


large, that endeavors to convey and reinforce computing’s
social relevance and potential for positive societal impact.
Besides the obvious benefit to society, CSG-Ed endeavors
to exploit the finding that students’ desire to have a posi-
tive societal impact is a strong determinant regarding their
selection of a major[14]. A side effect of incorporating CSG-
Ed activities, particularly in the introductory curriculum, is
that it could potentially broaden participation in comput-
ing. It is worth noting that this “positive societal impact”
is considered an inclusive term: CSG-Ed therefore includes
sustainability [57], ICT4D [42], ICT4Peace [44], HFOSS [84],
value sensitive design [61] and so on.

1.1 Motivation
It is reasonable to hypothesize that incorporating CSG-Ed

activities into the introductory curriculum will address mo-
tivational issues on many levels. Students wanting to work
in a field in which they can make a purposeful or mean-
ingful social contribution have little difficulty seeing such
connections for disciplines like political science, art, educa-
tion, nursing, archaeology, or STEM fields such as biology,
environmental science, or civil engineering. Currently, no
such connections exist for CS.
Furthermore, there is evidence that students’ inability to

see CS’s potential social contributions impacts female enroll-
ments. Although girls enroll in secondary math and science
classes at or near gender parity and perform as well as or
better than boys[45], many avoid taking computer science
classes because they do not perceive a computing career as
having “the power to do good and make a difference”[1].
A survey of American high school students who had the

aptitude and academic preparation (calculus, pre-calculus)
for CS “had no concept of what a Computer Science major
entails.” This same study found that “students choose not
to major in CS because they have an incorrect or no per-
ception of what the field is... The vast majority of students
could not provide a description of what Computer Science
majors learn”[17]. Although there is a growing number of
outreach programs such as CS-Unplugged[10], CS4FN[24],
LEGO League(s)[47], Digital Divas[23], Project Impact[50,
31], the Computer Science Inside Project[25], and the Bebras
contest[26] that work to correct the myths and misconcep-
tions associated with the discipline, those best positioned
to influence and alter computing’s image are CS educators
themselves.

1.1.1 Introductory courses
Introductory courses that consistently fail to showcase in

an integrated way the social value of CS across a broad spec-
trum of fields are wasted opportunities to recruit those who
may be academically prepared, but reside outside the tra-
ditional CS student demographic. Furthermore, it may be
that such courses reinforce student misconceptions instead
of working to dismantle them.
Introductory computing courses provide what may be the

only opportunity for introducing examples of the social value
of CS to students with no prior exposure to CS. Pedagogical
approaches need not, however, be limited to solving prob-
lems in external domains at the application level. Bioinfor-
matics algorithms, developed specifically to process genomic
and proteomic data, are introductory-level topics for which
the social value is both apparent and implicit. A course that
interweaves the teaching of both introductory biology and

CS showed not only that participants gained the same level
of CS1 knowledge and skills as their standard CS1 counter-
parts, but they also enrolled in CS2 at equal or greater num-
bers[29]. Courses in computational journalism have utilized
CS algorithms and social science principles to mine data for
patterns that uncover stories that would otherwise go unre-
ported[70]. In fact, the emergence of Big Data in an ever
growing list of disciplines presents an opportunity for stu-
dents to grasp computing’s potential for social impact in a
large number of (non-traditional) ways[56].

Students come with a great and varied amount of back-
ground knowledge that can serve as the starting points of
problems for which CS can indicate solutions. Pedagogically,
the more connections students can make for new concepts,
especially to prior knowledge, the better the retention[49].

United States enrollment data consistently shows near
equal or over-representation of women in biology, chemistry,
environmental science, calculus, statistics, history, and the
humanities[2]. Making clear connections of CS to a wide
variety of topics and disciplines – especially to ones that
students already perceive as meaningful as indicated by cur-
rent participation rates – is one strategy to motivate stu-
dents, particularly those traditionally underrepresented, to
enroll in subsequent CS courses.

1.1.2 Making the Projects Work
Regardless of how attractive CS educators may believe

game programming, mobile app development, or duck count-
ing may be for introductory students, we have a professional
obligation to introduce CS as a discipline in a widely framed
and significant manner. While this perspective does not
necessarily banish game programming from the introduc-
tory curriculum, it does argue for the inclusion of CSG-Ed
projects.

CSG-Ed projects need not necessarily be based on exter-
nal domains. The current CS Principles pilot courses scat-
tered across the U.S.A. have been incubators for innovative,
and sometimes impressive, curricular ideas [6]. A steganog-
raphy lesson, developed at the Univ. of Washington, show-
cases the use of bit-shifting operations to hide one image
inside another[81]. The “wow” factor cannot be overempha-
sized when one sees a color photograph of a “subversive”
Tahrir Square protest emerge from a conventional B&W
photo of a foggy fishing scene.

In the following sections we describe previous work in this
area and then ask why CSG-Ed is not more prevalent. The
barriers identified are then used as the basis for a rubric to
describe example CSG-Ed assignments.

2. RELATED WORK
The inclusion of social good in CS education is not a new

notion. Schneiderman, back in 1971, argued that students
should be equally stimulated to study sociological modeling
as faster algorithms for eigenvalue calculations[79]. Along
with an increasing recognition of the socially valuable con-
tributions of computing [46, 83], there is a consequent call
for inclusion of CSG-Ed activities in the computing curricula
[22, 38, 51, 58].

Such approaches have clear direct benefit in the involve-
ment in social good, but also there is some evidence to sug-
gest that success in broadening participation may be im-
proved when computing is shown to connect with students’
values rather than their more superficial interests[7, 16, 28,



36]. There is a growing body of experience reports describ-
ing CSG-Ed experiences in upper division courses such as
software engineering (e.g. [13, 32, 67]), the senior capstone
project (e.g. [5, 53, 80]), service learning experiences (e.g.
[74, 78]), sustainability (e.g. [15, 33]), and within fields such
as HCI (e.g. [60, 65]). Hence only those students who have
survived one to two years of duck counting and Checkers will
finally get exposed to the potential social value contributions
of computing.
Unfortunately, the literature describing CSG-Ed activities

for introductory computing students is thin[29, 37, 64, 68].
Delaying the inclusion of CSG-Ed projects until the third

or final year is at best problematic. In addition to the obvi-
ous problem of potentially losing interested students to more
“meaningful” majors in the first (or second) year, there is
evidence which suggests coverage of such material is more
effective when it is not segregated into a separate course.
The inclusion of both ethics in CS curricula[39] and writing
across the curriculum[76] have been shown to be more effec-
tive when spread or “integrated” throughout the curriculum.
One recent study endeavored to test the effect that CSG-

Ed programming projects have on CS students[72]. After
incorporating a CSG-Ed project into both their CS1 and
Software Engineering courses, first year students and CS se-
niors were surveyed regarding their interest in humanitarian
projects. Both cohorts indicated that they liked humanitar-
ian projects (79% & 92%), with the seniors reporting the
higher approval ratings. Only 11% of the first year students
were CS majors, with the majority being declared engineer-
ing majors.
When comparing CSG-Ed projects to more traditional as-

signments, the CSG-Ed projects did not fare so well; espe-
cially when compared to game-based projects. While women,
in comparing CSG-Ed projects to other projects still ranked
CSG-Ed projects positively, none of the CSG-Ed projects
received a positive ranking from the male students. The
survey’s results are of limited scope due to the lack of fe-
male participation in the study and that the CS1 cohort
contained a majority of students (engineering majors) who
admittedly disdain programming. The study did reveal that
while it is possible to successfully deploy CSG-Ed projects
into introductory courses, the perceived increased difficulty
and open-ended nature of their particular CSG-Ed project
(search and rescue) affected student appeal. The study con-
cludes by observing that care must be exercised to ensure
that CSG-Ed programming projects for introductory courses
require “the same level of difficulty and require the same
level of programming skills as the other problems in the
course”[72], a sentiment echoed in an Australian study of
engineering curricula infused with topics of social and envi-
ronmental justice[63].
Finally we observe that academic service learning experi-

ences have the potential for introductory student participa-
tion in CSG-Ed projects. Given the extent of introductory
students’ disciplinary knowledge, it is not surprising that
the academic service learning projects for these students fall
back on the expertise of their instructor and center around
social good through providing educational resources (e.g. [4,
19, 30, 62, 71, 75]). The canonical example, which one of
the authors is involved with, is to have introductory students
assist at an after school Scratch/Alice/Kodu/Lego club at
a local (disadvantaged?) middle school, or to help run a
computer recycling program.

3. BARRIERS TO INTEGRATION
OF CSG-ED

Given that there are many advantages to CSG-Ed, the
obvious question is why so few CSG-Ed projects exist for
the introductory level. There is, of course, no simple answer,
but rather many interrelated factors that have delayed CSG-
Ed development. Here we subjectively comment on a few of
the most significant elements of this problem.

Historical reasons. Concurrent with the dot-com bust,
enrollments in CS courses dropped precipitously [86]. In-
structors desperate to fill courses tried making introductory
courses more “attractive” to students. Unfortunately, “at-
tractive” was usually defined as graphics and game projects
which appealed to the contemporary CS student.

What is the role of a teacher? In Teaching as a
Subversive Activity, Postman and Weingartner argue that
teachers do not inject social values into their teaching be-
cause they do not conceive themselves as having this role
[69]. Instead, they see themselves as information providers,
or job trainers. We see this in the current culture of com-
puter science: CS instructors see themselves as information
providers and trainers of future computing practitioners (or
graduate students), rather than deep educators.

Extraneous load. Cognitive load theory posits that we
should reduce the extraneous load of our assignments[27];
as such, many instructors have done what they can to strip
the context of their assignments. By omitting context, the
idea is that students will focus on the CS materials and
not be distracted. However, context provides motivation to
students [48], and the evidence for cognitive load theory is
mixed [43].

Overworked teachers. With little time for curriculum
design, most instructors will turn to existing assignments.
Many will reuse previous assignments, their colleagues’ as-
signments, or textbook-provided assignments/resources. Over-
worked teachers are less likely to navigate domain knowl-
edge, and hence are more likely to produce context-free as-
signments.2

Examples in textbooks. Prior to the wide-spread adop-
tion of Java and Python in the introductory curriculum, CS
textbooks had examples and exercises with scientific con-
texts. Indeed, there was a rich body of work providing Pas-
cal projects for instructors to use, such as [20]. However,
in the switch to Java, the new generation of textbooks pro-
vided examples and exercises with no context, such as bank
accounts. Two reasons may be behind this move: first, the
switch to Java represented a cultural shift towards producing
professional practitioners, rather than educating scientists.
The second lies in the notion that the medium is the mes-
sage [59]: Pascal and similar languages were set up for line
output, allowing for easy abstractions and a primary focus
on algorithm development; the shift to Java also represents
a shift to simple graphics – and from there, a shift to assign-
ments such as to move a circle across a screen.

Scoping issues for CS1. While some work has already
been done in adding social context to software engineering
courses, databases, and other higher level courses (see Sec-
tion 2 for more details), introductory courses present more
difficulty. Typically the “meaty” problems that are interest-

2We do not differentiate between a context-free assignment
(e.g. create a stack class) and a universal-context assignment
(e.g. bank account or movie rental service).



ing to tackle require a level of depth, expertise, or commit-
ment that we cannot expect at the introductory level. Fur-
ther, if an instructor consults a colleague in, say, chemistry,
for advice on CS assignments with a chemistry context, the
chemist is likely to provide an example that is too complex
for the introductory level.
Instructors’ lack of domain knowledge. Our educa-

tional model produces specialists: computer scientists who
know computer science, and little of the disciplines which use
it. Without a rich understanding of, for example, physics, it
can often be difficult for a CS instructor to find and motivate
a physics-influenced introductory assignment.
Fears of instructors. In talking to CS instructors, we’ve

encountered two fears. First, instructors’ lack of domain
knowledge leads them to fear looking incompetent in front of
their students. Should students ask domain-based questions
when doing the assignment, the instructors worry about be-
ing unable to answer the questions. Second is the issue of
student feedback. While there is evidence that students ap-
preciate context-based assignments in CS [34], instructors
may fear shifting away from popular assignments on games
or mobile development. In a system which focuses on stu-
dent evaluations, the reward system is set up to select for
popular assignments rather than valuable assignments.

4. APPROACH
The potential scope of CSG-Ed can be considered as the

set produced from the interaction of computer science do-
mains, social good domains and approaches to educational
engagement. Clearly this is a very large set that we cannot
hope to describe completely. Therefore, we propose that
for any non-theoretical computer science domain, topic, or
even task, one should be able to articulate a useful CSG-Ed
assignment. The key here is useful. We argue that utility
in this case is to provide a vehicle for teaching an aspect
of the introductory curriculum, engage in social good, and
overcome the barriers described in Section 3 above.
It is not our intention to attempt to provide a compre-

hensive list of these possible projects, however. Rather, we
provide a set of framing examples that provide the basis for
a discussion of the characteristics of CSG-Ed.
The case studies are presented in the Appendix and sum-

marized below. It should be noted that the collection of case
studies is not intended as a complete course in CS.
When addressing domains covered in the projects it be-

came difficult to conceive of a specific ontology that might
be suitable, as the scope of domains addressed was sim-
ply too broad. The Software Engineering curriculum[52,
54] outlined a set of systems and application specialities
which addressed some application domains, but these again
were framed somewhat restrictively at a system level (e.g.
network-centric systems, financial and e-commerce systems,
highly secure systems, bio-medical systems). Furthermore,
even when addressing CS as a single domain, the CS on-
tology project has found itself facing huge challenges[18].
Therefore we have opted for a categorisation scheme which
captures the six elements which we have considered essential,
and augmented those with a narrative description applying
the practice bundle pattern proposed by Fincher, Petre &
Clark[35]. Each case study, then, is described according to a
computer science project work practice bundle. In addition
to this meta-data and basic description, a rubric is used to
elaborate specific CSG-Ed aspects; See Table 1.

