
Full citation: Gray, A.R., & MacDonell, S.G. (1997) A comparison of techniques for developing
predictive models of software metrics, Information and Software Technology 39(6), pp.425-437.
doi: 10.1016/S0950-5849(96)00006-7

A Comparison of Techniques for
Developing Predictive Models of Software Metrics

Andrew Gray and Stephen G. MacDonell
Software Metrics Research Lab

Department of Information Science
University of Otago, PO Box 56

Dunedin, New Zealand
agray@commerce.otago.ac.nz, stevemac@commerce.otago.ac.nz

Abstract

The use of regression analysis to derive predictive
equations for software metrics has recently been
complemented by increasing numbers of studies using
non-traditional methods, such as neural networks, fuzzy
logic models, case-based reasoning systems, and
regression trees. There has also been an increasing
level of sophistication in the regression-based
techniques used, including robust regression methods,
factor analysis, and more effective validation
procedures. This paper examines the implications of
using these methods and provides some
recommendations as to when they may be appropriate.
A comparison of the various techniques is also made in
terms of their modelling capabilities with specific
reference to software metrics.

1. INTRODUCTION

A significant proportion of research carried out to
develop predictive software metrics has focused on
linear regression analysis for implementation, often after
using various transformations to permit non-linearities,
leading to models expressed as mathematical equations.
Such models include Putnam's equations1 and
COCOMO2 as typical examples. While there are many
advantages to using such techniques, especially in the
simplicity of model building and implementation, it can
be argued that by using other techniques to be discussed
in this paper, more useful models may be derived. As
Briand et al.3 state, classical statistical methods have
limited model building capabilities with regard to
software development models. With this in mind a
thorough consideration of the alternative techniques
available can be regarded as essential for selecting the
methods that are most suited to a particular model
development task.

Given the large expenditures made by many companies
for the development of software, even small increases in
prediction accuracy are likely to be worthwhile.
Underestimating costs can lead to an acceptance of
projects that do not provide sufficient returns or that

overrun budgets and schedules. Overestimating costs
can lead to sound projects being rejected, and can lead
to gaps between one project ending and another starting.
This idle time can be expensive in competitive time-to-
market industries. Either way, it is clear that more
accurate estimates have considerable value to any
organisation involved in software development. Once
an estimation model has been derived it is important that
the limitations of the techniques used to develop and
implement the model are understood in order to ensure
that it is only used within its limitations. For example,
extrapolations outside the range of data used for
development should not be attempted. Outside of
accuracy considerations, issues such as ease of use and
interpretability can impact on the usefulness of
particular modelling techniques.

1.1. Difficulties in Analysis and Modelling

Three broad areas of concern can be cited with regard to
software development predictive models, with the first
set of difficulties perhaps the most serious. Software
engineering data sets often have a number of
characteristics that make analysis difficult, including
missing data, large numbers of variables (leading to
lower degrees of freedom), strong collinearity between
the variables, heteroscedasticity, complex non-linear
relationships, outliers, and small size. These factors all
make the modelling process that much more difficult
and the models derived by the process less reliable.
Some of these problems can be at least partially
overcome. For example, heteroscedasticity can be
reduced, or even eliminated, by various transformations;
and collinearity can be removed by factor analysis.
Other problems, such as missing data and a low number
of degrees of freedom (arising from a large number of
parameters to be estimated as compared to the number
of available observations) cannot be easily overcome,
and certain modelling techniques may be unsuitable for
a particular data set affected by these problems.

A second area of concern is the acceptability and
validation of models. This includes the issue of the
model ‘explaining’ its predictions. Software metrics

http://dx.doi.org/10.1016/S0950-5849(96)00006-7�

expressed as equations are often less than meaningful,
especially with several variables being used in the
model, sometimes including interaction terms and non-
linear transformations. Without sufficient semantic
meaning attached to the model a satisfactory level of
validation is unlikely to be achieved. This problem is
made more serious by the small data sets commonly
used for developing these models. With small data sets
it is possible for a model to be developed that fits the
data, but that violates common sense - for example,
slopes may be counter-intuitive to those expected. This
can include a slope being of a different magnitude than
expected, especially in relation to other variables, or a
slope may even have the opposite sign to what common-
sense would suggest.

The final area of concern considered here is that of
generalisability. Since the first predictive software
metrics were derived, attempts have been made to apply
the models associated with them, without recalibration,
to other types of projects within the developing
organisation and even to other organisations, the use of
standard COCOMO coefficients being a case in point.
The necessity of being able to easily recalibrate a model
for another environment is supported by numerous
authors4,5. Kemerer5, for example, found that models
that were uncalibrated resulted in relative errors of up to
600%. Linear regression models are easily regenerated,
but they do not always generalise well given their
susceptibility to influence by outliers.

Each modelling technique discussed here contributes in
at least one way to resolving some of these problems in
a manner that can be seen as being superior to standard
linear regression analysis. This is not to say that
regression analysis should not be used, but rather that
the best technique for the specific problem at hand may
not always be regression. An awareness of other
approaches should help to ensure that the most
appropriate model is developed through employing the
most suitable of the various alternatives. In some cases
the combination of methods may be useful, each
providing estimates that can then be combined in some
fashion.

The remainder of the paper continues with a discussion
of each modelling technique in turn. An example is
provided for each method (apart from least squares
regression) to demonstrate its usefulness for modelling
software metrics. This is followed by a section
comparing the techniques based on a number of criteria
considered important for the modelling task. Finally,
the paper concludes with some general observations and
suggestions for additional research.

2. LEAST SQUARES REGRESSION

Linear least squares regression analysis is still the most
common technique used, as observed in the literature6.
Much of the appeal of this technique lies with its
simplicity and also its easy accessibility from many of
the popular statistical packages. Linear least squares
regression operates by estimating the coefficients in
order to:

where ri is equal to the residual between the observed
data and the model's prediction for the ith observation.
Thus all observations are taken into account, each
exercising the same extent of influence on the regression
equation. In data sets that contain outlier observations,
this equivalent influence can have a marked (and
undesirable) effect on the form of the derived regression
line (see the next section for further details).

