
	
  

	
  

Intelligent	
  Drill	
  Wear	
  Condition	
  Monitoring	
  using	
  Self-­‐Organising	
  Feature	
  Maps	
  

	
  
Jesal	
  Ashar	
  

A	
  thesis	
  submitted	
  to	
  Auckland	
  University	
  of	
  Technology	
  in	
  fulfilment	
  of	
  the	
  
requirements	
  for	
  the	
  degree	
  of	
  Master	
  of	
  Philosophy	
  (MPhil)	
  

2009	
  

School	
  of	
  Engineering	
  

Primary	
  Supervisor:	
  Dr.	
  Guy	
  Littlefair	
  



i	
  
	
  

Abstract	
  

	
  

The rising demand for exacting performances from manufacturing systems has 

led to new challenges for the development of complex tool condition monitoring 

techniques. Although a wide range of monitoring methods have been 

investigated and developed, there has been very little migration of these 

innovations into industrial practice. The principal factor behind this phenomenon 

is the stochastic nature of the environment in which the system must function. A 

truly universal application has yet to be developed. The work presented here 

centres around the application of an unsupervised neural network model to the 

said problem. These networks learn without the aid of a human teacher or 

supervisor and learn to organise and re-organise themselves in accordance to 

the input data. This leads to the network structure reflecting the given input 

distribution more precisely than a predefined model, which generally follows a 

decay schedule. The dynamic nature of the process provides an evaluation of 

the underlying connectivity and topology in the original data space. This makes 

the network far more capable of capturing details in the target space. These 

networks have been successfully used in speech recognition applications and 

various pattern recognition tasks involving very noisy signals. Work is in 

progress on their application to robotics, process control and 

telecommunications. 

The procedure followed here has been to conduct experimental drilling trials 

using solid carbide drills on a Duplex Stainless Steel workpiece. Duplex 

Stainless Steel was chosen as a preferred metal for drilling experiments 

because of this high strength, good resistance to corrosion, low thermal 

expansion and good fatigue resistance. During the drilling trials, forces on the 
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workpiece along the x, y and z axes were captured in real time and moments of 

the forces were calculated using these values. These three axial forces, along 

with their power spectral densities and moments were used as input parameters 

to the Artificial Neural Network model which followed the Self-Organising Map 

algorithm to classify this data. After the network was able to adapt itself to 

classify this real world data, the generated model was tested against a different 

set of data values captured during the drilling trials. The network was able to 

correctly identify a worn out drill from a new drill from this previously unseen set 

of data. This autonomous classification of the drill wear state by the neural 

network is a step towards creating a “universal” application that will eventually 

be able to predict tool wear in any machining operation without prior training. 
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Chapter	
  1	
  Introduction	
  

The condition monitoring based maintenance philosophy is emerging to 

be the key component in lowering operating costs and increasing machine 

availability. Society the world over is continually demanding less expensive 

products which must also provide greater technological advancement along with 

aesthetic refinement. These wants are driving the manufacturing industry to 

surpass previously impossible productivity and quality heights. The process of 

cutting and machining is no doubt the most widely-used mechanical processes 

in the industry and the cutting tool is still the central, crucial element in a huge 

array of manufacturing procedures thus placing an ever increasing burden on 

the performance of the cutting tool edge. 

 

To obtain high levels of productivity, it is imperative for manufacturers to 

focus their attention on achieving automated processes with the least amount of 

human supervision. Successful capacious tool wear condition monitoring would 

ultimately lead to the optimised use of the tool cutting edge and thus present the 

manufacturer with productivity gains so placing their business in a strategic 

operating position. However, although a wide range of monitoring methods have 

been investigated and developed, there has been very little migration of these 

innovations into industrial practice (Rehorn, 2005). The principal factor behind 

this phenomenon is the stochastic nature of the environment in which the 

system must function. A truly all-encompassing application has yet to be 

developed.  
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 The rationale behind the research presented here, focuses on the 

requirement for a sophisticated monitoring methodology capable of 

demonstrating its robustness, competency and accuracy when applied to 

demanding industrial environments. The work reported in this thesis is 

particularly centred on providing a greater insight into the development of a 

universal tool condition monitoring system. It also investigates the application of 

a self-organising feature map neural network to the said problem. 
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Chapter	
  2	
  Background	
  

	
  

2.1	
  Tool	
  Wear	
  and	
  Tool	
  Life	
  
 

Machining of metals is done mainly to achieve a higher level of surface finish, 

close tolerance, and to form complex geometric shapes which are otherwise 

difficult to obtain. This is done by the process of metal removal during the 

manufacture of components. A machine tool is one which removes the metal 

from a workpiece in the form of metal chips. Tools are integral parts of any 

machine, since without them no component can be finished. Under idealised 

conditions, the useful life of a tool is defined in terms of the amount of wear on 

one of the two primary working surfaces of the tool (KIM, 2002). The wear 

regions which develop on these two surfaces are termed as “crater wear” and 

“flank wear”, either of which will ultimately lead to the failure of the tool. Tool 

wear itself , refers to the degradation of the cutting tool concerning the general 

wear of the cutting or clearance surface, fracture and reduction of the tool 

mechanical properties due to high temperature (Dimla, 2000). The life of a 

cutting tool is thus determined by the amount of wear that has occurred on the 

tool profile which reduces the efficiency of cutting to an intolerable level, or 

eventually causes tool failure. When the tool wear reaches an initially accepted 

amount, there are two options: 

i. To re-sharpen the tool on a tool grinder. 

ii. To replace the tool with a new one.  

The second possibility applies in two cases: 
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i. When the resources for tool re-sharpening are exhausted.  

ii. The tool does not allow for re-sharpening, e.g. in case of indexable 

carbide inserts. 

Gradual wear occurs at two principal locations on a cutting tool. Accordingly, 

two main types of tool wear can be distinguished- crater wear & flank wear. 

These two wear types are illustrated in Fig. 1 and Fig. 2: 

 

	
  

 

Figure	
  1:	
  Types	
  of	
  wear	
  observed	
  in	
  cutting	
  tools	
  



Background	
  

5	
  
	
  

	
  

Figure	
  2:	
  Cross-­‐section	
  perpendicular	
  to	
  the	
  major	
  cutting	
  edge	
  of	
  a	
  worn	
  cutting	
  tool	
  
showing	
  the	
  effect	
  of	
  crater	
  wear	
  on	
  the	
  tool	
  rake	
  angle	
  and	
  flank	
  wear	
  land. 

 

• Crater wear: consists of a concave section on the tool face formed by the 

action of the chip sliding on the surface. Crater wear affects the 

mechanics of the process increasing the actual rake angle of the cutting 

tool and consequently, making cutting easier. At the same time, the 

crater wear weakens the tool wedge and increases the possibility for tool 

breakage. In general, crater wear is of a relatively small concern.  

• Flank wear: occurs on the tool flank as a result of friction between the 

machined surface of the workpiece and the tool flank. Flank wear 

appears in the form of so called wear land and is measured by the width 

of this wear land, VB. Flank wear affects, to a great extent, the 

mechanics of cutting. Cutting forces increase significantly with flank 

wear. If the amount of flank wear exceeds some critical value (VB > 

0.5~0.6 mm), the excessive cutting force may cause tool failure. It is 
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important to understand where these critical conditions exist and how 

they relate to cause tool wear. 

Tool wear is a time dependent process. As cutting proceeds, the amount of tool 

wear increases gradually. But tool wear must not be allowed to go beyond a 

certain limit in order to avoid tool failure. The most important wear type from the 

process perspective is the flank wear; hence the parameter which has to be 

controlled is the width of flank wear land- VB. This parameter must not exceed 

an initially set safe limit, which is about 0.4 mm for carbide cutting tools. The 

safe limit is referred to as allowable wear land (wear criterion), VBk. The cutting 

time required for the cutting tool to develop a flank wear land of width VBk is 

called tool life, T. This is a fundamental parameter in machining. The general 

relationship of VB versus cutting time is shown in the Fig. 3 (wear curve). 

	
  

Figure	
  3:	
  Flank	
  Wear	
  as	
  a	
  function	
  of	
  cutting	
  time.	
  Tool	
  life	
  T	
  is	
  defined	
  as	
  the	
  cutting	
  time	
  
required	
  for	
  flank	
  wear	
  to	
  reach	
  the	
  value	
  of	
  VBk. 

 

The slope of the wear curve (that is the intensity of tool wear) depends on the 

same parameters, which affect the cutting temperature as the wear of cutting 
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tool materials is a process extremely temperature dependent. Parameters which 

affect the rate of tool wear are: 

• cutting conditions (cutting speed V, feed f, depth of cut d) 

• cutting tool geometry  

• properties of work material 

Cutting speed is the most important amongst these parameters. As cutting 

speed is increased, wear rate increases, so the same wear criterion is reached 

in lesser time. Thus, tool life decreases with cutting speed. This phenomenon is 

illustrated in Fig. 4: 

	
  

Figure	
  4:	
  (Left)	
  Effect	
  of	
  cutting	
  speed	
  on	
  wear	
  land	
  width	
  and	
  tool	
  life	
  for	
  three	
  cutting	
  
speeds.	
  (Right)	
  Natural-­‐log	
  plot	
  of	
  cutting	
  speed	
  versus	
  tool	
  life. 
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2.2	
  Tool	
  Condition	
  Monitoring	
  
 

In conventional machining environments, where a machine operator is present, 

a pre-determined tool life based on empirical data is generally sufficient. In 

contrast, underlining the concept of unmanned machining is the constant 

provision of tooling which can continually produce components to a specified 

tolerance level. Besides the disadvantage of the added cost element associated 

with this option, there is also the high wear rate phenomenon of the new cutting 

edge. The exceptionally complex problem of developing a mathematical model 

robust enough to provide accurate prediction of tool life, over the entire range of 

metal cutting conditions, is yet to be developed. Although some models do 

exist, these are very process specific and consequently cannot be universally 

applied (Dimla, 1997).  

 

Tool life testing is the apparent solution, nonetheless, it is a very expensive and 

time consuming process (Noori-Khajavi, 1993). Even after exhaustive testing, 

one can only ascertain a range of cutting conditions applicable for a given 

workpiece material and a narrow band of part geometries, finishing 

requirements etc. The growing range of tool material substrates and coatings 

further compounds the modelling and testing problems. In the absence of an 

adequate solution for predicting tool life, some form of monitoring becomes 

essential. The monitoring system must be capable of dealing with the regular 

tool wear modes in addition to the irregular and catastrophic modes which are 

almost impossible to model. 
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Developments in manufacturing systems have necessitated more efficient metal 

cutting processes. Conventionally, cutting tools have been replaced at the end 

of a programmed, experimentally derived, in-cut time. However, in modern 

machining environments, a large number of variables co-relate and the 

application of traditional techniques leads to uneconomical and unproductive 

tool utilisation (Littlefair, 2007). However, the success of industrially deployed 

monitoring systems has been poor (Brophy, 2002). Probably the greatest single 

obstacle preventing the realisation of the “factory of the future” is the lack of a 

reliable and comprehensive tool condition monitoring system. The reasons that 

make tool condition monitoring systems important are:  

 Unmanned production is possible only if there is a reliable and efficient 

method available for tool wear monitoring and tool breakage recognition. 

 Tool wear controls the quality of the surface finish and the dimensions of 

the parts that are manufactured. 

 In contemporary systems, tool changes are made based on conservative 

estimates of tool life. These approximations do not take into account 

sudden failures and at the same time lead to unreasonably high number 

of changes, since the comprehensive lifetime of the tools is not taken into 

account. Subsequently, valuable production time is lost. 

 As a consequence, automated production control is not actually possible 

without a robust means for tool wear monitoring. (Jantunen, 2002) 

The problem of machine tool downtime continues to plague the industry. 

Downtime can be considered as any duration of time during which no machining 
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operation is being performed on a given workpiece. One predicament is that 

there are several different sources that contribute to downtime, some of which 

are inevitable. It is often necessary to transfer workpieces from one machine 

tool to another, which requires dismantling and set-up time. Furthermore, 

machines need to undergo periodic maintenance to ensure their continued 

functioning under normal circumstances. However, there is another type of 

downtime that could be avoidable - downtime caused by the excessive wear 

and breakage of cutting tools during machining operations. Tool breakage is a 

major cause of unscheduled stoppage in a machining environment, and is 

costly not only in terms of lost time, but also in terms of capital destroyed. 

Techniques for on-line wear monitoring can be grouped into two main 

categories: direct sensing and indirect sensing techniques. While direct 

methods of wear measurement have been attempted (Kurada, 1997), the 

popular methods have been indirect. Direct methods are less beneficial since 

the cutting area is largely unreachable making on-line monitoring impossible 

while the tool is engaged in cutting. These methods include touch trigger 

probes, optical, radioactive, proximity sensors and electrical resistance 

measurement techniques. Indirect methods take measurements while the tool is 

actively engaged, since it involves recording a variable that can be correlated to 

tool wear (i.e. indirect methods measure factors that result as a consequence of 

tool wear). Commonly used methods include cutting forces, acoustic emission, 

temperature, vibration, spindle motor current, torque and strain. These factors 

reflect far more than tool wear alone and parameters associated with tool wear 

must therefore be extracted from them and correlated to give a measure or 

extent of tool wear. The main practical drawback with this popular method is the 

need for calibration of the associated parameters in monitoring the cutting 
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process. The cutting conditions (speed, feed-rate and depth of cut) are known 

to affect the sensor signals and a range of methods have been suggested for 

separating the effects of these conditions from those of wear on the measured 

parameter (Sanjay, 2005).  It is important to consider that it is necessary to 

monitor tool wear in order to establish the condition of the component being 

machined. Therefore, tool condition monitoring (TCM) is ultimately concerned 

with the end product. 

	
  

2.2.1	
  TCM	
  developments	
  in	
  drilling	
  	
  
 

Usually, reviews of TCM research present key findings with respect to the 

information processing methodologies that generated them. However, this often 

clouds the problem, and a cursory review of the available literature on TCM 

research can give the notion that everything has by now been done by 

somebody at some time. This is certainly not the case. To gain the most from 

previous research in the field of TCM, it is vital to consider the work performed 

in relation to the type of machining operation studied, note the important 

conclusions, and scrutinise the trends that have developed in this field. 

