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Abstract: This article describes an accurate procedure for computing the mean first passage times of a finite
irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur
Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtrac-
tions. Algebraic expressions for the special cases of one, two, three and four states are derived. A consequence
of the procedure is that the stationary distribution of the embeddedMarkov chain does not need to be derived
in advance but can be found accurately from the derived mean first passage times. MatLab is utilized to carry
out the computations, using some test problems from the literature.
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1 Introduction
A variety of techniques have been developed for computing stationary distributions and mean first passage
times (MFPTs) of Markov chains (MCs). In this paper we focus primarily on the accurate computation of these
key properties based upon the well known state reduction procedures of Grassman, Taksar and Heyman (the
GTH algorithm) [4], or the equivalent Sheskin [15] procedure, that were developed primarily for the compu-
tation of the stationary distributions of irreducible MCs. The stability of the procedure is the result of the
observation that no subtractions need be carried out. This is discussed in Section 2. Kohlas [13] developed
a related procedure for the computation of the MFPTs, based mainly on considering the computation of the
mean times to absorption, by showing that the computationsweremore naturally focused on considering the
underlying model as a Markov renewal process (MRP) rather than as a MC. We delve into these procedures in
more detail after first summarizing, in Section 3, the key properties of MRPs. In Section 4wework through the
ideas of the Kohlas algorithm and give a general procedure for computing the mean passage times between
any two states rather than consider mean times to absorption, as in Kohlas [13]. We explore in some detail,
in Sections 5 to 8, procedures for the special cases of particular finite state spaces of one, two, three and four
states, obtaining expressions for the MFPTs, some of which that have previously been given in the literature.
We see that the Kohlas procedure is not ideal for the global derivation of the MFPT matrix but we develop in
Section 9 a modification of the Kohlas procedure, an Extended GTH procedure, that will lead to expressions
for the MFPTs using effectively the same calculations as in the GTH algorithm. In the final section we explore
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some calculations, using MatLab, of the key properties for some ill conditioned transition matrices that have
previously been considered as test problems in the literature.

Note, that due to space considerations, we do not explore other procedures for finding MFPTs. We leave
this for a further paper where we compare the procedure of this paper with the well known approaches of
Kemeny and Snell [12] and others, for example, in Meyer [14], Stewart [16], Hunter [9] and Dayar and Akar [3]
as well as some new perturbation procedures under development by the author. This also enables us to make
additional comparisons using the test problems of this paper to validate the stability of this new procedure.

2 Computation of the stationary probabilities

Let P(N) =
[︁
p(N)ij

]︁
=
[︃
Q(N)
N−1 p(N)(c)N−1

p(N)(r)TN−1 p(N)NN

]︃
be the N × N transition matrix associated with an irreducible MC{︁

X(N)k , k ≥ 0
}︁
with state space SN = {1, 2, . . . , N} of N states.

Let p(N)(r)TN−1 =
(︁
p(N)N,1, p

(N)
N,2, . . . , p

(N)
N,N−1

)︁
and p(N)(c)TN−1 =

(︁
p(N)1,N , . . . , p

(N)
N−1,N

)︁
be 1 × (N − 1) row vectors with

r and c denoting, respectively, row and column elements of the probabilities, with the superscript Ndenoting
that they are from the N-th row or N-th column of the P(N) matrix and the subscript N −1 that they are vectors
of length N − 1. Similarly, we use the superscript N in the sub-matrices Q(N)

N−1 to denote that they are sub-
matrices of the transition matrix P(N) associated with an N-state MC and the subscript N − 1 to denote that
the matrix is of order (N − 1) × (N − 1).

Let e(N)T = (1, 1, . . . , 1) be an 1 × N vector and IN be the N × N identity matrix.
In the procedures that we consider for finding stationary distributions and the MFPTs of MCs, we start

with an N–stateMC
{︁
X(N)k , k ≥ 0

}︁
and reduce the state space by one state at a time. Once we get to two states

we expand the state space one state at a time until we return to the final set of N states. We concentrate on
the sequential state reduction process at first by starting with N states 1, 2, . . ., N and initially reducing the
state space to 1, 2, . . ., N − 1.

For simplicity, when there is no ambiguity, we write p(N)ij simply as pij,
Note that Q(N)

N−1 is not stochastic, since

P(N)e(N) =
[︃
Q(N)
N−1 p(N)(c)N−1

p(N)(r)TN−1 p(N)NN

]︃[︃
e(N−1)

1

]︃
=
[︃
Q(N)
N−1e

(N−1) + p(N)(c)N−1
p(N)(r)TN−1 e(N−1) + p(N)NN

]︃[︃
e(N−1)

1

]︃

implying that

Q(N)
N−1e

(N−1) + p(N)(c)N−1 = e(N−1) (1)

and that

p(N)(r)TN−1 e(N−1) + p(N)NN . (2)

Let π(N)T =
(︁
π(N)1 , π(N)2 , . . . , π(N)N−1, π

(N)
N

)︁
be the stationary probability vector of the N-state MC

{︁
X(N)k , k ≥ 0

}︁
with transition matrix P(N) so that

π(N)T = π(N)TP(N). (3)

Let ρ(N−1)T =
(︁
ρ(N−1)1 , ρ(N−1)2 , . . . , ρ(N−1)N−1

)︁
=
(︁
π(N)1 , π(N)2 , . . . , π(N)N−1

)︁
so that π(N)T =

(︁
ρ(N−1)T , π(N)N

)︁
. From (3),

π(N)T =
(︁
ρ(N−1)T , π(N)N

)︁
=
(︁
ρ(N−1)T , π(N)N

)︁[︃ Q(N)
N−1 p(N)(c)N−1

p(N)(r)TN−1 p(N)NN

]︃
=
(︁
ρ(N−1)TQ(N)

N−1 + π
(N)
N p(N)(r)TN−1 , ρ(N−1)Tp(N)(c)N−1 + π(N)N p(N)NN

)︁
,
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implying that

ρ(N−1)TQ(N)
N−1 + π

(N)
N p(N)(r)TN−1 = ρ(N−1)T (4)

and

ρ(N−1)Tp(N)(c)N−1 + π(N)N p(N)NN = π(N)N . (5)

Equations (2) and (5) imply that

π(N)N =
ρ(N−1)Tp(N)(c)N−1

p(N)(r)TN−1 e(N)
=

N−1∑︀
i=1

ρ(N−1)i p(N)iN

N−1∑︀
i=1

p(N)Nj

, (6)

expressing π(N)N in terms of ρ(N−1)1 , ρ(N−1)2 , . . . , ρ(N−1)N−1 and the transition probabilities associated with P(N).
Further, from equations (4) and (6),

ρ(N−1)T
(︃
IN−1 − Q(N)

N−1 −
p(N)(c)N−1 p(N)(r)TN−1

p(N)(r)TN−1 e(N−1)

)︃
= 0T . (7)

Let

P(N−1) = Q(N)
N−1 +

p(N)(c)N−1 p(N)(r)TN−1

p(N)(r)TN−1 e(N−1)
. (8)

Note that P(N−1) is a stochastic matrix with N − 1 states, since from (1), P(N−1)e(N−1) = Q(N)
N−1e

(N−1) +
p(N)(c)N−1 p(N)(r)TN−1 e(N−1)/p(N)(r)TN−1 e(N−1) = e(N−1) − p(N)(c)N−1 + p(N)(c)N−1 = e(N−1).

Let
{︁
X(N−1)k , k ≥ 0

}︁
be the MC that has P(N−1) as its transition matrix. Note also that p(N)(c)N−1 p(N)(r)TN−1 is an

(N−1)×(N−1)matrixwhose (i, j)-th element is p(N)iN p
(N)
Nj , so that if wewrite P

(N) =
[︁
p(N)ij

]︁
with P(N−1) =

[︁
p(N−1)ij

]︁
then, from (8),

p(N−1)ij = p(N)ij +
p(N)iN p

(N)
Nj

S(N) , 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1; (9)

where S(N) ≡ 1 − p(N)NN =
N−1∑︀
j=1

p(N)Nj = p(N)(r)TN−1 e(N−1) since P(N) is a stochastic matrix.

Note the computation of the quantities S(N) can be carried out without any subtraction.
We can interpret the transition probabilities p(N−1)ij in the MC

{︁
X(N−1)k , k ≥ 0

}︁
on the state space SN−1 as

the transition probability from state i to j of theMC
{︁
X(N)k , k ≥ 0

}︁
on SN restricted to SN−1, i.e. the “censored”

MC. ( See also pg. 17, Bini, Latouche and Meini [2]).
For (i, j) ∈ SN−1 × SN−1 it is possible to jump directly from i to j with probability p(N)ij . Alternatively, it

is possible to jump from i to j via state N, being held at state N for t steps, (t = 0, 1, 2, . . .) followed by a

one-step jump to j from N, with probability p(N)iN

(︂∞∑︀
i=0

(︁
p(N)NN

)︁i)︂
p(N)Nj = p(N)iN p

(N)
Nj /

(︁
1 − p(N)NN

)︁
= p(N)iN p

(N)
Nj /S(N),

leading to the general expression (9) for p(N−1)ij . Note that there is a connection between equation (9) and
Schur complementation. This is discussed in Bini, Latouche and Meini, (pg 17 [2]).

Note that if the MC
{︁
X(N)k , k ≥ 0

}︁
with state space SN is irreducible (i.e. each state j can be reached from

state i in a finite number of k steps) then theMC
{︁
X(N−1)k , k ≥ 0

}︁
with state space SN−1 is also irreducible since

there will still be a path from state j that can be reached from state i in either the same k steps, if avoiding
state N, or in a fewer number of steps if passing through N in the original MC

{︁
X(N)k , k ≥ 0

}︁
.
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Further, from (7) and (8), ρ(N−1)T
(︁
IN−1 − P(N−1)

)︁
= 0T , so that ρ(N−1)T satisfies the property required for a

stationary probability vector of the irreducibleMC
{︁
X(N−1)k , k ≥ 0

}︁
on SN−1 with transition matrix P(N−1), and

hence

ρ(N−1)T = cN−1π(N−1)T , (10)

where π(N−1)Te(N−1) = 1, implying that cN−1 = ρ(N−1)Te(N−1).