Case studies have in common that all contribute to intro-
ductory computing. All are designed to be completed as an
assignment, series of assignments, or programming project,
each taking approximately two weeks to a month.

4.1 CSG-Ed Rubric Table Explained
• Student directed: Describes the extent to which the

assignment is determined by the student. Such learner
control aids engagement and is considered a funda-
mental aspect of values based education[82]. Reeves
[73], cited in Clear[21], describes the pedagogical di-
mensions of interactive learning from which these cat-
egories are derived.

• Scaffolding - Instructor resourced: Reflects the
amount of instructor prepared material required to
support the learning. We observe that a project can be
student directed and still require support from the in-
structor. Prepared material can take two forms: frame-
works, libraries or classes upon which a solution pro-
gram is built and code that can be used directly in a
solution. This category addresses only the latter.

• External domain knowledge: Reflects the amount
of non-computer science material that is needed to sup-
port a student’s engagement in the assignment. The
delivery mechanism of the material is not distinguished
in this category–rather each case study describes whether
this is instructor delivered, student delivered, or a com-
bination.

• Social Good contribution: An adaptation of a de-
scription of student engagement in sustainability projects
[11]. A self-referenced project (i.e. without external
context) or a traditional not-social good assignment
(such as a Tower of Hanoi game) would be classified
here as “none.” Projects with a non-traditional con-
text, such as biological systems would be classified as
“some.” A project that explicitly addresses a social
good problem such as a sorting system for a humani-
tarian mission would be medium, and high indicates a
real world problem brought by stakeholders and with
real world benefits rather than just an exercise. Note
that the intention here is to consider the social good
contribution of each specific class exercise and assign-
ment per se rather than the social good of CS educa-
tion itself.

• Coolness: Attempts to describe elements of ease of
student engagement. Most studies of engagement count
process (e.g. class attendance) or changed attitudes to-
wards a subject but few attempt to predict the sexiness
of assignments. Maybe we are deluded.

• Explicit reflection: Describes the extent to which
students are encouraged to reflect on the social good
aspects of the assignment. The metric here is derived
from Hatton and Smith [41]. Reflecting on the tech-
nical aspects without reference to the social good is
considered “none.” The degree of reflection increases
from the technical reflection through reflection on ac-
tion (including descriptive) to dialogic and critical re-
flection. The last class includes consideration of mul-
tiple viewpoints and consideration on the role of the
profession.



None Some Medium High Basis for scale
Student directed Students carry

out work as di-
rected. Outcome
predetermined.
Reductionist.

Students select top-
ics from predeter-
mined list.

Students negotiate
tasks.

Learners select
goals, inquiry based
learning. Construc-
tivist pedagogy.

[73] in [21]

Scaffolding:
Instructor re-
sourced

No resourcing re-
quired.

Some scaffolding
provides overview
for solution sets.
Tight sequencing.

Skeleton frameworks
or code.

Extensive code
structures supplied.

[73] in [21]

External domain
knowledge

None – entirely in
CS traditional suite,
or universally known
context.

Brief introduction
required. (Some
Wikipedia may be
needed.)

Requires reading. Requires subject ex-
pertise.

External domain
knowledge (fear
factor)

Social Good Con-
tribution

None. Something done in
external context
(e.g. biological
humanities).

Explicitly social
good.

Actual good con-
tribution. (i.e.
Has real world
outcomes.)

[11]

Coolness Difficult to en-
gage. Not tractable.
What’s this got to
do with computing?

Fosters interest Retains interest. Is
considered relevant.

“Sexy,” immediate
engagement. Rele-
vant. Inspirational.

Explicit reflection
on social good as-
pects

None. Technical reflection.
(What I did, related
to personal experi-
ence) *social good
aspect.

Reflection on action.
(Descriptive – best
practice)

Dialogic – view-
points, alternative
solutions * about
social good aspects.
Critical – role of
profession, impact
on other and wider
forces.

[41]

Table 1: The CSG-Ed Rubric Table

5. THE CASE STUDIES
The Appendix includes a variety of ready-to-use intro-

ductory CSG-Ed projects. These projects reflect the varied
interests of the authors in both domains and approaches.
As a result, the topics covered range from largely scientific
issues (e.g. astronomy) to disaster management to voting
systems. Furthermore, the approaches utilized a range from
typical first year programming projects transformed into a
CSG-Ed project (e.g. a shortest path implementation be-
comes a Red Cross disaster response program.) to projects
that are centered on particular social issues. Despite this
range, the projects presented in the Appendix demonstrate
certain characterizations for each of the four categories used
in their classification. In the following paragraphs we list
the projects, discuss the computer science topics they cover,
and summarize the project characterizations.

5.1 The CSG-Ed projects

• Radioactive mice - Simulation of a robot seeking out
and catching contaminated mice: Section A.

• Red Cross disaster relief - Application of the short-
est path algorithm to determine which red cross office
should respond to a disaster: Section B.

• The use of nuclear power - GIS application exam-
ining safety of nuclear plant sites: Section C.

• Water pollution - GIS application examining point-
source water pollution: Section D.

• Ad hoc emergency Wi-Fi networking - Simula-
tion of an emergency ad hoc WiFi-based network: Sec-
tion E.

• A mini package manager for software distribu-
tion: Section F.

• Voting simulation - An examination of how different
voting systems affect democratic elections: Section G.

• STI modeling - Using graph models to examine dis-
ease propagation through a population of sexual part-
ners: Section H.

• Banana republic - Modeling population growth, crop
growth, boat migrations for a set of island populations:
Section I.

• Kiwi population - Modeling of various aspects of
food production, population growth and food distri-
bution: Section J.

• Molecular modeling (MM) and DNA - Building a
2-D MM program to study hydrogen bonding between
bases in the DNA double helix: Section K.

• Around the world - Simulation of a rotating Earth
to examine the “Around the World in 80 Days” phe-
nomenon: Section L.

• Social good website - Web development for commu-
nity organization or development initiative: Section M.

• Social good scholarly work - Formally analyze an
aspect of communication technology: Section N.

5.2 Computer Science Topics
The computer science topics covered in the projects pre-

sented here fall mainly in the ACM knowledge areas[3] Fun-
damental programming structures (PF1), Algorithms and prob-
lem solving (PF2), and Fundamental data structures (PF3).
Not all topics in these knowledge areas are covered, but a
significant number of the topics typically covered in an in-
troductory sequence are addressed. Table 2 relates the CS
topics to individual projects. The breadth of topics covered



Radioactive Red Cross The use of Water Ad Hoc A mini Voting
Mice Disaster Relief Nuclear Pollution Emergency package Simulation

Power Wi-Fi manager

‘ Random # Gen. X X

Encapsulation/Classes X

Inheritance/Polymorphism

Iteration X X

Selection X X X

1-D arrays X

2-D arrays X

ArrayLists X X

File I/O X X

Dictionaries X

Searching X X

Sorting X X

Graphs/Algs X X X

Software Eng

GUI/Event driven

Other

STI Banana Kiwi Molecular Around Social good Social good
modeling Republic Population Modeling the world website scholarly

and DNA work

Random # Gen. X X

Encapsulation/Classes X X X X

Inheritance/Polymorphism X

Iteration X X X X

Selection X X X

1-D arrays X X X X

2-D arrays

ArrayLists X X

File I/O X

Dictionaries

Searching

Sorting

Graphs/Algs X X X

Software Eng X X

GUI/Event driven X X

Other X X

Table 2: CS concepts covered

indicates how easily socially relevant issues can be incorpo-
rated into introductory courses.
Although the topics in the projects range from the very

introductory level to a relatively sophisticated level, most
projects cover topics that require students to have mastered
some simple programming skills. Examining Table 2, it is
clear that most of the projects use aggregate data structures
(arrays, lists, dictionaries) and at least a third of the projects
cover relatively sophisticated graph or searching algorithms.

5.3 Summary of project set categorizations
The projects presented in this paper vary greatly in the

emphasis given to each of the categories. In the following
paragraphs we summarize the projects in terms of their cat-
egory emphasis to give interested instructors a feel for the
breadth and types of projects offered in this paper. Table 3
provides complete categorization for all projects.
Student Directed: Most of the projects in this paper

require at least some student self-initiative, though only one
allows students complete freedom to determine the direction
of the project. In the projects that do allow some student
participation in the project direction, the involvement usu-
ally takes the form of choosing among a list of topics or
uses guided discovery (such as the “Molecular Modeling and
DNA” project). Two projects, the nuclear power project
and the water pollution project, require students to deter-
mine the criteria that they use in their analysis and sev-
eral projects (such as the “Ad Hoc Wi-Fi” project and “the
mini package manager”) allow students to extend the project
or add features for credit. Several projects (“Radioactive
Mice,”“Red Cross Disaster Response”) also have flexible as-
sessment rubrics that allow students some flexibility in how
they complete assignments.
Scaffolding: Most of the projects presented here pro-

vide minimal scaffolding for the student. Several (including

the “Nuclear Power” and “Water Pollution” projects) pro-
vide frameworks or classes that can be used by students in
their solution. In several projects (such as the “Banana Re-
public” and “Kiwi Population” projects) code similar to the
solution is provided to give students an understanding of the
program structure. Three of the projects provide extensive
scaffolding. The “DNA,”“Around the World,” and “Voting”
projects provide the outline of at least some of the solution
code to students. The former two projects use a guided dis-
covery approach and much of the code used by students is
created in the classroom.

External Domain Knowledge: Only two of the projects
presented here require extensive knowledge of an external
field, the “Molecular Modeling and DNA” and “Around the
World” projects. These projects both use the guided discov-
ery approach. The former requires instructors to present
geometry, trigonometry, and molecular biology principles
while the latter requires the instructor to have a good grasp
on geography. Four of the projects require neither student
nor instructor to have knowledge of an external domain;
the projects are motivated by the external domain but the
problem has been reduced to pure computer science con-
cepts. The remaining projects are split between requiring
“some” or “medium” external domain knowledge. In the
projects that require“some”knowledge the knowledge is usu-
ally well known to the target audience (“Banana Republic,”
“Kiwi Population,” “Voting,” “Ad Hoc Emergency Wi-Fi,”
“Social Good Website”). In the projects rated “medium” the
knowledge is discovered by the students themselves (“Nu-
clear Power,”“Water Pollution,”“Social Good Scholarly Work,”
“STI Modeling”).

Social Good: Given the purpose of this paper, all of
the projects provided here contribute in some way to the
social good. The “high” rating requires real community en-
gagement and only a few of the projects reach that goal



Radioactive Red Cross The use of Water Ad Hoc A mini Voting
Mice Disaster Relief Nuclear Pollution Emergency package Simulation

Power Wi-Fi manager
Student some some some some none none none
directed

Scaffolding.
Instructor none none some some none none high
resourced
External
domain none none medium medium some none some

knowledge
Good some medium medium medium medium medium medium

contribution
Coolness some medium medium high medium high medium

Explicit reflection
on social medium medium high high high medium medium

good aspects

STI Banana Kiwi Molecular Around Social good Social good
modeling Republic Population Modeling the world website scholarly

and DNA work
Student none some some medium medium medium high
directed

Scaffolding.
Instructor some medium medium high high some some
resourced
External
domain none some some high medium some none to

knowledge medium
Good some some or some or

contribution medium medium high high high medium
Coolness high medium medium high high some medium

Explicit reflection
on social some some some medium medium medium high

good aspects

Table 3: Project Categorization

(“Molecular Modeling and DNA,”“Around the World,”“So-
cial Good Website”). Several of the projects are framed by
social issues (“Radioactive Mice,” “Red Cross Disaster Re-
lief,”“Ad Hoc Emergency Wi-Fi,”“Mini Package Manager”)
but don’t require students to investigate or reflect on those
issues. The remaining projects require students to either
research, reflect on, or in some way confront social good
issues.
Coolness: The projects included in this paper tend to

be more highly rated in this category. The idea of social rel-
evancy often captures student attention and these projects
focus, for the most part, on high-profile issues. In some of
the projects, such as“Nuclear Power”or the role of computer
science in emergency situations (“Red Cross Disaster Relief”
or “Ad Hoc Emergency Wi-Fi”), the topic itself is engaging.
In other exercises, simulations (“Banana Republic” or “Ra-
dioactive Mice”) are used for engagement. Although these
latter projects are less realistic or less directly related to so-
cial good, they provide an environment similar to those of
virtual world games and encourage students to think more
broadly about social issues.
Reflection: All of the projects presented in this paper

require some reflection on social issues, though this reflection
is, for many of the projects, indirect. Through their focus
on socially relevant issues and through the process of devel-
oping a program that deals with some aspect of a socially
relevant issue, students are forced to reflect, to some degree,
on the issue. There are some projects, however, that make
this reflection more purposeful. The “Nuclear Power,”“Wa-
ter Pollution,” and “Social good scholarly work” projects all
require explicit reflection in the form of a paper or technical
report.

5.4 Limitations of our work
While the CSG-Ed approach can capture the interest of

students who did not realize the social applications of com-
puter science, more techie students may not appreciate these
projects. In fact, their main interests are more related to
methods and technical details rather than to motivations
and means.

The assignments presented here are class-tested to varying
degrees. While it is hoped that instructors could use them
“as is,” we make no promises as to their robustness. Rather
the intention of including them here is to provide material to
support the exploration of the proposition that for any non-
theoretical computer science domain topic, one should be
able to articulate a useful CSG-Ed assignment. A significant
number of the topics typically covered in the first year are
addressed.

5.5 Allaying the barriers
The barriers described in Section 3 can be daunting, but

are by no means insurmountable. CS instructors are well
aware of the need to appeal to a larger audience to increase
enrollments, especially of minorities and women so the his-
torical patterns are already changing. This paper presents
projects that should appeal to a much wider range of stu-
dents and also addresses the needs of overworked instructors.