In order to realise improved productivity and better quality, the monitoring of drill 

wear is an important issue. Since drill wear directly affects the machining quality 

and tool life, online monitoring and prediction of drill wear is a vital area of 

research. Drilling is a complex three-dimensional material removal operation. In 

drilling, the two points of the drill wear alternatively until they both have zero 

clearance at the margin, and become lodged within the workpiece. At this point, 

the drill will break if cutting is continued. In addition, chip flow creates significant 

friction between the cutter and the workpiece inside the drill hole. These 
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frictional forces can significantly change the dynamics of the system and can 

cause the cutter to break. Drills, like other cutters, can fail either from breakage 

or excessive wear. It has been determined that drills of a diameter less than 3 

mm tend to fail by fracture, while larger tools will fail by excessive wear 

(Rehorn, 2005). Drill wear is a progressive development which takes place at 

the outer margin of the flutes of the drill due to the close contact and elevated 

temperatures between the tool and workpiece. However, under constant cutting 

conditions drill failure is a stochastic process. The reasons for altering drill life 

are the heterogeneities in the workpiece and drill materials, the irregularities in 

the cutting fluid motion and the inescapable unevenness introduced during the 

grinding of the cutting edges (Abu-Mahfouz, 2005).  

Several works have already been reported in the broad area of tool condition 

monitoring. Abu-Mahfouz (Abu-Mahfouz, 2005) reported developing and 

implementing two supervised vector quantization neural networks for estimating 

the flank wear size of a twist drill. The two algorithms used were the learning 

vector quantization (LVQ) and the fuzzy learning vector quantization (FLVQ). 

They studied the effect of vibration signals on predicting drill wear. They also 

reported to have a success rate of 88% of drill wear prediction using Artificial 

Neural Networks (ANN). The ANNs were found to satisfactorily accommodate 

changes in the cutting conditions. Brophy, Kelly and Byrne (Brophy, 2002) 

designed a two-stage ANN to detect anomalies in the drill wear process. They 

trained their network to distinguish drill wear as “normal” or “abnormal”. They 

used spindle power as an input to the ANN rather than using statistical data 

extracted from a signal. They reported to have no false alarms when their 

network was tested using data acquired from 33 sets of tests. Panda et. al. (S. 

S. Panda, 2006) presented work dealing with the development a fuzzy back-
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propagation neural network scheme for the prediction of drill wear. They 

conducted drilling operations over a range of cutting conditions. Spindle speed 

was varied along with the feed rate. High-speed steel (HSS) drills of different 

diameter sizes were used for drilling holes in a mild steel plate. Various 

combinations of spindle speed, feed rate, and drill diameter were used to 

perform 52 different drilling operations. They used spindle speed, feed rate, drill 

diameter, thrust force and torque as inputs to their ANN. They reported that the 

best neural network architecture (i.e. the number of neurons, learning rate and 

error co-efficient) was obtained by trial and error based on mean square error 

(MSE) in training, testing, and the number of iterations. Franco-Gasca et. al. 

(FRANCOGASCA, 2006) describe a driver current signal analysis to estimate 

the tool condition by using the discrete Wavelet Transform. This was used to 

extract the information from the original cutting force and through an 

autocorrelation algorithm tool wear was evaluated in the form of an asymmetric 

weighting function. The current was monitored from the motor driver to give a 

sensor-less approach. Experimental results presented claimed to show the 

algorithm performance was as expected. Jantunen (Jantunen, 2002) presents a 

summary of the methods applied to condition monitoring in drilling. The author 

concludes that in signal analysis, statistical parameters obtained from the time 

domain signal are extensively used. Fast Fourier and Wavelet Transform have 

also been used for tool wear and breakage detection by a number of research 

groups, but only a limited number of automatic diagnostic tools have been 

developed for diagnosis of the condition of the tool in drilling.  
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2.2.2	
  Comments	
  on	
  TCM	
  in	
  Drilling	
  
 

The most commonly monitored variables are torque, feed force and cutting 

speed. A common method of signal processing in all TCM research is that of 

the Fast Fourier Transform (FFT), which is used to generate a power spectral 

density (PSD) function. However, the averaging natures of the FFT and PSD 

calculations tend to obscure the frequency content of transient and burst 

phenomena, such as breakage. The practice of measuring cutting forces is 

common to all machining research, but the use of torque is almost unique to 

drilling. The bulk of signal processing in drilling-based TCM research focuses on 

time domain methods and the use of statistical parameters. The use of the RMS 

of the signals collected is also widely accepted as a standard practice. When 

compared to other statistical parameters, including arithmetic mean, standard 

deviation, skewness, kurtosis, maximum and minimum, it was found that the 

RMS never performed best, although it was among the top four (El-Wardany, 

1996).  

A new type of statistical operation, known as the instantaneous ratio of absolute 

mean value (RAMVi) is suggested in (El-Wardany, 1996). This is calculated by 

taking the ratio of the instantaneous absolute value of the measured variable’s 

mean (AMVi) to the absolute of the mean value at the start of drilling, (AMVb). 

The AMVb is a baseline value, hence the use of the subscript “b.” Thus, it is: “a 

normalized mean value calculated with a time constant of one revolution.” 
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It is apparent from the research done so far that further investigation is required 

in establishing systems for online applications in an industrial environment. 

Future research should be aimed at developing systems capable of deriving tool 

wear parameters from multiple data sensors and combining this data to provide 

a robust indicator of tool condition. Detailed investigations have shown that 

artificial neural networks trained under constant cutting conditions have limited 

validity over a broader range of process parameters. Growing complexity is one 

of the most significant characteristic of contemporary manufacturing. This 

complexity manifests itself in manufacturing systems, in the products being 

manufactured, in the processes, and the company structures. These systems 

operate in a stochastic environment amid ambiguity (Monostori, 2003). There 

are a range of signals (force, torque, temperature, mechanical vibration, 

acoustic emission, etc.) which co-relate to the state of the manufacturing 

process. These signals are the subjects of diverse control and monitoring 

algorithms. The intricacy of the problem and the associated uncertainties 

demand the application of novel techniques to realise fully automated 

sophisticated systems. This problem complexity further creates major issues in 

predicting tool wear accurately. Tool wear depends on a large number of factors 

including the properties of the materials involved; the physical and chemical 

properties of the surfaces; pressure; temperature; friction and relative velocities. 

In addition, the problem is complicated with the consideration of the complex 

three dimensional machining operations where process and operating variables, 

such as feed rate, cutting speed and engagement must be taken into 

consideration. The cost implications of introducing a suitable monitoring 

strategy are difficult to establish since applications are dissimilar. However, 

figures as high as 40% are not unimaginable (Littlefair, 2007).                                   
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2.3	
  Duplex	
  Stainless	
  Steels	
  
 

Duplex stainless steel (DSS) is a dual-phase material with equal volumes of 

austenite and ferrite. Its structure results in some significant engineering 

properties. These properties have propelled the material into the mainstream in 

manufacturing processes with its usage continuing to grow. There has been 

only a modest amount of work conducted on the machinability of duplex steels, 

although there have been several studies talking about its general machining 

related topics. To aid in the greater adoption of Duplex Stainless Steels into the 

specialised engineering component sector, detailed analysis of its machinability 

and its post-machining microstructure is critical. 

 

2.3.1	
  Metallurgy	
  
 

The superior metallurgical properties of Duplex Stainless Steels stem from the 

mixture of Austenite (γ) and Ferrite (α) phases present in its structure. The 

Austenite phase is responsible for the relative ductility of the metal and its 

resistance to uniform corrosion; while the Ferrite phase is responsible for the 

superior strength as well as corrosion resistance of the metal (T. Saeid, 2008). 

The ideal duplex structure would consist of a 1:1 matrix of γ and α phases 

presenting themselves in a “banded structure” as illustrated in Figure 5. The 

lighter phase is Austenite and the darker phase is Ferrite (G. S. J. Reis, 2000). 
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Figure	
  5:	
  Typical	
  “banded”	
  microstructure	
  of	
  Duplex	
  Stainless	
  Steel	
  (50x)	
  

 

As seen in the figure above, both phases of Austenite and Ferrite exist in 

relatively large separate volumes. Also, these phases are approximately equal 

fractions rather than an inclusion phase embedded in the matrix formed by one 

of the other phases (T. Siegmund, 1995). When the material undergoes 

deformation during working, both phases in the metal are jointly modified - but 

due to an existing difference in the relative hardness of the phases, the strain 

distribution does not remain uniform (G. S. J. Reis, 2000; N. Jia, 2006). Strain 

concentrations appear in the softer ferrite phase, and this can lead to cracking, 

grain boundary and inter-phase sliding. Therefore, the processing of Duplex 

requires cautious control and monitoring of its heat treatment cycles. Poor 

control of temperature or soaking time prior to forging, for instance, can lead to 

inter-granular cracking as shown in Figure 6. 
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Figure	
  6:	
  Inter-­‐granular	
  cracking	
  of	
  a	
  2205	
  grade	
  Duplex	
  stainless	
  steel	
  as	
  a	
  result	
  of	
  poorly	
  
controlled	
  heat	
  treatment	
  prior	
  to	
  forging	
  (200x)	
  

	
  

2.3.2	
  Machinability	
  
 

Duplex Stainless steel (DSS) belongs to a difficult to machine group of materials 

due to its high tendency to work harden; its high toughness and relatively low 

thermal conductivity (D. O'Sullivan, 2002; Dolinsek, 2003; J. Paro, 2001). Other 

problems with these steels stem from their high fracture toughness, increasing 

the tool/chip interface temperature which leads to poor surface finishes and 

poor chip breaking. Additionally, built-up-edge (BUE) formation, more common 

in the machining of ductile materials such as aluminium, is present even at 

elevated cutting speeds. This promotes the deterioration in the finish of the 

machined surface. Work hardening in austenitic stainless steels is caused due 

to martensite formation. Martensite is formed either due to plastic deformation 

or due to thermal effects, or a combination of both. In general, 

 the machinability of duplex is poor compared to other grades of stainless steel. 

This primarily stems from the high strength of the alloy but is exacerbated by a 
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lack of non-metallic inclusions and the low carbon content (Nilsson, 1992; 

Voronenko, 1997). To increase the machinability of the steel, its sulphur content 

can be increased but this reduces the corrosion resistance and also its ductility. 

A general indicator of relative machinability is presented in Figure 7 (Anon, 

2001, 2005) where Austenitic 316 is used as a reference and compared to 

various common grades of DSS. As can be seen, the so-called lean Duplex 

(S32101) is more readily machined than 316 in contrast to the regular (S32205) 

and in particular the Super Duplex (S32507) which have poorer machinability 

characteristics. It should also be noted that when carbide cutting tools are used 

the machinability is quoted as being poorer than when High Speed Steel (HSS) 

tools are used. This is primarily due to the edge preparation where work 

hardening forms less readily with sharp cutting tools and hence the edge 

preparation on regular carbide tools lessens the machinability. 

 

	
  

Figure	
  7:	
  Relative	
  machinability	
  of	
  various	
  DSS	
  grades	
  referenced	
  to	
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Austenitic	
  316	
  Stainless	
  Steel	
  (Smith,	
  2007).	
  
	
  

 

2.3.3	
  Current	
  Research	
  
 

In order to further understand the deformation of the dual phase microstructure 

of DSS, a series of preliminary machinability trials were conducted in (Littlefair, 

2008). These included both turning and drilling operations on a 2205 DSS 

sample. Figure 8 is a photomicrograph of a chip being formed during turning 

with a high-speed steel tool at 20m/min and 0.1mm/rev with a depth of cut of 

1.5mm. The chip was “frozen” using a purpose built explosive quick-stop device 

which accelerates the tool away from the workpiece as cutting progresses 

(Littlefair, 2008). Both the phases can be visibly identified, particularly on the 

left. Of interest, is the austenite phase (lighter shade), which is the harder 

phase, being effectively squeezed through the softer ferrite phase as cutting 

progresses. In the right side of the figure, the ferrite is clearly accumulating in 

advance of the cutting tool with large amount of plastic deformation which due 

to the high forces and elevated temperature would lead to BUE on the insert 

given sufficient time (Littlefair, 2008). Austenite is not part of the BUE phase as 

can be seen by its absence in the region directly forming in advance of the tool 

(Littlefair, 2008). 
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Figure	
  8:	
  Photomicrographs	
  of	
  a	
  quick-­‐stop	
  turning	
  sample	
  of	
  2205	
  Duplex	
   
 

In a similar approach, drilling trials have been conducted on the same 2205 

sample material. Figure 9 shows the bottom corner of a hole drilled with a split-

point solid carbide 12.5mm drill at 45m/min and a penetration rate of 

0.175mm/rev and a cutting fluid at three different magnifications. At these 

relatively modest parameters, there is no evidence of microstructural 

modification to the machined surface and only a minor amount of ferrite 

accumulation beneath the cutting edge of the tool. 

 

	
  

Figure	
  9:	
  Drilled	
  hole	
  "corner"	
  at	
  50x,	
  100x	
  and	
  200x	
  magnification 
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Figure 10 is a photomicrograph of a chip being formed during the same drilling 

process which generated the results in figure 9. Whilst it is more difficult to 

comprehend, as the chip is curving towards the sectioned surface due to the 

action of the rotating cutting edge, there are similarities to the turning chip 

sample with austenite being squeezed through the ferrite. In contrast to the 

turned sample however, there is greater segmentation of the ferrite phase 

indicating a more abusive cutting action. 

	
  

Figure	
  10:	
  Photomicrograph	
  of	
  chip	
  formation	
  during	
  drilling	
  of	
  2205	
  DSS	
  50x	
  magnification	
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Chapter	
  3 Intelligent	
  Machines	
  
 

The evidence is plain that a lack of awareness to structured tool management 

has resulted in the reduced performance of manufacturing systems. Plant 

tooling systems affect product design selections, machine loading, job 

consignments, capacity development, and real-time part routing assessments. 

With escalating automation in manufacturing systems, there is a budding need 

to integrate tool management scrupulously into system design, planning and 

control. In the course of the past decades, the field of Artificial Intelligence has 

advanced significantly in the direction of computerising human reasoning. 

Symbolic approaches are based on the hypothesis of symbolic representation—

the idea that perception and cognitive processes can be modelled as acquiring, 

influencing, relating, and changing symbolic representations. Expert systems 

embody the earliest and mainly established type of intelligent systems 

attempting to personify the ‘‘knowledge’’ of a human expert in a computer 

program. Knowledge representation in these systems ensues symbolically 

having a structure consisting of production rules, outlines or semantic networks. 