Note that cN−1 =
N−1∑︀
i=1

π(N)i = 1 − π(N)N . Thus

π(N−1)T =
(︁
π(N−1)1 , π(N−1)2 , . . . , π(N−1)N−1

)︁
= ρ(N−1)T

ρ(N−1)Te(N−1)
=

(︁
π(N)1 , π(N)2 , . . . , π(N)N−1

)︁
1 − π(N)N

,

and hence

π(N−1)i =
π(N)i

1 − π(N)n
=

π(N)i
N−1∑︀
k=1

π(N)k

, 1 ≤ i ≤ N − 1. (11)

Thus we have reduced the state space from N to N − 1 with the resulting MC
{︁
X(N−1)k , k ≥ 0

}︁
having a

stationary distribution
{︁
π(N−1)i

}︁
that is a scaled version of the first N −1 components of the stationary distri-

bution of the MC
{︁
X(N)k , k ≥ 0

}︁
with N states, as given by (11).

Let us define the stationary probability vector of the MC
{︁
X(N)k , k ≥ 0

}︁
as πT = (π1, π2, . . . , πN) = π(N)T .

As we continue to reduce the state space to Sn(n = 1, 2, . . . , N − 1) it is clear, from an extension of (11), that

π(n)T =
(︁
π(n)1 , π(n)2 , . . . , π(n)n

)︁
= kn (π1, π2, . . . , πn) where kn = 1/

n∑︁
i=1

πi . (12)

i.e. the stationary probabilities of the MC
{︁
X(N)k , k ≥ 0

}︁
on Sn are scaled versions of the first n stationary

probabilities of the MC
{︁
X(N)k , k ≥ 0

}︁
on SN .

Let us now consider expanding the state space from SN−1 to SN . Note that, from (11),

π(N)i =
(︁
1 − π(N)N

)︁
π(N−1)i = cN−1π(N−1)i , 1 ≤ i ≤ N − 1. (13)

i.e. the first N − 1 terms of π(N)i are a multiple of π(N−1)i . Further, from (6) and definition of S(N),

pi(N)N = cN−1

N−1∑︀
i=1

π(N−1)i p(N)iN

S(N) , (14)

From (13) and (14), the constant cN−1 is determined from the fact that
N∑︀
i=1
π(N)i = 1, and the stationary

distribution for the MC on SN can be determined from the MC on SN−1 yielding

π(N)T = cN−1

⎛⎜⎜⎜⎝π(N−1)1 , . . . , π(N−1)N−1 ,

N−1∑︀
i=1

π(N−1)i p(N)iN

S(N)

⎞⎟⎟⎟⎠ . (15)

leading to a procedure for determining the stationary distribution on the expanded state space.
The reductionprocess continues untilwe reach the state space S2 = {1, 2}whenweobtain the irreducible

stochastic matrix P(2) =
[︃
p(2)11 p(2)12
p(2)21 p(2)22

]︃
associated with the MC

{︁
X(2)k , k ≥ 0

}︁
.
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The stationary probability vector of this MC is given by π(2)T =
(︁
π(2)1 , π(2)2

)︁
.

The second stationary equation is π(2)2 = π(2)1 p(2)12 + π
(2)
2 p(2)22 implying π(2)2

(︁
1 − p(2)22

)︁
= π(2)1 p(2)12 ,

i.e. π(2)2 = π(2)1
p(2)12

1 − p(2)22
= π(2)1

p(2)12

p(2)21
= π(2)1

p(2)12
S(2) . (16)

Note that S(2) = 1 − p(2)22 =
1∑︀
j=1
p(2)2j = p

(2)
21 = p(2)(r)Te1.

Since from (12), π(2)T =
(︁
π(2)1 , π(2)2

)︁
= k2 (π1, π2), we have from (16) by dividing by k2 that

π2 = π1
p(2)12
S(2) . (17)

We now proceed with increasing the state space using the process described above.
Observe that from (12) with n = 3, and (15) with N = 3,

π(3)T =
(︁
π(3)1 , π(3)2 , π(3)3

)︁
= k3 (π1, π2, π3) = c2

⎛⎜⎜⎜⎝π(2)1 , π(2)2 ,

2∑︀
i=1
π(2)i p

(3)
i3

S(3)

⎞⎟⎟⎟⎠
implying π(3)3 =

(︂ 2∑︀
i=1
π(2)i p

(3)
i3

)︂
/
(︂ 2∑︀
i=1
p(3)3i

)︂
= π(2)1

(︁
p(3)13 /S(3)

)︁
+ π(2)2

(︁
p(3)23 /S(3)

)︁
, and hence by scaling

π3 = π1
p(3)13
S(3) + π2

p(3)23
S(3) . (18)

leading in general, for n = 2, . . . , N, to

πn =

n−1∑︀
i=1
πip(n)in

n−1∑︀
i=1
p(n)ni

=
n−1∑︁
i=1

p(n)in
S(n) . (19)

Thus if πj = krj with r1 = 1 then
N∑︀
i−1
πi = 1 ⇒ k = 1/

N∑︀
i=1
ri with rn =

(︂n−1∑︀
i=1
rip(n)in

)︂
/S(n), (n = 2, . . . , N),

implying πi = ri/
N∑︀
n=1

rn, i = 1, 2, . . . , N.

We summarize the procedure as follows.

Theorem 1:

Given a finite irreducible MC
{︁
X(N)k , k ≥ 0

}︁
with state space SN = {1, 2, . . . , N} and transition matrix

P(N) =
[︁
p(N)ij

]︁
its stationary probabilities

{︁
π(N)i

}︁
can be computed as follows:

1. Compute, successively for n = N, N − 1, . . . , 3, p(n−1)ij = p(n)ij + p(n)in p
(n)
nj /S(n), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1;

where S(n) =
n−1∑︀
j=1
p(n)nj .

2. Set r1 = 1 and compute successively for n = 2, . . . , N, rn =
(︂n−1∑︀
i=1
rip(n)in

)︂
/S(n).

3. Compute, for i = 1, 2, . . . , N, π(N)i = ri/
(︃

N∑︀
j=1
rj

)︃
.
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This is a formal derivation of the Grassman, Taksar and Heyman (GTH) algorithm [4] or the equivalent
Sheskin State Reduction procedure [15] for finding the stationary distribution of an irreducible finiteMC. The
procedure is numerically stable and accurate in that no subtractions need be carried out.

Note that, as a result of equation (12), the stationary distribution for the derived MC
{︁
X(n)k , k ≥ 0

}︁
with

transition probability matrix P(n) =
[︁
p(n)ij
]︁
on the reduced state space Sn, is given as π(n)i = ri/

(︃
n∑︀
j=1
rj

)︃
, i =

1, 2, . . . , n.

3 Markov renewal processes
We give a brief review of some of the key properties of Markov renewal processes. We refer the reader to
Section 2.2 of [9] where the following general concepts and notation are presented.

We consider a MRP {(Xn , Tn) , n ≥ 0}, with state space S = {1, 2, . . . , N} and semi-Markov kernel Q(t) =[︁
Qij(t)

]︁
, whereQij(t) = P {Xn+1 = j, Tn+1 − Tn ≤ t|Xn = 1}, (i, j) ∈ S.

{Xn}, (n ≥ 0), tracks the states successively visited and Tn is the time of the n-th transition.
Observe that Qij (+∞) = P {Xn+1 = j|Xn = i}, so that {Xn} is a MC, the embedded MC, with transition

matrix P =
[︁
pij
]︁
where pij = Qij (+∞). Further, we can express Qij(t) as Qij(t) = pijFij(t) where Fij(t) =

P {Tn+1 − Tn ≤ t|Xn = i, Xn+1 = j}. Thus Fij(t) is the distribution function of the “holding time” Tn+1 − Tn in
state Xn until transition into state Xn+1 given that the MRP makes a transition from Xn to Xn+1.

Let µij =
∞∫︀
0
tdQij(t) so that µij = pijE [Tn+1 − Tn|Xn = i, Xn+1 = j].

Weassume that the embeddedMC {Xn , n ≥ 0} is irreducible andhencehas a stationarydistribution
{︀
πj
}︀
,

(j ∈ S) and associated stationary probability vector πT = (π1, π2, . . . , πN).
Let N =

[︁
µij
]︁
then, (equation (2.10) [9]), theMFPTmatrixM =

[︁
mij

]︁
of theMRP {(Xn , Tn) , n ≥ 0} satisfies

the equation

(I − P)M = NE − PMd , (20)

where Md =
[︁
δijmij

]︁
= diag(m11, . . . ,mNN), (with δij = 1 when i = j and 0 otherwise).

Let µ = Ne so that NE = NeeT = µeT . If µT = (µ1, µ2, . . . , µN) then µi =
N∑︀
j=1
µij.

Observe that µi = E [Tn+1 − Tn|Xn = i], the “expected holding time starting in state i”. We introduce one
further piece of notation. The “mean asymptotic increment”, for the MRP is given by λ1 = πTµ, i.e. the “ex-
pected holding time under stationary conditions”. From Section 5.2 of [9], Md = λ1 (Πd)−1 where Π = eπT

implying that

mjj =
λ1
πj
. (21)

Note that when Tn+1 = Tn + 1, the MRP {(Xn , Tn) , n ≥ 0} reduces to a discrete time MC {Xn , n ≥ 0} with
µij = pij, µi = 1, for all i and λ1 = 1. Thus µ = e and NE = eeT = E.

4 Computation of the Mean First Passage Times
We seek a computational procedure that will enable us to calculate all the MFPTs times in a MC.

As Kohlas [13] pointed out in his pioneering paper, it is more natural to consider the Markov renewal
setting. Let us define Mn =

[︁
mij

]︁
, (1 ≤ i ≤ n, 1 ≤ j ≤ n) as the MFPT matrix of the MRP

{︁(︁
X(n)k T

(n)
k

)︁
, k ≥ 0

}︁
with n-states, transition matrix P(n) and mean holding time vector µ(n). From (20), the matrix Mn satisfies(︁

In − P(n)
)︁
Mn = µ(n)e(n)T − P(n) (Mn)d . (22)
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Note that for the MC
{︁
X(N)k , k ≥ 0

}︁
starting with N states, µ(N)T = e(N)T = (1, 1, . . . , 1).

