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RADITION tells of the time when earth mother, Pa-
patuanuku, was clothed in vegetation [1]. After she
was adorned, the Atua (Gods) turned their attention

towards the insects and reptiles of the earth. There were
some who viewed the insects as kutukutu (vermin); infest-
ing the body of Papa. The whatukura (enlightened beings),
Ruatau and Rehua intervened. They spoke gently of the
creatures to Tane, the great God of the forests, saying...

Treat kindly the offspring of Torohua and Muhumuhu.
That they may serve as companions for you all.
While some are desirable, others are not.

But they preceded all other things.

This manuscript is dedicated to ngaro huruhuru, the native
bees of Aotearon (New Zealand); with respect for, and in
recognition of, this whakapapa (genealogy).
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ABSTRACT

New Zealand has around thirty different species of native bees. Much
has been discovered about their biology. They are pollinators of wild
and cultivated plants. Because of this, they are likely important to
the health of ecosystems. Most are solitary ground nesting bees. They
are commonly referred to as mining bees, since individual females
construct their nests in the ground. During the active flight season,
many thousands of bees will nest alongside each other. They form
large communities called aggregations.

Studies of native bees can be difficult. As a result, there is much
to learn about their diversity and population status. To address this
problem, a method to measure populations of native bees using dig-
ital images and analysis was proposed. The method capitalised on
some unique aspects of their nesting biology. While it was difficult
to acquire images of individual bees, it was straightforward to pho-
tograph nests. Furthermore, the number of nests in an aggregation
could provide an indicator of community health. For these reasons,
the methods in this research focused on counting the number of ac-
tive nests. These data could be used as a proxy for populations.

Surveys were conducted over six years (2009-2014), at three com-
munities of native bees located in Whangarei (Northland, New
Zealand). Monitoring data were collected across five years (2010-
2014). Fundamental ecological data were collected, including man-
ual nest counts; digital images of active nests were acquired. Open
source, biomedical imaging platform FIJI, was used to process images.
Pixel-level, interactive image segmentations were achieved, using the
random forest classifier. Three classifiers were constructed, one for
each monitoring location. They were applied to nest-images in a sin-
gle batch process and the number of active nests were counted.

The performance of machine learning models were analysed in the
workbench WEKA. The random forest classifier performed well on
the nest-imaging task. The model compared favourably with simi-
lar types of machine learners in WEKA experiments. Nest counts de-
rived from the automated imaging methods were compared with
manual-field and manual-image counts. There were good agreements
between methods. Results suggested image-centric monitoring meth-
ods could replace manual-field nest counting methods. Data by man-
ual and automatic techniques, indicated the number of active nests
have decreased over five years.

The imaging methodology presented in this thesis shows good po-
tential. It could be used to help increase baseline knowledge about
New Zealand’s native bees. The image-centric design was fully docu-
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mented, based on open source software and off-the-shelf tools. There-
fore, the system could be immediately adapted for other solitary
ground nesting bees worldwide. This system could help to provide
the tools, to gather much needed information about the health of im-
portant background pollinators.
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INTRODUCTION

Pollination is a natural process pivotal to life on earth [2]. Any
changes in services has the potential to affect food security and hu-
man welfare [2, 3, 4]. The importance of pollinators was highlighted
by the popular press in 2006. Declines in populations of honey bees,
Apis mellifera (Hymenoptera: Apoidea), were documented through-
out the United States (US) [5]. The term colony collapse disorder was
coined to describe the syndrome [5]. The problem caused widespread
alarm. This was because, around 80-85% of all cultivated food crops
are dependent on pollination from insects; bees are a valuable polli-
nator group [6, 7]. Studies have estimated the economic cost of pol-
lination services could be as high as $310.9 million US dollars [7].
Others have indicated the economic consequences of pollinator de-
clines, could result in a reduction of food crops amounting to a total
of $334.1 billion US dollars [8].

The pollination crisis continues to receive attention throughout Eu-
rope and the US. The causes of mass honey bee losses remain largely
unknown [5]. An added consequence of this phenomenon, has been
an increase in the overall awareness of the role of pollinators [6, 9, 10].
Especially the role of non-Apis bees [9, 10]. Many species have been
undervalued in the past [11]. In the future, they may provide a buffer
against major colony loss events [6, 12]. In the US, native bees are esti-
mated to contribute about $3 billion dollars towards fruit production
each year [13]. O’Toole writes, "...native bees occupy keystone posi-
tions and without them, ecosystems would eventually collapse..." [9,
pg-32].

Around 20,000 different bees have been formally described by sci-
ence [14]. Most of these species are solitary [14]. Unlike social bees,
solitary species do not produce honey or live in colonies. They are not
as easily managed for crop pollination. One exception is the alkali bee,
Nomia melanderi (Hymenoptera: Halictidae) [15]. It is the most inten-
sively managed solitary bee in the world and is a vital pollinator for
alfalfa crops [15]. Alkali bees have a tendency to nest alongside each
other. Many thousands of bees can form large communities; some
persist over decades [15]. One of the most populous and long-lived
nesting sites was recorded by Cane [16]. He conducted a monitoring
programme on alkali bees over eight years, by measuring their popu-
lations across 240 km? of agricultural land (Washington, US) [16].

There are at least 40 different species of bees in New Zealand [17].
Around 32 of these are native bees [17]. Most of New Zealand’s native
bees are solitary ground nesting types. Many have behaviours similar



INTRODUCTION

to alkali bees [15]. They can be described as gregarious ground nesting
bees. At the beginning of the active flight season (around September-
October), female native bees start to construct their nests. They prefer
to nest alongside each other. Consequently, within a very short period
of time, large communities or aggregations are formed by thousands
of nesting bees.

In contrast to alkali bees, New Zealand’s native bees have not been
managed for crop pollination [12]. Baseline knowledge about some
species is limited. There are also challenges associated with studies
of native bees. Since most species are in flight for only a few months
of the year, projects can be drawn out and laborious. Good popula-
tion data can take longer than three years to collect [16]. As a result,
it can be difficult to attract researchers and funding. Most native bees
are hard to identify with the naked eye. This is because many species
look the same. Expert training is required in order to identify them
properly. Even with the aid of taxonomic keys identification can be
difficult [18, 19]. As described by Donovan [17], " The general resem-
blance of many of our native bees to some flies has not only lim-
ited their recognition as bees by the public, but within the group of
large hairy species the close similarity among a number of species
has made identification difficult even by entomologists." [17, pg.6].

Many native species are small. Therefore, when they are in mid-
flight they are nearly impossible to visually track. Capturing digital
images of native bees in mid-flight is equally problematic. Tracking
tools have been successfully used on larger insects, but it is likely the
technologies cannot be easily adapted for New Zealand’s native bees
[20, 21]. Looking towards global research, habitat fragmentation from
urbanisation and agricultural intensification, is an important issue
[6, 22]. In the future, communities of native bees may be progressively
more difficult to locate and study.

There are relatively few past or present studies on New Zealand'’s
native bees. Historical research was more often focused on taxonomy,
biology and floral relationships. One of the earliest studies was by
Rayment [23]. He described the life history of a Maori bee; presenting
a range of sketches of larvae, pupae and adult bees. Quinn [24], con-
ducted surveys on native bees found in the Mackenzie Basin (South
Canterbury), from 1976 to 1980. He collected 10 different species of
native bees. He detailed the natural history records of their foraging
and nesting characteristics. In 1964, Godley [25] observed native bees
foraging on Elytranthe flavida. The bees were prising open the tip of
the mistletoe flower buds in search of nectar. Similar observations
were confirmed recently. Kelly et al. [26], captured video footage of
native bees opening the flowers of an endangered species of mistletoe.
These plants have bird-adapted flowers and were generally thought
to be only visited by birds [26]. In a follow up study, Robertson et al.
[27] suggested native bees may "...partially replace birds as pollina-
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tors of mistletoes, despite their apparent ornithophilous syndrome."
[27, pg.298].

Donovan’s [17] Apoidea is the most comprehensive body of research;
it is a complete taxonomic treatment of New Zealand’s bees. Dono-
van et al. [28], have also made progress towards relocating native bees.
They tested methods for establishing new nests using a species of na-
tive bee, Leioproctus huakiwi (Hymenoptera: Colletidae). They success-
fully established new populations of L. huakiwi; numbers increased by
8-25 times over three years (2007-2009). The results of their research
"...opens the way for the development of new populations of bees
wherever required for both conservation pollination, and pollination
of some economically valuable crops." [28, pg.111].

Hart [21] reviewed different methods for studying the foraging
ranges of native bees. In a related study, she collated natural his-
tory records from communities around Whangarei (Northland, New
Zealand), over three years [29]. Results showed, up to seven differ-
ent species of native bees were nesting alongside each other [29]. To
date, the diversity of species located at a single community on Mt.
Parihaka (Whangarei) remain the highest recorded in New Zealand
[29]. Newstrom-Lloyd [12] provided a comprehensive account of pol-
lination services in New Zealand. She suggested more could be
done to explore the role of native bees as managed pollinators [12].
Newstrom-Lloyd explained, "...permanent sites with populations of
these native bee species can be developed, and these could serve as
alternatives if nest site areas are not disturbed and are supported with
the necessary bee forage plants." [12, pg.419].

According to a recent report, one native bee species Leioproc-
tus nunui (Hymenoptera: Colletidae), is critically endangered [30].
However, it is difficult to ascertain the conservation status of other
species [30]. Native bees might provide essential pollination services
[12, 17, 29]. If so, their role in New Zealand’s ecosystems could be
critical [4]. Studies from abroad indicate the consequences of loos-
ing pollinator species can be unpredictable and irreversible [4, 31].
Some studies have shown the ecological effects might only be recog-
nised when dependent species of wild and cultivated crops decline
[4, 31]. Although the research to date is promising, much more is re-
quired [12, 21, 28, 29]. Long term monitoring initiatives, would help
to quantify the population abundance and species diversity of New
Zealand’s native bees. Open source, image-centric tools could also be
used, simplifying ecological methods [32, 33, 34]. If the lessons from
abroad are considered relevant, monitoring initiatives might even be
community driven [35, 36, 37, 38, 39]. Therefore, this thesis outlines
the development, design, and application of an image-centric moni-
toring tool for New Zealand’s native ground nesting bees.



1.1 OBJECTIVES

1.1 OBJECTIVES

The main aims of this research were to design, apply and verify the
performance of an image-centric monitoring system. The system was
designed to measure the population abundance of ground nesting
bees in New Zealand. The techniques for monitoring bees were tested
during field studies in 2009. The types of digital data were not initially
limited to images. Audio and video formats were also considered rel-
evant. In 2010 field tests were completed. There was sufficient proof
of concept to formulate a clear image-centric design and direction for
applied field monitoring. The research thus centred on digital image
acquisition and analysis of whole communities of native bees. Five
questions were used to refine the research objectives:

1. What indicators could be used to establish the general health of
bee communities?

2. Could images be used to capture or quantify key indicators?

3. Could image handling, acquisition and analyses be standard-
ised?

4. What pattern recognition, segmentation or classification tech-
niques best suit the image data?

5. What methods can be used to verify the accuracy and precision
of imaging methods?

The research questions listed above were used to identify key aims.
The objectives were therefore to:

* Investigate the types of image data suitable for proxy measures.
¢ Develop standard image collection techniques.

¢ Design manual field sampling methods for comparative analy-
sis against imaging methods.

* Apply the methods proposed: gather manual and image data in
tield tests, conducted over multiple years and locations.

* Select data handling protocols including: storage, collation, pro-
cessing and analysis.

* Verify the accuracy and precision of imaging methods.

¢ Compare manual field and imaging methods; and results.

The key objectives formed the basis of several recursive tasks. These
were categorised into stages as described in Table 1.1.
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Table 1.1: Development stages.

Stage Tasks

Review Data Examine past image data and ascertain de-
sign constraints.

Identify appropriate monitoring sites.

Image Acquisition Test techniques for standard image acquisi-
tion.

Field Methods Survey locations and select sites for repeat
monitoring.

Design field methods for comparative analy-
sis against imaging methods.

Collect manual and image field data over
multiple seasons.

Image Processing  Collate and prepare images.

Train and apply classifiers to segment target
objects in images.

Post-process and count key data.

Verification Verify the precision and accuracy of image
classifiers.
Analysis Examine and compare manual field and

imaging results; review final monitoring
data.
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1.2 THESIS OUTLINE

There are three main sections in this manuscript. In Part I, key liter-
ature and background theories are introduced. Chapter 2 examines
the field methods used for studying insects and the advances in dig-
ital technologies relevant to this research. The rationale for adopting
image-centric tools are detailed within the context of New Zealand’s
native bees. Following on from this theme, Chapter 3 outlines founda-
tion theories relating to image processing methods. Biomedical imag-
ing techniques are well developed, so methodologies can be adapted
to a range of life science applications. Open source biomedical soft-
ware and new algorithmic image segmentation methods are detailed.

The research methods are described in Part II of this manuscript.
Chapter 4 outlines the field sampling techniques and tools. Chapter 5
details the image-data methods and tools including: image data man-
agement, pre-processing, trainable image segmentations, post pro-
cessing operations and statistical analyses.

Research outcomes are presented in Part III. The results are de-
tailed in Chapter 6. A comparative analysis between manual-field,
manual-image and automated nest counts are presented in this chap-
ter. Chapter 7 provides a critical examination of the research method-
ology, rationale and outcomes. The limitations of the study are dis-
cussed. A summary of outcomes are given in Chapter 8. The research
objectives are reviewed with an appraisal of the overall contributions.
Suggestions for future developments are detailed.

1.3 PUBLICATIONS AND CONTRIBUTIONS

Publications from this research are listed below. Other outcomes and
pathways were also important. They revolved around disseminating
knowledge to a wider, more general audience. It was possible to share
some of the research objectives and results with a larger community.
This was achieved by combining contemporary digital media with
Maori design. The images collected during field monitoring were inte-
grated with contemporary designs to create an exhibition. The public
exhibition was curated and hosted by the School of Creative Design
and Technologies (AUT) (refer to Appendix G).

* [40] Hart N. H. and Huang L. Monitoring Populations of Solitary
Bees using Image Processing Techniques. International Journal of
Computer Applications in Technology, 50(1): 45-50, 2014.

* [41] Hart N. H. and Huang L. Counting Insects in Fight using Im-
age Processing Techniques. In Proceedings of the 27th Conference
on Image and Vision Computing New Zealand, pages 274—278.
ACM, 2012.
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* [42] Hart N. H. and Huang L. Monitoring Nests of Solitary Bees
using Image Processing Techniques. In Mechatronics and Machine
Vision in Practice (M2VIP), 2012 19th International Conference,
pages 1—4. IEEE, 2012.

* [43] Hart N. H. and Huang L. An Image Based Approach to Moni-
tor New Zealand Native Bees. In Robotics, Automation and Mecha-
tronics (RAM), 2011 IEEE Conference, pages 353-357. IEEE,
2011.
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MONITORING NATIVE BEES

SYNOPSIS

The field monitoring techniques used in studies of native bees, or re-
lated insects are examined in this chapter. There are a wide range
of sampling methods. Therefore, this review was orientated towards
the methodologies that could be used to gather rapid, broad infor-
mation about the health of communities of native bees. A review of
conventional techniques are presented. Two specific approaches for
evaluating populations of solitary ground nesting bees are outlined.
The use of digital tools to aid ecological studies are introduced. The
relevance of technologies and research methods are examined within
the context of New Zealand’s native bees. The rationale for an image-
centric monitoring system is presented in this chapter.

2.1 TRADITIONAL METHODS

Field research methods are often based on real-world data collections,
sampling, measurements and observations [44]. Data can be messy, in-
exact or skewed; particularly when compared to laboratory sampling
methods [45, 46]. Field data sometimes requires special statistical
treatment [47]. More so, if it does not conform to assumptions about
normality, required by common methods [44, 45, 47, 48, 49]. For these
reasons, care is given to the formation of hypotheses, sampling design
and data analyses in field biology [44, 48, 50]. In the following re-
views, methodologies are concerned with multiple species, or groups
of insects [48, 51]. Some studies are specifically designed to measure
species diversity; others the population abundance [48, 51, 52, 53].
The methods reviewed in this chapter could be used in studies of
native bees .

2.1.1  Mark-recapture, survey and passive sampling techniques

There are several methods used to study insects [52, 53, 54, 55, 56].
Mark recapture techniques are considered the most reliable [56]. Be-
cause insects are captured using sweep nets, while foraging or above
nest sites, some behavioural information can also be gathered [53, 56].
Mark-recapture methods can be used to quantify species diversity

In reference to New Zealand’s species, the terms native bees, solitary bees and
ground nesting bees are used synonymously throughout this manuscript.
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and population abundance [56]. However, they can be labour inten-
sive. They require individual insects to be captured and uniquely
marked, then released and caught again [56]. Scientists need expert
skills to handle insects and studies are time consuming. In contrast,
survey methods are easier to perform. Protocols depend on visual
identification of insects. Repeat observations are made, over a pre-
determined transect, within a set time-frame. Although surveys are
probably less reliable, there are some practical advantages. It is also
possible to combine the methods and capitalise on the benefits of
both.

For example, Larsson and Franz [57] estimated the overall pop-
ulation size of solitary bees. They used a small sample of mark,
recaptured bees with an initial observational survey. According to
their findings, there were good correlations between the two meth-
ods. They concluded population size could be reliably established
using observational survey walks alone. They showed their method
could save considerable time and effort. Thus enabling resources to
be directed towards long term, large scale monitoring. Nonetheless,
survey methods still depend on specialist skills. The scientists carry-
ing out observations, must be completely familiar with the habitat;
and the bee fauna found within survey locations.

Passive sampling methods do not depend heavily on specialist
skills. Therefore passive techniques have some advantages over other
methods. In a comprehensive study, Westphal and Bommarco et al.
[58], compared a range of sampling methods including: observational
plots, pan traps, standardised and variable transect walks and trap
nests. Their results showed pan traps were the most efficient and gave
the best indication of species diversity. Similar findings were reported
by Nielsen and Steffan-Dewenter et al. [59]. Both studies indicated
pan traps were easy to use and reliable [58, 59]. However, others have
suggested pan traps are sensitive to taxonomic bias [60, 61, 62]. The
traps are also fatal for the insects collected. Therefore, the method
might not be appropriate for research involving vulnerable species?
Several studies have indicated data gathered from pan traps, do not
necessarily provide good abundance measurements [60, 62, 63]. They
are more suitable for measuring the diversity of species within a habi-
tat [62].

2.1.2  Population methods for solitary bees

Population studies for solitary bees are rare so there are only a few
examples to draw upon. In the next few paragraphs two key stud-
ies are reviewed in turn. In a four year study, Bischoff [64] used
mark-recapture methods and nest counts to evaluate populations of
a solitary bee, Andrena vaga (Hymenoptera: Andrenidae). The estima-
tions using nest counts, corresponded well with mark recapture data.

10
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Bischoff [64] reported minimal differences between the cumulative
number of nests (164) and the mean population estimations (160) for
data collected in 1997 [64]. He measured an overall decline in the
populations of Andrena vaga, across four years (1996 to 1999). He at-
tributed some of the population changes to corresponding increases
in populations of bee parasitoids. Bischoff [64], also concluded mark
recapture methods provided more reliable data.

In an eight year study, Cane [16] recorded the population changes
of the alkali bee, Nomia melanderi (Hymenoptera: Halictidae). Aerial
photographs were used to identify communities, across a 240 km?
area of agricultural land. Nest densities were surveyed each year us-
ing up to twenty, 1 m? grids. The grids were scattered randomly on
aggregations. The number of nest holes per grid were counted. Us-
ing video recordings, Cane [16] checked the entry holes that were
being actively used by nesting bees, against those counted. He found
around 66% were actual nest entrances. Final counts were averaged
across the total nest area, then multiplied by a factor of 2/3. Thus,
Cane [16] accounted for the differences between the observed, and ac-
tual number of active nests. The final analysis showed the population
density varied within and between nest aggregations. Results showed
the populations increased by a factor of nine between the years 1999
to 2006.

Taken together, the methods used by Bischoff [64] and Cane [16]
support the notion of using nests as a proxy for populations. Their
studies highlight the limitations. Manual nest counting methods are
likely to produce inflated estimates, according to Cane [16]. Neverthe-
less, the number of active nests can provide a broad estimation of the
population abundance of solitary ground nesting bees within aggre-
gations. The same method has been successfully used in at least two
other studies to date [65, 66]. The review also highlighted the paucity
of available research. Little is known about the current population
health of many species of solitary bees around the world; including
New Zealand’s native bees. In the absence of good data records and
with a lack of monitoring tools, straightforward field methods based
on the number of active nests might suffice? At least until alternative
methods have been developed.

2.2 TECHNOLOGIES FOR FIELD RESEARCH

A diverse range of technological tools are available to science. More
are developed each year. According to Moore’s Law, computing
power doubles every eighteen months [67]. Thus, the rate of tech-
nological developments and scientific discovery is staggering [67, 68].
Combined with mobile devices, crowd sourcing projects and increas-
ing connectivity, the volume of data for analysis is changing the sci-
entific landscapes [39, 69, 70]. The road map is not clearly defined.

11
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Therefore, the following sections review a range of tools that are used,
or could be used for field research studies of native bees.

2.2.1  Digital tools

An all purpose recognition tool that can be applied to different classi-
fication problems, without modification, is the goal which challenges
most developers today [71, 72, 73]. Considerable advances have been
made; and Gaston and O’Neil [72] have suggested "...the bounds on
just what is possible to achieve remain to be established. " [72, p.12].
Several approaches have been used for automated identification of
insects. To date, designs have been based around image, audio, and
frequency data [72]. There are some novel methods. Therefore, in the
first parts of this section some unique approaches are reviewed [74].

The main parts of this section are dedicated to the advances in
imaging systems. This is because they have revolutionised many
scientific studies. Specialised tools have been developed for bees
[75, 76, 77], water insects [78, 79], live moths [80] and sharks [81, 82].
Combined these studies demonstrate the potential of digital technolo-
gies. They also affirm the benefits of collaborative research [83]. Many
projects shared common characteristics. They involved a range of spe-
cialists, were developed using open source tools, or were designed to
support community science initiatives [70].

2.2.2  Audio data

Insects are more often heard, than seen. Consequently, species iden-
tification can be difficult. In this application, techniques using digital
audio data and frequency-based classifications are promising. For ex-
ample, Potamitis et al. [84] capitalised on the unique acoustic sounds
of crickets. They used audio data to recognise 105 different species.
Their system was based on two main steps; acoustic signal parametri-
sation and classification. During the first stage, they determined the
features providing the most information. During the second, they
compared the input feature vectors, with a range of predefined mod-
els representing target classes. Final results were impressive. They
exceeded a 99% recognition accuracy, on the levels of family and sub-
family. They achieved a 94% accuracy, on the level of species [84].

Raman et al. [85] developed a low cost acoustic insect flight de-
tector. It was designed to monitor mosquito activity. The sensor was
constructed using off the shelf components; a noise cancelling micro-
phone and digital sound recorder. They classified recordings using
the various harmonic ranges of wing beat frequencies. According to
Raman et al. [85], the design concept dates back to the 1949’s [86].
They reported their system was inexpensive to build and performed
well in natural outdoor environments [85].