 

A different approach to intelligent systems involves creating computer 

algorithms with the structural designs and dispensation capabilities that imitate 

the processing characteristics of our biological nervous systems. The 

technology that endeavours to attain these results is called neural computing or 

artificial neural networks. These sub symbolic schemes work with numeric 

values and appear to be better suited for handling tasks involving perception 

and cognition, and possibly even tasks that call for combined perception and 
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cognition. Investigations have confirmed that—analogous to our present 

conception of biological compositions—adaptive ANN procedures appear to be 

a feasible solution for the lower level of intelligent, hierarchical control and 

monitoring systems where capabilities for real-time functioning, ambiguity 

handling, sensor integration, and learning are crucial features (Basim Al-Najjar, 

2000).  

 

3.1	
  Biological	
  Intelligence	
  
	
  

To segregate the human brain into partitions and perform a systematic analysis 

on how they are interconnected, we need to map and build a flow chart of signal 

activity, define structural roles for each section, and infer the associations and 

dependencies among the partitions. However, we only have a modest estimate 

at best about connectivity between neurons, how the neurons effect actions as 

an ensemble, and how information is converted to knowledge and intelligence 

(SG Wysoski, 2006). Attempts to replicate the connectivity of biological 

neuronal cells have been restricted to consider ensembles of neurons 

positioned equally in a two dimensional array where the connectivity may follow 

a given criteria (fully connected or partially connected to neighbouring cells) or 

be chosen arbitrarily (Kak, 2005). In an effort to discern what lies behind the 

way of thinking of human minds, one of the most exigent aspects for 

neuroscientists is that current technologies are unable to keep track of and 

quantify all the signals used for inter-neural communication, even in an 

infinitesimal segment of the brain. If this were indeed achievable, it would permit 

us to accurately comprehend the emergence of intelligence from an ensemble 

of neurons. A general practice is to complement experimental brain study with 
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the building of computational models supported by neuro-biological data and to 

study their properties by theoretical and simulation means. This is done to 

overcome the limitation of measuring and quantifying brain wave signals. 

Following this trend are the computational models of information processing 

with biological relevance, the so called biologically realistic neural networks. 

 

3.1.1	
  Biological	
  Neurons	
  and	
  Networks	
  
	
  

As mentioned earlier, Artificial Neural Networks are modelled along the lines of 

biological neurons and the neuronal networks in the brain. It is therefore 

necessary, to consider the functioning of biological systems in order to emulate 

their behaviour using computers. The brain is a dense neural network consisting 

of an estimated 100 billion neurons that use biochemical processes to obtain, 

compute and convey information. A diagram of a nerve cell typical of those in 

the brain is shown in Figure 11. The output area of the neuron is a long 

branching fibre called the axon. The input area of the neuron is a set of 

branching fibres called dendrites. 
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Figure	
  11:	
  Schematic	
  of	
  a	
  biological	
  neuron 
 

The dendrites of a neuron form a dendrite tree which is connected to thousands 

of other neurons. When any of the neurons fire, a positive or negative charge is 

received by a dendrite. The strengths of all the received charges are 

extrapolated through the processes of spatial and temporal précis. Spatial 

summation occurs when several weak signals are converted into a single big 

signal, while temporal summation converts a rapid series of weak pulses from 

one source into a large signal. The cumulative input is then passed to the cell 

body or soma. If the combined input to the neuron is greater than a threshold 

value, the neuron fires — i.e. an output signal is produced that is conveyed 

down the axon. The strength of the output is steady even if the input is barely 

above the threshold or multiplied several times. In addition, the output strength 

is not affected by the number of branches of the axon; the signal reaches each 

terminal with identical potency.  
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3.2	
  Artificial	
  Intelligence	
  
	
  

Artificial intelligence (AI) is the conception that, in principle, learning and other 

facets of human intelligence could be described accurately enough that a 

machine could be programmed to simulate it. Intelligent machines, and the 

branch of computer science which aims to create it, constitutes the field of 

Artificial Intelligence. Major AI textbooks define the field as "the study and 

design of intelligent agents" where an intelligent agent is a system that 

perceives its environment and takes actions which exploit its chances of 

success. John McCarthy, who coined the term in 1956, defines AI as "the 

science and engineering of making intelligent machines" (Skillings, 2006). This 

raises philosophical questions about the nature of the mind and limits of 

scientific hauteur. Artificial intelligence has been the subject of overwhelming 

optimism, has suffered dramatic setbacks and, today, has become an 

indispensable part of the technology industry, providing the “heavy lifting” for the 

most convoluted problems in computer science. The capability to build 

intelligent machines has intrigued humans since ancient times. With the advent 

of the computer and 50 years of research into AI programming techniques, this 

vision of creating intelligent machines is being swiftly realised. Researchers are 

creating systems which can mimic human thought, understand speech, beat the 

best human chess player, and perform a myriad of other feats never before 

conceived to be possible. In the pursuit to create intelligent machines, the field 

of Artificial Intelligence has been divided into several different approaches 

based on judgments about the methods and theories showing the most 

potential. These competing theories have led researchers into following one of 

two basic paths — bottom-up and top-down. Bottom-up theorists believe the 

best way to accomplish artificial intelligence is to build electronic replicas of the 
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brain's composite network of neurons, while the top-down approach attempts to 

impersonate the brain's behaviour with computer programs (Satoh, 2004). 

Expert Systems constitute a part of the top-down approach while Artificial 

Neural Networks emulate the bottom-up theory in their architectures.  

 

3.2.1	
  Artificial	
  Neural	
  Networks	
  

	
  
Neural networks are computational configurations inspired by the study of 

biological neural processing. The field is known by various names, such as 

connectionism, parallel distributed processing, neuro-computing, natural 

intelligent systems, machine learning, and artificial neural networks. Artificial 

Neural Network architectures are motivated by models of the brain and nerve 

cells. Individual neurons are convoluted and have a multitude of parts, sub-

systems, and control methods. Neurons exchange information by way of a 

range of electrochemical pathways. There are over 100 different classes of 

neurons, depending on the method of categorisation. Collectively neurons and 

their connections form a process that is not binary, established, nor 

synchronous (Seneker, 2002).  

 

An artificial neural network is an attempt to simulate, within specialised 

hardware or by means of simulation software, the numerous layers of simple 

processing elements of neurons where each neuron is linked to a number of 

neighbouring neurons with changing coefficients of connectivity that represent 

the strengths of the connections. Learning is accomplished by adjusting the 

strength of these connections and in effect, the network outputs suitable results 

(J.  Ashar & G. Littlefair, 2008). The basic components of a neural network are 
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modelled after the architecture of the brain. Some neural network structures are 

not strongly related to the brain and some do not have a biological counterpart 

in the brain. Yet, neural networks have a striking resemblance to the biological 

brain and, thus, share terminology from neuroscience. The fundamental unit of 

a neural network is the artificial neuron that simulates the basic functions of 

biological neurons. Artificial neurons are simpler than their biological 

counterparts; Figure 12 shows the elements of an artificial neuron. 

 

	
  

Figure	
  12:	
  Elements	
  of	
  an	
  Artificial	
  Neuron	
  

 

The inputs to the network are multiplied by a connection weight Wn. In the 

simplest case, these products are simply summed and processed by a transfer 

function to generate a result, and then an output. Although all artificial neural 

networks are constructed using this basic building block, the essentials may 

vary. Biological neural networks are constructed in three dimensions from 

infinitesimal components. While these neurons appear to be capable of 

unlimited interconnections, this is not true of artificial networks that are the 

bunching of simple artificial neurons. Clustering occurs by the creation of layers, 
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the size and number of which may vary, and then connecting these layers to 

one another. Essentially, all artificial neural networks have a similar topology. 

There is an input layer of neurons which forms the external link to receive inputs 

from the outside world and another layer of neurons provide the network’s 

outputs to the outside world; all the remaining neuronal layers are the hidden or 

computational layers and these are hidden from view.  

	
  

Figure	
  13:	
  Layers	
  in	
  an	
  Artificial	
  Neural	
  Network	
  

 

Figure 13 illustrates how neurons in an ANN are organised into layers. The 

input layer consists of neurons receiving input from external sources. The 

output layer consists of neurons that communicate the results of the network to 

a user or entity. Additionally there are typically one or more hidden layers 

between the input and output layers, and layers are usually fully interconnected 

but are not required to be so (Paugam-Moisy, 2001).  



Intelligent	
  Machines	
  

31	
  
	
  

ANNs can be used to model complex relationships between inputs and outputs 

or to find patterns in data. There is no precise agreed-upon definition among 

researchers as to what a neural network is, but most would agree that it 

involves a network of simple processing elements (neurons), which can exhibit 

complex global behaviour, determined by the connections between the 

processing elements and element parameters (J.  Ashar & G. Littlefair, 2008). 

The original inspiration for the technique was from examination of the central 

nervous system. ANNs, like people, learn by example. An ANN may be 

configured for a specific application, such as pattern recognition or data 

classification, through a learning process. Learning in biological systems 

involves adjustments to the synaptic connections that exist between the 

neurons and this is true of ANNs as well. Neural networks with their remarkable 

ability to derive meaning from complicated or imprecise data can be used to 

mine patterns and detect trends that are too complex to be observed by either 

humans or other computer techniques. A trained neural network can be thought 

of as an "expert" in the category of information it has been given to analyse. 

This expert can then be used to provide projections given new situations of 

interest and answer "what if" questions. 

 

3.2.2	
  Learning	
  in	
  Artificial	
  Neural	
  Networks	
  
	
  

ANNs are designed to learn from examples and from experience. The networks 

“learn” to perform better with more training and exhaustive testing. Just like a 

child must learn to walk before he can run, a neural network must be guided in 

its transition from a raw piece of computer code to a fully trained network 

capable of performing classification and prediction tasks in its area of 
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“expertise”. There are three different learning paradigms that can be used to 

train a neural network. Supervised and unsupervised learning are the most 

common, with hybrid approaches between the two becoming increasingly 

common as well. Competitive learning may be considered to be the third 

paradigm. Artificial Neural networks are considered to be “machine learning 

algorithms”. This is due to the fact that during training, the connection weights 

are transformed to influence better solutions to the given problem. Similar to the 

neuronal connections in our brains, neurons in an ANN are connected to each 

other through weighted connections, i.e. the strength of an inter-neuronal 

connection is defined by its weight. The ANN learns by adjusting these weight 

values in order to learn from a particular set of inputs. The higher the value of 

the weight, the stronger is the inter-neuronal connection and thus this 

connection has a higher probability of being excited.  

 

3.2.2.1	
  Supervised	
  Learning	
  
	
  

Supervised learning is a technique by which a neural network learns a function 

from a set of training data. This set of training data consists of a set of inputs 

and a set of corresponding or desired outputs. The neural network is essentially 

being trained to learn a concept in the presence of a “supervisor”. The task of 

the supervised neural network is to predict the value of the learned function for 

any valid input, subsequent to having seen a number of training examples (i.e. 

pairs of input and desired output). Supervised learning is achieved by 

incorporating a “teacher” into the learning algorithm or a “critic”. The difference 

between the two is that a “critic” tells the neural network whether the output of 

its learning algorithm is right or wrong, while a “teacher” tells the neural network 



Intelligent	
  Machines	
  

33	
  
	
  

what the correct answer or the target output should be. Learning with a critic 

takes longer because the network isn’t told straight away what the correct 

output is (Lippmann, 1989). The network updates its weights so that it 

maximises the number of inputs on which it is correct, when learning with a 

critic, and thus learning with a critic takes longer than learning with a teacher. 

An illustration of how a neural network learns using the Supervised Learning 

paradigm is shown in Fig. 14. 

 

	
  

Figure	
  14:	
  Supervised	
  Learning	
  Paradigm 
 

The figure above also shows the learning rule for the “Error-Back propagation” 

type of neural network model where the error or the difference between the 

actual output and desired output is propagated back to the neural network and 

the networks adjusts its inter-connection weights so as to obtain the actual 

output as close to the desired output as possible.  

 

3.2.2.2	
  Unsupervised	
  Learning	
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An unsupervised neural network learns without a teacher or a critic. Here, the 

network does not receive any information or feedback from a supervisor; 

instead it relies on an internal criterion to guide its learning outcomes. This 

criterion that drives the learning procedure in essence states that the input 

topology and formatting must be mapped onto the output vectors or the learning 

outcomes. The objective is to create an output representation in which similar 

inputs stimulate output units that are close to one another; i.e. to form a 

topological map of the input data and representations. Thus, the relationships 

between the input parameters are preserved and mapped onto the output 

parameters. Figure 15 illustrates this principle. The objective is to create an 

output representation in which similar inputs trigger output units that are close to 

one another. The network is shown a series of shapes and colours. The 

network gradually changes the weights so that similar shapes are mapped to 

neighbouring units. From an initial random assignment, the red and black 

rectangles end up in the bottom left hand corner – because they are similar. 

The triangles and circles end up at the opposite extremes of the map. 

Unsupervised learning may also be referred to as self-organisation, in the sense 

that a neural network that learns without a supervisor does so by self-organising 

data presented to it and identifies their emergent collective properties (Fritzke, 

1997). 
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Figure	
  15:	
  Unsupervised	
  Learning.	
  Input	
  topology	
  is	
  preserved.	
  

	
  

In the supervised learning paradigm, the network learns or trains offline while in 

the unsupervised learning paradigm the network learns or trains itself online. 

This is because in supervised learning the aspect of learning consists of a 

distinct or separate phase during which the network is trained followed by an 

operation phase. Unsupervised learning consists of learning and operating at 

the same time and thus may be considered to be online learning (Kangas, 

1990). 

 

3.2.3	
  The	
  Self	
  Organising	
  Feature	
  Map	
  
	
  

The Self-Organising Map (SOM) or the Self-Organising Feature Map (SOFM) 

has the particular property of efficiently creating spatially organised "internal 

representations" of the various features in the input signals and their concepts. 
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The ability of the SOFM is unique amongst all the architectures and algorithms 

suggested for ANNs (Kohonen, 1990). Self-organising maps are a data 

visualisation technique invented by Professor Teuvo Kohonen which reduces 

the dimensionality of data through the use of self-organising neural networks. 

The problem that data visualisation attempts to solve is that humans simply 

cannot visualise high dimensional data as is and thus techniques are created to 

help us understand this high dimensional data (J. Ashar & G. Littlefair, 2008). 