Least squares regression is well suited for use in
situations where:

 many degrees of freedom are available (that is,
there are many more observations than parameters
to be estimated),

 the data is well-behaved (in the statistical sense,
for example there are no outliers or significant
heteroscedasticity),

 a small number of independent variables are
sufficient, after transformations if necessary, to
linearly predict the possibly transformed output
variable(s) so as to enable an interpretable
representation, and

 there is no missing data.

This places a severe restriction on the use of this
technique for software engineering data sets that rarely
meet all of these conditions3. At the very least, robust
regression or some form of outlier detection should be
used to improve the accuracy of the estimates. Even the
use of transformations on the data set can be capable of
producing a much more useful model. Despite this, the
majority of papers do not mention any attempts to use
transformations to improve the data model fit6.

Experiments involving linear regression often become a
matter of finding some combination of available
variables linearly correlated to the output variable,
sometimes after trying various transformations. This
has been referred to as the shotgun approach7 or more
generally, data mining8. Courtney and Gustafson7 also
discuss the dangers of relying on correlation coefficients
where hypotheses have not been proposed in advance.
The stating of the hypothesis to be tested before any
experimental work is carried out is required for unbiased
results for all techniques to be discussed in this paper.

One of the most important parts of developing a model
when using a number of different trials is the validation
of the finally selected model. Data splitting for linear
regression is discussed in Picard and Berk9, and Snee10
provides a more general discussion of data splitting and
model validation issues. Data should ideally be divided
into three sets, a set of usually half to three-quarters of
the data for developing the models, a second set for
selecting the best model based on all models’
performance for this set, and the remainder for testing
the best model's fit. It is only the performance on this

r
1=i

n
 minimise

2
i∑

θ̂

third data set that provides an unbiased estimate of the
predictive capabilities of the final model. Stating the
levels of performance on data sets that have not been
withheld for validation, while common practice6,
provides exaggerations of the model's predictive ability.
If only one model is being tested then the data should be
split into two sets, one for development, the other for
validation of accuracy. Most of the data in this case
should be used for development, and only a quarter to
third for validation9. While the small size of data sets
often reported in the literature prevents data splitting,
other techniques are available, although not widely
used6. These alternatives to data splitting are the PRESS
statistic11 and resampling-based methods such as the
bootstrap12,13.

Collinearity inflates the error terms of estimates, leading
to less reliable models. Such relationships are common
in software data sets, for example the number of entities
and the number of attributes in a data model can be quite
reasonably argued as being related on the basis that a
change in the number of entities would also be reflected
in the number of attributes present in the data model.
While the relationship here will probably not hold
perfectly (since normalisation may change the number
of entities greatly without much change to the number of
attributes in the data model) there is still correlation
between the two variables. This problem can be dealt
with by reducing the number of dependent predictors
used for estimation. Factor analysis and other data
reduction techniques can be used to reduce the number
of influencing components under consideration when
developing a software metric model14-16. This can be
used to group variables that measure the same aspect
into single factors, each representing a major dimension
within the data. In the data model example mentioned
above, a single data model size factor may be extracted
as a combination of the numbers of entities and
attributes. See Stewart17 for a discussion of methods of
detecting collinearity in regression-based models.

3. ROBUST REGRESSION ANALYSIS

Robust regression analysis has been used in
MacDonell18 and Miyazaki et al.19 to screen for outliers
in software metric models. The general idea behind
robust regression is that by changing the error measure
(from least squares) the model can be made more
resilient to outlying data points. Many different robust
regression models exist, often based on median, rather
than mean, measures of error (for example,
Rousseeuw20) or on some middle portion of the errors
(for example, ignoring the top and bottom ten percent of
errors, and using least squares on the remaining eighty
percent).

The use of robust regression is especially attractive in
software development data sets since they are often very
small, and therefore extremely sensitive to the abnormal
observations they contain, and often contain errors in
measurement. On the other hand, the small size of the
data sets available can make researchers reluctant to
give up an observation since this also reduces the
statistical validity of models they develop. Least

Median Squares regression20 provides estimates that
cannot be affected to an arbitrary degree by up to 50
percent contamination (i.e. data values that do not
reflect the underlying system being modelled for reasons
that may include measurement error and an unusual
system); that is to say it has a breakdown point of 0.5.
This compares to least squares regression's estimates
which can be arbitrarily affected by a single outlying
observation, which is a breakdown point of 0. This
improvement is achieved by using the following method
of estimating the coefficients:

with ri equalling the residual as with least squares
above. The median residual can only be arbitrarily
affected if at least half of the data changes. This method
can be used to find points that deviate from the median
regression line, which may suggest that these points are
worthy of consideration to ensure that they are not
outliers21.

Figure 1. The influence of outlier data points on regression

As can be seen in figure 1, a single outlier has a
dramatic effect on the regression line under least mean
squares, but none under least median squares.
Although, mathematically, the least mean squares line is
minimising its error function it is easy to see that the
model would be of little use in predicting a new point
like A. Additional information about least median
squares regression can be obtained from Rousseeuw and
Leroy22. Some of the weaknesses of the method are
discussed in Hettmansperger and Sheather23.

