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Abstract

The rising demand for exacting performances from manufacturing systems has
led to new challenges for the development of complex tool condition monitoring
techniques. Although a wide range of monitoring methods have been
investigated and developed, there has been very little migration of these
innovations into industrial practice. The principal factor behind this phenomenon
is the stochastic nature of the environment in which the system must function. A
truly universal application has yet to be developed. The work presented here
centres around the application of an unsupervised neural network model to the
said problem. These networks learn without the aid of a human teacher or
supervisor and learn to organise and re-organise themselves in accordance to
the input data. This leads to the network structure reflecting the given input
distribution more precisely than a predefined model, which generally follows a
decay schedule. The dynamic nature of the process provides an evaluation of
the underlying connectivity and topology in the original data space. This makes
the network far more capable of capturing details in the target space. These
networks have been successfully used in speech recognition applications and
various pattern recognition tasks involving very noisy signals. Work is in
progress on their application to robotics, process control and

telecommunications.

The procedure followed here has been to conduct experimental drilling trials
using solid carbide drills on a Duplex Stainless Steel workpiece. Duplex
Stainless Steel was chosen as a preferred metal for drilling experiments
because of this high strength, good resistance to corrosion, low thermal

expansion and good fatigue resistance. During the drilling trials, forces on the



workpiece along the x, y and z axes were captured in real time and moments of
the forces were calculated using these values. These three axial forces, along
with their power spectral densities and moments were used as input parameters
to the Artificial Neural Network model which followed the Self-Organising Map
algorithm to classify this data. After the network was able to adapt itself to
classify this real world data, the generated model was tested against a different
set of data values captured during the drilling trials. The network was able to
correctly identify a worn out drill from a new drill from this previously unseen set
of data. This autonomous classification of the drill wear state by the neural
network is a step towards creating a “universal” application that will eventually

be able to predict tool wear in any machining operation without prior training.
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Introduction

Chapter 1 Introduction

The condition monitoring based maintenance philosophy is emerging to
be the key component in lowering operating costs and increasing machine
availability. Society the world over is continually demanding less expensive
products which must also provide greater technological advancement along with
aesthetic refinement. These wants are driving the manufacturing industry to
surpass previously impossible productivity and quality heights. The process of
cutting and machining is no doubt the most widely-used mechanical processes
in the industry and the cutting tool is still the central, crucial element in a huge
array of manufacturing procedures thus placing an ever increasing burden on

the performance of the cutting tool edge.

To obtain high levels of productivity, it is imperative for manufacturers to
focus their attention on achieving automated processes with the least amount of
human supervision. Successful capacious tool wear condition monitoring would
ultimately lead to the optimised use of the tool cutting edge and thus present the
manufacturer with productivity gains so placing their business in a strategic
operating position. However, although a wide range of monitoring methods have
been investigated and developed, there has been very little migration of these
innovations into industrial practice (Rehorn, 2005). The principal factor behind
this phenomenon is the stochastic nature of the environment in which the
system must function. A truly all-encompassing application has yet to be

developed.



Introduction

The rationale behind the research presented here, focuses on the
requirement for a sophisticated monitoring methodology capable of
demonstrating its robustness, competency and accuracy when applied to
demanding industrial environments. The work reported in this thesis is
particularly centred on providing a greater insight into the development of a
universal tool condition monitoring system. It also investigates the application of

a self-organising feature map neural network to the said problem.
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Chapter 2 Background

2.1 Tool Wear and Tool Life

Machining of metals is done mainly to achieve a higher level of surface finish,
close tolerance, and to form complex geometric shapes which are otherwise
difficult to obtain. This is done by the process of metal removal during the
manufacture of components. A machine tool is one which removes the metal
from a workpiece in the form of metal chips. Tools are integral parts of any
machine, since without them no component can be finished. Under idealised
conditions, the useful life of a tool is defined in terms of the amount of wear on
one of the two primary working surfaces of the tool (KIM, 2002). The wear
regions which develop on these two surfaces are termed as “crater wear” and
“flank wear”, either of which will ultimately lead to the failure of the tool. Tool
wear itself , refers to the degradation of the cutting tool concerning the general
wear of the cutting or clearance surface, fracture and reduction of the tool
mechanical properties due to high temperature (Dimla, 2000). The life of a
cutting tool is thus determined by the amount of wear that has occurred on the
tool profile which reduces the efficiency of cutting to an intolerable level, or
eventually causes tool failure. When the tool wear reaches an initially accepted

amount, there are two options:

i.  Tore-sharpen the tool on a tool grinder.

i. Toreplace the tool with a new one.

The second possibility applies in two cases:
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i.  When the resources for tool re-sharpening are exhausted.
i. The tool does not allow for re-sharpening, e.g. in case of indexable

carbide inserts.

Gradual wear occurs at two principal locations on a cutting tool. Accordingly,

two main types of tool wear can be distinguished- crater wear & flank wear.

These two wear types are illustrated in Fig. 1 and Fig. 2:

Tool cutting part

Chip contact area
Crater wear

Major cutting edge
perfectly sharp at the beginning of cutting
- worn after cutting for some period of time

Figure 1: Types of wear observed in cutting tools
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Figure 2: Cross-section perpendicular to the major cutting edge of a worn cutting tool
showing the effect of crater wear on the tool rake angle and flank wear land.

Crater wear: consists of a concave section on the tool face formed by the
action of the chip sliding on the surface. Crater wear affects the
mechanics of the process increasing the actual rake angle of the cutting
tool and consequently, making cutting easier. At the same time, the
crater wear weakens the tool wedge and increases the possibility for tool
breakage. In general, crater wear is of a relatively small concern.
Flank wear: occurs on the tool flank as a result of friction between the
machined surface of the workpiece and the tool flank. Flank wear
appears in the form of so called wear land and is measured by the width
of this wear land, VB. Flank wear affects, to a great extent, the
mechanics of cutting. Cutting forces increase significantly with flank
wear. If the amount of flank wear exceeds some critical value (VB >

0.5~0.6 mm), the excessive cutting force may cause tool failure. It is
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important to understand where these critical conditions exist and how

they relate to cause tool wear.

Tool wear is a time dependent process. As cutting proceeds, the amount of tool
wear increases gradually. But tool wear must not be allowed to go beyond a
certain limit in order to avoid tool failure. The most important wear type from the
process perspective is the flank wear; hence the parameter which has to be
controlled is the width of flank wear land- Vg. This parameter must not exceed
an initially set safe limit, which is about 0.4 mm for carbide cutting tools. The
safe limit is referred to as allowable wear land (wear criterion), Vgk. The cutting
time required for the cutting tool to develop a flank wear land of width Vg is
called tool life, T. This is a fundamental parameter in machining. The general

relationship of VB versus cutting time is shown in the Fig. 3 (wear curve).

Vg, mm
! steady-state wear | failure
break —Ti :
in | ::o?ll
Deri | | failure
period 5 :
Ve P e —— : |
: v v—
T cutting time, min

Figure 3: Flank Wear as a function of cutting time. Tool life T is defined as the cutting time
required for flank wear to reach the value of Vg,.

The slope of the wear curve (that is the intensity of tool wear) depends on the

same parameters, which affect the cutting temperature as the wear of cutting
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tool materials is a process extremely temperature dependent. Parameters which

affect the rate of tool wear are:

* cutting conditions (cutting speed V, feed f, depth of cut d)
* cutting tool geometry

* properties of work material

Cutting speed is the most important amongst these parameters. As cutting
speed is increased, wear rate increases, so the same wear criterion is reached
in lesser time. Thus, tool life decreases with cutting speed. This phenomenon is

illustrated in Fig. 4:

VB.mm cutting speed increases
V, Vv, vV,
Ve
- i i . - .
'I'1 T2 T3 cutting time, min vV, V. V, logV

Figure 4: (Left) Effect of cutting speed on wear land width and tool life for three cutting
speeds. (Right) Natural-log plot of cutting speed versus tool life.
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2.2 Tool Condition Monitoring

In conventional machining environments, where a machine operator is present,
a pre-determined tool life based on empirical data is generally sufficient. In
contrast, underlining the concept of unmanned machining is the constant
provision of tooling which can continually produce components to a specified
tolerance level. Besides the disadvantage of the added cost element associated
with this option, there is also the high wear rate phenomenon of the new cutting
edge. The exceptionally complex problem of developing a mathematical model
robust enough to provide accurate prediction of tool life, over the entire range of
metal cutting conditions, is yet to be developed. Although some models do
exist, these are very process specific and consequently cannot be universally

applied (Dimla, 1997).

Tool life testing is the apparent solution, nonetheless, it is a very expensive and
time consuming process (Noori-Khajavi, 1993). Even after exhaustive testing,
one can only ascertain a range of cutting conditions applicable for a given
workpiece material and a narrow band of part geometries, finishing
requirements etc. The growing range of tool material substrates and coatings
further compounds the modelling and testing problems. In the absence of an
adequate solution for predicting tool life, some form of monitoring becomes
essential. The monitoring system must be capable of dealing with the regular
tool wear modes in addition to the irregular and catastrophic modes which are

almost impossible to model.
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Developments in manufacturing systems have necessitated more efficient metal
cutting processes. Conventionally, cutting tools have been replaced at the end
of a programmed, experimentally derived, in-cut time. However, in modern
machining environments, a large number of variables co-relate and the
application of traditional techniques leads to uneconomical and unproductive
tool utilisation (Littlefair, 2007). However, the success of industrially deployed
monitoring systems has been poor (Brophy, 2002). Probably the greatest single
obstacle preventing the realisation of the “factory of the future” is the lack of a
reliable and comprehensive tool condition monitoring system. The reasons that

make tool condition monitoring systems important are:

= Unmanned production is possible only if there is a reliable and efficient

method available for tool wear monitoring and tool breakage recognition.

= Tool wear controls the quality of the surface finish and the dimensions of

the parts that are manufactured.

* In contemporary systems, tool changes are made based on conservative
estimates of tool life. These approximations do not take into account
sudden failures and at the same time lead to unreasonably high number
of changes, since the comprehensive lifetime of the tools is not taken into

account. Subsequently, valuable production time is lost.

= As a consequence, automated production control is not actually possible

without a robust means for tool wear monitoring. (Jantunen, 2002)

The problem of machine tool downtime continues to plague the industry.

Downtime can be considered as any duration of time during which no machining
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operation is being performed on a given workpiece. One predicament is that
there are several different sources that contribute to downtime, some of which
are inevitable. It is often necessary to transfer workpieces from one machine
tool to another, which requires dismantling and set-up time. Furthermore,
machines need to undergo periodic maintenance to ensure their continued
functioning under normal circumstances. However, there is another type of
downtime that could be avoidable - downtime caused by the excessive wear
and breakage of cutting tools during machining operations. Tool breakage is a
major cause of unscheduled stoppage in a machining environment, and is

costly not only in terms of lost time, but also in terms of capital destroyed.

Techniques for on-line wear monitoring can be grouped into two main
categories: direct sensing and indirect sensing techniques. While direct
methods of wear measurement have been attempted (Kurada, 1997), the
popular methods have been indirect. Direct methods are less beneficial since
the cutting area is largely unreachable making on-line monitoring impossible
while the tool is engaged in cutting. These methods include touch trigger
probes, optical, radioactive, proximity sensors and electrical resistance
measurement techniques. Indirect methods take measurements while the tool is
actively engaged, since it involves recording a variable that can be correlated to
tool wear (i.e. indirect methods measure factors that result as a consequence of
tool wear). Commonly used methods include cutting forces, acoustic emission,
temperature, vibration, spindle motor current, torque and strain. These factors
reflect far more than tool wear alone and parameters associated with tool wear
must therefore be extracted from them and correlated to give a measure or
extent of tool wear. The main practical drawback with this popular method is the

need for calibration of the associated parameters in monitoring the cutting

10
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process. The cutting conditions (speed, feed-rate and depth of cut) are known
to affect the sensor signals and a range of methods have been suggested for
separating the effects of these conditions from those of wear on the measured
parameter (Sanjay, 2005). It is important to consider that it is necessary to
monitor tool wear in order to establish the condition of the component being
machined. Therefore, tool condition monitoring (TCM) is ultimately concerned

with the end product.

2.2.1 TCM developments in drilling

Usually, reviews of TCM research present key findings with respect to the
information processing methodologies that generated them. However, this often
clouds the problem, and a cursory review of the available literature on TCM
research can give the notion that everything has by now been done by
somebody at some time. This is certainly not the case. To gain the most from
previous research in the field of TCM, it is vital to consider the work performed
in relation to the type of machining operation studied, note the important

conclusions, and scrutinise the trends that have developed in this field.

In order to realise improved productivity and better quality, the monitoring of drill
wear is an important issue. Since drill wear directly affects the machining quality
and tool life, online monitoring and prediction of drill wear is a vital area of
research. Drilling is a complex three-dimensional material removal operation. In
drilling, the two points of the drill wear alternatively until they both have zero
clearance at the margin, and become lodged within the workpiece. At this point,
the drill will break if cutting is continued. In addition, chip flow creates significant

friction between the cutter and the workpiece inside the drill hole. These

11
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frictional forces can significantly change the dynamics of the system and can
cause the cutter to break. Drills, like other cutters, can fail either from breakage
or excessive wear. It has been determined that drills of a diameter less than 3
mm tend to fail by fracture, while larger tools will fail by excessive wear
(Rehorn, 2005). Drill wear is a progressive development which takes place at
the outer margin of the flutes of the drill due to the close contact and elevated
temperatures between the tool and workpiece. However, under constant cutting
conditions drill failure is a stochastic process. The reasons for altering drill life
are the heterogeneities in the workpiece and drill materials, the irregularities in
the cutting fluid motion and the inescapable unevenness introduced during the

grinding of the cutting edges (Abu-Mahfouz, 2005).

Several works have already been reported in the broad area of tool condition
monitoring. Abu-Mahfouz (Abu-Mahfouz, 2005) reported developing and
implementing two supervised vector quantization neural networks for estimating
the flank wear size of a twist drill. The two algorithms used were the learning
vector quantization (LVQ) and the fuzzy learning vector quantization (FLVQ).
They studied the effect of vibration signals on predicting drill wear. They also
reported to have a success rate of 88% of drill wear prediction using Artificial
Neural Networks (ANN). The ANNs were found to satisfactorily accommodate
changes in the cutting conditions. Brophy, Kelly and Byrne (Brophy, 2002)
designed a two-stage ANN to detect anomalies in the drill wear process. They
trained their network to distinguish drill wear as “normal” or “abnormal”. They
used spindle power as an input to the ANN rather than using statistical data
extracted from a signal. They reported to have no false alarms when their
network was tested using data acquired from 33 sets of tests. Panda et. al. (S.

S. Panda, 2006) presented work dealing with the development a fuzzy back-

12
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propagation neural network scheme for the prediction of drill wear. They
conducted drilling operations over a range of cutting conditions. Spindle speed
was varied along with the feed rate. High-speed steel (HSS) drills of different
diameter sizes were used for drilling holes in a mild steel plate. Various
combinations of spindle speed, feed rate, and drill diameter were used to
perform 52 different drilling operations. They used spindle speed, feed rate, drill
diameter, thrust force and torque as inputs to their ANN. They reported that the
best neural network architecture (i.e. the number of neurons, learning rate and
error co-efficient) was obtained by trial and error based on mean square error
(MSE) in training, testing, and the number of iterations. Franco-Gasca et. al.
(FRANCOGASCA, 2006) describe a driver current signal analysis to estimate
the tool condition by using the discrete Wavelet Transform. This was used to
extract the information from the original cutting force and through an
autocorrelation algorithm tool wear was evaluated in the form of an asymmetric
weighting function. The current was monitored from the motor driver to give a
sensor-less approach. Experimental results presented claimed to show the
algorithm performance was as expected. Jantunen (Jantunen, 2002) presents a
summary of the methods applied to condition monitoring in drilling. The author
concludes that in signal analysis, statistical parameters obtained from the time
domain signal are extensively used. Fast Fourier and Wavelet Transform have
also been used for tool wear and breakage detection by a number of research
groups, but only a limited number of automatic diagnostic tools have been

developed for diagnosis of the condition of the tool in drilling.

13
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2.2.2 Comments on TCM in Drilling

The most commonly monitored variables are torque, feed force and cutting
speed. A common method of signal processing in all TCM research is that of
the Fast Fourier Transform (FFT), which is used to generate a power spectral
density (PSD) function. However, the averaging natures of the FFT and PSD
calculations tend to obscure the frequency content of transient and burst
phenomena, such as breakage. The practice of measuring cutting forces is
common to all machining research, but the use of torque is almost unique to
drilling. The bulk of signal processing in drilling-based TCM research focuses on
time domain methods and the use of statistical parameters. The use of the RMS
of the signals collected is also widely accepted as a standard practice. When
compared to other statistical parameters, including arithmetic mean, standard
deviation, skewness, kurtosis, maximum and minimum, it was found that the
RMS never performed best, although it was among the top four (El-Wardany,

1996).

A new type of statistical operation, known as the instantaneous ratio of absolute
mean value (RAMV;) is suggested in (EI-Wardany, 1996). This is calculated by
taking the ratio of the instantaneous absolute value of the measured variable’s
mean (AMV;)) to the absolute of the mean value at the start of drilling, (AMVy).
The AMV,, is a baseline value, hence the use of the subscript “b.” Thus, it is: “a

normalized mean value calculated with a time constant of one revolution.”

