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Abstract

An online social network can be defined as a set of socially relevant individuals with

some patterns of interactions or contacts among them, which are connected by one or

more online relations [1][2]. Online social networks provide platforms for users to

share information or statuses and to communicate with their families and friends on-

line. These complex, emergent, dynamic and heterogeneous networks have been de-

veloped on an unprecedented scale. With the prosperous development of online social

networks, many marketers have exploited the opportunities and attempt to select influ-

ential users within online social media to influence other users through online ‘word-

of-mouth’ effect or viral marketing approaches, which are now replacing traditional

marketing strategies [3]. Such ‘word-of-mouth’ effect and viral marketing approaches

can enhance brand awareness and achieve the marketing objectives of companies with

limited resources. In this situation, the propagation of influence to online users with

limited resources over the largest possible range, known as influence maximisation, is

an important problem. The solution of influence maximisation is known to be NP-hard.

Hence, approximation approaches are better replacements with guarantee [4][5][6].

This thesis explores appropriate approaches for solving the influence maximisation

problem effectively and efficiently. Based on the existing problems of influence max-

imisation in online social networks, influence maximisation is developed through two

different approaches; centralised and decentralised. In centralised approaches, all tasks

are completed by a single central component. By contrast, decentralised approaches

share the workload by distributing the computational tasks to individuals.

Classic influence diffusion models with static and predefined probabilities are too ideal,

as they consider only the physical link connections [3][5], whereas online social net-

works contain additional subjective factors, such as, user preference. User preference

plays an important role in influence maximisation, but is not considered in most of

the existing influence maximisation models. To alleviate these problems, we proposed

a Preference-based Trust Independent Cascade Model, which is founded on a classic

centralised approach. This develops influence maximisation in terms of both user pref-

erence and trust connection (physical link connection). Based on these two factors, the

Preference-based Trust Independent Cascade Model computes the influence propaga-

tion probabilities. In this way, hub users in an online social network, who are interested

in the promoted items, can be selected as influential users. In experimental results, the
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Preference-based Trust Independent Cascade Model demonstrated better performance

than other existing approaches.

Furthermore, by reviewing the previous researches and implementing experiments, we

discover that centralised approaches are generally inefficient because they limit the sta-

bility and scalability of large-scale, dynamic online social networks. To overcome this

problem, we propose a novel decentralised approach called Stigmergy-based Influence

Maximisation Model, which simulates the influence propagation process by ants crawl-

ing across the network topology. The model mimics the key behaviours of ants, i.e., path

selection and pheromone allocation. The former identifies the next node to reach when

an ant faces multiple options; the latter deposits pheromone on the specific nodes based

on the heuristics when an ant explores a possible influence-diffusion path. The superior

performance and operating time of the Stigmergy-based Influence Maximisation Model

was confirmed in comparison experiments against existing approaches.
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Chapter 1

Introduction

1.1 Influence Maximisation (IM) in Online Social Net-

works

1.1.1 Online Social Networks

With the development of Web 2.0 having been greatly promoted, online social media,

such as, Facebook, LinkedIn, Instagram, Wechat, Tercent QQ and Sina Weibo, have

gained popularity and have developed on an unprecedented scale recently. According

to Statista1, Facebook and Twitter had more than 1.59 billion and 305 million monthly

active users, respectively, in the fourth quarter of 2015.

An online social network can be defined as a set of socially relevant individuals with

some patterns of interactions or contacts among them, which are connected by one or

more online relations [1][2]. Online social networks provide platforms for users to

communicate and share information with their relatives and friends online effectively,

connecting users across the world. The various online social networks are fundamen-

tally classified by their node degree distributions [7]. The most frequently mentioned

categories of online social networks are randomly distributed, scale-free, large-scale,

and complex networks.

1http://www.statista.com

1
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1.1.2 Characteristics of Online Social Networks

Online social networks are self-organizing, emergent, dynamic, and complex. They are

most commonly characterised as scale-free and small-world effect [8][1]. The earliest

example of a scale-free network was probably proposed by Price et al. [9]. They defined

a scale-free network as a social network whose node degree distribution adheres to or is

at least infinitely close to a power law form, indicating that the network is independent

of the social network scale [1]. Price et al. derived the power-law distribution of their

network along with a parameter α valued between 2.5 and 3. The main feature of

a scale-free social network is inhomogeneity [10][8]. Most of the nodes in a social

network have few physical link connections, while the connections of a few nodes far

exceed the average number of physical link connections within the social network.

The second characteristic of online social networks is the small-world effect [8][1]. The

small-world effect was experimentally confirmed by Stanley [11], who demonstrated

that letters passed through a series of users in an online social network reach their pre-

defined target user only within a few steps. Existing researches suggest that the number

of required steps is around six. Through this experiment, Stanley discovered that al-

most any two nodes in the online social network even non-neighbouring nodes can be

connected by a very short path. In addition, small-world online social networks are

governed by two important parameters, i.e., the clustering coefficient and the diameter.

1.1.3 Emergent Complexity of Online Social Networks

Online social networks are complex, meaning that they are composed of interconnected

components, consequently an online social network is inherently related to its inter-

connected components. In general, emergent complexity can be described as the be-

haviours of each component in an online social network interacting in the way that the

behaviour formed of the whole via coordinating with each other is complex [12]. In

other words, when describing the behaviour of the whole, the behaviours of each com-

ponent in the online social network may be regarded as simple. This is because the

behaviours of many of these components in an online social network are emergent, so

that the behaviour of the whole can not be deduced directly from the behaviours of each

component. The term ‘interconnected’ is the key to understand the complexity of online

social networks. Hence, in order to know an online social network in a further step, we

must understand not only the behaviours of each component but also the coordination
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between the components, which ultimately accomplish the behaviour of the whole. The

coordination, however, is difficult to understand.

1.1.4 Influence Maximisation (IM)

Exploiting the development of online social networks, many marketers attempt to influ-

ence online social media users through the ‘word-of-mouth’ effect or viral marketing

approaches, rather than pursue traditional marketing strategies [3]. The remarkable

merit of ‘word-of-mouth’ effect and viral marketing approaches is that they increase

the market share for companies with limited resources.

In this situation, the propagation of influence to users with limited resources over the

largest possible range is an important issue, and is called influence maximisation (IM).

In general, influence refers to the ability to sway or change the thoughts, beliefs or ac-

tions of an individual or a community [13]. Based on the aforementioned, IM can be

formally defined as follows: Given a set of nodes S and the initial active set S0, define

the influence spread of set S as σ(S), which is the prospective number of active nodes

activated by set S. Based on the limited resources related to parameter k, find a k-top

node set S that propagates influence over the largest possible range [3]. In addition, to

clarify IM, consider the following motivating scenario. Suppose an organisation devel-

ops a new mobile phone and plans its online promotion. Because of limited resources,

the organisation needs to select a limited number of influential users to experience this

product and promote it to other users connected to the influential users through the

online social network for the organisation. Eventually, the product will reach and be ac-

cepted by a large number of users. Thus, provided that the influential users are properly

and completely selected, the influence spread will be effective. However, IM problems

are known to be NP-hard, and some approximation approaches are considered as better

replacements with guarantee. The two most widely used influence diffusion models in

IM development are the Independent Cascade (IC) and Linear Threshold (LT) models

[5][3].

1.2 Existing Problems in Influence Maximisation (IM)

Describing sophisticated online social media, classic IM models are insufficient for the

following reasons.
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First, most of the existing approaches consider only the propagation links/channels in

IM (called trust connection (TC) in this thesis). Assume that two users following each

other on Twitter. In this situation, both users are connected by a TC. If the TC only is

considered, the IM will be treated as a simplified probabilistic problem. Furthermore,

influence probabilities are predefined and static, whereas many real-world applications

are dynamic. Meanwhile, in a social network, the IM is affected by user preferences

for particular items [6]. Unfortunately, most of the existing IM approaches ignore this

factor. In addition, the existing models have low effectiveness and efficiency, and most

of them are time-consuming.

Second, most of the existing IM models are based on centralised approaches, which are

usually inefficient in large-scale, dynamic networks. In particular, they limit the sta-

bility and scalability of the social networks, because all tasks in a centralised approach

are performed by a central component. Furthermore, the seed selection algorithms that

run the classic influence diffusion models are time-consuming. Finally, centralised ap-

proaches require complicated computation.

1.3 Research Motivations and Objectives

In this thesis, we explore approaches for achieving an effective and efficient IM. Since

the IM problem is NP-hard, provided that the influential users can be selected properly

and completely, the influence spread can be effectively achieved. To resolve the existing

problems of IM field, two IM approaches have been proposed; centralised and decen-

tralised. As a centralised approach, we propose the Preference-based Trust Independent

Cascade (PTIC) Model, which accounts for both user preference (UP) and trust con-

nection(TC). As a decentralised approach, we propose the Stigmergy-based Influence

Maximisation (SIM) Model, which is based on ant algorithms and stigmergy.

1.3.1 The Preference-based Trust Independent Cascade (PTIC) Model

To resolve the existing problems of influence diffusion models and motivated by the

prosperous development of viral marketing as mentioned above, we attempt to achieve

research motivations as follows:
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• To improve the effectiveness and efficiency of seed selection for IM, take both

UP and TC into consideration;

• For better compatibility with dynamic environments, compute the influence prop-

agation probability based on UP and TC.

Based on the motivations above, the Preference-based Trust Independent Cascade (PTIC)

Model is proposed in this thesis. The PTIC model is based on a classic influence dif-

fusion model, namely, the Independent Cascade (IC) Model. In the PTIC model, it

takes into account not only UP but also TC. Furthermore, the PTIC model computes the

influence propagation probability based on UP and TC.

1.3.2 The Stigmergy-based Influence Maximisation (SIM) Model

To alleviate the existing problems of centralised approaches, we develops IM using

a novel decentralised approach. Different from centralised approaches, decentralised

approaches share the workload by distributing the computational tasks to individual in

the network. The research motivations of using the decentralised approach are as below:

• To improve the effectiveness and efficiency of IM seed selection in future steps,

simulate influence propagation as an crawling across the network topology.

• To reduce the computational complexity of seed selection, distribute the task of

seed selection among multiple ants.

