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Abstract 

The use of regression analysis to derive predictive 
equations for software metrics has recently been 
complemented by increasing numbers of studies using 
non-traditional methods, such as neural networks, fuzzy 
logic models, case-based reasoning systems, and 
regression trees.  There has also been an increasing 
level of sophistication in the regression-based 
techniques used, including robust regression methods, 
factor analysis, and more effective validation 
procedures. This paper examines the implications of 
using these methods and provides some 
recommendations as to when they may be appropriate.  
A comparison of the various techniques is also made in 
terms of their modelling capabilities with specific 
reference to software metrics. 
 
1. INTRODUCTION 

A significant proportion of research carried out to 
develop predictive software metrics has focused on 
linear regression analysis for implementation, often after 
using various transformations to permit non-linearities, 
leading to models expressed as mathematical equations. 
Such models include Putnam's equations1 and 
COCOMO2 as typical examples.  While there are many 
advantages to using such techniques, especially in the 
simplicity of model building and implementation, it can 
be argued that by using other techniques to be discussed 
in this paper, more useful models may be derived.  As 
Briand et al.3 state, classical statistical methods have 
limited model building capabilities with regard to 
software development models.  With this in mind a 
thorough consideration of the alternative techniques 
available can be regarded as essential for selecting the 
methods that are most suited to a particular model 
development task. 

Given the large expenditures made by many companies 
for the development of software, even small increases in 
prediction accuracy are likely to be worthwhile.  
Underestimating costs can lead to an acceptance of 
projects that do not provide sufficient returns or that 

overrun budgets and schedules.  Overestimating costs 
can lead to sound projects being rejected, and can lead 
to gaps between one project ending and another starting.  
This idle time can be expensive in competitive time-to-
market industries.  Either way, it is clear that more 
accurate estimates have considerable value to any 
organisation involved in software development.  Once 
an estimation model has been derived it is important that 
the limitations of the techniques used to develop and 
implement the model are understood in order to ensure 
that it is only used within its limitations. For example, 
extrapolations outside the range of data used for 
development should not be attempted.  Outside of 
accuracy considerations, issues such as ease of use and 
interpretability can impact on the usefulness of 
particular modelling techniques. 
 
1.1. Difficulties in Analysis and Modelling 

Three broad areas of concern can be cited with regard to 
software development predictive models, with the first 
set of difficulties perhaps the most serious.  Software 
engineering data sets often have a number of 
characteristics that make analysis difficult, including 
missing data, large numbers of variables (leading to 
lower degrees of freedom), strong collinearity between 
the variables, heteroscedasticity, complex non-linear 
relationships, outliers, and small size.  These factors all 
make the modelling process that much more difficult 
and the models derived by the process less reliable.  
Some of these problems can be at least partially 
overcome.  For example, heteroscedasticity can be 
reduced, or even eliminated, by various transformations; 
and collinearity can be removed by factor analysis.  
Other problems, such as missing data and a low number 
of degrees of freedom (arising from a large number of 
parameters to be estimated as compared to the number 
of available observations) cannot be easily overcome, 
and certain modelling techniques may be unsuitable for 
a particular data set affected by these problems. 

A second area of concern is the acceptability and 
validation of models.  This includes the issue of the 
model ‘explaining’ its predictions.  Software metrics 
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expressed as equations are often less than meaningful, 
especially with several variables being used in the 
model, sometimes including interaction terms and non-
linear transformations.  Without sufficient semantic 
meaning attached to the model a satisfactory level of 
validation is unlikely to be achieved.  This problem is 
made more serious by the small data sets commonly 
used for developing these models.  With small data sets 
it is possible for a model to be developed that fits the 
data, but that violates common sense - for example, 
slopes may be counter-intuitive to those expected.  This 
can include a slope being of a different magnitude than 
expected, especially in relation to other variables, or a 
slope may even have the opposite sign to what common-
sense would suggest. 

The final area of concern considered here is that of 
generalisability.  Since the first predictive software 
metrics were derived, attempts have been made to apply 
the models associated with them, without recalibration, 
to other types of projects within the developing 
organisation and even to other organisations, the use of 
standard COCOMO coefficients being a case in point. 
The necessity of being able to easily recalibrate a model 
for another environment is supported by numerous 
authors4,5.   Kemerer5, for example, found that models 
that were uncalibrated resulted in relative errors of up to 
600%.  Linear regression models are easily regenerated, 
but they do not always generalise well given their 
susceptibility to influence by outliers. 