14
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It is apparent from the research done so far that further investigation is required
in establishing systems for online applications in an industrial environment.
Future research should be aimed at developing systems capable of deriving tool
wear parameters from multiple data sensors and combining this data to provide
a robust indicator of tool condition. Detailed investigations have shown that
artificial neural networks trained under constant cutting conditions have limited
validity over a broader range of process parameters. Growing complexity is one
of the most significant characteristic of contemporary manufacturing. This
complexity manifests itself in manufacturing systems, in the products being
manufactured, in the processes, and the company structures. These systems
operate in a stochastic environment amid ambiguity (Monostori, 2003). There
are a range of signals (force, torque, temperature, mechanical vibration,
acoustic emission, etc.) which co-relate to the state of the manufacturing
process. These signals are the subjects of diverse control and monitoring
algorithms. The intricacy of the problem and the associated uncertainties
demand the application of novel techniques to realise fully automated
sophisticated systems. This problem complexity further creates major issues in
predicting tool wear accurately. Tool wear depends on a large number of factors
including the properties of the materials involved; the physical and chemical
properties of the surfaces; pressure; temperature; friction and relative velocities.
In addition, the problem is complicated with the consideration of the complex
three dimensional machining operations where process and operating variables,
such as feed rate, cutting speed and engagement must be taken into
consideration. The cost implications of introducing a suitable monitoring
strategy are difficult to establish since applications are dissimilar. However,

figures as high as 40% are not unimaginable (Littlefair, 2007).

15
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2.3 Duplex Stainless Steels

Duplex stainless steel (DSS) is a dual-phase material with equal volumes of
austenite and ferrite. Its structure results in some significant engineering
properties. These properties have propelled the material into the mainstream in
manufacturing processes with its usage continuing to grow. There has been
only a modest amount of work conducted on the machinability of duplex steels,
although there have been several studies talking about its general machining
related topics. To aid in the greater adoption of Duplex Stainless Steels into the
specialised engineering component sector, detailed analysis of its machinability

and its post-machining microstructure is critical.

2.3.1 Metallurgy

The superior metallurgical properties of Duplex Stainless Steels stem from the
mixture of Austenite (y) and Ferrite (o) phases present in its structure. The
Austenite phase is responsible for the relative ductility of the metal and its
resistance to uniform corrosion; while the Ferrite phase is responsible for the
superior strength as well as corrosion resistance of the metal (T. Saeid, 2008).
The ideal duplex structure would consist of a 1:1 matrix of y and a phases
presenting themselves in a “banded structure” as illustrated in Figure 5. The

lighter phase is Austenite and the darker phase is Ferrite (G. S. J. Reis, 2000).

16
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Figure 5: Typical “banded” microstructure of Duplex Stainless Steel (50x)

As seen in the figure above, both phases of Austenite and Ferrite exist in
relatively large separate volumes. Also, these phases are approximately equal
fractions rather than an inclusion phase embedded in the matrix formed by one
of the other phases (T. Siegmund, 1995). When the material undergoes
deformation during working, both phases in the metal are jointly modified - but
due to an existing difference in the relative hardness of the phases, the strain
distribution does not remain uniform (G. S. J. Reis, 2000; N. Jia, 2006). Strain
concentrations appear in the softer ferrite phase, and this can lead to cracking,
grain boundary and inter-phase sliding. Therefore, the processing of Duplex
requires cautious control and monitoring of its heat treatment cycles. Poor
control of temperature or soaking time prior to forging, for instance, can lead to

inter-granular cracking as shown in Figure 6.
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Figure 6: Inter-granular cracking of a 2205 grade Duplex stainless steel as a result of poorly
controlled heat treatment prior to forging (200x)

2.3.2 Machinability

Duplex Stainless steel (DSS) belongs to a difficult to machine group of materials
due to its high tendency to work harden; its high toughness and relatively low
thermal conductivity (D. O'Sullivan, 2002; Dolinsek, 2003; J. Paro, 2001). Other
problems with these steels stem from their high fracture toughness, increasing
the tool/chip interface temperature which leads to poor surface finishes and
poor chip breaking. Additionally, built-up-edge (BUE) formation, more common
in the machining of ductile materials such as aluminium, is present even at
elevated cutting speeds. This promotes the deterioration in the finish of the
machined surface. Work hardening in austenitic stainless steels is caused due
to martensite formation. Martensite is formed either due to plastic deformation

or due to thermal effects, or a combination of both. In general,

the machinability of duplex is poor compared to other grades of stainless steel.

This primarily stems from the high strength of the alloy but is exacerbated by a
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lack of non-metallic inclusions and the low carbon content (Nilsson, 1992;
Voronenko, 1997). To increase the machinability of the steel, its sulphur content
can be increased but this reduces the corrosion resistance and also its ductility.
A general indicator of relative machinability is presented in Figure 7 (Anon,
2001, 2005) where Austenitic 316 is used as a reference and compared to
various common grades of DSS. As can be seen, the so-called lean Duplex
(S32101) is more readily machined than 316 in contrast to the regular (S32205)
and in particular the Super Duplex (S32507) which have poorer machinability
characteristics. It should also be noted that when carbide cutting tools are used
the machinability is quoted as being poorer than when High Speed Steel (HSS)
tools are used. This is primarily due to the edge preparation where work
hardening forms less readily with sharp cutting tools and hence the edge

preparation on regular carbide tools lessens the machinability.
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Figure 7: Relative machinability of various DSS grades referenced to
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Austenitic 316 Stainless Steel (Smith, 2007).

2.3.3 Current Research

In order to further understand the deformation of the dual phase microstructure
of DSS, a series of preliminary machinability trials were conducted in (Littlefair,
2008). These included both turning and drilling operations on a 2205 DSS
sample. Figure 8 is a photomicrograph of a chip being formed during turning
with a high-speed steel tool at 20m/min and 0.1mm/rev with a depth of cut of
1.5mm. The chip was “frozen” using a purpose built explosive quick-stop device
which accelerates the tool away from the workpiece as cutting progresses
(Littlefair, 2008). Both the phases can be visibly identified, particularly on the
left. Of interest, is the austenite phase (lighter shade), which is the harder
phase, being effectively squeezed through the softer ferrite phase as cutting
progresses. In the right side of the figure, the ferrite is clearly accumulating in
advance of the cutting tool with large amount of plastic deformation which due
to the high forces and elevated temperature would lead to BUE on the insert
given sufficient time (Littlefair, 2008). Austenite is not part of the BUE phase as
can be seen by its absence in the region directly forming in advance of the tool

(Littlefair, 2008).
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Figure 8: Photomicrographs of a quick-stop turning sample of 2205 Duplex

In a similar approach, drilling trials have been conducted on the same 2205
sample material. Figure 9 shows the bottom corner of a hole drilled with a split-
point solid carbide 12.5mm drill at 45m/min and a penetration rate of
0.175mm/rev and a cutting fluid at three different magnifications. At these
relatively modest parameters, there is no evidence of microstructural
modification to the machined surface and only a minor amount of ferrite

accumulation beneath the cutting edge of the tool.

Figure 9: Drilled hole "corner" at 50x, 100x and 200x magnification
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Figure 10 is a photomicrograph of a chip being formed during the same drilling
process which generated the results in figure 9. Whilst it is more difficult to
comprehend, as the chip is curving towards the sectioned surface due to the
action of the rotating cutting edge, there are similarities to the turning chip
sample with austenite being squeezed through the ferrite. In contrast to the
turned sample however, there is greater segmentation of the ferrite phase

indicating a more abusive cutting action.
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Figure 10: Photomicrograph of chip formation during drilling of 2205 DSS 50x magnification
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Chapter 3 Intelligent Machines

The evidence is plain that a lack of awareness to structured tool management
has resulted in the reduced performance of manufacturing systems. Plant
tooling systems affect product design selections, machine loading, job
consignments, capacity development, and real-time part routing assessments.
With escalating automation in manufacturing systems, there is a budding need
to integrate tool management scrupulously into system design, planning and
control. In the course of the past decades, the field of Artificial Intelligence has
advanced significantly in the direction of computerising human reasoning.
Symbolic approaches are based on the hypothesis of symbolic representation—
the idea that perception and cognitive processes can be modelled as acquiring,
influencing, relating, and changing symbolic representations. Expert systems
embody the earliest and mainly established type of intelligent systems
attempting to personify the “knowledge” of a human expert in a computer
program. Knowledge representation in these systems ensues symbolically

having a structure consisting of production rules, outlines or semantic networks.

A different approach to intelligent systems involves creating computer
algorithms with the structural designs and dispensation capabilities that imitate
the processing characteristics of our biological nervous systems. The
technology that endeavours to attain these results is called neural computing or
artificial neural networks. These sub symbolic schemes work with numeric
values and appear to be better suited for handling tasks involving perception

and cognition, and possibly even tasks that call for combined perception and
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cognition. Investigations have confirmed that—analogous to our present
conception of biological compositions—adaptive ANN procedures appear to be
a feasible solution for the lower level of intelligent, hierarchical control and
monitoring systems where capabilities for real-time functioning, ambiguity
handling, sensor integration, and learning are crucial features (Basim Al-Najjar,

2000).

3.1 Biological Intelligence

To segregate the human brain into partitions and perform a systematic analysis
on how they are interconnected, we need to map and build a flow chart of signal
activity, define structural roles for each section, and infer the associations and
dependencies among the partitions. However, we only have a modest estimate
at best about connectivity between neurons, how the neurons effect actions as
an ensemble, and how information is converted to knowledge and intelligence
(SG Woysoski, 2006). Attempts to replicate the connectivity of biological
neuronal cells have been restricted to consider ensembles of neurons
positioned equally in a two dimensional array where the connectivity may follow
a given criteria (fully connected or partially connected to neighbouring cells) or
be chosen arbitrarily (Kak, 2005). In an effort to discern what lies behind the
way of thinking of human minds, one of the most exigent aspects for
neuroscientists is that current technologies are unable to keep track of and
quantify all the signals used for inter-neural communication, even in an
infinitesimal segment of the brain. If this were indeed achievable, it would permit
us to accurately comprehend the emergence of intelligence from an ensemble

of neurons. A general practice is to complement experimental brain study with
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the building of computational models supported by neuro-biological data and to
study their properties by theoretical and simulation means. This is done to
overcome the limitation of measuring and quantifying brain wave signals.
Following this trend are the computational models of information processing

with biological relevance, the so called biologically realistic neural networks.

3.1.1 Biological Neurons and Networks

As mentioned earlier, Artificial Neural Networks are modelled along the lines of
biological neurons and the neuronal networks in the brain. It is therefore
necessary, to consider the functioning of biological systems in order to emulate
their behaviour using computers. The brain is a dense neural network consisting
of an estimated 100 billion neurons that use biochemical processes to obtain,
compute and convey information. A diagram of a nerve cell typical of those in
the brain is shown in Figure 11. The output area of the neuron is a long
branching fibre called the axon. The input area of the neuron is a set of

branching fibres called dendrites.
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Figure 11: Schematic of a biological neuron

The dendrites of a neuron form a dendrite tree which is connected to thousands
of other neurons. When any of the neurons fire, a positive or negative charge is
received by a dendrite. The strengths of all the received charges are
extrapolated through the processes of spatial and temporal précis. Spatial
summation occurs when several weak signals are converted into a single big
signal, while temporal summation converts a rapid series of weak pulses from
one source into a large signal. The cumulative input is then passed to the cell
body or soma. If the combined input to the neuron is greater than a threshold
value, the neuron fires — i.e. an output signal is produced that is conveyed
down the axon. The strength of the output is steady even if the input is barely
above the threshold or multiplied several times. In addition, the output strength
is not affected by the number of branches of the axon; the signal reaches each

terminal with identical potency.

26



Intelligent Machines

3.2 Artificial Intelligence

Artificial intelligence (Al) is the conception that, in principle, learning and other
facets of human intelligence could be described accurately enough that a
machine could be programmed to simulate it. Intelligent machines, and the
branch of computer science which aims to create it, constitutes the field of
Artificial Intelligence. Major Al textbooks define the field as "the study and
design of intelligent agents" where an intelligent agent is a system that
perceives its environment and takes actions which exploit its chances of
success. John McCarthy, who coined the term in 1956, defines Al as "the
science and engineering of making intelligent machines" (Skillings, 2006). This
raises philosophical questions about the nature of the mind and limits of
scientific hauteur. Artificial intelligence has been the subject of overwhelming
optimism, has suffered dramatic setbacks and, today, has become an
indispensable part of the technology industry, providing the “heavy lifting” for the
most convoluted problems in computer science. The capability to build
intelligent machines has intrigued humans since ancient times. With the advent
of the computer and 50 years of research into Al programming techniques, this
vision of creating intelligent machines is being swiftly realised. Researchers are
creating systems which can mimic human thought, understand speech, beat the
best human chess player, and perform a myriad of other feats never before
conceived to be possible. In the pursuit to create intelligent machines, the field
of Artificial Intelligence has been divided into several different approaches
based on judgments about the methods and theories showing the most
potential. These competing theories have led researchers into following one of
two basic paths — bottom-up and top-down. Bottom-up theorists believe the

best way to accomplish artificial intelligence is to build electronic replicas of the
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brain's composite network of neurons, while the top-down approach attempts to
impersonate the brain's behaviour with computer programs (Satoh, 2004).
Expert Systems constitute a part of the top-down approach while Artificial

Neural Networks emulate the bottom-up theory in their architectures.

3.2.1 Artificial Neural Networks

Neural networks are computational configurations inspired by the study of
biological neural processing. The field is known by various names, such as
connectionism, parallel distributed processing, neuro-computing, natural
intelligent systems, machine learning, and artificial neural networks. Artificial
Neural Network architectures are motivated by models of the brain and nerve
cells. Individual neurons are convoluted and have a multitude of parts, sub-
systems, and control methods. Neurons exchange information by way of a
range of electrochemical pathways. There are over 100 different classes of
neurons, depending on the method of categorisation. Collectively neurons and
their connections form a process that is not binary, established, nor

synchronous (Seneker, 2002).

An artificial neural network is an attempt to simulate, within specialised
hardware or by means of simulation software, the numerous layers of simple
processing elements of neurons where each neuron is linked to a number of
neighbouring neurons with changing coefficients of connectivity that represent
the strengths of the connections. Learning is accomplished by adjusting the
strength of these connections and in effect, the network outputs suitable results

(J. Ashar & G. Littlefair, 2008). The basic components of a neural network are
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modelled after the architecture of the brain. Some neural network structures are
not strongly related to the brain and some do not have a biological counterpart
in the brain. Yet, neural networks have a striking resemblance to the biological
brain and, thus, share terminology from neuroscience. The fundamental unit of
a neural network is the artificial neuron that simulates the basic functions of
biological neurons. Artificial neurons are simpler than their biological

counterparts; Figure 12 shows the elements of an artificial neuron.
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Figure 12: Elements of an Artificial Neuron

The inputs to the network are multiplied by a connection weight Wn. In the
simplest case, these products are simply summed and processed by a transfer
function to generate a result, and then an output. Although all artificial neural
networks are constructed using this basic building block, the essentials may
vary. Biological neural networks are constructed in three dimensions from
infinitesimal components. While these neurons appear to be capable of
unlimited interconnections, this is not true of artificial networks that are the

bunching of simple artificial neurons. Clustering occurs by the creation of layers,
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the size and number of which may vary, and then connecting these layers to
one another. Essentially, all artificial neural networks have a similar topology.
There is an input layer of neurons which forms the external link to receive inputs
from the outside world and another layer of neurons provide the network’s
outputs to the outside world; all the remaining neuronal layers are the hidden or

computational layers and these are hidden from view.

Input Layer

Hidden Layer (there
may be several
hidden layers)

Output Layer

Figure 13: Layers in an Artificial Neural Network

Figure 13 illustrates how neurons in an ANN are organised into layers. The
input layer consists of neurons receiving input from external sources. The
output layer consists of neurons that communicate the results of the network to
a user or entity. Additionally there are typically one or more hidden layers
between the input and output layers, and layers are usually fully interconnected

but are not required to be so (Paugam-Moisy, 2001).
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ANNSs can be used to model complex relationships between inputs and outputs
or to find patterns in data. There is no precise agreed-upon definition among
researchers as to what a neural network is, but most would agree that it
involves a network of simple processing elements (neurons), which can exhibit
complex global behaviour, determined by the connections between the
processing elements and element parameters (J. Ashar & G. Littlefair, 2008).
The original inspiration for the technique was from examination of the central
nervous system. ANNSs, like people, learn by example. An ANN may be
configured for a specific application, such as pattern recognition or data
classification, through a learning process. Learning in biological systems
involves adjustments to the synaptic connections that exist between the
neurons and this is true of ANNs as well. Neural networks with their remarkable
ability to derive meaning from complicated or imprecise data can be used to
mine patterns and detect trends that are too complex to be observed by either
humans or other computer techniques. A trained neural network can be thought
of as an "expert" in the category of information it has been given to analyse.
This expert can then be used to provide projections given new situations of

interest and answer "what if* questions.