12
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Similarly, Batista et al. [87] developed a low cost optical sensor.
They designed the sensor to count and classify flying insects, by us-
ing wing beat frequencies. Different species produce distinct wing
beat sounds. Therefore, they extracted unique acoustic information
from recorded sequences. They matched wing beat frequencies with
specific species, using Bayesian classification and probabilities. Large Insect ID with
insects produced lower frequencies - and smaller insects produced  opfical wing beat
higher frequencies. Therefore, classifications were straightforward, ac- data.
cording to Batista et al. [87]. They reported an accuracy of 96.04%. The
insect species they tested included one bumblebee, Bumble impatiens
(Hymenoptera: Apidae) and two mosquitoes, Culex quinquefasciatus
and Aedes aegypti (Diptera: Culicidae).

2.2.3 Image data

Caci et al. [88] used I3S-Contour (Interactive Individual Identifica-
tion Software®) to identify individuals of the threatened beetle, Ros-
alia alpina (Coleoptera: Cerambycidae) [82]. Beetles were identified Beetle image ID and
using natural markings on their backs, as shown below in Figure 2.1. ";ﬂtChi”g with
Selected images were annotated with a semi-automated contour trac- I75-Contour.
ing function. The photographs were matched with unknown images
from a reference library. The results were given as a ranked picture
list. They achieved good recognition rates; between 94.5-95.2% using
290 images. Their system saved time and effort; and was appropriate
for studies involving vulnerable species.

In a similar type of study, Towner et al. [81] replaced mark-
recapture methods with an image-centric approach. They monitored
shark populations around the coast of South Africa [81]. They used Shark image ID and
digital images of dorsal fins to identify individual white sharks. They ~ matching with
collected images over a four year period (2007—2011). They processed DARWIN-.
1683 images of dorsal fins, using open source imaging software, DAR-
WIN [89]. They identified a total of 532 unique individuals. The re-
sults of their study indicated shark populations had not recovered
since they were nationally protected in 1991 [81, 90].

Mayo and Watson [91] developed an automated species identifica-
tion system for moths. They used open source medical imaging soft-
ware Image]3 and WEKA# [91, 92, 93]. They compared the performance Moth ID with
of several classifiers which were applied to the task of moth identifica- ~ [mage] & WEKA.
tion. They automatically classified 35 different species, using images
of 774 live individuals. They reported an accuracy of 85% using a
support vector machine algorithm implemented via WEKA. Similarly,
Lone et al. [80] developed a real-time image processing system. Their
system was designed to identify moths in flight in their natural en-

2 I3S-Contour-http:/ /www.reijns.com/i3s/
3 Image]- http:/ /imagej.nih.gov/ij and FIjI-http:/ /fiji.sc/FIJI
4 WEKA-http:/ /www.cs.waikato.ac.nz/ml/weka/
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Figure 2.1: I3S-Contour annotations on the longhorn beetle [88, pg.788]
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vironment. They adapted an algorithm based on randomised trees.
Their results were good; they achieved an 82% recognition rate, with
10 different species of butterflies.

2.3 RELEVANCE OF STUDIES

There are many different biological methods that can be used to help
gather information about native bees [94]. Only the most relevant
have been included in this review. The synthesis was directed towards
the methods and tools which could be easily applied to, or adapted
for, studies of New Zealand’s native bees. In the following sections
the context of the task is examined closer.

2.3.1 Data-intensive science: future field methods?

Multiple disciplines fall within the umbrella of life sciences. Special-
ists do not always use the same biological methods or field sampling
techniques. The studies reviewed in the previous sections could be
categorised by using the focus of methodologies. Some were aimed to-
wards an understanding of: 1) individuals within a species e.g. Caci et
al. [88], 2) selected species within a group e.g. Towner et al. [81], 3) col-
lections of many different species forming communities e.g. Bischoff
et al. [64], 4) larger populations of species on spatio-temporal scales
e.g. Cane [16], 5) or an understanding of meta-populations or organ-
isms e.g. Murray et al. [94].

Natural science methodologies could also be broadly classed as ob-
servational or experimental. Observed information is normally required
before hypotheses are formed, refined or tested. The scientific method
has changed over time; from an emphasis on empirical and observa-
tional records, to a focus on hypothesis testing and experimental de-
sign. Modern research methods, based on data-intensive techniques,
are fundamentally observational studies [69].

Some of the technologies gaining momentum in biology, lend them-
selves towards metadata sampling. Kelling et al. [69] explored some
of the difficulties associated with traditional ecological methods. In
the past, methodologies were reliant on specialist knowledge and
skilled collection techniques. However, when a spatial or temporal un-
derstanding of species is a requirement, there are practical challenges
not met by traditional methods [69]. New approaches can draw on a
vast network of human sensors and thereby increase data capture for
the scientific community [69, 95]. Traditional indigenous knowledge
systems, might also provide rich insights and valuable tools.
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2.3.2  Tool selection: what are the criteria?

There are specialised tools that work well on a range of target insects
[96]. However, not all tools could be easily adapted for use with New
Zealand’s native bees or their habitats. For example, radio teleme-
try tools were excluded from the review [20, 96, 97, 98, 99]. This
included technologies such as the harmonic radar [100]; shown in
Figure 2.1. This was because New Zealand’s native bees might not
carry added weights [21, 29]. Some species may be capable of car-
rying added loads. For example, they are commonly observed cov-
ered in clay dust, shown in Figure 2.3. However, evidence suggests
they have behavioural characteristics not suitable for tracking tech-
nologies [21, 29]. For instance, observations by Hart [29] indicated
some species will manoeuvre around tight spaces, as shown in Fig-
ure 2.4 (a) below. They were also observed persistently attempting
to dislodge added loads as indicated in Figure 2.4 (b). For these rea-
sons, digital identification tools were considered more appropriate
for studies on native bees.

Figure 2.2: Harmonic radar transponder attached to a weevil [100, pg.53].

2.3.3 Image acquisition: are native bees too small?

A handful of representative studies reviewed thus far are sufficient
to demonstrate the range of imaging technologies available. Most are
effectively non invasive mark-release-recapture type tools. They could
be used to assess diversity, abundance or behavioural characteristics,
in a variety of species. This includes New Zealand’s native bees. How-
ever, there are some aspects, of some imaging tools that could not be
used in applications for New Zealand’s native bees. In the first in-
stance, the issues revolve around the type and quality of images that

16
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Figure 2.3: A female native bee has groomed herself to remove clay from her
body; some soil grains remain on her thorax [29, pg.78].

2 i

(b) Male bee with load.

Figure 2.4: Images of New Zealand native bees (a) turning around inside
a small (5 mm wide) tube [29, pg.78] and (b) attempting to dislodge an
artificial load [29, pg.78].
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can be gathered for analysis. Many species of New Zealand’s native
bees are small; especially compared to other bees [17].

In addition, closely related species are morphologically similar [17].
Thus, they can be difficult to identify properly. Previous records were
used to determine the approximate species diversity, at the target
monitoring locations in this study [29]. These were combined with
Donovan’s [17] research. Data were used to examine the biometrics
of key species in more detail. The species sampled are displayed in
Figures 2.5 (a)—(f), Figure 2.6 and listed in Table 2.1 below.

The beetle identification system described by Caci et al. [88], show-
cases the benefits of imaging techniques (Figure 2.1). An image-
centric sampling method is not fatal for target species. Therefore,
the methods have some advantages over traditional techniques; es-
pecially for studies involving vulnerable species. However, similar
systems might not be easily adapted for monitoring New Zealand’s
native bees. Image acquisition is a problem because of the size and
speed of bees in flight. Also, the distinguishing morphological fea-
tures of bees, are only perceptible in close-up views.

Collecting good sample images is therefore a fundamental issue. A
point and shoot approach, using a typical digital single lens reflex
(DSLR) camera, might result in some useful scientific images. But, the
method would be difficult to replicate. As shown in Figure 2.5, native
bees range in body size from around 3—-12 mm. Therefore, if standard
images could be collected, size-features could be used to classify bees
into broad family, or subfamily groups. Native bees are mostly black
in colour. This is unlike the target species in the study by Caci et al.
[88]. The Rosalia longicorn beetle in their study, is up to 40 mm long. It
also has striking physical features; evident in Figure 2.1. In compari-
son, the facial features of native bees can only be seen in microscopic
photographs; as the examples collated in Figure 2.6 below indicate.

If close-up images could be acquired, then shape or colour features
from facial markings could be used to identify bees. This could be
achieved using any of the techniques outlined by Caci et al. [88],
Mayo and Watson [91] or Lone et al. [8o]. However, image acquisi-
tion would most likely be fatal for the insects; unless they were se-
dated for close-up imaging and released [76]. Also, for a few species,
facial features are not significantly different and could not help to
differentiate species. For example, there are no obvious differences
between sample images [8] and [10], in Figure 2.6. Both are male bees.
However, one belongs to the species Leioproctus (Leioproctus) huakiwi
(Hymenoptera: Colletidae) and the other to Leioproctus (Leioproctus)
imitatus (Hymenoptera: Colletidae).
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5 mm

Figure 2.5: Size features to categorise bees into broad family groups. For
example, a) bumble bees, b) honey bees, and c)-f) four different species of
native bees. Images from Donovan [17, pg.130-231].

Figure 2.6: Eight species of native bees previously sampled in Whangarei
[29]. Represented in close-up sample images [1-16] from Donovan [17,
pg-130-231]. Refer to Table 2.1 for species names.
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Table 2.1: Taxonomic species list of native bees previously sampled in
Whangarei [29]; also shown in Figures 2.5-2.6.

Taxonomic tree Image reference

Superfamily APOIDEA

Family Colletidae
Subfamily Colletinae
Genus Leioproctus

Subgenus Leioproctus

boltoni [3-4] Figure 2.6
huakiwi [7-8]
imitatus [9-10] d)Q Figure 2.5
pango
Subgenus Nesocolletes
paahaumaa [11-12] 0)Q
Subfamily Hylaeinae

Genus Hylaeus
Subgenus Prosopisteron
relegatus [11-12] e)Q
Subfamily Hylaeinae
Family Halictidae

Subfamily Halictinae
Tribe Halictini

Genus Lasioglossum

Subgenus Austrevylaeus

sordidum [15-16] f)Q
Subgenus Chilalictus
cognatum [5-6]
Family Apidae
Subfamily Apinae

Tribe Bombini
Genus Bombus
Subgenus Bombus
terrestris a)Q
Tribe Apini
Genus Apis
mellifera b)Q
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2.3.4 Image verse audio data?

Image acquisition might not be so challenging in the future; especially
as the performance of tools continues to improve. Currently however,
without good equipment and stationary target insects, imaging live
native bees for scientific analysis is impractical. This is not true for au-
dio data. Theoretically, data could be easily collected. An audio-based
system could be developed to automatically classify native bees into
species. The benefits of such a tool would be considerable. However,
there is little evidence the technologies developed by Potamitis et al.
[84], Raman et al. [85] and Batista et al. [87] have been used in wider
studies. The speed at which new tools and techniques are integrated
into ecological methods may depend on other factors [69, 95]. Per-
haps, more could be achieved towards building greater collaborative
relationships. Currently, there are many promising technologies de-
veloped for biological studies, that are not utilised [84, 85, 87]. The
benefits of these tools remain largely unknown, since they can only
be realised when they are incorporated into larger scientific studies.

This situation might change as the technology becomes more fa-
miliar. More so, since many of the tools are designed for open ac-
cess, community science projects. New methods benefit from crowd
sourced data [39, 95]. Referring to their insect sensor, Batista et al.
[87] explained, "...within the limits of our budget, we will continue
our practice of giving a complete system as shown to any research
entomologist who requests one..." [87, pg.764]. An audio-based iden-
tification system for New Zealand’s native bees could be worth pur-
suing in the future.

2.4 MEASURING POPULATIONS USING IMAGES

Broad image data, could also help to describe the population dy-
namics of species over time and space [69]. However, there are few
exemplar studies in this area. There is no known research focused
on monitoring the populations of native bees using digital images
and image analysis. Nevertheless, the progress of imaging technolo-
gies for science is supported by open source community initiatives
[92, 101]. Furthermore, there are some parallel studies, with closely
related problems and possible solutions.

For example, Solis-Sdnchez et al. [102] developed a machine vision
algorithm to detect white flies, Bemisia tabaci (Homoptera: Aleyrodi-
dae). They used the shape of white flies for identification. Geometric
features such as solidity, eccentricity and area, were used to iden-
tify white flies from other insects caught in sticky traps. An example
sticky trap image is given in Figure 2.7 (a) below. They reported a 97—
100% accuracy, identifying insects from images of sticky traps and
leaves.
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Solis-Sanchez et al. [102, 103] expanded their initial system in a re-
lated study. A scale invariant feature transformation procedure was
added to their original algorithm. Five different types of insects were
identified, collected from hunting traps. Their results showed an im-
provement. Automatic and manual classifications were highly corre-
lated. Pearson’s correlation coefficients (%) were between 0.96-0.99.
Pointing out the benefits, they explained their system could replace
time consuming, manual counting methods [103].

Checchi et al. [104] presented a method to count the displacement
of human populations. They used high resolution satellite images
similar to that shown in Figure 2.7 (b) below. Checchi et al. [104]
explained, "...an estimated 43 million people worldwide are forcibly
displaced due to armed conflict or other crises. " [104, pg.2]. Know-
ing the size of displaced populations is critically important, especially
in the first few days of a disaster. According to Checchi et al. [104],
good quantitative data is required to help assess the adverse affects
on populations. Also to allocate aid resources effectively and mitigate
problems. They used manual identification methods by counting the
number of building structures in images. They explained their results
were good enough for estimating human populations and their method
was fit for purpose. For example, a ground census conducted by hu-
man personnel may not be possible during a natural emergency; but
reliable quantitative population data is required as quickly as possi-
ble [104].

In a final related study, Johansson [105] used satellite imagery for
the automatic identification of small marine vessels (an example im-
age is shown in Figure 2.7 (b) below). He explained the levels of
piracy on the sea are increasing; detecting and monitoring the activi-
ties of small vessels is important [105]. Larger ships are already mon-
itored by automatic identification systems. However, smaller vessels
are more difficult to identify, even though high resolution satellite
data are now available. Until recently, imaging methodologies em-
ployed thresholding methods. Thresholding-based techniques, were
traditionally used to segment image data into key components. How-
ever, according to Johansson [105], straightforward segmentation of
satellite images into vessels and all other objects was a challenging prob-
lem not easily overcome. Photographs were affected by natural varia-
tions. Therefore, thresholding methods performed poorly.

In order to compensate for this, Johansson [105] used a specialised
filtering technique to highlight objects in the images. He combined
the filtering with a machine learning algorithm. Johansson [105] used
a random forest model for image-classifications. He implemented the
classification methods via WEKA. He described his study as novel
within the field of vessel detection. Study results were excellent; with
an 85-99% classification accuracy using images obtained from Google
maps. He summarised the research explaining, "...as the amount of
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2.4 MEASURING POPULATIONS USING IMAGES

(a) Image of a sticky trap.

3 < e )
(b) Satellite image of Whangarei (Northland, New
Zealand).

Figure 2.7: Parallel imaging problems. An (a) image of a sticky-trap, sim-
ilar to those used by Solis-Sanchez et al [102] and; (b) a satellite image of
Whangarei (from Google Maps); similar to those used by Checchi et al. [104]
and Johansson [105].
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data increases so does the need for efficient methods of processing
such data. " [105, pg.1].

2.5 MONITORING REVIEW SUMMARY

According to research by Bischoff [64] and Cane [16], it is possi-
ble to use the active nests of native bees as a proxy for population
abundance. Both studies relied on manual field counting methods; al-
though Cane [16] used digital video data to confirm the number of
active nests (i.e. those nests being used by bees). Manual nest count-
ing methods could be substituted with image-centric techniques. Im-
age acquisition could be incorporated into traditional field methods
and provide an efficient and reliable method. Image-based techniques
would not be heavily dependent on expert sampling or manual field
protocols.

The future prospects of automated taxonomic identification, from
images of native bees is promising. But there are practical constraints
associated with the biology and behaviour of many native species.
This limits acquisition of good scientific images. At least where im-
ages of live insects are concerned. It may be possible to sedate or
fix insects for image acquisition [76]. However, the extra tools, time
and effort involved with insect handling, may defeat the overall pur-
pose of imaging methods [76]. This is could be equally true for audio-
based collections. In addition, many of the systems reviewed were
developed for automated species identification. Although the tools
are important for biodiversity research, they were not designed to
collect rapid or broad, spatio-temporal population data. An impor-
tant objective of this thesis was to design a method to collect broad,
reliable, base-line information on the health of native bee communi-
ties. A simplified monitoring method was also paramount.

Given image data can be reliably collected, image collation, man-
agement, analysis choices and tasks become central. For instance, Jim
Gray summarised, "..People are collecting data either from instru-
ments or sensors, or from running simulations. Pretty soon they end
up with millions of files, and there is no easy way to manage or an-
alyze their data." [106, pg.21]. Data intensive research brings many
opportunities and great challenges [38, 69]. Johansson [105] and oth-
ers have indicated, the ways to handle and process such vast amounts
of information, are not easily defined [69, 106, 107]. There are rapid
advances in scientific knowledge [108]. Technologies continually im-
prove in performance and power; capacities double every year [67].
Increasing connectivity unites large networks of human sensors; e-
science tools are rapidly developing [37, 106, 109].

The benefits of interdisciplinary, collaborative research are recog-
nised [70, 83]. A synergy of knowledge can enrich scientific discovery
[83]. Yet, while some fields embrace the era of big data, other dis-
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ciplines are struggling to move toward more open research models
[106, 110]. Lindenmayer and Likens [107] point out, "...in our disci-
pline of ecology, there is an increasing number of examples where
increased knowledge is missed or even where substantially flawed
papers are being published, in part because authors had limited or no
understanding of the data sets they were using, nor any experience of
the ecosystems or other entities about which they have written." [107,
pg-338]. Hampton et al. [110] questioned the role of some experts,
data-intensive methods and socially relevant science. These perspec-
tives clarify some of the current issues affecting ecological research
[107, 110, 111].

In other areas of natural science, open access, big data archiv-
ing and sharing, image processing and analysis, machine learning
and data mining, and e-science have been integrated into methods
[69, 110, 111]. Biomedical imaging research collaborations have cul-
minated in dynamic and useful open source tools, such as FIJI and
Image] [92, 101]. The interdisciplinary relationships between biolo-
gists, engineers and computer scientists, are well established in the
field of medical image analysis [92, 101, 112, 113]. But, there are no
such clear paths for ecological research, and there are a limited num-
ber of example studies to draw upon. In this research, there were no
known examples, either in New Zealand or abroad, where images
have been used to monitor populations of ground nesting solitary
bees. Nevertheless, there was some inspiration found in a wider do-
main, by looking at similar problems and parallel studies.

Therefore in the final sections of this chapter, a number of anal-
ogous studies were reviewed. By evaluating representative imaging
methods and closely related studies, the probability image-centric
techniques could be successfully applied in studies of native bees
was established. The advances in biomedical imaging systems have
had a significant impact in the fields of human biology and medicine.
Methodologies can also be applied to a range of other life science
research, including those outlined in this thesis. In the next chapter,
a review of the developments in open source, biomedical imaging
systems is presented.
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IMAGE ANALYSIS THEORY

SYNOPSIS

The scope of image analysis is wide. Therefore, this review was re-
stricted to biomedical imaging methods, open source software tools,
and the advances in machine learning imaging applications. General
biomedical methods and generic image-system workflows are intro-
duced first. This is followed by an overview of open source concepts
and tools. The topic of outdoor imaging is discussed within the con-
text of image acquisition, formats and pre-processing operations. Im-
age segmentation tasks, challenges and solutions are defined. The ad-
vances in machine learning and interactive image segmentation tech-
niques are outlined. The concluding sections in this chapter are ded-
icated to the methods used to measure the performance of imaging
systems.

3.1 IMAGING AND SCIENTIFIC DISCOVERY

Science and photography have a close interdependent history, dat-
ing back to early heliographic experiments in the 1820’s [114]. Imaging
technologies are continuing to develop rapidly [109]. The capabilities
of modern imaging systems are remarkable. Within the scientific do-
main new technologies are contributing to all manner of discoveries.
From the intricate workings of the human brain, in single photon
emission computed tomography imaging systems [115]; to mapping
the universe, with the billion-pixel camera on the space probe Gaia
[116]. The scope of image analysis is wide. It includes many distinc-
tive strands of knowledge. These are summarised in Table 3.1.

The most comprehensive reviews regarding imaging methods are
often directed towards biomedical image analysis. Microscopy is one
of the fundamental tools of biology. Traditionally, scientists relied
on visual interpretations of microscopic images [112]. Consequently,
many advances in automated imaging methods have been developed
by biologists, for biological applications [101]. For example, Ljosa and
Carpenter [117] described a range of techniques used in imaging sys-
tems for the automated image analysis of microscopy images. They
presented a clear overview of current methods; providing a list of
imaging resources. They also outlined the pitfalls to consider when
using or designing quantitative imaging systems [117].

Across disciplines image-tasks and pipelines are generally similar.
Therefore, their review has provided some useful theory for other
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3.1 IMAGING AND SCIENTIFIC DISCOVERY

Table 3.1: Image analysis scope and topics.

Field of discipline Main tasks

Image processing;: Designing or applying filters or operators
that change the basic aspects of an image
(i.e. enhancing contrast and brightness).

Pattern recognition: ~ Designing or applying the algorithms/-
code to automatically identify patterns in
data.

Computer vision: A complete system design, from image ac-
quisition to analysis (i.e robotic vision in
manufacturing processes).

Machine learning;: Designing or applying the algorithms
used in semi-supervised/supervised ma-
chine learning scenarios.

Data-mining: Scanning for patterns that emerge from

analysis of large quantities of data to help
knowledge discovery.

novel imaging research [117]. Similarly reviews, by Sharmir et al.
[118] and Antony et al. [119] are equally informative. Both have pro-
vided summaries of current software tools and techniques for life
science image research [118, 119].

A handful of reviews are written for other areas of life science dis-
ciplines. For example, Pennekamp and Schtickzelle [120] presented
a hands on guide for imaging techniques in experimental labora-
tory systems. They introduced past, present and future benefits of
technologies, with an overview of methodologies for experimental
laboratory systems. They explained, "...despite the advantages of im-
age analysis, the technology has not been fully adopted yet, presum-
ably due to the difficulties of technical implementation." [120, pg.485].
They pointed out the range of benefits that could arise if automated
image analysis and experimental laboratory systems were integrated
[120].

Gaston and O’Neill [72], reviewed imaging systems for pure and
applied biology; they questioned the reasons why automated species
identification has not been widely adopted. They investigated some
core issues, to determine if automated species identification would
be a realistic option looking towards the future. They addressed the
suggestions that the tasks are too difficult, too threatening, too dif-
ferent or too costly. Overall they concluded "...vision and enterprise
were more limiting...than the practical constraints of technologies."

[72, pg.1].
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3.2 IMAGE SYSTEMS WORKFLOW

3.2 IMAGE SYSTEMS WORKFLOW

Image analysis workflows consist of two major steps; 1) image acqui-
sition (capturing digital images), and 2) image analysis (manipulating
and measuring digital image data). These are generic stages common
to most applications and disciplines. Glasbey and Horgan [112] de-
scribed five distinct stages of image analysis; these are listed below
and expanded on, in Figure 3.1.