Each modelling technique discussed here contributes in 
at least one way to resolving some of these problems in 
a manner that can be seen as being superior to standard 
linear regression analysis.  This is not to say that 
regression analysis should not be used, but rather that 
the best technique for the specific problem at hand may 
not always be regression.  An awareness of other 
approaches should help to ensure that the most 
appropriate model is developed through employing the 
most suitable of the various alternatives.  In some cases 
the combination of methods may be useful, each 
providing estimates that can then be combined in some 
fashion. 

The remainder of the paper continues with a discussion 
of each modelling technique in turn.  An example is 
provided for each method (apart from least squares 
regression) to demonstrate its usefulness for modelling 
software metrics.  This is followed by a section 
comparing the techniques based on a number of criteria 
considered important for the modelling task.  Finally, 
the paper concludes with some general observations and 
suggestions for additional research. 
 
2. LEAST SQUARES REGRESSION 

Linear least squares regression analysis is still the most 
common technique used, as observed in the literature6.  
Much of the appeal of this technique lies with its 
simplicity and also its easy accessibility from many of 
the popular statistical packages.  Linear least squares 
regression operates by estimating the coefficients in 
order to: 

 
 
 
 
 
where ri is equal to the residual between the observed 
data and the model's prediction for the ith observation.  
Thus all observations are taken into account, each 
exercising the same extent of influence on the regression 
equation.  In data sets that contain outlier observations, 
this equivalent influence can have a marked (and 
undesirable) effect on the form of the derived regression 
line (see the next section for further details). 

Least squares regression is well suited for use in 
situations where: 

 many degrees of freedom are available (that is, 
there are many more observations than parameters 
to be estimated),  

 the data is well-behaved (in the statistical sense, 
for example there are no outliers or significant 
heteroscedasticity),  

 a small number of independent variables are 
sufficient, after transformations if necessary, to 
linearly predict the possibly transformed output 
variable(s) so as to enable an interpretable 
representation, and  

 there is no missing data.   

This places a severe restriction on the use of this 
technique for software engineering data sets that rarely 
meet all of these conditions3.  At the very least, robust 
regression or some form of outlier detection should be 
used to improve the accuracy of the estimates.  Even the 
use of transformations on the data set can be capable of 
producing a much more useful model.  Despite this, the 
majority of papers do not mention any attempts to use 
transformations to improve the data model fit6. 

Experiments involving linear regression often become a 
matter of finding some combination of available 
variables linearly correlated to the output variable, 
sometimes after trying various transformations.  This 
has been referred to as the shotgun approach7 or more 
generally, data mining8.  Courtney and Gustafson7 also 
discuss the dangers of relying on correlation coefficients 
where hypotheses have not been proposed in advance.  
The stating of the hypothesis to be tested before any 
experimental work is carried out is required for unbiased 
results for all techniques to be discussed in this paper. 

One of the most important parts of developing a model 
when using a number of different trials is the validation 
of the finally selected model.  Data splitting for linear 
regression is discussed in Picard and Berk9, and Snee10 
provides a more general discussion of data splitting and 
model validation issues.  Data should ideally be divided 
into three sets, a set of usually half to three-quarters of 
the data for developing the models, a second set for 
selecting the best model based on all models’ 
performance for this set, and the remainder for testing 
the best model's fit.  It is only the performance on this 
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third data set that provides an unbiased estimate of the 
predictive capabilities of the final model.  Stating the 
levels of performance on data sets that have not been 
withheld for validation, while common practice6, 
provides exaggerations of the model's predictive ability.  
If only one model is being tested then the data should be 
split into two sets, one for development, the other for 
validation of accuracy.  Most of the data in this case 
should be used for development, and only a quarter to 
third for validation9.  While the small size of data sets 
often reported in the literature prevents data splitting, 
other techniques are available, although not widely 
used6.  These alternatives to data splitting are the PRESS 
statistic11 and resampling-based methods such as the 
bootstrap12,13. 

Collinearity inflates the error terms of estimates, leading 
to less reliable models.  Such relationships are common 
in software data sets, for example the number of entities 
and the number of attributes in a data model can be quite 
reasonably argued as being related on the basis that a 
change in the number of entities would also be reflected 
in the number of attributes present in the data model.  
While the relationship here will probably not hold 
perfectly (since normalisation may change the number 
of entities greatly without much change to the number of 
attributes in the data model) there is still correlation 
between the two variables.  This problem can be dealt 
with by reducing the number of dependent predictors 
used for estimation.  Factor analysis and other data 
reduction techniques can be used to reduce the number 
of influencing components under consideration when 
developing a software metric model14-16.  This can be 
used to group variables that measure the same aspect 
into single factors, each representing a major dimension 
within the data.  In the data model example mentioned 
above, a single data model size factor may be extracted 
as a combination of the numbers of entities and 
attributes.  See Stewart17 for a discussion of methods of 
detecting collinearity in regression-based models. 
 