3.2.2 Learning in Artificial Neural Networks

ANNSs are designed to learn from examples and from experience. The networks
‘learn” to perform better with more training and exhaustive testing. Just like a
child must learn to walk before he can run, a neural network must be guided in
its transition from a raw piece of computer code to a fully trained network

capable of performing classification and prediction tasks in its area of
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‘expertise”. There are three different learning paradigms that can be used to
train a neural network. Supervised and unsupervised learning are the most
common, with hybrid approaches between the two becoming increasingly
common as well. Competitive learning may be considered to be the third
paradigm. Artificial Neural networks are considered to be “machine learning
algorithms”. This is due to the fact that during training, the connection weights
are transformed to influence better solutions to the given problem. Similar to the
neuronal connections in our brains, neurons in an ANN are connected to each
other through weighted connections, i.e. the strength of an inter-neuronal
connection is defined by its weight. The ANN learns by adjusting these weight
values in order to learn from a particular set of inputs. The higher the value of
the weight, the stronger is the inter-neuronal connection and thus this

connection has a higher probability of being excited.

3.2.2.1 Supervised Learning

Supervised learning is a technique by which a neural network learns a function
from a set of training data. This set of training data consists of a set of inputs
and a set of corresponding or desired outputs. The neural network is essentially
being trained to learn a concept in the presence of a “supervisor”. The task of
the supervised neural network is to predict the value of the learned function for
any valid input, subsequent to having seen a number of training examples (i.e.
pairs of input and desired output). Supervised learning is achieved by
incorporating a “teacher” into the learning algorithm or a “critic’. The difference
between the two is that a “critic” tells the neural network whether the output of

its learning algorithm is right or wrong, while a “teacher” tells the neural network
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what the correct answer or the target output should be. Learning with a critic
takes longer because the network isn’t told straight away what the correct
output is (Lippmann, 1989). The network updates its weights so that it
maximises the number of inputs on which it is correct, when learning with a
critic, and thus learning with a critic takes longer than learning with a teacher.
An illustration of how a neural network learns using the Supervised Learning

paradigm is shown in Fig. 14.

Neural Net

Desired
output

T weight adjustments

Input Supervised
Learning

error vector

Figure 14: Supervised Learning Paradigm

The figure above also shows the learning rule for the “Error-Back propagation”
type of neural network model where the error or the difference between the
actual output and desired output is propagated back to the neural network and
the networks adjusts its inter-connection weights so as to obtain the actual

output as close to the desired output as possible.

3.2.2.2 Unsupervised Learning
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An unsupervised neural network learns without a teacher or a critic. Here, the
network does not receive any information or feedback from a supervisor;
instead it relies on an internal criterion to guide its learning outcomes. This
criterion that drives the learning procedure in essence states that the input
topology and formatting must be mapped onto the output vectors or the learning
outcomes. The objective is to create an output representation in which similar
inputs stimulate output units that are close to one another; i.e. to form a
topological map of the input data and representations. Thus, the relationships
between the input parameters are preserved and mapped onto the output
parameters. Figure 15 illustrates this principle. The objective is to create an
output representation in which similar inputs trigger output units that are close to
one another. The network is shown a series of shapes and colours. The
network gradually changes the weights so that similar shapes are mapped to
neighbouring units. From an initial random assignment, the red and black
rectangles end up in the bottom left hand corner — because they are similar.
The triangles and circles end up at the opposite extremes of the map.
Unsupervised learning may also be referred to as self-organisation, in the sense
that a neural network that learns without a supervisor does so by self-organising
data presented to it and identifies their emergent collective properties (Fritzke,

1997).
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Figure 15: Unsupervised Learning. Input topology is preserved.

In the supervised learning paradigm, the network learns or trains offline while in
the unsupervised learning paradigm the network learns or trains itself online.
This is because in supervised learning the aspect of learning consists of a
distinct or separate phase during which the network is trained followed by an
operation phase. Unsupervised learning consists of learning and operating at
the same time and thus may be considered to be online learning (Kangas,

1990).

3.2.3 The Self Organising Feature Map

The Self-Organising Map (SOM) or the Self-Organising Feature Map (SOFM)
has the particular property of efficiently creating spatially organised "internal

representations” of the various features in the input signals and their concepts.
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The ability of the SOFM is unique amongst all the architectures and algorithms
suggested for ANNs (Kohonen, 1990). Self-organising maps are a data
visualisation technique invented by Professor Teuvo Kohonen which reduces
the dimensionality of data through the use of self-organising neural networks.
The problem that data visualisation attempts to solve is that humans simply
cannot visualise high dimensional data as is and thus techniques are created to
help us understand this high dimensional data (J. Ashar & G. Littlefair, 2008).
Learning in a SOFM is achieved using the unsupervised learning paradigm. The
learning outcomes emerge without the need of an external “teacher” providing
the desired response to the network. In this type of network, neighbouring
neuronal cells compete with each other for the input, execute their actions by
means of joint lateral communications, and then develop adaptively into specific
detectors of different signal patterns. This category of learning is called
competitive learning. It is self-organising and unsupervised learning. The SOFM
is a sheet-like artificial neural network, the cells of which become specifically
tuned to various input signal patterns or classes of patterns through an
unsupervised learning process (Kohonen, 1990). The basic concept underlying
competitive learning is — for a given set of observations and assuming a set of
variable reference vectors (initialised in a random sequence), for each time
interval if the observables can somehow be simultaneously compared with each
of the reference vectors from the initialised set of reference vectors then the
best matching unit is to be updated so that it matches even more closely to the
current input vector. If this comparison between the reference vector and input
unit is done by calculating a distance measure then this distance must be
decreased and all other reference vectors must be left intact. Thus, different

reference vectors tend to be “tuned in” to the diverse domains of the given
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input. Eventually, only one cell or local group of cells at a time gives the active

response to the current input. An illustration of this principle is shown in Fig. 16.
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Figure 16: Monotonically decreasing neighbourhoods with time (t1<t2<t3).

This self-organisation ability can substantially reduce the programming burden
which eventually brings down the overall cost of deploying a system. Building
an automated system for a particular environment or a specific purpose involves
high costs in terms of hours spent and resources needed for programming such
a system. Traditionally, programming accounts for about one third of the total
cost of a system but using the self-organisation ability, this cost is greatly
reduced. Moreover, unsupervised models are often fast and their learning
speeds, especially when using computational shortcuts, can be augmented to
orders of magnitude greater than that of numerous other neural networks. Thus
much larger maps than those used so far are quite realistic (Kohonen, 1990).
Self-organising feature maps (SOFMs), or just Self Organising Maps (SOMs)
are important unsupervised Artificial Neural Network models that have shown
great potential in application fields such as speech recognition applications and
various pattern recognition tasks involving very noisy signals (J. Ashar & G

Littlefair, 2008). Commonly, the SOFM is used to learn the topology of sensory
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inputs by clustering the data and is used in control basically as a classifier. The
final sensory map can then be used to classify new incoming data. It is
important to note that when using supervised models, the error signals are
available directly at the output of the network and are explicitly used during
network learning and training. In the unsupervised case, the error signals are
not computed directly, rather through the use of the definitions in the network’s
learning rule. For this reason, when unsupervised neural models are used in
modelling and control, they are usually referred to as self-supervised models
(Kohonen, 1999 ). This type of learning is controlled by knowledge of the
external world provided by sensors and the consequences of actions performed
by the network. These networks have also provided acumen into how
mammalian brains are organised (de Barreto, 2003). The self organising ability

may be depicted as shown in Fig. 17.
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Figure 17: Self-Organisation

Over the past decades, the field of Artificial Intelligence has made great
progress toward transcribing human reasoning into digital data. Figurative

approaches are based on the hypothesis of symbolic depiction — the idea that
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perception and cognitive processes can be modelled as acquiring, influencing,
co-relating and adapting to the symbolic representations. Perhaps the best way
to move forward is to shift the focus from modifying system behaviour to the
processes of cognition that source the performance of the ANNs (Kohonen).
Most works have concentrated on robotic systems that are solely sensory in
nature. Recently, several studies have proposed the Self Organising Feature
Map for the difficult tasks of non-linear modelling. The SOFM can extract
features of input data based on incremental learning. The fundamental result in
self-organisation is that if the input signals have a distinct probability density
function, then the weight vectors of the cells try to match it; however complex its

form.

The SOFM is a neural network that closely resembles how the brain organises
memory into neuronal connections. Emulating the way in which human brains
decode data from various sources (senses) holds tremendous value. Data
fusion is the key process for accurate environmental perception. Data captured
to characterise the condition of a complex piece of equipment should be as
complete as the information we use for our cognitive purposes — i.e. contain
primary and secondary data which is used to arrive at a consensus of opinion

(Littlefair, 2007).

3.2.4 Linking the brain and the computer- chaos and synesthesia

It is a generalisation to say that it is impossible to artificially imitate the human
brain due to the limitations of current computational resources. In actuality, the
key concern for failing to properly emulate the human way of information

processing is the existence of many un-interpreted details of the brain structure
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and behaviour (SG Wysoski). Our brain is chaotic. Chaos has been found in
how we process external senses, and may be key to memory. It has been
implicated in at least one theory of the evolution of vocabulary as well as
synesthesia (FIRE). Synesthesia is a neurological phenomenon in which the
stimulation of one sensory organ leads to automatic or involuntary sensations in
another sensory organ. In its most common form known as grapheme - colour
synesthesia, letters and/or numbers are perceived as inherently coloured and
having personalities. Synesthesia has been being diagnosed for almost three
centuries, but the medical profession keeps forgetting about the condition. The
word Synesthesia means “joined sensation” and shares a root with anesthesia
which means “no sensation”. Synesthesia is not an abnormality; in fact it is a
normal brain development process that is intuitively presented to the
consciousness in a minority of individuals. The condition symbolises a rare
ability to hear colours, taste shapes, or experiences of other equally astounding
sensory amalgamations whose nature seems too complex for most of us to
envisage. Synesthetes are normal in the conventional sense of the term and
they appear to be bright and intelligent. Standard neurological medical exams
are also normal. Synesthetic associations are usually unidirectional, meaning
that a particular synesthete sight may induce touch, but touch would not induce
visual sensations (Ramachandran, 2001). Simulating synesthetic type of
neurological behaviour in Artificial Neural Networks (the core of Artificially
Intelligent Systems) will help shed light on their functioning and classification
capabilities. This in turn may also deepen our understanding as to why these
systems are unstable when applied in real world environments. The process of
disassembly and reassembly takes on an entirely new meaning. The eventual

goal is to create efficient, robust systems with extended autonomous control
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over processes that are being employed — essentially creating the “factory of

the future” (J. Ashar & G. Littlefair, 2008).

Most models of the brain do not include chaos. The models that do include the
concept of organised chaos in their design, don't seem to be convincingly
biological (Walter). In an attempt to discover what instigates the reasoning of
human minds, one of the most testing aspects for scientific analysis is that the
current technologies cannot keep track and measure all the signals used for
inter-neural communication, even in an infinitesimal portion of the brain
(Ramachandran, 2001). If this was possible, it would enable us to accurately
appreciate the emergence of intelligence from a collection of neurons. In an
attempt to overcome this limitation, a common practice is to complement the
study with the development of intelligent computational models based on
experimental data and to study their properties by theoretical and simulation
means (Rehorn, 2005). The SOFM is proposed as a feasible elective to more
traditional neural network architectures. Its analytical portrayal has already been
developed further in the technical than in the biological direction. The learning
results accomplished appear to be as expected; at least indicating that the
adaptive processes at work in the map may be analogous to those encountered

in the brain.
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Chapter 4 Experimental Procedure

The work presented in the previous chapters has shed light on certain elements
which were believed to offer the best capability for developing a robust,
accurate, flexible and efficient tool wear monitoring system. A series of
experimental trials and tests were designed and executed with the intention of
determining the process by which an accurate description of the tool wear state

could be provided. The approach was divided into the following stages:

* Collection of comprehensive information relating to multi-component tool
force (in all the three directions) and torque.

* Pre-processing of raw data to reduce dimensionality and integrate
vectors from various sensors while maintaining completeness in
information.

* Application of state-of-the-art Self-Organising Feature Map type of neural
network to coalesce integrated multisensory data, providing a detailed

description of the tool wears state.

These stages are discussed in detail in the following sections.

4.1 Drilling Trials

To give maximum credibility to this research investigation, artificially created
wear and wear produced by using unrealistic operating conditions was not
perceived to be an appropriate course of action to follow. Accordingly, only wear

produced by machining components with parameters prescribed by industrial
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practices were employed. This methodology is the only way to ensure that the
captured data is truly representative of anything which is likely to exist. Data
from tools where flank wear has been produced by the process of drilling is only
representative of drill flank wear and can be considered to be nothing else. The
experimental drilling trials were designed with these factors to be of paramount

importance.

Drilling tests were performed using a solid carbide drill on a duplex stainless
steel workpiece. These steels offer good resistance to local and uniform
corrosion. The duplex microstructure contributes to their high strength and high
resistance to stress corrosion cracking. These properties make the steel best
suited to be employed for experiments to measure drill wear ("Duplex Steel
Information," November 2005.; Smith, 2007). The basic machining criteria for
the experiments are detailed below and a schematic representation of the

process is shown in Fig. 18. Figures 19 and 20 show the actual experimental

setup.
Machining Variable Machining Variable condition
Cutting Speed(s) 35 m/min & 45 m/min
Feed rate(s) 0.125 mm/rev & 0.175 mm/rev
Drills from Iscar Pacific. Family:SCD-AP3
Machine Tool (Dia12.5); Solid carbide drills without coolant
holes. Drilling depth 3xD
Workpiece material Duplex Stainless Steel SAF 2205.
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Spindle
Drill
Workpiece
‘TWW— Charge
Amplifier
Computer

Dynamic
Data

Figure 18: Schematic of experimental setup
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Figure 19: Experimental setup showing (clockwise from left) Charge Amplifier, Computer,
Drilling machine with Duplex Steel workpiece and drill attached.
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Figure 20: Close-up of the drill and workpiece
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4.2 Force Measurement

At the outset of the experimental stage, the simultaneous measurement of the
three perpendicular forces was identified as a priority. By analysing the forces
along the three mutually perpendicular axes, latter analysis of the most
sensitive components would be established. This was necessary since no clear
consensus of opinion was provided in the literature and impulsive, unfounded
selection was not considered to be a suitable avenue worth pursuing. The
Kistler three component quartz dynamometer (type 9257B) was selected for the

force measurements (Fig. 21).

Figure 21: Kistler three component dynamometer, 5 kN

The dynamometer consists of four 3-component force sensors fitted under high

pre-load between a base plate and a top plate. Each sensor contains three
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pairs of quartz plates: one sensitive to pressure in the Z direction and the other
two responding to shear in the X and Y directions respectively. As a result, the
dynamometer is able to detect the smallest changes in large forces. A major
feature of this design is that the force components are measured practically
without any displacement. Also, the dynamometer is rust-proof and protected
against penetration of cutting fluids. A special thermal insulation coating is
integrated in the top plate which renders the device insensitive to temperature
influences. A full specification of the dynamometer and the calibration charts for
the actual unit used are provided in Appendix A. In addition to the
dynamometer, two other items of associated Kistler equipment were utilised in
the measurement of forces. These were: armoured connecting cable type
1687B5; and a three channel charge amplifier type 5070A (Fig. 22). A full

specification of the charge amplifier is provided in Appendix A.
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Figure 22: Kistler four channel charge amplifier type 5070A

4.3 Data Capture and pre-processing

The data capture was conducted in real time using the DynoWare software
along with the dynamometer and charge amplifier. Figures 23 and 24 show

typical examples of the captured real-time data.
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Figure 23: Example of captured real-time data

The figure above shows the forces captured along the three axes (x, y and z)

along with the calculated forces from the 4 channels present in the

dynamometer. The figure below shows the magnified version of the forces in

the x direction, i.e. Fx

50



Experimental Procedure

¥ DynoWare - [TrialA1. dwd:9] (=)
¥ File  Acquisition View Analysis Tools Options Window Help -

N e EEEEE-C

= Configuration »
Trial09/07/2008

Export...

Print... Chr4P Fx [N]
Print Preview...
Print Setup...

Copy to Clipboard
Exit
400

300+

200+

100

-100

-200

-3004

-400

-500- Cycle No.: 1

Time [s]

Export data UM

Figure 24: Magnified (Force along the x-axis)

This data is then exported as digital data into an excel worksheet. The

specifications of all the forces are provided in Appendix B.

The digital data was analysed using the DaDiSP/32 software. DaDiSP is a
powerful generic tool for data display and analysis. Once the data is captured,
DaDiSP allows displaying the data for subsequent manipulation and analysis.

Figure 25 shows how the data is manipulated using DaDiSP.
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Figure 25: Using DaDiSP for data display, manipulation and analysis

Figure 25 shows the data being read and data evaluation or analysis being

performed. The exported digital data is first read as a series in DaDiSP. This is

shown in Fig. 25 in the first window from the top left. This data is then broken up

into several parts of dynamic data which are extracted as shown in the bottom-

left window in the figure. These extracted parts of the data have an overlap (of

48 sampling points)

with each other to maintain the continuity and

completeness in the output results. This extracted data is then analysed by

calculating the Power Spectral Density (PSD) of the signal. This is done using

the psd function. The dynamic part of the PSD is shown in the bottom-right

window in Fig. 25. The power spectral density of the data shows the strength of

the variations (energy) as a function of frequency. In other words, it shows at
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which frequencies variations are strong and at which frequencies variations are
weak. PSD is a very useful tool to identify oscillatory signals in time series data.
It also gives the amplitudes of the data set. PSD analysis is especially useful to
detect unwanted vibrations that stem from machining operations. The PSD
gives an overall picture of the frequency of vibrations and thus aids in the

identification of frequencies at which tool wear is noticeable.