Let us partition Mn as

Mn =
[︃
Mn−1 m(n)(c)

n−1
m(n)(r)T
n−1 mnn

]︃
(23)

whereMn−1 =
[︁
mij

]︁
, (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1) , m(n)(r)T

n−1 = (mn1,mn2, . . . ,mn,n−1) andm(n)(c)T
n−1 =(m1n ,m2n,

. . . ,mn−1,n).
Define µ(n)T =

(︁
µ(n)1 , . . . , µ(n)n−1, µ

(n)
n

)︁
=
(︁
µ(n)Tn−1 , µ

(n)
n

)︁
where µ(n)Tn−1 =

(︁
µ(n)1 , . . . , µ(n)n−1

)︁
. We partition P(n) =[︃

Q(n)
n−1 p(n)(c)n−1

p(n)(r)Tn−1 p(n)nn

]︃
so that block multiplication of (22) yields[︃

In−1 − Q(n)
n−1 −p(n)(c)n−1

−p(n)(r)Tn−1 1 − p(n)nn

]︃[︃
Mn−1 m(n)(c)

n−1
m(n)(r)T
n−1 mnn

]︃
=
[︃
µ(n)n−1e

(n−1)T µ(n)n−1
µ(n)n e(n−1)T µ(n)n

]︃
−
[︃
Q(n)
n−1 p(n)(c)n−1

p(n)(r)Tn−1 p(n)nn

]︃[︃
(Mn−1)d 0

0T mnn

]︃
.

Hence
(1,1) Block: (︁

In−1 − Q(n)
n−1

)︁
Mn−1 − p(n)(c)n−1 m(n)(r)T

n−1 = µ(n)n−1e
(n−1)T − Q(n)

n−1 (Mn−1)d . (24)

(1,2) Block: (︁
In−1 − Q(n)

n−1

)︁
m(n)(c)
n−1 − mnnp(n)(c)n−1 = µ(n)n−1 − mnnp(n)(c)n−1 . (25)

(2,1) Block:

−p(n)(r)Tn−1 Mn−1 +
(︁
1 − p(n)nn

)︁
m(r)T
n−1 = µ

(n)
n e(n−1)T − p(n)(r)Tn−1 (Mn−1)d . (26)

(2,2) Block:

−p(n)(r)Tn−1 m(n)(c)
n−1 +

(︁
1 − p(n)nn

)︁
mnn = µ(n)n − p(n)nnmnn . (27)

From (26),

m(n)(r)T
n−1 = 1(︁

1 − p(n)nn
)︁ {︁p(n)(r)Tn−1

(︀
Mn−1 − (Mn−1)d

)︀
+ µ(n)n e(n−1)T

}︁

and, using (2),

m(n)(r)T
n−1 = 1

p(n)(r)Tn−1 e(n−1)

{︁
p(n)(r)Tn−1

(︀
Mn−1 − (Mn−1)d

)︀
+ µ(n)n e(n−1)T

}︁
. (28)

Substitute into (24)(︃
In−1 − Q(n)

n−1 −
p(n)(c)n−1 p(n)(r)Tn−1

p(n)(r)Tn−1 e(n−1)

)︃
Mn−1 =

(︃
µ(n)n−1 +

µ(n)n p(n)(c)n−1

p(n)(r)Tn−1 e(n−1)

)︃
e(n−1)T +

(︃
Q(n)
n−1 +

p(n)(c)n−1 p(n)(r)Tn−1

p(n)(r)Tn−1 e(n−1)

)︃
(Mn−1)d .

Thus, using the expression for P(n−1) as derived earlier (cf. equation (8)),

(︁
In−1 − P(n−1)

)︁
Mn−1 = µ(n−1)e(n−1)T − P(n−1) (Mn−1)d where µ(n−1) = µ(n)n−1 +

µ(n)n p(n)(c)n−1

p(n)(r)Tn−1 e(n−1)
. (29)

This is of similar form to the n-state case as given by (22) but with the state space reduced to n − 1 and a
changed form for µ(n−1).

This leads to the following structural result.
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Theorem 2:

Let
{︁(︁
X(n)k , T(n)k

)︁
, k ≥ 0

}︁
be aMRP with state space Sn = {1, 2, . . . , n}, (n = 2, . . . , N), transition matrix

P(n) =
[︁
p(n)ij
]︁
, MFPT matrix Mn =

[︁
mij

]︁
, (1 ≤ i ≤ n, 1 ≤ j ≤ n), and vector of mean holding times µ(n)T =(︁

µ(n)1 , . . . , µ(n)n−1, µ
(n)
n

)︁
thenMn satisfies equation (22), i.e.

(︁
In − P(n)

)︁
Mn = µ(n)e(n)T−P(n) (Mn)d, or, in element

form

mij = µ(n)i +
∑︁
k≠j

p(n)ik mkj , (1 ≤ i ≤ n, 1 ≤ j ≤ n) . (30)

Then,under the state reductionprocess as carriedoutunder theGTHalgorithm,
{︁(︁
X(n−1)k , T(n−1)k

)︁
, k ≥ 0

}︁
is also a MRP with state space Sn−1 = {1, 2, . . . , n − 1}, transition matrix P(n−1) =

[︁
p(n−1)ij

]︁
, and MFPT ma-

trix Mn−1 =
[︁
mij

]︁
, (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1), which satisfies equation (29) i.e.

(︁
In−1 − P(n−1)

)︁
Mn−1 =

µ(n−1)e(n−1)T − P(n−1) (Mn−1)d, where the transition probabilities p
(n−1)
ij are given by

p(n−1)ij = p(n)ij +
p(n)in p

(n)
nj

S(n) , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1, (31)

and the elements of the mean holding time vector µ(n−1)T =
(︁
µ(n−1)1 , . . . , µ(n−1)n−1

)︁
are given by

µ(n−1)i = µ(n)i +
p(n)in µ

(n)
n

S(n) , 1 ≤ i ≤ n − 1, (32)

where S(n) = p(n)(r)Tn−1 e(n−1) =
n−1∑︀
j=1
p(n)nj = 1 − p(n)nn .

Note that equation (31) is identical to format of the transition probabilities as used in the GTH algorithm
with the derivation given by equations (8) and (9) with N replaced by n. The expression for the elemental
expressions for the mean holding times (32) follows from (29).

Thus for the reducedMRP
{︁(︁
X(n−1)k T(n−1)k

)︁
, k ≥ 0

}︁
theMFPTsmij, (1 ≤ i ≤ n−1, 1 ≤ j ≤ n−1) are identical

to those of the same pairs of states as in the originalMRP
{︁(︁
X(n)k T

(n)
k

)︁
, k ≥ 0

}︁
. Thismeans that we can reduce

the state space by successive steps retaining the same MFPTs for the reduced state space in the upper block
of Mn although the mean holding times in the states are modified, as given by equation (32).

Upon increasing the state space from Sn−1 to Sn, as in the GTH algorithm, we wish to find an expression
for the elements of Mn, given Mn−1 =

[︁
mij

]︁
, (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1). Thus, from (23), we need to find

expressions form(n)(c)
n−1 ,m(n)(r)T

n−1 and mnn.
From the properties of MCs and MRPs the following results for the mean recurrence times mnn, can be

deduced:

Theorem 3:

(1) mnn =
λ(N)1

π(N)n
where λ(N)1 = π(N)Tµ(N) =

N∑︁
k=1

π(N)k µ(N)k . (33)

(2) mnn =
λ(n)1

π(n)n
where λ(n)1 = π(n)Tµ(n) =

n∑︁
k=1

π(n)k µ
(n)
k . (34)

(3) In theMC setting for
{︁
X(N)k , k ≥ 0

}︁
, mnn = 1/π(N)n . (35)
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Proof:
Starting with a MRP

{︁(︁
X(N)k , T(N)k

)︁
, k ≥ 0

}︁
on the state space SN = {1, 2, . . . , N}, equation (21) im-

plies that mii = λ(N)1 /π(N)i , where λ(N)1 = π(N)Tµ(N), leading to (33) for i = n and also to equation (34) since{︁(︁
X(n)k , T(n)k

)︁
, k ≥ 0

}︁
is also aMRP with mean increment λ(n)1 . Equation (35) follows since, in theMC setting,

µ(N)i = 1 and λ(N)1 = 1.

Theorem 4:

mnn = µ(n)n +
n−1∑︁
k=1

p(n)nkmkn , n = 2, . . . , N (36)

where m11 = µ(1)1

Proof:
Equation (36) follows from an elemental expression of equation (27). The result for n = 1 follows from

equation (34) as π(1)1 and hence λ(1)1 = µ(1)1 .
Theorem 4 gives an additional useful computational procedure formnn. While it does require knowledge

of themin for i = 1, 2, . . . , n−1, it avoids the calculation of the stationary distribution which is an advantage
in the Markov renewal setting. The computation of the min for i < n requires some additional computational
effort as we shall see shortly.

Withknowledgeof the elements ofMn−1 expressions for the elements ofm(n)(r)T
n−1 = (mn1,mn2, . . . ,mn,n−1)

can easily be deduced directly from equation (28).

Theorem 5:

mnj =
µ(n)n +

n−1∑︀
k=1, k≠j

p(n)nkmkj

S(n) , j = 1, . . . , n − 1, (37)

where S(n) = 1 − p(n)nn =
n−1∑︀
j=1
p(n)nj .

Application of Theorem 5 requires retention of the elements p(n)nk of the n
th row of P(n).

It is a little more difficult to find the vectorm(n)(c)
n−1 = (m1n ,m2n , . . . ,mn−1,n).

From (25), (︁
In−1 − Q(n)

n−1

)︁
m(n)(c)
n−1 = µ(n)n−1. (38)

Even though
(︁
In−1 − Q(n)

n−1

)︁−1
exists we use the reduction procedure used above by eliminating mn−1,n

fromm(n)(c)T
n−1 and replacing it in the expressions for the elements m1n ,m2n , . . . ,mn−2,n. The following theo-

rem enables us to develop expressions for the min for i < n.

Theorem 6:

(a) min = µ(n)i +
n−1∑︁
k=1

p(n)ik mkn , i = 1, . . . , n − 1, n = 2, . . . , N . (39)

(b) min = v(t,n)i +
t∑︁
k=1

q(t,n)tk mkn , 1 ≤ i ≤ t ≤ n − 1, n = 2, . . . , N . (40)
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where q(t−1,n)ik = q(t,n)ik +
q(t,n)it q(t,n)tk

1 − q(t,n)tt
, i, k = 1, . . . , t − 1, t = 2, . . . , n − 1; (41)

with q(n−1,n)ik = p(n)ik , i, k = 1, . . . , n − 1, n = 2, . . . , N, (42)

and v(t−1,n)i = v(t,n)i +
q(t,n)it v(t,n)t

1 − q(t,n)tt
, i = 1, . . . , t − 1, t = 2, . . . , n − 1, (43)

with v(n−1,n)i = µ(n)i , i = 1, . . . , n − 1; n = 2, . . . , N . (44)

(c) m1n =
v(1,n)1
R(1, n) , n = 2, . . . , N, (45)

where R(i, n) = 1 − q(i,n)ii , i = 1, . . . , n − 1; n = 2, . . . , N . (46)

(d) min =
v(i,n)i +

i−1∑︀
k=1

q(i,n)ik mkn

R(i, n) , i = 2, . . . , n − 1; n = 2, . . . , N . (47)

Proof:

(a) Expression (39) is equation (38) in element form, using equations (42) and (44).
(b) In the first instance when t = n − 1, expression (40) is identical to (39).