To achieve the motivations mentioned above, we exploits a novel decentralised ap-

proach, i.e., stigmergy-based algorithm, to tackle the IM problem. In the meanwhile,

the Stigmergy-based Influence Maximisation (SIM) Model is proposed. We simulate

the influence propagation process as ants’ crawling across the network topology. Fur-

thermore, the SIM model mimics the key behaviours of ants; namely, path selection

and pheromone allocation. The former aims to identify the next node to reach when an

ant faces multiple options. Based on the heuristics, the latter deposits pheromone on

specific nodes when an ant explores a possible influence-diffusion path.



Chapter 1. Introduction 6

FIGURE 1.1: Research Methodology

1.4 Research Methodology

This section presents the research methodology. In general, research can be defined

as innovative activities that advance existing knowledge by systematic and theoretical

methods [14]. A research methodology provides the scientific criteria for executing of

the research in a given field of study. Figure 1.1 is a flowchart of the methodology pro-

posed for the current research. The first of the seven procedures reviews the existing

researches and methods related to online social networks and IM. Guided by the liter-

ature review, the second procedure defines the research problems. The third procedure

proposes hypotheses based on the defined research problems. At this stage, the results

of the research are uncertain. The fourth procedure forecasts the expected output of the

experiments. The fifth procedure acquires the preliminary data in preparatory experi-

ments. The research problems, hypotheses, forecasts, and data are tested, evaluated, and

adjusted in the sixth procedure. Procedures 2-6 are iterated until no further adjustment

is required. Finally, the new method is released.
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1.5 Major Contributions of Thesis

In the contemporary IM research field, most researchers investigate IM problems by us-

ing centralised approaches, where the network topology is available. Whereas, in some

situations, the seed set is supposed to be selected without a clear network topological

structure. Motivated by this background, this thesis presents two different approaches,

one centralised, the other decentralised, that alleviate the disadvantages of existing ap-

proaches to IM problems. First, it proposes the PTIC model as an optimised centralised

approach. Unlike many existing models, the PTIC model considers both UP and TC. In

this way, the PTIC model not only selects hub users who are genuinely interested in the

promoted items, but also connects them to users with similar preferences, thereby prop-

agates the influence of the item. This approach significantly improves the effectiveness

and efficiency of IM. Furthermore, rather than predefining the influence propagation

probability, the PTIC model bases the probability on the UP and TC, which automati-

cally adapts the PTIC model to dynamic environments. Experiments also confirm that

by considering both UP and TC, the PTIC model outperforms trust-only and random

methods. Second, we develops a novel decentralised approach based on stigmergy (the

SIM model), which utilizes the ants’ crawling across the network topology to simulate

the influence propagation process. The whole process of the ants’ crawling is modelled

on the key behaviours of ants (path selection, pheromone allocation, and seed selection).

The performance of the SIM model is experimentally compared against those of tradi-

tional seed selection algorithms, namely, greedy selection, degree-based selection and

random selection. In these experiments, the SIM model proves its superior effectiveness

and efficiency.

1.6 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 reviews the previous researches related to IM in online social networks. The

review covers existing IM methods, classic influence diffusion models with examples,

popular IM algorithms (greedy and community partition algorithms), methods used

for discovering user preferences, the existing researches related to stigmergy-based ap-

proaches and ant algorithms.
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Chapter 3 presents the PTIC model which accounts for both UP and TC. The problem

of applying the PTIC model to IM is described and the PTIC model is formally defined.

The framework of the PTIC model is interpreted in detail. In the framework, there are

totally four modules. Each of the four modules is accompanied by a corresponding al-

gorithm presented in pseudo code to clarify its operation. The PTIC model is evaluated

in two experiments, one employing the TC parameter only while the other employing

both UP and TC parameters. In both experiments, the PTIC model is competed against

trust-only and random methods.

Chapter 4 presents the proposed SIM model. First, the problem is defined and formal

definitions are proposed accordingly. The SIM model simulates the influence propaga-

tion process as ants’ crawling through the network topology. Hence, this chapter models

the whole process of the ants’ crawling within the network and the whole process in-

cludes ant behaviours as follows: start a tour, select paths, complete a tour, allocate

pheromone, and select seeds. Especially, for each key behaviour of ants, i.e., path se-

lection, pheromone allocation, and seed selection, this chapter presents a corresponding

algorithm through using pseudo code describing the operation of the behaviour. In ad-

dition, The SIM model is evaluated in two experiments on three different sizes (500,

750, and 1000) of the same social network. The first experiment aims to evaluate the

effectiveness of the algorithms, i.e., the total number of users activated by the seed

set, whereas the second algorithm compares their efficiencies, i.e., the runtime of seed

selection. The stigmergy-based algorithm is competed against greedy selection, degree-

based selection and random selection algorithms.

The concluding chapter, Chapter 5, highlights the contribution of this thesis and presents

suggestions for future work related to this research.



Chapter 2

Literature Review

2.1 Existing Influence Maximisation (IM) Methods

IM is first proposed by Domingos and Richardson as a probabilistic problem [15][16],

and is first researched as a discrete optimisation problem by Kempe et al. [3]. The

latter authors demonstrate the NP-hardness of solution to the IM problem. NP-hard

problems are notoriously difficult to solve. Thus, instead of finding the solutions for NP-

hard problems, approximation approaches are better replacements that offer guaranteed

results [4][5][6].

Seed selection in IM is classically performed by degree ranking, greedy algorithm, and

heuristic methods [5][6]. Degree ranking method selects seeds based on their degree

relationship ranking. In general, all nodes in the network are ranked in descending order

from the highest-degree node to the lowest-degree node, and seeds are selected from

the highest-degree node. The greedy algorithm selects seeds by making optimal local

choices at each step. The greedy algorithm is derived from the principles of problem

solving heuristics. Heuristic techniques are any methods used to learn, discover or

solve problems by taking advantage of an appropriate method to achieve the immediate

objectives, which accelerates the progress towards an optimal solution. However, the

quality of the solutions is not guaranteed.

9
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2.2 Classic Influence Diffusion Models

Influence is propagated on the foundation of influence diffusion models through the

network. This section presents and interprets several fundamental and improved diffu-

sion models; the Linear Threshold (LT) model, the Independent Cascade (IC) model,

the General Threshold (GT) model and the Heat Diffusion (HD) model. Rogers [17]

defines diffusion as a procedure triggered by an innovation, such as a new product or a

new technique, which is communicated among the individuals in a social network via

channels. These fundamental models, especially the IC model, have been extensively

studied. For example, Chen et al. propose the first Scalable Heuristic Algorithm based

on the LT model and a new Degree Discount Heuristics based on the IC Model [5][18].

In general, a social network can be modelled as a directed or an undirected graph

G = (V,E), where the set of vertices V represents the individuals in the network, and

the set of edges E represents the relationships among the individuals in the network

[19][5]. In a graphical context, the IM problem can be defined as follows: Given a so-

cial network graph G, a selected influence diffusion model M, and a predefined number

k, the purpose of IM is to select k influential vertices (seeds) in the known network by

implementing the influence diffusion model M, and computes the prospective number

of vertices influenced by these k influential vertices as the influence spread.

2.2.1 Independent Cascade (IC) Model

The Independent Cascade (IC) model is a fundamental diffusion model. In the IC

model, Vt is the set of vertices activated at round t, where vertex v ∈ Vt and ~vu ∈ E.

Assume that vertex u is not activated but will be activated by vertex v at round t + 1

with probability p. If vertex v has only one chance to activate its neighbour u, vertex u

is either activated at round t+1 or otherwise, is never activated by vertex v. In addition,

if l number of neighbours attempt to activate vertex u at round t, the activation proceeds

in a stochastic sequence, and the probability of u ∈ Vt+1 is 1− (1− p)l . This process

which basically defines the principles of the IC model continues until there is no vertex

can be activated. [5]

The IC model has been improved in subsequent studies. Chen et al. [19][5] propose a

new efficient model named ‘Degree Discount Heuristics’. In each round, whenever a

neighbour of an inactive node becomes active, the degree of the inactive node decreases
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by one. After that, find out the node with the highest node degree in the network and

select it into seed set. Degree discount heuristics is an iterative procedure that markedly

reduces the operating time relative to other existing models. In fact, the performance of

degree discount heuristics model nearly matches that of the greedy algorithm based on

the IC Model. However, this model only can be achieved by small probabilities since

this model is not sensitive when the probabilities are large. This model is thus inap-

plicable to real-world situations, in which the probabilities of influencing individuals

should be large.

Except degree discount heuristics method, Wang et al. [20] propose an alternative

heuristic algorithm based on the IC model, which easily handles influence propaga-

tion within large-scale networks. Wang et al. effectively reduce the operating time by

limiting the computation related to local influence regions of nodes. Furthermore, they

define a tunable parameter that controls the balance between performance and operating

time. Liu et al. [21] propose a time-constrained influence maximisation model, called

the Latency Aware Independent Cascade Model, which is developed on the foundation

of the IC model and greedy algorithm, and guarantees strong performance. However,

the greedy algorithm simulation is computationally expensive. In order to ensure the

scalability of their approach, they propose influence-spreading path-based methods to

estimate the influence spread of a given seed set. Saito et al. propose an approach that

predicts influence diffusion probabilities by using the expectation-maximisation algo-

rithm, which is also founded on the IC model [22]. Gomez-Rodriguez et al. propose a

scalable algorithm, called NETINF, which tracks diffusion and influence paths through

networks by exploring the sub-modularity of the objective function based on the IC

modelling [23]. Wang et al. [24] propose a novel algorithm, i.e., Community-based

Greedy Algorithm, for exploring top-k influential nodes. This algorithm is again built

on the IC model, and detects communities as well as selecting influential nodes.