To further characterise the data, it was considered to calculate the Kurtosis of
the signals. Kurtosis is a measure of whether the data are peaked or flat relative
to a normal distribution. That is, data sets with high kurtosis tend to have a
distinct peak near the mean, decline rather rapidly, and have heavy tails. Data
sets with low kurtosis tend to have a flat top near the mean rather than a sharp
peak. A uniform distribution would be the extreme case. Significant kurtosis
values clearly indicate that data are not normal. The kurtosis distributions that
were calculated are shown in Fig. 26. It is clear from the calculated kurtosis
distributions that the distribution deviations are relatively high and some of the
calculated values are significant. Thus, the kurtosis distributions were not
considered to be a fitting indicator of the data distribution. The entire range of

the calculated Kurtosis values is given in Appendix B.
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Figure 26: Kurtosis of forces in the x direction for trials with the new drill

4.4 Artificial Neural Network Processing

The program utilised for predicting tool wear during the process of drilling was a
self-organising feature map. This program uses the generalised SOM algorithm
described in the previous chapters. The operation of the program has two main
modules: learning and classification. The learning in this program is done using
the unsupervised paradigm of learning and the network learns to classify the
inputs wear or no wear. During the learning phase, the neural network aims to
reduce the error between the input data and the selected neuronal cells that
represent the output. This reduction in error ultimately leads to only a few
neurons being activated in the output layer for the corresponding input signals.

Thus the network learns to classify or re-organises itself according to the
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variations in the input domain. Figure 27 shows the graph of the error versus

number of iterations during the learning phase.

Training progress
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Figure 27: Reduction in classification errors during SOM training

Figure 27 shows the progress after 100 iterations of the program and as visible

from the graph, the error values are still not at a minimum after 100 runs. Thus,
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the learning phase of the network involved 100,000 iterations of the program.
Once the error values were stabilised, the learning phase ended and the
network was ready to classify. During classification, the network loads
previously learnt patterns (it does so by adjusting the inter-neuronal connection
weights) and calculates the output for a given set of input data. The output
calculation or classification depends on the neurons which are excited in the
output layer. The decision to excite which neurons in the output layer are
decided by the SOM based on previous knowledge and learnt classification.

This phenomenon is illustrated in Fig. 28.

Output layer

inter-
connection
weights

X-‘ X2 ..... x

Input layer

Figure 28: Generating an output by activating a neuron(s) in the output layer for
corresponding inputs. Data dimensionality in a SOM -
http://www.sis.pitt.edu/~ssyn/som/som.html
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Chapter 5 Results and Observations

The results presented in this chapter consist of multisensory input values to the
ANN for both learning and subsequent classification. The outputs obtained from
the SOM have also been presented which indicate the classification
performance of the ANN under varying conditions. Graphical plots have been
used to visualise the data sets and the display of data is made as clear and
practicable as possible. Neural network coding and simulation was done using
R. R is a language and environment for statistical computing and graphics. R
provides a wide variety of statistical and graphical techniques, and is highly
extensible (Team, 2008). The program written for the SOFM is based on the
function provided in the “kohonen” package of R (R. Wehrens, 2007). Although
the basic calculation subroutine is little changed, the data input, handling,

execution, storage and output formatting is all original.

The learning and training progress with the SOM is shown in Figures 29 and 30

and the classification and prediction results appear in Figures 31 to 33.

5.1 Self-Organising Map training progress observations

Figure 29 shows a plot of the SOM after 100 iterations during the training
phase. The figure shows the neurons within the SOM output layer and the
distribution of data within these neurons. Depending on the input domain
signals, the best matching unit from the output layer is chosen to represent the
output. The output of the network is classified into acceptable or unacceptable

tool wear. The neuron that is stimulated in the output layer will be the neuron
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whose data distribution matches the closest to the input data distribution. It can
be seen from the figure that the neighbourhoods or the sampling regions of the
neurons do not overlap with each other and thus information sharing between

the neurons is nil or very low.

FIRST

B Feed B psd B psd3
O Speed O psd1 B psd4
O Static_force B psd.2

Figure 29: Plot of the first SOM after 100 iterations during the training phase

Figure 30 shows the neuronal plot of the SOM after 20,000 iterations during the
training phase. The difference between Figures 29 & 30 is apparent. The
neurons in Fig. 30 are more in number; the data distribution inside the neurons
is gradually starting to form clusters or groups of neurons with analogous data
distributions. This is the beginning of the classification stage. Also, the neuronal

neighbourhoods are coming closer to each other ever so slightly indicating that
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the data distribution within the neurons is inclining towards being fuzzy or

representative of the “real world” data.

20,000

B Speed 8 psdil B psdd
O Feed O psd2 B psd5
O Static_Force B psd3

Figure 30: Neuronal plot of the SOM after 20,000 iterations during the training phase

5.2 Results of SOM training - Classification

Figure 31 shows the neuronal plot of the SOM that has undergone the learning

process and has re-organised itself to match the patterns in the input domain.
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This SOM is the result of 100,000 iterations of the program. A full listing of the

SOM
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Figure 31: Neuronal plot of the SOM after 100,000 runs

In Fig. 31, we can see that the SOM has now re-organised itself to match the
input patterns as closely as possible. The neurons with similar data distributions
are bunched together and there is significant overlap between the neuronal
neighbourhoods. Thus, the output layer distribution is fuzzy and corresponds to
the real-world data distributions in the input domain. Due to this overlap
between the neuronal neighbourhoods in the output domain, for a given set of
input data distributions, a small set of neurons in the output layer will be excited
or stimulated to give the output. This classification and re-organisation of the
neurons within the neural network is done autonomously by the ANN during the

learning phase and involves no human supervision or input. Thus, the
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independent nature of the SOM serves us well for predicting the outcomes of

non-linear processes in stochastic environments.
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5.3 SOM prediction

CODES X, Y

NI S5e
\IA.IA\

L oL L

ST

B Unaccpetable tool wear
O Acceptable tool wear

Figure 32: Classification results showing neuronal areas in the SOM corresponding to tool
wear or no tool wear

Figure 32 shows the neuronal plot of the neural network during the prediction
phase. The bottom right corner of the plot represents the neurons which
correspond to the data distributions showing acceptable tool wear in the input
domain. If the multi-sensory input to the SOM were indicative of acceptable
levels of tool wear, then the output of the SOM would be presented by the
excitatory response generated by these neurons. The neurons in the top-left

corner of the map show the neurons that are representative of unacceptable

62



Results and Observations

levels of tool wear. Thus, the neural network has “learned” to distinguish

between two different levels of drill wear.

Figure 33 shows the prediction performed by the SOM in 100,000 iterations of

the program.

SOM Prediction
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Mean distance to closest unit

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Iteration

Figure 33: SOM prediction; X (Black) is the input while Y (Red) is the output.

The input domain is dynamic for the first 40,000 runs of the program and then
stabilises. From the graph it is plain that the output patterns closely follow the
input patterns and therefore the SOM prediction is accurate. The total number
of miscalculations can be considered to be low in relation to the number of runs
of the program that were made. This phenomenon would tend to indicate that
the ANN has successfully learned the problem of tool wear detection and has
reasonably good generalisation abilities. The odd misclassification probably

suggests that there were local variations in the data caused due to the input
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domain being dependent on the machine variables. The misclassifications were
also limited to adjacent data sets in the input domain displaying a general trend

of classifying to a lower level of tool wear.
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Chapter 6 Conclusions and Discussion

The results presented in the previous chapter demonstrate the capabilities of
the developed system by the evaluation of a particularly demanding set of data
obtained from different machining configurations and conditions, albeit the same
process. Accurate classification of tool wear provides evidence that the artificial
neural network was able to identify similarities between the data sets that were
given to it as input for learning and the test data sets. Moreover, it indicates that
the data was highly process dependant with little (if any) machine
dependencies. The Self-Organising Feature Map appears, therefore, to be an
effective and efficient prediction model with adequate knowledge retained by

reorganisation of the neurons constituting the map.

The promising performance presented here, is not merely a reflection of the
ANN capabilities however. The pre-processing and integration techniques are
the information suppliers on the problem, and as such, these have also
demonstrated their adeptness allowing for judgemental decision making.

Hence, successful classification is an indicator of the “system” performance.

Tool wear identification and monitoring is a complex phenomenon. Accurate
modelling of the problem requires a highly evolved and comprehensive solution.
The work done so far has mainly focussed on the use of neural networks which
learn using the supervised learning paradigm. These networks perform well
under known conditions, but even a minor deviation from their predefined
parameters can cause such networks to fail. The principal aim of this research
is to construct a robust and efficient system for tool wear monitoring in drilling

operations.
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The Self-Organising Feature Map is a neural network that closely resembles
how the brain functions. Mirroring the way in which human brains decode data
from various sources (senses) possesses tremendous merit. Data captured to
characterise the condition of a complex piece of equipment should contain

primary and secondary data which is used to arrive at a consensus of opinion.

Learning in this network is unsupervised, thus making it independent of human
errors caused during the training phase. Furthermore, the network is able to
adapt to changing environments and conditions. This flexibility in adaption

integrates well with the stochastic nature of industrial environments.

The research presented demonstrates the type of system which can
successfully be employed to monitor machining operations — an artificially
intelligent program, providing information on a variety of distribution parameters,
which can be successfully applied to a personal computer. Sufficiently long data
samples, which ensure accuracy, need not result in prohibitively large
computation times thus making the program’s application to online tool
condition monitoring a real possibility. The true robustness of the system is to
be established by the application of the system in other industrial environments.
The classification of tool wear using unsupervised neural networks is regarded
as a strategic step forward in the progress towards the creation of a truly

unmanned machining environment.

The findings of this research may be summarised below:

* There is a need for reliable and robust online tool condition monitoring

systems capable of providing information on tool wear in process time.
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It appears unlikely that tool wear system variables can be accurately

predicted using inputs from the human supervisor for the program.

Artificial Neural Networks are the best adapted for modelling non-linear
processes which make them inherently suitable for problems such as tool

wear monitoring which itself is a highly non-linear and stochastic process.

Complex time domain information can be satisfactorily expressed using

the power spectral density of the data.

The unsupervised learning paradigm is proven to be better suited and
more robust for the prediction of tool wear as opposed to the supervised

learning paradigm used by the majority of research in the field of TCM.

The same basic system, once trained, is capable of accurately classifying

tool wear during the process of drilling.
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Chapter 7 Further Work

The research presented in this thesis has led to the identification of a number of

areas which are considered worthy of further investigation and development.

They may be identified as follows:

For the developed system to be acceptable in true industrial
environments, the system has to remain effective in changing
environments with altering machine variables. Development of a
universal TCM system is a particularly active research area with the

continuous introduction of more advanced technologies.

Having established that unsupervised learning is an effective way to go
when it comes to neural network learning and development, the next
evolutionary step would be create an algorithm for ANN learning which
involves more human phenomenon in its design and behaviour. A
combination of supervised and unsupervised learning would be a path

worth pursuing.

Having established that tool wear prediction is possible, the next step
would be to automate the modification of tool offsets. This step is
becoming considerably simpler to achieve with greater utilisation of

micro-chip based machine controllers.

The software and hardware elements for a comprehensive TCM system
must be devised into a dedicated system for data-capture, pre-
processing and prediction. These systems should include the memory

capabilities for simultaneous data capture of various dynamic
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characteristics and also allow suitably fast classification of tool wear for

industry acceptance.

Embedding the ANN architecture in a TCM system would enable greater
levels of un-manned machining operations. The eventual aim would be to
create machines that are capable of performing all the functions which

are done by a machine operator in contemporary factory settings.

Drilling is the most common machining operation and monitoring of small
diameter drills is particularly crucial in automated factory settings. The
work presented here is the adoption of the general techniques and
methodologies used in other cutting processes such as milling and
tapping. Monitoring individual inserts rather than the whole cutting tool,
which at best would supply average tool wear value of the inserts, would
be the next step towards the generalisation of TCM systems. The
collection of in-cut data is undoubtedly the key element to effective tool
wear monitoring and this can be simply achieved by utilising the
relationship of the tool to the collected time domain information. The use
of relatively short time domain signals in this work is therefore considered

to be highly transportable to other machining operations.

69



Further Work

References

Abu-Mahfouz, I. (2005). Drill flank wear estimation using supervised
vector quantization neural networks. Neural computing & applications,

14(3), 167-175.

Anon. (2001). Practical guidelines for the fabrication of duplex stainless

steel. International Molybdenum Association.

Anon. (2005). Duplex stainless steel. Paper presented at the Outokumpu

Stainless AB, Avesta Research Centre, Avesta, Sweden.

Ashar, J., & Littlefair, G. (2008, October 1-3, 2008). Drill Wear condition
monitoring using Self Organizing Feature Maps. Paper presented at the
7th International Conference on Industrial Tooling (IT°08) Mississippi

State University, Mississippi, USA.

Ashar, J., & Littlefair, G. (2008, 29th - 31st October 2008). Intelligent Drill
Wear Condition Monitoring using Self Organising Feature Maps. Paper
presented at the 4th New Zealand Metals Industry Conference - Building

Sustainability, SkyCity Convention Centre, Auckland, New Zealand.

Ashar, J., & Littlefair, G. (2008, July, 2008). Intelligent Machines.
Engineering News.
http://engineeringnews.co.nz/articles/july08/articles/manufacturing-

technology.php

70



10.

11.

12.

13.

14.

Further Work

Basim Al-Najjar, I. A. (2000). Improving effectiveness of manufacturing
systems using total quality maintenance Integrated Manufacturing

Systems, 11(4), 267 - 276

Brophy, B. (2002). Al-based condition monitoring of the drilling process.

Journal of materials processing technology, 124(3), 305.

D. O'Sullivan, a. M. C. (2002). Machinability of austenitic stainless steel

SS303. Materials Processing Technology, 124, 153-159.

de Barreto, G. (2003). Self-Organizing Feature Maps for Modeling and
Control of Robotic Manipulators. Journal of intelligent & robotic systems,

36(4), 407-450.

Dimla, D. (1997). Neural network solutions to the tool condition
monitoring problem in metal cutting—A critical review of methods.

International journal of machine tools & manufacture, 37(9), 1219-1241.

Dimla, D. (2000). On-line metal cutting tool condition monitoring. I: force
and vibration analyses. International journal of machine tools &

manufacture, 40(5), 739-768.

Dolinsek, S. (2003). Work-hardening in the drilling or austenitic stainless

steels. Materials Processing Technology, 133, 63-70.

Duplex Steel Information. ( November 2005.). Avesta, Sweden: 1008EN-

GB:4. Centrum Tryck AB.

71



15.

16.

17.

18.

19.

20.

21.

Further Work

El-Wardany, T. (1996). Tool condition monitoring in drilling using
vibration signature analysis. International journal of machine tools &

manufacture, 36(6).

FIRE, K. (2003). LINKING CHAOS IN THE MODEL TO CHAOS IN THE

BRAIN.

FRANCOGASCA, L. (2006). Sensorless tool failure monitoring system
for drilling machines International journal of machine tools &

manufacture, 46(3-4).

Fritzke, B. (1997). Unsupervised ontogenic networks. In R. B. Emile
Fiesler (Ed.), Handbook of Neural Computation (Vol. 97, pp. 1-16):
Institute of Physics Publishing and Oxford University Press.

http://citeseer.ist.psu.edu/293655.html

G. S. J. Reis, A. M. B., O. (2000). Influence of the microstructure of
duplex stainless steels on their failure characteristics during hot

deformation. Materials Research, 3(2), 31-35.

J. Paro, H. H., and V. Kauppinen. (2001). Tool wear and machinability of
HIPed P/M and conventional cast duplex stainless steels. Wear, 249,

279-284.

Jantunen, E. (2002). A summary of methods applied to tool condition
monitoring in drilling International Journal of Machine Tools and

Manufacture, 42(9), 997-1010

72



22.

23.

24.

25.

26.

27.

28.

29.

Further Work

Kak, S. (2005). Artificial and biological intelligence. Ubiquity - Association

for Computing Machinery, 6(42), 1.

Kangas, J. A. K., T.K.  Laaksonen, J.T. . (1990). Variants of self-

organizing maps. Neural Networks, IEEE Transactions on, 1(1), 93 - 99

KIM, J. (2002). Tool wear measuring technique on the machine using

CCD and exclusive jig. Journal of materials processing technology, 130.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,

78(9), 1464-1480.

Kohonen, T. (1999 ). Analysis of processes and large data sets by a self-
organizing method. Intelligent Processing and Manufacturing of
Materials, 1999. IPMM '99. Proceedings of the Second International

Conference on, 1, 27 - 36

Kurada, S. (1997). A review of machine vision sensors for tool condition

monitoring. Computers in industry, 34(1), 55.