Learning in a SOFM is achieved using the unsupervised learning paradigm. The 

learning outcomes emerge without the need of an external “teacher” providing 

the desired response to the network. In this type of network, neighbouring 

neuronal cells compete with each other for the input, execute their actions by 

means of joint lateral communications, and then develop adaptively into specific 

detectors of different signal patterns. This category of learning is called 

competitive learning. It is self-organising and unsupervised learning. The SOFM 

is a sheet-like artificial neural network, the cells of which become specifically 

tuned to various input signal patterns or classes of patterns through an 

unsupervised learning process (Kohonen, 1990). The basic concept underlying 

competitive learning is — for a given set of observations and assuming a set of 

variable reference vectors (initialised in a random sequence), for each time 

interval if the observables can somehow be simultaneously compared with each 

of the reference vectors from the initialised set of reference vectors then the 

best matching unit is to be updated so that it matches even more closely to the 

current input vector. If this comparison between the reference vector and input 

unit is done by calculating a distance measure then this distance must be 

decreased and all other reference vectors must be left intact. Thus, different 

reference vectors tend to be “tuned in” to the diverse domains of the given 
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input. Eventually, only one cell or local group of cells at a time gives the active 

response to the current input. An illustration of this principle is shown in Fig. 16. 

	
  

Figure	
  16:	
  Monotonically	
  decreasing	
  neighbourhoods	
  with	
  time	
  (t1<t2<t3).	
  

	
  

This self-organisation ability can substantially reduce the programming burden 

which eventually brings down the overall cost of deploying a system. Building 

an automated system for a particular environment or a specific purpose involves 

high costs in terms of hours spent and resources needed for programming such 

a system. Traditionally, programming accounts for about one third of the total 

cost of a system but using the self-organisation ability, this cost is greatly 

reduced. Moreover, unsupervised models are often fast and their learning 

speeds, especially when using computational shortcuts, can be augmented to 

orders of magnitude greater than that of numerous other neural networks. Thus 

much larger maps than those used so far are quite realistic (Kohonen, 1990). 

Self-organising feature maps (SOFMs), or just Self Organising Maps (SOMs) 

are important unsupervised Artificial Neural Network models that have shown 

great potential in application fields such as speech recognition applications and 

various pattern recognition tasks involving very noisy signals (J. Ashar & G 

Littlefair, 2008). Commonly, the SOFM is used to learn the topology of sensory 
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inputs by clustering the data and is used in control basically as a classifier. The 

final sensory map can then be used to classify new incoming data. It is 

important to note that when using supervised models, the error signals are 

available directly at the output of the network and are explicitly used during 

network learning and training. In the unsupervised case, the error signals are 

not computed directly, rather through the use of the definitions in the network’s 

learning rule. For this reason, when unsupervised neural models are used in 

modelling and control, they are usually referred to as self-supervised models 

(Kohonen, 1999 ). This type of learning is controlled by knowledge of the 

external world provided by sensors and the consequences of actions performed 

by the network. These networks have also provided acumen into how 

mammalian brains are organised (de Barreto, 2003). The self organising ability 

may be depicted as shown in Fig. 17. 

	
  

Figure	
  17:	
  Self-­‐Organisation 

 

Over the past decades, the field of Artificial Intelligence has made great 

progress toward transcribing human reasoning into digital data. Figurative 

approaches are based on the hypothesis of symbolic depiction — the idea that 
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perception and cognitive processes can be modelled as acquiring, influencing, 

co-relating and adapting to the symbolic representations. Perhaps the best way 

to move forward is to shift the focus from modifying system behaviour to the 

processes of cognition that source the performance of the ANNs (Kohonen). 

Most works have concentrated on robotic systems that are solely sensory in 

nature. Recently, several studies have proposed the Self Organising Feature 

Map for the difficult tasks of non-linear modelling. The SOFM can extract 

features of input data based on incremental learning. The fundamental result in 

self-organisation is that if the input signals have a distinct probability density 

function, then the weight vectors of the cells try to match it; however complex its 

form. 

The SOFM is a neural network that closely resembles how the brain organises 

memory into neuronal connections. Emulating the way in which human brains 

decode data from various sources (senses) holds tremendous value. Data 

fusion is the key process for accurate environmental perception. Data captured 

to characterise the condition of a complex piece of equipment should be as 

complete as the information we use for our cognitive purposes – i.e. contain 

primary and secondary data which is used to arrive at a consensus of opinion 

(Littlefair, 2007). 

 

3.2.4	
  Linking	
  the	
  brain	
  and	
  the	
  computer-­	
  chaos	
  and	
  synesthesia	
  
	
  

It is a generalisation to say that it is impossible to artificially imitate the human 

brain due to the limitations of current computational resources. In actuality, the 

key concern for failing to properly emulate the human way of information 

processing is the existence of many un-interpreted details of the brain structure 
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and behaviour (SG Wysoski). Our brain is chaotic. Chaos has been found in 

how we process external senses, and may be key to memory. It has been 

implicated in at least one theory of the evolution of vocabulary as well as 

synesthesia (FIRE). Synesthesia is a neurological phenomenon in which the 

stimulation of one sensory organ leads to automatic or involuntary sensations in 

another sensory organ. In its most common form known as grapheme  colour 

synesthesia, letters and/or numbers are perceived as inherently coloured and 

having personalities. Synesthesia has been being diagnosed for almost three 

centuries, but the medical profession keeps forgetting about the condition. The 

word Synesthesia means “joined sensation” and shares a root with anesthesia 

which means “no sensation”. Synesthesia is not an abnormality; in fact it is a 

normal brain development process that is intuitively presented to the 

consciousness in a minority of individuals. The condition symbolises a rare 

ability to hear colours, taste shapes, or experiences of other equally astounding 

sensory amalgamations whose nature seems too complex for most of us to 

envisage. Synesthetes are normal in the conventional sense of the term and 

they appear to be bright and intelligent. Standard neurological medical exams 

are also normal. Synesthetic associations are usually unidirectional, meaning 

that a particular synesthete sight may induce touch, but touch would not induce 

visual sensations (Ramachandran, 2001). Simulating synesthetic type of 

neurological behaviour in Artificial Neural Networks (the core of Artificially 

Intelligent Systems) will help shed light on their functioning and classification 

capabilities. This in turn may also deepen our understanding as to why these 

systems are unstable when applied in real world environments. The process of 

disassembly and reassembly takes on an entirely new meaning. The eventual 

goal is to create efficient, robust systems with extended autonomous control 
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over processes that are being employed – essentially creating the “factory of 

the future” (J.  Ashar & G. Littlefair, 2008). 

 Most models of the brain do not include chaos. The models that do include the 

concept of organised chaos in their design, don't seem to be convincingly 

biological (Walter). In an attempt to discover what instigates the reasoning of 

human minds, one of the most testing aspects for scientific analysis is that the 

current technologies cannot keep track and measure all the signals used for 

inter-neural communication, even in an infinitesimal portion of the brain 

(Ramachandran, 2001). If this was possible, it would enable us to accurately 

appreciate the emergence of intelligence from a collection of neurons. In an 

attempt to overcome this limitation, a common practice is to complement the 

study with the development of intelligent computational models based on 

experimental data and to study their properties by theoretical and simulation 

means (Rehorn, 2005). The SOFM is proposed as a feasible elective to more 

traditional neural network architectures. Its analytical portrayal has already been 

developed further in the technical than in the biological direction. The learning 

results accomplished appear to be as expected; at least indicating that the 

adaptive processes at work in the map may be analogous to those encountered 

in the brain. 
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Chapter	
  4	
  Experimental	
  Procedure	
  
	
  

The work presented in the previous chapters has shed light on certain elements 

which were believed to offer the best capability for developing a robust, 

accurate, flexible and efficient tool wear monitoring system. A series of 

experimental trials and tests were designed and executed with the intention of 

determining the process by which an accurate description of the tool wear state 

could be provided. The approach was divided into the following stages: 

• Collection of comprehensive information relating to multi-component tool 

force (in all the three directions) and torque. 

• Pre-processing of raw data to reduce dimensionality and integrate 

vectors from various sensors while maintaining completeness in 

information.  

• Application of state-of-the-art Self-Organising Feature Map type of neural 

network to coalesce integrated multisensory data, providing a detailed 

description of the tool wears state.  

These stages are discussed in detail in the following sections. 

 

4.1	
  Drilling	
  Trials	
  
	
  

To give maximum credibility to this research investigation, artificially created 

wear and wear produced by using unrealistic operating conditions was not 

perceived to be an appropriate course of action to follow. Accordingly, only wear 

produced by machining components with parameters prescribed by industrial 
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practices were employed. This methodology is the only way to ensure that the 

captured data is truly representative of anything which is likely to exist. Data 

from tools where flank wear has been produced by the process of drilling is only 

representative of drill flank wear and can be considered to be nothing else. The 

experimental drilling trials were designed with these factors to be of paramount 

importance.  

Drilling tests were performed using a solid carbide drill on a duplex stainless 

steel workpiece. These steels offer good resistance to local and uniform 

corrosion. The duplex microstructure contributes to their high strength and high 

resistance to stress corrosion cracking. These properties make the steel best 

suited to be employed for experiments to measure drill wear ("Duplex Steel 

Information," November 2005.; Smith, 2007). The basic machining criteria for 

the experiments are detailed below and a schematic representation of the 

process is shown in Fig. 18. Figures 19 and 20 show the actual experimental 

setup. 

Machining Variable Machining Variable condition 

Cutting Speed(s) 35 m/min & 45 m/min 

Feed rate(s) 0.125 mm/rev & 0.175 mm/rev 

Machine Tool 

Drills from Iscar Pacific. Family:SCD-AP3 

(Dia12.5); Solid carbide drills without coolant 

holes. Drilling depth 3xD 

Workpiece material Duplex Stainless Steel SAF 2205.  
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Figure	
  18:	
  Schematic	
  of	
  experimental	
  setup	
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Figure	
  19:	
  Experimental	
  setup	
  showing	
  (clockwise	
  from	
  left)	
  Charge	
  Amplifier,	
  Computer,	
  
Drilling	
  machine	
  with	
  Duplex	
  Steel	
  workpiece	
  and	
  drill	
  attached.	
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Figure	
  20:	
  Close-­‐up	
  of	
  the	
  drill	
  and	
  workpiece	
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4.2	
  Force	
  Measurement	
  

	
  
At the outset of the experimental stage, the simultaneous measurement of the 

three perpendicular forces was identified as a priority. By analysing the forces 

along the three mutually perpendicular axes, latter analysis of the most 

sensitive components would be established. This was necessary since no clear 

consensus of opinion was provided in the literature and impulsive, unfounded 

selection was not considered to be a suitable avenue worth pursuing. The 

Kistler three component quartz dynamometer (type 9257B) was selected for the 

force measurements (Fig. 21). 

 

	
  

Figure	
  21:	
  Kistler	
  three	
  component	
  dynamometer,	
  5	
  kN 
 

The dynamometer consists of four 3-component force sensors fitted under high 

pre-load between a base plate and a top plate.  Each sensor contains three 
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pairs of quartz plates: one sensitive to pressure in the Z direction and the other 

two responding to shear in the X and Y directions respectively.  As a result, the 

dynamometer is able to detect the smallest changes in large forces.  A major 

feature of this design is that the force components are measured practically 

without any displacement. Also, the dynamometer is rust-proof and protected 

against penetration of cutting fluids. A special thermal insulation coating is 

integrated in the top plate which renders the device insensitive to temperature 

influences. A full specification of the dynamometer and the calibration charts for 

the actual unit used are provided in Appendix A. In addition to the 

dynamometer, two other items of associated Kistler equipment were utilised in 

the measurement of forces. These were: armoured connecting cable type 

1687B5; and a three channel charge amplifier type 5070A (Fig. 22). A full 

specification of the charge amplifier is provided in Appendix A. 
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Figure	
  22:	
  Kistler	
  four	
  channel	
  charge	
  amplifier	
  type	
  5070A	
  

	
  

4.3	
  Data	
  Capture	
  and	
  pre-­processing	
  
	
  

The data capture was conducted in real time using the DynoWare software 

along with the dynamometer and charge amplifier. Figures 23 and 24 show 

typical examples of the captured real-time data.  
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Figure	
  23:	
  Example	
  of	
  captured	
  real-­‐time	
  data	
  

	
  

The figure above shows the forces captured along the three axes (x, y and z) 

along with the calculated forces from the 4 channels present in the 

dynamometer. The figure below shows the magnified version of the forces in 

the x direction, i.e. Fx 
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Figure	
  24:	
  Magnified	
  (Force	
  along	
  the	
  x-­‐axis)	
  

	
  

This data is then exported as digital data into an excel worksheet. The 

specifications of all the forces are provided in Appendix B. 

The digital data was analysed using the DaDiSP/32 software. DaDiSP is a 

powerful generic tool for data display and analysis. Once the data is captured, 

DaDiSP allows displaying the data for subsequent manipulation and analysis. 

Figure 25 shows how the data is manipulated using DaDiSP. 
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Figure	
  25:	
  Using	
  DaDiSP	
  for	
  data	
  display,	
  manipulation	
  and	
  analysis	
  

	
  

Figure 25 shows the data being read and data evaluation or analysis being 

performed. The exported digital data is first read as a series in DaDiSP. This is 

shown in Fig. 25 in the first window from the top left. This data is then broken up 

into several parts of dynamic data which are extracted as shown in the bottom-

left window in the figure. These extracted parts of the data have an overlap (of 

48 sampling points) with each other to maintain the continuity and 

completeness in the output results. This extracted data is then analysed by 

calculating the Power Spectral Density (PSD) of the signal. This is done using 

the psd function. The dynamic part of the PSD is shown in the bottom-right 

window in Fig. 25. The power spectral density of the data shows the strength of 

the variations (energy) as a function of frequency. In other words, it shows at 
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which frequencies variations are strong and at which frequencies variations are 

weak. PSD is a very useful tool to identify oscillatory signals in time series data. 

It also gives the amplitudes of the data set. PSD analysis is especially useful to 

detect unwanted vibrations that stem from machining operations. The PSD 

gives an overall picture of the frequency of vibrations and thus aids in the 

identification of frequencies at which tool wear is noticeable.  