3. ROBUST REGRESSION ANALYSIS 

Robust regression analysis has been used in 
MacDonell18 and Miyazaki et al.19 to screen for outliers 
in software metric models.  The general idea behind 
robust regression is that by changing the error measure 
(from least squares) the model can be made more 
resilient to outlying data points.  Many different robust 
regression models exist, often based on median, rather 
than mean, measures of error (for example, 
Rousseeuw20) or on some middle portion of the errors 
(for example, ignoring the top and bottom ten percent of 
errors, and using least squares on the remaining eighty 
percent). 

The use of robust regression is especially attractive in 
software development data sets since they are often very 
small, and therefore extremely sensitive to the abnormal 
observations they contain, and often contain errors in 
measurement.  On the other hand, the small size of the 
data sets available can make researchers reluctant to 
give up an observation since this also reduces the 
statistical validity of models they develop.  Least 

Median Squares regression20 provides estimates that 
cannot be affected to an arbitrary degree by up to 50 
percent contamination (i.e. data values that do not 
reflect the underlying system being modelled for reasons 
that may include measurement error and an unusual 
system); that is to say it has a breakdown point of 0.5.  
This compares to least squares regression's estimates 
which can be arbitrarily affected by a single outlying 
observation, which is a breakdown point of 0.  This 
improvement is achieved by using the following method 
of estimating the coefficients: 
 
 
 
 
with ri equalling the residual as with least squares 
above.  The median residual can only be arbitrarily 
affected if at least half of the data changes.  This method 
can be used to find points that deviate from the median 
regression line, which may suggest that these points are 
worthy of consideration to ensure that they are not 
outliers21. 
 

 
Figure 1. The influence of outlier data points on regression 

As can be seen in figure 1, a single outlier has a 
dramatic effect on the regression line under least mean 
squares, but none under least median squares.  
Although, mathematically, the least mean squares line is 
minimising its error function it is easy to see that the 
model would be of little use in predicting a new point 
like A.  Additional information about least median 
squares regression can be obtained from Rousseeuw and 
Leroy22.  Some of the weaknesses of the method are 
discussed in Hettmansperger and Sheather23. 

An important point to remember here is that robust 
regression, as with any outlier detection method (see 
Rousseeuw and van Zomeren24 for some other outlier 
detection techniques), can only be used to indicate 
suspicious data points.  The term outlier refers to the 
observation having a large t or t* value25  where a large 
value would indicate that the observation is a large 
number of standard deviations from the mean.  This 
indicates that, for an approximately normal distribution, 
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the observation is unlikely to have occurred simply by 
chance.  The fact that a data point qualifies as an outlier 
under this definition is not however sufficient 
justification for removing it from the sample.  Here it is 
important to ensure that the population being studied is 
properly defined.  The points flagged as appearing to be 
different from the majority should never be rejected 
simply on the basis that they have an adverse effect on 
the model's fit.  Other justification must be found, such 
as an unusual project, before any removal of data is 
carried out. The unjustified exclusion of data points has 
a serious biasing effect on the model developed.  For 
example, often some examples of larger systems in a 
data set of mainly medium sized systems will stand out 
as potential outliers, especially under a linear model.  
Here, by rejecting the larger systems the population is 
being reduced to medium sized systems.  If the model is 
to be used for such large systems then they cannot be 
removed.  By including these observations, however, the 
model's accuracy for predicting medium systems may be 
inadequate.  A possible solution here would be to divide 
the data set into medium and large systems and then 
develop separate models for each population. 

Some of the reasons for the large number of outliers in 
software development data sets include the lack of 
agreement on terminology leading to differing 
definitions for variables, the inconsistencies between 
data counters, the wide variety of software development 
processes and the wide range of system sizes19. 
 
4. NEURAL NETWORKS  

The most common model-building technique used in the 
literature as an alternative to least mean squares 
regression is back-propagation trained feed-forward 
neural networks, often referred to simply as back-
propagation networks although this is strictly speaking 
incorrectly confusing the architecture and the training 
method.  Even though a large number of different neural 
network architectures and training algorithms exist, 
almost all published studies involving software metric 
models have been limited to this type26-35.  This can be 
seen as a reflection of the lack of understanding of 
neural network techniques by many software metric 
researchers which is understandable given the 
tremendous growth in the neural network field in the 
past decade.  Gray and MacDonell36 provide guidelines 
for model development of software metrics using 
various neural network architectures, and Li37 provides a 
good general introduction to neural network 
applications.  Neural networks have been used 
successfully in many software metric modelling studies, 
including Wittig29 where prediction accuracy was within 
10% (although the use of accuracy, while suggested here 
as the most important requirement for most project 
managers, as the sole determinant of a model's goodness 
is not recommended, with other factors such as ease of 
use and interpretability also being important). 