Lippmann, R. (1989). Pattern classification using neural networks. I[EEE

communications magazine, 27(11), 47.

Littlefair, G. (2007, May 2007). Multisensor Condition Monitoring using
the Fusion Characteristics of Artificial Neural Networks. Paper presented
at the Vibration Association of New Zealand Annual conference,

Hamilton, New Zealand.

73



30.

31.

32.

33.

34.

35.

36.

37.

Further Work

Littlefair, G. (2008, October 27 — 30,). Martensite Formation of Post Heat
Treated ADI Due to Strain Induced Phase Transformation. Paper
presented at the 17th IFHTSE Congress, Kobe International Conference

Center.

Monostori, L. (2003). Al and machine learning techniques for managing
complexity, changes and uncertainties in manufacturing. Engineering

applications of artificial intelligence, 16(4), 277.

N. Jia, R. L. P., Y. Wang et al. (2006). Interactions between the phase
stress and the grain-orientation-dependent stress in duplex stainless

steel during deformation. Acta Materialia, 54, 3907-3916.

Nilsson, J. O. (1992). Super duplex stainless steels. Materials Science

and Technology, 8, 685-700.

Noori-Khajavi, A. (1993). On multisensor approach to drill wear

monitoring. CIRP annals, 42(1).

Paugam-Moisy, H. (2001). Multi-network system for sensory integration.
In IJCNN 01 International Joint Conference on Neural Networks

Proceedings (Cat No 01CH37222) IJCNN-01.

R. Wehrens, L. M. C. B. (2007). Self- and Super-organising Maps in R:

the kohonen package. Journal of Statistical Software, 21(5).

Ramachandran, V. S. H., E. M. . (2001). Synaesthesia: A Window Into
Perception, Thought and Language. JOURNAL OF CONSCIOUSNESS

STUDIES, 8(12), 3-34

74



38.

39.

40.

41.

42.

43.

Further Work

Rehorn, A. (2005). State-of-the-art methods and results in tool condition
monitoring: a review. International journal of advanced manufacturing

technology, 26(7-8), 693-710.

S. S. Panda, D. C. a. S. K. P. (2006). Monitoring of drill flank wear using
fuzzy back-propagation neural network The International Journal of

Advanced Manufacturing Technology, 34(3-4), 227-235.

Sanjay, C. (2005). Modeling of tool wear in drilling by statistical analysis
and artificial neural network Journal of materials processing technology,

170(3).

Satoh, I. (2004). Software Agents for Ambient Intelligence. In 2004 IEEE
International Conference on Systems Man and Cybernetics (IEEE Cat

No 04CH37583) ICSMC-04.

Seneker, S. (2002). Synesthetic Sensor Fusion Via A Cross-Wired
Artificial Neural Network. Unpublished Master of Arts in Liberal Studies,
East Tennessee State University. http://etd-

submit.etsu.edu/etd/theses/available/etd-0403102-164937/

SG Wysoski, L. B. (2006). Biologically Realistic Neural Networks and
Adaptive Visual Information Processing. Knowledge Engineering and
Discovery Research Institute, Auckland University of Technology, New

Zealand.

75



44,

45.

46.

47.

48.

49.

50.

Further Work

Skillings, J. (2006). Getting machines to think like us. Cnet news,
Robotics(July 3, 2006). Retrieved from http://news.cnet.com/Getting-

machines-to-think-like-us/2008-11394_3-6090207.html?tag=mncol

Smith, C. (2007). Why use duplex stainless steel? The Fabricator.

T. Saeid, A. A.-z., H. Assadi et al. (2008). Effect of friction stir welding
speed on the microstructure and mechanical properties of a duplex
stainless steel. Materials Science and Engineering: A, In

Press(Corrected Proof).

T. Siegmund, E. W., and F. Fischer. (1995). On the thermomechanical
deformation behavior of duplex-type materials. Mechanics, Pyhsics and

solids, 43(4), 495-532.

Team, R. D. C. (2008). R: A Language and Environment for Statistical

Computing. Vienna, Austria.

Voronenko, B. (1997). Autanitic-ferritic stainless steels: A state-of-the-art

review. Metal Science and Heat Treatment, 39(10), 20-29.

Walter, G. The Grey Walter Online Archive (Publication no.
http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html). from Burden
Neurological Institute, University of the West of England, Bristol:

http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html

76



Publications

Publications

1. Ashar, J., & Littlefair, G. (2008, October 1-3, 2008). Drill Wear condition

monitoring using Self Organizing Feature Maps. Paper presented at the

7th International Conference on Industrial Tooling (IT'08) Mississippi

State University, Mississippi, USA.

N

Ashar, J., & Littlefair, G. (2008, 29th - 31st October 2008). Intelligent Dirill

Wear Condition Monitoring using Self Orqganising Feature Maps. Paper

presented at the 4th New Zealand Metals Industry Conference - Building

Sustainability, SkyCity Convention Centre, Auckland, New Zealand. (The

paper was awarded the “best paper’ award under the field of Light Alloy

Manufacturing research)

3. Ashar, J. Littlefai, G. (2008, July, 2008). Intelligent Machines.

Engineering News.

http://engineeringnews.co.nz/articles/july08/articles/manufacturing-

technology.php

77



Publications

Drill Wear condition monitoring using Self Organizing Feature
Maps.

Paper presented at the 7th International Conference on
Industrial Tooling (IT’08 - (2008, October 1-3, 2008)

Mississippi State University, Mississippi, USA

78



Publications

Drill Wear Monitoring using Self-
organizing Feature Maps

J. Ashar, S. Singamneni, G. Littlefair

Abstract—

The rising demand for exacting performances from manufacturing systems has led to
new challenges for the development of complex tool condition monitoring techniques.
The work presented here centres around the application of a supervised, self-organizing
feature map network model towards the development of a drill wear monitoring system.
The neural network organizes itself depending on the input and thus makes for a better
classification model than other network models that try and fit input data in a pre-
defined structure. This leads to the network structure reflecting the given input
distribution more precisely than a predefined model, which generally follows a decay
schedule. The generation of tool wear during machining is a dynamic and fast paced
developmental problem. The dynamic nature of the network model provides an
evaluation of the underlying connectivity and topology in the original data space. This
makes the network far more capable of capturing details in the target space.
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L Introduction

Developments in independent flexible
manufacturing systems have required
more efficient metal cutting procedures.
Although a wide range of monitoring
methods have been investigated and
developed, there has been very little
migration of these innovations into
industrial practice. The principal factor
behind this phenomenon is the stochastic
nature of the environment in which the
system must function. A truly universal

application has yet to be developed [1].

Conventionally, cutting tools have been
replaced at the end of encoded,
experimentally derived, in-cut times
based on chronicled tool life data.
However in  modern  machining
environments where large numbers of
variables interact, the application of
these conventional techniques leads to
nonviable and inefficient tool utilisation.
The major problem in predicting tool
wear accurately stems from the
complexity of the process which is
number of

dependent on a large

interrelated  variables including the
properties of the materials involved, the
physical and chemical properties of the
surfaces, pressure, temperature, friction
and relative velocities [2]. The pressures
imposed on the processes and lack of

system ‘slack’ have led to amplified use

of tool condition monitoring (TCM)
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systems. In parallel, there has been wide-
ranging research in academia. However,
a closer examination shows that there has
been very little migration of this research
into industrial practice. Furthermore, the
success of industrially  deployed
monitoring systems has been poor [3].
Probably the greatest single obstacle
preventing the realisation of the “factory
of the future” is the lack of a reliable and
all-encompassing tool condition

monitoring system.

1I.  Intelligent Systems
A. The Self-organizing Feature Map

Among the different neural-network

learning  paradigms,  unsupervised
learning has attractive characteristics.
Learning in  unsupervised  neural
networks emerges without the need of an
external “teacher” who provides the
desired response of the network. This
self-organization ability can substantially
reduce the programming burden that
accounts for about one third of the total
cost of a system. Moreover, unsupervised
models are often fast and their learning
when  using

speeds,  especially

computational ~ shortcuts, can  be
augmented to orders of magnitude
greater than that of numerous other
neural networks. Thus much larger maps

than those used so far are quite realistic
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[4].  Self-organising
(SOFMs), or just Self Organising Maps
(SOMs) are
Artificial Neural Network (ANN) models

feature  maps

important unsupervised

that have shown great potential in

application fields such as speech
recognition applications and various
pattern recognition tasks involving very
noisy signals. Commonly, the SOFM is
used to learn the topology of sensory
inputs by clustering the data and is used
in control basically as a classifier. The
final sensory map can then be used to
classify new incoming data. It is
important to note that when using
supervised models, the error signals are
available directly at the output of the
network and are explicitly used during
network learning and training. In the
unsupervised case, the error signals are
not computed directly, rather through the
use of the definitions in the network’s
learning rule. For this reason, when
unsupervised neural models are used in
modelling and control, they are usually
referred to as self-supervised models.
This type of learning is controlled by
knowledge of the

external world

provided by sensors and  the
consequences of actions performed by
the network. These networks have also
provided acumen into how mammalian

brains are organised [5]. A visualisation

of a SOFM is shown in fig. 1.
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input vector

Figure 1: Kohonen's Self-organizing feature
map

Over the past decades, the field of Al has
made great progress toward digitising
human reasoning. Figurative approaches
are based on the hypothesis of symbolic
depiction—the idea that perception and
cognitive processes can be modelled as
obtaining, influencing, correlating and
adapting to the symbolic representations.
Perhaps the optimal way to move
forward is to shift the focus from
modifying system behaviour to the
processes of cognition that source the
performance of the ANNs [6]. Most
works have concentrated on robotic
systems that are solely sensory in nature.
Recently, several studies have proposed
the Self Organising Feature Map for the
difficult tasks of non-linear modelling.
The SOFM can extract features of input
data based on incremental learning [7].
central result in self-organization is that

if the input signals have a distinct
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probability density function, then the
weight vectors of the cells try to match it,

however complex its form.

The SOFM is a neural network that

closely resembles how the brain
functions. Emulating the way in which
human brains decode data from various
sources (senses) holds tremendous value.
Perhaps the analogy to convey the
approach most simply, is to consider just
how many of us would cross the road
without looking both ways but rather rely
on our sense of hearing as the sole
arbitrator? Data captured to characterise
the condition of a complex piece of
equipment should be as complete as the
data we use to cross the road — i.e.
contain primary and secondary data

which is used to arrive at a consensus of

opinion.
B. Linking the brain and the computer

It is an oversimplification to say that it is
impossible to artificially imitate the
human brain due to the limitations of
current computational resources. In
actuality, the key concern for failing to
properly emulate the human way of
information processing is the existence
of many un-interpreted details of the
brain structure and behaviour [8]. In an
attempt to discover what instigates the
reasoning of human minds, one of the

most testing aspects for neuroscientists is

that current technologies cannot keep

Publications

track and measure all the signals used for
inter-neural communication, even in a
minute portion of the brain. If this was
possible, it would enable us to accurately
appreciate the emergence of intelligence
from a collection of neurons. In an
attempt to overcome this limitation, a
common practice is to complement the
study with the development of intelligent
computational models based on
experimental data and to study their
properties by theoretical and simulation
means [9]. The SOFM is proposed as a
feasible elective to more traditional
neural network  architectures. Its
analytical portrayal has already been
developed further in the technical than in
the biological direction. The learning
results accomplished seem to be as
expected; at least indicating that the
adaptive processes at work in the map
may be analogous to those encountered

in the brain.

111. Experimental Procedure

Drilling tests were performed using a
solid carbide drill on a duplex steel
workpiece. The Kistler three component
quartz dynamometer (type 9257B) was
selected as the force measuring sensor.
This type of dynamometer consists of
four three-component force sensors fitted
under high pre-load between a base-plate

and a top-plate. Each sensor contains
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three pairs of quartz plates: one sensitive
to pressure in the Z direction and the
other two in the X and Y directions. As a
result, the dynamometer is able to detect
the smallest dynamic changes in large
forces. In addition, an armoured
connecting cable type 1687B5 and an
eight-channel charge amplifier type 5070
were utilised in the measurement of
forces. A schematic of the experimental

setup is shown in fig. 2.
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Figure 2: Schematic of the experimental setup

Trials were conducted using solid
carbide drills used to make 12.5mm
diameter holes on the duplex steel
workpieces. The forces along three axes
were measured, i.e. Fx, Fy and Fz. The
Z-axis  was

moment around the

calculated using these forces (see fig. 3).
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Figure 3: Snapshot of dynamometer

measurement

A. Neural Net setup

The data obtained from the drilling trials
was analysed and fed as a part of the
input to a Self Organising Feature Map.
The power spectral density and kurtosis
calculations were done on the dynamic
data acquired. This was done using
DADisp software. The inputs to the
Neural Network were the feed rate, drill
speed, dynamic forces (psd) and the
“static” force component. The network
was trained to classify a used drill from a
new one. A total of 58 drilling trials were
conducted which yielded a collection of
576 data sets. 288 of these sets were used
for training the network while the rest
were used for testing. The neural
network coding and simulation was done
using R. R is a language and
environment for statistical computing
and graphics. R provides a wide variety
of statistical and graphical techniques,
and is highly extensible [10]. The
program written for the SOFM is based
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on the function provided in the
“kohonen” package of R [11]. Although
the basic calculation subroutine is little
changed, the data input, handling,
execution, storage and output formatting
is all original. Before processing is done
by the neural network, a pre-processing
procedure is carried out to reduce
dimensionality of the data. This is
achieved by computing the power

spectral densities of the signals.
B. Classification

The SOFM was trained to classify a used
drill from a new drill with a number of
typical data sets corresponding to various
wear categories. This classification was
made on the basis of the input parameters
viz, the forces in the x, y and z axes, the
moment of forces about the z-axis, drill
speed and feed rate. The training
progress of the map is shown in fig. 4.
The mean distance to the closest neuron
on the map stabilises after approximately
40,000 runs. A snapshot of the

classification pattern is shown in fig. 5.
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Figure 4: Progress after 100,000 runs
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Subsequent classification of previously unseen data sets indicated that the network was

able to correctly organise itself to new data sets.

1V. Conclusions

Tool wear identification and monitoring is a complex phenomenon. Accurate modelling
of the problem requires a highly evolved and comprehensive solution. The work done so
far has mainly focussed on the use of neural networks which learn using the supervised
learning paradigm. These networks perform well under known conditions, but even a
minor deviation from their predefined parameters can cause such networks to fail. The
main aim of this research is to construct a robust and efficient system for tool wear

monitoring in drilling operations.

The Self-Organising Feature Map is a neural network that closely resembles how the
brain functions. Mirroring the way in which human brains decode data from various
sources (senses) holds tremendous merit. Data captured to characterise the condition of
a complex piece of equipment should contain primary and secondary data which is used

to arrive at a consensus of opinion.

Learning in this network is unsupervised, thus making it independent of human errors
caused during the training phase. Furthermore, the network is able to adapt to changing
environments and conditions. This flexibility in adaption goes well with the stochastic

nature of industrial environments.

The work presented here demonstrates the type of system which can successfully be
employed to monitor machining operations. The true robustness of the system is to be
established by the application of the system in other industrial environments. The
classification of tool wear using unsupervised neural networks is regarded as a strategic
step forward in the progress towards the creation of a truly unmanned machining

environment.
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ABSTRACT—

The rising demand for exacting performances from manufacturing systems has led to new
challenges for the development of complex tool condition monitoring techniques. The work
presented here centres around the application of a supervised, self-organising feature map
network model towards the development of a drill wear monitoring system. The neural network
organises itself depending on the input and thus makes for a better classification model than
other network models that try and fit input data in a pre-defined structure. This leads to the
network structure reflecting the given input distribution more precisely than a predefined model,
which generally follows a decay schedule. The generation of tool wear during machining is a
dynamic and fast paced developmental problem. The dynamic nature of the network model
provides an evaluation of the underlying connectivity and topology in the original data space.
This makes the network far more capable of capturing details in the target space.

I. INTRODUCTION

Developments in autonomous manufacturing systems have required more pliant and efficient
metal cutting procedures. Although a wide range of monitoring methods have been investigated
and developed, there has been very little migration of these innovations into industrial practice.
The stochastic nature of the environment, in which manufacturing systems must function, is the
primary reason behind this poor rate of conversion. A truly universal application has yet to be

developed [1].

Conventionally, cutting tools have been replaced at the end of programmed, experimentally
derived, in-cut times based on historical tool life data. However, in modern machining
environments where large numbers of variables interact, the application of these conventional
techniques leads to nonviable and inefficient tool utilisation. The principal difficulty in predicting
tool wear accurately stems from the complexity of the process - which is dependent on a large
number of interrelated variables including the properties of the materials involved, the physical
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and chemical properties of the surfaces, pressure, temperature, friction and relative velocities
[2]. The pressures imposed on the processes and lack of system ‘slack’ have led to amplified
use of tool condition monitoring (TCM) systems. In parallel, there has been wide-ranging
research in academia. However, a closer examination shows that there has been very little
migration of this research into industrial practice. Furthermore, the success of industrially
deployed monitoring systems has been poor [3]. Probably the greatest single obstacle
preventing the realisation of the “factory of the future” is the lack of a reliable and all-

encompassing tool condition monitoring system.