To further characterise the data, it was considered to calculate the Kurtosis of 

the signals. Kurtosis is a measure of whether the data are peaked or flat relative 

to a normal distribution. That is, data sets with high kurtosis tend to have a 

distinct peak near the mean, decline rather rapidly, and have heavy tails. Data 

sets with low kurtosis tend to have a flat top near the mean rather than a sharp 

peak. A uniform distribution would be the extreme case. Significant kurtosis 

values clearly indicate that data are not normal. The kurtosis distributions that 

were calculated are shown in Fig. 26. It is clear from the calculated kurtosis 

distributions that the distribution deviations are relatively high and some of the 

calculated values are significant. Thus, the kurtosis distributions were not 

considered to be a fitting indicator of the data distribution. The entire range of 

the calculated Kurtosis values is given in Appendix B. 
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Figure	
  26:	
  Kurtosis	
  of	
  forces	
  in	
  the	
  x	
  direction	
  for	
  trials	
  with	
  the	
  new	
  drill	
  

	
  

4.4	
  Artificial	
  Neural	
  Network	
  Processing	
  
	
  

The program utilised for predicting tool wear during the process of drilling was a 

self-organising feature map. This program uses the generalised SOM algorithm 

described in the previous chapters. The operation of the program has two main 

modules: learning and classification. The learning in this program is done using 

the unsupervised paradigm of learning and the network learns to classify the 

inputs wear or no wear. During the learning phase, the neural network aims to 

reduce the error between the input data and the selected neuronal cells that 

represent the output. This reduction in error ultimately leads to only a few 

neurons being activated in the output layer for the corresponding input signals. 

Thus the network learns to classify or re-organises itself according to the 
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variations in the input domain. Figure 27 shows the graph of the error versus 

number of iterations during the learning phase. 

	
  

Figure	
  27:	
  Reduction	
  in	
  classification	
  errors	
  during	
  SOM	
  training	
  

Figure 27 shows the progress after 100 iterations of the program and as visible 

from the graph, the error values are still not at a minimum after 100 runs. Thus, 
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the learning phase of the network involved 100,000 iterations of the program. 

Once the error values were stabilised, the learning phase ended and the 

network was ready to classify. During classification, the network loads 

previously learnt patterns (it does so by adjusting the inter-neuronal connection 

weights) and calculates the output for a given set of input data. The output 

calculation or classification depends on the neurons which are excited in the 

output layer. The decision to excite which neurons in the output layer are 

decided by the SOM based on previous knowledge and learnt classification.  

This phenomenon is illustrated in Fig. 28. 

	
  

Figure	
  28:	
  Generating	
  an	
  output	
  by	
  activating	
  a	
  neuron(s)	
  in	
  the	
  output	
  layer	
  for	
  
corresponding	
  inputs.	
  Data	
  dimensionality	
  in	
  a	
  SOM	
  -­‐	
  

http://www.sis.pitt.edu/~ssyn/som/som.html	
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Chapter	
  5	
  Results	
  and	
  Observations	
  
	
  

The results presented in this chapter consist of multisensory input values to the 

ANN for both learning and subsequent classification. The outputs obtained from 

the SOM have also been presented which indicate the classification 

performance of the ANN under varying conditions. Graphical plots have been 

used to visualise the data sets and the display of data is made as clear and 

practicable as possible. Neural network coding and simulation was done using 

R. R is a language and environment for statistical computing and graphics. R 

provides a wide variety of statistical and graphical techniques, and is highly 

extensible (Team, 2008). The program written for the SOFM is based on the 

function provided in the “kohonen” package of R (R. Wehrens, 2007). Although 

the basic calculation subroutine is little changed, the data input, handling, 

execution, storage and output formatting is all original. 

The learning and training progress with the SOM is shown in Figures 29 and 30 

and the classification and prediction results appear in Figures 31 to 33.  

 

5.1	
  Self-­Organising	
  Map	
  training	
  progress	
  observations	
  
	
  

Figure 29 shows a plot of the SOM after 100 iterations during the training 

phase. The figure shows the neurons within the SOM output layer and the 

distribution of data within these neurons. Depending on the input domain 

signals, the best matching unit from the output layer is chosen to represent the 

output. The output of the network is classified into acceptable or unacceptable 

tool wear. The neuron that is stimulated in the output layer will be the neuron 
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whose data distribution matches the closest to the input data distribution. It can 

be seen from the figure that the neighbourhoods or the sampling regions of the 

neurons do not overlap with each other and thus information sharing between 

the neurons is nil or very low. 

	
  

Figure	
  29:	
  Plot	
  of	
  the	
  first	
  SOM	
  after	
  100	
  iterations	
  during	
  the	
  training	
  phase	
  

	
  

Figure 30 shows the neuronal plot of the SOM after 20,000 iterations during the 

training phase. The difference between Figures 29 & 30 is apparent. The 

neurons in Fig. 30 are more in number; the data distribution inside the neurons 

is gradually starting to form clusters or groups of neurons with analogous data 

distributions. This is the beginning of the classification stage. Also, the neuronal 

neighbourhoods are coming closer to each other ever so slightly indicating that 
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the data distribution within the neurons is inclining towards being fuzzy or 

representative of the “real world” data.  

 

	
  

Figure	
  30:	
  Neuronal	
  plot	
  of	
  the	
  SOM	
  after	
  20,000	
  iterations	
  during	
  the	
  training	
  phase	
  

	
  

	
  

5.2	
  Results	
  of	
  SOM	
  training	
  –	
  Classification	
  	
  
	
  

Figure 31 shows the neuronal plot of the SOM that has undergone the learning 

process and has re-organised itself to match the patterns in the input domain. 
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This SOM is the result of 100,000 iterations of the program. A full listing of the 

program can be found in Appendix C. 

	
  

Figure	
  31:	
  Neuronal	
  plot	
  of	
  the	
  SOM	
  after	
  100,000	
  runs 
	
  

In Fig. 31, we can see that the SOM has now re-organised itself to match the 

input patterns as closely as possible. The neurons with similar data distributions 

are bunched together and there is significant overlap between the neuronal 

neighbourhoods. Thus, the output layer distribution is fuzzy and corresponds to 

the real-world data distributions in the input domain. Due to this overlap 

between the neuronal neighbourhoods in the output domain, for a given set of 

input data distributions, a small set of neurons in the output layer will be excited 

or stimulated to give the output. This classification and re-organisation of the 

neurons within the neural network is done autonomously by the ANN during the 

learning phase and involves no human supervision or input. Thus, the 
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independent nature of the SOM serves us well for predicting the outcomes of 

non-linear processes in stochastic environments. 
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5.3	
  SOM	
  prediction	
  
	
  

	
  

	
  

Figure	
  32:	
  Classification	
  results	
  showing	
  neuronal	
  areas	
  in	
  the	
  SOM	
  corresponding	
  to	
  tool	
  
wear	
  or	
  no	
  tool	
  wear 

	
  

Figure 32 shows the neuronal plot of the neural network during the prediction 

phase. The bottom right corner of the plot represents the neurons which 

correspond to the data distributions showing acceptable tool wear in the input 

domain. If the multi-sensory input to the SOM were indicative of acceptable 

levels of tool wear, then the output of the SOM would be presented by the 

excitatory response generated by these neurons. The neurons in the top-left 

corner of the map show the neurons that are representative of unacceptable 
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levels of tool wear. Thus, the neural network has “learned” to distinguish 

between two different levels of drill wear. 

Figure 33 shows the prediction performed by the SOM in 100,000 iterations of 

the program. 

	
  

Figure	
  33:	
  SOM	
  prediction;	
  X	
  (Black)	
  is	
  the	
  input	
  while	
  Y	
  (Red)	
  is	
  the	
  output.	
  

	
  

The input domain is dynamic for the first 40,000 runs of the program and then 

stabilises. From the graph it is plain that the output patterns closely follow the 

input patterns and therefore the SOM prediction is accurate. The total number 

of miscalculations can be considered to be low in relation to the number of runs 

of the program that were made. This phenomenon would tend to indicate that 

the ANN has successfully learned the problem of tool wear detection and has 

reasonably good generalisation abilities. The odd misclassification probably 

suggests that there were local variations in the data caused due to the input 
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domain being dependent on the machine variables.  The misclassifications were 

also limited to adjacent data sets in the input domain displaying a general trend 

of classifying to a lower level of tool wear. 
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Chapter	
  6	
  Conclusions	
  and	
  Discussion	
  
	
  

The results presented in the previous chapter demonstrate the capabilities of 

the developed system by the evaluation of a particularly demanding set of data 

obtained from different machining configurations and conditions, albeit the same 

process. Accurate classification of tool wear provides evidence that the artificial 

neural network was able to identify similarities between the data sets that were 

given to it as input for learning and the test data sets. Moreover, it indicates that 

the data was highly process dependant with little (if any) machine 

dependencies. The Self-Organising Feature Map appears, therefore, to be an 

effective and efficient prediction model with adequate knowledge retained by 

reorganisation of the neurons constituting the map.  

The promising performance presented here, is not merely a reflection of the 

ANN capabilities however. The pre-processing and integration techniques are 

the information suppliers on the problem, and as such, these have also 

demonstrated their adeptness allowing for judgemental decision making. 

Hence, successful classification is an indicator of the “system” performance.  

Tool wear identification and monitoring is a complex phenomenon. Accurate 

modelling of the problem requires a highly evolved and comprehensive solution. 

The work done so far has mainly focussed on the use of neural networks which 

learn using the supervised learning paradigm. These networks perform well 

under known conditions, but even a minor deviation from their predefined 

parameters can cause such networks to fail. The principal aim of this research 

is to construct a robust and efficient system for tool wear monitoring in drilling 

operations.  
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The Self-Organising Feature Map is a neural network that closely resembles 

how the brain functions. Mirroring the way in which human brains decode data 

from various sources (senses) possesses tremendous merit. Data captured to 

characterise the condition of a complex piece of equipment should contain 

primary and secondary data which is used to arrive at a consensus of opinion. 

Learning in this network is unsupervised, thus making it independent of human 

errors caused during the training phase. Furthermore, the network is able to 

adapt to changing environments and conditions. This flexibility in adaption 

integrates well with the stochastic nature of industrial environments. 

The research presented demonstrates the type of system which can 

successfully be employed to monitor machining operations — an artificially 

intelligent program, providing information on a variety of distribution parameters, 

which can be successfully applied to a personal computer. Sufficiently long data 

samples, which ensure accuracy, need not result in prohibitively large 

computation times thus making the program’s application to online tool 

condition monitoring a real possibility. The true robustness of the system is to 

be established by the application of the system in other industrial environments. 

The classification of tool wear using unsupervised neural networks is regarded 

as a strategic step forward in the progress towards the creation of a truly 

unmanned machining environment. 

The findings of this research may be summarised below: 

• There is a need for reliable and robust online tool condition monitoring 

systems capable of providing information on tool wear in process time. 
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• It appears unlikely that tool wear system variables can be accurately 

predicted using inputs from the human supervisor for the program. 

• Artificial Neural Networks are the best adapted for modelling non-linear 

processes which make them inherently suitable for problems such as tool 

wear monitoring which itself is a highly non-linear and stochastic process.  

• Complex time domain information can be satisfactorily expressed using 

the power spectral density of the data. 

• The unsupervised learning paradigm is proven to be better suited and 

more robust for the prediction of tool wear as opposed to the supervised 

learning paradigm used by the majority of research in the field of TCM. 

• The same basic system, once trained, is capable of accurately classifying 

tool wear during the process of drilling. 
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Chapter	
  7	
  Further	
  Work	
  
	
  

The research presented in this thesis has led to the identification of a number of 

areas which are considered worthy of further investigation and development. 

They may be identified as follows: 

• For the developed system to be acceptable in true industrial 

environments, the system has to remain effective in changing 

environments with altering machine variables. Development of a 

universal TCM system is a particularly active research area with the 

continuous introduction of more advanced technologies. 

• Having established that unsupervised learning is an effective way to go 

when it comes to neural network learning and development, the next 

evolutionary step would be create an algorithm for ANN learning which 

involves more human phenomenon in its design and behaviour. A 

combination of supervised and unsupervised learning would be a path 

worth pursuing. 

• Having established that tool wear prediction is possible, the next step 

would be to automate the modification of tool offsets. This step is 

becoming considerably simpler to achieve with greater utilisation of 

micro-chip based machine controllers. 

•  The software and hardware elements for a comprehensive TCM system 

must be devised into a dedicated system for data-capture, pre-

processing and prediction. These systems should include the memory 

capabilities for simultaneous data capture of various dynamic 
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characteristics and also allow suitably fast classification of tool wear for 

industry acceptance.  

• Embedding the ANN architecture in a TCM system would enable greater 

levels of un-manned machining operations. The eventual aim would be to 

create machines that are capable of performing all the functions which 

are done by a machine operator in contemporary factory settings. 

• Drilling is the most common machining operation and monitoring of small 

diameter drills is particularly crucial in automated factory settings. The 

work presented here is the adoption of the general techniques and 

methodologies used in other cutting processes such as milling and 

tapping. Monitoring individual inserts rather than the whole cutting tool, 

which at best would supply average tool wear value of the inserts, would 

be the next step towards the generalisation of TCM systems. The 

collection of in-cut data is undoubtedly the key element to effective tool 

wear monitoring and this can be simply achieved by utilising the 

relationship of the tool to the collected time domain information. The use 

of relatively short time domain signals in this work is therefore considered 

to be highly transportable to other machining operations.  
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Drill Wear Monitoring using Self-
organizing Feature Maps 

J. Ashar, S. Singamneni, G. Littlefair 

 

Abstract— 

The rising demand for exacting performances from manufacturing systems has led to 
new challenges for the development of complex tool condition monitoring techniques. 
The work presented here centres around the application of a supervised, self-organizing 
feature map network model towards the development of a drill wear monitoring system. 
The neural network organizes itself depending on the input and thus makes for a better 
classification model than other network models that try and fit input data in a pre-
defined structure. This leads to the network structure reflecting the given input 
distribution more precisely than a predefined model, which generally follows a decay 
schedule. The generation of tool wear during machining is a dynamic and fast paced 
developmental problem. The dynamic nature of the network model provides an 
evaluation of the underlying connectivity and topology in the original data space. This 
makes the network far more capable of capturing details in the target space. 
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I. Introduction 

Developments in independent flexible 

manufacturing systems have required 

more efficient metal cutting procedures. 

Although a wide range of monitoring 

methods have been investigated and 

developed, there has been very little 

migration of these innovations into 

industrial practice. The principal factor 

behind this phenomenon is the stochastic 

nature of the environment in which the 

system must function. A truly universal 

application has yet to be developed [1]. 