* Acquisition and display: Capturing raw digital images; viewing
an array of pixel values as an image on a digital camera or
computer monitor.

* Pre-processing: Enhancing images by applying filter transforma-
tions to groups of pixels.

» Segmentation: Dividing an image into regions by sectioning or
classifying pixels into different areas of objects.

* Post-processing: Applying operators that relate to the size and
shape characteristics of objects to extract information from im-
ages.

Within medical imaging disciplines, careful attention is given to
the quality" of raw image data, particularly with regards to method
replications [113]. Guidelines on the appropriate use and manipula-
tion of scientific digital images were presented by Cromey [122]. The
recommendations are broadly relevant to other scientific imaging ap-
plications. However, some points are not applicable when methods
are based on natural outdoor images (see points 4.* and 5.**).

1. Manipulation of digital images should only be performed on a
copy of the unprocessed image data file.

2. Simple adjustments to an entire image is usually acceptable.
3. Cropping an image is usually acceptable.

4. Digital images that will be compared to one another should be
acquired under identical conditions*, and any post-acquisition
image processing should also be identical.

5. Avoid the use of lossy compression.**

6. Use care when changing the size (in pixels) of digital images.

1 By definition, image fidelity—is the ability to visually discriminate between two images
and image quality—is the preference for one image over another [121].
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3.3 OPEN SOURCE CONCEPTS AND TOOLS

The advances in electronic hardware tools and technologies have im-
pacted the developments within the fields of image analysis. Off-the-
shelf digital cameras are increasingly more powerful. They parallel
the advances in computers and imaging software tools. Public access
to technologies is changing scientific landscapes, since many of the
tools and methods are readily available, easy to use, open access
and open source. For example, Antony et al. [119], reviewed imag-
ing software tools. They found open source packages offered sub-
stantial benefits. Particularly with regards to reproducibility of meth-
ods [101, 119, 123]. The importance of open access was declared by a
group of Nobel laureates. They wrote, open access "...expands shared
knowledge across scientific fields..." and suggested it is the best path
for accelerating multi-disciplinary breakthroughs in research.” [124].

Open source tools, methods, and reporting, can work in unison to
advance scientific knowledge [125]. The versatility of software tools,
access to code, and replication of methods are important factors that
are worth considering during research design. Antony et al. explained
"...open source solutions facilitate community driven efforts in the de-
velopment of image analysis." [119, pg.13]. The extendibility, interop-
erability and scalability of software platforms are key considerations.
They have an impact on overall research methodologies. These are
defined as:

1. Expandability: A system design principle taking future growth
into consideration.

2. Interoperable: The capability of different programs to exchange
data using a common set of formats to read and write, in the
same formats; and to use the same protocols, present or future,
without any restricted access or implementation.

3. Scalability: The ability of a system, network, or process to handle
a growing amount of work in a capable manner; or its ability to
be enlarged to accommodate that growth.

Although there are many good proprietary platforms available,
open source bio-imaging software solutions are very popular and con-
tinue to be at the centre of many scientific advances. Fiji is Just Image]
(FI71) is a popular biomedical imaging toolbox [101]. The software has
been carefully designed to consider all three factors listed above and
is used in a range of applications. There are other packages commonly
used for image analysis including: Image], Icy?, the Matlab plus Im-
age Processing Toolbox and R-EBImage package [92, 126, 127, 128].

Image database design, are becoming vital components for research
involving big data analysis. Sharing protocols are well established in

2 Icy- http:/ /icy.bioimageanalysis.org/about
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some disciplines. For instance, genomics, astronomy and meteorol-
ogy. Therefore, substantial care is afforded to database design and ac-
cess. But, the shift towards more open models have not been adopted
by all disciplines [129]. community driven image systems for biol-
ogy. Similar points have been discussed previously, in relation to the
use of big data and the slow adoption of automated image analysis
[72, 110]. Data sharing is not always considered virtuous [107]. Some
authors have suggested paradigms are slow to change for some fields
[110, 130, 131]. However, the progress towards open access, open
source and data sharing, is well advanced in a range of interdisci-
plinary life science disciplines. These disciplines and sub-areas, can
provide good examples to follow [34, 132].

For example, the Knowledge Network for Bio-complexity (KNB)3
provides the facilities to store, share, discover, access and interpret
complex ecological data. It can be integrated with the open source sta-
tistical package R, or used with a desktop application, Morpho. Users
can create metadata, search, edit or view data collections. There are a
range of other generic options which can be used to store data online.
For example, cloud storage such as Dropbox 4 can be used for single
users; OpenStack is used 5 for large distributed community develop-
ments [133]. GitHub® is also popular for building online repositories.
The platform is often used for collaborative projects and code design.
GitHub was not specifically designed for sharing data. Nevertheless,
it has been used as a centralised hub for smaller research projects

[134, 135].
3.4 IMAGE ACQUISITION, FORMATS AND PRE-PROCESSING

Digital image acquisition, formats and pre-processing methods are
important aspects of image pipeline designs. In biomedical imaging
fields great attention is placed on the quality of raw image data; par-
ticularly with regards to method replication [113, 136]. Final decisions
can have a cumulative impact on analyses and validity of results. The
quality and consistency of image capture is dependent on the acquisi-
tion methods. Under laboratory conditions important factors can be
controlled such as lighting (e.g. brightness and background illumina-
tion) and the total capture area. Because there is greater control over
image acquisition, analyses are more reliable. The methods are easier
to replicate [137].

Natural images are complex. Consequently, it is not possible to
achieve the same degree of control when imaging under natural out-
door situations. Even so, a number of techniques can be used to help

3 KNB- https:/ /knb.ecoinformatics.org/

4 Dropbox-https:/ /www.dropbox.com/

5 Openstack-http:/ /www.ubuntu.com/cloud /ubuntu-openstack
6 GitHub-https://github.com/

31

Big-data sharing,
cloud-services and
data-base options.

Mitigating affects of
complex, natural
images



standardise acquisition. For example, Burks et al. [138] used image
analysis to identify different types of weeds. They designed a spe-
cialised image acquisition system to capture field images. They used
a wheel mounted, self contained imaging device. It included four ad-
justable flood lights, with diffuser covers to eliminate shadows [138].
They described the variable natural conditions which affected im-
age acquisition, saying "...the combination of windy conditions with
partly cloudy skies produced rapid changes in ambient light condi-
tions and created significant leaf movement. " [138, pg.444]. They ex-
plained, that in order to reduce the affect of changing conditions, a
diffuse off-white cotton cover was placed over the camera system.
They used supplemental lighting. This was to compensate for the ef-
fects of cloud cover and the angle of the sun. A nylon canvas was also
used as a wind break. It was placed at the base of the camera system.
This was to prevent excessive motion in the plant leaves [138].

Over the last decade, image acquisition techniques for agriculture
have advanced considerably. For example, unmanned aerial vehicle’s
(UAV’s) are more commonly used to capture hyper-spectral images
of crops [139, 140, 141, 142]. The challenges described by Burks et
al. [138], are still fundamental constraints for many outdoor imag-
ing applications. Nevertheless, there have also been significant devel-
opments in imaging methods. Although core image processing tech-
niques have not changed, there are a range of new image Classification
methods for complex images.. Some of these can help to mitigate the af-
fects of inconsistent image capture. For instance, Feng et al. [143, 144],
employed an off-the-shelf digital camera for UAV imaging. Their sys-
tem was designed to evaluate the impact of urban flooding in Yuyao,
China. Rather than using more sophisticated imaging equipment (e.g.
multi and hyper-spectral sensors), they paired the low spectral res-
olution digital single-lens reflex (DSLR) camera, with a random for-
est (RF) classifier. They reported good outcomes. Random forest (RF)
classifiers offer some advantages over other image segmentation pro-
cedures. For example, they are particularly robust to noisy image
data [145, 146]. They are a good choice for the studies by Feng et
al. [143, 144] and other closely related imaging problems [145, 146].

Data acquisition, format and storage decisions, are interrelated. The
affects of image data compression can be an important consideration
when designing imaging systems. Large data volumes create storage
problems and impact the speed of image processing [147]. In most
camera systems, data can be saved as raw uncompressed files; or
small compressed files which contain less digital information. Raw
files retain full data but they are at least double the size of JPEG (joint
photographic experts group) files; they require more on-camera stor-
age space and processing resources. Because smaller JPEG files are
quicker to upload to online repositories, they are frequently used in
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remote sensing applications. They continue to be used in a range of
image-centric studies [148, 149].

There are no agreed standards for raw files, so proprietary platform
dependent software is often bundled with off-the-shelf DSLR cameras
for file processing. Open source software can help to mitigate pro-
prietary format issues. There are some flexible solutions, such as Xn-
View?. The package has the utilities to open raw files and export to a
range of standard image formats [150]. Biomedical imaging software
FIJI and Image]J, also have plug-in modules specifically for opening
raw files [92]. However, reading and converting raw files, is an added
step in the image processing pipeline. Conversion can be resource
intensive compared to ready-to-view formats.

Nonetheless, the quality of image data can impact the reliability
of image processing. At least where biological image analysis is con-
cerned, high resolution raw images are preferred; they are easily cap-
tured under laboratory conditions. When outdoor image data is re-
quired on-camera SD (secure digital device) memory card capacity
may be limited. Compressed image formats are more practical and
cost effective. Many imaging studies do not specifically outline image
format and memory considerations, but there are several comparative
studies investigating the affect of compression, on image classification
[147].

For example, Zabala and Pons [148, 149] compared the affects of
JPEG and J2P (JPEG 2000) compression on remote sensing image classi-
fication, for mapping crops and forest areas. They found overall that
J2P compression, was more reliable than JPEG, at least for the specific
categories of images tested [148, 149]. Others have shown image com-
pression is not necessarily an issue for some classification tasks. For
instance, Paola and Schowengerdt [151] tested three different classi-
fication scenarios. They found that high quality classifications could
still be achieved with a compression ratio (CR) of 10:1. Image CR is de-
fined as the number of bytes of the original image, over the number
of bytes of the compressed image as follows:

original image data volume

CR =
compressed image data volume

(1)

Levels of compression below 10:1, are within the boundaries con-
sidered acceptable for image classification applications [147, 149, 151].

Finally, in most imaging methods data is normalised before analy-
ses are performed. For example, in FIJI, images can be prepared using
operators such as contrast enhancement or histogram equalisation. Other
common pre-processing steps include image cropping, transforma-
tions such as flipping, or conversion from RGB (red-green and blue) to
grey scale. Image conversions are frequently required before segmen-
tation operations can be applied. There are generally several options

7 XnView- http:/ /www. xnview. com
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available (e.g. conversion from RGB into 8, 16 or 32 bit grey-scale im-
ages). The methods used to achieve image segmentations, are at the
centre of current research developments within the field of image
analysis. These are discussed in greater detail over the next sections.

3.5 IMAGE SEGMENTATION TASKS

In image analysis, a region, is a group of pixels that have similar prop-
erties. Regions are used to help image interpretation, but they must
be correctly partitioned into areas that represent objects, or parts of
objects. Image segmentation is a process in which regions sharing sim-
ilar characteristics such as intensity, texture or colour, are grouped
together to form multiple segments or collections of pixels®. Proce-
dures for image segmentation are multifarious. Some studies employ
statistical classification techniques, thresholding, edge and region de-
tection; others use any combination of these techniques. The final
segmented output in an imaging system pipeline, is a set of classified
elements represented as a binary image.

Thresholding is a region-based, direct method; it is used to turn
grey scale images, into black and white - binary form. Although it
is unambiguous, good segmentation results can be difficult to obtain.
When a more generalised imaging approach is required, classification
techniques often perform well. In this instance, regions of pixels are
sorted into classes by way of statistical methods, or algorithmic ma-
chine learning techniques. The terms binarization, segmentation and
classification, are closely related. A classifier implicitly segments an
image; segmentation implies classification, and the final output of a
classification-segmentation process, is a black and white image.

The selection of one technique, over another, is partly subjective.
Also, the performance of different methods are relative. However, good
segmentation techniques are those where 1) pixels in the same cate-
gory, have similar values and form connected regions; or 2) neigh-
bouring pixels which are in different categories, have dissimilar val-
ues. The primary aim of all segmentation techniques, is to quantify as-
pects of image data using reproducible and objective techniques. This
includes a capacity to generalise over a given range of image data vari-
ability. The final results produced by any segmentation, ultimately
depends on the original image content and quality, the specific ap-
plication constraints and characteristics; and the intended use of the
information required to be extracted from images.

Intensity based thresholding methods produce straightforward seg-
mentations. They are simple, direct and easily programmed. If there
are foreground objects or features in images that are defined by inten-
sity, then threshold procedures can outperform other methods. As

Segmentation can be defined as " the division of an image into spatially continuous,
disjoint and homogeneous regions." [152, pg.215]
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Wang et al.[153] write, "...image segmentation is one of the most im-
portant and fundamental tasks in image processing and techniques
based on image thresholding are typically simple and computation-
ally efficient." [153, pg.117]. Because there are no extra parameters to
tune, thresholding is fast and requires minimum processing resources.
Considerable research effort is devoted to the methods used to effec-
tively categorise or classify important parts of an image. Threshold,
difference image, edge detection and watershed are among the most
widely used image processing techniques for biological image data.
But, as Ljosa and Carpenter [117] point out, imaging tasks are in-
creasingly more complex and the volume of data is growing.

In some cases, traditional image analysis methods, such as thresh-
olding, might not suffice. Traditional image processing techniques
work well on images that are acquired under controlled conditions.
However, when collected from natural environments, the processing
tasks can become difficult. For example, Figure 3.2 below shows two
imaging pipelines. On the left, a simple thresholding task and on the
right, a difficult task. In this pipeline the images were first converted
into an 8-bit grey scale format; Figures 3.2 (c)—(d).

In the next step, they were made binary. This was achieved by se-
lecting a global threshold value set between 0-130 pixels. In Figures
3.2 (e)—(f), the pixels with values less than 130 are foreground objects,
and were converted to a binary value of 255 (black). Pixels above 130
were background objects; they were assigned a binary value of zero
(white). The distribution of pixel intensities are evaluated via the his-
tograms for each pipeline. These are shown in Figures 3.2 (g)—(h). The
binomial histogram, described in Figure 3.2 (g), indicated this type of
image could be successfully segmented by selecting a global thresh-
old value.

In addition, the binary image could be further analysed (morpho-
logical operators are frequently used during this stage). For example,
insects could be categorised into species. This could be achieved us-
ing size and shape characteristics only. Native bees have a rounded
body shape. This is highlighted with the blue diamond overlay in
Figure 3.2 (e) below; showing a species of native bee (Leioproctus spp.).
There are some distinguishable differences in body shape, when com-
pared to native parasitic wasps (Pseudofoenus spp.). As shown in the
same image (Figure 3.2 (e)), using the red circle overlay, native wasps
have long slender abdomens.

The insect collection image pipeline on the left, provides a good
example of a straightforward segmentation task. In contrast, the im-
age of insects in flight on the right, is an example of a more ambi-
tious assignment. The image in Figure 3.2 (b) shows a native bee in
flight, and a honey bee foraging on the flowers of the coastal five
finger plant, Pseudopanax lessonii (Araliaceae). The multimodal his-
togram suggested no single threshold value could be used to make
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Figure 3.2: Images of (a) insect collections and (b) insects in flight converted
into 8-bit grey scale images, (c)—(d). Global threshold applied to make images
binary. Insect collections were sufficiently segmented (e) as indicated via
the (g) bimodal histogram. Body size and shape to categorise bees (e)-blue
diamond, from wasps (e)-red circle. In contrast, no threshold value was
suitable for (f) images of insects in flight; as indicated by the (h) multimodal
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the image binary (Figure 3.2 (h)). Thus, it was not possible to select
a global threshold value to adequately segment the image to show, 1)
both species of bees and 2) all other background data. Figure 3.2 (f)
demonstrates the images of both insects were almost lost during the
binary conversion.

In cases where images are not easily segmented, there are some
alternative approaches. Frequently, other characteristics can help to
define an image. For example, connected structures, outlines, areas
or textural qualities. Two alternative methods used for segmentation
are edge detection, and region merging. These are briefly introduced
in the next paragraph and shown in Figure 3.3 below.

(c) SRM, Q = 15. (d) srRM, Q = 25.

Figure 3.3: Edge detection (a) and SRM (b)—(d) methods to segment the chal-
lenging image of insects in flight. SRM segmentation regions change as larger
values of Q are used.

Canny-Deriche filtering is a popular edge-detection method [154].
The o parameter, controls the degree of smoothing applied; where
the default value is 1.0. Greater values suggest less smoothing, but
more accurate detection; lower values suggest more smoothing but
less accurate detection. Statistical region merging (SRM) is a region-
based method. It performs well on a range of images [155, 156]. The
algorithm examines one region per pixel. A statistical test is applied
to neighbouring regions in ascending order of intensity differences.
Tests are applied to determine if the mean intensities are sufficiently
similar enough to be merged. Segmented regions can be represented
by mean grey values, or by an index of the regions. Q — is the setting
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determining the approximate number of regions to segment. Above
in Figure 3.3 (b), when Q = 5, images of both bees are lost in the im-
age background. However, in Figure 3.3 (d), the images of the native
bee and honey bee, are not completely lost.

According to Nock and Nielsen [155], SRM is a fast segmentation
algorithm, that copes well with noise. As demonstrated in Figure 3.3
(d), although not ideal, a greater degree of segmentation was achieved
compared to the global thresholding method and result, presented in
Figure 3.2 (f).

36 INTERACTIVE SEGMENTATION METHODS

Few traditional techniques can be used on highly variable images,
since methods cannot be applied to generalise over a wide range of
pixel intensities. In these circumstances, machine learning techniques
are more effective. This issue is also the basis for the growing ten-
dency towards using machine learning in challenging imaging tasks,
as proposed by Ljosa and Carpenter [117].

Trainable image segmentation techniques work by utilising human
visual knowledge, to provide a machine learning algorithm with a
set of expertly labelled examples. For instance, in FIJI the TWS plug-in
requires a user to provide two sets of labels [157]. Region of interest
(ROI) tools are used to select pixels samples belonging to foreground,
and background objects. Filters are applied to original image data
and used to create a separate features stack. In TWS, a user may select
any combination of filters from a possible twenty. Image-filters can
be grouped according to their main filter functions. For a summary
of TWS filters, refer to Table 7.1, in Chapter 7 (pg.129).

During the learning process, a selected algorithm uses the exam-
ples provided, and the features stack, to construct a classifier. The
classifier can be used to segment similar types of images, including
the one it was trained on. It can be ambitious to ascertain what combi-
nation of image features best describes key objects. Therefore, some as-
pects of classifier training are subjective. There are a number of other
confounding decisions to consider when applying machine learning
algorithms to image segmentation tasks. However, providing a user
a) selects appropriate representative pixel samples, and b) chooses
filters that will provide a rich features stack for analysis, machine
learning algorithms work very well. They can surpass other methods.
Especially on challenging imaging problems.

3.6.1  Trainable WEKA Segmentation workbench
The TWS is a FIJI plug-in designed for pixel level segmentation, based

on semi-supervised learning. The workbench was primarily devel-
oped for biomedical imaging applications. As previously outlined, a
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user selects a set of features (e.g. such as edge detectors or texture fil-
ters) and using ROI tools, interactively selects pixel traces representing
at least two classes. When classifier training is initiated, the features
of the input image will be extracted and converted to a set of vectors
of float values (the format expected for WEKA classifiers). Based on
the samples provided, a classifier is trained. Results are returned as a
segmented image. This is shown as a semi-transparent overlay, corre-
sponding to the class colours. The process is normally repeated until
satisfactory segmentations are obtained. Good segmentation results
are typically achieved over two training sessions. Thus, the process
is iterative and interactive. The time taken to train and classify data
is variable. It depends on 1) the image size, 2) the amount of fea-
tures selected, 3) the chosen classifier and 4) the number of cores of
the processing machine. The default classifier in the TWS plug-in is
the Fast Random Forest. The algorithm is a multi-threaded version of
random forest. The forest is initialised with 200 trees and 2 random
features per node. There are five default training features (from a pos-
sible twenty). Default filters automatically selected include: Gaussian
blur, Hessian, Membrane projections, Sobel filter and Difference of
Gaussians.

3.6.2  Training procedure

The general procedure used for classifier training in TWS is outlined
in Table 3.2 below. Most training consists of a least two runs. The first
returns broad segmentations; the second is optimised by selecting a
few previously miss-classified ROI areas for re-classification. The main
concept, is to supply the RF classifier with a small representative sam-
ple of classes. This enables the classifier to learn to recognise, rather
than memorise target pixels. When the results of classifications are sat-
isfactory, it is possible to save a fully constructed classifier for use in
similar tasks. Trainable Weka Segmentation (TWS) provides both the
option to save as a standard WEKA model file, or immediately apply a
constructed classifier via the main graphical user interface (GUI). The
training annotations can also be saved as an ARFF (attribute-relation
file format) file. The ARFF file contains all the feature vectors derived
from the pixels, belonging to each trace during training. During clas-
sification on new previously unseen images, the classifier can also be
re-trained to incorporate new information based on other images and
saved.

3.6.3 Random forest machine leaner
The default classifier in the TWS workbench is the RF. However, there

are at least fifty other WEKA classifiers available [93]. Each machine
learning algorithm is equipped with a set of parametrisation tools.
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Table 3.2: Interactive segmentation method with TWS.

1 Select a minimum of two traces — representing two classes.

2 Train the base classifier and check output image.

3 Tune classifier by selecting incorrectly segmented pixels:
a) Assign pixels to the correct classes for re-classifying.
b) Train final classifier.

4 If segmentation is satisfactory then apply to all other simi-
lar images.

5 OR optimise classifier to reduce errors, increase process-
ing speed by adjusting the:
a) Features provided.
b) Classifier type.
¢) Tuning parameters.

d) Training set-up.

These settings are used to tune the classifiers for specific tasks. It is
also possible to custom design WEKA classifiers and create new mod-
els for specific applications [123]. Traditionally, support vector ma-
chines were considered state-of-the-art. They have been used success-
fully in a range of classification applications using real-world data
[158, 159, 160]. Until recently, few machine learners have surpassed
the performances of support vector machines or neural networks.

But according to a recent study, RF’'s are most likely to perform
the best [161]. Fernandez et al. [161], evaluated 179 classifiers from
17 families of learners. They undertook comprehensive evaluations
by implementing the classifiers in WEKA, R, C and Matlab; using the
whole UCI (University of California, Ivine) data base® (121 data sets).
Their objectives were to determine which of the classifiers were most
likely to perform the best on any data set. The results were exten-
sively reported, covering all aspects of classifier optimisations data
set partitioning, and test configurations. Concluding that three out of
the five best classifiers were from the random forest family; closely
followed by support vector machines, neural networks and boosting
ensembles [161].

A range of other studies have reported the on benefits of RF’s. They
continue to be developed and used in a range of seemingly unrelated
applications. For instance, RF’'s have been applied to studies in: as-
tronomy [162], biomedical imaging [163], economic forecasting [159],
genetics [164], pharmacology [165], species identification [78], ecolog-
ical modelling [166, 167, 168], remote sensing for land-cover classifica-

9 https:/ /archive.ics.uci.edu/ml/datasets.html
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tion [169], carbon mapping [131], forest classification [146], UAV flood
mapping [143, 144] and invasive species mapping [170, 171].