The projects presented here will also ameliorate the prob-
lem of domain knowledge and the resulting feeling of inade-
quacy. Most of the projects supply sufficient domain infor-
mation for both student and instructor and only two projects
(“Molecular Modeling and DNA” and “Around the World”)
require deep domain knowledge on the part of the instructor.
Some of the projects (e.g. “Red Cross Disaster Relief” and



“Radioactive Mice”) illustrate how traditional introductory
assignments can, with a little creativity, be repurposed into
a CSG-Ed assignment.

• “Radioactive Mice”is a reworked version of a Greenfoot-
based game called Catch Me If You Can.

• “Red Cross Disaster Relief” is a reworked example of
a shortest-path algorithm assignment, often presented
at the introductory level as the Travel Agent Problem.

The projects also address the problem of extraneous load
on students. Many of the projects (such as the “Radioac-
tive Mice”and the“Mini Package Manager”) place minimum
extra overhead on the students. Others (such as “Nuclear
Power” or “Molecular Modeling and DNA”) place a much
higher burden on the students, yet even these assignments
are constructed in such a manner that the instructor can
minimize the time spent pursuing outside domain knowl-
edge.
All of the assignments integrate many CS concepts and in

most of them the external domain assessment can, if neces-
sary, be reduced. For example, the technical report in both
the “Nuclear Power” and “Water Pollution” projects can be
omitted. As a result, the overhead problem can, in most
cases, be minimized.
The only serious barrier, then, is the availability of intro-

ductory CS textbooks that address social good issues. This
is, of course, the horse and cart problem; textbooks with
problems that deal with social good issues would raise in-
structor awareness, but will not be written until there is
sufficient demand from instructors. The projects in this pa-
per, which can be used with any textbook, are a first step
in raising both awareness and demand.

6. CONCLUSIONS
In this report we have made a case for the merits of Com-

puter Science Education for Social Good (CSG-Ed) projects
from an early stage in the curriculum. We considered the
background of computing for the social good, motivated the
work and proposed a categorisation and an illustrative set
of exemplar case study projects intended for CS educators
to adopt in their own institutions.
We believe a CSG-Ed approach will better motivate stu-

dents by providing them with a more comprehensive view
of the discipline and its scope for meaningful societal contri-
bution from the very beginning of their CS education. This
larger viewpoint often does not appear until the senior cap-
stone project in a traditional CS curriculum by which time
their perspective on computer science has already been for-
mulated.
While this report includes a number of CSG-Ed projects,

no attempt has been made to formally evaluate their im-
pact. Though such evaluation must be accomplished in the
future, we believe that CS educators have a professional obli-
gation to introduce CS as a discipline in a widely framed and
significant manner regardless of its potential impact on en-
rollments. The pervasiveness of computing and its impact
on all aspects of our lives suggests that it be seen as the
transformational discipline that it truly is, rather than as a
frustrating struggle with obscure syntax and problems or as
the handmaiden to some other scientific or business disci-
pline. In addition to providing current majors with a more
accurate understanding of their profession, this insight will

also make the field more appealing to students seeking a
major through which they can make a real impact on the
world. The projects presented in this paper give instructors
a concrete starting point to incorporate a CSG-Ed approach
in their teaching.

7. FUTURE WORK
The projects included in the appendix are just a first col-

lection of CSG-Ed ideas. They do not cover all computer
science topics nor do they include all students’ knowledge
levels. However, the heterogeneity of the projects make
them a viable proof-of-concept to show the effectiveness of
the approach.

Much work also remains to be done field testing the projects.
Some of them have been effectively tested in courses while
others are new projects designed for this paper. Our intent
is that these projects form just the first set of a larger col-
lection that will grow with the contributions from interested
lecturers who seek to share their projects and experiences.

In addition to testing the projects, an assessment of the
approach itself remains to be done, especially in light of
the very preliminary assessment work by Rader et.al.[72].
How does the inclusion of social good concepts affect stu-
dent perceptions of computer science? Are students more
motivated by these problems than traditional CS problems?
Are non-traditional CS students attract to CS through these
problems? Does this approach enhance the learning of CS
concepts? The answers to these questions, and more, will
determine the effectiveness of the approach.

8. REFERENCES
[1] Dot diva.

http://dotdiva.org/educators/problem.html.

[2] College board AP program summary report.
http://professionals.collegeboard.com/

data-reports-research/ap/data, 2011.

[3] ACM/IEEE-CS Joint Interim Review Task Force.
Computer science curriculum 2008: An interim
revision of CS 2001, report from the interim review
task force, 2008.

[4] J. B. Adams and E. Runkles. ”May we have class
outside?”: implementing service learning in a CS1
curriculum. J. Comput. Sci. Coll., 19(5):25–34, May
2004.

[5] R. J. Anderson, R. E. Anderson, G. Borriello, and
J. Pal. An approach to integrating ICTD projects into
an undergraduate curriculum. In Proceedings of the
41st ACM Technical Symposium on Computer Science
Education, SIGCSE ’10, pages 529–533, New York,
NY, USA, 2010. ACM.

[6] O. Astrachan, T. Barnes, D. D. Garcia, J. Paul,
B. Simon, and L. Snyder. CS principles: piloting a
new course at national scale. In Proceedings of the
42nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 397–398, New
York, NY, USA, 2011. ACM.

[7] L. J. Barker, C. McDowell, and K. Kalahar. Exploring
factors that influence computer science introductory
course students to persist in the major. In Proceedings
of the 40th ACM Technical Symposium on Computer
Science Education, SIGCSE ’09, pages 153–157, New
York, NY, USA, 2009. ACM.



[8] D. Barnes and M. Kölling. Objects First with Java: A
Practical Introduction Using BlueJ. Pearson: Prentice
Hall, 4 edition, 2009.

[9] K. Becker. Grading programming assignments using
rubrics. In Proceedings of the 8th Annual Conference
on Innovation and Technology in Computer Science
Education, ITiCSE ’03, pages 253–253, New York,
NY, USA, 2003. ACM.

[10] T. Bell. Computer science unplugged.
http://csunplugged.org/.

[11] K. Brundiers, A. Wiek, and L. Redman, Charles.
Real-world learning opportunities in sustainability:
from classroom into the real world. International
Journal of Sustainability in Higher Education,
11(4):308–324, 2010.

[12] M. Buckley. Viewpoint: Computing as social science.
Commun. ACM, 52(4):29–30, Apr. 2009.

[13] M. Buckley, H. Kershner, K. Schindler, C. Alphonce,
and J. Braswell. Benefits of using socially-relevant
projects in computer science and engineering
education. In Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’04, pages 482–486, New York, NY, USA,
2004. ACM.

[14] M. Buckley, J. Nordlinger, and D. Subramanian.
Socially relevant computing. In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’08, pages 347–351, New York,
NY, USA, 2008. ACM.

[15] Y. Cai. Integrating sustainability into undergraduate
computing education. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 524–528, New York, NY, USA,
2010. ACM.

[16] J. Carter, D. Bouvier, R. Cardell-Oliver, M. Hamilton,
S. Kurkovsky, S. Markham, O. W. McClung,
R. McDermott, C. Riedesel, J. Shi, and S. White.
Motivating all our students? In Working Group
Report from the 16th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE-WGR ’11, pages 1–18, New York,
NY, USA, 2011. ACM.

[17] L. Carter. Why students with an apparent aptitude for
computer science don’t choose to major in computer
science. SIGCSE Bull., 38(1):27–31, Mar. 2006.

[18] L. N. Cassel, G. Davies, W. Fone, A. Hacquebard,
J. Impagliazzo, R. LeBlanc, J. C. Little,
A. McGettrick, and M. Pedrona. The computing
ontology: application in education. SIGCSE Bull.,
39(4):171–183, Dec. 2007.

[19] K. Christensen, D. Rundus, G. Perera, and S. Zulli.
CSE volunteers: a service learning program to provide
IT support to the Hillsborough County school district.
SIGCSE Bull., 38(1):229–233, Mar. 2006.

[20] M. Clancy and M. Linn. Designing Pascal Solutions:
A Case Study Approach. Principles of Computer
Science Series. Computer Science Press, 1992.

[21] T. Clear. Diagnosing your teaching style: how
interactive are you? ACM Inroads, 1(2):34–41, June
2010.

[22] R. W. Connolly. Beyond good and evil impacts:
rethinking the social issues components in our

computing curricula. In Proceedings of the 16th
Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’11, pages
228–232, New York, NY, USA, 2011. ACM.

[23] A. Craig and J. Fisher. Digital divas club.
http://digitaldivasclub.org/vic/.

[24] P. Curzon, P. McOwan, and J. Black. Computer
science for fun. http://www.cs4fn.org/.

[25] Q. Cutts, M. Calder, and P. Dickman. Computer
science inside... bring computer science alive.
http://csi.dcs.gla.ac.uk/.

[26] V. Dagiene. Bebras contest.
http://www.bebras.org/en/welcome.

[27] T. de Jong. Cognitive load theory, educational
research, and instructional design: some food for
thought. Instructional Science, 38:105–134, 2010.
10.1007/s11251-009-9110-0.

[28] B. DiSalvo and A. Bruckman. From interests to
values. Commun. ACM, 54(8), 2011.

[29] Z. Dodds and R. Libeskind-Hadas. Bio1 as CS1:
Evaluating a crossdisciplinary CS context. In
Proceedings of the 17th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’12, 2012.

[30] M. A. L. Egan and M. Johnson. Service learning in
introductory computer science. In Proceedings of the
15th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’10, pages 8–12, New York, NY, USA, 2010. ACM.

[31] M. A. L. Egan and T. Lederman. The impact of
IMPACT: assessing students’ perceptions after a day
of computer exploration. In Proceedings of the 16th
Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’11.

[32] H. J. C. Ellis, R. A. Morelli, T. R. de Lanerolle,
J. Damon, and J. Raye. Can humanitarian
open-source software development draw new students
to CS? In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’07, pages 551–555, New York, NY, USA, 2007. ACM.

[33] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers.
Sustainability themed problem solving in data
structures and algorithms. In Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’12, pages 9–14, New York, NY,
USA, 2012. ACM.

[34] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers.
Sustainability themed problem solving in data
structures and algorithms. In Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’12, pages 9–14, New York, NY,
USA, 2012. ACM.

[35] S. Fincher, M. Petre, and M. Clark, editors. Computer
science project work: principles and pragmatics.
Springer-Verlag, London, UK, 2001.

[36] A. Fisher and J. Margolis. Unlocking the clubhouse:
the Carnegie Mellon experience. SIGCSE Bull.,
34(2):79–83, June 2002.

[37] M. Goldweber. A day one computing for the social
good activity. ACM Inroads, 3(3), 2012.

[38] M. Goldweber, R. Davoli, J. C. Little, C. Riedesel,



H. Walker, G. Cross, and B. R. Von Konsky.
Enhancing the social issues components in our
computing curriculum: computing for the social good.
ACM Inroads, 2:64–82, February 2011.

[39] D. Gotterbarn. Integration of computer ethics into the
CS curriculum: attachment or synthesis. In Working
group Report from the 4th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE-WGR ’99, pages 13–14, New York,
NY, USA, 1999. ACM.

[40] M. Guzdial. Teaching computing to everyone.
Commun. ACM, 52(5), 2009.

[41] N. Hatton and D. Smith. Reflection in teacher
education: towards definition and implementation.
Teaching and Teacher Education, 11:33–49, 1995.

[42] R. Heeks. ICT4D 2.0: The next phase of applying ICT
for international development. Computer, 41(6):26–33,
June 2008.

[43] D. Holton. Cognitive load theory: Failure?, 2009.
http://edtechdev.wordpress.com/2009/11/16/

cognitive-load-theory-failure/.

[44] J. P. Hourcade. Give peace a chance: a call to design
technologies for peace. In Proceedings of the 27th
International Conference Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’09,
pages 2499–2508, New York, NY, USA, 2009. ACM.

[45] J. H. Janet and J. Mertz. Gender, culture and
mathematics performance. Proceedings of the National
Academy of Sciences, 106(22).

[46] L. C. Kaczmarczyk. Computers and Society:
Computing for Good. Chapman and Hall, 2011.

[47] D. Kamen and K. K. Kristiansen. First lego league.
http://www.firstlegoleague.org/.

[48] J. S. Kay. Contextualized approaches to introductory
computer science: the key to making computer science
relevant or simply bait and switch? In Proceedings of
the 42nd ACM Technical Symposium on Computer
Science Education.

[49] J. Kirkpatrick, J. Swafford, and B. Findell. Adding it
up: Helping children learn mathematics. National
Academy Press, 2001.

[50] C. Lang, A. Craig, J. Prey, M. A. L. Egan, and
R. Ayfer. Outreach programs to promote computer
science and ICT to high school and middle school
students. In Proceedings of the 16th Annual
Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’11.

[51] L. Layman, L. Williams, and K. Slaten. Note to self:
make assignments meaningful. In Proceedings of the
38th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’07, pages 459–463, New
York, NY, USA, 2007. ACM.

[52] R. LeBlanc, M. Ben-Menachem, T. B. Hilburn,
S. Mengel, T. C. Lethbridge, B. Thompson, A. Sobel,
and J. L. Dı́az-Herrera. IEEE-CS/ACM computing
curriculum software engineering volume project. In
Proceedings of the 16th Annual Conference on
Software Engineering Education and Training, CSEET
’03, 2003.

[53] P. M. Leidig, R. Ferguson, and J. Leidig. The use of
community-based non-profit organizations in
information systems capstone projects. In Proceedings

of the 11th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’06, pages 148–152, New York, NY, USA, 2006. ACM.

[54] T. C. Lethbridge, R. J. LeBlanc Jr, A. E. K. Sobel,
T. B. Hilburn, and J. L. Diaz-Herrera. SE2004:
Recommendations for undergraduate software
engineering curricula. IEEE Softw., 23(6):19–25, Nov.
2006.