An important point to remember here is that robust
regression, as with any outlier detection method (see
Rousseeuw and van Zomeren24 for some other outlier
detection techniques), can only be used to indicate
suspicious data points. The term outlier refers to the
observation having a large t or t* value25 where a large
value would indicate that the observation is a large
number of standard deviations from the mean. This
indicates that, for an approximately normal distribution,

ri
median

minimise
2
i

θ̂

the observation is unlikely to have occurred simply by
chance. The fact that a data point qualifies as an outlier
under this definition is not however sufficient
justification for removing it from the sample. Here it is
important to ensure that the population being studied is
properly defined. The points flagged as appearing to be
different from the majority should never be rejected
simply on the basis that they have an adverse effect on
the model's fit. Other justification must be found, such
as an unusual project, before any removal of data is
carried out. The unjustified exclusion of data points has
a serious biasing effect on the model developed. For
example, often some examples of larger systems in a
data set of mainly medium sized systems will stand out
as potential outliers, especially under a linear model.
Here, by rejecting the larger systems the population is
being reduced to medium sized systems. If the model is
to be used for such large systems then they cannot be
removed. By including these observations, however, the
model's accuracy for predicting medium systems may be
inadequate. A possible solution here would be to divide
the data set into medium and large systems and then
develop separate models for each population.

Some of the reasons for the large number of outliers in
software development data sets include the lack of
agreement on terminology leading to differing
definitions for variables, the inconsistencies between
data counters, the wide variety of software development
processes and the wide range of system sizes19.

4. NEURAL NETWORKS

The most common model-building technique used in the
literature as an alternative to least mean squares
regression is back-propagation trained feed-forward
neural networks, often referred to simply as back-
propagation networks although this is strictly speaking
incorrectly confusing the architecture and the training
method. Even though a large number of different neural
network architectures and training algorithms exist,
almost all published studies involving software metric
models have been limited to this type26-35. This can be
seen as a reflection of the lack of understanding of
neural network techniques by many software metric
researchers which is understandable given the
tremendous growth in the neural network field in the
past decade. Gray and MacDonell36 provide guidelines
for model development of software metrics using
various neural network architectures, and Li37 provides a
good general introduction to neural network
applications. Neural networks have been used
successfully in many software metric modelling studies,
including Wittig29 where prediction accuracy was within
10% (although the use of accuracy, while suggested here
as the most important requirement for most project
managers, as the sole determinant of a model's goodness
is not recommended, with other factors such as ease of
use and interpretability also being important).

The example depicted in figure 2 demonstrates a neural
network model for a metric that predicts the
development effort required for a system with a given
set of design requirements. The network shown is a

feed-forward network that could be trained using the
back-propagation algorithm so as to determine weights
that attempt to minimise the predictive error. Once the
network's weights have been determined new instances
can be presented as inputs to have the network make an
estimate for the effort required.

Figure 2. An example neural network structure for effort

prediction

Back-propagation trained feed-forward neural networks
are developed by first selecting an appropriate
architecture of neurons. This includes how many layers
of neurons will be used, the number of neurons in each
layer, and how the neurons will be connected to each
other. Other decisions are also possible regarding the
precise nature of neurons, such as their transfer function,
and parameters for the training algorithm. Once the
architecture has been created the network is trained by
presenting it with a series of inputs and the correct
output from the training data. As with all empirically-
based modelling techniques data should be withheld for
verification and validation purposes. The network
learns by adjusting its weights to decrease the distance
between its predicted output and the actual output. This
process of training continues until the network's ability
to generalise, as measured by its predictive performance
on new data, is optimal. This means stopping before the
network has learned the training data completely and
has overtrained, thus losing its important ability to
generalise. Usually, various different architectures will
be tried and the best tested on the validation data set to
ensure good generalisability.

The popularity of this single method has also been noted
in other disciplines and can be explained by its apparent
simplicity and robustness. Often papers using this
technique will be based on data sets that are so small or
affected with collinearity that normal statistical methods
would be unable to produce any valid results. The
authors will even on some occasions acknowledge these
problems and suggest neural networks as the solution.
In fact, it is long acknowledged within the neural
network community that neural networks are not
immune to statistical problems since they are in many
cases equivalent to standard statistical techniques. For

example, a feed-forward neural network is equivalent to
a multiple nonlinear regression model35. In this way they
are subject to the same problems as any nonlinear
regression, such as too many free parameters for the
data set size (low degrees of freedom), collinearity
between variables, outliers in the data, and missing data
values. Some researchers in the neural network
community have even claimed that neural networks are
less resilient to these problems than their corresponding
statistical functions. For a more complete examination
of the statistical properties of neural networks see Cheng
and Titterington38.

The phrase universal approximator is often used to
describe this form of neural network, suggesting that it
can capture any relationship that may exist between the
variables. There are several conditions attached to the
proof that feed-forward neural networks are capable of
representing any well-behaved relationship (here well-
behaved is used in the mathematical sense for describing
a function), firstly that the proofs for multilayer
perceptrons being universal approximators only prove
that there exists some two layer (the number of layers
refers to the number of connections, so a two layer
network really has an input, hidden and an output slab
of neurons) network that can approximate any well-
behaved function to an arbitrary degree of accuracy39.
The proofs do not specify the number of neurons
required in the hidden layer. Since training time and the
minimum data set size for valid learning increases with
the number of neurons, the theoretical existence of a
network capable of capturing a relationship is of little
use if it cannot be implemented.

It has been further shown that such networks are not just
capable of representing such mappings, but these
mappings are always learnable40. The problem here is
that even if the architecture provides a sufficient number
of hidden layer neurons, the back-propagation training
algorithm, which is a simple gradient descent algorithm,
is notoriously unreliable at finding the globally optimal
set of weightings and often falls into local minima
which may not provide an accurate mapping between
inputs and outputs41. Better learning algorithms that do
not have such problems with local minima and often
train much faster have been developed (see, for
example, Baba42 and Baldi and Hornik43). As an
alternative, schemes are available that can initialise the
network weights so as to avoid the false minima44-46.
These can be used in place of the normal method of
initialising the network with small random values.
Modern neural network literature abounds with better
training algorithms and initialisation techniques but still
the vast majority of applications continue to use the
relatively slow and unreliable back-propagation method
with the small random value initialisation rule. This can
be seen as a reflection of the slow dissemination of
information in comprehensible formats to those
applying neural networks rather than investigating their
properties.