Now from equation (39) express mn−1,n in terms of the m1n ,m2n , . . . ,mn−2,n obtaining

mn−1,n =
µ(n)n−1 +

n−2∑︀
k=1

p(n)n−1,kmkn

1 − p(n)n−1,n−1
. (48)

Substitute expression (47) for mn−1,n n in each of the min, (i = 1, . . . , n − 2), expressions given by (39) to
obtain, using equations (44) and (45),

min =
{︃
µ(n)i +

p(n)i,n−1µ
(n)
n−1

1 − p(n)n−1,n−1

}︃
+
n−2∑︁
k=1

{︃
p(n)ik +

p(n)i,n−1p
(n)
n−1,k

1 − p(n)n−1,n−1

}︃
mkn =

{︃
v(n−1,n)i +

q(n−1,n)i,n−1 v(n−1,n)n−1

1 − q(n−1,n)n−1,n−1

}︃

+
n−2∑︁
k=1

{︃
q(n−1,n)ik +

q(n−1,n)i,n−1 q(n−1,n)n−1,k

1 − q(n−1,n)n−1,n−1

}︃
mkn = v(n−2,n)i +

n−2∑︁
k=1

q(n−2,n)ik mkn , 1 ≤ i ≤ n − 2,

establishing that equation (40) is true for t = n − 2.
We now use a proof by induction. Assume that equation (40) is true for t = s ≤ n − 1.

Thus msn = v(s,n)s +
s∑︀
k=1

q(s,n)sk mkn, implying that msn =
(︂
v(s,n)s +

s−1∑︀
k=1

q(s,n)sk mkn

)︂
/
(︁
1 − q(s,n)ss

)︁
.

Substitution in equation (40) when t = s, yields, using equations (41) and (43), that

min =
{︃
v(s,n)i +

q(s,n)is v(s,n)s

1 − q(s,n)ss

}︃
+
s−1∑︁
k=1

{︃
q(s,n)ik +

q(s,n)is q(s,n)sk

1 − q(s,n)ss

}︃
mkn = v(s−1),n)i +

s−1∑︁
k=1

q(s−1,n)ik mkn .

This implies that equation (40) is true for t = s − 1. Since equation (40) is true for t = n − 1, (by equa-
tion (39)) and hence by induction it is true for t = n − 2, n − 3, . . . , 2, 1.
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(c) From equation (40) when i = t = 1, m1n = v(1,n)1 + q(1,n)11 m1n leading to equation (45) with the notation
of equation (46).

(d) From equation (40), when i = t = 2, m2n = v(2,n)2 + q(2,n)21 m1n + q(2,n)22 m2n so that
m2n =

(︁
v(s,n)2 + q(2,n)21 m1n

)︁
/
(︁
1 − q(2,n)22

)︁
, leading to equation (47) when i = 2.

In general, for i = 2, . . . , n − 1 equation (47) follows directly from equation (40) when t = i.
Equations (45) and (47) enable successive derivation of m1n ,m2n , . . . ,mn−2,nmn−1,n following repeated

recursion of equation (47) with i = 1, 2, . . . , n − 1.
In the calculations expressed by equation (47) it would be advantageous if we could express R(i, n) as a

sum of terms, with no subtraction, as was the case for the S(n).
Note when i = n −1, equation (47) is equivalent to equation (39) since q(n−1,n)n−1,k = p(n)n−1,k and v

(n−1,n)
i = µ(n)i

yielding mn−1,n =
(︂
v(n−1,n)n−1 +

n−2∑︀
k=1

q(n−1,n)n−1,k mkn

)︂
/R(n − 1, n) =

(︂
µ(n)n−1 +

n−2∑︀
k=1

p(n)n−1,kmkn

)︂
/
(︁
1 − q(n−1,n)n−1,n−1

)︁
, where

R(n − 1, n) = 1 − p(n)n−1,n−1 =
n∑︀

j=1, j≠n−1
p(n)n−1,j, (since P

(n) is stochastic), a sum of terms.

When i = n − 2, mn−2,n =
(︂
v(n−2,n)n−2 +

n−3∑︀
k=1

q(n−2,n)n−2,k mkn

)︂
/R(n − 2, n), where q(n−2,n)n−2,k = q(n−1,n)n−2,k +(︁

q(n−1,n)n−2,n−1q
(n−1,n)
n−1,k

)︁
/
(︁
1 − q(n−1,n)n−2,n−2

)︁
= p(n)n−2,k+

(︁
p(n)n−2,n−1p

(n)
n−1,k

)︁
/
(︁
1 − p(n)n−1,n−1

)︁
andR(n−2, n) ≡ 1−q(n−2,n)n−2,n−2 =

1 − p(n)n−2,n−2 −
(︁
p(n)n−2,n−1p

(n)
n−1,n−2

)︁
/
(︁
1 − p(n)n−1,n−1

)︁
=
(︁(︁

1 − p(n)n−1,n−1
)︁(︁

1 − p(n)n−2,n−2
)︁
− p(n)n−2,n−1p

(n)
n−1,n−2

)︁
/

R(n − 1, n)
It follows that the numerator of the expression for R(n−2, n) can also be expressed in terms not involving

any subtraction since 1−p(n)n−1,n−1 =
∑︁

j=1,j≠n−1,n−2
p(n)n−1,j+p

(n)
n−1,n−2 and 1−p

(n)
n−2,n−2 =

∑︁
j=1,j≠n−1,n−2

p(n)n−2,j+p
(n)
n−2,n−1.

It is expected that it can be shown that the denominators of the expressions given by( 41), (43), (45)
and (46), i.e. R(t, n) = 1 − q(t,n)tt , can all be expressed in terms not involving subtractions, as we were able to
show for the S(n).

The state reduction process can continue to a single state, n = 1,where from (30),m11 = µ(1)1 . (see Section
5 for a further discussion on this result).

We can however finish the state reduction process when we are left with n = 2 states. From (30), we have
four equations

m11 = µ(2)1 + p(2)12m21, m12 = µ(2)1 + p(2)11m12,

m21 = µ(2)2 + p(2)22m21, m22 = µ(2)2 + p(2)21m12,

that are easily solved to yield, using the observation that 1 − p(2)11 = p(2)12 and 1 − p
(2)
22 = p(2)21 ,

M2 =
[︃
m11 m12
m21 m22

]︃
=

⎡⎣µ(2)1 +
(︁
p(2)12 /p

(2)
21

)︁
µ(2)2 µ(2)1 /p(2)12

µ(2)2 /p(2)21

(︁
p(2)21 /p

(2)
12

)︁
µ(2)1 + µ(2)2

⎤⎦ . (49)

Note, from equation (32) with n = 2, m11 = µ(1)1 = µ(2)1 +
(︁
p(2)12 /S(2)

)︁
µ(2)2 , where S(2) = 1 − p(2)22 = p(2)21 ,

leading to the expression for m11 in (49).
Following the state reduction process to S2 we now need to increase the state space to SN through the

inclusion of successive additional states.

From the process outlined in Theorem 2, M3 =

⎡⎢⎣ M2|
m13
m23

m31 m32 m33

⎤⎥⎦, where the M2 matrix is given

by (49).
From Theorem 5, equation (37), m31 =

(︁
µ(3)3 + p(3)32m21

)︁
/S(3), m32 =

(︁
µ(3)3 + p(3)31m12

)︁
/S(3).

From Theorem 6, equation (45), m13 = v(1,3)1 /R(1, 3).
From Theorem 6, equation (47), m23 =

(︁
v(2,3)2 + q(2,3)21 m13

)︁
/R(2, 3).
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From Theorem 4, equation (36), m33 = µ(3)3 + p(3)31m13 + p(3)32m23. (Alternatively, from equation (34), m33 =(︂ 3∑︀
k=1

π(3)k µ
(3)
k

)︂
/π(3)3 , but this expression requires derivation of the π(3)i from the first r1, r2 and r3 terms of the

GTH procedure).
Thus

M3 =

⎡⎢⎢⎣
m11 m12 v(1,3)1 /R(1, 3)
m21 m22

(︁
v(2,3)2 + p(3)21m13

)︁
/R(2, 3)(︁

µ(3)3 + p(3)32m21
)︁
/S(3)

(︁
µ(3)3 + p(3)31m12

)︁
/S(3) µ(3)3 + p(3)31m13 + p(3)32m23

⎤⎥⎥⎦ . (50)

Thus the process can be progressed from Mn−1 to Mn using Theorems 4, 5 and 6.

5 Special case N = 1

When the state reduction process results in a single statewe in effect endupwith aMRP
{︁(︁
X(1)k , T(1)k

)︁
, k ≥ 0

}︁
on the state space S1 = {1}. In this case the embedded irreducible MC

{︁
X(1)k , k ≥ 0

}︁
leads simply to X(1)k ≡

1 for all k, having a single element transition matrix P(1) =
[︁
p(1)11

]︁
=
[︁
1
]︁
. Thus the stationary probability

distribution is π(1)1 = 1.
Further theMRP reduces to the Renewal Process

{︁
T(1)k , k ≥ 0

}︁
where the distribution of the time between

transitions, Q(1)
11 (t) = F

(t)
11(t) = P

{︁
T(1)k+1 − T

(1)
k ≤ t

}︁
. The mean state holding time µ(1)1 = E

[︁
T(1)k+1 − T

(1)
k

]︁
. Since

π(1)1 = 1, the mean asymptotic increment λ(1)1 = µ(1)1 implying that the mean recurrence time is simply m11 =
µ(1)1 .

6 Special case N = 2

We consider the MRP
{︁(︁
X(2)k , T(2)k

)︁
, k ≥ 0

}︁
on the state space S2 = {1, 2} with embedded irreducible

MC
{︁
X(2)k , k ≥ 0

}︁
having a transition matrix P(2) =

[︁
p(2)ij
]︁
and mean state holding times µ(2)i , i = 1, 2.