[55] R. Lister, A. Berglund, T. Clear, J. Bergin,
K. Garvin-Doxas, B. Hanks, L. Hitchner,
A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L.
Whalley. Research perspectives on the objects-early
debate. In Working Group Report from the 11th
Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE-WGR ’06, pages
146–165, New York, NY, USA, 2006. ACM.

[56] S. Lohr. The age of big data. New York Times,
February 2012.

[57] S. Mann, L. Muller, J. Davis, C. Roda, and A. Young.
Computing and sustainability: evaluating resources for
educators. SIGCSE Bull., 41(4):144–155, Jan. 2010.

[58] S. Mann, L. Smith, and L. Muller. Computing
education for sustainability. SIGCSE Bull.,
40(4):183–193, Nov. 2008.

[59] M. McLuhan and Q. Fiore. The Medium Is the
Message: An Inventory of Effects - Centennial
Facsimile Edition. Gingko Press, 2011.

[60] L. P. Nathan, E. Blevis, B. Friedman, J. Hasbrouck,
and P. Sengers. Beyond the hype: sustainability &
HCI. In CHI ’08 extended abstracts on Human factors
in computing systems, CHI EA ’08, pages 2273–2276,
New York, NY, USA, 2008. ACM.

[61] L. P. Nathan, P. V. Klasnja, and B. Friedman. Value
scenarios: a technique for envisioning systemic effects
of new technologies. In CHI ’07 extended abstracts on
Human factors in computing systems, CHI EA ’07,
pages 2585–2590, New York, NY, USA, 2007. ACM.

[62] R. B. Osborne, A. J. Thomas, and J. R. Forbes.
Teaching with robots: a service-learning approach to
mentor training. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 172–176, New York, NY, USA,
2010. ACM.

[63] J. O’Shea and C. Baillie. Engineering education
towards social and environmental justice. In
Proceedings of the 22nd Annual Conference for the
Australasian Association for Engineering Education,
2011.

[64] J. Owens and J. Matthews. Cybercivics: a novel
approach to reaching K-12 students with the social
relevance of computer science. In Proceedings of the
39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’08, pages 372–376, New
York, NY, USA, 2008. ACM.

[65] L. Patricia. Service learning: an HCI experiment. In
Proceedings of the 16th Western Canadian Conference
on Computing Education, WCCCE ’11, pages 12–16,
New York, NY, USA, 2011. ACM.

[66] D. A. Patterson. Rescuing our families, our neighbors,
and ourselves. Commun. ACM, 48(11):29–31, Nov.
2005.

[67] V. P. Pauca and R. T. Guy. Mobile apps for the



greater good: a socially relevant approach to software
engineering. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE
’12, pages 535–540, New York, NY, USA, 2012. ACM.

[68] S. R. Portnoff. Teaching HS computer science as if the
rest of the world existed: rationale for a HS Pre-APCS
curriculum of interdisciplinary central-problem-based
units that model real-world applications. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages
243–244, New York, NY, USA, 2012. ACM.

[69] N. Postman and C. Weingartner. Teaching as a
Subversive Activity. Delacorte Press, 1969.

[70] S. Pulimood, D. Shaw, and E. Lounsberry. Gumshoe:
A model for undergraduate computational journalism
education. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, SIGCSE
’11, 2011.

[71] T. S. Purewal, Jr., C. Bennett, and F. Maier.
Embracing the social relevance: computing, ethics and
the community. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’07, pages 556–560, New York, NY, USA,
2007. ACM.

[72] C. Rader, D. Hakkarinen, B. M. Moskal, and
K. Hellman. Exploring the appeal of socially relevant
computing: are students interested in socially relevant
problems? In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, SIGCSE
’11, pages 423–428, New York, NY, USA, 2011. ACM.

[73] T. Reeves. Effective dimensions of interactive learning
systems. In Information Technology for Training and
Education, Brisbane, Australia, 1992. Australia
Information Technology for Training and Education.

[74] S. Reiser and R. Bruce. Service learning meets mobile
computing. In Proceedings of the 46th Annual
Southeast Regional Conference, ACM-SE 46, pages
108–113, New York, NY, USA, 2008. ACM.

[75] B. J. Rosmaita. Making service learning accessible to
computer scientists. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’07, pages 541–545, New York,
NY, USA, 2007. ACM.

[76] D. Russell. Landmark Essays on Writing Across the
Curriculum, chapter American Origins of the
Writing-across-the-Curriculum Movement. 1994.

[77] M. Schuhmacher and S. Markham. Applying rubrics
assessment in undergraduate computer science
education. In Proceedings of the 15th Annual NACCQ,
2002.

[78] R. A. Scorce. Perspectives concerning the utilization
of service learning projects for a computer science
course. J. Comput. Sci. Coll., 25(3):75–81, Jan. 2010.

[79] B. Shneiderman. Computer science education and
social relevance. SIGCSE Bull., 3(1):21–24, Mar. 1971.

[80] L. Smith and S. Mann. Sustainable software
engineering. In S. Mann and M. Verhaart, editors, 1st
Annual Conference of Computing and Information
Technology, Education and Research in New Zealand
(incorporating 23rd Annual NACCQ), pages 366–367.
CITRENZ/NACCQ, 2010.

[81] L. Snyder. Steganography. University Lecture, 2011.

[82] S. Sterling. Higher Education, Sustainability, and the
Role of Systemic Learning, pages 50–70. Kluwer
Academic, NY, 2004.

[83] B. Tomlinson. Greening through IT: Information
Technology for Environmental Sustainability. The MIT
Press, 2010.

[84] A. Tucker, R. Morelli, and T. d. Lanerolle. The
humanitarian FOSS project: Goals, activities, and
outcomes. In Proceedings of the 2011 IEEE Global
Humanitarian Technology Conference, GHTC ’11,
pages 98–101, Washington, DC, USA, 2011. IEEE
Computer Society.

[85] S. Yardi and A. Bruckman. What is computing?:
Bridging the gap between teenagers’ perceptions and
graduate students’ experiences. In Proceedings of the
3rd International Workshop on Computing Education
Research.

[86] S. Zweben and B. Bizot. CRA-Taulbee survey.
http://cra.org/resources/taulbee/.

APPENDIX
For more complete project descriptions either contact the project’s
author directly or visit the “CSG-Ed community” which resides
as part of the Computing Portal (www.computingportal.org).

A. RADIOACTIVE MICE
MICHAEL GOLDWEBER

The dispersal of radioactive contamination can be caused by
many factors; weather, water, human intervention as well as ani-
mal vectors. One famous case lampooned by a popular folk song
was the radioactive frogs found in the early “1990’s” around the
Oak Ridge National Laboratory (USA). The frogs had been liv-
ing in the mud of a half-acre holding basin for waste water from
the lab’s nuclear research in the “1940’s” and “1950’s.” In 2010
radioactive mice and rabbits were found in the area around the
plutonium production facility in Hanford, Washington, USA.

More recently rats contaminated with cesium have been found
as far away as 30 kilometers from the Fukushima nuclear power
plant. Containment of radioactive contaminated animal vectors
is a particularly vexing problem. Contaminated animals can get
eaten by predators, which typically have a larger habitat range
(e.g. consider a mouse or rat that is eaten by a fox). Feces
of contaminated animals can pollute water sources. Even if the
contaminated animal dies “naturally,” there is still the question
of how much contamination is left in the soil.

Autonomous robotic devices have been developed for a variety
of purposes; vacuuming a room or mowing a lawn. Not surpris-
ingly, autonomous robotic devices to catch (and kill?) rodents
for both interior and exterior applications are being experimented
with. Consider a robotic “cat” whose job it is to keep a nuclear
energy facility rodent free.

A.1 Categorization
Student Directed: Some, based on an open ended assessment
rubric.
Scaffolding: None.
External Domain Knowledge: None.
Social Good: Some.
Coolness: Some.
Reflection: Medium.

A.2 CS Concepts
Encapsulation: 2d locations as objects; ArrayLists; The Examine-

All (i.e. Find Closest) array processing algorithm.

A.3 Implementation Strategies



A.3.1 The way it works
For this project, students are to use Greenfoot to create a vari-

ation of the robotic rodent catching cat (r2c2). Consider an n×n
grid world where there is one instance of the r2c2, whose starting
location is selected randomly, and m stationary radioactive mice
(possibly already dead from radiation overdose), whose starting
positions are also random. Furthermore, there are obstacles in
the world through which neither the r2c2 nor any of the mice
can pass. Students need to endow the r2c2 with an algorithm to
successfully “catch” each radioactive mouse.

r2c2 must employ something more sophisticated than brute
force search. Using the Greenfoot API, the r2c2 can learn the
location of one mouse (or all of the mice) and move purposefully
towards the closest mouse, one at a time. The r2c2 can only
move one square at a time (i.e. per invocation of “act” ). Di-
agonal moves are permitted. Initially, students should consider
the world a “closed”world; hence the exterior grid boundaries are
hard. When r2c2 occupies the same cell as a mouse, the mouse is
considered “caught” and is removed from the world. When all the
mice have been caught, the r2c2 should recognize this case and
shut down the program, though a celebratory dance may first be
in order.

A.3.2 It works better if
No suggestions.

A.3.3 Assessment strategies
This project lends itself to being open-ended. In keeping with

the proposal that project assignments should also convey the eval-
uation rubric[9, 77], one such rubric, implementing both the de-
sign paradigm of iterative improvement and open-ended creativity
might be:

1. C: Students must have a correctly working program for m
stationary mice in a world bounded with hard boundaries.

2. B: The requirements for a C in addition to excellent doc-
umentation. Furthermore, the mice are not dead and can
move. Like the r2c2, the mice can only move to one ad-
jacent square at a time (including diagonals). The mice
should move at a rate slower than the r2c2, selecting the
next cell to occupy randomly. The r2c2 should always take
one purposefully selected step towards the mouse closest to
it.

3. A: The requirements for a B in addition to some other open-
ended improvements. Here is the opportunity for students
to think creatively. Some examples of such improvements
are:

• Consider the world a torus (i.e. allow full wrap-around).
This complicates r2c2’s nearest mouse algorithm.

• Allow the mice to reproduce. Individual mice can sense
other mice, up to some distance limit (e.g. two squares
away) and move purposefully toward each other. When
two mice occupy the same square for an iteration, they
spawn a pinkie (i.e. baby mouse).

• Allow some obstacles to be such that a mouse can hide
in them. So while a mouse can co-occupy a square with
an obstacle, the r2c2 cannot. Mice can only stay hidden
in an obstacle for a fixed number of iterations.

A.3.4 It doesn’t work unless
This project requires an event-driven grid world environment

such as Greenfoot.

A.4 Extensions
In addition to the above, students could experiment with mul-

tiple r2c2 cats.

A.5 Deliverables
The code for the r2c2, and possibly for the mice as well. A short

reflection paper on the possible other uses of such technologies is
recommended.

B. RED CROSS DISASTER RESPONSE
MICHAEL GOLDWEBER

In most countries there is a branch of the International Red
Cross (icrc.org); Red Crescent Societies, Mogen David Adom,
and national Red Cross societies. In each case, the organization
is tasked with responding to emergencies; both natural and man-
made. For a given disaster, it is the responsibility of the closest
Red Cross office with the appropriate resources/supplies to re-
spond. The question is, given a disaster location along with the
locations of all Red Cross offices, which one should respond?

This problem is an example of what is called a “shortest path
scheduling algorithm.” For this problem one needs a graph. Each
node in the graph represents a city. The edges (or links) rep-
resent highways connecting the cities. Each edge has a distance
or mileage value associated with it. Furthermore, some, but not
all, of the cities house a Red Cross office. Finally, one city is
designated as the disaster site. Given the above program inputs,
the program output is the name (or identifier) of the city housing
a Red Cross office that is closest (shortest total mileage) to the
disaster city.

B.1 Categorization
Student Directed: Some, based on an open ended assessment
rubric.
Scaffolding: None to some.
External Domain Knowledge: None.
Social Good: Medium.
Coolness: Small to medium.
Reflection: Medium.

B.2 CS Concepts
Graph representations, graph algorithms; Shortest path algo-

rithms.

B.3 Implementation Strategies
B.3.1 The way it works
This is a traditional text-driven program. There are many

ways to represent the inputs. One such straightforward method
involves a simple text file input methodology:

• line 1: integer n representing the number of cities. Each city
is represented by an integer in [0..n− 1]

• line 2: integer m representing the number of edges in the
graph.

• lines 3-(m + 2): three-tuples (i, j, k) representing an edge,
one edge per input file line. i and j (i ̸= j) are integers
in [0..n − 1] representing the edge’s two endpoints. k is a
positive integer representing the distance or mileage between
the two adjacent cities.

• line m + 3: an integer r representing the number of cities
with a Red Cross office.

• The following r lines each contain a single integer i in [0..n−
1], indicating that city i houses a Red Cross office.

After processing the input graph and Red Cross office data, the
program should interactively prompt the user for the location of
the disaster; an integer in [0..n− 1]. The output of the program
should be the city identifier of the closest Red Cross office and
the mileage between the disaster city and the closest Red Cross
office.

B.3.2 It works better if
Students have a very firm understanding of a shortest path al-

gorithm, say through interaction with an algorithm visualization
tool or an in-class kinesthetic learning activity.

B.3.3 Assessment strategies
This project lends itself to being open-ended. In keeping with

the proposal that project assignments should also convey the eval-
uation rubric[9, 77], one such rubric, implementing both the de-
sign paradigm of iterative improvement and open-ended creativity
might be:



In order to earn a:

1. C: Students must have a correctly working program.

2. B: The requirements for a C in addition to excellent docu-
mentation. Furthermore, so as not to overwhelm any single
Red Cross office, the program should output the two closest
Red Cross offices to the disaster site and their respective
distances to the disaster city.