Conventionally, cutting tools have been 

replaced at the end of encoded, 

experimentally derived, in-cut times 

based on chronicled tool life data. 

However in modern machining 

environments where large numbers of 

variables interact, the application of 

these conventional techniques leads to 

nonviable and inefficient tool utilisation. 

The major problem in predicting tool 

wear accurately stems from the 

complexity of the process which is 

dependent on a large number of 

interrelated variables including the 

properties of the materials involved, the 

physical and chemical properties of the 

surfaces, pressure, temperature, friction 

and relative velocities [2]. The pressures 

imposed on the processes and lack of 

system ‘slack’ have led to amplified use 

of tool condition monitoring (TCM) 

systems. In parallel, there has been wide-

ranging research in academia. However, 

a closer examination shows that there has 

been very little migration of this research 

into industrial practice. Furthermore, the 

success of industrially deployed 

monitoring systems has been poor [3]. 

Probably the greatest single obstacle 

preventing the realisation of the “factory 

of the future” is the lack of a reliable and 

all-encompassing tool condition 

monitoring system.  

 

II. Intelligent Systems 
 

A. The Self-organizing Feature Map 

Among the different neural-network 

learning paradigms, unsupervised 

learning has attractive characteristics. 

Learning in unsupervised neural 

networks emerges without the need of an 

external “teacher” who provides the 

desired response of the network. This 

self-organization ability can substantially 

reduce the programming burden that 

accounts for about one third of the total 

cost of a system. Moreover, unsupervised 

models are often fast and their learning 

speeds, especially when using 

computational shortcuts, can be 

augmented to orders of magnitude 

greater than that of numerous other 

neural networks. Thus much larger maps 

than those used so far are quite realistic 
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[4]. Self-organising feature maps 

(SOFMs), or just Self Organising Maps 

(SOMs) are important unsupervised 

Artificial Neural Network (ANN) models 

that have shown great potential in 

application fields such as speech 

recognition applications and various 

pattern recognition tasks involving very 

noisy signals. Commonly, the SOFM is 

used to learn the topology of sensory 

inputs by clustering the data and is used 

in control basically as a classifier. The 

final sensory map can then be used to 

classify new incoming data. It is 

important to note that when using 

supervised models, the error signals are 

available directly at the output of the 

network and are explicitly used during 

network learning and training. In the 

unsupervised case, the error signals are 

not computed directly, rather through the 

use of the definitions in the network’s 

learning rule. For this reason, when 

unsupervised neural models are used in 

modelling and control, they are usually 

referred to as self-supervised models. 

This type of learning is controlled by 

knowledge of the external world 

provided by sensors and the 

consequences of actions performed by 

the network. These networks have also 

provided acumen into how mammalian 

brains are organised [5]. A visualisation 

of a SOFM is shown in fig. 1.  

 

Figure 1: Kohonen's Self-organizing feature 
map 

Over the past decades, the field of AI has 

made great progress toward digitising 

human reasoning. Figurative approaches 

are based on the hypothesis of symbolic 

depiction—the idea that perception and 

cognitive processes can be modelled as 

obtaining, influencing, correlating and 

adapting to the symbolic representations. 

Perhaps the optimal way to move 

forward is to shift the focus from 

modifying system behaviour to the 

processes of cognition that source the 

performance of the ANNs [6]. Most 

works have concentrated on robotic 

systems that are solely sensory in nature. 

Recently, several studies have proposed 

the Self Organising Feature Map for the 

difficult tasks of non-linear modelling. 

The SOFM can extract features of input 

data based on incremental learning [7]. 

central result in self-organization is that 

if the input signals have a distinct 
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probability density function, then the 

weight vectors of the cells try to match it, 

however complex its form. 

The SOFM is a neural network that 

closely resembles how the brain 

functions. Emulating the way in which 

human brains decode data from various 

sources (senses) holds tremendous value. 

Perhaps the analogy to convey the 

approach most simply, is to consider just 

how many of us would cross the road 

without looking both ways but rather rely 

on our sense of hearing as the sole 

arbitrator? Data captured to characterise 

the condition of a complex piece of 

equipment should be as complete as the 

data we use to cross the road – i.e. 

contain primary and secondary data 

which is used to arrive at a consensus of 

opinion. 

B. Linking the brain and the computer 

It is an oversimplification to say that it is 

impossible to artificially imitate the 

human brain due to the limitations of 

current computational resources. In 

actuality, the key concern for failing to 

properly emulate the human way of 

information processing is the existence 

of many un-interpreted details of the 

brain structure and behaviour [8]. In an 

attempt to discover what instigates the 

reasoning of human minds, one of the 

most testing aspects for neuroscientists is 

that current technologies cannot keep 

track and measure all the signals used for 

inter-neural communication, even in a 

minute portion of the brain. If this was 

possible, it would enable us to accurately 

appreciate the emergence of intelligence 

from a collection of neurons. In an 

attempt to overcome this limitation, a 

common practice is to complement the 

study with the development of intelligent 

computational models based on 

experimental data and to study their 

properties by theoretical and simulation 

means [9]. The SOFM is proposed as a 

feasible elective to more traditional 

neural network architectures. Its 

analytical portrayal has already been 

developed further in the technical than in 

the biological direction. The learning 

results accomplished seem to be as 

expected; at least indicating that the 

adaptive processes at work in the map 

may be analogous to those encountered 

in the brain. 

  

III. Experimental Procedure 

Drilling tests were performed using a 

solid carbide drill on a duplex steel 

workpiece. The Kistler three component 

quartz dynamometer (type 9257B) was 

selected as the force measuring sensor. 

This type of dynamometer consists of 

four three-component force sensors fitted 

under high pre-load between a base-plate 

and a top-plate. Each sensor contains 
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three pairs of quartz plates: one sensitive 

to pressure in the Z direction and the 

other two in the X and Y directions. As a 

result, the dynamometer is able to detect 

the smallest dynamic changes in large 

forces. In addition, an armoured 

connecting cable type 1687B5 and an 

eight-channel charge amplifier type 5070 

were utilised in the measurement of 

forces. A schematic of the experimental 

setup is shown in fig. 2. 

	
  

Figure 2: Schematic of the experimental setup 

Trials were conducted using solid 

carbide drills used to make 12.5mm 

diameter holes on the duplex steel 

workpieces. The forces along three axes 

were measured, i.e. Fx, Fy and Fz. The 

moment around the Z-axis was 

calculated using these forces (see fig. 3). 

	
  

Figure 3: Snapshot of dynamometer 

measurement 

 

A. Neural Net setup 

The data obtained from the drilling trials 

was analysed and fed as a part of the 

input to a Self Organising Feature Map. 

The power spectral density and kurtosis 

calculations were done on the dynamic 

data acquired. This was done using 

DADisp software. The inputs to the 

Neural Network were the feed rate, drill 

speed, dynamic forces (psd) and the 

“static” force component. The network 

was trained to classify a used drill from a 

new one. A total of 58 drilling trials were 

conducted which yielded a collection of 

576 data sets. 288 of these sets were used 

for training the network while the rest 

were used for testing. The neural 

network coding and simulation was done 

using R. R is a language and 

environment for statistical computing 

and graphics. R provides a wide variety 

of statistical and graphical techniques, 

and is highly extensible [10]. The 

program written for the SOFM is based 
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on the function provided in the 

“kohonen” package of R [11]. Although 

the basic calculation subroutine is little 

changed, the data input, handling, 

execution, storage and output formatting 

is all original. Before processing is done 

by the neural network, a pre-processing 

procedure is carried out to reduce 

dimensionality of the data. This is 

achieved by computing the power 

spectral densities of the signals.  

B. Classification 

The SOFM was trained to classify a used 

drill from a new drill with a number of 

typical data sets corresponding to various 

wear categories. This classification was 

made on the basis of the input parameters 

viz, the forces in the x, y and z axes, the 

moment of forces about the z-axis, drill 

speed and feed rate. The training 

progress of the map is shown in fig. 4. 

The mean distance to the closest neuron 

on the map stabilises after approximately 

40,000 runs. A snapshot of the 

classification pattern is shown in fig. 5. 
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Figure 4: Progress after 100,000 runs 

 

Figure 5: Snapshot of SOM classification after 100,000 runs
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Subsequent classification of previously unseen data sets indicated that the network was 

able to correctly organise itself to new data sets. 

 

IV. Conclusions 

Tool wear identification and monitoring is a complex phenomenon. Accurate modelling 

of the problem requires a highly evolved and comprehensive solution. The work done so 

far has mainly focussed on the use of neural networks which learn using the supervised 

learning paradigm. These networks perform well under known conditions, but even a 

minor deviation from their predefined parameters can cause such networks to fail. The 

main aim of this research is to construct a robust and efficient system for tool wear 

monitoring in drilling operations.  

The Self-Organising Feature Map is a neural network that closely resembles how the 

brain functions. Mirroring the way in which human brains decode data from various 

sources (senses) holds tremendous merit. Data captured to characterise the condition of 

a complex piece of equipment should contain primary and secondary data which is used 

to arrive at a consensus of opinion. 

Learning in this network is unsupervised, thus making it independent of human errors 

caused during the training phase. Furthermore, the network is able to adapt to changing 

environments and conditions. This flexibility in adaption goes well with the stochastic 

nature of industrial environments. 

The work presented here demonstrates the type of system which can successfully be 

employed to monitor machining operations. The true robustness of the system is to be 

established by the application of the system in other industrial environments. The 

classification of tool wear using unsupervised neural networks is regarded as a strategic 

step forward in the progress towards the creation of a truly unmanned machining 

environment. 
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ABSTRACT— 
The rising demand for exacting performances from manufacturing systems has led to new 
challenges for the development of complex tool condition monitoring techniques. The work 
presented here centres around the application of a supervised, self-organising feature map 
network model towards the development of a drill wear monitoring system. The neural network 
organises itself depending on the input and thus makes for a better classification model than 
other network models that try and fit input data in a pre-defined structure. This leads to the 
network structure reflecting the given input distribution more precisely than a predefined model, 
which generally follows a decay schedule. The generation of tool wear during machining is a 
dynamic and fast paced developmental problem. The dynamic nature of the network model 
provides an evaluation of the underlying connectivity and topology in the original data space. 
This makes the network far more capable of capturing details in the target space.  

I. INTRODUCTION 
 

Developments in autonomous manufacturing systems have required more pliant and efficient 

metal cutting procedures. Although a wide range of monitoring methods have been investigated 

and developed, there has been very little migration of these innovations into industrial practice. 

The stochastic nature of the environment, in which manufacturing systems must function, is the 

primary reason behind this poor rate of conversion. A truly universal application has yet to be 

developed [1].  

Conventionally, cutting tools have been replaced at the end of programmed, experimentally 

derived, in-cut times based on historical tool life data. However, in modern machining 

environments where large numbers of variables interact, the application of these conventional 

techniques leads to nonviable and inefficient tool utilisation. The principal difficulty in predicting 

tool wear accurately stems from the complexity of the process - which is dependent on a large 

number of interrelated variables including the properties of the materials involved, the physical 
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and chemical properties of the surfaces, pressure, temperature, friction and relative velocities 

[2]. The pressures imposed on the processes and lack of system ‘slack’ have led to amplified 

use of tool condition monitoring (TCM) systems. In parallel, there has been wide-ranging 

research in academia. However, a closer examination shows that there has been very little 

migration of this research into industrial practice. Furthermore, the success of industrially 

deployed monitoring systems has been poor [3]. Probably the greatest single obstacle 

preventing the realisation of the “factory of the future” is the lack of a reliable and all-

encompassing tool condition monitoring system.  

 

II.  INTELLIGENT SYSTEMS 
 

A. The Self-organising Feature Map 

Self-organising maps are a data visualisation technique invented by Professor Teuvo Kohonen 

which reduces the dimensionality of data through the use of self-organising neural networks. 

The problem that data visualisation attempts to solve is that humans simply cannot visualise 

high dimensional data as is and thus techniques are created to help us understand this high 

dimensional data. Among the different neural-network learning paradigms, unsupervised 

learning has attractive characteristics. Learning in unsupervised neural networks emerges 

without the need of an external “teacher” who provides the desired response of the network. 

This self-organisation ability can substantially reduce the programming burden that accounts for 

about one third of the total cost of a system. Moreover, unsupervised models are often fast and 

their learning speeds, especially when using computational shortcuts, can be augmented to 

orders of magnitude greater than that of numerous other neural networks. Thus much larger 

maps than those used so far are quite realistic [4]. Self-organising feature maps (SOFMs), or 

just Self Organising Maps (SOMs) are important unsupervised Artificial Neural Network (ANN) 

models that have shown great potential in application fields such as speech recognition 

applications and various pattern recognition tasks involving very noisy signals. Commonly, the 

SOFM is used to learn the topology of sensory inputs by clustering the data and is used in 

control basically as a classifier. The final sensory map can then be used to classify new 

incoming data. It is important to note that when using supervised models, the error signals are 

available directly at the output of the network and are explicitly used during network learning 

and training. In the unsupervised case, the error signals are not computed directly, rather 

through the use of the definitions in the network’s learning rule. For this reason, when 

unsupervised neural models are used in modelling and control, they are usually referred to as 

self-supervised models. This type of learning is controlled by knowledge of the external world 

provided by sensors and the consequences of actions performed by the network. These 

networks have also provided acumen into how mammalian brains are organised [5]. A 

visualisation of a SOFM is shown in fig. 1. 
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Figure 1: Self - organisation 

 

Over the past decades, the field of AI has made great progress toward transcribing human 

reasoning into digital data. Figurative approaches are based on the hypothesis of symbolic 

depiction—the idea that perception and cognitive processes can be modelled as acquiring, 

influencing, co-relating and adapting to the symbolic representations. Perhaps the best way to 

move forward is to shift the focus from modifying system behaviour to the processes of 

cognition that source the performance of the ANNs [6]. Most works have concentrated on 

robotic systems that are solely sensory in nature. Recently, several studies have proposed the 

Self Organising Feature Map for the difficult tasks of non-linear modelling. The SOFM can 

extract features of input data based on incremental learning. The central result in self-

organisation is that if the input signals have a distinct probability density function, then the 

weight vectors of the cells try to match it, however complex its form. 