2.2.2 Linear Threshold (LT) Model

Another fundamental model is the Linear Threshold (LT) model. Given vertex v is acti-

vated, the neighbourhood of vertex v is defined as N(u) = v|(v,u) ∈ E, and Rvu denotes

the propagation influence between the active vertex v and an inactive neighbour u. In

addition, let V (u) denote the set of active vertices in N(u), where V (u) is a subset of

N(u). Most important is the critical threshold theta, which determines whether u is ac-

tivated. Specifically, if Σv∈V (u)Rvu ≥ θ , then vertex u becomes active. In other words,
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vertex u will become active when the value of its active neighbours’ entire influence on

vertex u exceeds the defined threshold theta. Similarly to vertex v, vertex u will then

propagate influence to other inactive vertices, and some of which will activate. This

process iterates until no vertex can be activated. [19]

Goyal et al. [25] propose an efficient and effective algorithm based on the LT model

called ‘SIMPATH’, which optimises the computation of influence spread by searching

the simple paths in the neighbourhood. According to specific situations, this algorithm

divides the given graph into proper induced sub-graphs, and calculates the influence

spread of each vertex in each sub-graph. Finally, it computes the sum of influence spread

of each sub-graph. They define a unique parameter η , which is used for balancing

the quality of the influential vertices against the runtime. There are three main novel

methods in this algorithm for improving the quality of seed selection and optimizing

the computation. In addition, Goyal et al. propose Vertex Cover Optimisation and Look

Ahead Optimisation, which deduct estimation calls in the first iteration and improve

the efficiency in the remaining iterations, respectively. However, at present, this model

can only be operated under the LT model. Furthermore, Chen et al. propose the first

Scalable Heuristic Algorithm based on the LT model. Nevertheless, network analysis

approaches, such as, community partition, are not involved in the Scalable Heuristic

Algorithm. Community partition could improve the efficiency and effectiveness of IM

in further study.

2.2.3 General Threshold (GT) Model

The General Threshold (GT) model is an extension of the IC and LT models. Assume

that there are an inactive user vi and its active neighbour set N. In order to measure

whether user vi will become active, joint influence probability of set N should be cal-

culated. Joint influence probability of set N is expressed as pvi(N). If pvi(N) ≥ θvi ,

where θvi is the activation threshold of user vi, then user vi becomes activated. The joint

influence probability pvi(N) is computed by Equation 2.1. [4]

pvi(N) = 1−Πvm∈S(1− pvm,vi) (2.1)
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2.2.4 Heat Diffusion (HD) Model

Heat diffusion is a common and well known physical phenomenon. Heat transfers from

an initial point with high temperature to a point with low temperature. This is similar

with the process of influence propagation. Influence propagates from influential users

(analogous to initial hotspots in heat diffusion) to "cooler" users. In a heat diffusion

context, the procedures of influence propagation can be interpreted as follows: At the

initial time t0, initialize all of the vertices in the network have no heat. One vertex v j is

then selected as an initial point and be given some heat. At some time t1, heat from v j

simultaneously reaches all of its neighbours. At some later time t2, these heated neigh-

bour vertices simultaneously transfer heat to their neighbours. Repeating this process

gives the number of vertices influenced by v j in the network during a specified time in-

terval t. The amount of influence spread of each vertex in the network can be obtained

by repeating this process over all of the vertices. [26]

Chang [19] propose a novel community and degree heuristics based on the HD model.

This method is developed with CDH-Kcut and CDH-Shrink algorithms, which are im-

proved on the fundamental of original Shrink and Kcut algorithms (These two algo-

rithms are interpreted in detail in Subsections 2.2.2 and 2.2.3, respectively). Chang’s

model proceeds through two primary phases; partition and selection phases. The parti-

tion phase is used to detect communities and the selection phase is conducted to select

the influential vertices for the seed set. Both phases implement the CDH-Kcut and

CDH-Shrink algorithms. The CDH-Kcut algorithm is utilized to partition the network

into communities and select the influential vertices; the CDH-Shrink algorithm is used

to identify the structure of each community by detecting the location of community

hub in the partition phase, and it is able to adjust the fundamental nodes in the selec-

tion phase. Even though this method is implemented based on the HD model, Chang’s

model does not take weighted graphs into consideration for developing this method,

rendering the method too idealistic for real world issues. In addition, this method can

only detect static communities, whereas dynamic community detection is required for

current development of social network.

2.3 Algorithms Applied for Influence Maximisation (IM)

Many algorithms have been developed by various researchers in IM field. This section

introduces some of the more frequently used algorithms related to IM problems.
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2.3.1 Greedy Algorithm

Kempe et al. [3] demonstrate that IM is NP-hard. As an approximation, they propose

a simple greedy algorithm within the factor (1− 1/e). Instead of running a specific

algorithm, Kempe et al. conduct Monte-Carlo simulations of diffusion models to get

an accurate estimation for the prospective number of influence spread. In addition, a

large number of previous research papers employ Monte-Carlo simulations for selecting

influential vertices [27][5][28]. However, this simple greedy algorithm with Monte-

Carlo simulations is time-consuming, as it has to compute the influence spread of each

vertex in each round before selecting the influential vertices for the seed set.

Leskovec et al. [29] propose an optimisation for finding the influential vertices based on

the simple greedy algorithm, which is called the Cost Effective Lazy Forward (CELF)

scheme. This optimisation takes use of the sub-modularity property of spread functions.

The fundamental concept is that the marginal gain of a vertex in the current round is

always less than that in previous rounds. Consequently, the number of influence propa-

gation estimation calls gradually reduces as the iterations proceed. In addition, the sub-

modularity property can ensure the amount of influence spread increasing when adding

a new vertex into the seed set. Furthermore, Goyal et al. [30] propose an optimised

CELF algorithm named the CELF++ algorithm, which has been reported by Goyal et

al. that the CELF++ algorithm operates 35 to 55 percent faster than the original CELF

algorithm.

Chen et al. [5] also improve the original greedy algorithm, and hence propose the

NewGreedy and MixGreedy algorithms. The NewGreedy algorithm comprises New-

GreedyIC and NewGreedyWC. Chen et al. remove all edges in graph G that are not

involved in influence propagation, and thus a new graph G′ is generated. In this way,

all of the vertices in graph G′ are reachable by the seed set S. Generating graph G′ is

meritorious not only because all of its vertices are reachable by the seed set S, but also

the size of the vertices influenced by the vertices activated by the seed set S are also

determinable, which simplifies the computation. Chen et al.’s MixGreedy algorithm

combines the time advantage of the NewGreedy algorithm with the CELF optimisa-

tion. Specifically, it conducts the NewGreedy algorithm in the first round and the CELF

optimisation in the remaining rounds, which makes the time efficiency improved in

subsequent steps.
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2.3.2 Community Detection Algorithms

Discovering the structure of communities in an online social network is essential for

understanding the future behaviour of the network. With the prosperous development

of online social networks, detecting communities has become a basic process in net-

work science [31]. Community detection has been applied in many existing researches,

and numerous methods for detecting communities in online social networks have been

proposed.

Hierarchical clustering algorithms have greatly contributed to community detection

knowledge. Hierarchical clustering, also called hierarchical clustering analysis, identi-

fies the hierarchical communities in a network. A representative hierarchical clustering

algorithm is the Shrink algorithm [32], which is known as an unsupervised clustering

algorithm for hierarchical network with no parameter identification. The shrink algo-

rithm takes advantage of the combination of the modularity optimisation approaches and

the density-based clustering, and operates under the following basic principles: First,

it exploits density-based clustering approach to detect clusters based on the density of

vertices. Second, it verifies the quality of the clustering results through modularity op-

timisation approaches. The remarkable merit of Shrink Algorithm is its ability to detect

not only clusters, but also the structure of the network, i.e., the hubs and outliers.

Huang et al. [32] propose two critical parameters for the Shrink algorithm; the structural

similarity and dense pair. The structural similarity σ can be calculated by exploiting the

Equation 2.2 below. The more mutual neighbours vertices v and u have, the higher

structural similarity these two vertices will obtain. If σ(u,v) is the largest structural

similarity among vertices u and v, and their adjacent neighbours, then (u,v) can be

defined as a dense pair. The structural similarity and dense pair parameters facilitate the

Shrink algorithm by increasing the ease and accuracy of clustering detection.

σ(u,v) =
Σx∈Γ(u)∩Γ(v)w(u,x)×w(v,x)√

Σx∈Γ(u)w(u,x)
2×

√
Σx∈Γ(v)w(v,x)

2
(2.2)

In Equation 2.2, w(u,x) is the number of mutual friends between users u and x.

Another hierarchical clustering algorithm is the community partition method based on

node similarity proposed by Ying el al. [33]. In this algorithm, each node is initialized

as a community in the network at the beginning. The communities are then merged
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iteratively based on the neighbourhood similarity. The approach proposed by Ying et al.

has lower computational complexity and has been applied in many types of networks,

indicating its effectiveness and efficiency in community detection.

Besides hierarchical clustering methods, another classification of community partition

methods is named spectral graph partitioning methods, such as, Kcut algorithm. Kcut

relies on the eigenvectors of the Laplacian matrix of a graph. Depending on their graph

partitioning techniques, these methods are divided into two categories. In the first cate-

gory, the graph can become bipartite by exploiting the leading eigenvector of the graph.

The representative algorithm is the SM algorithm, which computes the second smallest

generalized eigenvector and performs a linear search for graph partition. In the second

category, a k-way partitioning of the graph is computed through multi-eigenvectors.

The representative algorithm is the NJW algorithm, which computes a predefined k

number of smallest generalized eigenvectors and builds a matrix Y = {µ1,µ2, . . . ,µn}.
The graph is partitioned by a standard k-means algorithm based on the normalized unit

length of each row of Y , regarding each row as a point. [19] However, as this algo-

rithm is not able to detect the location of vertices, the only available filter condition for

selecting seed candidates is the degree of vertices.

Some other methods can be utilized to achieve community partition. For instance, Gir-

van and Newman [34][35][36] propose the hierarchical divisive algorithm for commu-

nity detection. In this algorithm, the edges between nodes are removed based on their

betweenness, which denotes the shortest paths between pairs of nodes. This is an itera-

tive process and it will remove edges continuously until the modularity of the commu-

nity detection reaches the maximum value. Furthermore, Blondel et al. [37] propose a

fast modularity optimisation method on the foundation of the modularity proposed by

Girvan and Newman. This method partitions nodes into communities by merging them

into supernodes. The formation of supernodes is interactively until the value of modu-

larity no longer increases. In addition, Donetti and Munoz [38] propose an alternative

spectral algorithm, which supposes that in a proper community detection, the values of

the nodes in a network are similar to their corresponding eigenvector components in the

same community.
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2.4 User Preference (UP)

UP also plays an important role in IM, although the existing preference analysis ap-

proaches are more often exploited in recommender systems than in IM problems [39][40].