3. A: The requirements for a B in addition to some other open-
ended improvements. Here is the opportunity for students
to think creatively. Some examples of such improvements
are:

• Instead of simply outputting the two closest Red Cross
offices, the program should output the c closest Red
Cross offices, where c is a positive integer interactively
input by the user.

• Encode (using letters) various Red Cross resources. e.g.
“B” for beds, “T” for trailers, “W” for water, “F” for
food, etc. For each Red Cross office, encode in the in-
put file which resources that office stocks. Finally, for
a given disaster, the user not only inputs the disaster
location, but which resources are needed for that disas-
ter. For each resource, the program outputs the closest
Red Cross office (or two) which stocks that resource.

B.4 Extensions
See above.

B.5 Deliverables
The program code plus a reflection paper on the following “lo-

cation” problem: Given an input graph of cities and edges and a
constraint of having only x Red Cross offices, where should they
be located so that no city is too far from any Red Cross office; i.e.
how to distributed limited resources so as to maximize coverage.

C. NUCLEAR POWER
JOHN BARR

This project considers
the issues with the use of
nuclear power. Students
are required to analyze
nuclear power plants in
New York State and
to write a technical re-
port with their findings.
To perform this analy-
sis students must deter-
mine several factors that
could be used to evaluate nuclear power, quantify these factors,
write a program to produce a map that illustrates the factors,
and then write a technical report with their findings.

C.1 Categorization
Student Directed: This project is completely specified. Stu-
dents do have the freedom, however, to choose which factors to
use in their analysis of nuclear power and how to quantify the
factors. They can also determine how to design the map. For
example, they could use a single map layer that shows a single
risk factor number or they could create multiple layers, each a
different color and each showing a different risk factor.
Scaffolding: A java class, geoMap.java, is supplied to allow
students to create .shp files. A .shp file is a standard file type
used in geographic information systems (GIS). It can be read
by most major commercial and open source GIS programs. A
shapefile for New York state is provided, but the geoMap class
will read any shapefile so the instructor can easily use her own
state/region in the project. The geoTools framework is used by
the geoMap.java class to produce the .shp file. Instructors will
have to prepare a project in either the Eclipse or Netbeans IDE
with the geoTools framework. There are instructions for doing
this at http://www.geotools.org/ Students can follow the in-
structions to set up their IDE to use geoTools, but the project

will flow more smoothly if the instructor sets up a project to work
correctly and provides the project to the students.
External Domain Knowledge: Two areas of domain knowl-
edge are covered in this project, geographic information systems
(GIS) and nuclear power. The GIS knowledge required is mini-
mal; if you like students can complete the project using only the
supplied geoMap.java class with no knowledge of GIS. Some min-
imal knowledge of nuclear power risks is necessary. Students are
required to obtain this knowledge independently and the required
knowledge is minimal. All necessary information can be obtained,
for example, from Wikipedia. In particular, students must obtain
the location of all nuclear power plants in New York (available on
Wikipedia), identify at least one risk factor (seismic activity for
each nuclear power plant in New York is available on Wikipedia),
and quantify this factor.
Social Good: The safety of Nuclear power, especially in the
wake of the 2011 tsunami in Japan, is a critical national issue.
Coolness: Because of the publicity of the Fukushima nuclear
accident in the wake of 2011, students both understand and are
concerned with nuclear power plant safety.
Reflection: Students are required to submit a technical report
justifying their choice of risk factors and analyzing the results.
The report also requires students to reflect on the applicability of
both the program and the map for the analysis of nuclear power.

C.2 CS Concepts
Single dimension arrays (including parallel arrays), reading val-

ues from a file, selection (if-then-else).

C.3 Implementation Strategies
C.3.1 The way it works
The solution strategy will employ the following steps:

1. Student locates power plant locations in New York and records
their latitude and longitude in a text file. These locations
are available on Wikipedia.

2. Student researches issues with nuclear power and chooses
several. These might include such factors as distance to
major population centers, amount of radiation that might
be released in an accident, and the possibility of seismic
activity at the plant.

3. Student quantifies each issue for each nuclear power plant.
For example, Wikipedia articles on a particular New York
power plants give the probability of an earthquake at that
plant. A single number representing each site must be stored
in the text file.

4. Once the student has the latitude/longitude and risk num-
ber (from the previous step) recorded in a text file, they can
write a program to display the information. Their program
will read the text file and store the latitude, longitude, and
risk numbers in parallel 1D arrays, create a geoMap object,
call the makeMap() method, and then call the addBuffer-
Layer method (passing in the arrays).

5. Finally the student must write a technical report that 1.
analyzes the use of nuclear power in New York and 2. dis-
cusses whether the program and map are effective analysis
tools.

C.3.2 It works better if
This project uses the geoTools framework to access, create, and

display GIS shapefiles. This is a very large framework that can
be accessed dynamically using the Maven build tool. Though
Maven is not hard to integrate with popular IDEs such as Eclipse
or Netbeans, it can be confusing for students. The best approach
to the project, then, is for the instructor to create a solution for
the project, extract the main method, and then provide students
with the Eclipse or Netbeans project. The complete project de-
scription provides details on using the Maven build tool within
Eclipse or Netbeans or you can visit http://www.geotools.org/
for instructions. Students can follow the instructions to set up
their IDE to use geoTools, but this project will work better if the
instructor sets up the initial project.



C.3.3 Assessment strategies
There are three deliverables for this project. The instructor

can choose to weigh each of these differently depending on what
they would like to emphasize. For example, the program can
be heavily weighed to emphasize the computer science used or
the technical report can be heavily weighed to develop critical
thinking skills.

C.3.4 It doesn’t work unless
Requires the geoTools frameworks together with either the

Eclipse or Netbeans IDE.

C.4 Extensions
This project can easily be extended to include multiple layers of

map information. A student could, for example, plot major popu-
lation areas, areas of farm use, etc. The project is easily adapted
to other domains. The project as written requires a technical re-
port. The program, however, can be written independently, so
the technical report can be omitted by the instructor.

C.5 Deliverables
Students must turn in a documented program, a screen dump of

the map they create and a two-page technical report that analyzes
the risk posed by the power plants in New York.

D. WATER POLLUTION
JOHN BARR

This project analyzes water pollution in three large New York
rivers. Students must identify sources of pollution and amounts
of pollution and also identify areas (such as towns, forests or
habitats) that might be sensitive to pollution.

Students first locate three large rivers in New York and plot
an approximation of their location on a map (as line segments).
They then research the different types of pollution that commonly
occur in New York, their sources and their effects.

After students have determined relevant factors, they quantify
the factors and plot them on a map by creating “buffers” for each
river (line). The greater the pollution on a particular segment
of the river, the larger the buffer. For example, if there is a fac-
tory at one point that dumps pollutants in a river and downriver
from that source there is another source of pollution, the buffer
after the second source must be larger (or perhaps in a different
color) to indicate that there are more pollutants. Students also
use buffers to indicate sensitive areas that could be affected by
pollution.

D.1 Categorization
Student Directed: This project is completely specified. Stu-
dents do have the freedom, however, to choose which factors to
use in their analysis of water pollution and how to quantify the
factors. They can also determine how to design the map. For
example, they could use a single map layer that shows a single
risk factor number or they could create multiple layers, each a
different color and each showing a different risk factor.
Scaffolding: A java class, geoMap, is supplied to allow students
to create .shp files. A .shp file is a standard file type used in
geographic information systems (GIS). It can be read by most
major commercial and open source GIS projects. A shapefile for
New York state is provided, but the geoMap class will read any
shapefile so the instructor can easily use her own state/region in
the project.

The geoTools framework is used by the geoMap class to pro-
duce the .shp file. Instructors will have to prepare a project in
either the Eclipse or Netbeans IDE with the geoTools framework.
External Domain Knowledge: Two areas of domain knowl-
edge are covered in this project, geographic information systems
(GIS) and river pollution. The GIS knowledge required is mini-
mal; if you like students can complete the project using only the
supplied geoMap class. Some minimal knowledge of water pollu-
tion is necessary. Students are required to obtain this knowledge
independently, however. In particular, students must identify at
least one type of water pollution, and quantify the amount of this

factor present in each of the chosen rivers.
Social Good: Pollution has long been a critical social issue in
all parts of the world and its importance has increased over the
past few decades with the industrialization of the world.
Coolness: Pollution is part of sustainability, an area of great
interest to students.
Reflection: Students are required to submit a technical report
justifying their choice of risk factors and analyzing the results.
The report also requires students to reflect on the applicability of
the program and map to the analysis of water pollution.

D.2 CS Concepts
Two dimension arrays, reading values from a file, selection (if-

then-else), iteration (for or while).

D.3 Implementation Strategies
D.3.1 The way it works
The solution strategy will employ the following steps:

1. Students identify the locations of three large rivers in New
York State and record their latitude and longitude in a text
file. Each river consists of multiple straight-line line seg-
ments. The coordinate of the beginning point (latitude,
longitude) of each of these segments must be recorded (the
geoMap method assumes that the end point of each segment
is the beginning point of the next segment). These locations
can be found, for example, on google maps.

2. Students research sources of water pollution along the cho-
sen rivers. These might include such factors as factory out-
flow, agricultural run off, and medical dumping.

3. Students quantify each issue for each river segment. A sin-
gle number representing the amount of pollution for the seg-
ment must be stored in the text file.

4. Once the latitude/longitude and pollution number (from the
previous step) have been recorded in a text file, students
write a program to display the information. Their program
will read the text file and store the latitude, longitude, and
pollution numbers in a 2D array, create a geoMap object,
call the makeMap() method, and then call the addBuffer-
LineLayer method (passing in the array).

5. Finally the student must write a technical report that 1.
analyzes the significance of pollution on the rivers and 2.
discusses whether the program and map are effective analy-
sis tools.

D.3.2 It works better if
This project uses the geoTools framework to access, create, and

display GIS shapefiles. This is a very large framework that can
be accessed dynamically using the Maven build tool. Though
Maven is not hard to integrate with popular IDEs such as Eclipse
or Netbeans, it can be confusing for students. The best approach
to the project, then, is for the instructor to create a solution for
the project, extract the main method, and then provide students
with the Eclipse or Netbeans project. The complete project de-
scription provides details on using the Maven build tool within
Eclipse or Netbeans or you can visit http://www.geotools.org/
for instructions. Students can follow the instructions to set up
their IDE to use geoTools, but this project will work better if the
instructor sets up the initial project.

D.3.3 Assessment strategies
There are three deliverables for this project. The instructor

can choose to weigh each of these differently depending on what
they would like to emphasize. For example, the program can
be heavily weighed to emphasize the computer science used or
the technical report can be heavily weighed to develop critical
thinking skills.

D.3.4 It doesn’t work unless
Requires the geoTools frameworks together with either the

Eclipse or Netbeans IDE.



D.4 Extensions
This project can easily be extended to include multiple layers of

map information. A student could, for example, plot major popu-
lation areas, areas of farm use, etc. The project is easily adapted
to other domains. The project as written requires a technical re-
port. The program, however, can be written independently, so
the technical report can be omitted by the instructor.

D.5 Deliverables
Students must turn in a documented program, a screen dump of

the map they create and a two-page technical report that analyzes
the risk posed to the New York rivers by pollution.

E. AD HOC EMERGENCY WI-FI NETWORK-
ING
RENZO DAVOLI

In case of catastrophic events (e.g. earthquakes, floods, vol-
canic eruptions) communication lines can be destroyed. The abil-
ity to communicate can save human lives.

Communication in emergency situations is both a need for the
rescue teams and for the population. The cellphone services need
a working infrastructure made of base radio stations to be op-
erational. If the infrastructure collapses cell phones are useless.
Earthquakes or floods can put base radio stations out of service:
they are mounted on the top of high structures or buildings and
they need an operational electricity grid. Even when the base
radio stations remain operational the abnormal traffic can lead
to an overload and block service.

The Internet can help to solve this situation. Whilst the cell-
phone service needs an infrastructure, modern smart phones have
wi-fi interfaces onboard It is possible to use these interfaces to
communicate by providing a very light infrastructure or even no
infrastructure at all, in a peer-to-peer way.

The idea of this exercise comes from a project to create light
inexpensive wi-fi radio stations. A number of these radio stations
could be kept in storage, ready to be installed in disaster areas
in case of need. These units should also be able to operate us-
ing solar panels and, most important, they should not need any
configuration to be operative.

The users of this emergency network will not receive a full
connection to the Internet, that could be misused, but just some
low bandwidth services, e.g. text mail messages.

These services are powerful enough to provide the population
with updated news from the emergency teams, and provide the
population living in the damaged area with a means of commu-
nication to inform relatives and friends about the real situation.
Obviously a lack of direct information would induce relatives and
friends to reach the emergency area to check the situation. This
extra traffic of vehicles on the roads can interfere with and delay
emergency teams.

E.1 Categorization
Student Directed: None to some. The exercise is guided but
open to extensions.
Scaffolding: None.
External Domain Knowledge: Some. The students should
have an intuitive knowledge of the structure of some radio net-
works: e.g. wi-fi, cell phone and ham radio networks.
Social Good: Medium. These services can be really useful.
Coolness: Small to medium.
Reflection: High? Cellphones are perceived as a commodity.
Students can have a more comprehensive view on radio services
and their integration.

E.2 CS Concepts
Graph representations, graph algorithms; Shortest path algo-

rithms.

E.3 Implementation Strategies
E.3.1 The way it works

This exercise can be implemented in many ways. The simplest
one is to start an instance of a shortest path algorithm (e.g. Dijk-
stra’s) for each pair of nodes and once each shortest path has been
computed (or each set of shortest paths have been computed) it
is possible to compute the maximum number of hops for that pair
of nodes. It is also possible to rewrite the algorithm in order to
compute for each node the set of first hops of the minimum paths
towards all the other nodes and the maximum number of hops in
a single pass.

E.3.2 It works better if
Graph algorithms are sensitive to graph representations. Hence,

properly designed data structures are vital to student success.