The SOFM is a neural network that closely resembles how the brain organises memory into 

neuronal connections. Emulating the way in which human brains decode data from various 

sources (senses) holds tremendous value. Perhaps the analogy to convey the approach most 

simply, is to consider just how many of us would cross the road without looking both ways but 

rather rely on our sense of hearing as the sole arbitrator? Data captured to characterise the 

condition of a complex piece of equipment should be as complete as the data we use to cross 

the road – i.e. contain primary and secondary data which is used to arrive at a consensus of 

opinion. 

A. Linking the brain and the computer- chaos and synaesthesia 

It is a generalisation to say that it is impossible to artificially imitate the human brain due to the 

limitations of current computational resources. In actuality, the key concern for failing to properly 

emulate the human way of information processing is the existence of many un-interpreted 

details of the brain structure and behaviour [7]. Our brain is chaotic. Chaos has been found in 

how we process external senses, and may be key to memory. It has been implicated in at least 



Publications	
  

92	
  
	
  

one theory of the evolution of vocabulary as well as synaesthesia [8]. Synesthesia	
   is	
   a	
  

neurological	
  phenomenon	
  in	
  which	
  the	
  stimulation	
  of	
  one	
  sensory	
  organ	
  leads	
  to	
  automatic	
  or	
  

involuntary	
   sensations	
   in	
   another	
   sensory	
   organ.	
   In	
   its	
   most	
   common	
   form	
   known	
   as	
  

grapheme	
  	
  colour	
  synesthesia,	
  letters	
  and/or	
  numbers	
  are	
  perceived	
  as	
  inherently	
  coloured	
  

and	
  having	
  personalities.	
  Synesthesia	
  has	
  been	
  being	
  diagnosed	
  for	
  almost	
  three	
  centuries,	
  but	
  

the	
   medical	
   profession	
   keeps	
   forgetting	
   about	
   the	
   condition.	
   The	
   word	
   Synesthesia	
   means	
  

“joined	
  sensation”	
  and	
  shares	
  a	
  root	
  with	
  anesthesia	
  which	
  means	
  “no	
  sensation”.	
  Synesthesia	
  

is	
   not	
   an	
   abnormality;	
   in	
   fact	
   it	
   is	
   a	
   normal	
   brain	
   development	
   process	
   that	
   is	
   intuitively	
  

presented	
   to	
   the	
   consciousness	
   in	
   a	
  minority	
  of	
   individuals.	
   The	
   condition	
   symbolises	
   a	
   rare	
  

ability	
   to	
   hear	
   colours,	
   taste	
   shapes,	
   or	
   experiences	
   of	
   other	
   equally	
   astounding	
   sensory	
  

amalgamations	
  whose	
  nature	
  seems	
  too	
  complex	
  for	
  most	
  of	
  us	
  to	
  envisage.	
  Synesthetes	
  are	
  

normal	
   in	
   the	
   conventional	
   sense	
   of	
   the	
   term	
   and	
   they	
   appear	
   to	
   be	
   bright	
   and	
   intelligent.	
  

Standard	
   neurological	
   medical	
   exams	
   are	
   also	
   normal.	
   Synesthetic	
   associations	
   are	
   usually	
  

unidirectional,	
  meaning	
  that	
  a	
  particular	
  synesthete	
  sight	
  may	
  induce	
  touch,	
  but	
  touch	
  would	
  

not	
  induce	
  visual	
  sensations.	
  Simulating	
  synesthetic	
  type	
  of	
  neurological	
  behaviour	
  in	
  Artificial	
  

Neural	
   Networks	
   (the	
   core	
   of	
   Artificially	
   Intelligent	
   Systems)	
   will	
   help	
   shed	
   light	
   on	
   their	
  

functioning	
  and	
  classification	
  capabilities.	
  This	
   in	
  turn	
  may	
  also	
  deepen	
  our	
  understanding	
  as	
  

to	
  why	
  these	
  systems	
  are	
  unstable	
  when	
  applied	
   in	
   real	
  world	
  environments.	
  The	
  process	
  of	
  

disassembly	
  and	
  reassembly	
  takes	
  on	
  an	
  entirely	
  new	
  meaning.	
  The	
  eventual	
  goal	
  is	
  to	
  create	
  

efficient,	
   robust	
   systems	
   with	
   extended	
   autonomous	
   control	
   over	
   processes	
   that	
   are	
   being	
  

employed	
  –	
  essentially	
  creating	
  the	
  “factory	
  of	
  the	
  future”	
  [9].	
  Most models of the brain do not 

include chaos. Those that do, don't seem convincingly biological. In an attempt to discover what 

instigates the reasoning of human minds, one of the most testing aspects for scientific analysis 

is that the current technologies cannot keep track and measure all the signals used for inter-

neural communication, even in an infinitesimal portion of the brain. If this was possible, it would 

enable us to accurately appreciate the emergence of intelligence from a collection of neurons. 

In an attempt to overcome this limitation, a common practice is to complement the study with 

the development of intelligent computational models based on experimental data and to study 

their properties by theoretical and simulation means [10]. The SOFM is proposed as a feasible 

elective to more traditional neural network architectures. Its analytical portrayal has already 

been developed further in the technical than in the biological direction. The learning results 

accomplished seem to be as expected; at least indicating that the adaptive processes at work in 

the map may be analogous to those encountered in the brain.	
  

I. EXPERIMENTAL PROCEDURE 

Drilling tests were performed using a solid carbide drill on a duplex steel workpiece. The Kistler 

three component quartz dynamometer (type 9257B) was selected as the force measuring 
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sensor. This type of dynamometer consists of four three-component force sensors fitted under 

high pre-load between a base-plate and a top-plate. Each sensor contains three pairs of quartz 

plates: one sensitive to pressure in the Z direction and the other two in the X and Y directions. 

As a result, the dynamometer is able to detect the smallest dynamic changes in large forces. In 

addition, an armoured connecting cable type 1687B5 and an eight-channel charge amplifier 

type 5070 were utilised in the measurement of forces. A schematic of the experimental setup is 

shown in fig. 2. 

	
  

Figure 2: Schematic of the experimental setup 

 

Trials were conducted using solid carbide drills used to make 12.5mm diameter holes on the 

duplex steel workpieces. The forces along three axes were measured, i.e. Fx, Fy and Fz. The 

moment around the Z-axis was calculated using these forces (see fig. 3). 

 

Figure 3: Snapshot of dynamometer measurements 

 

A. Neural Network setup 
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The data obtained from the drilling trials was analysed and fed as a part of the input to a Self 

Organising Feature Map. The power spectral density and kurtosis calculations were done on the 

dynamic data acquired. This was done using DADisp software. The inputs to the Neural 

Network were the feed rate, drill speed, dynamic forces (psd) and the “static” force component. 

The network was trained to classify a used drill from a new one. A total of 58 drilling trials were 

conducted which yielded a collection of 576 data sets. 288 of these sets were used for training 

the network while the rest were used for testing. The neural network coding and simulation was 

done using R. R is a language and environment for statistical computing and graphics. R 

provides a wide variety of statistical and graphical techniques, and is highly extensible [11]. The 

program written for the SOFM is based on the function provided in the “kohonen” package of R 

[12]. Although the basic calculation subroutine is little changed, the data input, handling, 

execution, storage and output formatting is all original. Before processing is done by the neural 

network, a pre-processing procedure is carried out to reduce dimensionality of the data. This is 

achieved by computing the power spectral densities of the signals.  

A. Classification 

The SOFM was trained to classify a used drill from a new drill with a number of typical data sets 

corresponding to various wear categories. This classification was made on the basis of the input 

parameters viz, the forces in the x, y and z axes, the moment of forces about the z-axis, drill 

speed and feed rate. The training progress of the map is shown in fig. 4. The mean distance to 

the closest neuron on the map stabilises after approximately 40,000 runs. A snapshot of the 

classification pattern is shown in fig. 5. Subsequent classification of previously unseen data sets 

indicated that the network was able to correctly organise itself to new data sets. 
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Figure 4: SOM progress after 100,000 runs

	
  

Figure 5: Snapshot of SOM classification after 100,000 runs 

	
  

I. CONCLUSIONS 
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Tool wear identification and monitoring is a complex phenomenon. Accurate modelling of the 

problem requires a highly evolved and comprehensive solution. The work done so far has 

mainly focussed on the use of neural networks which learn using the supervised learning 

paradigm. These networks perform well under known conditions, but even a minor deviation 

from their predefined parameters can cause such networks to fail. The main aim of this research 

is to construct a robust and efficient system for tool wear monitoring in drilling operations.  

The Self-Organising Feature Map is a neural network that closely resembles how the brain 

functions. Mirroring the way in which human brains decode data from various sources (senses) 

holds tremendous merit. Data captured to characterise the condition of a complex piece of 

equipment should contain primary and secondary data which is used to arrive at a consensus of 

opinion. 

Learning in this network is unsupervised, thus making it independent of human errors caused 

during the training phase. Furthermore, the network is able to adapt to changing environments 

and conditions. This flexibility in adaption goes well with the stochastic nature of industrial 

environments. 

The work presented here demonstrates the type of system which can successfully be employed 

to monitor machining operations. The true robustness of the system is to be established by the 

application of the system in other industrial environments. The classification of tool wear using 

unsupervised neural networks is regarded as a strategic step forward in the progress towards 

the creation of a truly unmanned machining environment. 
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Intelligent machines	
  By Guy Littlefair	
  

The Machining and Machinability Research group at AUT University 

may have found a way to significantly improve the current 

performance of Tool Wear Monitoring and Tool Breakage Detection 

Systems by incorporating human phenomena into the working of 

these systems. Jesal Ashar, who is undertaking the research, says: 

“Looking at a human medical phenomenon known as Synesthesia, 

otherwise known as the sixth sense syndrome, we are able to better 

understand the working of Intelligent Systems and more importantly 

how they react to varying stimuli.”  

Synesthesia is a neurological phenomenon in which the stimulation of one 

sensory organ leads to automatic or involuntary sensations in another sensory 

organ. In its most common form known as grapheme – colour synesthesia, 

letters and/or numbers are perceived as inherently coloured and having 

personalities. Synesthesia has been diagnosed for almost three centuries, but 

medicine keeps forgetting about the condition. The word synesthesia means 

“joined sensation” and shares a root with anesthesia which means “no sensation”. Synesthesia is not an abnormality; in fact 

it is a normal brain development process that is intuitively presented to the consciousness in a minority of individuals. The 

condition symbolises a rare ability to hear colours, taste shapes, or experiences of other equally astounding sensory 

amalgamations whose nature seems complex for most of us to envisage. Synesthetes are normal in the conventional sense 

of the term. They appear to be bright and intelligent. Standard neurological medical exams are also normal. Synesthetic 

associations are usually unidirectional, meaning that for a particular synesthete, sight may induce touch, but touch would 

not induce visual sensations.  

 

An artificial neural network (ANN), often just called a “neural network” (NN), is a mathematical model or computational 

model based on biological neural networks. It consists of an interconnected group of artificial neurons and processes 

information using a connectionist approach to computation. In more practical terms neural networks are non-linear 

statistical data modelling tools. Jesal says: “They can be used to model complex relationships between inputs and outputs 

or to find patterns in data. There is no precise agreed-upon definition among researchers as to what a neural network is, 

but most would agree that it involves a network of simple processing elements (neurons), which can exhibit complex global 

behaviour, determined by the connections between the processing elements and element parameters.” 

 

The original inspiration for the technique was from examination of the central nervous system. ANNs, like people, learn by 

example. An ANN may be configured for a specific application, such as pattern recognition or data classification, through a 

learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the 

neurons. This is true of ANNs as well. Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or 

other computer techniques. A trained neural network can be thought of as an “expert” in the category of information it has 

been given to analyse. This expert can then be used to provide projections given new situations of interest and answer 

“what if” questions. 

 

An impression of the functioning of Artificial Neural Networks Simulating synesthetic type of neurological behaviour in 

Artificial Neural Networks (the core of Artificially Intelligent Systems) will help shed light on their functioning and 

classification capabilities. This in turn, may also deepen our understanding as to why these systems are unstable when 
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applied in real world environments. The process of disassembly and reassembly takes on an entirely new meaning. The 

eventual goal is to create efficient, robust systems with extended autonomous control over processes that are being 

employed – essentially creating the “factory of the future”.  

 

Perhaps the best way to move forward is to shift the focus from modifying system behaviour to the processes of cognition 

that source the performance. As the saying goes, prevention is better than cure. There is no complete theory that has been 

presented to date which explains how sensors influence and lead each other to produce more accurate or confident 

perception. It has been hypothesised in literature that the strength of inter-neuronal connections in our brains is the 

foundation for memories. The stronger the connections are, the better is the memory recall. However, we only have a 

modest estimate of the connectivity in our brains, how a collection of grey cells performs as an ensemble and how 

information is programmed.  

 

Jesal sees great potential for her research and comments: “So, where does tool wear figure in all this? The answer is simple 

– to improve upon the systems that are currently used to monitor tool wear by creating “biologically realistic” ANNs. The 

future may well be the factory that runs on auto-pilot!”  
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Specifications for: 

 

Kistler 3 Component Force Dynamometer 

 

 

Kistler 4 channel Charge Amplifier 
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Measure	
  &	
  Analyze	
  –	
  MCA	
  

	
  

	
  
	
  

Multi-­‐Channel	
  Charge	
  Amplifier	
  
for	
  Multi-­‐Component	
  Force	
  Measurement	
  

This	
   instrument	
   is	
   ideal	
   for	
  
multi-­‐component	
   force-­‐
torque	
   measurement	
   with	
  
piezoelectric	
  
dynamometers	
   or	
   force	
  
plates.	
   Piezoelectric	
   force	
  
sensors	
  produce	
  an	
  electric	
  
charge	
   which	
   varies	
   in	
  
direct	
   proportion	
   with	
   the	
  
load	
   acting	
   on	
   the	
   sensor.	
  
The	
   charge	
   amplifier	
   then	
  
converts	
  the	
  electric	
  charge	
  
into	
  a	
  proportional	
  voltage.	
  	