The breadth and range of studies suggests the RF is a flexible all-
round classifier, suited to a range of natural real-world data. However,
the study by Fernandez et al. [161], is the first to properly quantify
the performances of RF classifiers. It is likely the developers of FIJT and
TWS selected the RF classifier as the default model, based on anecdo-
tal evidence of segmentation performances in a range of biomedical
imaging applications.

3.7 PERFORMANCE ANALYSIS

Biomedical imaging methods frequently employ three quantitative
segmentation metrics. They include the pixel, rand and warping er-
rors. For image segmentation analysis the ideal metrics for machine-
human disagreement should tolerate minor differences in boundary
location, penalise topological disagreements, and serve as a cost func-
tion for supervised learning [172, 173]. The three metrics are defined
as:

1. Pixel Error: the squared Euclidean distance between the origi-
nal and resulting images. The lower the error, the greater the
agreement is between images.

2. Rand Error: a measurement of similarity between clusters of pix-
els. The lower the error the greater the agreement is between
images.

3. Warping Error: a measurement that penalises topological dis-
agreements and is used as a direct cost function of segmenta-
tions. The lower the error the greater the agreement is between
images.

In many applications segmentation metrics are more informative.
This is because they can indicate how well images are partitioned into
categories [172, 173]. This is important for biomedical imaging prob-
lems. Performance measures have often been based on visual-image
checks, using ground-truth techniques. Until recently, classifier perfor-
mance has been difficult to quantify. Unnikrishnan et al. [174] point
out, "...the evaluation of segmentation algorithms thus far has been
largely subjective, leaving a system designer to judge the effectiveness
of a technique based only on intuition and results in the form of a few
example segmented images. This is largely due to image segmenta-
tion being an ill-defined problem? There is no unique ground-truth
segmentation of an image against which the output of an algorithm
may be compare." [174, pg.929].

In machine learning research, other parameters are used to deter-
mine the predictive accuracy of a classifiers. These include the overall
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number of correctly classified instances — often in the form of a con-
fusion matrix, the number of true positives and negatives, precision,
recall, and the F-measure. Even a trivial classifier that incorrectly pre-
dicts every case as the target class, can still achieve a high accuracy
depending on the measures used. Therefore in machine learning re-
search, it is important to use the appropriate performance measures
and analytical set-up. Unbalanced datasets can further complicate
analyses. However, in many real-world classification problems, data
are unbalanced. It is more common to use the Kappa statistic in such
cases. It is more informative because it is a chance-corrected measure
of agreement between classifications and true classes [175].

The statistic is calculated by taking the agreement expected by
chance away from the actual observed agreements Then dividing this
value by the maximum possible agreement, as follows:

‘ P(A) —P(E) 2)
~ 1—P(A)

Where P(A) is the observed agreement and P(E) is the expected
agreement. The values of k are constrained to the interval [—1,1]. A
value of k = 0 indicates a complete absence of agreement; k = 1
shows a very strong agreement. Any value above zero indicates the
classifier is, at the very least, performing better than by chance alone.

There are a number of other performance techniques that can be
used to verify the validity of image analysis methods. The specifics
of verification methods, are highly application dependent. For exam-
ple, in biomedical imaging applications, visual inspection of images
provides a ground-truth test for segmentation performances. In con-
trast, in machine learning applications, methods for testing classifier
performances can take the form of the percentage of correctly classi-
fied pixels.

3.7.1 Agreement measures

Measurements of agreement are frequently needed to assess the ac-
ceptability of new or generic processes. This includes agreements
between methodologies, formulations (in areas of laboratory perfor-
mance), instruments, assay validations, methods, statistical control
processes, goodness of fit and individual bio-equivalences [176]. In
some applications it is possible to visually inspect real data, with-
out the aid of equipment. In these situations, the dependence on
ground-truth images, segmentation metrics, and/or classifier perfor-
mance testing, is not as critical. For example, Stewart and McDonald
[177], used imaging methods to measure the impact of the pathogen
Zymoseptoria tritici on wheat plants. Although visual estimates from
images are relatively straightforward, they are not always reliable
or repeatable. Explaining this issue, Stewart and McDonald [177]
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wrote, "Manually counting individual pycnidia on a large scale is
prohibitively time consuming and visual estimation, although much
quicker, is subjective and prone to error. "[177, pg.989]. They con-
cluded that automated digital image analysis, could address all of
the issues encountered. At least one other study has reported sim-
ilar issues [178]. In order to evaluate the measures further, Stewart
and McDonald [177] tested the manual-scorer and automated-imaging
counts directly. They used Lin’s concordance of correlation coefficient
[179]. They found the counts derived from automated image analysis,
were more reliable, precise and accurate, compared to those given by
visual scorers [177].

Verification methods are also dependent on the mechanisms used
in an imaging pipeline. For example, the verification tests used in
an interactive segmentation method (i.e. in the TWS workbench) are
dependent on the classifier model selected. In contrast to other ma-
chine learners, the RF algorithm has an internal error mechanism. The
RF takes a bootstrap of all the data provided for training. During con-
struction, individual training sets for each tree are generated from the
original set, using sampling with replacement. The samples, which
are not chosen for training, are called the out of bag samples. They are
used to calculate the out of bag error (oob). It is an unbiased estimate
of the generalisation-error. In contrast to other classifiers, there is no
need to perform cross-validation tests to get an unbiased estimate of
the true test set error.

38 SUMMARY OF IMAGE ANALYSIS REVIEW

The scope of image analysis is wide and technologies are continually
developing. Many of the advances have evolved from the fields of
biomedical imaging. Image analysis is central to scientific methods,
particularly where microscopy is concerned. Therefore, techniques
are well established and provide a good basis for reference. Imaging
methodologies for other life sciences, such as agriculture and ecol-
ogy have not been as widely reported. This situation is changing, as
the hardware tools and software methods are becoming increasingly
more powerful. Open source technologies are vital. Many of the de-
velopments within the field of image analysis have depended on, or
contributed towards reproducible scientific methods.

A review of some key aspects of image analysis theory and design
were outlined in this chapter. The literature was discussed within the
context of an image-centric method to monitor New Zealand’s native
bees using images of active nests. Machine learning options work well
for studies that depend on variable images which are difficult to seg-
ment using conventional techniques. Outdoor imaging applications,
off-the-shelf camera equipment and JPEG compression are factors that
impact image quality. New machine learning tools that can mitigate
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the affects of poor quality images and have resulted in some innova-
tive solutions for a diverse range of applications. From Johansson’s
[105] novel small vessel detection study, to the UAV flood mapping
system proposed by Feng et al. [143, 144].
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Part 11

RESEARCH METHODS



FIELD COLLECTION METHODS

SYNOPSIS

Monitoring sites were selected using previous records in conjunction
with single surveys. When locations were identified a standard pro-
gramme was initiated. A range of static and dynamic image data
were collected. The main body of this research focuses on a method
to monitor broad populations of native bees using images of their
active nests. This chapter describes the study locations, the methods
used to determine the start and end of monitoring seasons, the types
of environmental data collected and the tools used to collect data.
This chapter also covers the techniques used to manually count ac-
tive nests and methods used for collecting monitoring images.

4.1 MONITORING LOCATIONS

Several locations around the greater Whangarei district were iden-
tified as potential monitoring sites. Selection priority was given to
areas that were easy to access. Study sites had to be reasonably safe
and unlikely to be modified in the foreseeable future (e.g. by local
government developments or by the general public).

Table 4.1: Monitoring locations and map co-ordinates.

Identifier Name Location

Site 1 Mt. Tiger 35°44" 31.9" S, 174°25" 18.8" E
Site 2 Mt. Parihaka 35°42" 41.4" S, 174°20" 19.3" E
Site 3 Memorial Drive  35°42" 59.8" S, 174°20" 25.4" E

Secondary priority was given to sites known to have supported
large numbers of native bees in the past [29]. Communities with dif-
ferent biological structures were chosen. This was in order to collect
a range of image data and test the validity of image-centric monitor-
ing system. Two geographically separated locations were identified.
Communities on Mt. Tiger and Mt. Parihaka were selected for repeat
monitoring. In 2010, Memorial Drive, was included in the monitoring
programme. The map coordinates are listed in Table 4.1 above, and
shown in Figure 4.1 (pg. 47).
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4.1.1  Species diversity

Existing records were used to determine baseline data [29]. This in-
cluded the known species composition and approximate population
densities at locations selected for monitoring [29]. As shown in Fig-
ure 4.2 (pg. 49 ), six species were identified at these locations previ-
ously [29]. Five species from the Colletidae family as follows: L.boltoni,
L.huakiwi, L.imitatus, L.pashaumaa, L.pango and a single species from
the Halictidae family, Lasioglossum sordidum. Historically, the greatest
numbers of bees were collected from Mt. Parihaka and surrounding
areas; 826 individuals were collected between the years 2005—2006.
The highest species diversity was also recorded at communities lo-
cated around Mt. Parihaka; 522 bees were collected, representing six
different species during the same period. Four species were identified
at the communities located along Memorial Drive, and two species
from the communities on Mt. Tiger.

4.1.2  Description of monitoring sites

SITE 1  Mt. Tiger is located around 20 minutes drive, east of Whan-
garei central. The monitoring site was located just opposite 510 Owhi-
wa Road. It encompassed a roadside bank around 15 meters long by
10 meters high; with a slope of around 60-80°. The bank consisted of
exposed reddish clay soil. There were areas of sparse ground cover
and areas of dense vegetation. It was bordered by some native shrubs
(e.g. maunuka and kanuka), as well as introduced plants (e.g. ox-eye
daisy). The main bank area backed onto agricultural land, which ap-
peared to be mainly used for dry live-stock. There were some larger
areas of natural bush within a few meters of the nest site. These were
located across the main road but almost exactly opposite to the ma-
jority of active nests.

SITE 2 Mt. Parihaka' is a historical pa. It is located a few min-
utes drive from Whangarei central. The monitoring site was situated
just through a gated forestry area. It encompassed a small bank,
around 5 meters long by 8 meters high; with a slope of around 60-
80°. The bank consisted mainly of white clay soils. It was covered in
weedy, shrubby vegetation. The area is managed as pine plantation
but much of the land has already been logged. It is currently regen-
erating back into natural bush. Gorse and different types of shrubs,
such as manuka and kanuka, dominated the area. The location had
been actively managed in the past (e.g. the Whangarei District Coun-
cil regularly tended the area by periodically spraying with herbicides)

In the past the summit was frequently but incorrectly called Mt. Parahaki. The orig-
inal Maori spelling and proper name of Parihaka was reinstated in 2005. Refer to
http:/ /www.beehive.govt.nz/node/23727.
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Table 4.2: Weather measurements and general observations.

1 Observations:

a) Cloud-cover as a percentage of total cover (%).

b) Flight/foraging: L-low, M-medium, H-high.

c) Nest construction activity: L-low, M-medium, H-high.
2 Ambient temperature (°C).
3 Relative humidity (%).

Wind-speed (meters/sec).

but there was no evidence of this during monitoring. The area where
active nests were monitored, became overgrown with gorse, young
pine and other shrubs. In 2014 the active nest areas were cleared to
remove gorse seedlings before data could be collected.

SITE 3 Memorial Drive monitoring site was located about half way
down from the summit of Mt. Parihaka. The nest site spanned a road-
side bank approximately 5 meters long by 2 meters high; with a slope
of around 60-80°. The bank consisted of white clay soils covered in
weedy vegetation. The bank was bounded by the Parihaka reserve on
either side. The reserve areas were covered in a variety of introduced
plants such as ox-eye daisy, wild carrot and grasses.

4.2 FIELD MONITORING METHODS

Surveys were conducted weekly in the months of September and Oc-
tober (2009-2014). When signs of nest construction or native bees in
flight were observed, monitoring was initiated. For examples of nest
sites, see Figures 4.3 — 4.4 below. Sampling continued each fine day,
until bees were no longer active. Daily monitoring and seasonal sur-
veys were conducted by site order starting with site 1: Mt. Tiger, site
2: Mt. Parihaka and finishing with site 3: Memorial Drive. Monitoring
started at Mt. Tiger between the hours of 08oo-1000, followed by Mt.
Parihaka between 1000-1200 hours. Sampling finished at Memorial
Drive between 1100-1300 hours.

Standard weather and observational data were collected. These are
shown in Table 4.2. At each monitoring location, local micro-weather
measurements were collected using a Kestrel-1o00 Wind Meter. Three
measurements were taken. The average results were recorded. Subjec-
tive quantities were recorded. This included the percentage cloud-
cover and estimations of the flight-foraging and nesting-activity of
native bees.
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(a) Close-up view of Mt. Tiger, grid 3. There were large pockets in the bank that
filled up with soil from nest constuctions.

(b) Wide-views of Mt. Tiger: A) grids 1-2 and B) grids 3-4. The white grids were used
to collect video data.

Figure 4.3: Mt. Tiger monitoring images showing (a) the set-up for grid 3 (b)
the overall structure of the road-side bank.

51



> AW

(a) Road-side along Memorial Drive.

(c) Site 1: Tumulii in the road-side drains along Mt. Tiger

Figure 4.4: Signs marking the beginning of the active season. Mounds of
white (or reddish) clay soil started to accumulate around horizontal ground
nest entrances. This was visible from a moving car along (a) Memorial Drive
and (b) Mt. Parihaka. The excess reddish clay soils from nest constructions
could be seen accumulating in the roadside drains along (c) the Mt. Tiger
site.
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Some faunistic surveys were made in 2011 by using sweep net col-
lections of insects in flight around nesting communities. The bees
(and related insects) were collected while they were in flight over ac-
tive nests, using five sweeps. They were immediately transferred to a
killing jar of ethyl acetate until they expired. They were placed into
containers. Specimen jars were labelled with date-time, site and collec-
tion details. Collections were processed immediately after field mon-
itoring was completed. They were placed on standard graph paper
and photographed under natural indoor lighting conditions. For an
example image, refer to Figure 7.2 (a), (Chapter 7, pg. 116). Specimens
were re-packaged and couriered to Dr. B. ]J. Donovan?® for taxonomic
identification; and inclusion in national entomological records.

In 2009, Northland was affected by drought. Surveys were con-
ducted weekly, but native bees did not emerge as expected. Most
sites were only slightly active in late December. Some bees emerged
in early January. Within a week, most had expired. For these reasons,
little monitoring data were collected during this time.

4.2.1  Manual nest counts and nest image collections

Images of active nests were collected at every site, in the same manner,
each year. A standard of measure was constructed using four plastic
rulers, each 300 mm long. They were fixed with glue at each end to
form a grid. Four separate grids were made. When constructed, the
internal dimension of each grid was 245 x 245 mm (0.06 m?). When
monitoring began, four grid locations were chosen at each site.

Locations were selected so exactly the same nests, at the same lo-
cations, could be monitored across seasons. Grids were placed over
nests areas that were easy to access and observe. Locations were se-
lected in areas that were unlikely to be disturbed. Grids were spaced
out to accommodate the distribution of active nests; and within the
practical boundaries of the entire nest aggregation. When the exact lo-
cations for the grids were chosen, they were fixed into place with fine
wooden skewers. Grids were aligned and removed by using existing
holes through the centre of each ruler, through which four skewers
were staked. The set-up is shown in Figure 4.3 (pg. 51). Each 15 mm
skewer was pushed into the ground, to a depth of around 8 mm.
This was so they would not be easily dislodged. Skewers were nearly
undetectable. Therefore, florescent nail polish was used to mark the
tips.

The four grids were set up at the start of each monitoring session.
They were hooked onto the skewers. Images were collected using
an off-the-shelf DSLR camera (Panasonic G1 Lumix / 35 mm). The
camera was set to active sports mode and a single shot automatic focus.
The viewfinder was set to show a guide. Each nest-grid image was

2 Donovan Scientific Insect Research, Private Bag 4704, Christchurch, New Zealand.
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approximately centred on, and acquired at right angles to the grid.
When possible the distance between the nest-grid and camera was at
least 2.5 meters. The zoom was used to help keep the grid dimensions
proportionally square. Around ten images of each grid were taken
in sequential order. Photographs were saved in a high quality JPEG
format. Each image was 2,816 x 2,112 pixels, with a resolution of 180
dots per inch (DPI) and a bit depth of 24.

When image collections were completed, the number of active nests
within each grid were counted. When possible manual nest counts
were collected by two observers. The number of active nests in each
grid was counted three times. The average number of nests per grid
was recorded for each observer. If nest entrances were obscured by
debris, the number of active nests were roughly estimated.

At the end of each monitoring day, nest-image collections were im-
mediately transferred from the camera’s SD memory onto an external
hard-drive. A copy of the monitoring images were backed up to a sec-
ond external hard-drive. The camera batteries were recharged. The
SD memory was cleared. This procedure was repeated until the active
flight season was completed. At the start of each new monitoring year,
the camera date and time stamp settings were checked. The image file
numbering was reset to zero.

4.2.2  Control and inactive nest images

A clay bank, located on Mt. Tiger, was cleared from vegetation to
simulate active nests. The plastic grid was set-up. Sixteen holes were
bored into the grid-area of the bank. Each hole was the approximate
size of a nest entrance. Some holes included small disturbances in
soil; this was to mimic the mounds of dirt typically observed around
the active nests of native bees. Photographs of the artificial nest were
collected. They were processed alongside monitoring images. In May
2013 inactive nest images were gathered from each site-grid. These
were processed alongside monitoring images. Refer to Chapter 6 for
images of training stacks, shown in Figures 6.7-6.9 (pg. 94—96).

4.3 SUMMARY OF FIELD METHODS

Surveys were conducted over six years (2009—2014). Monitoring data
were collected across five years (2010—2014). Data were collected on
each fine day, each year until there was a clear indication that the
bees were no longer active. The active flight season was regarded
as complete when bees were no longer constructing nests, were not
observed foraging, or were not seen in flight around their nests.
Manual counting methods have been detailed in this chapter. As
each season progressed, the active nest entrances were increasingly
more difficult to identify. Consequently the number of active nests
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measured on the first few monitoring days were the most important
and the most reliable.

Image acquisition techniques have been described. The monitoring
equipment was readily acquired, low budget, off-the-shelf or easily
constructed. The monitoring method was designed so the images of
active nests could be collected at approximately the same time, at
each location, every monitoring day. The method was consistently
used each season. The image capture area was broadly estimated by
using a square grid standard of measure (245 x 245 mm). Images of
an artificially constructed nest and of inactive nests were acquired.
This chapter completes the data collection methods. In the next chap-
ter, image data handling, processing and analysis techniques are out-
lined.
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IMAGING METHODS

SYNOPSIS

Image data handling, database management and image analysis pro-
cedures are outlined in this chapter. This includes the techniques used
to sort and pre-process images of active nests. Biomedical imaging
package FIJI and the interactive image segmentation methods devel-
oped within the TWS workbench are detailed. The RF machine learner
was used to construct nest-image classifiers. Therefore, the methods
developed to tune and optimise the models using TWS and WEKA
are outlined. The final sections in this chapter are dedicated to ver-
ification methods; including the statistical tests used in comparative
analyses of methods.

5.1 DATA MANAGEMENT

In 2013 monitoring image data were corrupted. Images were recov-
ered using forensic tools; TestDisk' and PhotoRec?>. When the recov-
ery process was finished, bash scripts were used to restore images.
For code examples, refer to Appendix E, Listing E.1 (pg.167). A folder
structure was created for monitoring image data, as shown in Figure
5.1 below. The database was copied onto separate hard-drives using
Grsync3. The workflow operations for each folder were documented.
Records were saved in readme files which were attached to base fold-
ers for reference. The folder names were chosen to be as short as pos-
sible, while remaining descriptive enough to follow. Batch processing
techniques were applied to a copy of a working folder, before they
were used on final folders.

5.2 COMPUTING ENVIRONMENT

The system specifications are listed below in Table 5.1. A Linux oper-
ating system was used. It was configured for the specific image pro-
cessing and classification tasks. Ubuntu (14.04) swap memory was
turned off during image processing tasks. This was to prevent pro-
cesses from swapping out of physical memory. Virtual memory#* op-
tions were passed to the Java Virtual Machine from FIjIs main configu-

1 TestDisk- http:/ /www.cgsecurity.org/wiki/TestDisk

2 PhotoRec-http:/ /www.cgsecurity.org/wiki/PhotoRec

3 Grsync-http:/ /www.opbyte.it/grsync

4 Java- http:/ /docs.oracle.com/cd/E13222_o1/wls/docs81/perform/JVMTuning. html
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» B 091_missing_data
» B 101_missing_Filled
» B 111_resize_500x500
» B 121_resize_1000x1000
» B 131_for_processing
B 141_urlfiles
» B 151_imgsks_training
» B 161_imgsks_normalised
» [ 162_imgsks_visual_annotations
» B 171_trainslices
» B 181_classifiers_and_data
» B 191_results_binary_counts
» B 200_data_audit
» = 201_analysis
B 202_backup

Figure 5.1: Folder structure created for the monitoring image database.

Table 5.1: Computer hardware/software and operating system specifica-
tions.

Operating system Ubuntu 14.04

Linux kernel 3.13.0-48-generic

Computer CQz1-1240IN Personal computer
Monitor 46.99 cm Liquid crystal display
Ram 7.2 GB

Processor 2 x AMD E-350

Graphics card Gallium 0.4 on AMD PALM
External hard-drive 2 x 2 TB Seagate

Java java.runtime.version 1.6.0_24-boy
WEKA Version 3.7.11

Fj1/Image] 1.49u
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ration file (see Listing E.2, pg. 167). This was to increase the memory
heap size.

5.3 IMAGE PREPARATION

More than one category of images were collected during monitor-
ing For examples, refer to Chapter 7, Figure 7.2 (pg.116). These in-
cluded photographs of a) bees in flight or foraging, b) active nests
with and without a standard grid measure, c) active nests acquired
with a Smart Phone, d) a range of monitoring videos. Raw data were
therefore sorted by year, site and image monitoring-task. Images of
active nests, using a grid as a standard of measure, were used in the
analysis outlined in this thesis. Nest images were sorted by year, site,
and grid number as shown in Figure 5.2 (a) below. Images were re-
named using XnView>. As shown in Figure 5.2 (b), image EXIF meta-
data was combined with the sub-folder grid identifier and used to
create unique file names.

5.3.1  Owverview of file and folder procedures

The following paragraphs provide a general overview of practical pro-
cedures used throughout the imaging pipeline. The important pro-
cessing tasks will be discussed in greater detail in the proceeding
sections.

FOLDER 061_CROP_GRID: Image data were manually cropped to
grids using XnView.

FOLDERS 081_SORTED_COLLECTIONS: Image data were sorted
into separate image collections.

FOLDER 101_MISSING_FILLED: Filler image data were added to
folders to retain the sequential order of image collection monitoring
days.

FOLDER 111_RESIZE_500X500: Images were resized to upload to
the GitHub database.

FOLDER 121_RESIZE_1000X1000: Images were resized for visual
annotation and checking.

FOLDER 131_FOR_PROCESSING: Image data for pre-processing
were stored in this folder.