The example depicted in figure 2 demonstrates a neural 
network model for a metric that predicts the 
development effort required for a system with a given 
set of design requirements.  The network shown is a 

feed-forward network that could be trained using the 
back-propagation algorithm so as to determine weights 
that attempt to minimise the predictive error.  Once the 
network's weights have been determined new instances 
can be presented as inputs to have the network make an 
estimate for the effort required. 

 

 
Figure 2. An example neural network structure for effort 

prediction 

Back-propagation trained feed-forward neural networks 
are developed by first selecting an appropriate 
architecture of neurons.  This includes how many layers 
of neurons will be used, the number of neurons in each 
layer, and how the neurons will be connected to each 
other.  Other decisions are also possible regarding the 
precise nature of neurons, such as their transfer function, 
and parameters for the training algorithm.  Once the 
architecture has been created the network is trained by 
presenting it with a series of inputs and the correct 
output from the training data. As with all empirically-
based modelling techniques data should be withheld for 
verification and validation purposes.  The network 
learns by adjusting its weights to decrease the distance 
between its predicted output and the actual output.  This 
process of training continues until the network's ability 
to generalise, as measured by its predictive performance 
on new data, is optimal. This means stopping before the 
network has learned the training data completely and 
has overtrained, thus losing its important ability to 
generalise.  Usually, various different architectures will 
be tried and the best tested on the validation data set to 
ensure good generalisability. 

The popularity of this single method has also been noted 
in other disciplines and can be explained by its apparent 
simplicity and robustness.  Often papers using this 
technique will be based on data sets that are so small or 
affected with collinearity that normal statistical methods 
would be unable to produce any valid results.  The 
authors will even on some occasions acknowledge these 
problems and suggest neural networks as the solution.  
In fact, it is long acknowledged within the neural 
network community that neural networks are not 
immune to statistical problems since they are in many 
cases equivalent to standard statistical techniques. For 



example, a feed-forward neural network is equivalent to 
a multiple nonlinear regression model35. In this way they 
are subject to the same problems as any nonlinear 
regression, such as too many free parameters for the 
data set size (low degrees of freedom), collinearity 
between variables, outliers in the data, and missing data 
values.  Some researchers in the neural network 
community have even claimed that neural networks are 
less resilient to these problems than their corresponding 
statistical functions.  For a more complete examination 
of the statistical properties of neural networks see Cheng 
and Titterington38. 

The phrase universal approximator is often used to 
describe this form of neural network, suggesting that it 
can capture any relationship that may exist between the 
variables.  There are several conditions attached to the 
proof that feed-forward neural networks are capable of 
representing any well-behaved relationship (here well-
behaved is used in the mathematical sense for describing 
a function), firstly that the proofs for multilayer 
perceptrons being universal approximators only prove 
that there exists some two layer (the number of layers 
refers to the number of connections, so a two layer 
network really has an input, hidden and an output slab 
of neurons) network that can approximate any well-
behaved function to an arbitrary degree of accuracy39.  
The proofs do not specify the number of neurons 
required in the hidden layer.  Since training time and the 
minimum data set size for valid learning increases with 
the number of neurons, the theoretical existence of a 
network capable of capturing a relationship is of little 
use if it cannot be implemented. 

It has been further shown that such networks are not just 
capable of representing such mappings, but these 
mappings are always learnable40.  The problem here is 
that even if the architecture provides a sufficient number 
of hidden layer neurons, the back-propagation training 
algorithm, which is a simple gradient descent algorithm, 
is notoriously unreliable at finding the globally optimal 
set of weightings and often falls into local minima 
which may not provide an accurate mapping between 
inputs and outputs41.  Better learning algorithms that do 
not have such problems with local minima and often 
train much faster have been developed (see, for 
example, Baba42 and Baldi and Hornik43).  As an 
alternative, schemes are available that can initialise the 
network weights so as to avoid the false minima44-46.  
These can be used in place of the normal method of 
initialising the network with small random values.  
Modern neural network literature abounds with better 
training algorithms and initialisation techniques but still 
the vast majority of applications continue to use the 
relatively slow and unreliable back-propagation method 
with the small random value initialisation rule.  This can 
be seen as a reflection of the slow dissemination of 
information in comprehensible formats to those 
applying neural networks rather than investigating their 
properties. 