The state reduction procedure implies π(2)1 p(2)21 = π(2)2 p(2)12 , so that the stationary probabilities for the
MC

{︁
X(2)k , k ≥ 0

}︁
are given by

π(2)1 =
p(2)21

p(2)12 + p
(2)
21

, π(2)2 =
p(2)12

p(2)12 + p
(2)
21

. (51)

For the N = 2 state situation, we have solved thematrix equation (22) when n = 2, in Section 4, in element
form leading to equation (49) for M2.

Note that from equation (37), with n = 2, j = 1, S(2) = 1 − p(2)22 = p(2)21 , so that m21 = µ(2)2 /S(2), consistent
with the expression for m21 in equation (49).

Further, for n = 2, i = 1, equation (45) implies that m12 = v(1,2)1 /
(︁
1 − q(1,2)11

)︁
= µ(2)1 /R(1, 2) =

µ(2)1 /
(︁
1 − p(2)11

)︁
= µ(2)1 /p(2)12 , consistent with the result for m12 in equation (49).

Note for the mean recurrence times, mii, we have from the proof of Theorem 3 that mii = λ(2)1 /π(2)i where
λ(2)1 = π(2)1 µ(2)1 + π(2)2 µ(2)2 .

The mean asymptotic increment is given by λ(2)1 = π(2)1 µ(2)1 + π(2)2 µ(2)2 =
(︁
p(2)21µ

(2)
1 + p(2)12µ

(2)
1

)︁
/
(︁
p(2)12 + p

(2)
21

)︁
,

implying that m11 = λ(2)1 /π(2)1 = µ(2)1 +
(︁
p(2)12 /p

(2)
21

)︁
µ(2)2 = µ(1)1 as already deduced for the N = 1 case.

Further, m22 = λ(2)1 /π(2)2 =
(︁
p(2)21 /p

(2)
12

)︁
µ(2)1 + µ(2)2 , as given by equation (49).
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When theMRP reduces to an irreducibleMC, the stationary probabilities are as in equation (51), but the

asymptotic mean increment is given by λ(2)1 = 1, since µ(2)1 = µ(2)2 = 1, implying that M2 =
[︃
m11 m12
m21 m22

]︃
=⎡⎣1 + (︁p(2)12 /p

(2)
21

)︁
1/p(2)12

1/p(2)21 1 +
(︁
p(2)21 /p

(2)
12

)︁⎤⎦, as is well known (Hunter, Ex 7.3.4 [10]).

7 Special case N = 3

We examine the MRP
{︁(︁
X(3)k , T(3)k

)︁
, k ≥ 0

}︁
on the state space S3 = {1, 2, 3} with embedded irreducible

MC
{︁
X(3)k , k ≥ 0

}︁
having a transition matrix P(3) =

[︁
p(3)ij
]︁
and mean state holding times µ(3)i , i = 1, 2, 3.

Firstly the stationary probabilities for the MC can be found from the state reduction process. From (15),

π(3)T =
(︁
π(3)1 , π(3)2 , π(3)3

)︁
= c2

⎛⎜⎜⎜⎝π(2)1 , π(2)2 ,

2∑︀
i=1
π(2)i p

(3)
i3

S(3)

⎞⎟⎟⎟⎠
where π(2)1 = p(2)21 /

(︁
p(2)12 + p

(2)
21

)︁
, π(2)2 = p(2)12 /

(︁
p(2)12 + p

(2)
21

)︁
.

Let us introduce some notation that has previously been used in the literature that will simplify the ex-
pressions.

Define ∆1 ≡ p(3)21p
(3)
31 + p

(3)
21p

(3)
32 + p

(3)
23p

(3)
31 , ∆2 ≡ p(3)12p

(3)
31 + p

(3)
12p

(3)
32 + p

(3)
13p

(3)
32 , ∆3 ≡ p(3)13p

(3)
21 + p

(3)
12p

(3)
23 + p

(3)
13p

(3)
23

and ∆ ≡ ∆1 + ∆2 + ∆3.
Now from (31) and (32) p(2)ij = p(3)ij + p(3)i3 p

(3)
3j /S(3), (i, j) ∈ {1, 2} where S(3) = 1 − p(3)33 = p(3)31 + p

(3)
32 , and

µ(2)i = µ(3)i + µ(3)3 p(3)i3 /S(3), (1 ≤ i ≤ 2). Note that p
(2)
12 = ∆2/

(︁
p(3)31 + p

(3)
32

)︁
, p(2)21 = ∆1/

(︁
p(3)31 + p

(3)
32

)︁
.

Further

π(2)1 = ∆1(︁
p(3)12 + p

(3)
21

)︁(︁
p(3)31 + p

(3)
32

)︁
+ p(3)13p

(3)
32 + p

(3)
23p

(3)
31

= c2π(3)1 ,

π(2)2 = ∆2(︁
p(3)12 + p

(3)
21

)︁(︁
p(3)31 + p

(3)
32

)︁
+ p(3)13p

(3)
32 + p

(3)
23p

(3)
31

= c2π(3)2 .

2∑︀
i=1
π(2)i p

(3)
i3

S(3) = ∆3(︁
p(3)12 + p

(3)
21

)︁(︁
p(3)31 + p

(3)
32

)︁
+ p(3)13p

(3)
32 + p

(3)
23p

(3)
31

= c2π(3)3 .

implying that

π(3)i = ∆i∆ , i = 1, 2, 3. (52)

Using the facts, derived from the above observations,

R(2, 3) = 1 − q(2,3)22 = 1 − p(3)22 = p(3)21 + p
(3)
23 ,

R(1, 3) = 1 − q(1,3)11 = 1 − p(3)11 −
p(3)12p

(3)
21

1 − p(3)22
= ∆3
p(3)21 + p

(3)
23

.

v(2,3)2 = µ(3)2 , v(1,3)1 = v(2,3)1 +
q(2,3)12 v(2,3)2

1 − q(2,3)22
= µ(3)1 +

p(3)12µ
(3)
2

p(3)21 + p
(3)
23

,
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and using the simplifications that ∆1p(3)13 +∆2p
(3)
23 = ∆3

(︁
p(3)31 + p

(3)
32

)︁
, p(3)23p

(3)
32 +∆1 =

(︁
p(3)21 + p

(3)
23

)︁(︁
p(3)31 + p

(3)
32

)︁
,

p(3)12p
(3)
31 + ∆2 =

(︁
p(3)12 + p

(3)
13

)︁(︁
p(3)31 + p

(3)
32

)︁
and p(3)12p

(3)
21 + ∆3 =

(︁
p(3)12 + p

(3)
13

)︁(︁
p(3)21 + p

(3)
23

)︁
we express all the

elemental expressions of the M3 matrix for the MFPTs in terms of the p(3)ij and the µ(3)i . This leads to

M3=

⎡⎢⎢⎢⎣
(︁
∆1µ(3)1 + ∆2µ(3)2 + ∆3µ(3)3

)︁
/∆1

(︁(︁
p(3)31 + p

(3)
32

)︁
µ(3)1 + p(3)13µ

(3)
3

)︁
/∆2

(︁(︁
p(3)21 + p

(3)
23

)︁
µ(3)1 + p(3)12µ

(3)
2

)︁
/∆3(︁(︁

p(3)31 + p
(3)
32

)︁
µ(3)2 + p(3)23µ

(3)
3

)︁
/∆1

(︁
∆1µ(3)1 + ∆(3)2 µ(3)2 + ∆3µ(3)3

)︁
/∆2

(︁
p(3)21µ

(3)
1 +

(︁
p(3)12 + p

(3)
13

)︁
µ(3)2

)︁
/∆3(︁

p(3)32µ
(3)
2 +

(︁
p(3)21 + p

(3)
23

)︁
µ(3)3

)︁
/∆1

(︁
p(3)31µ

(3)
1 +

(︁
p(3)12 + p

(3)
13

)︁
µ(3)3

)︁
/∆2

(︁
∆1µ(3)1 + ∆2µ(3)2 + ∆3µ(3)3

)︁
/∆3

⎤⎥⎥⎥⎦
(53)

Note that the expression form33 can also be deduced fromeither equation (34) or (36). Note also that from
the properties of MRPs, mii = λ(3)1 /π(3)i . The diagonal elements of (53) are consistent with this observation
since, using (52), the mean asymptotic increment is given by

λ(3)1 = π(3)1 µ(3)1 + π(3)2 µ(3)2 + π(3)3 µ(3)3 =
∆1µ(3)1 + ∆2µ(3)2 + ∆3µ(3)3

∆ .

For the MC case, µ(3)i = 1, 2, 3. Substituting and simplifying (53) yields

M3 =

⎡⎢⎢⎢⎣
∆/∆1

(︁
p(3)13 + p

(3)
31 + p

(3)
32

)︁
/∆2

(︁
p(3)12 + p

(3)
21 + p

(3)
23

)︁
/∆3(︁

p(3)23 + p
(3)
31 + p

(3)
32

)︁
/∆1 ∆/∆2

(︁
p(3)12 + p

(3)
13 + p

(3)
21

)︁
/∆3(︁

p(3)21 + p
(3)
23 + p

(3)
32

)︁
/∆1

(︁
p(3)12 + p

(3)
13 + p

(3)
31

)︁
/∆2 ∆/∆3

⎤⎥⎥⎥⎦ . (54)

These results are equivalent to those given in Example 3.2 of [11] where it is shown that the MC, with the
transition matrix P(3) =

[︁
p(3)ij
]︁
, is irreducible (and hence a stationary distribution exists) if and only if ∆1 > 0,

∆2 > 0, ∆3 > 0 with stationary distribution given as in (52) and MFPT matrix is given by (54).

8 Special case N = 4

We examine the MRP
{︁(︁
X(4)k , T(4)k

)︁
, k ≥ 0

}︁
on the state space S4 = {1, 2, 3, 4} with embedded irreducible

MC
{︁
X(4)k , k ≥ 0

}︁
having a transition matrix P(4) =

[︁
p(4)ij
]︁
and mean state holding times µ(4)i , i = 1, 2, 3, 4.

We extend the M3 matrix, using Theorem 5, equation (37) for the m4j terms, Theorem 6, equation (47)
for the mi4 terms and Theorem 4, equation (36) for the m44. This leads to the pattern of the calculations that
need to be carried out in the boundary column and row.