5 XnView-http:/ /www.xnview.com/en/
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Browser %
File
5] v @ v Thumbnailssize v & - 00 - ©g & @

» [ 020_sort_year © & »/b1/040_sort_task/i
» 9 030_sort_site
v &= 040_sort_task

v = imgdata

View Tools Create Help

5 cm - random
Bin
B m
- B2 ff
» B t3_sc
» 5 t4_vc
M t5_se
» [ 2_P214
» B 3_M314
> 5 4_M414
» [ readme

Categories Filter | Favorites | Folders

(a) Raw images sorted.

Batch rename - (52 files)

Name template
{Folder name}_{EXIF:Date Digitized [ymd_HMS]} | v | |b | | Cleartemplates

start |1 I/step |1 . | Duplicate..

[ Create new name template when opening dialog

Extension Case
jpg Extension lowercase 2
[ Replace

With

Double click on a filename to create a new name template

old name New name Directory

'P0000001.jpg 12.101124_124133jpg  /media/n/Backup/b1/051_sort_gi
P0000002.jpg 2 101124_124136jpg  /media/n/Backup/b1/051_sort_gi
PO000003.jpg 2_101128_093619jpg  /media/n/Backup/b1/051_sort_gi
PO000004.jpg 2_101128_093626jpg  /media/n/Backup/b1/051_sort_gi
PO000005.jpg 2_101128_093629jpg  /media/n/Backup/b1/051_sort_gi
P0000006.jpg 2_101128_093630.jpg /media/n/Backup/b1/051_sort_gt
P0000007.jpg 2_101128_093632.jpg /media/n/Backup/b1/051_sort_gt
P0000008.jpg 2_101129_090952.jpg /media/n/Backup/b1/051_sort_gt
P0000009.jpg 2_101130_091106.jpg /media/n/Backup/b1/051_sort_gt
P0000010.jpg 2_101130_091107.jpg /media/n/Backup/b1/051_sort_gt
P0000011.jpg 2_101130_091108.jpg /media/n/Backup/b1/051_sort_gt
P0000012.jpg 2_101130_091112.jpg /media/n/Backup/b1/051_sort_gt

(b) Renamed with Xnview.

I —
Eo0ERE & B @0

(c) Nest images cropped.

Figure 5.2: Preparation of monitoring data. Nest images (a) acquired using
a constructed standard of measure are used in this analysis. Active nest
images were (b) sorted to grids, renamed and (c) cropped to the outside
grid using XnView.
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FOLDER 141_URLFILES: Image data were renamed for uploading
to online databases.

FOLDER 151_IMGSKS_TRAINING: Images were collated by FIJI
macro into image stacks for processing and saved as TIFF files. Image]
macro files (.ijm) and image stacks (.tiff) were stored in this folder.

FOLDER 161_IMGSKS_NORMALISED: Stacks were enhanced with
0.4% saturated pixels.

FOLDER 162_IMGSKS_VISUAL_ANNOTATIONS: Image data used
for visual annotations were saved in this folder, including image over-
lays.

FOLDER 171_TRAINSLICES: Training stacks were stored in this
folder, including the control image and the inactive nest images for re-
spective grids.

FOLDER 181_CLASSIFIERS_DATA: Training stacks and output
files were stored in this folder. This included final annotation data
files (.arff), WEKA classifier model files (.model), training log files (.csv
and .txt) and final classified images (.tiff). The folder was structured
per site and grid. With subfolders for each grid (G1-G4) within each
of the site folders M3, P2 and T1. These processes are explained fur-
ther in Section 5.6 (pg. 71).

FOLDER 191_RESULTS_BINARY_COUNTS: Post-processing image
data (.tiff), macro files (.ijm) and results (.txt and .csv) were stored
in this folder. Post processing operations included: cropping images,
applying morphological operators and counting binary image objects
based on their size and shape. These processes are explained further

in Section 5.7 (pg.73).
5.3.2 Sorting image collections

The images of active nests were manually cropped to the outside
grid edge using XnView. This is shown in Figure 5.2 (c). Images were
sorted into separate collections; these were sequences of the same nest,
separated by minutes-seconds. Collections were sorted into four fold-
ers; C1—C3 were used in analysis and C4 contained any other extra
images. The sorting process was semi-automated.

XnView catalogue feature, Create > File listing, was applied to
build a list.csv file. An example of this is shown in Figure 5.3 (a) (pg.
61 ). The list.csv file was imported into Apache OpenOffice® spread-
sheets as outlined in Figure 5.3 (b) (pg. 61). Image data were sorted

6 Apache OpenOffice-https:/ /www.openoffice.org/
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into four separate collections based on date-time attributes. The final
sorted list.csv was written into a bash script. The script automati-
cally copied images from the unsorted folder (/oy1 sort_collections)
to sorted folders (/081 sorted_ collections). Metadata information was
retained during the copying process using ExifTool”. When the pro-
cess was completed, the file numbers were reviewed via XnView (e.g.
Create > File listing). The file listings were checked to ensure the cor-
rect number of files were copied.

i (00 Fewng ]
» 9 020_sort_year

» 5 030_sort_site .
» B 040_sort_task
» B 051_sort_grid < :
v = 061_crop_grid ® |{Directony} 4
¥ = imgdata | % [{Folder Name} ik
> 3 10 -
=ET #® |{Filename Number} »
> 12 % {Comment} »
> 13
> 5 14 #® {size KB} >
» B9 071_sort_collections % [{EXIF:Date Digitized [Y-m-d_H-M-S]} »
» B 081_sorted_collections
» B 091_missing_data Format |csv »
» B 101_missing_filled —
E | Include subfolders
['] onlyimage files
Preview Copy to Clipboard | | Save as... Close

(a) XnView file list.

log - /media/n/Backup/b1/071_sort_collections/readme/log

+C a I._:LI [RIELELEN 'D1/071_sort_collections/readme/log &

D_'Om_uop:grid Name +  Size Type
& 071_sort_collections rawf_list_071_10.csv 35.6 kB €SV document
b imgdata rawf_list_071_11.csv 33.6kB CSV document
v/ readme rawf_list_071_12.csv 35.2kB CSV document
> & code rawf_list_071_13.csv 58.1 kB €SV document

oy rawf_list_071_14.csv 30.8 kB CSV document

¥/ 081_sorted_collections
»[iE 091_missing_data

Pl 101 missina filled

(b) Csv file listings.

code - fmedia/n/Backup/b1/081_sorted_collections/readme/fcode

L G S S R PSRN 031 sorted_collections/readme/code 2

v /i 071_sort_collections Name . size Type
P_:imgdala = code_sort_081_10.0ds 139.0kB ODS spreadsheet
"_;iidd:‘e = code_sort_081_11.0ds 132.1 kB ODS spreadsheet

» i log Ll code_sort_081_12.0ds 135.2kB ODS spreadsheet

(i 081_sorted_collections =) code_sort_081_13.0ds 205.4kB ODS spreadsheet

»[Eimgdata =) code_sort_081_14.0ds 117.7 kB ODS spreadsheet

v readme

(c) Sorting image collections.

Figure 5.3: Image data were organised and sorted using (a) XnView file
listing features (b) Csv file lists and (c) spreadsheet sorting tools.

The sorting process was repeated when training images were se-
lected. This is shown in Figure 5.4 (a) below. The list.csv was im-
ported into spreadsheets. The sheets were used to select the third or
fourth monitoring day for each year, site and grid. The final list.csv
was written into a bash script.

7 Exiflool-http:/ /www.sno.phy.queensu.ca/ phil/exiftool
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The script automatically copied images from the processing folder
(/131_for_ processing) to the training stacks folder (/151_imgsks_
training). A sample is shown in Figure 5.4 (b).

Filler data (ND) were created for the image database. An exam-
ple is shown in Figure 5.4 (c). A white image was labelled with ND
and copied. The EXIF date-time, and name of each filler image was
changed to match the monitoring collections. Filler images were se-
lected, copied and pasted into the folder /101_missing_ filled using
Ubuntu merge function. Existing images were not overwritten. Thus,
only data representing missing files were copied.

J./1_T110ANCM/C1/1C1/]

EEE ¢ v ¢ GO Lot 8 Q
K “ € rted_collections/imgdata/10/1_T110ANCM/C1/1C1/ | +  ¥¢ = [C =]
- IS
S Ul
5 S imsios
= v &= o
P =P 1C1_101126_126112_1... 1C1_101128_093604_1....1C1_101125_090812. ... 1C1_101130_051047_1....1C1_101201_09001.1...
H =13} ‘ ‘
3 EES]
3
= 3c
Saar
rEa
1=
@
+ & 2_p210ancH . 11C1.101202 085715.1...1C1_101205_084959_1....1C1 101206090200 1...1C1_101208_204411.1.. 11_101209_210010_1...1€1_101210 205854 1.0..
13 obiect(s) [10.23 MiBI

(a) Sorting image collections (C1-C3).

- BNl by #P@EQ 0
& [Aimo HX WM s O-8 - Find 7% @4
L1:L1048576. W AE=[4 =
Dle[Flc[n[I[J[kEmMIN[o[P] v | z [ aA A8 [
ot ¥oeP year |ste #re mg_c Com_sum Posy Phechyeor ste Pate ¥ep cmd_air i o0 rosar et oot | | |5
huriczn 3 12 ® m 3 v ity *
horice i 5 1 2 6 I 2 121112,p9
horace i 3 1 2 6 s 1  s1122)pg o
hazacais 5 1 2 s s aa 11204 pg
urace [ 5 2 2 6 s u  111114jpg ®
horraco iz 5 2 2 6 12 11129 =
haraca i 3 2 2 o 1 ) 1an1z2pg gl
uizzcois s 2 2 s B m X 141204 pg
hursce 5 a3 2 6 s n /3 M » 11111400
T o 2 12111209
harscz i 5 3 2 o s 1 131122109
uizaco 1a s s 2 s s [ X ) 141204 pg
huracan 5 a4 2 o n 3w 2 111114 jpg -
haracz iz |3 4 2 o s m 121112,pg 6l
oiraceis 3 4 2 6 s 13 _1a1122.p9 ¥
B E
kh /E@2T® 0 @ L RE RS e @R
oot ala Dot an Countztnon a - @l
XnViewMP [media/n/Backup/b1/.../1T110ANCM/C1/1C1/]
x
it _View Tools _Create _Help
c % e Thmbalssze - 5 - B - @ BE ¢ v ¢ GO wn - @@

> 14 *| @ _missing_filled/imgdata/10/1_T110ANCM/C1/1C1/ | v | T2 v [Quicksearch| @ & & o/ % % v § + E + = w0

10
+ & 1_TH0ANGM
SSa -

B2t o 1€1_101123.jpg 1c1_101124.jpg 1C1_101126.jpg 1C1_101128pg 1€1_101129.jpg
M3

Categories Filter | Favorites | Folders

& act
-
»Ecs
» £ 2_P210ANCM
a1
=5
=5 -
=1 | 1c1101130)pg 1C1.101201jpg 1c1.101202pg 1C1.101205.jpg 1C1.101206pg 1C1.101208.pg

16 object(s) [9.31 MiB]

(c) Filler image files added to monitoring data.

Figure 5.4: File methods for (a) sorting image collections, (b) selecting train-
ing slices, and (c) filler images (ND) for missing data.
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5.3.3 Pre-processing procedures

Images were resized to 500 x 500 pixels using Bicubic interpolation.
They were collated into time based stacks. The stacks were saved in
TIFF format; for code, refer to Listing E.4 (pg. 168). Saturated pixels
were set to 0.4%; each slice was enhanced.

5.4 TRAINABLE SEGMENTATION INTERFACE

Trainable Weka Segmentation (TWS) user interface and options are
shown in the Figures 5.5, 5.6 and 5.7 below. They are referred to fre-
quently in the proceeding sections. The main user interface and script
editor is shown in Figures 5.5 (a)—(b). Feature settings and options for
classifiers are shown in Figure 5.6. Finally WEKA model options and
model information interfaces are shown in Figures 5.7 (a)—(b) (pg. 65).

5.4.1 Filter descriptions and setting options

The filters listed below are used in classifier tuning tests. They were
selected from a possible twenty. They were chosen to highlight the
textural information in images of active nests. A brief description of
each is included here for reference.

1. Mean, Variance, Median, Minimum, Maximum: The pixels within
a radius of 1,2,4..2™ pixels from a target pixel location, are
subjected to the mean, variance, median, minimum and maxi-
mum operation. The target pixel is then set to that value. The
radius is the neighbourhood area; for example a 3 x 3 matrix.
The median filter reduces the noise in an active image by re-
placing each pixel with the neighbourhood median. The mean
filter smooths the image by replacing each pixel with the neigh-
bourhood mean. The minimum filter performs grey scale ero-
sion by replacing each pixel with the smallest pixel value in the
neighbourhood. The maximum filter performs grey scale dila-
tion by replacing each pixel with the largest pixel value in the
neighbourhood.

2. Structure filter: For all elements in the input image this filter cal-
culates the eigenvalues (smallest and largest) of the structure
tensor. This is also referred to as the second-moment matrix.
The matrix is derived from the gradient of a function. It sum-
marizes the predominant directions of the gradient in a speci-
tied neighbourhood of a point, and the degree to which those
directions are coherent [180]. It uses a smoothing scale set by
o=1,2,4..2™ and integration scales 1 and 3.
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Trainable Weka Segmentation v2

1/6 (1): 50
Training

Train classifier
Toggle overlay
Create result

Labels

Add to class 1

trace 0 (2=1}

Get probability

Plot result

Apply classifier

Load classifier
Add to class 2

Save classifier i e —

Load data

Save data

Create new class

Settings

o
=
B
=]
2
7

WEKA
e

LS

| =
(a) Test stack of images showing training for slice 1 of 6. Two traces are
selected to represent class 1 and 2.

*cd.ijm
TMeTerETTaTT 7 oS 2T, -
34 call("trainablessgmentation.weka_Segmentation.addTrace", "1', "4"); |

35 makeRectangle(299, 279, 78, 2);

36 call("trainablesegmentation.weka_Segmentation.addTrace", "1', "3");
37 makeRectangle (290, 228, 98, 1);
38 call("trainablessgmentation.weka_Segmentation.addTrace", "1', "2");
39 makeRectangle(293, 229, 99, 3);
40 call("trainablessgmentation.weka_Segmentation.addTrace", "1', "1");

41 f/select RF training parameters and filters for features stack.

42 f/optimise for speed and nest images

43 call("trainablessgmentation.Wzka_Ssgmentation.setFeature", "Hessian=false");

44 call("trainablessgmentation.weka_Segmentation.setFeature”, 'Sobel_filter=false');

45 call("trainablessgmentation.weka_Segmentation.setFeature", 'Difference_of_gaussians=false');

45 call("trainableSegmentation.Weka_Segmentation.setFeature", 'Membrane projections=false');

47 call("trainableSegmentation.Weka_Segmentation.setFeature", 'Mean=true');
(
(
(
(

s
&

call("trainableSegmentation.weka Segmentation.setFeature', 'Minimum=true');
call("trainableSegmentation.weka Segmentation.setFeature®, 'Median=true");
call("trainableSsgmentation.Weka Segmentation.setFeature", "Structurestrus");
call("trainableSsgmentation.Weka Segmentation.setMaximumSigma®, "4.0");//vary sigms
call("trainableSegmentation.Weka Segmentation.setMerbranePatchSize", "1");
/ttrain classifier and save data L
call("trainableSegmentation.Weka Segmentation.setClassifier', "hr.irb.fastRandomForest.FastRandomForest", '-1 50| -K 2 -| |
call("trainableSegmentation.Weka Segmentation.trainClassifier");//train classifier
call("trainableSegmentation.Weka_Segmentation.saveClassifier', logf + "c4-treefinal.model");//save classifier
call("trainableSegmentation.wWeka_Segmentation.saveData", logf + "cd-treefinal.arff");//save data
call("trainableSegmentation.Weka_Segmentation.getResult");

saveAs('Tiff", stack + "cd-treefinal.tif'];
60 selectWindow('Log") ;saveds ("Text", logf +'cd-treefinal.txt");//save log

GERLELLEE

=4

IR RLELET SRR ET I

3

61 run("Close All"); =]
4] 1 I D

Run | il | | showErrors [ clear |

Started cd4.ijm at Thu Jul 02 15:34:27 NE3T 2015 ‘i‘

(b) FIJT script editor interface with the classifier test macro C4.ijm loaded.

Figure 5.5: TWS main (a) graphical user interface (b) macro script editor.
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Segmentation sekttings

Training features:

W Gaussian blur —ISobel filter

_IHessian _|Difference of gaussians
_IMembrane projections Variance

W Mean & Minimum
—IMaximum W Median
_Ifnisotropic diffusion _iBilateral
_ILipschitz _Ikuwahara
_IGabor | Derivatives
_ILaplacian ¥ Strueture
_IEntropy _IMeighboers

Mermbrane thickness:
Membrane patch size:
Minimum sigma:

Maximumn sigma:

T

Classifier options:

FastRandomForest - 200 K 2 -5 1 -imp

Class names:

Class 1 [class 1
Class 2 [class 2

Advanced options:
_IHomogenize clagses

Save feature stack
Result overlay opacity [] ] - |33

0K Cancel| Help

Figure 5.6: TWS features settings interface.

NAME [
hr.irb. domFor

About SYNOPSIS

s e T e e Class for constructing a forest of random trees.

For more information see:

Leo Breiman (2001). Randem Forests. Machine
Learning. 45(1):5-32.

computelmportances [True [~]
OPTIONS
debug - IF set to true, classifisr may output additional
debug |False [=] | et the console.
doNotCheckCapabilities ‘False |-‘ maxDepth - The maximum depth of the trees, 0 for Nl
unlimited
maxDepth [0 | | seed - The random number seed to be used.
numFeatures [2 | | numThreads ~Number of simultaneous threads to use
in computation (0 = autodetect).
numThreads [0 |

doNotCheckCapabilties ~ I set, classifier capabilties
numTrees [200 || are not checked before classfier is built (Use with
caution to reduce runtime).

seed [1 I | numitrees — he numbsr of trees to be generated.
numFeatures - The number of attributes to be used in
[ open.. || save.. || oK ][ cancel ] |random selection (ses Randomres2) =

(a) Model options. (b) Model information.

Figure 5.7: TWS, (a) the model option settings and (b) information about the
WEKA model.
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3. Sobel filter: The gradient at each pixel are calculated after Gaus-
sian blurs with 0 =1,2,4...2™ are applied.

4. Gaussian blur: Operator performs n individual convolutions us-
ing Gaussian kernels with 0 = 1,2,4..2™. The larger the radius
(0) the more blurred the image becomes until the pixels are ho-
mogeneous. By default n = 4.

5. Difference of gaussians: calculates two Gaussian blur images from
the original image and subtracts one from the other. The values
foro=1,2,4..2™.

6. Anisotropic diffusion: Filtering with 20 iterations, 1,2,4, ...2™ with
the smoothing per iterations, a; = 0.10,0.35,a; = 0.9 and an
edge threshold set to the membrane size [181].

7. Bilateral filter: Preserves edges while averaging other parts of the
image. It is similar to the mean filter [182]. It accomplishes blur-
ring by only averaging the values around the current pixel that
are close in colour value to the current pixel. The closeness of
other neighbourhood pixels to the current pixels is determined
by the specified threshold. For example with a value set to 10,
each pixel that contributes to the current mean has to be within
10 values of the current pixel. In TWS this is a combination of
spatial radii of 5, 10 and 20, with a range radius of 50 and 100.

8. Lipschitz filter: A Lipschitz cover of an image is equivalent to a
grey scale opening by a cone. The cover can be applied for the
elimination of a slowly varying image background by subtrac-
tion of the lower Lipschitz cover (a top-hat procedure) [183].

9. Kuwahara filter: Is a noise-reduction filter that preserves edges.
In FIjI, the version of Kuwahara filter uses linear kernels rather
than square. With a membrane patch size, as the kernel size and
30 angles and o, 1 and 2.

There are four other filter options used in TWS. These are briefly
described below. Only the values of sigma (o) were adjusted for nest
segmentations and classifier testing. The other settings relate to bio-
logical image analysis and were not used for nest image processing.

* Membrane thickness: Is the expected value of the membrane thick-
ness; it is 1 pixel by default. This setting was not used for nest
analysis and pertains to the membrane thickness of biological
cells (e.g. brain image scans).

* Membrane patch size: Represents the size (n x n) of the field of
view for the membrane projection filters. This setting was not
used for nest analysis and pertains to the membrane thickness
of biological cells.
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* Minimum sigma: Is the minimum radius of the filters used to
create the features. By default is 1 pixel.

* Maximum sigma: Is the maximum radius of the filters used to
create the features. By default is 16 pixels.

5.5 CLASSIFIER TUNING

Six images of active nests were selected for classifier optimisation
tests. Nest images were chosen to represent the full variation of mon-
itoring data; as demonstrated in Figure 5.8 (pg. 67). A macro script
was written to automate the testing. For an example script refer, to
Figure 5.5 (b) (pg. 64). User-traces were saved as rep_nest.arff files.
This was so the same feature vectors could be applied to all classifier
models during evaluations. Small repetitive tests were applied to the
stack of representative nest images. This was to examine the affects
of filters on classifications and image segmentations. Tests were also
designed to investigate classifier performance and the affects on seg-
mentations when model parameters were adjusted. Tests are outlined
in Table 5.2 below. They are detailed in the proceeding sections.

Figure 5.8: Stack of representative images (slices 1-6) were used to tune RF
classifiers.

5.5.1 Testing feature importances

These tests were primarily conducted via FIJI, in the TWS workbench.
To evaluate the contribution of each filter compute importances was
selected in the TWS segmentation settings dialogue. This is shown
previously in Figure 5.7 (a) (pg. 65).

The model was permitted to grow to the maximum depth during
training (i.e. max-depth was not checked). For each test the TWS model
output performance parameters including the: 1) feature importances,
2) time to create features stack and 3) the out of bag errors were
saved as Test;.csv files. Results were imported into spreadsheets for
analysis.

During testing the filters that did not obviously contribute to the ac-
curacy of final classifiers were removed. The training was re-run. The
segmentation results were checked by comparing post-processed bi-
nary nest counts against raw RGB images. They were compared with
manual nest counts taken in the field. This process was repeated un-
til images from each representative slice were sufficiently segmented
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Table 5.2: Tests on a range of RF classifier models.

Test ID F,, N M Omax Comment

Tt  Ci1 79 200 2 16 Results from TWS tests
when default RF set-
tings are used.

T2 C2 46 200 2 4 Results from TWS tests
when filters are opti-
mised for best segmen-
tation of nest images

T3 C3 20 200 2 2 Results  from  TWS
tests when filters are
removed to reduce
processing time.

T4 C4 20 10-1000 2 2 Results from WEKA
tests used to optimise
number of trees.

Ts Cs5 20 50 020 2 Results from WEKA
tests used to optimise
number of random
features.

Table key

The number of features Fn

The number of trees N

The number of random features M

The maximum value of sigma Omax
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using the very minimum number of features possible. The following
tests were performed:

1. Default features (test 1):

* Classifier C1 was not tuned, the default parameters were
used.

e The filters selected were: Guassian blur, Sobel filter, Hes-
sian, Difference of gaussians, and Membrane projections.

* F, =79, N =200, M =2 and oynax = 16.