By considering UP, users in a social network can be clustered into different commu-

nity partitions based on their common preferences. However, many existing researches

rarely take UP into account in IM problems. There are two popular methods can be used

for discovering user preferences and they are content-based filtering and collaborative-

based filtering.

2.4.1 Content-based Filtering Method

Content-based filtering method refers to obtain UPs by comparing the attribute profiles

of items with the user profiles. Each user in the network has a profile of recording

preferences, and each item has a profile of its corresponding attributes. For example,

mobile phone profiles may include brands, screen sizes, systems, and camera pixels etc.

The user profile consists of UPs for different mobile phones. In content-based filtering,

the compared descriptions of item attributes and UPs are used as a tool of ranking UPs

for items. In general, Vector Space Model (VSM) is used for presenting the features of

users and items. [39]

2.4.2 Collaborative-based Filtering Method

Collaborative-based filtering method can be defined as a process of retrieving the data

or rating patterns using collaborative techniques among multi-agents and data sources.

This method obtains a UP by finding the past behaviours of the user, such as ratings

and comment history. By utilizing the rating history of the user, the method finds other

users with similar behaviours (rating patterns) to predict the preference of the user.

Collaborative-based filtering can be divided as memory-based and model-based meth-

ods. This method is advantageous as it requires no information related to users and

items. [41][42]
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2.4.2.1 Memory-based Collaborative Filtering Method

As for memory-based collaborative filtering, it utilizes the similarity between users or

items. The computation of preference similarity (ps) can be conducted by the Pearson

correlation coefficient (Equation 2.3) and the cosine similarity (Equation 2.4), which are

most frequently exploited for similarity measurement in collaborative filtering. [41][39]

In addition, memory-based collaborative filtering methods can be further divided into

item-based and user-based collaborative filtering.

sim(u,v) =
Σi{ru,i− r̄u}×{rv,i− r̄v}√

Σi{ru,i− r̄u}2×
√

Σi{rv,i− r̄v}2
(2.3)

In Equation 2.3, ru,i denotes the rating of user u for item i, and r̄u denotes the average

rating of user u.

cos(u,v) =
Σi{ru,i}×{rv,i}√

Σi{ru,i}2×
√

Σi{rv,i}2
(2.4)

Item-based Collaborative Filtering Method

Item-based collaborative filtering is operated on the foundation of an item-centric man-

ner. The relationships between any two items in the network are represented in an

item-item matrix. The preferences of a particular user are predicted by comparing the

user’s existing preferences with the item-item matrix.

User-based Collaborative Filtering Method

As for user-based collaborative filtering, this method can find users who are similar to

the target user by computing the ps between the target and candidate users. The draw-

back of this method is that the relationships between users are unstable. A small change

related to user information probably causes the replacement of the whole community of

similar users.

2.4.2.2 Model-based Collaborative Filtering Method

The premise of model-based collaborative filtering assumes that there is an underlying

model used for managing the way how users rate items. The users’ rating patterns

are discovered by machine learning algorithms and data mining. Typical models in
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model-based collaborative filtering include factorization and latent semantic models,

and Markov decision process-based models. [41]

2.5 Ant Algorithms and Stigmergy

Ant colonies have fascinated the researchers of computer science field in recent years.

The reasons why are that ant colonies can be regarded as decentralised systems and the

societies they live is high-structured. In some situations, ant colonies are able to com-

plete complicated tasks that exceed the individual abilities of an ant, which is able to

provide methods for solving complicated optimisation and decentralised control prob-

lems in an adaptive, flexible and interoperable way. There are two major characteristics

of ant behaviours, one is indirect communication, the communication among ants is

indirect, they communicate through leaving a kind of chemical substance on the trails;

the other one is self-organizing, they can accomplish a task without any control even

the task is complicated.

As for ant colonies, stigmergy consists in the main body of ant colony knowledge, as it

is a particular mechanism exploited for indirect communication among ants to control

and coordinate their tasks. Ant and stigmergy-based algorithms do not much rely on

the network topology, and the computation is decentralised. In natural environments,

stigmergy-based systems have been demonstrated that they can be utilized for generat-

ing complicated and robust behaviours in the systems even if each ant has limited or

even no intelligence. Nest building is the representative example of stigmergy.

Some researchers have applied stigmergy for applications in computer science field. For

example, Dorigo et al. introduce how to solve the Travel Salesman problem (TSP) [43]

by leveraging ant and stigmergy-based algorithms, where the pheromone allocation is

concerning the distances among the cities [44]. To be more specific, TSP is in order to

solve the problem about the shortest distance for a tour by giving m cities in graph G,

and each city should be visited once and only once. Each city is treated as a start point

for each ant and m number of ants start their travels at the same time by visiting the m

cities sequentially. If there are more than one edge an ant facing, it can be decided by a

probability function related to the distance and the amount of pheromone. On each edge,

an artificial pheromone trail is updated continuously, which is used to assist ants to make

decisions and build tours. When an ant completes a tour, the amount of pheromone on

the edges it crawled through will be updated. In addition, pheromone is evaporated
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over time t. By leaving different amount of pheromone on the corresponding edges, it

indicates the quality of the tour. The solution of TSP is presented as an Hamiltonian

circuit.

Ahmed et al. propose a stigmergy-based approach for modelling dynamic interactions

among web service agents in decentralised environments [45][46]. As for the many

existing composition approaches, one of the main challenges is lacking of supports for

distributed working environments. In this approach, digital pheromone and pheromone

store are used for facilitating control and coordinate objects within web service compo-

sition. This approach is operating in a fully decentralised working environment. Each

agent requests for an abstract workflow consisting of several sub-tasks. It is capable of

searching for suitable resources and services for constructing its workflow by traversing

directly connected service agents in the network automatically. In addition, it deposit-

s/withdraws digital pheromone from pheromone stores of other agents automatically

as well, which is depending on the quality of the provided services. The experimental

results also demonstrate that stigmergy-based approach is able to adapt the web service

composition efficiently and effectively by the self-organisation and indirect communi-

cation behaviours among service agents stimulated by artificial pheromone. However,

this approach has not been applied for real world applications and it does not take trust

into consideration.

Takahashi et al. propose anticipatory stigmergy model with allocation strategy for shar-

ing near future traffic information related to traffic congestion management in a de-

centralised environment [47]. Some of the existing cases utilize past traffic informa-

tion to estimate the traffic congestion, which deducts the accuracy of the estimation.

Nevertheless, Takahashi et al. use near future intention submitted by users as traffic

data resources for estimation, which can improve the accuracy effectively. In this re-

search, Takahashi et al. compare the anticipatory stigmergy approach with other five

approaches. Through implementation, the experimental results also present that the an-

ticipatory stigmergy with allocation strategy has a better performance than other meth-

ods. However, this approach does not take dynamic environments, such as, accidents,

into consideration. In addition, the scale of the maps used for experiments are small.

Besides developing applications with stigmergy, some distributed optimisation approaches

are also developed using stigmergy, e.g., the ant colony optimisation (ACO) metaheuris-

tic. It is inspired by ant foraging. This method is used to find reasonable minimum cost

paths over a graph G with a set of defined constrains. This method also can be used to

solve TSP.
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2.6 Summary of Literature Review

The above reviews highlight the limitations of existing centralised approaches. First of

all, we note that classic diffusion models, such as, the IC and LT models, consider only

TC, which results in that IM is treated as a simplified probabilistic problem. In addi-

tion, the influence probabilities are predefined and static. Second, UP plays a critical

part in IM since users with common preferences will more easily influence each other

than users with dissimilar preferences. However, this factor is not taken into consider-

ation in most of the existing approaches. In general, centralised approaches have low

effectiveness and efficiency.

Moreover, to improve the efficiency of seed selection algorithms in the IM problem, re-

searchers have developed a variety of methods. Chen et al. study the efficient influence

maximisation by improving the original greedy selection algorithm and propose a novel

seed selection approach, namely, degree discount heuristics for the uniform IC model,

which assigns the same probability to all edges. Their model efficiently improves the

seed selection of IM. [5]. Leskovec et al. propose a novel algorithm that finds the influ-

ential nodes (seeds) based on a simple greedy algorithm. Their so-called Cost Effective

Lazy Forward (CELF) scheme [29], which deducts the running time of seed selection.

Furthermore, Goyal et al. extend the original CELF algorithm to an optimised algo-

rithm, called CELF++ algorithm, which reduces the running time of subsequent steps

and it has been demonstrated that the CELF++ algorithm is 35 to 55 percent faster

than the original CELF algorithm [30]. Zhang et al. research the least Cost Influence

Problem (CIP) in multiplex networks, and alleviate its problems by mapping a set of

networks into a single network via lossless and lossy coupling schemes [48]. However,

all of these approaches are applicable only to static networks, and require discovery of

the network topology. Specifically, they cannot handle the dynamics of social networks.

Meanwhile, traditional approaches are not applicable when the global perspective is un-

available.
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The Preference-based Trust
Independent Cascade (PTIC) Model

3.1 Introduction

In this chapter, we tend to explore an appropriate centralised approach for the IM prob-

lem. Through the review of the previous literature related to classic influence diffusion

models, the existing problems are identified as follows:

• Most of the existing approaches, such as the IC and LT models, only take TC into

account, which reduces IM to a simplified probabilistic problem;

• The influence propagation probabilities are predefined and assumed as static;

• User preferences to particular items are not considered;

• The existing models are ineffective and inefficient.

Motivated by the prosperous development of viral marketing and in order to overcome

the limitations of existing approaches, a Preference-based Trust Independent Cascade

(PTIC) Model is proposed by considering both UP and TC. Furthermore, the influence

probabilities in the PTIC model are computed based on the UP and TC rather than

predefine them. In this approach, hub users in a social network, who are interested in

the promoted items, can be selected as influential users. Thereby, the effectiveness and

22
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efficiency of IM can be significantly improved. In addition, as verified in experiments,

the PTIC model outperforms the trust-only and random methods.