E.3.3 Assessment strategies
A working implementation should be granted a sufficient evalu-

ation. Higher grades should take into account the coding style or
efficiency concerns. Some extensions to the basic problem should
be granted top grades.

E.4 Extensions
It is possible to add to the computation of one or more span-

ning trees for the delivery of broadcast packets. Obviously this
exercise can be completed within a Networking course for a better
understanding of bridging and routing, more specifically Ethernet
packet switching and the link state routing algorithms.

E.5 Deliverables
Each student should provide two programs. The first program

takes as input the network topology graph file. This file is an
ASCII text file where each line represents a link and has three
fields: the names of the connected nodes at the ends of the link
and the weight of the link. e.g.

N1 N2 2
N2 N3 1
N1 N4 2
N4 N3 1

Note that the graph is undirected, so the first line of the file is a
bidirectional link connecting N1 and N2 whose weight is 2. Fur-
thermore, the file does not specify the set of nodes in a separate
way, the set of nodes is the set of all the nodes whose names
appear as an endpoint of a link.

The first program gives as output for each pair of nodes (A,B):

• The list of the next hops along the paths from A to B

• The maximum number of hops in the minimum paths.

e.g.

N1 to N2 nexthops N2 maxhops 1
N1 to N3 nexthops N2,N4 maxhops 2
N1 to N4 nexthops N4 maxhops 1
N2 to N1 nexthops N1 maxhops 1
N2 to N3 nexthops N3 machops 1
N2 to N4 nexthops N3 maxhops 2
...

The second program takes the output of the first program as its
input. This program should provide an interactive interface where
a user can enter source and destination nodes. The program
should show the whole path a packet would follow. e.g.

input: N1 to N3
N1 sends the packet to N2 (maxhops 2)
N2 sends the packet to N3 (maxhops 1)
N3 was reached.

F. A MINI PACKAGE MANAGER FOR SOFT-
WARE DISTRIBUTION
RENZO DAVOLI

A software distribution is a collection of integrated, harmonic,
continuously updated software tools.



Often this concept is not clear to students (at least at my lon-
gitude/latitude). Many students use libre software distributions
but they do not realize the difference between operating systems
and distributions.

Windows and MacOS are operating systems. Debian, Ubuntu
OpenWRT, Mint, Fedora (and many others, see distrowatch.
org) are distributions. These distributions are based on Operat-
ing Systems like GNU/Linux, GNU/Hurd, FreeBSD, NetBSD or
others.

Many distributions have been built in a social way, and “for
social good.” Debian is a good example. Debian is the base on
which Ubuntu and Mint have been constructed.

Libre, or free software can be freely used for any purpose, be
studied, modified, or redistributed. Using libre software indepen-
dent institutions and organizations together can create a collec-
tion of software tools, and can work to keep the whole collection
updated, secure and consistent. In an analogy with literature, a
distribution is an anthology.

F.1 Categorization
Student Directed: None to some. The exercise is guided but
open to extensions.
Scaffolding: None.
External Domain Knowledge: None. The knowledge about
software distribution and licenses should be part of the CS do-
main.
Social Good: Medium. This exercise teaches students how to
be part of the development community.
Coolness: High? A distribution is a social way to provide cool
code. Students can be empowered to be actors and not just spec-
tators of the Software development world.
Reflection: Medium. From this example students can under-
stand the real meaning of a distribution and decide to join the
community of a software distribution: A social way to be a com-
puter scientist.

F.2 CS Concepts
Graph representations, graph traversal algorithms and topo-

logical sorting.

F.3 Implementation Strategies
F.3.1 The way it works
Apart from the standard graph visiting/traversal algorithm (for

package install/deinstall) and topological sorting (for distribution
update) students need to add a reference count to each packet
to delete dependent packages when they are no longer needed.
During a distribution update, students must pay attention to up-
date these values correctly as the list of dependencies may have
changed.

F.3.2 It works better if
Graph algorithms are sensitive to graph representations. Hence,

properly designed data structures are vital to student success,
particularly when students elect a recursive implementation.

F.3.3 Assessment strategies
Students submissions should be considered sufficient if the prob-

lem has been solved, good if the solution is well structured and
the data structures have been properly designed, and excellent
when the students add some extra features.

F.4 Extensions
It is possible to show students that the real problems related to

package management are very complex. There are NP-complete
problems concerned with package management. There is a won-
derful blog entry3 which shows how it is possible to create a set of
package dependencies that are the problem equivalent of solving
a Sudoku puzzle. (Problem reduction!) Students may study more
complete implementations of package managers and add further
features to their exercise.

3
http://algebraicthunk.net/∼dburrows/blog/entry/

package-management-sudoku/

F.5 Deliverables
The goal of this project is to write a mini-package manager.

The package database, for the scope of this exercise, is an ASCII
file. Each line corresponds to a package, the first two fields are
the name of the package and its version. The following fields are
pairwise the name of each dependent packages and the minimum
version required. e.g.

P1 10
P2 3 P1 9
...

The version 10 of package P1 is available, as well as the version 3
of P2. P2 requires P1 to be installed, and the minimum version
of P1 required by P2 to work properly is 9. So in this case P2
could be installed as P1 version 10 (> 9) is available.

The database of installed packages has the same structure of
the available package database.

phase1: packages install. Input: a distribution database, a
database of installed packages, and a set of packages names.
Output: the updated database of installed packages, and a
log containing the list of newly installed packages as well as
the list of the packages that could not be installed as some of
their dependencies were missing. It is possible to re-install
already installed packages: if a newer version is available the
package gets updated otherwise the package manager must
add a warning message on the log file.

phase2: packages deinstall. Input: a distribution database, a
database of installed packages, and a set of packages names.
Output: the updated database of installed packages, and
a log containing the packages deleted. Note that the dele-
tion of a package can cause the deletion of its dependent
packages if they are not needed by other packages. The log
should report errors such as requests to delete an uninstalled
package.

phase3: distribution update. Input: the new distribution database,
a database of installed packages. Output: the updated
database of installed packages, the list of the packages that
can be updated. A package cannot be updated if it depends
upon another package which does not exist or whose version
number is older than the minimum version.

G. VOTING SIMULATION
ELIZABETH PATITSAS

In this assignment, we simulate Canadian elections under dif-
ferent voting systems. The assignment gives students practice
with lists and dictionaries in Python, and in the process, expo-
sure to different voting systems and how they would impact a
democracy.

Canada uses a plurality-based voting scheme; there have been
recent efforts for voting reform. A motive of this assignment is to
inform our students as citizens in our referenda on voting reform.
Another motive is for students to realize that algorithms play a
role in democracy.

We provide the students with randomly-generated ballots based
on recent polling data. Students complete the ballot-tallying
methods for six methods, and for a helper method (finding the
argmax of a list).

G.1 Categorization
Student Directed: None.
Scaffolding: High.
External Domain Knowledge: Some. We provide the ballots
to the students, and handle the output and test cases for the stu-
dents. Some of the methods at the beginning contain scaffolding,
such as the setup of the loop over the list, so that students need
only fill in the body of the loop. We provide the method for plu-
rality as a worked example for the students.
Social Good: Medium. For Canadians, there is very little ex-
ternal domain knowledge necessary. We provide information on
how each of the different voting systems works. We also provide



a brief description of Canadian politics for the international stu-
dents. The details one needs to know are the names of the four
major federal parties (Conservative, Liberal, New Democratic,
and Green), that constituencies are known as “ridings” in Cana-
dian English, and there are 308 ridings, each of which elects a
single Member of Parliament (MP). The party with the most
MPs forms the government.
Coolness: Medium.
Reflection: Medium.

Figure 1: Simulated election results under differ-
ent voting results; this shows the students how the
choice of algorithm can affect the outcome!

G.2 CS concepts covered
Lists, dictionaries (hashing), iteration, selection, and seeding

random number generation.

G.3 Implementation strategies
G.3.1 The way it works
We give students code that runs the elections; they fill in the

code that gets the ballots counted. Students implement one vot-
ing method at a time. We provide test cases for each, so students
can test their work as they go. We have organized the voting
methods in order of complexity.

G.3.2 It works better if
Students have access to matplotlib. We provide a visualization

of the results using matplotlib; without it there is only line output
for how many MPs each party has elected. Implementing the
proportional representation methods is much easier with a decent
debugger. Going over an example of voting systems in a tutorial
would also be helpful for students.

G.3.3 Assessment strategies
In the assignment we provide test cases; we plan to run student

code with an auto-marker and then have TAs look at code style.
The assignment also contains a short essay question for TAs to
mark; we plan to mark liberally on completion, reasoning and
clarity. The essay is to have students reflect on the assignment,
not to be a definitive written work.

G.3.4 It doesn’t work unless
Students need to be comfortable with lists (or dictionaries) and

iteration. Currently this project is implemented in Python.

G.4 Extensions
The assignment can be easily extended to have students im-

plement other voting systems. At present, it includes plurality,
approval voting, range voting, the Borda Count, Instant Run-Off
Voting, the D’Hondt Method for proportional representation, and
the Single Transferable Vote.

Other voting systems that would be suitable include the Sainte-
Laguë method for proportional representation, Mixed-Member
Representation, Condorcet-Schulze, majority judgment, and Dodg-
son’s method (created by Charles Dodgson, aka CS Lewis.)

With more effort, this could be redone for elections in other
countries. It would be easiest for other parliamentary systems
like the UK or Australia.

G.5 Deliverables
Students hand in a single file of code containing their methods.

We plan to set this up to allow for auto-marking.

G.6 Acknowledgements
Michelle Craig trialed out the assignment and provided detailed

feedback. A number of anonymous Redditors on r/CanadaPolitics
assisted in designing the ballot generation code which is provided
to the students.

H. STI MODELLING
ELIZABETH PATITSAS

In this assignment students model STI through sexual network
graphs. The assignment covers graph traversal and modification,
and guided refinement of disease modeling. It also provides an
example of how computer modeling is useful in public health, and
hopefully motivates students to use safer practices when having
sex.

First, students model chlamydia – a disease where people are
either susceptible to the disease, or infected. We then add com-
plexity by modeling the common HPV strains, for which there
are vaccines. Next, we add complexity by adding death: model-
ing HIV/AIDS.

Along the way we examine matters such as how many people in
a population need to be vaccinated to contain a disease, reducing
rates of transmission, and the epidemiological effects of delaying
death to HIV/AIDS.

Figure 2: An example of a sexual network – a high
school’s sexual network of the course of 18 months,
per Bearman

H.1 Categorization
Student Directed: None.
Scaffolding: Some. Students are directed what to complete, and
given one example of expected output. Students are not provided
with starter code.
External Domain Knowledge: None to some. All needed
external domain knowledge for the students is provided in the
handout. Instructors may want to spend some time reading about
SIS and SIR models on Wikipedia (or elsewhere).
Social Good: Some.



Coolness: High.
Reflection: Some.

H.2 CS concepts covered
Graph theory, object-oriented programming, file I/O.

H.3 Implementation strategies
H.3.1 The way it works
Three files are provided to the students, containing adjacency

matrices of three different sexual networks. The files vary in size
– a small population of size four, a medium one of size 40, and a
larger one of size 400.

In the instructions, the expected output for the small popu-
lation is provided and visualized. Students are expected to test
their code on the other two populations.

H.3.2 It works better if
Students have a good way of visualizing graphs. Printing out

adjacency matrices works, but tend to require you drawing out
the visual graph.

The assignments requires the students to write or use a graph
class. Having them do this beforehand in lab will reduce the
overhead on the assignment.

H.3.3 Assessment strategies
Students should be marked on their ability to generate graphs,

traverse them, and modify them. They should also be marked on
their report: its clarity, whether the open-ended portion demon-
strates technical knowledge of graph theory or OO design, whether
the open-ended portion has scientific merit, and whether the stu-
dents have reflected on the use of modeling.

H.3.4 It doesn’t work unless
This assignment is doable in any OO language, although it

was designed for either Python or C++. Students will struggle
with the open-ended nature of the project, so providing examples,
scaffolding, and reassurance at the beginning can go a long way.

H.4 Extensions
A possible extension would be to have multiple diseases prop-

agating through a network, while various treatments are also un-
derway. This could be used to bridge into a discussion of the
merits of the SIR model of disease transmission (which uses dif-
ferential equations to describe population-level changes, rather
than simulating the whole population at a given time.)

Adding transmission through needle sharing – for the purposes
of modeling HIV/AIDS – would also be possible – as would having
the students simulate the effect of having infected people die in
the network. For HIV/AIDS (and Herpes), simulating viral load
would also be interesting.

Incorporating inheritance and polymorphism can also be done
by having multiple classes of people in the network, particularly
for simulating high risk populations (eg. class FemaleProstitute
inherits from Woman inherits from Person).

H.5 Deliverables
Students hand in a report of their modeling, and their code.

H.6 Acknowledgements
Cathy Meyer verified the epidemiology in this assignment. The

assignment is based on Mark Maclean’s first-year calculus project
on SIR/SIS modelling with differential equations.

I. BANANA REPUBLIC
TONY CLEAR

This staged set of programming exercises is geared for an ob-
jects early CS1 course in Java, supported by the Barnes & Kölling
text “Objects First with Java: A Practical Introduction Using
BlueJ”[8]. The three exercises move from the introductory stage

(week 2) addressing variables, assignment, operators, simple meth-
ods and sequence, to the more advanced exercises (week 9) where
students create classes, simulate population movements, crop growth,
harvesting and fiesta cycles, immigration and boat movements be-
tween islands. It requires the use of further techniques such as
iteration, selection, arrays, string handling, object creation and
removal, parameter handling, printing. It is intended as a moti-
vating set of activities in a context in which students can experi-
ence success in programming in a staged manner, while observing
the movements of their citizens, the cycles of the seasons and the
dynamics of their own Banana Republic evolve.