M4 =

⎡⎢⎢⎢⎢⎢⎣
m11 m12 m13 v(1,4)1 /R(1, 4)
m21 m22 m23

(︁
v(2,4)2 + q(2,4)21 m14

)︁
/R(2, 4)

m31 m32 m33
(︁
v(3,4)3 + q(3,4)31 m14 + q(3,4)34 m24

)︁
/R(3, 4)

µ(4)4 +p(4)42m21+p(4)43m31
S(4)

µ(4)4 +p(4)41m12+p(4)43m32
S(4)

µ(4)4 +p(4)41m13+p(4)42m23
S(4) µ(4)4 + p(4)41m14 + p(4)42m24 + p(4)43m34

⎤⎥⎥⎥⎥⎥⎦ .

The determination of the terms in the fourth column require careful computation.
Firstly we express the required MFPTs in terms of the initial transition probabilities, the p(4)ij computing

successively:

q(3,4)ij = p(4)ij , i = 1, 2, 3, j = 1, 2, 3,

q(2,4)ij = q(3,4)ij +
q(3,4)i3 q(3,4)3j

1 − q(3,4)33
= p(4)ij +

p(4)i3 p
(4)
3j

1 − p(4)33
, i = 1, 2, j = 1, 2,
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q(1,4)11 = q(2,4)11 +
q(2,4)12 q(2,4)21

1 − q(2,4)22
=
(︃
p(4)11 +

p(4)13p
(4)
31

1 − p(4)33

)︃
+

(︂
p(4)12 +

p(4)13 p
(4)
32

1−p(4)33

)︂(︂
p(4)21 +

p(4)23 p
(4)
31

1−p(4)33

)︂
1 −
(︂
p(4)22 +

p(4)23 p
(4)
32

1−p(4)33

)︂ .

Further R(i, 4) = 1 − q(i,4)ii , i = 1, 2, 3 so that

R(3, 4) = 1 − p(4)33 = p(4)31 + p
(4)
32 + p

(4)
34 ,

R(2, 4) = 1 − q(2,4)22 = 1 − p(4)22 −
p(4)23p

(4)
32

1 − p(4)33
=

(︁
p(4)21 + p

(4)
24

)︁(︁
p(4)31 + p

(4)
34

)︁
+ p(4)23

(︁
p(4)31 + p

(4)
34

)︁
+
(︁
p(4)21 + p

(4)
24

)︁
p(4)32

p(4)31 + p
(4)
32 + p

(4)
34

.

R(1, 4) = 1 − q(1,4)11 = 1 − q(2,4)11 −
q(2,4)12 q(2,4)21

1 − q(2,4)22
= 1 −

(︃
p(4)11 −

p(4)13p
(4)
31

1 − p(4)33

)︃
−

(︂
p(4)12 −

p(4)13 p
(4)
32

1−p(4)33

)︂(︂
p(4)21 −

p(4)23 p
(4)
31

1−p(4)33

)︂
1 −
(︂
p(4)22 −

p(4)23 p
(4)
32

1−p(4)33

)︂ .

Also v(3,4)i = µ(4)i , i = 1, 2, 3, and, from equation (43),

v(2,4)i = v(3,4)i +
q(3,4)i3 v(3,4)3

1 − q(3,4)33
= µ(4)i +

p(4)i3 µ
(4)
3

1 − p(4)33
, i = 1, 2.

v(1,4)1 = v(2,4)1 +
q(2,4)12 v(2,4)2

1 − q(2,4)22
=
(︃
µ(4)1 +

p(4)13µ
(4)
3

1 − p(4)33

)︃
+

(︂
p(4)12 +

p(4)13 p
(4)
32

1−p(4)33

)︂(︂
µ(4)2 + p(4)23 µ

(4)
3

1−p(4)33

)︂
1 −
(︂
p(4)22 +

p(4)23 p
(4)
32

1−p(4)33

)︂ .

We obtain, after simplification,

m14 =

(︁
1 − q(2,4)22

)︁
v(2,4)1 + q(2,4)12 v(2,4)2(︁

1 − q(2,4)11

)︁(︁
1 − q(2,4)22

)︁
− q(2,4)12 q(2,4)21

.

m24 =

[︁
p(4)21

(︁
1 − p(4)33

)︁
+ p(4)23p

(4)
31

]︁
m14 +

[︁
µ(4)2

(︁
1 − p(4)33

)︁
+ µ(4)3 p(4)23

]︁
(︁
1 − p(4)22

)︁(︁
1 − p(4)33

)︁
− p(4)23p

(4)
32

.

m34 =
p(4)31m14 + p(4)32m24 + µ(4)3

p(4)31 + p
(4)
32 + p

(4)
34

.

These expressions can be simplified upon substitution of the terms above, but the numerators and de-
nominators are not particularly simple expressions.

m14 =
N14
D14

where

N14 =
(︃
1 − p(4)22 −

p(4)23p
(4)
32

1 − p(4)33

)︃(︃
µ(4)1 +

p(4)13µ
(4)
3

1 − p(4)33

)︃
+
(︃
p(4)12 +

p(4)13p
(4)
32

1 − p(4)33

)︃(︃
µ(4)2 +

p(4)23µ
(4)
3

1 − p(4)33

)︃

D14 =
(︃
1 − p(4)11 −

p(4)13p
(4)
31

1 − p(4)33

)︃(︃
1 − p(4)22 −

p(4)23p
(4)
32

1 − p(4)33

)︃
+
(︃
p(4)12 +

p(4)13p
(4)
32

1 − p(4)33

)︃(︃
p(4)21 +

q(4)23q
(4)
31

1 − p(4)33

)︃
.

9 Algorithms for the computation of the matrix of MFPTs
From the special cases considered in Sections 5 to 8, we have typically extended the calculations for the
elements of Mn from the matrix Mn−1 by appending the elements min (i = 1, . . . , n − 1), mnn and mnj
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(j = 1, . . . , n − 1). However by exploring these calculations in more depth it is apparent that an recursive
process for computing themij elements for the originalMN matrix can be constructed through three separate
different procedures corresponding to the three cases i < j, i = j, and i > j. We can separate these three cases
as follows, using the notation developed earlier, viz., p(n)ij , µ

(n)
i , S(n), as given by equations (31) and (32),

q(t−1,n)ij with q(n−1,n)ij = p(n)ij as given by equations (41) and (42), v(t−1,n)i with v(n−1,n)i = µ(n)i as given by equa-
tions (43) and (44), and R(i, n) = 1 − q(i,n)ii , as given by equation (46).

Theorem 7:

The elements of the MFPT matrix MN =
[︁
mij

]︁
(i = 1, . . . , N, j = 1, 2, . . . , N) for the MRP

{︁(︁
X(N)k ,

T(N)k

)︁
, k ≥ 0

}︁
with state space SN = {1, 2, . . . , N}, transitionmatrix P(N) =

[︁
p(N)ij

]︁
and vector ofmeanholding

times µ(N)T =
(︁
µ(N)1 , . . . , µ(N)N

)︁
can be expressed as follows, where we use the notation

(a) mij =

µ(i)i +
i−1∑︁

k=1,k≠j
p(i)ikmkj

S(i) , (i = 3, . . . , N; j = 1, . . . , i − 1), (55)

with m21 =
µ(2)2
S(2) . (56)

(b) mii = µ(i)i +
i−1∑︁
k=1

p(i)ikmki , (i = 2, . . . , N), (57)

with m11 = µ(1)1 . (58)

(c) mij =
v(i,j)i +

i−1∑︀
k=1

q(i,j)ik mkj

R(i, j) , (i = 2, 3, . . . , N − 1; j = i + 1, . . . , N), (59)

with m1j =
v(1,j)1
R(1, j) , (j = 2, 3, . . . , N). (60)

Proof:
The expressions in (a) are when the indices i > j, in (b) when i = j and in (c) when i < j. Equation (55) fol-

lows from (37) and (56) from (49); equation (57) from (36) and (58) from (36); equation (59) and (60) from (47).
The general procedure described by Theorem 7 is difficult to program, for a general state space, using

MatLab. In particular the computation for the mij when j > i demands additional computations. Typically
the elements of P(n) =

[︁
p(n)ij
]︁
, an n × n stochastic matrix, are easily found by the GTH algorithm. However in

order to compute the q(t,n)ij requires first identifying the starting elements of Q(n−1)
n =

[︁
q(n−1,n)ij

]︁
(n−1)×(n−1)

=[︁
p(n)ij
]︁
(n−1)×(n−1)

i.e. the elements are from the sub-stochastic matrix found from the first n − 1 rows and n −

1 columns of P(n). The reduction through the sequence of GTH reduction procedures leads from Q(n−1)
n =[︁

q(n−1,n)ij

]︁
(n−1)×(n−1)

→ Q(n−2)
n =

[︁
q(n−2,n)ij

]︁
(n−2)×(n−2)

→ . . . to eventually arrive at Q(2)
n =

[︁
q(2,n)ij

]︁
2×2

and finally

at Q(1)
n =

[︁
q(1,n)ij

]︁
1×1

. Because of the truncation of P(n), for each n, to start with Q(n−1)
n , this process has to be

implemented for each value of n = N, N − 1, . . . , 2.
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Thus the GTH algorithmic reduction has to be carried out a number of times, as in the following grid,
P(N) → Q(N)

N−1 → . . . → Q(N)
21 → Q(N)

1 followed by P(N−1) → Q(N−1)
N−2 → Q(N−1)

N−2 . . . → Q(N−1)
1 , leading successively

to P(3) → Q(3)
2 → Q(3)

1 and finally to P(2) → Q(2)
1 . From the initial (N − 1) GTH algorithmic procedures for the

p(n)ij , followed by (N −1) matrix reductions to start with the initial q(n−1,n)ij there are a further (N −2)+ (N −3)+
. . . + 1 reductions for a total N(N − 1)/2 separate GTH procedures. For the original GTH procedure for finding
the stationary probabilities we only needed retention of the p(n)in and p(n)nj boundary terms of the P(n) matrices,
whereas for the MFPT’s we need to retain additional elements of the P(n) leading to the Q(n)

i matrices.
In the computation of the R(i, n) = 1 − q(1,n)ii expressions we have no easy technique to ensure that no

subtraction is required. This is due to the fact that the sum of the elements in the last row of the Q(n)
i matrix

do not sum to 1, as in the P(n) matrices.
The q(t,n)ik terms only arise in the computation of the MFPTs mij when i < j, whereas the p(n)ij are all that

is needed to compute the mij when i > j and these probabilities are all that is needed to compute the mean
holding times µ(n)i .