Other architectures that are suitable for neural networks
include cascade correlation networks, Kohonen
networks, and radial basis function networks. The only

one of these that the authors are aware of having been
used for software metrics is cascade correlation29.

A failing of neural networks is that they operate as
‘black boxes’ and provide the user with no information
about how outputs are reached47. As stated by Davis et
al.48, the ability to generate explanations is important in
order to gain user acceptance of artificial intelligence
techniques. In fact the importance of explanation
extends to all techniques discussed here. In terms of the
‘black box’ nature of a neural network, this can make it
difficult to test the network's output gradient vectors
with respect to the various inputs to ensure that the
relationships are sensible (in other words increasing or
decreasing as appropriate and with a suitable relative
magnitude). This is less problematic with regression
equations where the signs and relative magnitudes of the
coefficients can be checked to ensure that the predicted
output will vary in the correct way with respect to the
inputs. Another problem with neural networks is
catastrophic forgetting49 where training on new data
causes the network to lose existing knowledge, although
given the relatively small sizes of software metric data
sets this is unlikely to be problematic.

5. FUZZY SYSTEMS

Fuzzy systems have only been used in a few
publications for software development models30,50 which
is surprising given their rapid adoption into other areas.
A fuzzy system is a mapping between linguistic terms,
such as “very small”, attached to variables. Munakata
and Jani51 provide a good introduction to fuzzy systems.
Thus an input into a fuzzy system can be either
numerical or linguistic, with the same applying to the
output. A number of different types of fuzzy systems
have been shown to act as universal approximators in
the same sense as neural networks52-54.

A fuzzy system as considered here, although as noted
above there are different types, is made up of three main
components. The first, the membership functions,
represent how much a given numerical value for a
particular variable fits the term being considered. The
second component is the rule base which can be
obtained from experts’ understandings of the
relationships being modelled and refined (or even
obtained in the first case) using various data-driven
adaptation techniques. This performs the mapping
between the input membership functions and the output
membership functions. The greater the input
membership degree, the stronger the rule fires, and thus
the stronger the pull towards the output membership
function. Since several different output memberships
could be contained in the consequents of rules fired, a
defuzzification process, the third component, is carried
out to combine the outputs into a single label or
numerical value as required.

This approach is demonstrated in figure 3. In this
simple example numerical inputs are provided for the
data model size (30), number of screens (26), and
process model size (74). These numerical values are
plotted on the membership functions, with the height of

intersection with the membership curve indicating the
degree to which the value belongs to the respective
label. For the particular type of fuzzy logic system
described here this step is called fuzzification. In this
case the data model size is medium to a degree of 0.5
and large to a degree of 0.5, while the process model
size is small to a degree of 0.8. The membership degree
determines how much weight to give to the rules

involving the membership label in its antecedent. There
are various methods for weighting the rules in this case.
The consequents of each rule are then combined - for
the type of fuzzy system described here this process is
called defuzzification - and a single output value is
determined, in this case 254 (note that this
defuzzification is based on several other rules not
shown).

Figure 3. A fuzzy system for duration estimation

The most obvious strength of fuzzy systems is that by
using linguistic mappings a highly intuitive model can
be created that anyone, even without any training, can
understand and if necessary criticise. On the negative
side fuzzy systems suffer from some limitations,
including the difficulty of specifying a system with very
high accuracy while maintaining a degree of
meaningfulness (generally more accuracy requires more
rules, with greater numbers of rules leading to more
complex and less interpretable systems). As with neural
networks there are a large number of different types of
fuzzy system, and again when developing a model it is
necessary to understand the various choices available.
Many different schemes have been devised to extract
fuzzy membership functions and rules directly from data
including that described by Wang and Mendel53. They
suggest that this then allows for an expert to fine-tune
and add to the resulting system rather than starting from
scratch.

6. HYBRID NEURO-FUZZY SYSTEMS

Recently researchers have attempted to combine the
strengths of neural networks and fuzzy systems while
avoiding most of the disadvantages of each55,56. This
has resulted in a wide range of possibilities for

hybridizing the two techniques. While all of these
techniques are different in some way, they share the
same basic principles: an adaptive system that can deal
with easily comprehended linguistic rules and that
permits initialisation of the network based on available
knowledge.

The standard neuro-fuzzy hybrid system is based on
inputs into the network being transformed into
membership degrees that can then activate rules, leading
to membership degrees for the outputs that can be
defuzzified. Thus the five layers of neurons (with four
layers of connections) in such a network represent the
crisp inputs, input fuzzy membership degrees, rule
firing, output memberships, and crisp outputs. One
problem with a fully trainable neuro-fuzzy system is that
the membership functions can drift such that they no
longer represent their linguistic label. One approach to
avoiding this problem is the separation of the rule
learning and membership extraction operations as
discussed in Gray and MacDonell36.

An example of a neuro-fuzzy system is presented in
figure 4. Here two inputs (data model size and process
model size) are presented to the network's input neurons
which are then fed through the first layer of connections.
The outputs to the second layer of connections represent
the membership degrees, leading to the rules where

positive input weights represent affirmative rules. The
outputs from the rule neurons represent the degree to
which the rule has been fired and determine the
activation of the output membership neurons. The

results from these output neurons are combined into a
single numerical value.

Figure 4. Neuro-fuzzy hybrid architecture for development time prediction

Once a network has been trained it is possible to extract
the rules contained within it which can then be checked
for acceptability, and if desired used in a standard fuzzy
system. The ability to extract rules in this manner can
be used to check for catastrophic forgetting, where the
network learns new relationships from new data but
forgets the old relationships from old data49.

Ironically, although neural networks and fuzzy systems
are both universal approximators, standard neuro-fuzzy
systems are not. Despite this, neuro-fuzzy systems are
capable of approximating well enough and alterations to
the standard architecture are possible to ensure universal
approximation should the model require this57.
However it seems unlikely that any metric would
involve sufficiently pathological relationships for this to
be a problem.