As for the developmental process of the PTIC model, there are two critical factors, i.e.,

the UP and TC, involved in. UP, which specifies the preference degree of a particular

user for an item. It is a critical subjective factor of influence propagation. It is mainly

involved in community partitioning by the hierarchical clustering algorithms, and in

seed selection by degree-based ranking. Depending on the data of the proposed sys-

tem exploited, the methods used to retrieve user preferences can be classified into two

categories: one is content-based filtering method and the other is collaborative-based

filtering method. Content-based filtering method is based on the comparison between

user profiles and item attributes, whereas collaborative-based filtering method is based

on identifying the users with similar rating patterns and rating histories to predict the

rating of a particular user for an item. The proposed PTIC model is developed based

on a collaborative-based filtering method. However, users with common preferences

are partitioned into the same community regardless of whether or not they know each

other, which may lower the quality of the seed set selection. Hence, we must check

that two users with common preferences share a corresponding trust connection in the

network, such a connection will guarantee an influence propagation channel between

users to propagate influence.

The remainder of this chapter is organized as follows. In Section 2, it describes the

problem and formally defines the PTIC model. In Section 3, the framework of the

PTIC model is described in detail. Experiments are presented in Section 4. Finally, this

chapter is concluded in Section 5.

3.2 Problem Description and Formal Definitions

3.2.1 Problem Description

Suppose that an organisation plans to promote a particular product (ix) in an online

social network. Due to limited resources, the organisation needs to select a limited

amount of influential users to experience the product and promote it to their connected

users. Ideally, the selected users will maximize the influence in the network. The pur-

pose of IM is to select k influential vertices, also called seeds, from the social network.
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The prospective number of vertices influenced by the selected seeds is regarded as the

achieved influence.

3.2.2 Formal Definitions

In this chapter, we assume that there are m users, n edges, and x items in a social

network. Here, a social network is modelled as a graph G = (V,E), where V denotes

the set of users, and E denotes the set of edges among the users. There are two types of

edges in G, i.e., preference edges and trust edges, representing the UPs and TCs among

the users, respectively (see Definition 5 and 6).

Definition 1: A user is defined as a vertex v j in the network. Each user has a set of

neighbours, i.e., N j = {v j ∈V |v j,vi ∈ E}. Each vertex in N j (vi ∈ N j) has a Trust Edge

(see Definition 6) to v j.

Beside users, the network also contains a set I of items. An item ix ∈ I is a particu-

lar product that has been or will be promoted to the users in the network. User v j’s

preference to item ix is presented as the result of the ratings given by v j.

Definition 2: Rating r jx is the preference degree of user v j for item ix. The rating set

R j = (r j1,r j2,r j3, ...,r jx) is the set of all ratings previously given by v j.

Definition 3: Common Preference for Item (cpii jx) is defined as the ratings that any

two users in the network gave for item they both rated, where cpii jx denotes that item ix
is the common preference of user vi and v j.

cpii jx = 1−
|rix− r jx|

rx.max− rx.min
(3.1)

In Equation 3.1, rix is the rating given to item ix by user vi, and |rix− r jx| indicates

the rating difference of ix between users vi and v j. The quantity rx.max− rx.min is the

difference between the maximum and minimum rating value for item ix.

Definition 4: Common Preference Similarity (cpsi j) is defined as the similarity of the

ratings given by network users vi and v j for all items rated by both two users. Users

with common preferences will be computed for CPS and labelled CPS as weight on

preference edges.
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cpsi j =
∑x∈I cpii jx

I.count
(3.2)

Equation 3.2 shows the CPS calculation between users vi and v j. I denotes the item set

rated by both vi and v j, and I.count indicates the number of items in I.

Definition 5: A Preference Edge pei j denotes the preference relationship between two

users, i.e. vi and v j. Users vi and v j will have a preference edge pei j when their cpii jx

is calculable. The weight of pei j can be denoted as w(pei j) = cpsi j.

Definition 6: A Trust Edge tei j denotes the trust relationship between two users, i.e.

vi and v j. The weight of tei j can be represented as w(tei j) = user distance, which is

computed from the n-dimensional coordinates of the information (attributes) in the user

profiles (n is depending on the number of attributes). The range of user distance is from

0 to 1.

Definition 7: Influence Probability pi j is defined as the likelihood that the influence

will propagate from user vi to user v j. The range of pi j is from 0 to 1. pi j is computed

by the product of cpsi j and the user distance between users vi and v j and it can be

expressed as Equation 3.3.

pi j = w(pei j)×w(tei j) (3.3)

Definition 8: A Community Cr, refers to a set of users in any scale that have common

preference(s). Users in a community have a compact relationship related to common

preference among each other, even for those who are not linked directly. A social net-

work G can be partitioned into a number of communities, i.e., G=C =C1,C2,C3, ...,Cr.

Here we assume that there are no intersections between the communities.

The reason why we conduct community partition is that assuming we plan to propagate

influence within a given community Ci, selecting influential users from community Ci

to propagate influence is more efficient than selecting influential users from other com-

munities [49]. Each community presents not only the CPS between any two users in

the network, but also the relationship related to the common preference among a set of

users in a community.
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FIGURE 3.1: Framework of the PTIC Model

3.3 The Preference-based Trust Independent Cascade

(PTIC) Model

The framework of the PTIC model is shown in Figure 3.1. There are four modules in

the PTIC model, i.e., the Preference Learning Module (PLM), the Community Partition

Module (CPM), the Trust Connectivity Computation Module (TCCM), and the Seed

Selection Module (SSM). At the beginning of this model, the CPSs (see Definition

4) between the users will be computed and evaluated by the PLM. The computation

of CPS can be regarded as the preparation of the CPM, as the CPSs are the weights

of the preference edges. After computing the CPSs, the CPM will be conducted by

partitioning the users into communities based on their CPSs. The TCCM computes the

user distances based on the user profiles, thus providing the TC. Finally, the outputs of

the CPM and TCCM are input to the SSM which selects the influential nodes.

3.3.1 Preference Learning Module (PLM)

In this module, the CPS is calculated based on the rating differences between two users,

vi and v j. The smaller the average of their rating differences is, the higher the CPS will

be. The cpsi j between vi and v j can be calculated by using Equations 3.1 and 3.2.
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Algorithm 1 Common Preference Similarity (CPS) Computation Algorithm
Input: V,R
Output: CPS

1: Load the Users and Ratings from the process dataset
2: for ∀vi ∈V do
3: for ∀v j ∈V ∧ i > j do
4: Find common rating pairs R′,ri,r j ∈ R′,R′.Ii = R′.I j
5: Calculate CPS between user vi and user v j, cpsi j
6: cpsi j = cps ji,cpsi j ∈CPS,and cps ji ∈CPS
7: end for
8: end for

Algorithm 1 shows the process for calculating the CPS. The algorithm accepts the user

set V and user-item rating set R as inputs. The network is defined as an undirected

network; that is, a user and a counterpart are compared once only.

As for the CPS, it represents the common preference similarity between any two users in

the network (see Definition 4). The common preference similarity among users within a

community, it can be obtained by partitioning the network into communities. Users with

close CPSs will be partitioned into the same community, and each node in a community

will be related by a common preference similarity. In other words, the members of a

community share a common preference even when those users are not directly linked.

3.3.2 Community Partition Module (CPM)

In CPM, the community partition approach is derived from the community detection

algorithm proposed by Ying et al. [33]. All of the users are randomized, and each

individual tries to merge with its closest neighbour. This procedure will be conducted

iteratively until the similarity among the communities (referring to clusters in the algo-

rithm) reaches a certain threshold σ .

The user preference clustering algorithm is shown in Algorithm 2. This algorithm ac-

cepts two input variables, a user set V and a UP matrix P. The output C indicates the

tree-like hierarchical UP cluster. The algorithm terminates when the similarity among

the communities reaches a certain threshold. In each iteration, the nodes merge with

their neighbours with the closest CPSs. All edges of the merged nodes are updated

accordingly. In the merging process, as for those common neighbours’ edges, the one

with higher weight is selected, while the edges of all non-common neighbours’ nodes
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Algorithm 2 User Preference Clustering Algorithm
Input: V,CPS
Output: C

1: Load the user dataset,V and user preference matrix,P
2: Randomize the user set
3: Initialize cluster, C.size =V.size
4: while average similarity among clusters > σ do
5: for ∀vi ∈V do
6: for ∀v j ∈V ∧ i > j do
7: Find v j neighbour v j with the maximum cpsi j in P
8: if cpsi j > threshold ts then
9: merge (vi,v j) into a new node vn

10: V.size−1, assign vn to a new cluster Cn
11: for ∀vc ∈ Γ (vi)∩Γ (v j) do
12: cpsnc = max(cpsc j,cpci)
13: end for
14: for ∀vc ∈ Γ (v j)∪Γ (v j) do
15: cpsnc = cpsci = cpsc j
16: end for
17: end if
18: end for
19: end for
20: end while

directly point to the merged node. After a number of iterations, a tree-structured cluster

is generated.

3.3.3 Trust Connectivity Computation Module (TCCM)

The main purpose for computing TC is to ensure that users with common preferences

establish an influence propagation channel. Without the TC, users with common pref-

erences in the same community cannot partake in the influence propagation. The TC

is computed based on the information (attributes) in the user profiles. When necessary,

this information is quantified and stored in a n-dimensional coordinate (n is depending

on the number of attributes). The TC is then quantified by the user distance, calculated

by Equation 3.4.

w(tei j) = 1−
√

∑am∈A(
vi.am− v j.am

am.max−am.min
)2 (3.4)
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In Equation 3.4, w(tei j) indicates the weight on the TC between users vi and v j, and

vi.am−v j.am denotes the distance difference of the attribute am of users vi and v j, where

am is an element of the attribute set A.

Algorithm 3 User Trust Connectivity Computation Algorithm
Input: V,A
Output: T

1: Load the User dataset V including all the users’ attribute set A
2: for ∀vi ∈V do
3: for ∀v j ∈V ∧ i > j do
4: Calculate the weight of TC between user vi and v j
5: w(tei j) = w(te ji)
6: end for
7: end for

As mentioned above, the weight on TC is depending on the users’ attributes. In Algo-

rithm 3, the input is user set V and user attribute set A, and the output is a user trust

matrix T .