Other architectures that are suitable for neural networks 
include cascade correlation networks, Kohonen 
networks, and radial basis function networks.  The only 

one of these that the authors are aware of having been 
used for software metrics is cascade correlation29. 

A failing of neural networks is that they operate as 
‘black boxes’ and provide the user with no information 
about how outputs are reached47.  As stated by Davis et 
al.48, the ability to generate explanations is important in 
order to gain user acceptance of artificial intelligence 
techniques. In fact the importance of explanation 
extends to all techniques discussed here.  In terms of the 
‘black box’ nature of a neural network, this can make it 
difficult to test the network's output gradient vectors 
with respect to the various inputs to ensure that the 
relationships are sensible (in other words increasing or 
decreasing as appropriate and with a suitable relative 
magnitude).  This is less problematic with regression 
equations where the signs and relative magnitudes of the 
coefficients can be checked to ensure that the predicted 
output will vary in the correct way with respect to the 
inputs.    Another problem with neural networks is 
catastrophic forgetting49 where training on new data 
causes the network to lose existing knowledge, although 
given the relatively small sizes of software metric data 
sets this is unlikely to be problematic. 
 
5. FUZZY SYSTEMS 

Fuzzy systems have only been used in a few 
publications for software development models30,50 which 
is surprising given their rapid adoption into other areas.  
A fuzzy system is a mapping between linguistic terms, 
such as “very small”, attached to variables.  Munakata 
and Jani51 provide a good introduction to fuzzy systems.  
Thus an input into a fuzzy system can be either 
numerical or linguistic, with the same applying to the 
output.  A number of different types of fuzzy systems 
have been shown to act as universal approximators in 
the same sense as neural networks52-54. 

A fuzzy system as considered here, although as noted 
above there are different types, is made up of three main 
components.  The first, the membership functions,  
represent how much a given numerical value for a 
particular variable fits the term being considered.  The 
second component is the rule base which can be 
obtained from experts’ understandings of the 
relationships being modelled and refined (or even 
obtained in the first case) using various data-driven 
adaptation techniques.  This performs the mapping 
between the input membership functions and the output 
membership functions.  The greater the input 
membership degree, the stronger the rule fires, and thus 
the stronger the pull towards the output membership 
function.  Since several different output memberships 
could be contained in the consequents of rules fired, a 
defuzzification process, the third component, is carried 
out to combine the outputs into a single label or 
numerical value as required. 

This approach is demonstrated in figure 3.  In this 
simple example numerical inputs are provided for the 
data model size (30), number of screens (26), and 
process model size (74).  These numerical values are 
plotted on the membership functions, with the height of 



intersection with the membership curve indicating the 
degree to which the value belongs to the respective 
label. For the particular type of fuzzy logic system 
described here this step is called fuzzification.  In this 
case the data model size is medium to a degree of 0.5 
and large to a degree of 0.5, while the process model 
size is small to a degree of 0.8.  The membership degree 
determines how much weight to give to the rules 

involving the membership label in its antecedent.  There 
are various methods for weighting the rules in this case.  
The consequents of each rule are then combined - for 
the type of fuzzy system described here this process is 
called defuzzification - and a single output value is 
determined, in this case 254 (note that this 
defuzzification is based on several other rules not 
shown). 

 

 
Figure 3. A fuzzy system for duration estimation 

 

The most obvious strength of fuzzy systems is that by 
using linguistic mappings a highly intuitive model can 
be created that anyone, even without any training, can 
understand and if necessary criticise.  On the negative 
side fuzzy systems suffer from some limitations, 
including the difficulty of specifying a system with very 
high accuracy while maintaining a degree of 
meaningfulness (generally more accuracy requires more 
rules, with greater numbers of rules leading to more 
complex and less interpretable systems).  As with neural 
networks there are a large number of different types of 
fuzzy system, and again when developing a model it is 
necessary to understand the various choices available.  
Many different schemes have been devised to extract 
fuzzy membership functions and rules directly from data 
including that described by Wang and Mendel53.  They 
suggest that this then allows for an expert to fine-tune 
and add to the resulting system rather than starting from 
scratch. 
 
6. HYBRID NEURO-FUZZY SYSTEMS 

Recently researchers have attempted to combine the 
strengths of neural networks and fuzzy systems while 
avoiding most of the disadvantages of each55,56.  This 
has resulted in a wide range of possibilities for 

hybridizing the two techniques.  While all of these 
techniques are different in some way, they share the 
same basic principles: an adaptive system that can deal 
with easily comprehended linguistic rules and that 
permits initialisation of the network based on available 
knowledge. 