7. RULE-BASED SYSTEMS

Rule-based systems have been used in very few cases
for modelling software development58-60. Fuzzy rule
systems are a superset of crisp rule systems and any
such system can be simulated by a fuzzy system. For
this reason it may be considered that crisp systems are
redundant. However, the greater simplicity of a crisp-

rule base can be seen as an attractive feature, especially
where many input variables are involved.

Figure 5. The generic structure of rule-based systems

A rule-based system is organised around a set of rules
that are activated by facts being present in the working

memory, and that activate other facts, as shown in figure
5. In this way chaining can occur with one rule enabling
another rule to fire. This would, for example, allow for
rules to be developed to recognise a high error module
along the lines of:

IF module length > 40 LOC or

IF module length > 20 LOC AND
development time > 2 hours

THEN module is high error risk

Such a system has the disadvantage, compared to a
fuzzy system, that all antecedents and consequents must
be either true or false, with no degrees of true or false
allowed. This can cause problems when a module with
21 LOC and a module with 20 LOC, both taking four
development hours, are put through the above rule. The
two modules are very similar but only the first will fire
the rule.

8. CASE-BASED REASONING

Case-based reasoning is a method of storing
observations, such as data about a project's
specifications and the effort required to implement it,
and then when faced with a new observation retrieving
those stored observations closest to the new observation
and using the stored values to estimate the new value, in
this case effort. Thus a case-based reasoning system has
a pre-processor to prepare the input data, a similarity
function to retrieve the similar cases, a predictor to
estimate the output value, and a memory updater to add
the new case to the case base if required61. This is
shown in figure 6. Case-based reasoning systems are
intended to mimic the process of an expert making a
decision based on their previous experience62. It was
found by Vicinanza et al.63 that experience assisted with
software development estimates and that experts at this
used comparisons with past cases.

Figure 6. The case-based reasoning classification process

Problems have been encountered with some case-based
reasoning systems. As stated by Breiman et al.64 they
are intolerant of noise and irrelevant features. The
authors also claim that the similarity function used has a
strong influence on the algorithm's performance. This
makes the creation of a case-based reasoning system a
non-trivial task. However, extensions to standard case-
based reasoning algorithms performed by Aha61 resulted
in much more noise-tolerant systems.

An experiment by Mukhopadhyay et al.62 compared the
performance of a case-based reasoning system, a human
expert, and standard models using function points and
COCOMO. The case-based reasoning system
(ESTOR) and the expert were limited to using the
standard inputs to the function point and COCOMO
models. The performance of the case-based reasoning
system exceeded that of the function point and
COCOMO models, and was close to the level of the
expert. The authors concluded that the case-based
reasoning approach was worth further study due to its
encouraging results.

9. REGRESSION AND CLASSIFICATION

TREES

Regression and classification trees, while based on the
same principle, each have a different aim. Regression
trees can be used when the output value to be predicted
is from the interval domain, while classification trees
(also known as decision trees) are used to predict the
output class for an observation, that is to say, from the
nominal or ordinal data scale. Both algorithms work by
taking a known data set and learning the rules needed to
classify it. For an overview of the techniques see
Breiman et al.64 and Selby and Porter65,66.

Figure 7. A development time classification model generated

by a regression tree algorithm

As an illustration, refer to figure 7 where a regression
tree algorithm has been used to extract the important
rules that can be used to predict testing time for software
developed using particular tools. The mean testing time
for each class has been recorded as the leaf nodes. In
order to create the tree the algorithm looks at which
attributes can be used to best classify the data and
iteratively constructs the tree, splitting nodes when
required. While splits of two are most common,
algorithms exist for splitting ranges into greater numbers
of partitions. This method has the advantage of being
easily comprehended and checked for logical errors.

Classification trees operate in much the same way as
regression trees except that instead of interval scale data
being attached to the leaf nodes, labels are used instead.
Thus a classification tree could classify modules into
various risk categories, for example ‘high risk’ and ‘low
risk.’

An experiment by Srinivasan and Fisher32 found that,
using mean residual error as the performance measure, a
regression tree approach was more successful than
COCOMO or SLIM for estimating effort, although less
successful than a back-propagation trained neural
network (the most successful) and function points. An
extension to the basic regression tree algorithm
discussed by Srinivasan and Fisher was to replace the
mean values at the leaf nodes with regression equations,
allowing for a piece-wise regression equation over the
domain. This could be a successful technique given the
way the behaviour of metrics changes in relation to the
scale of the project under consideration.

10. COMPARISON OF TECHNIQUES

So as to ensure that the most appropriate model-building
method is selected in as many cases as possible a two-
part comparison of the techniques described above is
now provided. The first section considers the
appropriateness of each method based on the conceptual
requirements of modelling methods. This is followed by
an empirical evaluation of some of the methods (least
squares regression, robust regression and a neural
network) so as to illustrate the variation in performance
achieved with these approaches, highlighting the need to
more effectively consider the specific characteristics of
the form and nature of the data set, the modelling
methods, and the resultant model.

10.1. Criteria-based Evaluation

Table 1 shows a comparison between the techniques
with respect to some desirable modelling attributes. It
can be seen that not all techniques are suited to all types
of problems. In addition, not all factors that may
influence technique selection are listed here. Others
may include available model-building software,
expertise in each field, and the time available for
development.

In the table the heading ‘Model free’ refers to the ability
of the modelling technique to determine its own
structure, rather than relying on the developer to provide

the form of the relationship between inputs and outputs.
As an example, when developing a regression model it
is necessary to specify which variables should be
transformed and what type of transformation should be
used. With a neural network, an appropriate
approximate transformation will be found by the
network when training.