II. INTELLIGENT SYSTEMS

A. The Self-organising Feature Map

Self-organising maps are a data visualisation technique invented by Professor Teuvo Kohonen
which reduces the dimensionality of data through the use of self-organising neural networks.
The problem that data visualisation attempts to solve is that humans simply cannot visualise
high dimensional data as is and thus techniques are created to help us understand this high
dimensional data. Among the different neural-network learning paradigms, unsupervised
learning has attractive characteristics. Learning in unsupervised neural networks emerges
without the need of an external “teacher” who provides the desired response of the network.
This self-organisation ability can substantially reduce the programming burden that accounts for
about one third of the total cost of a system. Moreover, unsupervised models are often fast and
their learning speeds, especially when using computational shortcuts, can be augmented to
orders of magnitude greater than that of numerous other neural networks. Thus much larger
maps than those used so far are quite realistic [4]. Self-organising feature maps (SOFMs), or
just Self Organising Maps (SOMs) are important unsupervised Artificial Neural Network (ANN)
models that have shown great potential in application fields such as speech recognition
applications and various pattern recognition tasks involving very noisy signals. Commonly, the
SOFM is used to learn the topology of sensory inputs by clustering the data and is used in
control basically as a classifier. The final sensory map can then be used to classify new
incoming data. It is important to note that when using supervised models, the error signals are
available directly at the output of the network and are explicitly used during network learning
and training. In the unsupervised case, the error signals are not computed directly, rather
through the use of the definitions in the network’s learning rule. For this reason, when
unsupervised neural models are used in modelling and control, they are usually referred to as
self-supervised models. This type of learning is controlled by knowledge of the external world
provided by sensors and the consequences of actions performed by the network. These
networks have also provided acumen into how mammalian brains are organised [5]. A

visualisation of a SOFM is shown in fig. 1.
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Figure 1: Self - organisation

Over the past decades, the field of Al has made great progress toward transcribing human
reasoning into digital data. Figurative approaches are based on the hypothesis of symbolic
depiction—the idea that perception and cognitive processes can be modelled as acquiring,
influencing, co-relating and adapting to the symbolic representations. Perhaps the best way to
move forward is to shift the focus from modifying system behaviour to the processes of
cognition that source the performance of the ANNs [6]. Most works have concentrated on
robotic systems that are solely sensory in nature. Recently, several studies have proposed the
Self Organising Feature Map for the difficult tasks of non-linear modelling. The SOFM can
extract features of input data based on incremental learning. The central result in self-
organisation is that if the input signals have a distinct probability density function, then the

weight vectors of the cells try to match it, however complex its form.

The SOFM is a neural network that closely resembles how the brain organises memory into
neuronal connections. Emulating the way in which human brains decode data from various
sources (senses) holds tremendous value. Perhaps the analogy to convey the approach most
simply, is to consider just how many of us would cross the road without looking both ways but
rather rely on our sense of hearing as the sole arbitrator? Data captured to characterise the
condition of a complex piece of equipment should be as complete as the data we use to cross
the road — i.e. contain primary and secondary data which is used to arrive at a consensus of

opinion.
A. Linking the brain and the computer- chaos and synaesthesia

It is a generalisation to say that it is impossible to artificially imitate the human brain due to the
limitations of current computational resources. In actuality, the key concern for failing to properly
emulate the human way of information processing is the existence of many un-interpreted
details of the brain structure and behaviour [7]. Our brain is chaotic. Chaos has been found in

how we process external senses, and may be key to memory. It has been implicated in at least
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one theory of the evolution of vocabulary as well as synaesthesia [8]. Synesthesia is a
neurological phenomenon in which the stimulation of one sensory organ leads to automatic or
involuntary sensations in another sensory organ. In its most common form known as
grapheme = colour synesthesia, letters and/or numbers are perceived as inherently coloured
and having personalities. Synesthesia has been being diagnosed for almost three centuries, but
the medical profession keeps forgetting about the condition. The word Synesthesia means
“joined sensation” and shares a root with anesthesia which means “no sensation”. Synesthesia
is not an abnormality; in fact it is a normal brain development process that is intuitively
presented to the consciousness in a minority of individuals. The condition symbolises a rare
ability to hear colours, taste shapes, or experiences of other equally astounding sensory
amalgamations whose nature seems too complex for most of us to envisage. Synesthetes are
normal in the conventional sense of the term and they appear to be bright and intelligent.
Standard neurological medical exams are also normal. Synesthetic associations are usually
unidirectional, meaning that a particular synesthete sight may induce touch, but touch would
not induce visual sensations. Simulating synesthetic type of neurological behaviour in Artificial
Neural Networks (the core of Artificially Intelligent Systems) will help shed light on their
functioning and classification capabilities. This in turn may also deepen our understanding as
to why these systems are unstable when applied in real world environments. The process of
disassembly and reassembly takes on an entirely new meaning. The eventual goal is to create
efficient, robust systems with extended autonomous control over processes that are being
employed — essentially creating the “factory of the future” [9]. Most models of the brain do not

include chaos. Those that do, don't seem convincingly biological. In an attempt to discover what
instigates the reasoning of human minds, one of the most testing aspects for scientific analysis
is that the current technologies cannot keep track and measure all the signals used for inter-
neural communication, even in an infinitesimal portion of the brain. If this was possible, it would
enable us to accurately appreciate the emergence of intelligence from a collection of neurons.
In an attempt to overcome this limitation, a common practice is to complement the study with
the development of intelligent computational models based on experimental data and to study
their properties by theoretical and simulation means [10]. The SOFM is proposed as a feasible
elective to more traditional neural network architectures. Its analytical portrayal has already
been developed further in the technical than in the biological direction. The learning results
accomplished seem to be as expected; at least indicating that the adaptive processes at work in

the map may be analogous to those encountered in the brain.

I. EXPERIMENTAL PROCEDURE

Drilling tests were performed using a solid carbide drill on a duplex steel workpiece. The Kistler

three component quartz dynamometer (type 9257B) was selected as the force measuring
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sensor. This type of dynamometer consists of four three-component force sensors fitted under
high pre-load between a base-plate and a top-plate. Each sensor contains three pairs of quartz
plates: one sensitive to pressure in the Z direction and the other two in the X and Y directions.
As a result, the dynamometer is able to detect the smallest dynamic changes in large forces. In
addition, an armoured connecting cable type 1687B5 and an eight-channel charge amplifier
type 5070 were utilised in the measurement of forces. A schematic of the experimental setup is
shown in fig. 2.
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Figure 2: Schematic of the experimental setup

Trials were conducted using solid carbide drills used to make 12.5mm diameter holes on the
duplex steel workpieces. The forces along three axes were measured, i.e. Fx, Fy and Fz. The
moment around the Z-axis was calculated using these forces (see fig. 3).
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Figure 3: Snapshot of dynamometer measurements

A. Neural Network setup
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The data obtained from the drilling trials was analysed and fed as a part of the input to a Self
Organising Feature Map. The power spectral density and kurtosis calculations were done on the
dynamic data acquired. This was done using DADisp software. The inputs to the Neural
Network were the feed rate, drill speed, dynamic forces (psd) and the “static” force component.
The network was trained to classify a used drill from a new one. A total of 58 drilling trials were
conducted which yielded a collection of 576 data sets. 288 of these sets were used for training
the network while the rest were used for testing. The neural network coding and simulation was
done using R. R is a language and environment for statistical computing and graphics. R
provides a wide variety of statistical and graphical techniques, and is highly extensible [11]. The
program written for the SOFM is based on the function provided in the “kohonen” package of R
[12]. Although the basic calculation subroutine is little changed, the data input, handling,
execution, storage and output formatting is all original. Before processing is done by the neural
network, a pre-processing procedure is carried out to reduce dimensionality of the data. This is
achieved by computing the power spectral densities of the signals.

A. Classification

The SOFM was trained to classify a used drill from a new drill with a number of typical data sets
corresponding to various wear categories. This classification was made on the basis of the input
parameters viz, the forces in the x, y and z axes, the moment of forces about the z-axis, drill
speed and feed rate. The training progress of the map is shown in fig. 4. The mean distance to
the closest neuron on the map stabilises after approximately 40,000 runs. A snapshot of the
classification pattern is shown in fig. 5. Subsequent classification of previously unseen data sets
indicated that the network was able to correctly organise itself to new data sets.
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Tool wear identification and monitoring is a complex phenomenon. Accurate modelling of the
problem requires a highly evolved and comprehensive solution. The work done so far has
mainly focussed on the use of neural networks which learn using the supervised learning
paradigm. These networks perform well under known conditions, but even a minor deviation
from their predefined parameters can cause such networks to fail. The main aim of this research
is to construct a robust and efficient system for tool wear monitoring in drilling operations.

The Self-Organising Feature Map is a neural network that closely resembles how the brain
functions. Mirroring the way in which human brains decode data from various sources (senses)
holds tremendous merit. Data captured to characterise the condition of a complex piece of
equipment should contain primary and secondary data which is used to arrive at a consensus of
opinion.

Learning in this network is unsupervised, thus making it independent of human errors caused
during the training phase. Furthermore, the network is able to adapt to changing environments
and conditions. This flexibility in adaption goes well with the stochastic nature of industrial
environments.

The work presented here demonstrates the type of system which can successfully be employed
to monitor machining operations. The true robustness of the system is to be established by the
application of the system in other industrial environments. The classification of tool wear using
unsupervised neural networks is regarded as a strategic step forward in the progress towards

the creation of a truly unmanned machining environment.
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Intelligent machines By Guy Littiefair

The Machining and Machinability Research group at AUT University
may have found a way to significantly improve the current
performance of Tool Wear Monitoring and Tool Breakage Detection
Systems by incorporating human phenomena into the working of
these systems. Jesal Ashar, who is undertaking the research, says:
“Looking at a human medical phenomenon known as Synesthesia,
otherwise known as the sixth sense syndrome, we are able to better
understand the working of Intelligent Systems and more importantly
how they react to varying stimuli.”

Synesthesia is a neurological phenomenon in which the stimulation of one
sensory organ leads to automatic or involuntary sensations in another sensory
organ. In its most common form known as grapheme — colour synesthesia,
letters and/or numbers are perceived as inherently coloured and having

personalities. Synesthesia has been diagnosed for almost three centuries, but
medicine keeps forgetting about the condition. The word synesthesia means
“joined sensation” and shares a root with anesthesia which means “no sensation”. Synesthesia is not an abnormality; in fact
it is a normal brain development process that is intuitively presented to the consciousness in a minority of individuals. The
condition symbolises a rare ability to hear colours, taste shapes, or experiences of other equally astounding sensory
amalgamations whose nature seems complex for most of us to envisage. Synesthetes are normal in the conventional sense
of the term. They appear to be bright and intelligent. Standard neurological medical exams are also normal. Synesthetic
associations are usually unidirectional, meaning that for a particular synesthete, sight may induce touch, but touch would

not induce visual sensations.

An artificial neural network (ANN), often just called a “neural network” (NN), is a mathematical model or computational
model based on biological neural networks. It consists of an interconnected group of artificial neurons and processes
information using a connectionist approach to computation. In more practical terms neural networks are non-linear
statistical data modelling tools. Jesal says: “They can be used to model complex relationships between inputs and outputs
or to find patterns in data. There is no precise agreed-upon definition among researchers as to what a neural network is,
but most would agree that it involves a network of simple processing elements (neurons), which can exhibit complex global
behaviour, determined by the connections between the processing elements and element parameters.”

The original inspiration for the technique was from examination of the central nervous system. ANNs, like people, learn by
example. An ANN may be configured for a specific application, such as pattern recognition or data classification, through a
learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the
neurons. This is true of ANNs as well. Neural networks, with their remarkable ability to derive meaning from complicated or
imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or
other computer techniques. A trained neural network can be thought of as an “expert” in the category of information it has
been given to analyse. This expert can then be used to provide projections given new situations of interest and answer
“what if” questions.

An impression of the functioning of Artificial Neural Networks Simulating synesthetic type of neurological behaviour in
Artificial Neural Networks (the core of Artificially Intelligent Systems) will help shed light on their functioning and
classification capabilities. This in turn, may also deepen our understanding as to why these systems are unstable when
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applied in real world environments. The process of disassembly and reassembly takes on an entirely new meaning. The
eventual goal is to create efficient, robust systems with extended autonomous control over processes that are being
employed — essentially creating the “factory of the future”.

Perhaps the best way to move forward is to shift the focus from modifying system behaviour to the processes of cognition
that source the performance. As the saying goes, prevention is better than cure. There is no complete theory that has been
presented to date which explains how sensors influence and lead each other to produce more accurate or confident
perception. It has been hypothesised in literature that the strength of inter-neuronal connections in our brains is the
foundation for memories. The stronger the connections are, the better is the memory recall. However, we only have a
modest estimate of the connectivity in our brains, how a collection of grey cells performs as an ensemble and how

information is programmed.
Jesal sees great potential for her research and comments: “So, where does tool wear figure in all this? The answer is simple

— to improve upon the systems that are currently used to monitor tool wear by creating “biologically realistic” ANNs. The
future may well be the factory that runs on auto-pilot!”
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Appendix A

Specifications for:

Kistler 3 Component Force Dynamometer

Kistler 4 channel Charge Amplifier
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Force — FMD

3-Komponenten-Dynamometer F,, Fy, F,
Dynamometre a 3 composantes Fy, Fy, F,
3-Component Dynamometer F,, Fy, F,

Appendix A

KISTLER

Quarzkristall-Dreikomponenten-Dynamometer
zum Messen der drei orthogonalen Komponen-
ten einer Kraft. Das Dynamometer besitzt eine
grosse Steifheit und demzufolge eine hohe Ei-
genfrequenz. Das grosse Auflosungsvermégen
ermoglicht das Messen von kleinsten dynami-
schen Anderungen grosser Krafte.

Type 9257B

Technische Daten

Dynamometre & cristal de quartz & trois com-
posantes pour mesurer des trois composantes
orthogonales d'une "force. Le dynamométre
posséde une grande rigidité et par conséguent
une fréquence propre élevée. Sa trés haute ré-
solution permet de mesurer les moindres varia-
tions de larges forces.

Type 9257B + 9403

Données techniques

1.4
Type
92578, 9403
Quartz three-component dynamometer for

measuring the three orthogonal components of
a force. The dynamometer has a great rigidity
and consequently a high natural frequency. Its
high resolution enables the smallest dynamic
changes in large forces to be measured.

Technical Data

Bereich Gamme Range Fyo Fys Fz kN 5. 57
F, bei Fyund Fy <0,5 F, F, pour F, et Fy<0.5F, F,for Fyand Fy<0,5F, F, kN -5...10*)
Kalibrierter Teilbereich 1 Gamme partielle étalonnée 1 Calibrated partial range 1 Fo Fy N 0...500
F, N 0... 1000
Kalibrierter Teilbereich 2 Gamme partielle étalonnée 2 Calibrated partial range 2 Fe Fy N 0..50
F, N 0..100
Uberlast Surcharge Overload FeFy. F, kN -7,5/7,5
Fz bei Fyund Fy <05 F, F, pour Fy et Fy <0.5F, Fpfor Fyand Fy <05 F, Es kN -7,5/15
Ansprechschwelie Seuil de réponse Threshold N <0,01
Empfindlichkeit Sensibilité Sensitivity Fo Fy pC/N =75
F, pC/N =37
Linearitét, alle Bereiche Linéarité, toutes les gammes Linearity, all ranges % FSO  <#1
Hysterese, alle Bereiche Hystérésis, toutes les gammes Hysteresis, all ranges % FSO <05
Ubersprechen Cross talk Cross talk % s+2
Steifheit Rigidité Rigidity Cx, Cy kN/um >1
Cy KN/pm >2
Eigenfrequenz Fréquence propre Natural frequency fo (%, ,2) kHz =3,5
Eigenfrequenz Fréquence propre Natural frequency fo (x, ¥) kHz =2,3
(montiert an Flanschen) (installé sur brides) (mounted on flanges) fo (2) kHz =3,5
Betriebstemperaturbereich Gamme de température d'utilisation Operating temperature range °C 0..70
Temperaturkoeffizient Coefficient de température Temperature coefficient %/°C -0,02
der Empfindlichkeit de la sensibilité of sensitivity
Kapazitét (pro Kanal) Capacité (de canal) Capacitance (of channel) pF =220
Isolationswiderstand (20 °C) Résistance d'isolement (20 °C) Insulation resistance (20 °C) Q >1013
Masseisolation Isolé a la masse Ground insulation Q >108
Schutzart Classe de protection Protection class - P67 ***)
Gewicht Poids Weight kg 7.3
*) Kraftangriff innerhalb und max. 25 mm *) Point d'application de la force au-dedans et *)} Application of force inside and max. 25 mm
oberhalb der Deckflache. max. 25 mm au-dessus de la plague supérieure. above top plate area.
**) Bereich beim Drehen, Kraftangriff **) Gamme lors du tournage, point d'application **} Range for turning, application of force
bei Punkt A. au point A. at point A.
***) Mit Anschlusskabel Typen 168785, 168985 ***) Avec cable de connexion types 1687B5, 168985 ***)  With connecting cable Types 168785, 168985
1N (Newton) = 1 kg - m - s-2 = 0,1019... kp = 0,2248... Ibf; 1inch = 25,4 mm; 1kg = 2,2046... Ib; 1 Nm = 0,73756... Ibft
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Beschreibung

Das Dynamometer besteht aus vier Dreikompo-
nenten-Kraftsensoren, die unter hoher Vorspan-
nung zwischen einer Grundplatte und einer
Deckplatte eingebaut sind. Die Kraftsensoren
enthalten je drei Quarzkristali-Plattenpaare, wo-
von das eine auf Druck in der z-Richtung und
die beiden andern auf Schub in der x- bzw. y-
Richtung empfindlich sind. Die Kraftkomponen-
ten werden praktisch weglos gemessen.