The standard neuro-fuzzy hybrid system is based on 
inputs into the network being transformed into 
membership degrees that can then activate rules, leading 
to membership degrees for the outputs that can be 
defuzzified.  Thus the five layers of neurons (with four 
layers of connections) in such a network represent the 
crisp inputs, input fuzzy membership degrees, rule 
firing, output memberships, and crisp outputs.  One 
problem with a fully trainable neuro-fuzzy system is that 
the membership functions can drift such that they no 
longer represent their linguistic label.  One approach to 
avoiding this problem is the separation of the rule 
learning and membership extraction operations as 
discussed in Gray and MacDonell36. 

An example of a neuro-fuzzy system is presented in 
figure 4.  Here two inputs (data model size and process 
model size) are presented to the network's input neurons 
which are then fed through the first layer of connections.  
The outputs to the second layer of connections represent 
the membership degrees, leading to the rules where 



positive input weights represent affirmative rules.  The 
outputs from the rule neurons represent the degree to 
which the rule has been fired and determine the 
activation of the output membership neurons.  The 

results from these output neurons are combined into a 
single numerical value. 
 

 

 
Figure 4. Neuro-fuzzy hybrid architecture for development time prediction 

 
Once a network has been trained it is possible to extract 
the rules contained within it which can then be checked 
for acceptability, and if desired used in a standard fuzzy 
system.  The ability to extract rules in this manner can 
be used to check for catastrophic forgetting, where the 
network learns new relationships from new data but 
forgets the old relationships from old data49. 

Ironically, although neural networks and fuzzy systems 
are both universal approximators, standard neuro-fuzzy 
systems are not. Despite this, neuro-fuzzy systems are 
capable of approximating well enough and alterations to 
the standard architecture are possible to ensure universal 
approximation should the model require this57.  
However it seems unlikely that any metric would 
involve sufficiently pathological relationships for this to 
be a problem. 
 
7. RULE-BASED SYSTEMS 

Rule-based systems have been used in very few cases 
for modelling software development58-60. Fuzzy rule 
systems are a superset of crisp rule systems and any 
such system can be simulated by a fuzzy system.  For 
this reason it may be considered that crisp systems are 
redundant.  However, the greater simplicity of a crisp-

rule base can be seen as an attractive feature, especially 
where many input variables are involved. 

 

 
Figure 5. The generic structure of rule-based systems 

A rule-based system is organised around a set of rules 
that are activated by facts being present in the working 



memory, and that activate other facts, as shown in figure 
5.  In this way chaining can occur with one rule enabling 
another rule to fire.  This would, for example, allow for 
rules to be developed to recognise a high error module 
along the lines of: 

IF module length > 40 LOC or 

IF module length > 20 LOC AND 
development time > 2 hours 

THEN module is high error risk 

 

Such a system has the disadvantage, compared to a 
fuzzy system, that all antecedents and consequents must 
be either true or false, with no degrees of true or false 
allowed.  This can cause problems when a module with 
21 LOC and a module with 20 LOC, both taking four 
development hours, are put through the above rule.  The 
two modules are very similar but only the first will fire 
the rule. 
 
8. CASE-BASED REASONING 

Case-based reasoning is a method of storing 
observations, such as data about a project's 
specifications and the effort required to implement it, 
and then when faced with a new observation retrieving 
those stored observations closest to the new observation 
and using the stored values to estimate the new value, in 
this case effort.  Thus a case-based reasoning system has 
a pre-processor to prepare the input data, a similarity 
function to retrieve the similar cases, a predictor to 
estimate the output value, and a memory updater to add 
the new case to the case base if required61.  This is 
shown in figure 6.  Case-based reasoning systems are 
intended to mimic the process of an expert making a 
decision based on their previous experience62.  It was 
found by Vicinanza et al.63 that experience assisted with 
software development estimates and that experts at this 
used comparisons with past cases. 

 

 
Figure 6. The case-based reasoning classification process 

Problems have been encountered with some case-based 
reasoning systems.  As stated by Breiman et al.64 they 
are intolerant of noise and irrelevant features.  The 
authors also claim that the similarity function used has a 
strong influence on the algorithm's performance.  This 
makes the creation of a case-based reasoning system a 
non-trivial task.  However, extensions to standard case-
based reasoning algorithms performed by Aha61 resulted 
in much more noise-tolerant systems. 

An experiment by Mukhopadhyay et al.62 compared the 
performance of a case-based reasoning system, a human 
expert, and standard models using function points and 
COCOMO.   The case-based reasoning system 
(ESTOR) and the expert were limited to using the 
standard inputs to the function point and COCOMO 
models.  The performance of the case-based reasoning 
system exceeded that of the function point and 
COCOMO models, and was close to the level of the 
expert.  The authors concluded that the case-based 
reasoning approach was worth further study due to its 
encouraging results. 
 