The next entry in the table refers to the model's
robustness of estimation when faced with a data set
containing outliers. Some techniques are capable of
providing some explanation for their reasoning and this
is noted in the next column. Small data sets are
problematic for all modelling techniques, however by
using expert knowledge as a supplement to the data (as
in fuzzy systems and regression trees) an accurate model
can still be derived. Once a model has been developed,
the issue of whether additional data can be added or
whether the entire model must be regenerated on the
combined data set must be considered. Related to the
explanation of a model is the capability for a user to see
how a model arrived at its conclusions. This can be
important for the purpose of verification as well as
theory building and gaining and understanding of the
process being modelled. Models can be black box
(outputs are derived from inputs via a hidden process),
white box (the process is visible and can be understood),
or grey box (partially visible). The suitability of a
technique to incorporate complex models is related to
the issue of model-free estimation and the ability to add
expert knowledge. Finally the table covers each
technique's capability to include known information into
a model, that is to initialise a model with known facts
(expert knowledge) and then use data to improve and
refine it. Table 2 shows each technique in terms of its
usage for software metrics.

10.2. Empirical Evaluation

The analysis presented here is a summary of previous
work and is intended to illustrate the use of some of the
techniques that have been discussed67. In addition it is
hoped that this provides some appropriate model
comparison and validation techniques. A data set of
eighty-one project observations68 (collected originally to
investigate the effectiveness of function point analysis
(FPA)) were made available for analysis using the
various model-building methods. Each observation
included values for the following independent (potential
predictor) variables: unadjusted function points,
adjusted function points, levels of experience with
equipment and in project management, numbers of basic
transactions, and number of data entities; the main
dependent variable was development effort. (It should
be noted here that this analysis is not directed at
evaluating the actual usefulness of the data in this case;
rather, it is being used here to illustrate the different
results achieved when different methods are used to
develop predictive models.) For each of the methods,
the same randomly selected set of fifty-four
observations was used for model development, leaving a
set of twenty-seven observations available for
validation. As stated previously, it is only through the

pred l
i
n

() =

use of such a ‘hold-out’ data set that a realistic and
unbiased assessment of a model’s likely performance on
new real-world data can be made. Predictive accuracy
of each model was evaluated using the mean magnitude
of relative error (MMRE) and the threshold-oriented
pred measure.

The magnitude of relative error (MRE) is a normalised
measure of the variance between actual values (VA) and
fitted values (VF):

MRE
V V

V
A F

A
=

−

Table 1. Comparison of techniques in terms of modelling capabilities

The mean MRE is therefore the mean value for this
indicator over all observations in the validation sample.
A lower value for MMRE generally indicates a more
accurate model.

The pred measure provides an indication of overall fit
for a set of data points, based on the MRE value attained
for each data point:

where l is the selected threshold value for MRE, i is
the number of data points with MRE less than or
equal to l, and n is the total number of data points.

As an illustration, if pred(0.25) = 0.4, then we can say
that 40% of the fitted values fall within 25% of their
corresponding actual values.

The performance of each analysis approach using these
adequacy indicators is summarised in Table 3. As can
be seen the neural network models performed much
better in terms of model accuracy than the regression-

based models. This is expected, if only because of the
non-linearities inherent in a neural network. A similar
ranking of neural networks outperforming statistical
models in terms of accuracy has been found in other
research69, 70.

Of the two statistical approaches employed, their
performance is roughly equivalent. This suggests that
the influence of any outlier observations is not
significant enough to have a disproportionate effect on
the regression lines and that the data set is reasonably
‘well-behaved’ from the perspective of regression.
Overall, however, the most effective model is that
expressed by the neural network, with nearly half the
MMRE of the other techniques and superior pred
performance. If, as in much metrics data analysis, our
model-building had been based only on statistical
methods, the effectiveness of the resultant models would
be less than optimal when compared to that obtained
with the neural network. This further illustrates the
need to consider a broader range of issues when
selecting a method for analysis.

Table 2. Some applications of each technique

Table 3. Comparative analysis method performance

11. CONCLUSIONS

By considering a wide range of modelling techniques
that may be suitable for developing predictive software
metric models a project manager or researcher can be
more confident that the best possible model (for
practical purpose this will normally be the most
accurate, although other considerations should be kept
in mind) has been developed. Even after the model has
been developed it is important to keep in mind the
inherent limitations of the technique used. Some of
these limitations have been discussed in this paper.

Given the set of criteria considered in Table 1, it is
evident that some of the non-traditional analysis and
modelling methods have significant potential in
providing useful and robust predictive models. In
particular, the case-based reasoning and regression tree
approaches may be favoured in the first instance, as they
are able to provide simple, effective and intuitively
appealing methods of classification and estimation.

It must be noted, however, that the use of such methods
cannot simply be embraced as a catch-all solution to
current metrics data analysis problems. The techniques
presented here are simply modelling devices that can
assist in the gathering of information (for example,
fuzzy systems), the derivation of complex relationships
inherent in software development, and the presentation
of results in a meaningful manner. Other goals, such as
increasing the interpretability of models, may also be
assisted through their use. The various techniques are,
however, fields of research in themselves, and a
reasonable level of understanding should be sought
before they are used.

We are currently expanding the empirical comparisons
to other techniques, especially fuzzy logic models and
case-based reasoning (which has been modified based
on the analogy approach71). In addition a flowchart
approach for assisting with model selection is currently
under preparation, along with software support for these
techniques tailored for software metrics.

REFERENCES

1. Putnam, L.H., A General Empirical Solution to the
Macro Software Sizing and Estimating Problem,
IEEE Trans. Soft. Eng. 4, 345-361 (1978).

2. Boehm, B.W., Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, N.J., 1981.

3. Briand, L.C., Basili, V.R., and Thomas, W.M., A
Pattern Recognition Approach for Software Data
Analysis, IEEE Trans. Soft. Eng. 18, 931-942
(1992).