2. Optimised features (test 2):

e (Classifier C2 was tuned for features to enhance textural
information.

e The filters selected were: Guassian blur, Mean, Minimum,
Median, Anisotropic diffusion, Bilateral, Lipschitz, Kuwa-
hara and Structures.

° Fn:46,N:200,M22and0—max:4'

3. Optimised features (test 3):

* Classifier C3 was tuned to optimise the speed of feature
stack creation, classifier training, construction and applica-
tion.

¢ The filters selected were: Gaussian blur, Mean, Minimum,
Median and Structures.

e F, =20, N=200, M =2 and Oax = 2.

5.5.2 Testing random forest parameters

These tests were primarily conducted in WEKA Experimenter. The
number of trees in a forest should be initially set to 200; the ini-
tial number of random features is the square root of the maximum
number of features. In the feature optimised test (C3) there were 20
features that were important. Tests indicated they all contributed to-
wards final classifications. Based on the tests, the ideal number of
random features was five. RF model parameters were adjusted to in-
corporate these ranges. The rep_nest.arff dataset was used to evaluate
the performances of models in WEKA Experimenter.

In test 4, twenty-two RF models were loaded into Algorithms
for testing. The experiment was saved for repeat investigations as
trees.exp. A 10 fold cross validation with a maximum of 10 iterations
were selected for tests and used in the analysis. The number of trees
were adjusted N = 10 — 1000 in each of the RF models; with F,, = 20,
M = 2 and omax = 2. The analysis was run. The results from the
experiment were saved in trees.arff and analysed in WEKA. The out of
bag error and overall time to complete processing, was evaluated in
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TWS. The output performance results were saved as tws_trees.csv for
comparison.

In test 5, twenty RF models were added to Algorithms for test-
ing. The experiment was saved for repeat investigations as ran-
dom_features.exp. A 10 fold cross validation with a maximum of 10
iterations were selected for tests and used in the analysis. The num-
ber of random features were adjusted between M = 0 — 20 in each
of the RF models; with F,, = 20, N = 50 and omax = 2. The analy-
sis was run. The results from the experiment were saved as random-
feature.arff and analysed in WEKA. The out of bag error and overall
time to complete processing was evaluated via TWS. The output per-
formance results were saved as tws_random_feature.csv for compari-
son. Calibration experiments are summarised below:

1. Optimal number of trees (test 4n):

¢ Classifier C4, twenty-two RF models were loaded into
WEKA experimenter algorithms.

e The number of trees for each model was varied between
N = 10— 1000.

¢ With the other RF parameters set at F,, = 20, M = 2 and

Omax = 2.

2. Optimal number of random features (test 5p):

¢ Classifier C5, twenty RF models were loaded into WEKA
experimenter algorithms.

e The number of random features for each model was varied
between M = 0 — 20.

e With the other RF parameters set at F,, = 20, N = 50 and

Omax = 2.

5.5.3 Classifier benchmarks

These tests were primarily conducted in WEKA Experimenter. The test
classifier CF, was compared against other well known machine learn-
ers in final evaluations. Several RF classifiers were tested, including;:
the WEKA default model (M5), the FIJT default model (M7), a random
feature optimised model (M6) and the final classifier CF model (Mz1).
Six other common machine learners were tested, including: the zero
rules model (M2), the J48 decision tree (M3), a random tree (M4), a
Naive Bayes model (M8), a Voted Perception neural network (Mo),
and the SMO support vector model (M10).

A 10 fold cross validation with a maximum of 10 iterations were se-
lected for tests. Two RF models were tuned: M7y) classifier CF (N = 50,
M = 2) and M6) the random feature optimised classifier (N = 50,
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M = 8). All other classifiers were left at WEKA or FIJT default set-
tings. The percentage of correctly classified instances were used for
the analysis, using n = 1000 data results; with a confidence of 0.05 in
a paired-corrected two tailed test. Classifier CF was used as the test
base-classifier. The results from WEKA statistical analysis were saved.

5.5.4 Segmentation performance of test classifier

The representative image stack of six images, shown in Figure 5.8 (pg.
67), were fully processed using the final test classifier CF. A single
trace was added and the model was trained again (CFz2). The segmen-
tation results were checked and another trace was added. The model
was trained a final time (CF3). The out of bag error and binary im-
age results were post-processed with morphological operators. The
final counts were visually checked against raw RGB images and the
manual-field counts for verification.

56 CLASSIFIER TRAINING

Classifiers were optimised for speed. This was to reduce the overall
time required to process the monitoring images. There was a total of
1896 slices in the monitoring stack. Each slice was a 32-bit RGB im-
age, 500 X 500 pixels in size. Classification processes, files and results
were stored in Folders 181_classifiers_and_data. Training stacks and
data (subfolder _transkn) and, monitoring image stacks and results
(subfolder _imagkn) were stored in separate folders for processing.
The folder structure provides an overview of the procedures used for
training classifiers. This is outlined below, in Figure 5.9.

[ XnViewMP [media/n/Backup/b1/.../M3/1M3/1m3_1data/]

Browser % |jll croppng %

File Edit view Tools Create Help
E @ - % - Thumbnailssize v & - @ BE ¢ > ¢ GO e v & @

» B imgskn * & [transkn/M3/1M3/1m3_tdata/ | v T ~ @9 &5 v ow oo o o
» 5 readme : :
v & transkn No.  Name > Comment Size Properties
v = M3 ] <. 4.00 KiB
= first_train 4.00 KiB
d1m3_1data.arff 5.56 MiB
d1m3_1data.model 1.45 MiB
[] dim3_1data.tif ImageJ=1.49mimages=6 1.43 MIB 500x500,256
d1m3_1data.txt 1.48 KiB
m3_t.ijm 423KiB

Fol...
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» [ 3M3
» 8 am3
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6 object(s) [8.46 MiB]

|

auwaw N

CategoriesF... | Favo...

Figure 5.9: Classifier training and data folders.

Four training stacks were collated for each site. Each contained
an image of the control grid (e.g. slice 2 for Mt. Tiger and Mt. Par-
ihaka, and slice 1 for Memorial Drive) and an image of the inactive
nest (acquired May 21, 2013). Slices were arranged in date sequence.
Each site-grid classifier was trained separately using respective stacks.
There were twelve stacks in total, four per site.
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The first grid was used to train initial classifiers for each site. A
minimum number of pixels were selected for each class label, starting
with the control grid, and inactive grid slices. The segmentation re-
sults were checked and when they were satisfactory the grid G, .arff
results were saved. The grid Gy .arff files were loaded into the sec-
ond grid classifier. Training was run before any new annotations were
added. Results were checked and only where minimally necessary,
new class traces were assigned to correct for segmentation inaccura-
cies. A new classifier was trained based on added class traces, saved
and loaded into the next grid-batch classifier training. This process
was repeated until all four grids were trained and checked across all
site-grid training stacks. The final classifier for each site included the
training across all four grids loaded as single final.arff data file. This
classifier was applied to all image stacks for respective sites for final
segmentation results. The training procedures are summarised in the
sections below.

5.6.1 General training set-up procedures

FIJI Record Macro was initiated to record all trace samples during
training. Record Macro files from each training session were saved for
records (e.g. train.ijm) and stored in site classification data folders.
Only areas that could be clearly identified as active nests were used
for class_1 traces. Only areas that were clearly backgrounds were
used for class_2 traces. No attempt was made to try and equalise the
class data by providing the classifier with the same number of traces
for each class. The site-classifiers were trained using exactly the same
procedures. These are detailed further below.

5.6.2  Grid-training procedures

Pixels were selected from the control and inactive images slices. The
traces were automated with a FIJI macro script. The script was ap-
plied to train an initial classifier. No other traces were added. The
base-classifier was trained using only the automated annotations. Af-
ter the first training-run the segmentation results were checked. If
required, a very small number of inaccurate segmentations, on a sin-
gle image slice, were assigned to the correct classes with new traces.
The classifier was retrained and segmentation results were checked.
If segmentations were still not accurate then a very small number of
traces were reassigned, on a single slice. The classifier was retrained.
If segmentation results deteriorated then the traces added during the
previous training-run were removed. Another trace was added, at a
different location, and the classifier was retrained. This process was
repeated sequentially until all slices were properly segmented.
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5.6.3 Site-training procedures

Two training runs were used. First-train data were saved to grid-data
subfolders. The processes are outlined in Figure 5.9 above. Each site-
grid classifier were trained sequentially. Data from the initial grid-
training (G .arff) were loaded into training for the next grid (G;.arff).
The procedure was repeated until all site-grid classifiers were trained.
Final data were saved (e.g. final.arff and final-site.model).

5.6.4 Application of final site-classifiers

Data files (final-site.arff) and classifier models (final-site.model) from
site-training were loaded into TWS. The classifiers were applied in a
batch process. For each site, grid monitoring stacks were selected in
sequential order. The binary results from classifications and data were
saved to respective site-grid folders.

5.7 POST-PROCESSING

Several morphological operations and pipeline combinations were
empirically tested using the small test stack. When the morphological
operations were completed, the counted results were visually checked
against the original RGB images. They were checked against the val-
ues recorded for manual field counts. The post-processing method
was automated in a script and applied as a batch process (for ex-
ample code, see Listing E.5, pg. 168). The procedures used in the
post-processing pipeline are summarised in the sections below.

5.7.1 Binary options

There were four main binary options, as shown in Figure 5.10 (pg.
75). These were, 1) the number of Iterations specified the number of
times operations were performed. 2) The number of the Count speci-
fied the number of adjacent background pixels necessary, before they
were removed from the edge of objects during the erosions. It also
specified the number of adjacent foreground pixels necessary before
pixels were added to the edge of objects during dilations. 3) Pad edges
was checked. This specified the erosions and closing operations (i.e.
edge erosion was not performed during Erode or Close operations). 4)
Finally, EDM output was checked to overwrite the 8-bit input images.

5.7.2  Post-processing pipeline

There were four morphological operators used, as outlined in Figure
5.10 (pg. 75). These were, 1) Fill Holes was applied to fill holes in bi-
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nary objects. This was followed by 2) Close. Close-operations were set
to 10 iterations and 5 counts. This applied dilations® followed by ero-
sions?. This connected any disconnected parts of the binary images.
The process joined breaks, closed holes and smoothed out contours.
3) Fill Holes was re-applied to fill any remaining holes. Finally, 4) Open
was set to 2 iterations and 3 counts. This applied erosions followed by
dilations. This separated connected objects in the images. It smoothed
out contours by removing isolated objects.

5.7.3 Analyze Particles for three binary schemes

Three counting schemes were implemented in the Analyze Particles
utility demonstrated in Figure 5.10 (b) (pg. 75). The Circularity param-
eter for counted objects was set between 0.10 — 1.00 for all schemes.
The Pixel sizes varied. For the first scheme p? = 10 — 0o, the second
p? = 15— 00 and the third p? = 20 — co. The Image Overlay option
was checked.

This created a separate image stack of overlays; showing the out-
lines of counted objects. For an example, refer to Figure 5.10 (c) (pg.
75). The final binary counts were taken as the average count over
the three binary schemes and the median values over three image
collections. An example post-processing macro snippet is given in
Appendix E, Listing E.5 (pg. 168).

58 CLASSICAL SEGMENTATION METHODS

Raw monitoring images were collated into a single stack. The default
binary threshold was applied to the stack and it was post-processed
using the operators and settings outlined above. The count results
were imported into the monitoring spreadsheet. These were used for
comparative analysis between automatic counts derived from thresh-
olding and those from segmentations using the CF classifier. Post-
processed images with count overlays were collated alongside raw
image slices, into a single stack. The stack was saved as a pdf docu-
ment for manual checking and reporting.

5.0 MANUAL COUNTS FROM IMAGES

Images for manual counts were selected from image data using
the spreadsheet list. Images were randomly selected; but only from
paired-monitoring data. For example, filler images (ND) were not in-
cluded. One hundred and seventy images were used for manual im-

8 Dilate: enlarges object borders so holes become smaller.
9 Erode: shrinks the image so holes became larger and small details are deleted.
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(c) Example of binary count overlay images (left) alongside raw RGB
images (right) in a combined pdf file.

Figure 5.10: Post-processing options in FIJI. The (a) Binary Options and (b)
Analyze Particles user interface. Final overlay results (c) were manually
checked against raw RGB images to review segmentations.
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age counts. They were collated into a single pdf stack. Another stack
was created which included counted overlay results.

This stack was used for verification, as demonstrated in Figure 5.10
(c) above. Two observers conducted counts on the raw RGB images.
After a trial run, scorers reviewed which objects could realistically
be identified as active nests. Final counts were conducted in a com-
plete run. There were no further discussions between scorers. The
first sequence was carried out by the first scorer, followed by the sec-
ond. Data were entered directly into a spreadsheet by one scorer, as
counts were made by the other. Counts were made as quickly as pos-
sible. The process was repeated three times by each scorer. The mean
counts for each observer were taken and rounded up to whole num-
bers. These were used in final comparative analysis between the three
methods.

5.10 DATA PREPARATION AND ANALYSES

Each image collection was comprised of near-replica images. They
were data collected from the same location, grid and day but sep-
arated by minutes and seconds. Separate collections were therefore
comprised of different images. Each single image was acquired un-
der varying natural conditions. Therefore median counts were taken
across three image collections. Count data for all methods were pre-
pared in spreadsheets as follows:

* For automatic-count data. The mean nest counts from three bi-
nary schemes were calculated. Values were rounded up to
whole numbers to provide automatic-count subtotals. The me-
dian nest counts from three image collections were taken on the
automatic-count subtotals. This provided the final automatic-
count data used in comparative method analysis (i.e. the CF
classifier-ac and threshold method-at).

* For manual-image count data. The mean of three replica counts
were taken for each observer and rounded up to whole num-
bers. This provided manual-image count data (mic_ob1 and
mic_ob2). Data were used for inter-observational analysis. The
mean count-values from two observers were taken and rounded
to up whole numbers. This provided the final manual-image
data used for comparative method analysis (mic_t).

* For manual-field count data. The mean of three replica counts
were taken for both observers. They were rounded up to whole
numbers. These provided the manual-field data used in com-
parative method analysis (mfc_t).

76



10

5.10.1 Methods comparisons

Verification of the image-centric method focused on five primary com-
parative assessments:

1. Automated counts from the RF optimised model (ac) and classi-
cal thresholding (at).

2. Manual counts from the images by two observers (mic_ob1 and
mic_ob2).

3. Manual counts from the images (mic) and from the field (mfc).

4. Automated counts from the RF optimised model (ac) and man-
ual counts from the images (mic).

5. Automated counts from the RF optimised model (ac) and man-
ual counts from the field (mfc).
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Figure 5.11: The image data sheet shown was one of six used for monitoring
data entry: 1. collections (basic records), 2. nestc_mf (manual-field counts),
3. nestc_mi (manual-image counts), 4. auto_c (automatic counts), 5. images
(image data files and hard links) and 6. readme (row header descriptions).

Statistical analysis were performed in RStudio*®. They were format-
ted in spreadsheets to accommodate easy import. Data were organ-
ised using a single header row and arranged using date-time or grid-
image sequences, in single long columns. Examples are shown above
in Figure 5.11. The first column for each sheet contained a sequential
base reference identification. Zero count data were input as 0; all no-
data entries were identified by a text value entered as ND. This is also
demonstrated above in Figure 5.11, under column P-comments.

RStudio-http:/ /www.rstudio.com

77



5.10.2 Statistical tests

Lin’s Concordance of Correlation (p.) was used to compare methods.
The statistic combines measures of accuracy and precision to test the
agreement between two observations [179]. Pearson’s correlation co-
efficient (r) indicates how scattered the data points are around the
line of best fit [179]. This gives a measure of precision. The value of pn
defines the scale shift and measures systematic bias compared with
actual values; v defines the location shift and measures the difference
between actual and measured values; and Cy, is a bias correction fac-
tor calculated using v and p. Cy gives a measure of accuracy. A perfect
concordance between actual and measured values would return p. = 1,
r=1,Cp=1,v=1,and p = 0. In the equation p. = rCy, and r is the
correlation coefficient. Cy, is determined by:

(v+1/v+u?)

Co = [F L 6)
Where:
0 is the variance of x and y
V= 0y/0y

u is the mean value of x and y respectively

u = (HUx — Hy)/\/0cOy

The value p. was calculated using the epi.ccc function in the epiR
package [184]. The RStudio graphical user interface is shown below,
in Figure 5.12. The epi.ccc function is provided in Listing E.15 (pg.
181). Graphical analyses were saved as results.tiff for records. A note-
book was compiled from the R script associated with each analysis.
These data were saved as a pdf.

Rstudio @ FulMoon 100% @ ty [B) B8 4) s24pPM
dit Code View Plots Session Build Debug Tools Help

cec: 0.04 (95% C10.03 - 0.05)

Notebook output format:

(compie ) | cancel 8 / / o0

=W, gec=n W, SCrIp WRICe-TROE) /

60

Automatic counts by C4 model

0 50 100 150 200 250 300

Automatic counts by threshold

Packages  Help =

Figure 5.12: RStudio graphical user interface showing the operation of the
script in Listing E.15.
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5.11 SUMMARY OF IMAGING METHODS

The imaging tools and methods used to process the images of active
nests were outlined in this chapter. This included the management
of the digital data and the design of the image collections database.
Image analysis tools and methods were fully detailed so they can be
replicated for use in similar applications. Open source biomedical im-
age analysis software FIJI was used for most of the imaging tasks. The
main task for nest monitoring photographs, was delineating the areas
in images that corresponded to active nests from other background
areas or objects. Therefore this chapter included the tests used to in-
vestigate the performances of a range of image segmentation tools.

The images of active nests were sufficiently segmented by using an
interactive trainable tool in the TWS plug-in which is included in the
FIJI package. TWS utilises human knowledge for image segmentations
by combining the traces selected by a user which represent key ob-
jects. The TWS procedures used to classify images of active nests were
more dynamic compared to than classical segmentation techniques.
Since TWS uses an interactive process, replicating the exact nest im-
age segmentations could be problematic. Thus the specific methods
used to train, construct and apply monitoring classifiers, were fully
detailed in this chapter. This included the methods used to test, op-
timise and verify the performance of the RF machine learner, which
was the selected classifier used for segmenting monitoring images via
TWSs. The final sections in this chapter were dedicated to verification
of results and statistical methods.
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Part II1

RESEARCH OUTCOMES



RESULTS

SYNOPSIS

The results are presented in this chapter. Active nest classifiers were
based on RF models which were optimised for speed and accuracy.
The results from feature engineering investigations, the number of
forest-trees and the number of random forest-features were exam-
ined before final nest-classifiers were constructed and applied to mon-
itoring images. Classifier benchmarks and segmentation performance
were evaluated and are summarised. The number of active nests by
method and by year are outlined in the final sections of this chapter.

6.1 CLASSIFIER TUNING

A summary of classifier tuning tests are shown in Table 6.1 below.
Five main tests (T1-T5) were performed. The results were used to
evaluate the optimal parameters for the final RF monitoring classifier
(CF).

Table 6.1: Results of tests for classifier models C1—Cs. Performance parame-
ters were compared using the out of bag error (0oy,%) and the time taken to
construct the features stack (ms).

Test Classifier F,, N M Omax 00p% ms

T1 C1 79 200 2 16 1.98 147138
T2 C2 46 200 2 4 0.93 402974
T3 C3 20 200 2 2 0.608 23092
T4 C4 20 50 2 2 1.279 12503
Ts5 Cs 20 50 2 2 0.628 12503

Model parameters key

Number of features used to construct the features stack F,,

Number of trees N
Number of random features M
Maximum sigma Omax
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6.1.1  Default features

In Test 1, the following filters were selected: Guassian blur, Sobel fil-
ter, Hessian, Difference of gaussians, and Membrane projections. The
number of features: F,, = 79, trees: N = 200, random features: M = 2
and omax = 16.

The TWSs default model and features settings produced model with
a features stack of 79. The number of pixels selected as class; = 44
and class, = 816. The feature stack for six slices with 79 features took
147138ms to create and the ooy, = 1.98%.

Of the 79 filters provided for classifier construction, 46 did not pro-
vide any additional information. Feature importances were less than
zero for 58% of the filters. The top twenty most important features
for test classifier C1 are shown in Figure 6.1, pg.83.

6.1.2  Optimised features

In Test 2, the following filters were selected: Guassian blur, Mean,
Minimum, Median, Anisotropic diffusion, Bilateral, Lipschitz, Kuwa-
hara and Structures. The number of features: F,, = 46, trees: N = 200,
random features: M = 2 and sigma: omax = 4.

The TWS settings for classifier C2 produced a features stack of 46.
The number of pixels selected as class; = 44, class, = 816 and the
out of bag error improved to ooy, = 0.93%. The feature stack for six
slices with 46 features took 402974ms to create.

Of the 46 filters provided for classifier construction around 22 did
not provide any additional information. Feature importances were
less than zero for 48% of the filters. However, the ooy, error reduced
when the excess filters were removed and the new textural features
were added. The top twenty most important features for test classifier
C2 are shown in Figure 6.2, pg.84.

6.1.3 Optimised speed

In Test 3, the following filters were selected: Gaussian blur, Mean,
Minimum, Median and Structures. The number of features: F,, = 20,
trees: N = 200, random features: M = 2 and sigma: oymax = 2.

The TWS settings for classifier C3 produced a features stack of 2o0.
The number of pixels selected as class; = 44, class, = 816 and the
out of bag error improved to oo, = 0.698%. The feature stack for
six slices with 20 features took 23092ms to create. The total model
processing was around 6 x faster than C1 and 17 x C2. All 20 filters
provided information as shown in Figure 6.3, pg.85.
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Figure 6.1: Test 1, feature importance results for classifier C1. The model
used default settings. The feature stack for six slices with 79 features took
147138ms to create and the oop, = 1.98%. The highest ranking filters and
respective importances are listed.
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Figure 6.2: Test 2, feature importance tests on classifier C2. The model was
optimised to produce the best segmentation of nest images. The feature

stack for six slices with 46 features took 402974ms to create and the ooy, =
0.93%. The highest ranking filters and respective importances are listed.
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Figure 6.3: Test 3, feature importance tests on classifier C3. The model was
optimised to speed up processing. The feature stack for six slices with 20
features took 23092ms to create and the ooy, = 0.698%. All twenty filters
were important and ranked as listed.
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6.1.4 Number of trees

In Test 4, twenty-two RF models were loaded into WEKA Experimenter;
configured for a 10 fold cross validation, 10 iteration test. The number
of trees were adjusted N = 10 — 1000 for each of the RF models. This
is shown along the bottom axis in Figure 6.4, pg.87. Processing time
exponentially increased with the number of trees. Performance gains
did not appear significant beyond N = 150.

Classifier C4 was re-run via TWS with N =50, M = 2 and o ax = 2.
The TWS settings for classifier C4 produced a features stack of 20. The
number of pixels selected as class; = 44, class, = 816. The feature
stack for six slices with 20 features took 17503ms to create; and the
oop = 1.279%. The total model processing was around 12 x faster
than C1; 32 x faster than C2 and 2 x faster than C3.