9. REGRESSION AND CLASSIFICATION 

TREES 

Regression and classification trees, while based on the 
same principle, each have a different aim. Regression 
trees can be used when the output value to be predicted 
is from the interval domain, while classification trees 
(also known as decision trees) are used to predict the 
output class for an observation, that is to say, from the 
nominal or ordinal data scale.  Both algorithms work by 
taking a known data set and learning the rules needed to 
classify it.  For an overview of the techniques see 
Breiman et al.64 and Selby and Porter65,66. 

 

 
Figure 7. A development time classification model generated 

by a regression tree algorithm 

 



As an illustration, refer to figure 7 where a regression 
tree algorithm has been used to extract the important 
rules that can be used to predict testing time for software 
developed using particular tools.  The mean testing time 
for each class has been recorded as the leaf nodes.  In 
order to create the tree the algorithm looks at which 
attributes can be used to best classify the data and 
iteratively constructs the tree, splitting nodes when 
required.  While splits of two are most common, 
algorithms exist for splitting ranges into greater numbers 
of partitions.  This method has the advantage of being 
easily comprehended and checked for logical errors. 

Classification trees operate in much the same way as 
regression trees except that instead of interval scale data 
being attached to the leaf nodes, labels are used instead.  
Thus a classification tree could classify modules into 
various risk categories, for example ‘high risk’ and ‘low 
risk.’ 

An experiment by Srinivasan and Fisher32 found that, 
using mean residual error as the performance measure, a 
regression tree approach was more successful than 
COCOMO or SLIM for estimating effort, although less 
successful than a back-propagation trained neural 
network (the most successful) and function points.  An 
extension to the basic regression tree algorithm 
discussed by Srinivasan and Fisher was to replace the 
mean values at the leaf nodes with regression equations, 
allowing for a piece-wise regression equation over the 
domain.  This could be a successful technique given the 
way the behaviour of metrics changes in relation to the 
scale of the project under consideration. 
 
10. COMPARISON OF TECHNIQUES 

So as to ensure that the most appropriate model-building 
method is selected in as many cases as possible a two-
part comparison of the techniques described above is 
now provided.  The first section considers the 
appropriateness of each method based on the conceptual 
requirements of modelling methods.  This is followed by 
an empirical evaluation of some of the methods (least 
squares regression, robust regression and a neural 
network) so as to illustrate the variation in performance 
achieved with these approaches, highlighting the need to 
more effectively consider the specific characteristics of 
the form and nature of the data set, the modelling 
methods, and the resultant model. 
 
10.1. Criteria-based Evaluation 

Table 1 shows a comparison between the techniques 
with respect to some desirable modelling attributes.  It 
can be seen that not all techniques are suited to all types 
of problems.  In addition, not all factors that may 
influence technique selection are listed here.  Others 
may include available model-building software, 
expertise in each field, and the time available for 
development. 

In the table the heading ‘Model free’ refers to the ability 
of the modelling technique to determine its own 
structure, rather than relying on the developer to provide 

the form of the relationship between inputs and outputs.  
As an example, when developing a regression model it 
is necessary to specify which variables should be 
transformed and what type of transformation should be 
used. With a neural network, an appropriate 
approximate transformation will be found by the 
network when training. 

The next entry in the table refers to the model's 
robustness of estimation when faced with a data set 
containing outliers.  Some techniques are capable of 
providing some explanation for their reasoning and this 
is noted in the next column.  Small data sets are 
problematic for all modelling techniques, however by 
using expert knowledge as a supplement to the data (as 
in fuzzy systems and regression trees) an accurate model 
can still be derived.  Once a model has been developed, 
the issue of whether additional data can be added or 
whether the entire model must be regenerated on the 
combined data set must be considered.  Related to the 
explanation of a model is the capability for a user to see 
how a model arrived at its conclusions.  This can be 
important for the purpose of verification as well as 
theory building and gaining and understanding of the 
process being modelled.  Models can be black box 
(outputs are derived from inputs via a hidden process), 
white box (the process is visible and can be understood), 
or grey box (partially visible). The suitability of a 
technique to incorporate complex models is related to 
the issue of model-free estimation and the ability to add 
expert knowledge.  Finally the table covers each 
technique's capability to include known information into 
a model, that is to initialise a model with known facts 
(expert knowledge) and then use data to improve and 
refine it.  Table 2 shows each technique in terms of its 
usage for software metrics. 
 