3.3.4 Seed Selection Module (SSM)

With the involvement of community partition and TC computation, users have not only

common preferences, but also TC in the network. The influence probability pi j is calcu-

lated based on the product of the UP and TC between users vi and v j. After computing

the influence probability pi j, hub users who are interested in the promoted item will be

selected as the influential users (seed set). The seeds are selected based on a heuristic

method in this chapter. Based on budget, this module selects p number of seeds with

high influence spread.

Algorithm 4 aims to calculate the activated users influenced by the seed set in the net-

work by using the IC model. The input is the seed set {va}, and the output is a set of

activated users Va in the entire network. pai denotes the influence probability between

two users vi and va (see Definition 7). Each iteration of Algorithm 4 (Lines 3-14) finds

user va’s neighbour set Vn,vi ∈Vn. If vi is inactive and its Influence Propagation Proba-

bility (IPP) is larger than the threshold, then vi is activated and its neighbours Γ (vi) are

influenced by the IPP′, where IPP′= IPP× pix (x∈Γ (vi)). This algorithm is recursive,

meaning that it invokes itself inside the procedure (Line 11). For example, if va is an

element of the seed set, then v′as IPP = 1, the IPP of v′as neighbour vi is 1× pai, and the
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Algorithm 4 Influence Propagation Algorithm using IC Model
Input: {va},{va} ⊆ Seeds Set
Output: Va

1: Initialize IPP = 1 if not a recursive invoke
2: va.activeStatus = true
3: for ∀vi ∈ Γ (va) do
4: if va.activeStatus = true then
5: Next
6: end if
7: if pai× IPP≥ propagation threshold then
8: Generate a random decimal dr,0≤ d ≤ 1
9: if dr ≤ pai× IPP then

10: vi.activeStatus = true
11: Update IPP, input vi as variable and invoke self - Recursive
12: end if
13: end if
14: end for

IPP of v′is neighbour v j is 1× pai× pi j. Hence the IPP steadily reduces as the number

of hops of influence propagation increases.

3.4 Experiments and Analysis

In this section, two experiments are conducted to compare the performances of the

PTIC model with two other approaches, i.e., the random approach and the trust-only

approach. In the random approach, the seeds are randomly selected from users. In the

trust-only approach, seed selection is based on only the TC weight.

We estimate the total number of activated users influenced by the seed set generated

by the trust-only and random approaches. If a user is selected into the seed set, that

user will attempt to influence and activate its neighbours in the network. The activation

probability of the neighbours is determined by the weight of the influence propagation

channel.

In Experiment 1, the weight of the influence propagation channel is determined by both

UP and TC; in Experiment 2, the influence propagation depends only on the TC.
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3.4.1 Data Selection

Experiments are performed on the Movielens1 dataset, a stable benchmark dataset re-

leased in April of 1998 that contains the ratings of 1682 movies from 943 users. To

filter the noise data, users who input less than 50 ratings have been removed from the

dataset. Furthermore, users with ambiguous or false attributes are also eliminated from

the experiments. After the data preprocessing, 441 users remains in the experimental

dataset.

3.4.2 Experimental Results

The evaluation results are plotted in Figures 3.2 and 3.3. In both figures, the x-axis

denotes the size of the seed set, i.e., the number of selected influential users, and the

y-axis refers to the number of activated users in the entire network.

Figure 3.2 compares the performances of the three approaches in Experiment 1. Among

the 441 users, approximately 280 users are capable of activating their neighbours (the

remaining users can activate only themselves). In order to ensure the accuracy of an

individual’s influence spread, we conduct each trial for 100 runs and compute their

average. The seed set with multiple elements is treated by the same method. The seed

set is increased by retaining the selected users and adding new users.

As shown in Figure 3.2, the PTIC model outperforms the two alternative approaches. In

terms of the cost performance, the appropriate size of the seed set is 10, the elbow point

in the PTIC model. In addition, the number of activated users in the network reached

272, significantly higher than the other two approaches.

Figure 3.3 presents the performance of the three approaches in Experiment 2. This

experiment is conducted in trust-only network. Trust-only network is a homogeneous

network, which only takes physical links into consideration. In this situation, the seeds

selected by trust-only approach should best suit the network compared with other ap-

proaches. Although the trust-only approach yields the best performance, the PTIC

model still performs very well, and is far superior to the random approach. When the

size of seed set is small (ranging from 4 to 6), the seeds selected via the trust-only

approach can activate approximately 300 users, whereas those selected by the PTIC

1https://grouplens.org/datasets/movielens
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FIGURE 3.2: Preference Evaluation of Three Models Considering User Preference and
Trust

FIGURE 3.3: Preference Evaluation of Three Models Considering Trust Only

model can activate 250 users. Furthermore, when the seed size reaches 10, the number

of activated users is very similar in the trust-only approach and the PTIC model.

Based on the above discussion, we could claim that when the resources are limited, the

PTIC model yields the best performance among the three tested approaches.
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3.5 Summary of The Preference-based Trust Indepen-

dent Cascade (PTIC) Model

In this chapter, in order to resolve the existing problems of some classic influence dif-

fusion models, we propose the PTIC model and apply it to the IM problem on the

foundation of UP and TC. In addition, compared with previous researches, we compute

the influence probabilities based on the UP and TC rather than predefine them, which

can improve the quality of the seed selection significantly. The experimental results

also prove that the PTIC model has a better performance than trust-only and random

approaches. Hence, by including both UP and TC, the PTIC model is able to propagate

influence in a largest possible range, realising an effective and efficient dissemination

of limited resources.



Chapter 4

The Stigmergy-based Influence
Maximisation (SIM) Model

4.1 Introduction

In this chapter, a decentralised approach is developed for the IM problem. Different

from centralised approaches, decentralised approaches can distribute the workload, fur-

ther improving the effectiveness and efficiency of seed selection. The existing problems

of centralised approaches are presented as follows:

• Centralised approaches are ineffective and inefficient;

• Centralised approaches are complicated to compute.

To solve the existing problems above, the Stigmergy-based Influence Maximisation

(SIM) model is proposed by exploiting a novel decentralised approach, i.e., stigmergy-

based approach. Stigmergy is an important proportion of knowledge from ant colonies.

Ant colonies have recently fascinated researchers in computer science field since ant

colonies can be utilized to solve complex distributed control and optimisation prob-

lems. The essential characteristics of decentralised approaches, e.g., ant and stigmergy

algorithms, are that they are able to facilitate online social networks by improving their

adaptability, flexibility and interoperability. Decentralised networks can be regarded as

multi-agent systems because decentralised approaches tend to distribute the workload

to individuals, and each individual cooperates with other individuals in task implemen-

tation. The individuals’ actions eventually lead to a global convergence.

34
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There are two kinds of decentralised approaches in terms of communications. One

relies on the direct communications among the individuals, such as cellular automata

[50], in which each cell in the grid adapts its state by examining its adjacent neighbours

based on a set of rules. While, the other focuses on the indirect communications, in

which individuals read or analyse the ‘stimulations’ left by their peers. One of the typ-

ical approaches is ant and stigmergy algorithm [44]. The French entomologist, Pierre-

Paul Grasse defines stigmergy as “stimulation of workers by the performance they have

achieved”, which is associated with two major features of ants [51]. First, the commu-

nications among ants are indirect. More specifically, stigmergy is a particular indirect

communication mechanism by which ants exploited to harmonize their daily tasks with

each other. Their indirect communication is conducted through depositing pheromone

on the trails, which is a kind of chemical substance that evaporates over time. Second,

ants’ activities are self-organized. Individual ants can complete a complicated task in-

dependently and autonomously. Stigmergy has been developed and applied to diverse

problems, such as, communication network routing, exploratory data analysis, and dia-

gram drawing.

There are two obvious advantages of applying the ant and stigmergy algorithm to the

IM problem. First, as for seed selection, the ant and stigmergy algorithm can improve

the performance and the operating time effectively and efficiently since ants are able to

separately accomplish even complicated tasks without any control. Second, since the

stigmergy-based approach is an optimisation process, so that it can continuously guide

the output of seed selection towards the optimal solution.

In this chapter, we tackle the IM problem by a novel decentralised approach, the Stigmergy-

based Influence Maximisation (SIM) model which simulates the influence propagation

process as ants’ crawling across the network topology. Furthermore, the ant’s key be-

haviours, including path selection and pheromone allocation, have been modelled for

selecting suitable nodes to achieve the IM. Path selection aims to identify the next node

to approach when an ant faces multiple options. While, the objective of pheromone

allocation is to deposit pheromone on specific nodes based on the heuristics when an

ant explores a possible influence-diffusion path. Experiments have been conducted to

evaluate the performance of the SIM model by comparing against traditional seed selec-

tion algorithms; namely, greedy selection, degree-based selection and random selection

algorithms. The results demonstrate that the proposed model is more advanced by con-

sidering both effectiveness and efficiency. Moreover, the SIM model can dramatically

reduce the computational overhead, compared with centralised approaches.
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The remainder of this chapter is organized as follows. Section 2 systematically elab-

orates the SIM modelling approach, including the problem description, formal defini-

tions, path selection and pheromone operations. In Section 3, the performance of the

SIM model is experimentally evaluated. Finally, the paper is concluded in Section 4.

4.2 The Stigmergy-based Influence Maximisation (SIM)

Model

The SIM model tends to select appropriate influential candidates by considering the

influence strengths among users and the assembled influential effect. In this model,

numerous ants walk simultaneously and update their shared environment by allocating

pheromone. The influence propagation process is simulated by the crawling behaviours

of ants. The influential users can be identified when the pheromone distribution in the

network starts to converge. The amount of pheromone at each node then determines the

seed selection. The SIM model will be elaborated in the following subsections.

4.2.1 Problem Description

Suppose that an organisation plans to promote a particular product (ix) in a large-scale

online social network. Due to limited resources and insufficient time, the organisation

needs to select k initial candidates as influential users, who will experience the product

as soon as possible and hopefully recommend it to others in their social cycle. Ideally,

the k influential users exert the maximum influence in the social network.