The oop from TWS was different than reported in WEKA Experi-
menter for the RF model with N = 50, M = 2 and 0pax = 2. WEKA
reported the ooy, = 1.083%. This is highlighted in orange on Figure
6.4 ( pg-87). Tests were repeated using the rep_nest.arff dataset. An al-
ternative set-up was loaded into WEKA Experimenter. A 66.67% split
between training and tests (using randomised data) were applied in
500 iterations (n = 500). The error changed slightly to ooy = 1.151%;
indicating the differences in ooy, were most likely a consequence of
the test configuration (i.e. evaluations run with a cross validation or
% data splits) [185, 186].

6.1.5 Number of random features

In Test 5, twenty RF models were added to WEKA Experimenter; con-
figured for a 10 fold cross validation, 10 iteration test. The number of
random features were adjusted between M = 0 — 20, for each of the
RF models. This is shown along the bottom axis on Figure 6.5, pg.88.

Classifier C5 was re-run via TWS with N =50, M = 8 and oy qx = 2.
The TWS settings for classifier C5 produced a features stack of 2o.
The number of pixels selected as class; = 44, class; = 816. The
feature stack for six slices with 20 features took 17503ms to create;
00p = 0.628%. The total model processing was around 12 x faster
than C1; 32 x faster than C2, 2 x faster than C3 and was equal to Cy.

The test results showed the performance improved when more ran-
dom features were provided to the model for training and construc-
tion. The out of bag error for C5 (oo, = 0.628%) was lower than Cs
(oop, = 1.279%). The final monitoring classifier (CF) used a RF with
Fn =20, N =50, M = 8 and 0max = 2. This is highlighted in orange
on Figure 6.5 (pg.88).
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6.2 CLASSIFIER BENCHMARKS

The final test classifier CF was compared against nine machine learn-
ers in WEKA Experimenter. The results are listed in Table 6.2 below.
A 10 fold cross validation with 10 iterations was used in the experi-
ment. The percentage of correctly classified instances were tested for
n = 1000, with a confidence of 0.05 in a paired-corrected two tailed
test.

Results showed there were no significant improvements by any
other models over CF; four gave results that were statistically worse.
The naive Bayes model (M8) did not perform as well as CF on the test
data-set with 90.35% correct. The VotedPerceptron (Mg) and SMO
(M10) models also returned a lower number of correctly classified in-
stances; 95.71% and 96.74% respectively. The ZeroR (M2) gave 94.88%
correctly classified instances, slightly higher than naive Bayes model
(MS8).
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Table 6.2: Results of performance evaluations conducted in WEKA Experi-
menter. The final test classifier CF (M1) was benchmarked against nine other
common models on the rep_nest.arff dataset.

Model Correct (%) WEKA model code

M1 99.42 hr.irb.fastRandomForest.FastRandomForest-
Il501-KI181-Sl1

M2 04.88 @ rules.ZeroR

M3 98.37 trees.J48-C 0.25 -M | 2

My 98.02 trees.RandomTree-Klo|-M|1.01-Vlo0.00101-
Sl

M5 99.19 trees.RandomForest-I11101-Klo[-S|1[-num-
slots | 1

M6 98.95 hr.irb.fastRandomForest.FastRandomForest-
Ils50l-Kl21-Sl1

My 99.07 hr.irb.fastRandomForest.FastRandomForest-
Il200!-Kl21-S11

M8 90.35 @ bayes.NaiveBayes

Mo 95.71 ® functions.VotedPerceptron-I111-E  1.01-Sl11-
M | 10000

Mio 96.74 ® functions.SMO-Cl 1.01-Llo.0010!-Pl1.0E-121-

Nlol-VI-11-Wl1|-Kl|

functions.supportVector.PolyKernel-E | 1.01-
C 250007

o, e statistically significant improvement or degradation
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63 SEGMENTATION PERFORMANCE

The representative image stack of six images were fully processed us-
ing the final test classifier (CF). A trace was added and the model was
re-trained (CF2). Another trace was added and the model was trained
again (CF3). The complete processing pipeline is shown in Figure 6.6
below. When the second trace was included in training (CF3), the out
of bag error decreased slightly, to ooy, = 0.98%. The final counts were
visually checked against raw RGB images and against the manual field
counts.

Five classical threshold methods were tested. They included:
Huang, Mean, MinError, Min and Otsu. Six SRM parameters were
tested. Each test with varying segmentation regions (Q) set as fol-
lows: Q =1, 2, 3, 6, 8 and 16. Six edge-based Canny-Deriche filtering
methods were tested. Each test with varying smoothing values (x) as
follows: a = 1.0, 0.9, 0.7, 0.6, 0.45 and 0.15. Results are detailed in

Table 6.3 (pg. 93).

6.4 TRAINING STACKS

The four training stacks were collated for each site. They are shown
in Figures 6.7, 6.8, and 6.9 (pg. 94—96). They demonstrate the wide
variation in images between and within monitoring sites. All training
stacks contained an image of the control grid, (e.g. slice 2 for Mt. Tiger
and Mt. Parihaka, and slice 1 for Memorial Drive) and the images of
inactive nests, acquired May 21, 2013. Slices were arranged in date
sequence. These were used for classifier training; final classifiers were
applied to all monitoring stacks.

65 MONITORING DATA SUMMARY

A summary of collections are shown in the next few sections, includ-
ing a statistical summary of data, and preliminary distribution evalu-
ations. Once the CF classifiers were trained, processing (classifications
and post-processing) was completed in less than 24 hours. Field mon-
itoring was conducted in a single two and a half hour round trip,
beginning at site 1 and ending at site 3. The time to conduct manual
nests counts was approximately 15 minutes per site. The time taken
to acquire images was around 5 minutes per site.

6.5.1 Collections

A total of 158 monitoring days resulted in 632 images, per image col-
lection. Around 1/3 of image data were unrecoverable (612 images).
A summary of collections over five years (2010-2014) for Mt. Tiger,
Mt. Parihaka and Memorial Drive are shown Table 6.4, pg. 97
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(a) Stack of representative nest images.

(b) Classified outputs.

-

(c) Converted to 8-bit binary.

L3

1 2 3 4 5 6

(d) Binary oprators applied.

(e) Particle Anlysis.

Figure 6.6: Representative images in (a) the test stack used to train initial
classifiers (C1-Cs). The classified results from CF3 (b) were post-processed
(c)-(d) to give the (e) final counts. These were compared against classical
segmentation methods, visual nest counts from images, and the manual
counts taken in the field.
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Table 6.3: The final automatic count results on representative images (slices
1-6) using CF(1—3) compared to classical segmentation methods, manual-
image and manual-field counts.

Method Q/or slice slice slice slice slice slice
[od 1 2 3 4 5 6
Manual-image 3 3 3 2 2 2
Manual-field 2 4 4 3 4 9
CF1 21 11 14 22 4 64
CEF2 21 2 3 13 3 14
CFs3 7 3 8 4 3 8
Haungg 87 89 51 50 51 62
Means 87 89 51 50 51 62
MinErroré 87 89 51 50 51 62
Miny 87 89 51 50 51 62
Otsu8 87 89 51 50 51 62
Srmg 1 1 2 0 0 2 2
Srmio 2 1 2 1 1 1 1
Srmi1 3 4 3 2 2 5 5
Srmi2 6 41 57 10 28 99 14
Srm13 8 60 72 24 42 114 20
Srmig 16 93 62 41 70 95 25
Cedge1s 0.15 88 92 48 62 39 10
Cedge16 0.45 170 202 71 91 133 20
Cedge1y 06 191 230 63 99 149 22
Cedge18 0.7 179 225 49 96 169 19
Cedge19 09 175 225 64 103 143 22
Cedge20 1.0 189 226 46 103 179 16
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Table 6.4: Field collection summary of monitoring days for three locations,
Mt. Tiger (S1), Mt. Parihaka (S2) and Memorial Drive (S3) over five years
(2010-2014).

Site ID 2010 2011 2012 2013 2014 Total days
S1 16 16 13 10 3 59

S2 16 16 13 10 3 59

S3 ND 16 13 10 3 43

Yearly totals 32 48 39 30 9 158

+Total processed images = 1896
+*Monitoring images = 1284

+Field samples = 632
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6.5.2  Descriptive statistics

The mean, standard deviation and variances for manual field and au-
tomatic counts (derived from classifier segmentations) are shown in
Table 6.5 below. The variances were larger than the means for both
methods. The dispersal index (DI) suggests clustering; data fits a neg-
ative binomial model.

Table 6.5: Descriptive statistics summary.

Method n i SE o SD DI Ccv
Automatic 1284  6.424 0.284 103 10 16 1.58
Manual 632 4.545 0.136 35 5 7 1.31
Table key
Sample
Mean o
Standard error of the mean (SD//n) SE
Variance o
Standard deviation SD
Dispersal index (o/mean) DI
Coefficient of variation (SD/mean) Ccv

6.5.3 Frequency distribution

The frequency distribution of automatic and manual field nest counts
using observed and expected values are shown in Figure 6.10. The
observed data agrees with the expected frequency distribution of a
negative binomial model for the automatic method. The observed
and predicted frequency distribution for the manual method, does
not show the same strength of agreement with a negative binomial
model.
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6.6 NUMBER OF ACTIVE NESTS BY METHOD

Lin’s concordance of correlation was used to compare methods by
measuring the precision (r), agreement (p.) and accuracy (Cy). Data
were calculated using the epi.ccc function within the epiR package.
Plots were generated in epiR to display the line of perfect concor-
dance (dashed) and the line of best fit (solid) for each analysis (1-5).
These are summarised in Table 6.6.

Table 6.6: Five comparative analyses. A summary of the most important
descriptive parameters used to measure precision (r), agreement (p.) and

accuracy (Cyp) between methods.

Analysis  Method 1 Method 2 n T Pc Cp
A1 a-ths a-CF 1284 0.244 0.040 0.164
A2 m-image ob1 m-image obz 170 0.891 0.867 0.973
A3 m-field m-image 170  0.641 0.622 0.97
A4 m-image a-CF 170  0.705 0.679 0.963
As m-field a-CF 520 0.828 0.738 0.891

Table key

Automatic (a-) and manual (m-) methods

Images segmented by monitoring classifier CF a-CF

Images segmented by default thresholds a-ths

Nests counted from images by two scorers ob1-2

Number of (paired) samples n

Pearson’s correlation coefficient (precision) T

Lin’s Concordance of Correlation (agreement) Pec

Bias correction factor (accuracy) = p¢/r Cy
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6.6.1 Classical threshold and machine learner

An evaluation of nest counts derived from thresholding and CF
model segmentations are shown in Figure 6.11 below. The methods
showed poor agreement (p. = 0.040) and accuracy (Cp = 0.164); with
a very weak positive correlation (r = 0.214, P < 0.05).
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Automatic counts by threshold

Figure 6.11: Analysis 1, a comparison of nest counts by different image analy-
sis methods. Automatic counts from monitoring image stacks using classical
thresholding (default intensity histogram) and the CF model (RF classifier).
The dashed line shows perfect concordance; the solid line is the line of best
fit. Performance measures: r = 0.244 (precision), p. = 0.040 (agreement) and
Cp = 0.164 (accuracy).
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6.6.2  Manual-field and manual-image counts

Manual nest counts estimated from images between two scorers and
the actual numbers taken in the field counts were compared. The
variability between manual-image counts by two scorers, are outlined
first. The nest counts estimated from images, by two scorers were
compared to analyse the variability between observers. Figure 6.12
below, shows the output results from epiR.

There was close agreement between the manual-image estimates
from two scorers (p. = 0.867), with good precision (r = 0.891) and
accuracy (Cp, = 0.973).

- cee: 0.87 (95% C10.83-0.9)

50

Manual image counts by observer 2

= T T T I T I
0 10 20 30 40 50

Manual image counts by observer 1

Figure 6.12: Analysis 2, a comparison of nest counts estimated from images
by different scorers (observer 1 and 2) image analysis methods. The dashed
line shows perfect concordance; the solid line is the line of best fit. Perfor-
mance measures: v = 0.891, p. = 0.867 and Cy, = 0.973.
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In Figure 6.13 below, the mean estimated counts from two scor-
ers (n = 170), were compared against manual-field counts. Results
showed there was close agreement between the counts from two
methods (p. = 0.622), with good precision (r = 0.641) and accuracy
(Cp =0.97).

3 1 cce: 0.62 (95% C10.62-0.7)

Manual image counts

g T T 1 T T
0 10 20 30 40 50

Manual field counts

Figure 6.13: Analysis 3, a comparison of manual-field and manual-image
(mean counts from two observers n = 170) nest counts. The dashed line
shows perfect concordance; the solid line is the line of best fit. Performance
measures: T = 0.641, p. = 0.622 and Cy, = 0.97.

6.6.3 Automatic and manual counts

A comparison of nests counts estimated from images (the mean
from two scorers n = 170) and automatic counts derived from seg-
mentations using the CF model were analysed. Manual-image and
automatic-CF counts are compared in Figure 6.14 below. Manual-
field counts were compared to automatic counts derived using the
CF model. These are compared in Figure 6.15, pg. 105. Both results
are discussed here.

There was closer agreement between manual-field and automated-
CF counts (p. = 0.738, Figure 6.15), compared to manual-image and

103



automated-CF counts (p. = 0.679, Figure 6.14). The manual-image
and automated-CF counts were slightly more accurate (Cp = 0.963,
Figure 6.14) than manual-field and automatic-CF counts (Cy, = 0.891,

Figure 6.15). Both had similar values of precision (manual-image: r =
0.705, manual-field: p. = 0.738).

50

= ccc: 0.68 (35% C10.59-0.75)

40
|
o

Automatic counts CF

T T T T T 1
0 10 20 30 40 50

Manual image counts
Figure 6.14: Analysis 4, a comparison of manual-image nests counts (the
mean from two scorers n = 170) and automatic counts derived from the CF

model. The dashed line shows perfect concordance; the solid line is the line
of best fit. Performance measures: v = 0.705, p. = 0.679 and Cp, = 0.963.
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Figure 6.15: Analysis 5, a comparison of manual-field and automatic nest
counts derived from segmentations using the CF model (median of three
image collections n = 520). The dashed line shows perfect concordance; the
solid line is the line of best fit. Performance measures: v = 0.828, p. = 0.738
and Cy, = 0.891
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67 NUMBER OF ACTIVE NESTS BY SITE AND YEAR

The number of active nests counted by three methods, are organised
by year, in Figures 6.16, 6.17 and 6.18 (pg.108-110). For each site, the
changes in the number of active nests over time are shown. Meth-
ods indicated similar trends. Yearly mean values included error bars
(showing the standard error of the means). Field samples varied be-
tween sites and over time. This is summarised in Table 6.7 below, for
reference.

Different methods were based on more, or less data samples (i.e.
collections of near-replica images). Increased errors and/or variabil-
ity, were associated with the number of monitoring samples collected.
For instance, see Figure 6.16 (pg. 108). The variability of results for
site 1, 2014 where higher than other years, since there were minimal
data collected. Samples were collected over three monitoring days,
from three sites, and four grids (i.e. n,y = 3 and ns; = 36). Imag-
ing methods used three image collections. Therefore, the total image
data used in analysis was N¢otq1 = 108; while the total number of
data used in manual count analysis was n = 36.

6.7.1  Mt. Tiger

The trends in active nests from data collected over five years (2010-
2014) on Mt. Tiger are shown in Figure 6.16, pg. 108. There was a
sharp decline in the mean number of active nests between the years
2010-2011. There were minimal changes between the years 2011-2013.
An increase in the mean number of active nests was indicated in 2014
(ns1= 12). Similar trends were displayed by all methods. The auto-
matic counts derived from image segmentation using the CF model
(red square), on average produced slightly higher mean counts than
manual-image (green circle) and manual-field counts (blue triangle).

6.7.2 Mt. Parihaka

The trends in active nests from data collected over five years (2010-
2014) on Mt. Parihaka are shown in Figure 6.17, pg. 109. There was
a moderate decline in the mean number of active nests between the
years 2010—2012. There was a gradual increase the mean number of ac-
tive nests recorded between the years 2012-2014. Similar trends were
displayed by all methods. The automatic counts derived from image
segmentation using the CF model (red square), on average produced
slightly higher mean counts than manual-image counts (blue triangle)
but lower than manual- field counts (green circle).
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Table 6.7: The number of yearly samples taken. The total number of moni-
toring days (nm), for three sites (S1, S2 and S3) and four grids. In 2014
= 3 therefore the total number of samples for analysis was 12.

Samples
Year Method | ng; ns3 ns3
2010 ac 126 130
mic 14 13
mfc 64 64
2011 ac 112 115 89
mic 13 14 12
mfc 64 64 64
2012 ac 114 116 74
mic 13 21 5
mfc 52 52 52
2013 ac 105 105 90
mic 17 14 8
mfc 40 40 40
2014 ac 36 36 36
mic 10 7 7
mfc 12 12 12
Ngc = 1284
Nimic = 170
Mimfc = 632
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6.7.3 Memorial Drive

The trends in active nests from data collected over four years (2011-
2014) on Memorial Drive are shown in Figure 6.18 above (pg. 110).
There was a moderate decline in the mean number of active nests
between the years 2011—2013. A gradual increase the mean number
of active nests was recorded in 2014. Similar trends were displayed
by all methods. The automatic counts derived from image segmenta-
tion using the CF model (red square), on average produced slightly
lower mean counts than manual-image (blue triangle) and manual-
field counts (green circle).
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DISCUSSIONS

SYNOPSIS

If the populations of solitary ground nesting bees can be estimated
by the number of active nests in a community, then the number of
active nests can be manually counted. Over time, manual counts can
provide a measure of the changes in populations within a commu-
nity. This method is comparatively straightforward and easy to repli-
cate. Given this, it is reasonable to expect the number of active nests
can also be counted from digital images of actual nests, in much the
same manner as manual estimations. If the number of active nests
in an image can be counted, it is therefore also feasible to use im-
age analysis to automatically identify the objects in the images that
represent active nests. This reasoning was tested by using a practi-
cal monitoring programme. It was designed to collect manual nest
counts and images of active nests for comparative analyses and proof
of concept. Monitoring was conducted over five years, at three com-
munities of native bees in Whangarei (New Zealand). A total of 1896
images were collected, representing 158 monitoring days. They were
processed and used in a comparative analyses against manual field
nest counts. This chapter discusses the design, implementation and fi-
nal performance evaluation of the image-centric nest monitoring sys-
tem.

7.1 RESEARCH OVERVIEW

This study was based on the assumptions that, (1) the number of ac-
tive nests could provide a proxy for populations and, (2) it was pos-
sible to design methods to reliably count the number of active nests
at communities of native bees, over space and time, (3) that digital
images could be used in the place of manual visual counts and (4) it
was possible to process digital images to reliably count active nests.
The evidence supporting the central ecological hypothesis that the
active nests of solitary ground nesting bees can provide a good proxy for pop-
ulations was taken from several studies [16, 64, 65, 66]. This could
have been tested in the field. For example, emergence traps, nest
core samples, or mark release recapture methods could have been
implemented [54]. Sampling could have been conducted alongside
manual nest counts and digital image acquisition. This could have
provided sufficient data to confirm the active nest population proxy
hypothesis. However, the techniques were beyond the scope of this
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research. Field sampling methods were designed for a comparative
analyses, between manual and image-centric nest counts. Therefore,
exactly the same nests were monitored over time.

An image-based active nest counting pipeline could have been de-
veloped using pre-existing digital image samples [21, 29]. Some of the
preliminary aspects of the system design, did not depend on actual
monitoring; manual nest counts or new image collections. However,
it was essential to test and apply the monitoring system. This was to
demonstrate the potential of the system, as a viable tool to aid field
research. Many promising tools developed for ecological research, are
not used in practical applications [84, 85, 87]. The reasons for this are
not clear. But, as a consequence, it was important to evaluate all as-
pects of the monitoring system in the field. The image-centric design
was founded on natural history observations of communities of na-
tive bees [21, 29]. Thousands of hours of empirical data, contributed
towards an understanding of the challenges involved with monitor-
ing bees. Also, a consideration for the types of technologies required
to increase scientific understanding of native bees and their communi-
ties. Therefore, the field methods were designed to test the validity of
the image-centric approach. The remaining discussions in this chap-
ter are concerned with design aspects of the image-centric monitoring
system; as it was applied, to measure the number of active nests.

7.2 ACTIVE NESTS

There were other types of images that could have been used for
monitoring. Some image-types could be used to reflect the popula-
tion changes over time. Other images, could be used to describe the
species diversity of native bees within selected communities. This the-
sis has focused on the monitoring images of active nests. But, there
were a range of image types collected during field monitoring. This
was to test image acquisition techniques and image analysis proce-
dures. This included capturing images of insects foraging on single
flower heads (e.g. Figure 7.1 (a)—-(b)), insect clusters in flight around
shrubs (e.g. Figure 7.2 (b)), insect sweep net collections (e.g. Figure
7.2), active nests captured with and without a grid quadrant (e.g. Fig-
ure 4.3 and Figure 4.4). Active nests were the basis for the image-
centric method presented in this thesis. The reasons are summarised:

u

. The images of active nests were easy to capture.

N

. The image area was easy to regulate.
3. The image analyses required only fwo objects to be segmented.
4. The results from analysis provided nest counts.

5. Nest counts could be directly used to measure populations.
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Nest images were easy to capture. Particularly compared to acquir-
ing photographs of moving insects; as demonstrated below in Figure
7.1 (b). Image acquisition was easier to control for active nest data.
This was achieved by using a standard of measure. The grids were
placed over areas of active nests. They helped to determine the focal
boundaries of digital images. The imaging methods required to seg-
ment active nest images, were not as complicated as they were for
other images. Some of the images would have required several target
features to be segmented. For example, in Figure 7.1 (b) below, six
different insects are shown. They are foraging on single flower heads.
The images were captured within a set time-frame. They equate to
survey-type methods and could be used for biodiversity sampling.
The imaging pipeline for these types of images, would have involved
identifying at least six types of insects. Therefore, the segmentation
task would have been to partition the images into six key objects. In
contrast to this, there were only two categories in the images of ac-
tive nests. It was necessary to segment areas of active nests from all
other backgrounds. Furthermore, data from image analyses based on
the number of active nests in the images, directly relates to an estimate
of the populations of bees. Interpretation of results were straightfor-
ward; and achieved with minimal post-processing and statistical anal-
yses. Thus, compared to other image-types, the images of active nests
were much easier to capture, process and analyse.

Finally, the field method for counting active nests were not overly
complicated. Surveys were conducted each year around September.
Monitoring was initiated when there was clear evidence the bees were
emerging (e.g. either by signs of nest constructions or observations of
bees in flight). At each monitoring location, the number of nests were
counted. Active nests were identified by using evidence of soil exca-
vations, or entry holes; or both. The nest counts taken at the start of
each season were important. The nest entry holes were more defined.
They were easier to count. Because of this, they were more reliable
than counts taken towards the peak of active seasons. Mid-season,
entry holes to active nests could become obscured by masses of soil
from nest excavations. It was almost impossible to determine where
the entry holes were, in some cases. This was a particular issue at Mt.
Tiger. For an example, refer to Figure 4.3 (Chapter 4, pg.46). The nest-
ing community at Mt. Tiger was established along a roadside bank.
Because of the structure and angle of the bank, the soil from nesting
bees rapidly accumulated in some pockets. Soil completely covered
some nest entrances. In contrast to Mt. Tiger, there were communities
of bees established along a flat area of ground at Mt. Parihaka. The
horizontal nests were much easier to count; at the start and through-
out the season. This was because, the mounds of white clay soil in-
dicating nesting bees, were easily separated from one another; and
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(b) All the visitors to plants in a meter square.