The above observations lead to the following as a general technique for finding all the elements of M
for the case of a given MRP. Since we effectively use the computations of the GTH procedure, we call this the
“Extended GTH” (EGTH) algorithm.

EGTH Algorithm

Step 1(i): Start with P(N) =
[︁
p(N)ij

]︁
, carry out the GTH algorithm by calculating successively, for n = N, N −

1, . . . , 2, p(n−1)ij = p(n)ij + p(n)in p
(n)
nj /S(n), 1 ≤ i ≤ n −1, 1 ≤ j ≤ n −1, where S(n) =

n−1∑︀
j=1
p(n)nj . (Note that we only have

to retain the p(n)in (1 ≤ i ≤ n−1) and p
(n)
nj (1 ≤ j ≤ n−1), i.e. the n-th row and n-th column of P(n) for n = 2, . . . , N,

as in the GTH algorithm.)
Step 1(ii): Start with the mean holding time vector µ(N)T =

(︁
µ(N)1 , µ(N)2 , . . . , µ(N)N−1, µ

(N)
N

)︁
and calculate

successively for n = N, N − 1, . . . , 2, µ(n−1)i = µ(n)i + µ(n)n p(n)in /S(n), 1 ≤ i ≤ n − 1.
Step 1(iii): Calculate the N × 1 column vectorm(1)(N)

N = (mi1), where m11 = µ(1)1 , m21 = µ(2)2 /S(2), and for

i = 3, . . . , N, mi1 =
(︂
µ(i)i +

i−1∑︀
k=2

p(i)ikmk1

)︂
/S(i).

This gives the entries of thefirst columnofM =
[︁
mij

]︁
, i.e.m(1)(N)

N whereM =
(︁
m(1)(N)
N ,m(2)(N)

N , . . . ,m(N)(N)
N

)︁
withm(1)(N)T

N = (m11,m21, . . . ,mN1).
The steps that follow are based on the observation that by starting with P(N), which we define as P(N)(1),

we are able to find expressions form(1)(N)
N , the first column ofM, giving the MFPTs to state 1 from all the other

states. Successively we permute the elements of P(N) so as to do this for each of the states 2, . . . , N. For state
2 we can do this by moving the elements of first column of P(N) to after the N-th column, followed by moving
the first row to the last row, to obtain a new transition matrix P(N)(2).

P(N) ≡ P(N)(1) =

⎡⎢⎢⎢⎢⎢⎣
p11 p12 · · · p1,N−1 p1,N
p21 p22 · · ·
· · · · · · · · · · · · · · ·

pN−1,1 pN−1,2 · · · pN−1,N−1 pN−1,N
pN1 pN2 · · · pN,N−1 pNN

⎤⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎣
p12 · · · p1,N−1 p1,N p11
p22 · · · p2,N−1 p2N p21
· · · · · · · · · · · · · · ·

pN−1,2 · · · pN−1,N−1 pN−1,N pN−1,1
pN2 · · · pN,N−1 pN,N pN1

⎤⎥⎥⎥⎥⎥⎦
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→

⎡⎢⎢⎢⎢⎢⎣
p22 · · · p2,N−1 p2N p21

· · · · · · · · · · · · · · ·
pN−1,2 · · · pN−1,N−1 pN−1,N pN−1,1
pN2 · · · pN,N−1 pNN pN1
p12 · · · p1,N−1 p1N p11

⎤⎥⎥⎥⎥⎥⎦ ≡ P(N)(2)

There are a variety of ways we can do this. Here are three such ways:
(i) Let eTi = (0, 0, . . . , 1, 0, . . . , 0) be the i-th elementary row vector with 1 in the i-th position and 0 elsewhere
and ei is the i-th elementary column vector.
Let R(N)1 = [eN , e1, . . . , eN−1] and C(N)1 = [e2, . . . , eN , e1]. Then P(N)(2) = R(N)1 P(N)(1)C(N)1 .
(ii) P(N)(2)(mod(row + N − 2, N) + 1,mod(col + N − 2, N) + 1) = P(N)(1)(row, col). This can be done in stages
if necessary with say the row shift followed by the column shift.
(iii) In MatLab use the “circshift” operator with P(N)(2) = circshi�(P(N)(1), [−1, −1])

Step 2: For k = 2, 3, 4, . . . , N − 1, N.
(i) Repeat Step 1(i) but with P(N) = P(N)(k) where P(N)(k) = R(N)1 P(N)(k−1)C(N)1 with P(N)(1) = P(N) (Comment: This
step leads to the appropriate p(n)in and p(n)nj elements.)

(ii) Repeat Step 1(ii) but with µ(N) = µ(N)(k) where µ(N)(k)T = µ(N)(k−1)TC(N)1 with µ(N)(1) = µ(N) (Comment:
This step leads to the appropriate µ(n)i elements. In the case of a MC no permutation of the elements is re-
quired, since µ(N)i = 1 for all i.)
(iii) Repeat Step 1(iii) to calculate the N × 1 column vector m̄(k)(N)

N where m̄(k)(N)
N =

(mkk ,mk+1,k , . . . ,mNk ,m1k , . . . ,mk−1,k).
Step 3: Combine the results of the Steps 1(iii) and 2(iii) to find M as follows.

Let M̄ =
(︁
m(1)(N)
N , m̄(2)(N)

N , . . . , m̄(N)(N)
N

)︁
and reorder the elements of M̄ to obtainM =

(︁
m(1)(N)
N ,m(2)(N)

N , . . . ,

m(N)(N)
N

)︁
. This can be carried out in MatLab by noting that for each row and column entry, M̄(mod(row +

col − 2, N)+1, col)= M(row, col).
While this EGTH procedure requires N repetitions of the above procedure, one would have to carry N

auxiliary sets of calculations to determine the v(t,n)i , as in Theorem 7, as well as retaining more calculations
enroute to the derivation of the matrix M.

Another key observation is that the EGTH algorithm, as outlined above, retains the calculation accuracy
with no subtractions being involved.

Note also thatwedonot compute the stationary probabilities in determining theMFPTs. In theMC setting
they would typically be found using the basic GTH algorithm. However in this setting the stationary proba-
bilities can also be found directly as the inverse of the mii, alleviating the necessity of any prior calculation.
For example in the MC setting, the initial holding times are µ(N)i = 1, we have from the first step in the EGTH
algorithm that m11 = µ(1)1 giving an alternative derivation of π1 as π1 = 1/µ(1)1 . Once again, no subtraction
operation need be performed.

10 The Test Problems
The following test problems were introduced by Harrod & Plemmons [5] and have been considered by others
in different contexts. They were initially introduced as poorly conditioned examples for computing the sta-
tionary distribution of the underlying irreducible MC. While the dimensions of the state space are relatively
small, the test problems lead to some computational difficulties.
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TP1: (As modified by Heyman and Reeves [8])⎡⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 0 .3 0 0

.5 .5 0 0 0 0

.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
TP2: (See also Benzi [1])⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .0009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
TP3: ⎡⎢⎢⎢⎢⎢⎣

0.999999 1.0E − 07 2.0E − 07 3.0E − 07 4.0E − 07
0.4 0.3 0 0 0.3

5.0E − 07 0 0.999999 0 5.0E − 07
5.0E − 07 0 0 0.999999 5.0E − 07
2.0E − 07 3.0E − 07 1.0E − 07 4.0E − 07 0.999999

⎤⎥⎥⎥⎥⎥⎦
TP4 and variants:
TP41: ε = 1.0E − 01; TP42: ε = 1.0E − 03; TP43: ε = 1.0E − 05; TP44: ε = 1.0E − 07⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 − ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1 − ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We carry out all the calculations using the academic version of MatLab (R2015b, 64bit on aMacBook Air).

We first calculate the MFPT matrix M for each of the given test problems, using the EGTH algorithm, under
double precision. See Appendix 1 for the relevant MatLab code. (In Appendix 2, which appears only in the
arXiv.comversion of this paper, we present the accurate calculations for all theMFPTs for these test problems,
as such results do not appear in the literature.We also give expressions for the relevant stationary probability
vectors.)

We compute, for each test problem, with specified transition matrix, the following errors for the MFPT
matrix,M =

[︁
mij

]︁
, given by the EGTH calculation, under both double and single precision:Minimumabsolute

error = min
1≤i≤m, 1≤j≤m

⃒⃒⃒⃒
⃒mij −

∑︀
k≠j
pikmkj − 1

⃒⃒⃒⃒
⃒, Maximum absolute error = max

1≤i≤m, 1≤j≤m

⃒⃒⃒⃒
⃒mij −

∑︀
k≠j
pikmkj − 1

⃒⃒⃒⃒
⃒, and the

overall residual error =
m∑︀
i=1

m∑︀
j=1

⃒⃒⃒⃒
⃒mij −

∑︀
k≠j
pikmkj − 1

⃒⃒⃒⃒
⃒.
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Table 1: Errors for the MFPTs (Double Precision).

Test Problem Min Abs Error Max Absolute Error Residual Error
TP1 0 1.1369E-13 2.9177E-13
TP2 0 3.6380E-12 2.7776E-11
TP3 0 1.8626E-09 2.7940E-09
TP41 0 1.4211E-14 2.7337E-13
TP42 0 1.8190E-12 1.9142E-11
TP43 0 1.1642E-10 1.5717E-09
TP44 0 7.4506E-09 1.4156E-07

Table 2: Errors for the MFPTs (Single Precision).

Test Problem Min Abs Error Max Absolute Error Residual Error
TP1 0 6.1035E-05 1.6773E-04
TP2 0 1.9531E-03 1.3889E-02
TP3 0 0.5000 3.0757
TP41 0 7.6294E-06 1.0628E-04
TP42 0 4.8828E-04 0.0050
TP43 0 0.0860 0.7809
TP44 0 5 85.8835

These errors are given in Tables 1 and 2 below.

The test problems have been used as examples for testing various different algorithms for computingM,
thematrix ofMFPTs. In particular Heyman andO’Leary [7] considered five different procedures for computing
the fundamental matrix Z, the group inverses A# andM (since these are all interconnected). Further Heyman
andReeves [8] also considered four different techniques forMwith theirmost accurate procedure based upon
a state reduction procedure. We do not go into details of the procedures that they used but they compared the
accuracy of the procedures by evaluating the number of accurate digits. The most accurate procedure in [7]
was based upon using an LU factorization and normalization related to a state reduction procedure. In [8]
the comparable procedure was also a state reduction procedure. The double precision result was used as the
“true” result and the single precision result as the “computed” result. The number of accurate digits was
defined as the overall average of − log10

⃒⃒⃒
resulttrue−resultcomputed

resulttrue

⃒⃒⃒
. Each of these two papers presented the results

in figures and no actual numerical results were tabulated. We computed this statistic for each the seven test
problems achieving the following results:

Table 3: Average number of accurate digits.