10.2. Empirical Evaluation 

The analysis presented here is a summary of previous 
work and is intended to illustrate the use of some of the 
techniques that have been discussed67.  In addition it is 
hoped that this provides some appropriate model 
comparison and validation techniques.  A data set of 
eighty-one project observations68 (collected originally to 
investigate the effectiveness of function point analysis 
(FPA)) were made available for analysis using the 
various model-building methods.  Each observation 
included values for the following independent (potential 
predictor) variables: unadjusted function points, 
adjusted function points, levels of experience with 
equipment and in project management, numbers of basic 
transactions, and number of data entities; the main 
dependent variable was development effort.  (It should 
be noted here that this analysis is not directed at 
evaluating the actual usefulness of the data in this case; 
rather, it is being used here to illustrate the different 
results achieved when different methods are used to 
develop predictive models.)  For each of the methods, 
the same randomly selected set of fifty-four 
observations was used for model development, leaving a 
set of twenty-seven observations available for 
validation. As stated previously, it is only through the 
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use of such a ‘hold-out’ data set that a realistic and 
unbiased assessment of a model’s likely performance on 
new real-world data can be made.  Predictive accuracy 
of each model was evaluated using the mean magnitude 
of relative error (MMRE) and the threshold-oriented 
pred measure. 

The magnitude of relative error (MRE) is a normalised 
measure of the variance between actual values (VA) and 
fitted values (VF): 
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Table 1. Comparison of techniques in terms of modelling capabilities 

 
 
The mean MRE is therefore the mean value for this 
indicator over all observations in the validation sample.  
A lower value for MMRE generally indicates a more 
accurate model. 

The pred measure provides an indication of overall fit 
for a set of data points, based on the MRE value attained 
for each data point: 

 
 
 

where l is the selected threshold value for MRE, i is 
the number of data    points with MRE less than or 
equal to l, and n is the total number of data points. 

As an illustration, if pred(0.25) = 0.4, then we can say 
that 40% of the fitted values fall within 25% of their 
corresponding actual values. 

The performance of each analysis approach using these 
adequacy indicators is summarised in Table 3.    As can 
be seen the neural network models performed much 
better in terms of model accuracy than the regression-

based models.  This is expected, if only because of the 
non-linearities inherent in a neural network.  A similar 
ranking of neural networks outperforming statistical 
models in terms of accuracy has been found in other 
research69, 70. 

Of the two statistical approaches employed, their 
performance is roughly equivalent.  This suggests that 
the influence of any outlier observations is not 
significant enough to have a disproportionate effect on 
the regression lines and that the data set is reasonably 
‘well-behaved’ from the perspective of regression.  
Overall, however, the most effective model is that 
expressed by the neural network, with nearly half the 
MMRE of the other techniques and superior pred 
performance.  If, as in much metrics data analysis, our 
model-building had been based only on statistical 
methods, the effectiveness of the resultant models would 
be less than optimal when compared to that obtained 
with the neural network.  This further illustrates the 
need to consider a broader range of issues when 
selecting a method for analysis. 



 

Table 2. Some applications of each technique 

 
 

Table 3. Comparative analysis method performance 

 
 



11. CONCLUSIONS  

By considering a wide range of modelling techniques 
that may be suitable for developing predictive software 
metric models a project manager or researcher can be 
more confident that the best possible model (for 
practical purpose this will normally be the most 
accurate, although other considerations should be kept 
in mind) has been developed.  Even after the model has 
been developed it is important to keep in mind the 
inherent limitations of the technique used.  Some of 
these limitations have been discussed in this paper. 

Given the set of criteria considered in Table 1, it is 
evident that some of the non-traditional analysis and 
modelling methods have significant potential in 
providing useful and robust predictive models.  In 
particular, the case-based reasoning and regression tree 
approaches may be favoured in the first instance, as they 
are able to provide simple, effective and intuitively 
appealing methods of classification and estimation. 

It must be noted, however, that the use of such methods 
cannot simply be embraced as a catch-all solution to 
current metrics data analysis problems.  The techniques 
presented here are simply modelling devices that can 
assist in the gathering of information (for example, 
fuzzy systems), the derivation of complex relationships 
inherent in software development, and the presentation 
of results in a meaningful manner.  Other goals, such as 
increasing the interpretability of models, may also be 
assisted through their use.  The various techniques are, 
however, fields of research in themselves, and a 
reasonable level of understanding should be sought 
before they are used. 

We are currently expanding the empirical comparisons 
to other techniques, especially fuzzy logic models and 
case-based reasoning (which has been modified based 
on the analogy approach71). In addition a flowchart 
approach for assisting with model selection is currently 
under preparation, along with software support for these 
techniques tailored for software metrics. 
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