I.1 Categorization
Student Directed: Some. Students are required to actively
engage in completion of the programming exercises. Exercise A
and B have optional challenge exercises, and exercise C allows
students the freedom to add a method and variables to the Ba-
nanaRepublic class “that allows the republic to do something in-
teresting of your own invention.”
Scaffolding: Medium. The exercises are carefully staged, and
supported by the textbook, lecture sessions and closed labs in
which exercises of a similar style and complexity are completed
on a formative basis. Pre-written clean code with some predefined
classes is provided for each exercise set, or students may continue
with their own code developed from the earlier exercises.
External Domain Knowledge: Some. Domain knowledge,
while specific to the setting is not overwhelming or especially com-
plex, and has been tailored to a culturally diverse student body
with variable English language proficiency. For instance Classes
and concepts involved include - Banana Republic, El Presidente,
revolution, currency, farmers, bananas, harvest, crops, crop re-
serve, GDP, currency, satisfactionRating, islands, boats, cargo,
and fiesta.
Social Good: Some or Medium. The assignment sets com-
puting in a context where relatively straightforward computa-
tional activities and object oriented development with a small set
of classes, enable the creation of a simulated island state wherein
a set of normal and chaotic events take place. While being in-
tended as a slightly tongue-in-cheek set of exercises to maintain
student engagement, it also has the potential to raise wider ques-
tions about the environmental, political and social challenges fac-
ing small island states such as those found in the Pacific or the
Caribbean.
Coolness: Medium. The chosen scenario appeared to be en-
gaging. Students seemed to find the assignments interesting, and
enjoyed creating the required conditions on their respective is-
lands.
Reflection: Some. The assignments as framed require no spe-
cific reflection on the part of students, although students have
been expected to maintain a reflective journal and programmer’s
log of their activities during the CS1 and CS2 courses. These in
some iterations have been required to be handed in with their as-
signment submissions, and help give instructors some indication
of where students are spending their efforts, having difficulties,
and can be used as evidence of own contributions when a plagia-
rism issue might arise.

I.2 CS Concepts
A range of basic concepts such as variables, assignment, op-

erators, simple methods and sequence, to more advanced CS1
concepts such as classes, random simulations, and movement and
cyclical scenarios requiring further techniques such as iteration,
selection, arrays, string handling, object creation and removal,
parameter handling, printing.

I.3 Implementation Strategies
I.3.1 How it works
The sets of BananaRepublic exercises have been designed around

the availability of a good supporting text book, and an “objects
early” pedagogy [55]. The staged exercises address the concepts
progressively exposed in the text and covered in the accompany-
ing lecture program. The challenge is to identify an engaging con-



text and develop a set of exercises which progressively develop the
core CS concepts while building a more meaningful world within
the simulation, which demonstrates the power of programming
as a way to innovate and create new conceptual and meaningful
worlds. Thereby even an introductory programming course can
demonstrate the potential of programming to relate to significant
challenges in the students’ world.

I.3.2 It works better if
The current closed lab formative exercises have tended to have

a collaborative element, which sometimes leaks across into the
individual assignments. Emphasising which activities are collab-
orative in nature and which are individual needs some care. If
there is a strong desire to emphasise the social good element of
the assignment, then a useful addition would be a more extended
reflective assessment in which students were required to investi-
gate a social challenge facing the context or how an extension
component might be implemented to represent the chosen chal-
lenge scenario.

I.3.3 Assessment strategies
These three assignments comprised 50 per cent of the sum-

mative assessment for the course (10% for the first assignment,
20% each for the latter two). Complementing these are a set of
formative closed laboratory exercises. The remainder of the sum-
mative assessment comprises 10% allocated to fortnightly in class
quizzes and 40% to a final exam. The assessments are framed as
individual but could equally be expanded to accommodate pair
programming or small group project work.

I.3.4 It doesn’t work unless
The concept needs to have been well thought through and the

progression of the exercises concurrent with student skill building
needs some care. For instance the first exercise has the support
of pre-built classes, which students can use, amend and extend
in well defined steps. As a progressive assignment, the provision
of a clean starting point (a fresh set of pre-built classes) for each
set of exercises enables those students, who have been struggling
with parts of each exercise set, to avoid stalling. At the same
time those who have done well can continue to build on their own
code bases at each stage, which builds confidence and retains
ownership.

I.4 Extensions
These assignments inherently have some extension features, but

they could be expanded in many ways. For instance students
could be asked to add extension classes to expand the range of
potential scenarios for the Banana Republic (e.g. natural disaster
strikes - hurricane or tsunami; more gradual impacts on quality of
life - global warming and sealevel rise; the impact of urbanisation
as populations move in from the countryside; famine, fire, epi-
demics, health challenges - diabetes, obesity or civil unrest etc.).
Alternatively from a more technical perspective students could
be asked to develop unit tests for their code.

I.5 Deliverables
The output of these assignments are zip files of working Java

code projects, including some incorporated javadoc comments,
code printouts and accompanying MS Word documents to evi-
dence output screen shots.

I.6 Acknowledgements
We gratefully acknowledge the contributions of colleagues Dr

Jacqueline Whalley and Dr Yun Sing Koh of Auckland Univer-
sity of Technology in their conception and design of the above
exercises, and for their agreement to make them available for the
working group.

J. KIWIS
TONY CLEAR

This staged set of programming exercises is geared for an ob-
jects early CS1 course in Java, supported by the Barnes & Kölling

text “Objects First with Java: A Practical Introduction Using
BlueJ”[8]. The five exercises move from the introductory stage
(week 2) addressing object creation and method calling, to the
more advanced exercises (week 10) by which time students may
create classes and methods, simulate egg laying, food consump-
tion and exercise activities, burrowing, population expansion and
feed distribution strategies. It requires the use of further tech-
niques such as iteration, selection, arrays and arraylists, string
handling, object creation and removal, parameter handling, print-
ing. It is intended as a motivating set of activities in a context
in which students can experience success in programming in a
staged manner, while observing the activities of their kiwis while
tending to their food, shelter, procreation and safety needs and
observing the dynamics of their own kiwi population evolve.

J.1 Categorization
Student Directed: Some. Students are required to actively
engage in completion of the programming exercises. Exercise C
and D have optional challenge exercises, and exercise D allows
students the freedom to modify their simulation “so that kiwis
are fed using a central feeding box in the kiwi house.”
Scaffolding: Medium. The exercises are carefully staged, and
supported by the textbook, lecture sessions and closed labs in
which exercises of a similar style and complexity are completed
on a formative basis. Pre written clean code with some predefined
classes is provided for each exercise set, or students may continue
with their own code developed from the earlier exercises.
External Domain Knowledge: Some. Domain knowledge,
while specific to the setting is not overwhelming or especially
complex, and while geared to a New Zealand context has also
been tailored to a culturally diverse student body with variable
English language proficiency. For instance Classes and concepts
involved include - Kiwis, Kiwi House, burrow, age, weight, eggs,
hatching, food, insects, exercise, escape routes, and feeding box.
Social Good: Some or Medium. The assignment sets com-
puting in a context where relatively straightforward computa-
tional activities and object oriented development with a small set
of classes, enable the creation of a simulated kiwi colony wherein a
set of typical kiwi life events take place. While being intended as
a fun set of exercises to maintain student engagement, it also has
the potential to raise wider questions about the environmental
challenges facing endangered species, and issues related to diet,
habitat and predation.
Coolness: Medium. The chosen scenario appeared to be en-
gaging. Students related to the conservation theme and the iconic
nature of the kiwi as both New Zealand national bird and endan-
gered species. They seemed to find the assignments interesting,
and enjoyed simulating the activities and natural cycles of kiwi
life in their own kiwi house.
Reflection: Some. The assignments as framed require no spe-
cific reflection on the part of students, although students have
been expected to maintain a reflective journal and programmer’s
log of their activities during the CS1 and CS2 courses. These in
some iterations have been required to be handed in with their as-
signment submissions, and help give instructors some indication
of where students are spending their efforts, having difficulties,
and can be used as evidence of own contributions when a plagia-
rism issue might arise.

J.2 CS Concepts
A range of basic concepts such as object creation and method

calling, variables, sequence, operators, to more advanced CS1 con-
cepts such as classes, random simulations, and movement and
cyclical scenarios requiring further techniques such as iteration,
selection, arrays and arraylists, string handling, object creation
and removal, parameter handling, printing.

J.3 Implementation Strategies
J.3.1 How it works
The sets of Kiwi exercises have been designed around the avail-

ability of a good supporting text book, and an “objects early”
pedagogy [55]. The staged exercises address the concepts pro-



gressively exposed in the text and covered in the accompanying
lecture program. The challenge is to identify an engaging context
and develop a set of exercises which progressively develop the
core CS concepts while building a more meaningful world within
the simulation, which demonstrates the power of programming
as a way to innovate and create new conceptual and meaningful
worlds. Thereby even an introductory programming course can
demonstrate the potential of programming to relate to significant
challenges in the students’ world.

J.3.2 It works better if
The current closed lab formative exercises have tended to have

a collaborative element, which sometimes leaks across into the
individual assignments. Emphasising which activities are collab-
orative in nature and which are individual needs some care. If
there is a strong desire to emphasise the social good element of
the assignment, then a useful addition would be a more extended
reflective assessment in which students were required to investi-
gate a social challenge facing the context or how an extension
component might be implemented to represent the chosen chal-
lenge scenario.

J.3.3 Assessment strategies
These five assignments comprised 50 per cent of the summative

assessment for the course (10% for each assignment). Comple-
menting these are a set of formative closed laboratory exercises.
The remainder of the summative assessment comprises 10% al-
located to fortnightly in class quizzes and 40% to a final exam.
The assessments are framed as individual but could equally be ex-
panded to accommodate pair programming or small group project
work.

J.3.4 It doesn’t work unless
The concept needs to have been well thought through and the

progression of the exercises concurrent with student skill building
needs some care. For instance the first exercise has the support
of pre-built classes, which students can use, amend and extend in
well defined steps. As a progressive assignment, the provision of
a clean starting point is required for each set of exercises. In this
version of the assignment set, students are expected to have their
prior code exercises signed off by a Teaching Assistant before they
can continue to build on these code bases at each stage, which is
intended to build confidence and retain ownership.

J.4 Extensions
These assignments inherently have some extension features, but

they could be expanded in many ways. For instance students
could be asked to add extension classes to expand the range of
potential scenarios for the Kiwis. For example, students might
model predator attacks by dogs, rodents or mustelids; forest fire;
the impact of habitat loss as urban populations encroach; pesti-
cide impacts on insect populations and food supply, epidemics,
etc. While the assignments focus on the “Kiwi” as the New
Zealand native bird, it would be simple to replace the kiwis by
other endangered species, golden eagles, polar bears, orang-utans,
etc. Alternatively from a more technical perspective students
could be asked to develop unit tests for their code.

J.5 Deliverables
The output of these assignments are zip files of working Java

code projects, including some incorporated javadoc comments,
code printouts and accompanying MS Word documents to evi-
dence output screen shots.

J.6 Acknowledgements
We gratefully acknowledge the contributions of colleague Dr

Jacqueline Whalley of Auckland University of Technology in her
conception and design of the above exercises, and for her agree-
ment to make them available for the working group.

K. MOLECULAR MODELING AND DNA
SCOTT PORTNOFF

Students build a 2-D molec-
ular modeling program to ex-
amine the hydrogen bonding
between purine and pyrimi-
dine bases that holds the two
anti-parallel strands of the
DNA double helix together.

K.1 Categorization
Student Directed: Medium. Guided Discovery. Instructor
leads whole class activity in the building of the program. Students
write/complete methods needed to solve particular sub-problems
regarding CS concepts or program logic.
Scaffolding: High. Guided Discovery.
External Domain Knowledge: High. Software Engineering
pedagogy. Students use: regular polygon geometry to calculate
coordinates of hexagon vertices; sin/cos to calculate relative po-
lar coordinates to position pentagon and functional group atoms;
the additive sin/cos formulas for computer graphics rotation; the
chemistry of polar covalent bonds and hydrogen bonds.
Social Good: High. Students use CS to study the most impor-
tant feature of the structure of DNA and view the film Double
Helix to consider the complex interpersonal dynamics of the four
biophysicists who contributed to the solution. The discovery of
the double helix revolutionized the field of genetics, made pos-
sible the Human Genome Project and a new CS discipline
Bioinformatics, and led to advancements in medicine and pub-
lic health.
Coolness: High. The unit encourages student engagement at
several programming “obstacle” points.
Reflection: Medium. Students are assessed on their understand-
ing of programming concepts, and a reflection of the interpersonal
dynamics between the film’s characters.

K.2 CS Concepts
Software Engineering, 2-D Graphics Transformations (Trans-

lation, Rotation, Mirroring), Inheritance, Polymorphism, GUI,
Nested Loops.

K.3 Implementation Strategies

K.3.1 The way it works
The unit begins with students familiarizing themselves with the

freely available 3-D molecular modeling program MolSoft ICM-
Browser, and exploring ways to configure the four DNA bases
Adenosine, Guanine, Cytosine and Thymine within the program.
The molecule files will be downloaded from the NYU Library
of 3-D Molecular Structures. Students then proceed to calcu-
late the angles of the pyrimidine (hexagon) and imidazole (pen-
tagon) rings and use BYOB4 to correctly position each base’s
ring and functional group atoms. During this process, students
design their program to reflect the biochemical nomenclature of
the molecule’s major features. They also abstract shared features
of the molecules into common methods for building pyrimidine
rings, imidazole rings, and adding functional groups at any of the
6 pyrimidine atoms.

Once they are familiar with the structure of the 4 bases, stu-
dents go about building the 2-D molecular modeling program in
Processing. They use the sine and cosine functions to create
a method to position atoms using polar coordinates. They use
getter methods to encapsulate the x- and y-coordinates of each
atom. These methods become the central repository for calculat-
ing translated, rotated, and mirrored coordinates for each atom.
Students use a geometry proof to find the additive angle formulas
for sine and cosine. These are used to derive the rotation formu-
las for x- and y-coordinates, which are then implemented in the
program.