Die Ausgénge der vier eingebauten Kraftsen-
soren sind im Dynamometer so zusammenge-
schaltet, dass auch Mehrkomponenten-Kraft-
und Momentmessungen mdglich sind. Die acht
Ausgangssignale sind an die 9-polige Flansch-
dose gefuhrt.

Die vier Sensoren sind masseisoliert eingebaut.
Damit werden Erdschleifenprobleme weitge-
hend ausgeschaltet.

Das Dynamometer ist rostbestandig und gegen
das Eindringen von Spritzwasser bzw. Kihimit-
tel geschitzt. Zusammen mit dem Anschluss-
kabel Typ 1687B5/1689B5 genlgt das Dyna-
mometer der Schutzklasse IP 67.

In die Deckplatte ist eine spezielle thermische
Isolationsschicht eingebaut, die das Dynamo-
meter gegen Temperatureinflisse weitgehend
unempfindlich macht.

Anwendungsbeispiele

e Dynamisches und quasistatisches Messen
der drei orthogonalen Komponenten einer
Kraft.

e Schnittkraftmessungen beim Drehen, Fra-
sen, Schleifen usw. Die hohe Empfindlich-
keit und die niedere Ansprechschwelle las-
sen in Verbindung mit den kalibrierten Teil-
bereichen auch exakte Messungen an Klei-
nen Werkzeugen und beim Schileifen zu.

® Messungen an Modellen im Windkanal usw.
® Ergonomische Messungen.

Die Diagramme unten wurden beim Drehen
von CK53N aufgezeichnet. Der Verlauf der Zer-
spankraftkomponenten bei einem Totalbruch
des Hartmetallwerkzeuges ist sehr gut ersicht-
lich.

culting force F

=Y

feed force F,

Verlauf der Zerspankraftkomponenten
bei einem Totalbruch;
aus KISTLER-Sonderdruck Nr. 20.112d:

Prozessbegleitendes Erkennen von Werkzeug-
bruch und Verschleisswertgrenzen, von o. Prof.
Dr.-Ing. h.c. W. Kénig; Dipl.-ing. W. Kiuft (aus
Industrie-Anzeiger Nr. 96 vom 1.12.82, Verlag
W. Girardet, Essen).

passiv force Fp

=3

o

Description

Le dynamométre se compose de quatre cap-
teurs de force a trois composantes montés
sous précontrainte élevée entre une plagque de
base et une plaque supérieure. Les capteurs
de force comprennent chacun trois paires de
plaguettes en cristal de quartz; 'une est sen-
sible a la pression selon |'axe z alors que les
deux autres sont sensibles au cisaillement se-
lon I'axe x resp. y. Les composantes de la force
sont mesurées pratiquement sans déformation.

Les sorties des quatre capteurs de force incor-
porés sont branchées 2 l'intérieur du dynamo-
meétre de fagon & rendre possible des mesures
de forces et moments a plusieures compo-
santes. Les huit signaux de sortie sont dispo-
nibles sur la prise femelle a bride et & 9 poles.

Les quatre capteurs sont montés avec isole-
ment par rapport a la masse. Ainsi les pro-
blémes de circuits de retour par la terre sont
largement éliminés.

Le dynamomeétre est résistant & la rouilie et pro-
tégé contre la pénétration de projections d'eau
et d'agents refrigérants. Ensemble avec le
cable type 1687B5/1689B5 il correspond a la
classe de protection IP 67.

Un recouvrement thermique spécial est installé
dans la plaque supérieure qui rend le dynamo-
metre largement insensible contre les in-
fluences de température.

Exemples d'application

® Mesures dynamiques et quasistatiques des
trois composantes orthogonales d'une
force.

® Mesures des efforts de coupe lors du tour-
nage, du fraisage, du rectifiage, etc. La
grande sensibilité et le seuil de réponse bas
conjointement avec les games de mesure
partielles etalonnées permettent des me-
sures exactes sur de petits outils ou lors du
rectifiage.

® Mesures sur des modeles dans canaux
aérodynamiques, etc.

e Mesures ergonométriques.

La figure ci-dessous montre |'enregistrement
lors du tournage de CK53N. Les variations des
composantes des efforts de cisaillement lors
d'une brisure totale de I'outil en alliage dur sont
clairement visibles.

tool material : coated carbide
v = 250 m/min
axf=4x08 mm? B

later

Variations des composantes des efforts
de cisaillement lors d'une brisure totale;
Extrait du tirage & part KISTLER No 20.112e:

Cutting Force Measurements as a Source Data:
Sensing of Tool Breakage and Wear Limit Va-
lues During Processing, from o. Prof. Dr.-ing.
h.c. W. Kénig , Dipl.-Ing. W. Kluft (de “Industrie-
Anzeiger® Nr. 96 du 1.12.82, Verlag W. Girardet,
Essen).
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Description

The dynamometer consists of four three-com-
ponent force sensors fitted under high preload
between a baseplate and a top plate. Each
sensor contains three pairs of quartz plates,
one sensitive to pressure in the z direction and
the other two responding to shear in the x and
y directions respectively. The force compo-
nents are measured practically without dis-
placement.

The outputs of the four built-in force sensors
are connected inside the dynamometer in a
way to allow multicomponent measurements of
forces and moments to be performed. The
eight output signals are available at the 9-con-
ductor flange socket.

The four sensors are mounted ground-insu-
lated. Therefore ground loop problems are
largely eliminated.

The dynamometer is rustproof and protected
against penetration of splashwater and cooling
agents. Together with the connecting cable
Type 1687B5/1689B5 it corresponds to the pro-
tection class IP 67.

A special thermal isolation coating is integrated
in the top plate which renders the dynamome-
ter largely insensitive to temperature influ-
ences.

Application Examples

e Dynamic and quasistatic measurement of
the three orthogonal components of a force.

e Measuring cutting force when turning, mifl-
ing, grinding etc. In conjunction with the cal-
ibrated partial ranges the high sensitivity
and low threshold allow exact measure-
ments on small tools and when grinding.

e Measurements on wind tunnel models, etc.
® Ergonomic measurements.

The recorder chart shown below piots the turn-
ing of CK53N. The variations of the cutting
force components during a carbide tool total
break are clearly visible.

Cutting force components during total break;
from KISTLER reprint No 20.112e:

Cutting Force Measurements as a Source Data:
Sensing of Tool Breakage and Wear Limit Val-
ues During Processing, from o. Prof. Dr.-Ing.
h.c. W. Kénig; Dipl.-Ing. W. Kluft (of *Industrie-
Anzeiger® No 96, 1.12.1982, Verlag W. Girardet,
Essen).
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Dynamometer Typ 9257B Dynamométre type 9257B Dynamometer Type 9257B
Abmessungen Dimensions Dimensions
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Abmessungen mit montiertem Stahlhalter Dimensions avec porte-outil monté Dimensions with mounted tool holder
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Montage

Das Dynamometer kann mit Schrauben oder
Pratzen auf jede plangeschliffene, saubere
Montageflache, wie z.B. auf einen Werkzeug-
maschinentisch montiert werden. Es ist zu be-
achten, dass durch unebene Auflageflachen
innere Verspannungen auftreten kénnen, wel-
che die einzelnen Messelemente zuséatzlich
stark belasten sowie das Ubersprechen ver-
gréssern kénnen.

Zum Aufspannen der krafteinleitenden Teile,
wie Drehstahle und Werkstlicke, stehen in der
Deckplatte vierzehn M8x1,25 Sackgewinde zur
Verfugung. Die Auflageflachen der krafteinlei-
tenden Teile mussen plangeschliffen sein, da-
mit eine gute mechanische Ankopplung an die
Deckplatte erreicht wird.

Fur eine einwandfreie Montage von Dreh-
stdhlen bis zu einem Schaftquerschnitt von
26x26 mm kann der Stahlhalter Typ 9403 ver-
wendet werden.

Der Stahlhalter ist im Lieferumfang nicht enthal-
ten, er muss separat bestellt werden.

Lieferumfang: siehe Preisliste.

Zubehor

Fir 3-Komponenten-Kraftmessung
Fy, Fys Fy

e Stahlhalter Typ 9403

@ Anschlusskabel Typ 1687B5
(3adrig) Typ 1689B5

® \Verlangerungskabel Typ 1688B5
(3adrig) Typ 1688810

o Verteilkdstchen Typ 5407A

Fiir 6-Komponenten-

Kraft- und Momentmessung

Fy, Fy, F2 /My, My, M,

® Anschlusskabel Typ 1677A5
(8adrig) Typ 1679A5

® \Verlangerungskabel Typ 1678A5
(8adrig) Typ 1678A10

o Verteilkdstchen Typ 5405A

Elektronik

Eine Dreikomponenten-Kraftmessanlage be-
nétigt neben dem Dynamometer noch drei
Ladungsverstéarker, welche die Ladungssignale
des Dynamometers in Ausgangsspannungen
umwandeln, die proportional zu den auftreten-
den Kréften sind.

Mehrkomponenten-
Messanlagen

Weitere Einzelheiten betreffend Schnittkraft-
Messanlagen

siehe Datenbilatt IN6.9255/57/65.

Montage

Le dynamometre peut étre fixé au moyen de vis
ou de brides sur toute surface plane rectifiée
comme p.ex. sur un plateau de machine-outil.
Toutes les inégalités ou irrégularités de la sur-
face de montage peuvent avoir pour consé-
quence des tensions internes engendrant ainsi
des sollicitations supplémentaires sur les di-
vers éléments de mesure ainsi qu'un accrois-
sement du cross talk.

La plaque supérieure possede quatorze tarau-
dages borgnes M8x1,25 pour la fixation de la
piéce introduisant la force telle que l'outil de
coupe ou la piéce a usiner. Les faces d'appui
des piéces introduisant l'effort doivent égale-
ment étre planes afin de garantir une fiaison
mécanique parfaite avec la plaque supérieure.

Pour assurer un montage parfait des outils de
coupe jusqu'a une section de 26x26 mm il est
recommandé d'utiliser le porte-outit type 9403.

Ce porte-outil ne fait pas partie de la fourniture
et doit donc étre commandé séparément.

Etendu de la fourniture: voir Prix-Courant.

Accessoires

Pour mesurer de forces a 3 composantes

Fy Fys Fy

e Porte-outil type 9403

e (Cable de connexion type 168785
(3fils) type 1689B5

e Cable de rallonge type 1688B5
(3 fils) type 1688810

e Boitier de distribution type 5407A

Pour mesurer de forces

et moments a 6 composantes

Fu Fy, Fz/ My, My, M,

e Cable de connexion type 1677A5
(8 fils) type 1679A5

e Cable de rallonge type 1678A5
(8 fils) type 1678A10

e Boitier de distribution type 5405A

Electronique

Outre le dynamométre, une installation de me-
sure de force a irois composantes comprend
encore trois amplificateurs de charge qui trans-
forment les signaux de charge du dynamo-
metre en tensions de sortie proportionnelles
aux forces appliquées.

Systémes pour mesurer

a plusieurs composantes

D'autres informations concernant des systémes
pour mesurer les efforts de coupe

voir notice technique IN6.9255/57/65.

Appendix A

Mounting

The dynamometer may be mounted with
screws or claws on any clean, face-ground
supporting surface, such as the table of a ma-
chine tool for example. Uneven supporting sur-
face may set up internal stresses, which will im-
pose severe additional loads on the individual
measuring elements and may also increase
cross talk.

For mounting the force-introducing compo-
nents, such as lathe tools and workpieces,
fourteen M8x1,25 mm blind tap holes in the
cover plate are available. The supporting sur-
faces for the force-introducing parts must be
face-ground to obtain good mechanical coup-
ling to the cover plate.

For satisfactory mounting of lathe tools up to
26x26 mm shank cross section, the tool hoider
Type 9403 may be used.

This holder is not included in the standard ac-
cessories and must therefore be ordered sep-
arately.

Scope of delivery: see Price List.

Accessories

For 3-Component Force Measurements
x? Fy! FZ

e Tool holder

e Connecting cable

Type 9403
Type 1687B5

(3 leads) Type 1689B5
® Extension cable Type 1688B5
(3 leads) Type 1688810

e Distribution box Type 5407A

For 6-Component Force
and Moment Measurements
Fy, Fy, F2 /My, My, M,

e Connecting cable Type 1677A5

(8 leads) Type 1679A5
® Extension cable Type 1678A5
(8 leads) Type 1678A10

e Distribution box Type 5405A

Electronics

Besides the dynamometer, a three-component
force measuring system also needs three
charge amplifiers, which convert the dyna-
mometer charge signals into output voltages
proportional to the forces sustained.

Systems
for Multicomponent Measurements

Further information concerning systems for cut-
ting force measurements

see Data sheet IN6.9255/57/65.
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Multi-Channel Charge Amplifier

for Multi-Component Force Measurement

This instrument is ideal for
multi-component force-
torque measurement with
piezoelectric

dynamometers or force
plates. Piezoelectric force
sensors produce an electric
charge which varies in
direct proportion with the
load acting on the sensor.
The charge amplifier then
converts the electric charge
into a proportional voltage.

4-channel version for cutting
force measurements
8-channel version for multi-

component force-torque mea-

surement

8-channel version optionally
with 6-component analog
summing calculator
Menu-controlled operation as
with Type 5015A

Direct signal evaluation
Suitable for data acquisition
software DynoWare Type
2825A-02

Description

Type 5070A... is available
as a 4-channel or 8-channel
version. As an option, the 8-
channel version can also be
provided with a 6-
component analog
summing calculator. In the
case of Kistler multi-
component dynamometers,

this summing calcula-tor calculates in
real time mode the resulting force as well
as the three components of the resulting
torque vector. Dynamometer-specific
values required for torque calculation can
be set directly on the instrument.

The graphics-capable liquid crystal
display shows all settings including the
instantaneous, minimum and maximum
values of a charge amplifier channel. The
various channels can be switched onto
the display as required. The instrument is
set up by means of various menus with
the universal press-and-turn knob. All
functions can, however, also be
controlled externally wvia RS-232C
(optionally IEEE-488).

Application

The 4-channel instrument is particularly
suitable for cutting force measurement
with Kistler dynamometers and the data
acquisition software DynoWare Type
2825A-02. The 8-channel instrument is
suitable for 6-component force-torque
measure-ment in the laboratory as well
as in research and development. For
example, wheel force measurement on a
tire test  stand, reaction force
measurements on engine-transmission
units, monitoring of forces and torques in
vibration tests etc.
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Charge Amplifier

Appendix A

Number of channels 4

Option 8
Connector type BNC neg.

Option Fischer 9-pole neg.
Measuring range FS pC +200 ... 200 000

Option pC +600 ... 600 000
Error (O ... 50 °C) typ./max. % <+0,3/<+1
Drift, measurement type DC/long

at 25 °C pC/s <+0,05

at 50 °C pC/s <+0,2
Frequency range (20 Vpp) kHz =0 ... >45
Voltage Output
Connector type D-Sub 15f
Output voltage Y +10
Output current mA <%2
Output resistance Q 10
Reset-measure transition pC <t+2
Zero point error (Reset) mV <+10
Output interference signal mVpp <10

(0,1Hz... 1 MH2)
Low-Pass Filter
Order 2
Cutoff frequency (-3 dB) Hz 100, 300, 600,

1 000, 2 000

Error % <5
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High-Pass Filter

|EEE-488 Interface (Option)

Appendix A

KISTLER

measure. analyze. innovate.