4. Jeffery, D.R., and Low, G., Calibrating Estimation
Tools for Software Development, Soft. Eng. J. 5,
215-221 (1990).

5. Kemerer, C.F., An Empirical Validation of Software
Cost Estimation Models, Comm. ACM 30, 416-429
(1987).

6. MacDonell, S.G., and Gray, A.R., A Review of
Model Building Techniques found in Software
Metrics Literature, in preparation

7. Courtney, R.E., and Gustafson, D.A., Shotgun
Correlations in Software Measures, Software Eng. J.
8, 5-13 (1993).

8. Lovell, M.C., Data Mining, The Review of
Economics and Statistics LXV, 1-12 (1983).

9. Picard, R.R., and Berk, K.N., Data Splitting, The
American Statistician 44, 140-147 (1990).

10. Snee, R.D., Validation of Regression Models:
Methods and Examples, Technometrics 19, 415-428
(1977).

11. Allen, D.M., The Prediction Sum of Squares as a
Criterion for Selecting Predictor Variables,
Technical Report No. 23, Dept. Statistics, University
of Kentucky, 1971.

12. Efron, B., Bootstrap Methods: Another Look at the
Jack-knife, Annals of Statistics 7, 1-26 (1979).

13. Young, G.A., Bootstrap: More than a Stab in the
Dark?, Statistical Science 9, 382-415 (1994).

14. Coupal, D., and Robillard, P.N., Factor Analysis of
Source Code Metrics, J. Systems Software 12, 263-
269 (1990).

15. Mata-Toledo, R.A., and Gustafson, D.A., A Factor
Analysis of Software Complexity Measures, J.
Systems Software 17, 267-273 (1992).

16. Subramanian, G.H., and Breslawski, S.,
Dimensionality Reduction in Software Development
Effort Estimation, J. Systems Software 21, 187-196
(1993).

17. Stewart, G.W., Collinearity and Least Squares
Regression, Statistical Science 2, 68-100 (1987).

18. MacDonell, S.G., Quantitative Functional
Complexity Analysis of Commercial Software
Systems. Unpublished PhD Thesis, University of
Cambridge, Cambridge, United Kingdom, 1993.

19. Miyazaki, Y., Terakado, M., and Ozaki, K., Robust
Regression for Developing Software Estimation
Models, J. Systems Software 27, 3-16 (1994).

20. Rousseeuw, P.J. Least Median of Squares
Regression, J. American Statistical Association 79,
871-880 (1984).

21. Massart, D.L., Kaufman, L., Rousseeuw, P.J., and
Leroy, A., Least Median of Squares: A Robust
Method for Outlier and Model Error Detection in
Regression and Calibration, Analytica Chimica Acta
187, 171-179 (1986).

22. Rousseeuw, P.J., and Leroy, A.M., Robust
Regression and Outlier Detection, John Wiley &
Sons, New York, 1987.

23. Hettmansperger, T.P., and Sheather, S.J., A
Cautionary Note on the Method of Least Median
Squares, The American Statistician 46, 79-83 (1992)

24. Rousseeuw, P.J., and van Zomeren, B.C.,
Unmasking Multivariate Outliers and Leverage
Points, J. American Statistical Association 85, 633-
639 (1990).

25. Chatterjee, S.C., and Hadi, A.S., Influential
Observations, High Leverage Points, and Outliers in
Linear Regression, Statistical Science 1, 379-416
(1986).

26. Sheppard, J.W., and Simpson, W.R., Using a
Competitive Learning Neural Network to Evaluate
Software Complexity, in Proc. 1990 ACM
SIGSMALL/PC Symp. Small Systems, 262-267
(1990).

27. Karunanithi, N., Whitley, D., and Malaiya, Y.K.,
Prediction of Software Reliability Using
Connectionist Models, IEEE Trans. Soft. Eng. 18,
563-574 (1992).

28. Hakkarainen, J., Laamanen, P., and Rask, R., Neural
Networks in Specification Level Software Size
Estimation, in Proc. 26th Hawaii Int. Conf. System
Sciences, 626-634 (1993).

29. Wittig, G., Estimating Software Development Effort
with Connectionist Models, Working Paper Series
33/95, Monash University 1995.

30. Kumar, S., Krishna, B.A., and Satsangi, P.S., Fuzzy
Systems and Neural Networks in Software
Engineering Project Management, J. Applied
Intelligence 4, 31-52 (1994).

31. Wittig, G.E., and Finnie, G.R., Using Artificial
Neural Networks and Function Points to Estimate
4GL Software Development Effort, Australian
Journal of Information Systems 1(2), 87-94 (1994).

32. Srinivasan, K., and Fisher, D., Machine Learning
Approaches to Estimating Software Development
Effort, IEEE Trans. Soft. Eng, 21, 126-137 (1995).

33. Khoshgoftaar, T.M., and Lanning, D.L., A Neural
Network Approach for Early Detection of Program
Modules Having High Risk in the Maintenance
Phase, J. Systems Software 29, 85-91 (1995).

34. Sherer, S.A., Software Fault Prediction, J. Systems
Software 29, 97-105 (1995).

35. Sarle, W.S., Neural Networks and Statistical Models,
in Proc. 19th Annual SAS Users Group Int. Conf.,
1538-1550 (1994).

36. Gray, A.R., and MacDonell, S.G., Guidelines for the
Development of Neural Network-Based Software
Metric Models, in preparation.

37. Li, E.Y., Applications Artificial Neural Networks
and their Business Applications, Information &
Management 27, 303-313 (1994).

38. Cheng, B., and Titterington, D.M., Neural Networks:
A Review from a Statistical Perspective, Statistical
Science 9, 2-54 (1994).

39. Hornik, K., Stinchcombe, M., and White, H.,
Multilayer Feedforward Networks are Universal
Approximators, Neural Networks 2, 359-366 (1989).

40. White, H., Connectionist Nonparametric Regression:
Multilayer Feedforward networks can Learn
Arbitrary Mappings, Neural Networks 3, 535-549
(1990).

41. Sutton, R.S., Two Problems with Backpropagation
and Other Steepest-Descent Learning Procedures for
Networks, in Proc. Eight Annual Conf. Cognitive
Science Society, 823-831 (1989).

