z(h) < z) =

exp [_21 (211 +212> (1+ \/1—2(p(h)+1)(212f222)2ﬂ .
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Correlation functions : Three common parametric families for p are

Whittle-Matérn p(h) =a—

Cauchy p(h)y=a

h 14
Powered Exponential p(h) = ¢ exp [_ (c) }
2

where ¢y, ¢ and v are the sill, range and smooth parameters.
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Inference

Estimator : probability-weighted moments, likelihood-based
techniques

For max-stable processes, as only the bivariate densities are
known we will consider the pairwise likelihood

logLp(y: 0) ZZZ/ogf iyl
i i<j k=1
(Lindsay 1998, Varin 2008)
Model comparison : graphical model checking, composite
likelihood information criterion (CLIC)
Return levels and return periods

Spatial dependent measures : the extremal coefficient
function, geostatistics based approaches (F-madogram,
A-madogram)
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The Extremal Coefficient

Let Z(-) be a stationary max-stable random field with unit Fréchet
margins. The extremal dependence among N fixed locations in RY
can be summarised by the extremal coefficient which is defined as

PriZ(x1) <z, ,Z(xn) < 2] = exp <_GZN>

where 1 < 0y < N with the lower and upper bounds corresponding
to complete dependence and independence.

» Oy can be regarded as the effective number of independent
stations.
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» We will especially focus on pairwise extremal coefficients

Pr(Z(x1) < z,Z(x2) < z) = exp <_9(X1_X2)>

V4
and () is the extremal coefficient function.
» The extremal coefficient functions for the two models are
_ Ty -1 _
Smith : 0(x; — x2) = 2 Vi —x) 5 (o =)
1—p(xa — x2)

2
NOTE : Schlather's model has an upper bound of 1 + /1/2

for a positive p.

Schlather : O(x1 — x2) =1+
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Case study : Basque country, Spain

» Daily precipitation records for 97 years, 1914-2010, over 234
catchments.

» Unbalanced records are infilled using a spacial-temporal model
(Cowpertwait 206).




» Fréchet margin transformation : spatial GEV model
(longitude, latitude, and altitude), AIC

Y (x) — u(x))”ﬂx)
o(x)

where p(x), o(x) and &(x) are linear dependent to x.
Hence, the bivariate distribution is rewritten as

g:Y(x)— (1 +&(x)

PrlY(x1) < y1, Y(x) < yo] = Pr{Z(x1) < g(y1), Z(x2) < g(y2)] -

» Spatial extreme model selection : composite likelihood
information criteria (CLIC)
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Figure: Spatial GEV model diagnostic plots; Return level of one in 97
years, 95% confidence intervals (red) and observations (black)
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Figure: Left : Pointwise return levels of one in 50 years events. The sites
located in the regions 1,2 and 3 are indicated by the circle, square, and
triangle marks respectively. The units for x and y are in kilometers.
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» Extremal coefficient estimates, Osmitn and Oscpiather
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» Extremal coefficient

estimates, HSmith and GSchlather
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Figure: Risk analysis of pairwise annual maxima: joint survival probability

versus return period.
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Conclusion and issues

Conclusion :

» Max-stable models are powerful ad mathematically justified
models of spatial extremes.

» More realistic predictions over hierachical models.

» Application to the precipitation in Basque country, Spain.

» Design storm : Average storm over the region (sort of).
Issues :

> Fréchet margin transformation techniques

» Infilled data technique (due to irregular observations) : splines
(Neville, S. E. et al, 2011)
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Thank you for your attention!

This work has been done by using the R package SpatialExtremes

http://spatialextremes.r-forge.r-project.org/
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