Zero point error mvV <+15 Standard IEEE-488.1-1987
Time constant Connector type Microribbon
Range 200 ... 200 000 pC Series 57, (24-pole)
200 ... 6269 pC S 10 Interface functions SH1, AH1, L4, LEO,
6270 ... 200 000 pC s 340 T6, TEO, SR1, RL2,
Time constant PPO, DC1, DT1,
Range 600 ... 600 000 pC C0, E1
600 ... 18 809 pC S 33 Uniline commands IFC, REN, EOI,
18810 ... 600 000 pC S 1023 SRQ, ATN
Error (time constant) % <+20 Multiline commands DCL, SDC, GET,
UNL, UNT, SPE,
Signal Evaluation SPD
Measurand renewal Address range 0...30
Instantaneous value ms 300
Minimum value ms 300 Remote Control
Maximum value ms 300 (Digital input and 24 V supply)
Bar display ms 50 Remote measure and trigger with 10 k pullup to +5 V
Connector type D-Sub 9f
Summing Calculator (Option) Input level
Specifications are valid incl. charge amplifier High (Reset, Stop trigger) \ >3,5
Number of summation outputs 6 or Input open
Error (O ... 50 °C) typ./max. % <+0,5/<+1 Low (Measure, Start trigger) V/mA <1/<4
Output voltage \% +10 Max. input voltage \% +30
Output current (short-circuit proof) |mA +2 Supply (output) V DC +24/+20 %
Output resistance Q 10 Output current (short-circuit proof)  |[mA <200
Zero point error (Reset) mVv <+10
Output interference signal Mains Connection
(0,1 Hz ... 1 MHz) mVpp <10 Mains connector type
Frequency range (20 Vpp) kHz =0 ... >45 (2P + E, Protective Class 1) Type IEC 320C14
Voltage VAC 100 ... 240
RS-232C Interface Voltage tolerance % +10
Standard RS-232C (V.24) Mains frequency Hz 50 ... 60
Connector type D-Sub 9f Power consumption VA 20
Pin allocation Voltage between signal ground
Pin 2 RXD and protective ground VRms <50
Pin 3 TXD
Pin 5 GND RS Further Technical Data
Max. input voltage, continuous \ +20 Degree of protection
Max. voltage between IEC60529 (DIN40050) IP 40
signal ground and protective ground| VrRms <20 Operating temperature °C 0...50
Baud rates 1200/9 600/ Storage temperature °C -10 ... 60
19 200/ 38 400/ Relative air humidity non-condensing | % <80
57 600/115 200 Vibration resistance (20 Hz ... 2 kHz,
Data bit 8 duration 16 min., cycle 2 min.) g <10
Stop bit 1 Shock resistance (1 ms) g <200
Parity none Case dimensions
without frame (WxHxD) mm 213,4x128,7x230
with frame (WxHxD) (Option) mm 247 5x142x253,15
Front panel according to
DIN 41494, Part 5 HE/TE 3/42
Weight kg 3,8
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Fig. 1: Block schematic diagram Type 5070A...

i Power Supply

110



Appendix B

Appendix B

Real time captured forces in the X, Y & Z directions

Kurtosis Values
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Trial 1 with New Drill
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Trial 2 with OId Dirill
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New Drill
Fx Fz
B1 M| B2 \| B3 \| B4 " B1 \l| B2 al| B3 M| B4 "
1.234161 5.774268 3.0212 1.386911 -0.19991 0.084146 -0.39431 1.569302
-0.35883 -0.16224 -0.59805 3.644684 -1.02704 -1.08661 -0.62956 2.042835
2.009547 0.751534 -0.83997 -0.54127 0.327316 -0.55991 -0.056622 0.88213
2.746289 0.117009 -0.37014 0.44593 -0.03307 -0.2214 -0.13927 0.878356
-0.60905 0.398038 -0.27756 -0.76693 -1.35327 -0.29 -0.24862 -0.30025
-0.00703 1.871876 0.513207 -0.72718 -0.57236 1.851851 -0.49212 0.28965
-1.02292 0.89099 -0.22082 0.038277 -0.15919 1.389957 -0.09674 -0.65727
-1.03085 -0.27271 -0.32932 -1.1915 0.734978 -0.0286 -0.04756 -0.03699
-0.982 0.556317 -0.25524 -0.40055 -0.26771 -0.91558 0.064098 -0.50348
-0.81289 -1.14224 -0.41631 -1.3815 -0.34726 -0.26519 -1.12224 3.859846
-0.8854 -0.83523 -1.05064 0.067225 -0.22099 0.013078 0.141593 -0.32809
0.728332 -1.37425 -0.27478 0.054967, -0.66521 2.335223 -0.1063 -0.56187,
Old Drill
Fx Fz

A1 | A2 | A3 | A4 > A1 M| A2 M| A3 | A4 hd
1.135855 2.992714 3.617506 7.056242 0.95521 0.895487 0.363737 0.79278
-0.08088 -0.80606 0.695667 0.347392 -0.8616 -0.70452 -0.32244 -0.81905
-0.46805 -0.82886 -1.02302 -0.41282 -0.85125 -0.3514 -0.28051 0.483402
0.63835 -0.81705 -0.93672 -0.63098 1.63802 0.421371 -0.41189 0.002822
-0.73314 -1.01344 -0.54452 -0.76082 -0.20957 -0.10657 0.272743 -0.04375
-0.51683 -0.77046 -0.86683 -0.89071 -0.34247 -0.67823 0.02816  -0.4884
-0.51933 -0.64479 -0.92363 -0.79516 -0.25302 0.18785 -0.38202 -1.58427
-0.78087 -0.72107 -0.79784 -0.64703 -0.26497 0.300043 -0.38025 -0.02196
-0.89263 -0.87309 -0.60922 -0.81085 -0.02879 0.40476  -0.4298 -0.22537
-0.76525 -0.86335 -1.29362 -0.43876 -0.15174  -0.3469 -1.92008 -0.07072
-0.825 -1.07997 -0.97196 0.223145 -0.41403 -0.63003 -0.12475 -0.17425
0.316232 8.686706 -0.88032 0.454731, -1.05269 8.6785 -0.3286 -0.43116,
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Function SOM:

function (data, grid = somgrid(), rlen = 100, alpha = ¢(0.05,
0.01), radius = quantile(nhbrdist, 0.67) * c¢(1, -1), init,
toroidal = FALSE, n.hood, keep.data = TRUE)

if (lis.numeric(data))
stop("Argument data should be numeric")
data <- as.matrix(data)
nd <- nrow(data)
ng <- nrow(grid$pts)
if (missing(init)) {
init <- data[sample(1:nd, ng, replace = FALSE), , drop = FALSE]
}
else {
init <- as.matrix(init)
if (nrow(init) != ng | ncol(init) != ncol(data) | lis.numeric(init))
stop("incorrect init matrix supplied")
}
codes <- init
if (missing(n.hood)) {
n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square")

}

else {

n.hood <- match.arg(n.hood, c("circular", "square"))

}
grid$n.hood <- n.hood

nhbrdist <- unit.distances(grid, toroidal)

if (length(radius) == 1)
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radius <- sort(radius * c¢(1, -1), decreasing = TRUE)
changes <- rep(0, rlen)
res <- .C("SOM _online", data = as.double(data), codes = as.double(codes),
nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),
radii = as.double(radius), changes = as.double(changes),
n = as.integer(nrow(data)), p = as.integer(ncol(data)),
ncodes = as.integer(nrow(init)), rlen = as.integer(rlen),
PACKAGE = "kohonen")
changes <- matrix(res$changes, ncol = 1)
codes <- res$codes
dim(codes) <- dim(init)
colnames(codes) <- colnames(init)
if (keep.data) {
mapping <- map.kohonen(list(codes = codes), newdata = data)
structure(list(data = data, grid = grid, codes = codes,
changes = changes, alpha = alpha, radius = radius,
toroidal = toroidal, unit.classif = mapping$unit.classif,
distances = mapping$distances, method = "som"), class = "kohonen")
}
else {
structure(list(grid = grid, codes = codes, changes = changes,
alpha = alpha, radius = radius, toroidal = toroidal,

method = "som"), class = "kohonen")

Function to initialise:

function (data, Y, grid = somgrid(), rlen = 100, alpha = ¢(0.05,
0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.75,
contin = I(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,
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keep.data = TRUE)

if (lis.numeric(data))
stop("Argument data should be numeric")
data <- as.matrix(data)
nd <- nrow(data)
nx <- ncol(data)
if (is.vector(Y))
Y <- matrix(Y, ncol = 1)
ny <- ncol(Y)
ng <- nrow(grid$pts)
xdists <- ydists <- rep(0, ng)
starters <- sample(1:nd, ng, replace = FALSE)
init <- data[starters, , drop = FALSE]
codes <- init
if (contin) {
codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5)
}
else {
codeYs <- Y[starters, ]
}
if (missing(n.hood)) {
n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square")

}

else {

n.hood <- match.arg(n.hood, c("circular", "square"))

}
grid$n.hood <- n.hood

nhbrdist <- unit.distances(grid, toroidal)

if (length(radius) == 1)
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radius <- sort(radius * c¢(1, -1), decreasing = TRUE)

changes <- rep(0, rlen * 2)

if (contin) {

}

res <- .C("BDK_Eucl", data = as.double(data), Ys = as.double(Y),

codes = as.double(codes), codeYs = as.double(codeYs),

nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),

radii = as.double(radius), xweight = as.double(xweight),

changes = as.double(changes), xdists = as.double(xdists),

ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),
py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),

PACKAGE = "kohonen")

else {

}

res <- .C("BDK_Tani", data = as.double(data), Ys = as.double(Y),

codes = as.double(codes), codeYs = as.double(codeYs),

nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),

radius = as.double(radius), xweight = as.double(xweight),

changes = as.double(changes), xdists = as.double(xdists),

ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),
py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),

PACKAGE = "kohonen")

changes <- matrix(res$changes, ncol = 2)

codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),

Y = matrix(res$codeYs, ng, ny))

colnames(codes$Y) <- colnames(Y)

if (keep.data) {

mapping <- map.kohonen(list(codes = codes), newdata = data,

whatmap = 1)

structure(list(data = data, Y =Y, contin = contin, grid = grid,
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codes = codes, changes = changes, alpha = alpha,
radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,

distances = mapping$distances, method = "bdk"), class = "kohonen")

}
else {
structure(list(contin = contin, grid = grid, codes = codes,
changes = changes, alpha = alpha, radius = radius,
toroidal = toroidal, method = "bdk"), class = "kohonen")
}

Function for mapping:

function (xdim = 8, ydim = 6, topo = c("rectangular”, "hexagonal"))

{

}

topo <- match.arg(topo)
X <- 1:xdim
y <- 1:ydim
pts <- as.matrix(expand.grid(x = X, y = y))
if (topo == "hexagonal") {
pts[, 1] <- pts[, 1] + 0.5 * (pts[, 2]%%?2)
pts[, 2] <- sqrt(3)/2 * pts|, 2]
}
res <- list(pts = pts, xdim = xdim, ydim = ydim, topo = topo)
class(res) <- "somgrid"

res

<environment: namespace:class>

Function for training:

function (data, Y, grid = somgrid(), rlen = 100, alpha = ¢(0.05,
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0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.5,
contin = I(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,
keep.data = TRUE)

if (lis.numeric(data))
stop("Argument data should be numeric")
data <- as.matrix(data)
nd <- nrow(data)
nx <- ncol(data)
if (is.vector(Y))
Y <- matrix(Y, ncol = 1)
ny <- ncol(Y)
ng <- nrow(grid$pts)
xdists <- ydists <- rep(0, ng)
starters <- sample(1:nd, ng, replace = FALSE)
init <- data[starters, , drop = FALSE]
codes <- init
if (contin) {
codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5)
}
else {
codeYs <- Y[starters, ]
}
if (missing(n.hood)) {
n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square")

}

else {

n.hood <- match.arg(n.hood, c("circular", "square"))

}
grid$n.hood <- n.hood
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nhbrdist <- unit.distances(grid, toroidal)
if (length(radius) == 1)
radius <- sort(radius * c¢(1, -1), decreasing = TRUE)
changes <- rep(0, rlen * 2)
if (contin) {
res <- .C("XYF_Eucl", data = as.double(data), Ys = as.double(Y),
codes = as.double(codes), codeYs = as.double(codeYs),
nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),
radii = as.double(radius), xweight = as.double(xweight),
changes = as.double(changes), xdists = as.double(xdists),
ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),
py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),
PACKAGE = "kohonen")
}
else {
res <- .C("XYF_Tani", data = as.double(data), Ys = as.double(Y),
codes = as.double(codes), codeYs = as.double(codeYs),
nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),
radius = as.double(radius), xweight = as.double(xweight),
changes = as.double(changes), xdists = as.double(xdists),
ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),
py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),
PACKAGE = "kohonen")
}
changes <- matrix(res$changes, ncol = 2)
colnames(changes) <- c("X", "Y")
codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),
Y = matrix(res$codeYs, ng, ny))
colnames(codes$Y) <- colnames(Y)

if (keep.data) {
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mapping <- map.kohonen(list(codes = codes), newdata = data,
whatmap = 1)
structure(list(data = data, Y =Y, contin = contin, grid = grid,
codes = codes, changes = changes, alpha = alpha,
radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,
distances = mapping$distances, method = "xyf"), class = "kohonen")
}
else {
structure(list(contin = contin, grid = grid, codes = codes,
changes = changes, alpha = alpha, radius = radius,

toroidal = toroidal, method = "xyf"), class = "kohonen")

Function for predicting:

function (object, newdata, trainX, trainY, unit.predictions = NULL,

threshold = 0, whatmap = NULL, weights = 1, ...)

mapping <- NULL
if (missing(newdata)) {
if (lis.null(object$data)) {
newdata <- object$data
mapping <- object$unit.classif
}
else {

stop("No data given with which to predict”)

Y
if (is.null(mapping))

mapping <- map(object, newdata, whatmap, weights)$unit.classif
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if (is.null(unit.predictions)) {
if (object$method %in% c("xyf", "bdk")) {
unit.predictions <- object$codes$Y

}

else {

if (objectdmethod == "supersom" & lis.null(whatmap)) {
whatmap <- check.whatmap(object, whatmap)
if (length(whatmap) < length(object$data))

unit.predictions <- object$codes[-whatmap]

}

else {
if (missing(trainY))
stop("For unsupervised forms of mapping, trainY is required")
if (is.list(trainY))
stop("Prediction for trainY lists not implemented")
if (is.vector(trainY))
trainY <- matrix(trainY, ncol = 1)
nY <- ncol(trainY)
trainingMapping <- NULL
if (missing(trainX) & lis.null(object$data)) {
trainX <- object$data
trainingMapping <- object$unit.classif
}
nX <- ifelse(is.list(trainX), nrow(trainX[[1]]),
nrow(trainX))
if (nX = nrow(trainY))
stop("Unequal number of rows in trainX and trainY")
if (is.null(trainingMapping))
trainingMapping <- map(object, trainX)$unit.classif

unit.predictions <- matrix(NA, nrow(object$grid$pts),
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nyY)
huhn <- aggregate(trainY, by = list(cl = trainingMapping),
mean)
if (R.version$major <= "2" & R.version$minor <
"6.0") {
unit.predictions[sort(as.numeric(levels(huhn[,
11))), 1 <- as.matrix(huhn[, -1])
}
else {
unit.predictions[huhn[, 1], ] <- as.matrix(huhn[,
-11)
}
nas <- which(apply(unit.predictions, 1, function(x) all(is.na(x))))
nhbrdist <- unit.distances(object$grid, object$toroidal)
for (i in seq(along = nas)) {
unit.predictions[nas]i], ] <- colMeans(unit.predictions[nhbrdist[nas]i],
==1,,drop = FALSE], na.rm = TRUE)
}

colnames(unit.predictions) <- colnames(trainY’)

}
if (lis.null(object$contin) && lobject$contin) {

prediction <- classmat2classvec(unit.predictions, threshold =
threshold)[mapping]

}

else {
if (is.list(unit.predictions)) {
prediction <- sapply(unit.predictions, function(x) x[mapping])
}

else {
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prediction <- unit.predictions[mapping, ]

}

list(prediction = prediction, unit.classif = mapping, unit.predictions =
unit.predictions)

}

Function for plotting:

, "counts”,

function (x, type = c("codes", "changes mapping",
"property", "quality"), classif = NULL, labels = NULL, pchs = NULL,
main = NULL, palette.name = heat.colors, ncolors, bgcol = NULL,
zlim = NULL, heatkey = TRUE, property, contin, whatmap = NULL,

codeRendering = NULL, keepMargins = FALSE, ...)

type <- match.arg(type)

switch(type, mapping = plot.kohmapping(x, classif, main,
labels, pchs, bgcol, keepMargins, ...), property = plot.kohprop(x,
property, main, palette.name, ncolors, zlim, heatkey,
contin, keepMargins, ...), codes = plot.kohcodes(x, main,

bgcol, whatmap, codeRendering, keepMargins, ...), quality =
plot.kohquality(x,

classif, main, palette.name, ncolors, zlim, heatkey,
keepMargins, ...), counts = plot.kohcounts(x, classif,
main, palette.name, ncolors, zlim, heatkey, keepMargins,
...), changes = plot.kohchanges(x, main, keepMargins,
)]
invisible()
}
function (x, main, keepMargins, ...)

{
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if (is.null(main))
main <- "Training progress"
nmaps <- ncol(x$changes)
if (nmaps > 1) {
if (lis.null(colnames(x$changes))) {
varnames <- colnames(x$changes)

}

else {

varnames <- paste("Matrix", 1:ncol(x$changes))

}
if (nmaps == 2) {
if (lkeepMargins) {
opar <- par("mar")
on.exit(par(mar = opar))
}
par(mar =c(5.1,4.1,4.1,4.1))
huhn <- x$changes
huhn[, 2] <- max(x$changes|, 1]) * huhn[, 2J/max(x$changes],
2])
ticks <- pretty(x$changes], 2], length(axTicks(2)))
}

else {
huhn <- x$changes
}

matplot(huhn, type ="I", Ity = 1, main = main, ylab = "Mean distance to
closest unit",

xlab = "lteration", ...)
abline(h = 0, col = "gray")
if (nmaps == 2)

axis(4, col.axis = 2, at = ticks * max(x$changes|, 1])/max(x$changes|,
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2]), labels = ticks)
if (nmaps > 1)
legend("topright", legend = varnames, Ity = 1, col = 1:nmaps,

bty = llnll)
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