42. Baba, N., A New Approach for Finding the Global
Minimum of Error Function in Neural Networks,
Neural Networks 2, 367-373 (1989).

43. Baldi, P, and Hornik, K., Neural Networks and
Principal Component Analysis: Learning from
Examples without Local Minima, Neural Networks
2, 53-58 (1989).

44. Wessels, L.F.A., and Barnard, E., Avoiding False
Local Minima by Proper Initialization of
Connections, IEEE Trans. Neural Networks 3, 899-
905 (1992).

45. Denoeux, T., and Lengellé, R., Initializing Back
Propagation Networks with Prototypes, Neural
Networks 6, 351-363 (1993).

46. Weymaere, N., and Martens, J.-P., On the
Initialisation and Optimisation of Multilayer
Perceptrons, IEEE Trans. Neural Networks, 738-751
(1994).

47. Diederich, J., An Explanation Component for a
Connectionist Inference System, in Proc. 9th
European Conf. Artificial Intelligence, 222-227
(1990).

48. Davis, R., Buchanan, B.G., and Shortliffe, E.,
Production Rules as a Representation for a
Knowledge-Based Consultation Program, Artificial
Intelligence 8, 15-45 (1977).

49. Robins, A., Catastrophic Forgetting, Rehearsal and
Pseudorehearsal, Connection Science 7, 123-146
(1995).

50. Bastani, F.B., DiMarco, G., and Pasquini, A.,
Experimental Evaluation of a Fuzzy-Set Based
measure of Software Correctness Using Program
Mutation, in Proc. 15th Int. Conf. Software
Engineering, 45-54 (1993).

51. Munakata, T., and Jani, Y., Fuzzy Systems: An
Overview, Comm. ACM 37, 69-76 (1994).

52. Kosko, B., Fuzzy Systems as Universal
Approximators, IEEE Trans. Computers 43, 1329-
1333 (1994).

53. Wang, L.-X., and Mendel, J.M., Generating Fuzzy
Rules by Learning From Examples, IEEE Trans.
Systems, Man, and Cybernetics 22, 1414-1427
(1992).

54. Castro, J.L., Fuzzy Logic Controllers are Universal
Approximators, IEEE Trans. Systems, Man, and
Cybernetics 25, 629-635 (1995).

55. Jang, R.J.-S., ANFIS: Adaptive-Network-Based
Fuzzy Inference System, IEEE Trans. Systems, Man,
and Cybernetics 23, 665-685 (1993).

56. Horikawa, S., Furnuhashi, T., and Ucikawa, Y., On
Fuzzy Modelling Using Fuzzy Neural Networks with
the Back-Propagation Algorithm, IEEE Trans.
Neural Networks 3, 801-806 (1992).

57. Buckley, J.J., and Hayashi, Y., Can Fuzzy Neural
Nets Approximate Continuous Fuzzy Functions,
Fuzzy Sets and Systems 61, 43-51 (1994).

58. Ramsey, C.L., and Basili, V.R., An Evaluation of
Expert Systems for Software Engineering
Management, IEEE Trans. Soft. Eng. 15, 747-759
(1989).

59. Lakhotia, A., Rule-Based Approach to Computing
Module Cohesion, in Proc. 15th Int. Conf. Software
Engineering, 35-44 (1993).

60. Griech, B., and Pomerol, J.-CH., Design and
Implementation of a Knowledge-Based Decision
Support System for Estimating Software
Development Work-Effort, J. Systems Integration 4,
171-184 (1994).

61. Aha, D.W., Case-Based Learning Algorithms, in
Proceedings of the DARPA Case-Based Reasoning
Workshop, Morgan Kaufmann, Washington, D.C.,
147-158 (1991).

62. Mukhopadhyay, T., Vicinanza, S.S., and Prietula,
M.J., Examining the Feasibility of a Case-Based
Reasoning Model for Software Effort Estimation,
MIS Quarterly 16, 155-171 (1992).

63. Vicinanza, S., Mukhopadhyay, T., and Prietula, M.,
Software Effort Estimation: An Exploratory Study of
Expert Performance, Information Systems Research
2, 243-262 (1991).

64. Breiman, L., Friedman, J.H., Olshen, R.A., and
Stone, C.J., Classification and Regression Trees,
Chapman & Hall, New York, 1993.

65. Selby, R.W., and Porter, A.A., Learning from
Examples: Generation and Evaluation of Decision
Trees for Software Resource Analysis, IEEE Trans.
Soft. Eng. 14, 1743-1757 (1988).

66. Porter, A.A., and Selby, R.W., Evaluating
Techniques for Generating Metric-Based
Classification Trees, J. Systems Software 12, 209-
218 (1990).

67. MacDonell, S.G., and Gray, A.R., Alternatives to
Regression Models for Estimating Software Projects,
in Proceedings of the IFPUG Fall Conference,
IFPUG, Westerville OH, 279.1-279.15 (1996).

68. Desharnais, J-M., Analyse statistique de la
productivitie des projects de development en
informatique apartir de la technique des points des

fonction. Master’s Thesis, Universite du Montreal
(1989).

69. Samson, B., Ellison, D., and Dugard, P., Software
Cost Estimation using an Albus Perceptron
(CMAC), To appear, Information and Software
Technology.

70. Jorgensen, M., Experience with the Accuracy of
Software Maintenance Task Effort Prediction
Models, IEEE Trans. Soft. Eng. 21, 674-681 (1995).

71. Shepperd, M., Schofield, C., and Kitchenham, B.,
Effort Estimation Using Analogy, in Proceedings
18th International Conference on Software
Engineering, IEEE Computer Society Press, Los
Alamitos CA, 170-178 (1996).

	A Comparison of Techniques for Developing Predictive Models of Software Metrics
	Abstract
	1. Introduction
	3. ROBUST REGRESSION ANALYSIS
	4. NEURAL NETWORKS
	11. Conclusions
	References