Students then study the chemistry of polar bonds and hydrogen
bonds. They write methods for deciding which hydrogen atoms
are electropositive and which nitrogen and oxygen atoms are

4Build Your Own Blocks: http://byob.berkeley.edu/



electronegative. The optimal distance for intermolecular hy-
drogen bonds is indicated using color and line thickness.

Students program the GUI for object selection with mouse,
control key and lassoing. Move, rotate, and mirror-image actions
are driven by mouse events.

At unit’s end students use their programs to display normal
A-T and G-C pairings. They also perform predictive tasks, i.e.
find configurations for rare A-C and G-T pairings, which represent
point mutation situations.

To anchor this project in a social setting, students study the
BBC film Double Helix, which relates the little known story
of the discovery of the DNA double helix by Watson and Crick,
who used the x-ray diffraction data of the biophysicist Rosalind
Franklin for building their model. Although her data was crucial
to their calculations, which won them the Nobel Prize, they did
not acknowledge her contribution until long after her death.

K.3.2 It works better if
The unit has been taught twice, and would work better if small

exercises were written to give students practice in applying the
major programming concepts.

K.3.3 Assessment strategies
The unit grade is based on (1) the final program code, (2) the

film essay, and (3) a multiple choice exam that covers the major
programming concepts.

K.3.4 It doesn’t work unless
This project has a warmup exercise that uses Scratch/BYOB.

The main project is based on the Processing language. Use of
version 2.6a or greater is recommended.

K.4 Extensions
The program can be automated to find all possible purine-

pyrimidine pairings with at least 2 H-bonds. Criteria to handle
the best of duplicate pairings is an open-ended task. Automa-
tion should test pairings with regards to rotation angles, mirror
images, and intermolecular distances.

K.5 Deliverables
Student must (1) turn in a complete working program, and (2)

write an essay on the film in response to a prompt.

L. AROUND THE WORLD IN 24 DAYS
SCOTT PORTNOFF

Students build a simu-
lation of a rotating Earth
in order to model the
phenomenon described in
Jules Verne’s Around
the World in 80 Days
of an east-bound trav-
eler who circumnavigates
the world and experi-
ences one day more than
an observer remaining at
the starting point.

Three observers are
placed on the surface,
two of whom circumnavigate the globe in opposite directions:
(a) an East-bound traveler (yellow); (b) a West-bound traveler
(red); and (c) a stationary observer (white). After 24 days, the
two travelers return to the starting point to rejoin the stationary
observer. The east-bound traveler will have seen 25 sunrises, and
the west-bound traveler will have seen 23 sunrises. The simulation
illustrates the reason for the establishment of the International
Date Line.

L.1 Categorization
Student Directed: Medium. Guided Discovery. Instructor
leads whole class activity in the building of the program. Students
write/complete methods needed to solve particular sub-problems

re: CS concepts or program logic.
Scaffolding: High. Guided Discovery.
External Domain Knowledge: Medium. Software Engineer-
ing pedagogy. Students use sin/cos to calculate polar coordinate
positions on the circle representing the Earth’s surface. History:
Students study the political and religious considerations of the
country-by-country adoption of the Gregorian calendar and the
later establishment of the International Date Line.
Social Good: High. Human societies have always used natural
events to mark time, e.g. the new moon to mark months, the
sun’s highest position to measure a solar year. The leap year
calculation based on the Gregorian calendar has been a tradi-
tional staple of CS1 courses. Students with family roots in Asia
are well-familiar with having to adjust their watches forwards or
backwards an entire day when traveling across the Pacific. This
unit simulates the full-day discrepancies that arise when travelers
circumnavigate the globe, a problem resolved by the adoption of
the International Date Line time standard.
Coolness: High. The unit encourages student engagement at
several programming “obstacle” points.
Reflection: Medium. Students are assessed on their understand-
ing of programming concepts as utilized to implement the logic
for this program.

L.2 CS Concepts
Software Engineering, Classes, Event Handling, Graphics, Mod

Function, Conditional Expressions, Discrete vs. Continuous mod-
els.

L.3 Implementation Strategies
L.3.1 The way it works
Students download 96 satellite images of Earth using the View

from Earth website (http://www.fourmilab.ch/cgi-bin/Earth).
These represent snapshots taken over a 24-hour period spaced at
15-minute intervals. So that the surface of the Earth is half in
shadow, the date chosen is either the Spring or Autumnal Equinox
with Latitude = 90°N as if the satellite is positioned over the
North Pole. Longitude is arbitrary, but we choose 72°E so that
Los Angeles is at the top of the simulation.

Students load the images into an array and implement the ani-
mation using a circular queue, which displays a stationary Earth
with a moving terminator (the boundary line separating day and
night). Following an investigation of Processing’s 2-D transforma-
tion operations, students implement rotation by translating the
coordinate system origin to the center of the window, perform
the rotation, then translate the origin back to the top left cor-
ner. Students investigate the use of bracketing transformations
between pushMatrix and popMatrix to independently rotate
several objects simultaneously. The final rotation effect is that
the Earth rotates and the terminator is stationary. A toggle
variable controls whether the animation rotates.

Earth, Sunrise and Traveler classes are implemented. A
conditional expression to enable a stationary traveler to detect
a sunrise begins with normalization of degree measurements to
keep traveler and sunrise angles within the same range. The con-
ditional expression is modified as more cases are accommodated,
culminating with solving the edge condition at 0°/360°. The final
expression implements a sector-point intersection model.

Movement for travelers is implemented using a speed instance
variable which is either positive for traveling West, negative for
traveling East, or 0 for no movement. Students discover that sun-
rise detection breaks down for moving travelers: at some point
during their circumnavigations - depending upon starting values
for sunrise and traveler - the East traveler misses a sunrise and the
West traveler clocks a double sunrise. The analogy is to an escap-
ing prisoner avoiding detection by a moving flashing searchlight.
The problem is solved by narrowing or expanding the sector by
the traveler’s speed, and students consider the issue of represent-
ing a continuous system by using a discrete model.

L.3.2 It works better if
The unit has been taught twice, and would work better if small



exercises were written to give students practice in applying the
major programming concepts.

L.3.3 Assessment strategies
The unit grade is based on the final program code and a mul-

tiple choice exam on major programming concepts.

L.3.4 It doesn’t work unless
This project is based on the Processing language. Use of ver-

sion 2.6a or greater is recommended.

L.4 Extensions
None.

L.5 Deliverables
Student must turn in a complete working program.

M. SOCIAL GOOD WEBSITE
SAMUEL MANN

A Web 1 course aims to acquaint students with the range of
available web-based tools for productivity, entertainment, and
communication. It is intended to guide students toward con-
sideration of the social, academic, economic and cultural issues
surrounding web-based interaction. There is also an introduction
to the technologies available for development of web-based func-
tionality. This course is designed for students with only a single
semester of programming experience.

In groups of three, students take on the task of developing an
integrated web presence for a community organisation or devel-
opment initiative. This web presence must address functional re-
quirements, experience design and aesthetic design requirements.
It must be dynamic for the user experience (but not require
server-side processing), and incorporate multiple channels. The
project must address an area of social need. There are several
sub-assignments, primarily the delivery of an website written in
static HTML, a porting to a content management system, inte-
grating social media, and (for bonus marks) system deployment.

Example social good topics are given such as “A website cel-
ebrating the heritage of your suburb/hometown” or “A website
where you document every bit of rubbish you pick on up your
walk home.” The groups workshop an area that interests them,
consider the driver, problem, and likely impact of the solution. It
is not required that students have an actual person as client for
this project. We do need at least a conceptual “client” i.e. who is
the sponsor for this project?

M.1 Categorization
Student Directed: Medium. Given the task of creating a web-
site for social good using a content management system integrat-
ing social media, the students determine what they learn
Scaffolding: A development process is provided.
External Domain Knowledge: Some. The students some-
times select an area of social good about which the instructor
knows little. There are some areas where the instructor does
need to ensure student safety - for example when they choose to
develop a website on depression or sexual abuse.
Social Good: High. The projects are all explicitly social good.
Some projects reach actual deployment. As an example in 2011,
students developed EducatingCambodia.com to support a school
and community building initiative in the poorest region of Cam-
bodia. In 2012 students developed PortWireless.co.nz to provide
free wifi to a port town in New Zealand. This project included
extensive community consultation and development of business
models. Other projects have included coastal erosion education,
pet adoption, community storytelling, and resource sharing.
Coolness: Some. Students enjoy the ability to work on a project
of their choosing. Some struggle to find an area of tractable so-
cial good getting initially stuck on “cure cancer” or “solve world
hunger”but the class workshops potential impacts stemming from
their project and students get quite excited about the potential
to make a real change.
Reflection: Medium. Students are required keep a development
log, to present progress weekly and to reflect on their learning –

including on the role of computing in their selected area of social
need. This is all done on a public wiki and students are required
to comment on colleague’s work (at least weekly). Furthermore,
they must submit a technical report justifying their choice of risk
factors and an analysis of the results.

M.2 CS Concepts
HTML, social media

M.3 Implementation Strategies
M.3.1 The way it works
Students work in small groups to develop social good websites.

M.3.2 It works better if
Nominally at least one class per week is dedicated to the project

with the other class providing skills required for the project. The
learning objectives and schedule for paper are presented on the
wiki with clear indication that they are flexible and negotiable
according to the direction of their project.

The main trick is helping students find a sizable yet tractable
project. Some students, given the option first select a small or
joke project. Such projects are difficult to maintain interest. At
the other end of the scale, projects are avoided that require sig-
nificant server side processing.

M.3.3 Assessment strategies
Assessment is by ongoing peer and self assessment via a wiki.

The marking schedule is negotiated according to the direction
taken by the group but with a minimum of 20% for reflection.

M.4 Extensions
In the last week students are asked “what extra thing could

be done that would really add value to this project?” This is
then used as an extra learning outcome for each group (i.e. they
have to do that extra thing). The EducatingCambodia group, for
example, needed to integrate a payment system and integration
into charity accreditation.

Students can carry this initial project through to their capstone
project. Some groups have double dipped, using their project to
contribute credits in other courses. The PortWireless group, for
example, set up a company for their project, getting credit for
this in a business class.

M.5 Deliverables
Students must turn in a working website and evidence portfolio

of their development process.

N. SOCIAL GOOD SCHOLARLY WORK
SAMUEL MANN

Students complete a formal work in the area of the social im-
plications of an aspect of communications technology.

N.1 Categorization
Student Directed: High. Both the question and the form of
this work are individually negotiated between the student and
instructor.
Scaffolding: Some. Some students require guidance in ensuring
the scholarly aspects of non-traditional formats.
External Domain Knowledge: None to medium.
Social Good: Medium. The scholarly works are all explicitly
social good. Some have “real” benefits. Examples from 2011
include:

• A report on an experiment into how modern media affects
on the importance of physical beauty in self image.

• A video documentary on the online personas of body builders.

• A radio documentary on internet addiction.

• A radio documentary on community building through wire-
less networks.

• A video documentary on the relationship between animal
welfare and computing in the dairy industry.



• A class seminar on the social implications of online gaming.

• A class seminar on the negative effects of social networking.

• A book aimed at engaging 12 year old girls in computing.

Coolness: Medium. Once students get over the shock, the cool-
ness factor is very high. Students enjoy the freedoms to work on
an area of their choosing and the braver ones relish the challenge
of exploring this in song or dance.
Reflection: High. The purpose of the assignment is to encour-
age students to deeply engage in the nature of computing as a
profession.

N.2 CS Concepts
Social implications of computing.

N.3 Implementation Strategies
N.3.1 The way it works
Students write a scholarly work. This may take the form of a

formal essay, research article, Wikipedia contribution, radio fea-
ture or any form that the student can justify as being scholarly.

The task meets the requirement for critical thinking and to
meet an explicit requirement for consideration of social implica-
tions of computing.

Here’s the brief:
You will write a short proposal that includes 200 words on your
thoughts on each of four peer reviewed papers related to your
topic area. The proposal must finish with an outline of your
essay. Students can present the work in any format that:

1. Supports the development of an argument with justification
and evidence based examples. In the proposal, students have
to justify how this form provides a vehicle for creative and
evidence based development of an argument.

2. Supports citation of at least four peer reviewed articles.
APA6th referencing must be used (although appropriate to
the form should be used, deviations from APA must be
agreed beforehand).

3. Can be submitted via your wiki, webpage or blog (i.e. if you
perform a song, you’ll need to video it).

N.3.2 It works better if
Students can get quite a shock that not only the question but

also the form of the work is undefined. Sample topics are given,
chosen deliberately to drive students to readings even if to find
out what they mean. Sample questions include:

• How might Web2 principles promote democracy?

• How can computing make the invisible visible?

• How did the internet affect the Arab Spring?

• What is the impact of participatory media on local govern-
ment?

• What are the employment implications of time spent playing
online games?

• How might radical transparency affect business?

• How can we harness humanity’s cognitive surplus for social
good?

N.3.3 Assessment strategies
Assessment is by supported self assessment, with the final grade

being negotiated between the instructor and student. For schol-
arly works with performance aspects (e.g. taught class), peer
feedback was sought. The marking schedule varies according to
the form of the submission, based upon the following: develop-
ment of argument, justified 12 marks; content and style appro-
priate for agreed format (includes language, clarity, spelling). 5
marks; Appropriated referenced 3 marks (APA6th unless other-
wise agreed); There is also a bonus 5 marks available for inno-
vation in approach aiming to give credit for people pushing the
boundaries.

N.4 Extensions
None.

N.5 Deliverables
Students must turn in a proposal and their completed scholarly

work. About half write what could be considered a traditional
essay. Others take a variety of approaches.