TP 1 7.3504*

TP 2 7.2928
TP 3 7.3526
TP 41 7.3681
TP 42 7.4157
TP 43 7.4296
TP 44 7.3321

*Note that for TP1 the MFPT from state 2 to state 1, is 2.00 for both the accurate and computed results so
that the accurate digit quantity is infinite. The average in this case is taken over the remaining 35 possible
pairs of states.
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Considering the results of Heyman and O’Leary [7] and Heyman and Reeves [8], it is obvious that no
procedure that they considered has any improvement over the results of this paper. Heyman andO’Leary have
values between 6 and 7 for their favoured algorithm while Heyman and Reeves favoured algorithm appears
to have values in the range of 7.2 to 7.4. Thus, the algorithm given in this paper produces results that have not
been achieved in the past.

Using the computations for the MFPT matrix M, as calculated using the EGTH algorithm, we compute
the elements of the stationary distributions as the reciprocal of the diagonal elements. We calculate the
following errors for the stationary distribution, both in single and double precision: Minimum absolute

error = min
1≤j≤m

⃒⃒⃒⃒
πj −

m∑︀
i=1
πipij

⃒⃒⃒⃒
, maximum absolute error = max

1≤j≤m

⃒⃒⃒⃒
πj −

m∑︀
i=1
πipij

⃒⃒⃒⃒
, and the overall residual error

=
m∑︀
j=1

⃒⃒⃒⃒
πj −

m∑︀
i=1
πipij

⃒⃒⃒⃒
, where the πj are given by the calculations. We also compute the overall residual error

when the stationary distribution is computed using the standard GTH algorithms. These calculations are
given in Table 4 and 5.

Table 4: Errors for the Stationary distributions under double precision.

Test Problem EGTH Min Abs Error EGTH Max Abs Error EGTH Residual Error GTH Residual Error
TP1 0 1.1102E-16 1.4485E-16 7.1124E-17
TP2 0 2.7756E-17 7.6328E-17 2.0817E-17
TP3 0 1.3878E-17 1.3878E-17 1.3878E-17
TP41 0 2.7756E-17 1.1102E-16 1.1796E-16
TP42 0 2.7756E-17 8.3267E-17 1.0408E-16
TP43 0 2.7756E-17 1.6653E-16 1.0408E-16
TP44 0 2.7756E-17 1.1102E-16 1.0408E-16

Table 5: Errors for the Stationary distributions under single precision.

Test Problem EGTH Min Abs Error EGTH Max Abs Error EGTH Residual Error GTH Residual Error
TP1 6.7218E-10 2.3568E-08 5.4538E-08 1.2080E-08
TP2 2.1102E-09 1.1569E-08 5.5893E-08 4.9913E-08
TP3 8.8180E-15 1.4567E-08 2.6965E-08 2.7865E-08
TP41 2.5098E-09 2.4648E-08 7.3546E-08 7.0168E-08
TP42 9.4676E-10 1.4745E-08 6.5571E-08 7.0168E-08
TP43 1.5393E-09 1.16931E-08 5.4947E-08 6.2717E-08
TP44 1.0553E-09 1.7522E-08 7.9552E-08 7.0168E-08

As can be expected the errors for computing the stationary distributions using the well established GTH
algorithm are very comparable with the EGTH procedure of this paper giving only a marginal reduction but
in some isolated cases a slightly improved result.

In order to make comparisons in the case of the stationary distribution calculations that appear in the
literature we also compare the errors between performing the calculations for both the EGTH and the original
GTH algorithms in double and single precision as follows. Let πS and πD be the stationary distributions as
computed under single and double precision. As used in Harrod and Plemmons [5], the residual error is,
in effect, the residual error computed as above under single precision, i.e, ||πTS − πTSP||1. The relative error is
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computed as
m∑︀
j=1

⃒⃒
πS,j − πD,j

⃒⃒
.We also compute theminimumabsolute error min

1≤j≤m

⃒⃒
πS,j − πD,j

⃒⃒
and themaximum

absolute error max
1≤j≤m

⃒⃒
πS,j − πD,j

⃒⃒
.

Table 6: Differences between single and double precision computations of the stationary distributions.

Test Problem ETGH Min Abs Error EGTH Max Absolute
Error

EGTH Relative Error GTH Relative Error

TP1 2.3546E-10 1.7982E-08 4.0117E-08 3.8463E-08
TP2 7.0444E-10 2.8857E-08 8.5618E-08 5.1491E-08
TP3 4.2533E-15 1.8365E-08 4.8544E-08 4.0007E-08
TP41 7.0264E-10 1.6013E-08 6.7861E-08 4.5877E-08
TP42 7.0264E-10 1.1836E-08 4.9242E-08 4.5877E-08
TP43 7.0264E-10 1.1836E-08 5.5331E-08 4.5877E-08
TP44 1.0380E-10 1.3945E-08 6.8623E-08 4.5877E-08

Wemake the following observations in respect to each test problem.
TP1: The original transition matrix was given as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.2 0 0 .6 0 0 0 0 0 .2
0 .1 0 0 .6 0 .3 0 0 0
0 .1 0 0 0 0 0 .8 0 .1
0 0 .6 0 .3 0 0 0 0 .1
0 .5 0 0 .5 0 0 0 0 0
0 .5 0 0 .2 0 0 0 .3 0
0 0 0 0 .7 0 .2 0 0 .1
.1 0 .9 0 0 0 0 0 0 0
0 .1 0 0 0 .8 0 0 0 .1
0 .4 0 0 0 .4 0 0 0 .2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Harrod and Plemmons [5] gave the exact solution for the solution of the stationary probabilities using

some direct methods, however the transition matrix above is not irreducible, and consequently some of the
entries of the stationary probability vector should have been zero. Heyman [6] commented that the GTH al-
gorithm determines that states 1, 3, 4 and 8 are transient, although this is transparent from an examination
of the transition graph. Heyman showed that the GTH algorithm, under single precision, on the above tran-
sition matrix produces 6 significant decimal digits (while some alternatives produce only 5) and showed that
GTHRE = 4.5E − 08. These were compared with a range of procedures considered by Harrod and Plemmons
(1984) that yielded MINRE = 6.9E − 08, MAXRE = 3.7E − 08.

As was done in Heyman and Reeves [8], we discard the transient states. With the state space S =
{2, 5, 6, 7, 9, 10} we consider the irreducible transition matrix as stated. Using the MatLab single preci-
sion our residual error (1.2080E − 08) was an improvement over those stated above.

TP2: Harrod andPlemmons [5], stated the exact solution for the stationary distribution to 9 significant fig-
ures and showed that the smallest relative error they could achieve was of the order of 9.9E−07. Heyman [6],
claimed that the GTH algorithm produces 6 significant decimal digits with a residual error of 9.64E − 08.
Comparable to the figure of 8.56E − 08 that we have achieved. Under double precision we have been able to
achieve 14 significant figures.

TP3: Harrod and Plemmons [5], give the exact solution for the stationary distribution to 9 significant
figures and using a variety of procedures obtain the smallest residual error of the order of 3.0E−08. Heyman,
using the GTH algorithm, produces 6 significant decimal digits with alternatives giving only 1 or 2. He obtains
a residual error of 3.1E−08 for the GTH algorithm.We have improved this to 14 significant figures, once again
with improved accuracy achieving a residual error of 1.4E − 17.
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TP4: In Harrod and Plemmons [5] the original matrices were not stochastic. Heyman [6] corrected this
to ensure stochasticity and showed that the stationary distributions of the MCs with these four transition
matrices are all the same. He showed that the residual error for the GTH algorithm, under single precision,
is 1.38E − 07 for all the four test problems, whereas we achieve accuracy within the range 5.49E − 08 to
7.96E − 08.

All in all, the extraction of the stationary distribution as a byproduct of our EGTH algorithm gives com-
parable accuracy similar to that previously obtained.

In a sequel to this paper we explore some other techniques for computing the MFPTs for these matrices.
The results of this paper are required as a benchmark in order to carry out comparisons of accuracy of the
alternative procedures.

Acknowledgement: The author wishes to acknowledge the assistance of Ms Diane Park who assisted with
the MatLab coding as part of her BSc(Hons) dissertation at Auckland University of Technology.

The author although wishes to thank the referees for their comments and recommendations, especially
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Appendix 1: MatLab Code for calculations
The code below is an implementation of the EGTH algorithm for the MFPTs and the stationary distribution in
the Markov chain setting. Minor modifications can be implemented for the MRP situation.
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clear all
format long
m=
TM =
e=ones(m,1);
et= ones(1,m);
S=ones(1,m);
E=ones(m,m);
mu=zeros(m,m);
mu(:,m)=1;
PP=TM;
M=zeros(m,m);
P=TM;

for k=1:m
for n=m:-1:2
S(1,n)=sum(PP(n,1:n-1));
for i=1:n-1

for j=1:n-1
PP(i,j)=PP(i,j)+PP(i,n)*PP(n,j)/S(1,n);

end
mu(i,n-1)=mu(i,n)+mu(n,n)*PP(i,n)/S(1,n);

end
end

M(1,k)=(PP(2,1)*mu(1,2)+PP(1,2)*mu(2,2))/PP(2,1);
for n=2:m

mm=0;
for i=2:n-1
mm=mm+PP(n,i)*M(i,k);
end
M(n,k)=(mm+mu(n,n))/S(1,n);

end
for col=1:m

for row= 1:m
P_new(mod(row+m-2,m)+1, mod(col+m-2,m)+1)=P(row,col);
end

end
P=P_new;
PP=P;
end
for col=1:m

for row=1:m
M_EGTH(mod(row+col-2,m)+1,col)=M(row,col);

end
end

M_EGTH
D=diag(diag(M_EGTH));
PI=eye(m)/D;
pit=et*PI
deltaSD=pit-pit*TM;
MINSD=min(abs(deltaSD))
MAXESD=max(abs(deltaSD))
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RESD=sum(abs(deltaSD))
MError=M_EGTH-(P*(M_EGTH-D))-E
MinErrorM_EGTH=min(min(abs(MError)))
MaxErrorM_EGTH=max(max(abs(MError)))
REM_EGTH=sum(sum(abs(MError)))
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