  

4-­‐channel	
  version	
  for	
  cutting	
  
force	
  measurements	
  	
  
8-­‐channel	
  version	
  for	
  multi-­‐
component	
  force-­‐torque	
  mea-­‐
surement	
  	
  
8-­‐channel	
  version	
  optionally	
  
with	
  6-­‐component	
  analog	
  
summing	
  calculator	
  	
  
Menu-­‐controlled	
  operation	
  as	
  
with	
  Type	
  5015A	
  	
  
Direct	
  signal	
  evaluation	
  	
  
Suitable	
  for	
  data	
  acquisition	
  
software	
  DynoWare	
  Type	
  
2825A-­‐02	
  	
  
	
  
Description	
  	
  
Type	
   5070A…	
   is	
   available	
  
as	
  a	
  4-­‐channel	
  or	
  8-­‐channel	
  
version.	
  As	
  an	
  option,	
  the	
  8-­‐
channel	
  version	
  can	
  also	
  be	
  
provided	
   with	
   a	
   6-­‐
component	
   analog	
  
summing	
   calculator.	
   In	
   the	
  
case	
   of	
   Kistler	
   multi-­‐
component	
   dynamometers,	
  

this	
   summing	
   calcula-­‐tor	
   calculates	
   in	
  
real	
  time	
  mode	
  the	
  resulting	
  force	
  as	
  well	
  
as	
   the	
   three	
   components	
  of	
   the	
   resulting	
  
torque	
   vector.	
   Dynamometer-­‐specific	
  
values	
  required	
  for	
  torque	
  calculation	
  can	
  
be	
  set	
  directly	
  on	
  the	
  instrument.	
  	
  

The	
   graphics-­‐capable	
   liquid	
   crystal	
  
display	
   shows	
   all	
   settings	
   including	
   the	
  
instantaneous,	
   minimum	
   and	
   maximum	
  
values	
  of	
  a	
  charge	
  amplifier	
  channel.	
  The	
  
various	
   channels	
   can	
   be	
   switched	
   onto	
  
the	
  display	
  as	
  required.	
  The	
  instrument	
  is	
  
set	
   up	
   by	
   means	
   of	
   various	
   menus	
   with	
  
the	
   universal	
   press-­‐and-­‐turn	
   knob.	
   All	
  
functions	
   can,	
   however,	
   also	
   be	
  
controlled	
   externally	
   via	
   RS-­‐232C	
  
(optionally	
  IEEE-­‐488).	
  	
  

Application	
  	
  
The	
   4-­‐channel	
   instrument	
   is	
   particularly	
  
suitable	
   for	
   cutting	
   force	
   measurement	
  
with	
  Kistler	
   dynamometers	
   and	
   the	
   data	
  
acquisition	
   software	
   DynoWare	
   Type	
  
2825A-­‐02.	
   The	
   8-­‐channel	
   instrument	
   is	
  
suitable	
   for	
   6-­‐component	
   force-­‐torque	
  
measure-­‐ment	
   in	
   the	
   laboratory	
   as	
   well	
  
as	
   in	
   research	
   and	
   development.	
   For	
  
example,	
  wheel	
   force	
  measurement	
   on	
   a	
  
tire	
   test	
   stand,	
   reaction	
   force	
  
measurements	
   on	
   engine-­‐transmission	
  
units,	
  monitoring	
  of	
  forces	
  and	
  torques	
  in	
  
vibration	
  tests	
  etc.	
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Real time captured forces in the X, Y & Z directions 

 

Kurtosis Values 



Appendix	
  B	
  

112	
  
	
  

 

Trial 1 with New Drill
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Trial 2 with New Drill 

 

 

Trial 3 with New Drill 
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Trial 4 with New Drill 
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Trial 1 with Old Drill 
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Trial 2 with Old Drill 

 

 

Trial 3 with Old Drill 
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Trial 4 with Old Drill 

 

 

Kurtosis Calcualtions 
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Self-Organising Map Algorithm Program Listing 
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Function SOM: 

function (data, grid = somgrid(), rlen = 100, alpha = c(0.05,  

    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), init,  

    toroidal = FALSE, n.hood, keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    ng <- nrow(grid$pts) 

    if (missing(init)) { 

        init <- data[sample(1:nd, ng, replace = FALSE), , drop = FALSE] 

    } 

    else { 

        init <- as.matrix(init) 

        if (nrow(init) != ng | ncol(init) != ncol(data) | !is.numeric(init))  

            stop("incorrect init matrix supplied") 

    } 

    codes <- init 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 

    nhbrdist <- unit.distances(grid, toroidal) 

    if (length(radius) == 1)  
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        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen) 

    res <- .C("SOM_online", data = as.double(data), codes = as.double(codes),  

        nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

        radii = as.double(radius), changes = as.double(changes),  

        n = as.integer(nrow(data)), p = as.integer(ncol(data)),  

        ncodes = as.integer(nrow(init)), rlen = as.integer(rlen),  

        PACKAGE = "kohonen") 

    changes <- matrix(res$changes, ncol = 1) 

    codes <- res$codes 

    dim(codes) <- dim(init) 

    colnames(codes) <- colnames(init) 

    if (keep.data) { 

        mapping <- map.kohonen(list(codes = codes), newdata = data) 

        structure(list(data = data, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "som"), class = "kohonen") 

    } 

    else { 

        structure(list(grid = grid, codes = codes, changes = changes,  

            alpha = alpha, radius = radius, toroidal = toroidal,  

            method = "som"), class = "kohonen") 

    } 

} 

 

Function to initialise: 

function (data, Y, grid = somgrid(), rlen = 100, alpha = c(0.05,  

    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.75,  

    contin = !(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,  
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    keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    nx <- ncol(data) 

    if (is.vector(Y))  

        Y <- matrix(Y, ncol = 1) 

    ny <- ncol(Y) 

    ng <- nrow(grid$pts) 

    xdists <- ydists <- rep(0, ng) 

    starters <- sample(1:nd, ng, replace = FALSE) 

    init <- data[starters, , drop = FALSE] 

    codes <- init 

    if (!contin) { 

        codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5) 

    } 

    else { 

        codeYs <- Y[starters, ] 

    } 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 

    nhbrdist <- unit.distances(grid, toroidal) 

    if (length(radius) == 1)  
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        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen * 2) 

    if (contin) { 

        res <- .C("BDK_Eucl", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radii = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    else { 

        res <- .C("BDK_Tani", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radius = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    changes <- matrix(res$changes, ncol = 2) 

    codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),  

        Y = matrix(res$codeYs, ng, ny)) 

    colnames(codes$Y) <- colnames(Y) 

    if (keep.data) { 

        mapping <- map.kohonen(list(codes = codes), newdata = data,  

            whatmap = 1) 

        structure(list(data = data, Y = Y, contin = contin, grid = grid,  
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            codes = codes, changes = changes, alpha = alpha,  

            radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "bdk"), class = "kohonen") 

    } 

    else { 

        structure(list(contin = contin, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, method = "bdk"), class = "kohonen") 

    } 

} 

 

Function for mapping: 

function (xdim = 8, ydim = 6, topo = c("rectangular", "hexagonal"))  

{ 

    topo <- match.arg(topo) 

    x <- 1:xdim 

    y <- 1:ydim 

    pts <- as.matrix(expand.grid(x = x, y = y)) 

    if (topo == "hexagonal") { 

        pts[, 1] <- pts[, 1] + 0.5 * (pts[, 2]%%2) 

        pts[, 2] <- sqrt(3)/2 * pts[, 2] 

    } 

    res <- list(pts = pts, xdim = xdim, ydim = ydim, topo = topo) 

    class(res) <- "somgrid" 

    res 

} 

<environment: namespace:class> 

 

Function for training: 

function (data, Y, grid = somgrid(), rlen = 100, alpha = c(0.05,  
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    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.5,  

    contin = !(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,  

    keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    nx <- ncol(data) 

    if (is.vector(Y))  

        Y <- matrix(Y, ncol = 1) 

    ny <- ncol(Y) 

    ng <- nrow(grid$pts) 

    xdists <- ydists <- rep(0, ng) 

    starters <- sample(1:nd, ng, replace = FALSE) 

    init <- data[starters, , drop = FALSE] 

    codes <- init 

    if (!contin) { 

        codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5) 

    } 

    else { 

        codeYs <- Y[starters, ] 

    } 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 
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    nhbrdist <- unit.distances(grid, toroidal) 

    if (length(radius) == 1)  

        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen * 2) 

    if (contin) { 

        res <- .C("XYF_Eucl", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radii = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    else { 

        res <- .C("XYF_Tani", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radius = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    changes <- matrix(res$changes, ncol = 2) 

    colnames(changes) <- c("X", "Y") 

    codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),  

        Y = matrix(res$codeYs, ng, ny)) 

    colnames(codes$Y) <- colnames(Y) 

    if (keep.data) { 
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        mapping <- map.kohonen(list(codes = codes), newdata = data,  

            whatmap = 1) 

        structure(list(data = data, Y = Y, contin = contin, grid = grid,  

            codes = codes, changes = changes, alpha = alpha,  

            radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "xyf"), class = "kohonen") 

    } 

    else { 

        structure(list(contin = contin, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, method = "xyf"), class = "kohonen") 

    } 

} 

 

Function for predicting: 

function (object, newdata, trainX, trainY, unit.predictions = NULL,  

    threshold = 0, whatmap = NULL, weights = 1, ...)  

{ 

    mapping <- NULL 

    if (missing(newdata)) { 

        if (!is.null(object$data)) { 

            newdata <- object$data 

            mapping <- object$unit.classif 

        } 

        else { 

            stop("No data given with which to predict") 

        } 

    } 

    if (is.null(mapping))  

        mapping <- map(object, newdata, whatmap, weights)$unit.classif 
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    if (is.null(unit.predictions)) { 

        if (object$method %in% c("xyf", "bdk")) { 

            unit.predictions <- object$codes$Y 

        } 

        else { 

            if (object$method == "supersom" & !is.null(whatmap)) { 

                whatmap <- check.whatmap(object, whatmap) 

                if (length(whatmap) < length(object$data))  

                  unit.predictions <- object$codes[-whatmap] 

            } 

            else { 

                if (missing(trainY))  

                  stop("For unsupervised forms of mapping, trainY is required") 

                if (is.list(trainY))  

                  stop("Prediction for trainY lists not implemented") 

                if (is.vector(trainY))  

                  trainY <- matrix(trainY, ncol = 1) 

                nY <- ncol(trainY) 

                trainingMapping <- NULL 

                if (missing(trainX) & !is.null(object$data)) { 

                  trainX <- object$data 

                  trainingMapping <- object$unit.classif 

                } 

                nX <- ifelse(is.list(trainX), nrow(trainX[[1]]),  

                  nrow(trainX)) 

                if (nX != nrow(trainY))  

                  stop("Unequal number of rows in trainX and trainY") 

                if (is.null(trainingMapping))  

                  trainingMapping <- map(object, trainX)$unit.classif 

                unit.predictions <- matrix(NA, nrow(object$grid$pts),  
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                  nY) 

                huhn <- aggregate(trainY, by = list(cl = trainingMapping),  

                  mean) 

                if (R.version$major <= "2" & R.version$minor <  

                  "6.0") { 

                  unit.predictions[sort(as.numeric(levels(huhn[,  

                    1]))), ] <- as.matrix(huhn[, -1]) 

                } 

                else { 

                  unit.predictions[huhn[, 1], ] <- as.matrix(huhn[,  

                    -1]) 

                } 

                nas <- which(apply(unit.predictions, 1, function(x) all(is.na(x)))) 

                nhbrdist <- unit.distances(object$grid, object$toroidal) 

                for (i in seq(along = nas)) { 

                  unit.predictions[nas[i], ] <- colMeans(unit.predictions[nhbrdist[nas[i],  

                    ] == 1, , drop = FALSE], na.rm = TRUE) 

                } 

                colnames(unit.predictions) <- colnames(trainY) 

            } 

        } 

    } 

    if (!is.null(object$contin) && !object$contin) { 

        prediction <- classmat2classvec(unit.predictions, threshold = 
threshold)[mapping] 

    } 

    else { 

        if (is.list(unit.predictions)) { 

            prediction <- sapply(unit.predictions, function(x) x[mapping]) 

        } 

        else { 
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            prediction <- unit.predictions[mapping, ] 

        } 

    } 

    list(prediction = prediction, unit.classif = mapping, unit.predictions = 
unit.predictions) 

} 

 

Function for plotting: 

 

function (x, type = c("codes", "changes", "counts", "mapping",  

    "property", "quality"), classif = NULL, labels = NULL, pchs = NULL,  

    main = NULL, palette.name = heat.colors, ncolors, bgcol = NULL,  

    zlim = NULL, heatkey = TRUE, property, contin, whatmap = NULL,  

    codeRendering = NULL, keepMargins = FALSE, ...)  

{ 

    type <- match.arg(type) 

    switch(type, mapping = plot.kohmapping(x, classif, main,  

        labels, pchs, bgcol, keepMargins, ...), property = plot.kohprop(x,  

        property, main, palette.name, ncolors, zlim, heatkey,  

        contin, keepMargins, ...), codes = plot.kohcodes(x, main,  

        bgcol, whatmap, codeRendering, keepMargins, ...), quality = 
plot.kohquality(x,  

        classif, main, palette.name, ncolors, zlim, heatkey,  

        keepMargins, ...), counts = plot.kohcounts(x, classif,  

        main, palette.name, ncolors, zlim, heatkey, keepMargins,  

        ...), changes = plot.kohchanges(x, main, keepMargins,  

        ...)) 

    invisible() 

} 

function (x, main, keepMargins, ...)  

{ 
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    if (is.null(main))  

        main <- "Training progress" 

    nmaps <- ncol(x$changes) 

    if (nmaps > 1) { 

        if (!is.null(colnames(x$changes))) { 

            varnames <- colnames(x$changes) 

        } 

        else { 

            varnames <- paste("Matrix", 1:ncol(x$changes)) 

        } 

    } 

    if (nmaps == 2) { 

        if (!keepMargins) { 

            opar <- par("mar") 

            on.exit(par(mar = opar)) 

        } 

        par(mar = c(5.1, 4.1, 4.1, 4.1)) 

        huhn <- x$changes 

        huhn[, 2] <- max(x$changes[, 1]) * huhn[, 2]/max(x$changes[,  

            2]) 

        ticks <- pretty(x$changes[, 2], length(axTicks(2))) 

    } 

    else { 

        huhn <- x$changes 

    } 

    matplot(huhn, type = "l", lty = 1, main = main, ylab = "Mean distance to 
closest unit",  

        xlab = "Iteration", ...) 

    abline(h = 0, col = "gray") 

    if (nmaps == 2)  

        axis(4, col.axis = 2, at = ticks * max(x$changes[, 1])/max(x$changes[,  
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            2]), labels = ticks) 

    if (nmaps > 1)  

        legend("topright", legend = varnames, lty = 1, col = 1:nmaps,  

            bty = "n") 

} 