4.2.2 Formal Definitions

Definition 1: A Social network is defined as a weighted graph G = (V,E) with a

clear topological structure, where V = {v1,v2, ...,vn} stands for the nodes (users) in the

network, and E = {ei j|vi ∈V ∧v j ∈V,vi 6= v j} denotes the edges (relationships) among

the nodes. A particular edge can be represented as a three-tuple, i.e., ei j = (vi,v j,wi j),

where wi j is the weight of ei j which represents the influence strength. Each node vi has a

set of neighbours {v j|v j ∈ Γ (vi),ei j ∈ E}. While, vi.p indicates the pheromone amount

(see Definition 4) accumulated on corresponding node vi, which can be regarded as an
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attribute of vi. Similarly, the weight wi j is denoted by using the notation ei j.w to indicate

its association with the edge ei j in this chapter.

Definition 2: An Ant am is defined as an autonomous agent in the network G, which

crawls across the network topology of G. am can be represented as a three-tuple, i.e.,

am = (m,qn
m,T

n
m), indicating that ant am carries qn

m pheromone during tour T n
m (see Def-

inition 3). There exist a number of ants, A = {a1,a2, ...,an}, in the social network, and

they continue to crawl through the network. As they travel, the ants discover and eval-

uate the amount of pheromone on their current and nearly nodes. However, the ants

cannot directly communicate with each other.

Definition 3: A tour T n
m =< v1,v2, ...,vn > is defined as the path walked by ant am

in the n− th round. Specifically, ant am randomly selects a starting point, then crawls

from one node to an adjacent node until it reaches the end point ve, where Γ (ve) ⊂
T n

m ∪|Γ (ve)|= 1.

Definition 4: Pheromone refers to a kind of chemical substance deposited by the ants.

In this context, the pheromone passes the information and heuristics from an ant to

its peers based on its experience. qn
m denotes the total amount of artificial pheromone

carried by ant am in the n− th round. Once am has completed its tour, its pheromone is

distributed to each node of T n
m .

4.2.3 Path Selection

In this context, path selection is one of the ant’s basic behaviours, that describes how

an ant am located at node vi selects the next node to reach among multiple choices

Vc = {v j|v j ∈ Γ (vi)∧ ei j ∈ E}.

Basically, the path selection decision depends on two factors; the pheromone amount

on v j, i.e., v j.q, and the weight of the corresponding edge ei j.w. The path selection

behaviour is modelled as an probabilistic event by using Equation 4.1, where pi j denotes

the probability that an ant walks from node vi to v j.

pi j =


ei j.w·v j.q

∑vx∈Γ (vi)
eix.w·vx.q

, ei j ∈ E

0, ei j /∈ E
(4.1)
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FIGURE 4.1: Path Selection of an Ant FIGURE 4.2: Path Selection of Multi-
ple Ants

To demonstrate path selection, we provide two concrete examples. In Figure 4.1, ant ai

starts from node vi and confronts three options, i.e., vk, v j and vn. The decision is made

by considering both the targeting nodes’ pheromone amount and the influence strength

/ weight of the corresponding edges, as indicated in Equation 4.1. In this diagram, the

probability of choosing node v j is calculated as: pi j = ei j.w · v j.q/(ei j.w · v j.q+ eik.w ·
vk.q+ ein.w · vn.q) = 0.8×0.5/(0.4×0.6+0.8×0.5+1.0×0.7) = 29.85%

In Figure 4.2, another example is demonstrated, where two ants, labelled ai and a j,

walk through the same network. The path selection principles prevent the ants from

choosing previously self-visited nodes within the same tour, but they can intersect nodes

previously visited by other ants in either the current or previous iterations.

Each ant keeps performing an iterative process: walking and selecting path. This pro-

cess stops when the ant reaches the end point. The iterative process triggered by ant m

in round n is recorded in a path vector called tour T n
m . The tour formation is described

in Algorithm 5.

Algorithm 5 presents the process of how an ant complete a tour. The input to the touring

procedure includes an ant am and the index of round n, and the output is a tour T n
m . Line

3 specifies the criterion for walking to the next node. Lines 5-10 implement the target

candidate selections, where the predefined threshold σ filters out the low-probability

candidates. Lines 11-17 indicate the path selection process. The iterative walking pro-

cess terminates when all of the current node vs’s neighbours reside in the tour list T n
m .
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Algorithm 5 Tour Formation Algorithm
Input: am,n
Output: T n

m,T
n

m ⊆V
1: Initialize am and random select a starting point vs,vs ∈V
2: Initialize a tour list T n

m = /0
3: while ∃Γ (vs)∧Γ (vs) 6⊂ T n

m do
4: Initialize candidate list Vc = /0
5: for ∀vi ∈ Γ (vs)∧ vi /∈ T n

m do
6: Compute the probability psi using Equation 4.1.
7: if psi > σ then
8: Vc =Vc∪{vi}
9: end if

10: end for
11: if Vc 6= /0 then
12: Determine the next node vn ∈Vc using Equation 4.1.
13: T n

m = T n
m ∪{vn}

14: vs = vn
15: else
16: vs = null
17: end if
18: end while

4.2.4 Pheromone Operations

4.2.4.1 Sub-network Generation

Sub-network generation is the preliminary step of the pheromone operations. After ant

am completes a tour T n
m , a corresponding sub-network Gn

m = (V n
m,E

n
m) will be generated

based on the path walked by am. V n
m incorporates all nodes in tour T n

m and their valid

first-layer neighbours Γ (T n
m), thus, V n

m = T n
m ∪Γ (T n

m). Meanwhile, the edge set En
m

include all links among V n
m.

The total amount of pheromone qn
m during tour T n

m depends on the total number of nodes

in the sub-network, i.e., |V n
m|. Each node in the sub-network contributes one proportion

of pheromone. Figure 4.3 illustrates a typical example of generated sub-network. In this

example, an ant sequentially walked from node va to node ve. Based on these nodes,

search for their valid first-layer neighbours. In this way, the sub-network is generated.
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FIGURE 4.3: Pheromone Allocation in A Tour with Five Nodes

4.2.4.2 Pheromone Allocation

In general, pheromone allocation refers to how ants deposit the biological information

on the nodes after the ants visit the nodes in the network. The distribution of pheromone

plays an important role in stigmergy algorithms, since it updates the context according

to the relevant impact factors. In this way, the solution becomes continuously more

optimised.

In the current setting, the pheromone distribution is based on the size of the sub-

network. The shorter the length path and the larger the sub-network, the more pheromone

will be allocated on each node. The number of connected neighbours of node vi in

sub-network Gn
m is computed by Equation 4.2. Equation 4.3 computes the pheromone

accumulation of node vm in tour T n
m . The accumulated pheromone is the sum of all

pheromone contributions given by the direct neighbours Γ (vm).

vi.N = |{vi|vi ∈V n
m∧Γ (vi) ∈ T n

i }| (4.2)

vm.∆q =

∑vi∈Γ (vm)
1

vi.N
, vm ∈ T n

m,vi.N 6= 0

0, vm ∈ T n
m,vi.N = 0

(4.3)

Figure 4.3 illustrates an example of a specific sub-network Gn
m = (V n

m,E
n
m), where the

tour travelled by ant am is represented as T n
m =< va,vb,vc,vd,ve >, V n

m = {va,vb,vc,vd,ve,

v f ,vk,vh,vi} and En
m includes all edges among the nodes in V n

m, |En
m|= 12 in this exam-

ple. Because node v f is the direct neighbour of two nodes in tour T n
m , both va and vb

obtain half of a unit pheromone from v f . Meanwhile, node vb contributes 0.5 unit of

pheromone to va and vc, but v f and vk are beyond the scope of this allocation. Therefore,

the pheromone gains at nodes va and vb are calculated as 1.5 and 2.0, respectively.
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Algorithm 6 implements the pheromone allocation process initiated by ant am in tour

T n
m . The distribution is based on the topology of the explored sub-network Gn

m. The

input is a specific tour T n
m and the output is a pheromone amount update. Specifically,

this algorithm alter the context of the network by updating the pheromone amount at

each node of the tour path. Lines 1-9 initialize and construct the sub-network Gn
m. Lines

10-12 obtain the denominator of Equation 4.3 at each node which allocates pheromone

to the nodes in the tour path. Lines 13-14 compute the variations of the pheromone.

Algorithm 6 Pheromone Allocation Algorithm
Input: T n

m
Output: pheromone changes for all the nodes in T n

m

1: Initialize sub-network graph Gn
m = (V n

m,E
n
m),V

n
m = /0,En

m = /0
2: for ∀vi ∈ T n

m do
3: for ∀v j ∈ (Γ (vi)∪ vi) do
4: V n

m =V n
m∪{v j}

5: if pi j > 0∧ i 6= j then
6: En

m = En
m∪{ei j}

7: end if
8: end for
9: end for

10: for ∀vn ∈V n
m do

11: Compute vn.N using Equation 4.2
12: end for
13: for ∀vm ∈ T n

m do
14: vm.q = vm.q+ vm.∆q, using Equation 4.3
15: end for

4.2.4.3 Pheromone Evaporation

Pheromone evaporation is a common biological phenomenon, which reduces the amount

of allocated pheromone over time. In ant and stigmergy algorithms, pheromone evap-

oration discourages the convergence to a locally optimal solution. Pheromone simul-

taneously evaporates through each node within the scope of the whole network. At a

justified time, all of the nodes in the network will have evaporated a predefined unit of

pheromone. The pheromone evaporation at each node is quantified by using Equation

4.4, where ∆t is the time difference and λ is the evaporation speed of the pheromone.

EQ = e
∆t
λ ,λ 6= 0 (4.4)
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4.2.5 Seed Selection

Seed selection aims to select the set of influential users that will propagate influence

to other members from a specific network. Various classic seed selection approaches

are available. Among these degree-based seed selection chooses the nodes with high

node degree. Intuitively, users with large friend cycles can influence more users in the

social network than users with few friends. However, in general, two connected users

with very high degree tend to have many common friends, so that selecting one or both

of these high influencers will make little difference to the impact. Another well-known

approach is greedy selection, which aims to obtain the maximum influence marginal

gain through selecting the seeds. However, this approach is not applicable to large-

scale network because of its high computational overhead. Random selection is also

applied to some cases, but generally gives poor performance because it is not based on

any heuristics.

In stigmergy-based algorithms, seed selection depends on the amount of pheromone

allocated on each node. The selection is similar to the degree-based approach, but influ-

ential users are determined by ranking the pheromone degree of each node in stigmergy-

based algorithms.

Algorithm 7 Seed Selection Algorithm
Input: n,k,λ ,∆t,G = (V,E)
Output: Vs

1: Initialize ant set A = {a1,a2, ...,an} which contains n ants.
2: Initialize seed set Vs = /0
3: All the n ants start to crawl in network G in the distributed servers.
4: while !convergence do
5: Compute EQ using Equation 4.4.
6: for vi ∈V do
7: vi.q = vi.q−EQ
8: end for
9: Sleep for ∆t

10: end while
11: Sort V order by q descend
12: for ∀vi ∈V do
13: if |Vs|< k then
14: Vs =Vs∪{vi}
15: end if
16: end for
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In Algorithm 7, the input includes the number of ants n, the size of the seed set k,

evaporation speed λ , time difference ∆t and the network G = (V,E). Lines 1-2 initialize

the ants and seed sets. Lines 3 mimics the ants’ autonomous behaviours in the network

by calling Algorithms 5 and 6. Lines 4-10 implement the global pheromone evaporation

process. Lines 11-16 select the seeds from the updated environment.

4.3 Experiments and Analysis

4.3.1 Experiment Setup

Experiments are conducted on MovieLens1 dataset. This stable benchmark dataset re-

leased in February of 2003, and it contains approximately one million ratings of 3,900

movies given by 6,040 users. To filter the noise data, users who input less than 50 num-

ber of ratings are removed from the dataset. There are no explicit links among the users,

but the implicit links can be generated according to the item ratings. Moreover, in order

to control the computing time, we vary the scale of the network sub-graphs as 500, 750

and 1000 in each experiment.

The node degree distributions of the sub-graphs scaled to sizes of 500, 750 and 1000

are presented in Figures 4.4, 4.5 and 4.6, respectively. All of these sub-graphs exhibit a

power-law distribution pattern of the node degrees, as in most real networks [52].

4.3.2 Global Pheromone Distribution

As explained in Section 3.4, all of the artificial ants crawl across the social network and

allocate pheromone after completing their tours, meanwhile the allocated pheromone

continuously evaporates over time. The total amount of the outstanding pheromone in

the social network is regarded as the global pheromone.

The global pheromone distributions of the 500, 750 and 1000-sized sub-graphs are plot-

ted in Figures 4.7, 4.8, and 4.9, respectively. In all cases, the pheromone amount in-

creases steadily towards a certain level, then oscillates around that level. This indicates

a near-equilibrium stare between pheromone allocation and evaluation. At this point,

1http://grouplens.org/datasets/movielens/
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FIGURE 4.4: The Degree Distribution (size
= 500)

FIGURE 4.5: The Degree Distribution (size
= 750)

FIGURE 4.6: The Degree Distribution (size
= 1000)

FIGURE 4.7: Global Pheromone Dis-
tribution (size=500)

the sequential pheromone ranking list changes only marginally, indicating that conver-

gence is reached.

4.3.3 Experimental Results

We conducted two experiments by using the same social network in three different sizes

(500, 750 and 1000). The first experiment aims to evaluate the influence effectiveness of

the stigmergy-based algorithm, i.e., the total number of users activated by the seed set.

While, the second experiment tends to evaluate the efficiency, i.e., the running time of

seed selection. In both experiments, the stigmergy-based algorithm is competed against

the greedy selection, degree-based selection and random selection.
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FIGURE 4.8: Global Pheromone Dis-
tribution (size=750)

FIGURE 4.9: Global Pheromone Dis-
tribution (size=1000)

In the first experiment, seeds selected from the proposed model are input to the IC

model. The influence effectiveness of the SIM model is compared with those of classic

algorithms, the comparisons among the four algorithms in sub-networks of size 500,

750 and 1000 are presented in Figures 4.10, 4.11 and 4.12, respectively. The stigmergy-

based algorithm performs better than both degree-based selection and random selection

in all cases, and its performance is similarly to the greedy selection at the network size

of 500. On larger sub-graphs, the influence effectiveness of stigmergy-based selection

deteriorates slightly, but remains above that of the other algorithms.

The second experiment analyses the efficiency of the four seed selection algorithms by

comparing their running time. In the stigmergy-based algorithm, the runtime includes

the initiation and pheromone operations of the ants. The efficiencies of the other three

algorithms are evaluated in the IC model. Figures 4.13, 4.14 and 4.15 compare the

efficiencies of the four algorithms in sub-networks of sizes 500, 750 and 1000, respec-

tively. Greedy selection is by far the most computationally expensive algorithm, and

its running time is proportional to the size of the seed set. The efficiencies of random

selection and degree-based selection are very similar. The stigmergy-based algorithm

is only slightly more efficient than degree-based selection, but is much more efficient

than the greedy selection, and the computational cost does not increase a lot with the

expansion of network.
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FIGURE 4.10: Influence Effectiveness
Comparison (size=500)

FIGURE 4.11: Influence Effectiveness
Comparison (size=750)

FIGURE 4.12: Influence Effectiveness
Comparison (size=1000)

FIGURE 4.13: Efficiency Comparison
(size=500)

FIGURE 4.14: Efficiency Comparison
(size=750)

FIGURE 4.15: Efficiency Comparison
(size=1000)
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In summary, according to the experimental results, we can conclude that the stigmergy-

based algorithm performs better than the traditional algorithms by considering both

effectiveness and efficiency.

4.4 Summary of The Stigmergy-based Influence Max-

imisation (SIM) Model

In this chapter, we introduce a novel approach, i.e., stigmergy-based algorithm, that

tackles the IM problem in a decentralised environment. In the meanwhile, the SIM

model has been proposed and systematically elaborated, and its performance is exper-

imentally evaluated in comparison experiments. Experimental results demonstrate that

the SIM model performs better than the traditional seed selection approaches, includ-

ing greedy selection, degree-based selection and random selection, by considering both

effectiveness and efficiency. Moreover, the SIM model is applicable to large-scale net-

works and functions even without a global perspective.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

With the development of online marketing, understanding how the influence should be

propagated over the widest possible range with finite resources is critically important.

To this end, we must find practical solutions for the IM problem. However, the solution

of IM problem is NP-hard. Approximation approaches that guarantee a solution are

desirable alternatives. Provided that the influential users can be properly selected and

processed, the influence spread can be regarded as successful. The primary motivation

of this thesis is to explore appropriate approximation approaches to the IM problem

which would obtain effective and efficient solutions. Based on the existing problems

as aforementioned, IM is developed by exploiting two approaches, i.e., centralised and

decentralised approaches, in this thesis.

Many existing researches related to IM are proposed based on classic centralised ap-

proaches, such as, the IC and LT models. In order to alleviate the inherent problems

in classic influence diffusion models, an optimised centralised approach, i.e., the PTIC

model, is proposed by considering not only UP but also TC and this model is devel-

oped on the foundation of the IC model. The UP is involved in the whole process of

the PTIC model. In the PLM, user preferences are used to calculate the CPS (see Sub-

section 3.3.1). In the CPM, users with similar CPSs are partitioned into communities

(as explained in Subsection 3.3.2). Moreover, the PTIC model calculates the influence

propagation probabilities based on the UP and TC. The TC is used to ensure the users

with similar preferences are interconnected, which facilitates the influence propagation.

In this situation, users who have not only high node degree but also preferences for the

48
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promoted items will be selected as influential users in the online social network. As

for the implementation of the PTIC model, we conduct two experiments, one consid-

ering the factor TC only, the other considering both of UP and TC. The PTIC model

is competed against two existing approaches, i.e., trust-only and random approaches,

within these two experiments. The experimental results confirm that the PTIC model

outperforms the trust-only and random approaches.

Through the process of reviewing the existing literature and conducting experiments, we

discover that centralised approaches are normally inefficient. Centralised approaches

limit the stability and scalability of online social networks, especially when those net-

works are dynamic and large-scale. This is because all tasks in the network are com-

pleted by a central component in centralised approaches. Furthermore, centralised ap-

proaches also require complicated computations. In order to resolve the discovered

problems of centralised approaches, we proposed a novel decentralised approach, called

the SIM model, which adopts a stigmergy-based approach. Compared with centralised

approaches, decentralised approaches are more effective and efficient since the tasks

are distributed among the individuals. Moreover, task distribution also decreases com-

putational complexity. The main idea of the SIM model is to simulate the influence

propagation process as ants crawling across the network topology. The whole process

of ants crawling are modelled in the SIM model, especially their key behaviours of ants,

i.e., path selection, pheromone allocation, and seed selection. Path selection is used to

decide the next node to approach when an ant faces multiple choices. Pheromone alloca-

tion aims to deposit a proper amount of pheromone on the nodes based on the heuristics,

and is implemented when an ant explores a possible influence-diffusion path. Seed se-

lection is to determine the seed candidates based on the pheromone rankings of nodes

in the network. In addition, two experiments are implemented in the same network

with three different sizes (500, 750 and 1000), which aims to evaluate the effectiveness

and efficiency of the stigmergy-based approach. In these experiments, the SIM model

is competed against several traditional seed selection algorithms, namely, the greedy

selection, degree-based selection, and random selection algorithms. Based on the ex-

perimental results, the SIM model outperforms the other three approaches by taking not

only effectiveness but also efficiency into consideration.
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5.2 Future Work

Both of the proposed approaches could be developed in future works. As for the cen-

tralised approach, it could be implemented in other classic influence diffusion models,

such as, LT model [18]. In addition, besides UP and TC, the model could account

for positive and negative influence effects. Furthermore, the trust relationship between

users could be regarded as directed rather than undirected. For example, if a user ua

trusts user ub on a directed graph, user ub will probably distrust user ua. Regarding

the decentralised approach, machine learning algorithms could be employed to improve

the performance of the stigmergy-based algorithm in the IM problem. Meanwhile, we

could consider a hybrid approach for developing a more practical model, for example,

by combining the stigmergy-based approach with reinforcement. In addition, the digital

pheromone can be exploited, which is able to be withdrawn/deposited by ants from their

pheromone stores based on the importances of nodes in the online social network.
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