Figure 7.1: Image sequences of foraging bees and other insects; focusing on
(a) the same plant in a set time-frame and on, (b) all plants and insects in a
set area.
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(a) Image of a sweep net collection.

(b) Grids for active nests (left) and a sphere for bees in flight (right).

Figure 7.2: Images of (a) sweep net collections and (b) standard of measures
for monitoring — grids for active nests (left) and a sphere for bees in flight
(right).
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the ground surface vegetation. An example is shown in Figure 4.4
(Chapter 4, pg.46).

7.3 MONITORING IMAGES

Digital image formats and acquisition techniques, are important as-
pects of an imaging system design. The decisions regarding the dig-
ital camera hardware and image format in this research were based
on costs. An off-the-shelf DSLR camera’ was used for acquisition of
nest images. They were saved in compressed JPEG format. Off-the-
shelf digital cameras and encrypted image formats are not recom-
mended for biological image analysis [112]. However, they are used
in some environmental imaging, and remote sensing applications

[142, 143, 144, 148, 149, 151].
7.3.1  Image format

There are no agreed standards for raw files. Therefore, proprietary
platform dependent software is often bundled with off-the-shelf digi-
tal cameras. This is to enable file processing. Silkypix™ Software was
bundled with the DSLR camera used in field monitoring. The software
was platform dependent, so use was restricted. Open-source software
helped to mitigate proprietary format issues; but with variable suc-
cess. Raw files were not easily imported into FIJI or XnView. During
early tests, the added file work was resource intensive and time con-
suming. Thus, raw files were not collected during monitoring.
Nonetheless, the quality of image data can impact the reliability
of image processing. At least where biological image analysis is con-
cerned, high resolution raw images are preferred. However, biologi-
cal images are normally captured under laboratory conditions. Also,
memory capacity is not usually an issue. On-board camera memory
was a consideration for field collections in this research. Because the
field camera had a limited amount of memory, compressed high qual-
ity JPEG formats were more practical. They were also more cost effec-
tive. Some studies have shown image compression is not always an is-
sue. Paola and Schowengerdt [151] for example, tested three different
classification scenarios. They found that, high quality classifications
could still be achieved with a compression ratio (CR) of 10:1 [151].
The CR of the field camera was closely examined. This was to de-
termine the qualitative affects on monitoring images. Active bee nests
are ill defined. Therefore, a close-up image of an associated insect, the
common New Zealand tiger beetle-Cicindela tuberculata (Coleoptera:
Carabidae), was used in the evaluations. The image was converted to
a JPEG file using XnView software. The file had a CR of 34.71:1. Af-
ter the image was compressed, the affects were visually checked. The

1 Panasonic DMC-G1
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close-up view shows there are minimal affects from the encryption.
This can be seen in Figure 7.3 below, as slight blocking. When im-
ages were converted on-camera, the CRs were substantially lower, at
around 2.75:1. This level of compression was less than 10:1 and well
within the boundaries considered acceptable for image classification

applications [147, 149, 151].

Figure 7.3: A raw image of a tiger beetle’s nest (background image) and a
close-up example of file compression using XnView.

7.3.2  Outdoor images

A number of techniques can be used to help standardise image acqui-
sition and to reduce the affects of outdoor variations [138]. Several
techniques were tested during the prototyping stages of the monitor-
ing system design. For example, flood lights were tested on monitor-
ing nests. This was to determine if the extra illumination would im-
prove image quality. However, the challenges associated with outdoor
imaging methods are fundamental constraints. They were not easily
overcome in this research. Because the images of active nests were ac-
quired outdoors, they were variable and complex. It was not possible
to control the quality of images. For example, the lighting conditions
changed dramatically on cloudy days, sometimes within seconds. On
windy days, objects could be blown across the nest sites, and the field
of view of the camera during image acquisition. This is common to
many outdoor imaging applications, as a review of current literature
confirmed [138, 143, 144]. There are few practical methods that can
be used to improve the quality of natural outdoor images. But, there
are some novel approaches (e.g. see the design by Burks [138]). A
number of other studies reported the problems associated with anal-
ysis of complex natural images could be mitigated by using RFs for
image classifications [143, 144]. Research showed the performance of
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the classifier was good, even when compressed, outdoor images were
acquired using off-the-shelf digital cameras [143, 144].

The quality of monitoring images was a key issue. The constraints
had an critical impact on the design of the image-centric monitoring
system. A closer examination of nest images are outlined below.

7.3.3 Examining nest images

Biomedical imaging package FIJI was the selected tool used for mon-
itoring image analysis. The reasons for this have been mentioned
previously. However, because FIJI is open source the methodology
used throughout this thesis can be easily replicated. FIJI macro scripts
are included in Appendix E (raw data are attached in Appendix F).
Also, a range of resources are available online for development of FIJI
and Image] scripts®>. Nest images were examined in FIJI. A test stack
was compiled using representative nest images. Images were selected
from each site-grid to reflect the range and variation typically encoun-
tered. The test stack shown below in Figure 7.4, or a single slice from
the stack, were used to test a range of processing techniques. These
are examined over the next few sections.

Figure 7.4: Test stack of representative nest images in raw RGB format. Slice
1 = Mt. Tiger (bank grid 1), slice 2 = Memorial Drive (bank grid 1), slice 3
= Mt. Parihaka (bank grid 1), slice 4 = Mt. Tiger (bank grid 2), slice 5 = Mt.
Parihaka (horizontal ground grid 4), slice 6 = Mt. Tiger (bank grid 4).

7.3.4 Preliminary investigations

In most analysis, workflows images are prepared by using contrast
enhancement or histogram equalisation operations. The operations are
generally called image normalisations. A single image of a horizontal
ground nest was examined in FIJI. Different contrast enhancement set-
tings were applied to the image, to investigate the most appropriate
levels for monitoring images. The enhance contrast toolbox was used
in tests. There were four different functions tested: 1) the percentage
of saturated pixels, 2) equalise histogram, 3) process all and 4) stack
equalise histogram. The test stack was processed using three differ-
ent values of saturated pixels: 0.4%, 40% and 90%. The changes in
contrast can be visually inspected in Figure 7.5 (b). The third scheme
was selected for pre-processing monitoring images. The number of

2 Image]-http:/ /imagej.nih.gov/ij/
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saturated pixels was set to 0.4%. This setting was useful for improv-
ing the visual quality of nest images on the LCD monitor used in
this research. Histogram equalisation was not used for nest images.
The operation is not recommended for quantitative tasks, since image
data are fundamentally changed [187].

7.4 SEGMENTATION METHODS

Good segmentation techniques are those where, (1) pixels in the same
category have similar values and form connected regions or (2) neigh-
bouring pixels, which are in different categories have dissimilar val-
ues [112, 188]. The primary aim of all segmentation techniques are
to quantify aspects of image data [112, 188]. Preferably by using re-
producible and objective techniques and with operations that have
some capacity to generalise over a given range of image data variabil-
ity. The performance of any segmentation method depends on several
factors. Firstly, on the original image content and quality. Secondly,
on the specific application constraints and characteristics. Thirdly, on
the intended use of the information extracted from images. To exam-
ine these issues further, three segmentation techniques were tested
on a sample of representative nest images. A classical thresholding
method; an edge and region-based method. These tests are discussed
in greater detail in the sections below.

7.4.1  Thresholding by intensity

Intensity based thresholding methods produce straightforward seg-
mentations [188, 189]. They are simple, direct and easily programmed.
If there are foreground objects or image features that are defined by in-
tensity, then threshold procedures can outperform other methods.

Suitable threshold levels were tested using slice 5 of the test stack.
FIJI Auto threshold Try All? [190] function was selected. This was to
determine which methods best suited the nest image. The active nest
in image slice 5, is visually noticeable. The white clay soil, indicates at
least one or two active nests. The intensity of soil means the image is
relatively easy to make binary. The output stack results for automatic
thresholds on slice 5, are shown in Figure 7.6 (a) below.

The results demonstrate that from 16 possible schemes, Minimum
returned the highest quality segmentation. In this case, the image was
adequately segmented before any post-processing operations were ap-
plied. When post-processing operators were applied, the results con-
firmed an automatic threshold method using the Minimum scheme
would produce satisfactory image segmentations. At least for hori-
zontal ground nests. These are shown in Figure 7.7 (a)—(e) (pg. 123).
However, when the auto threshold Try All function was applied to

3 Try All- http:/ /fiji.sc/ Auto_Threshold
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(b) Enhance contrast pre-processing tests on horizontal image slice.

Figure 7.5: The image of a horizontal nest was used to test the affects of
(a) contrast stretching using 0.4%, 40% and 90% saturated pixels, and (b)
Enhance contrast toolbox stack functions. Scheme 3 was used for monitoring
images. The number of saturated pixels was set to 0.4% and the Process all

slices function was checked.
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Minimum

(b) Test slice 1 = Mt. Tiger (bank nest grid 1).

Figure 7.6: Auto thresholds for monitoring images of (a) a horizontal ground
nest (b) a roadside bank nest.
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test slice 1, the nest image was not properly segmented. This is also
demonstrated in Figure 7.6 (b) (pg. 122). Test results helped to define
the constraints of segmentation methods. They showed the complete
range of monitoring images could not be segmented using intensity-
based threshold levels. They also confirmed automatic thresholds
could be used to segment images of horizontal ground nests. There-
fore, they would be suitable for segmenting 1/6 th of the monitoring
images collected.

(a) Thresholding results from six methods applied to the image of a horizontal
ground nest (Mt. Parihaka, grid 4). Slices 1-6 = FIJT Default threshold, Huang, Mean,
MinError, Minimum and Otsu.
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(e) Analyze particles plug-in: set to count all image objects between the sizes of 500-co
pixels with a circularity morphology between 0.1-0.9.

Figure 7.7: Binary results from six thresholding methods (a) applied to a
horizontal ground nest image. Common post-processing pipeline morpho-
logical operators were applied to the test image including (b) open, (c) fill
holes, (d) close and (e) count particles.
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7.4.2 Canny-Deriche filtering

Automatic thresholds work well when intensity is a feature that can
be used to identify objects. This was demonstrated in the previous ex-
ample. Sometimes there are other characteristics that can be used to
define images. For example, the connected structures, outlines, areas
or textural qualities of objects. Since it was not possible to use auto-
matic thresholds on all monitoring images, two alternative methods
for segmentation of active nests were tested. The first of these was
an edge-detection based thresholding method—Canny-Deriche filtering
[154].

Figure 7.8 demonstrates the affects of the Canny-Deriche filter. Dif-
ferent smoothing factors (x) were applied to the image of a horizontal
ground nest. Six smoothing factors were applied as follows: slices 1—
6: @ = 1.0, 0.9, 0.7, 0.6, 0.45 and o0.15. The image results from each
smoothing were compiled into a stack. This was for visual inspec-
tion and comparison. The results from the edge-based thresholds in-
dicated the method could be used to segment horizontal ground nest
images. This is demonstrated in Figures 7.8 (a)—(f). The lower smooth-
ing values returned slightly better results. This can be seen from the
final image segmentations in Figure 7.8 (e), slice 6. Overall however,
edge detection did not provide any obvious additional benefits, over
the straightforward thresholds previously tested.

7.4.3 Statistical region merging

In a final examination, a region-based method, SRM (statistical region
merging) was tested on the ground nest test image [155, 156]. The
results from SRM investigations are shown in Figure 7.9 (a)—(f). Six
different values were selected for the maximum number of regions.
The parameter is given by Q. For slices 1-6, the regions were set as
follows: Q = 1, 2, 3, 6, 8 and 16. The method worked very well on test
slice 5. Nonetheless, as was the case with the other methods tested,
segmenting the range of monitoring images was more challenging.
Ground truth labels were added to the representative stack of nest
images. This was for comparison with binary results. Examination of
Figure 7.10 (a), confirms most of the test images were over-segmented.
They were over-segmented to degrees that could not be easily man-
aged by post-processing operations. For instance, there were no ac-
tive nests in slice 1, yet edge and region methods produced binary
outputs resulting in multiple segmentations. This is demonstrated in
Figures 7.10 (b)-(d) and Figures 7.10 (e)—(g) respectively.

After applying post-processing operations, a number of objects
were detected that did not correspond to ground truth labels. Gen-
erally, any aspect of the imaging pipeline can be adjusted. This is
done to accommodate image characteristics or to highlight the key
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image of a horizontal ground nest (Mt. Parihaka, grid 4), slices 1-6: « = 1.0, 0.9, 0.7,
0.6, 0.45 and 0.15.

SR NE SRR 2" RPN 2 RC
A \,‘.‘ 3 :

SIS ;’,".;
"&s 1y

6 ®
(e) Close binary operation.
RN NS 5| B B3
& $ X il i o] o) <l
% & s R AN Dy U o W
o \j gf;’* M‘F\/\” O L;/’ \’A{ e \X/C § (A D
&fwfwu 07 oY A PRNSCIPUISS AN ]
&:/‘ (\\i’/ 4\\} \‘/\ &
., -
B [ R B [ N A o P e |6
S B PN B P o T P S e f T e[

(f) Analyze particles plug-in: set to count all image objects between the sizes of 500-co
pixels, with a circularity morphology between 0.1-0.9.

Figure 7.8: Segmentation by edge detection (a) applied to a horizontal
ground nest image with a pipeline of common post-processing operations

(b)—(f).
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(a) SRM results from six different segmentation regions, applied to the image of a
horizontal ground nest (Mt. Parihaka, grid 4), slices 1-6: Q = 1, 2, 3, 6, 8 and 16.
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Figure 7.9: Segmentation by SRM (a) applied to a horizontal ground nest
image with a pipeline of common post-processing operations (b)—(f).
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Figure 7.10: Stack of variable nest images (a) with ground truth annotations
in blue. The binary results from the (b)-(d) Canny-Deriche filter edge detec-
tion and (e)—(g) SRM and final post-processing operations.
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data required for specific applications. However, there were no tech-
niques that could improve the variability of monitoring images. There
were few image processing techniques that could improve image seg-
mentations. It was concluded that neither of the techniques could ap-
propriately segment the full range of nest images. This was because,
there was no single intensity value that could properly define the
foreground active nests from backgrounds. Traditional methods were
not suitable for generalising over the range of monitoring images.

7.5 TRAINABLE SEGMENTATIONS

There were other characteristics in the monitoring images that could
help define areas of active nests. For example, the colour and texture
of tumulii. Overall, the monitoring images were highly changeable
across time and space. Therefore image segmentations were challeng-
ing. The images of horizontal nests would be adequately segmented
by other methods. In the previous tests SRM performed well; it was
easy to apply and produced a properly segmented image of the hor-
izontal ground nest. However, few if any of the other image types
were properly segmented. At least not to the degree necessary to have
confidence in the post-processed binary results. Therefore, although
SRM worked well on images of horizontal ground nests, the method
would not have performed well on the other 83% of monitoring im-
ages collected.

When other segmentation methods fail, machine learning tech-
niques provide alternative solutions [172, 188]. Some of these were
tested on the stack of representative nest images using FIJI and the
TWS toolbox [101]. As a consequence, semi-supervised machine learn-
ing tools were considered the only valid option, for nest image seg-
mentations. The remaining sections are therefore dedicated to Train-
able Weka Segmentation (TWS). This includes an overview of training
methods and optimisation techniques. The discussions outlined also
include a review of the classifiers designed for the image-centric mon-
itoring system.

7.5.1  General operation and applied techniques

Trainable image segmentation techniques work by using human vi-
sual knowledge [101]. A set of expertly labelled examples, can be
passed to a machine learning algorithm. In TWS a user provides two
sets of example labels. ROI tools are used to select traces of pixels be-
longing to foreground (class 1) and background (class 2) objects. A
range of filters are applied to original image data. These are used to
create a separate features stack. A user may select any combination of
filters, from a possible twenty. They can be grouped according to their
main filter functions as described below in Table 7.1 [101]. During the
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learning process a WEKA machine algorithm uses the examples pro-
vided, and the features stack to construct a classifier. The classifier
can be used to segment similar types of images. Including the image
it was trained on. This is a brief summary of the overall procedure,
but it is relatively straightforward.

Table 7.1: Filters available in the TWS plug-in grouped by type.

Edge detectors. Indicate boundaries: Laplacian, Sobel,
difference of Gaussians, Hessian ma-
trix eigenvalues and Gabor filters.

Texture filters. Extract textural information: Mini-
mum, maximum, median, mean, vari-
ance, entropy, structure tensor.

Noise reduction filters. Smooth images: Gaussian blur, bilat-
eral filter, Anisotropic diffusion, Kuwa-
hara and Lipschitz.

Membrane detectors. Localised membrane-like structures of
a certain size and thickness.

7.5.2 Benefits and drawbacks

There are aspects of trainable segmentations that are more difficult
to quantify [73]. For example, it can be hard to determine what com-
bination of image features best describes key objects. Consequently,
some aspects of classifier training are intuitive and subjective. There
are also other confounding decisions to consider before applying ma-
chine learning for image segmentations [73]. These will be discussed
further in later sections. However, providing a user selects appropri-
ate representative pixel samples, and chooses filters that will provide
a rich features stack for classifier construction, machine learning al-
gorithms work very well [93]. They can surpass other methods, espe-
cially on challenging image segmentations. Preliminary tests on the
stack of representative nest images confirmed their effectiveness.

7.5.3 Preliminary tests

A classifier was constructed to segment the stack of representative
images, using TWS. The results from the classifications were a stack
of binary images. These are shown in Figure 7.11 (a). The machine
learner classified every pixel in the test images, as belonging to class
1 or 2. The classifier adequately segmented all the slices of the nest
images; where the previous methods were inadequate. This is further
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demonstrated, by comparing the test images in Figure 7.10 (pg. 127)
with the classified output from a machine learner, in Figure 7.11 be-
low. The variable image stack was used in comparative checks. The
final number of nests counted from segmentations derived from the
machine learning method was in much closer agreement with those
visually counted and annotated on images. Results are demonstrated

in Figures 7.11 (a)—(f).
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Figure 7.11: The binary results from (a) TWSs and a pipeline of common

post-processing operations (b)—(f).

130



The segmentation results on the variable nest images were signif-
icantly different to those produced by edge detection and SRM tech-
niques (refer to Figure 7.10, pg. 127). The final particle count results
from all techniques were visualised alongside each other. The differ-
ences between the methods were obvious, as shown in Figures 7.12
(a)—(d) below.

© Bl Q Ky )
o « -
D @ f N - -
3 U
3 [
v N
o
o 1 2 3 e > 4 v 5 ¢ . 6
(b) Canny-Deriche edge final results.
2/ D ha A s f & s
L Zn R e o ©
{’S@\m & (l‘“f\ (::* o & N
¥ o 5@ M % & - @ o (f\
o Py o N ) 2 (A i/ bl
e G& e o /r( i (Am . (s ;
Qg e R, [P . ’
L L ‘r&} B, g o s {\1 " .
g0 30 % o “ . 3 = 4 o 5 B <6 7
(c) SRM final results.
A
% N
Ha 2
4 Lo24 %Jy
N &
1 2 3 4 5 6

(d) TWS final results.

Figure 7.12: The ground truth labels of the (a) stack of variable nest images
are compared to the final post-processed outputs from segmentations using
the: (b) edge detection, (c) SRM and (d) TWSs. Results from TWSs are in closer
agreement with the ground truth labels for each slice.

76 EMPIRICAL LESSONS

The TWs workbench has undergone significant developments since
2010 [101]. Each year the package has become more versatile. For
example, early tests were performed on 8-bit grey-scale images. Ini-
tially, TWS was not integrated with WEKA [93]. Also, RF feature impor-
tances were not easily examined during early tests. However, for the
final analysis feature importances were easily examined. For this rea-
son, over the course of this research, each successive classifier testing
training and analysis changed [21, 29, 40, 41, 43]. The methods used
for nest classifications have steadily improved. The following sections
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discuss the final results from base-classifier investigations; tuning op-
tions and training methods.

7.6.1  Concepts important for classifier training

The performance of the final monitoring classifiers was dependent
on the quality of classifier training. This included: A) the images se-
lected for training, B) the traces supplied to represent classes during
training and C) the filters used to construct the features stack, which
were provided to the RF algorithm for training. Some of the important
questions considered were:

1. How well do the training images represent the monitoring im-
ages?

2. Which pixel traces best contribute towards classifier learning?
3. What image features best help to describe active nests?

4. Can the key features of active nests be enhanced?

In order to determine the optimal parameters for TWSs and the RF
classifier, small repetitive tests were applied to the stack of represen-
tative nest images. There were two main aspects to consider. The
first, was to determine which features were the most important for
nest-classifications. This process is referred to as feature engineering
[73]. The second, was to determine the best tuning settings for the
RF model; generally referred to as classifier optimisation [73]. These are
discussed in the next sections.

7.6.2  Feature engineering for nest classifiers

Feature engineering was one of the more difficult processes to eval-
uate [73]. This was because it was the total combination of features,
that contributed to the accuracy of the machine learning models used
for nest classifications. Generally, the more features provided during
training, the better the final classifiers are. However, there were com-
putational costs associated with the construction of the features stacks
used for monitoring nest-classifiers. Stack creation and processing
was fundamentally limited by the amount of desktop RAM available.
This was around 7.2 GBs in total (see Table 5.1).

Therefore, it was important to examine the affects of removing seerm-
ingly irrelevant features and replacing them with the most obviously
relevant ones. Textural and noise reduction filters were considered
the most appropriate for describing active nest objects in the monitor-
ing images (Table 7.1). It was hypothesised, that these filters would be
the most important for classifying images of active nests. Initial tests
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were performed. The classifiers were re-tuned based on the points
below.

¢ The feature importances output during training.

¢ The total processing times: the time to construct features stack,
time to train the classifier and time to complete classifications.

¢ The classified binary image results: fully post-processed for
comparison against ground truth labels.

¢ The out of bag error during training.

The filters that did not obviously or significantly contribute to the
accuracy of final classifiers, were removed. Training was re-run. The
segmentation results were checked. This was achieved by comparing
post-processed binary nest counts against raw RGB monitoring images
and manual-field nest counts. This process was repeated until the
images from each representative slice were sufficiently segmented.

During the first test, classifier C1 was set to default parameters. Of
the 79 filters around 58% did not provide any additional information
(refer to Figure 6.1, pg. 83). Therefore, the second test classifier, C2,
was tuned to provide the optimal nest image features (refer to Figure
6.2, pg. 84). Similarly, at least half of the feature data provided to Cz,
did not obviously contribute to the final classifications. Furthermore,
the time taken to construct the features stack increased. This was
due to the iterative processes from the Anisotropic diffusion filter
[101]. The out of bag error was lower for test classifier C2, but at
the expense of increased processing resources and time. Therefore,
classifier C3 was tuned to optimise the speed of feature stack creation,
classifier training, construction and application (refer to Figure 6.3, pg.
85). Only the most important textural filters were selected. The final
evaluations were good. They showed all the features provided for the
training of classifier C3, were important for classifications.

7.6.3 Calibrating random forest models

Generally there are no classifier performance penalties for having a
RF with more trees [191]. This normally reduces the out of bag error
and increases the number of correctly classified pixels. However, as
described in the previous section, there were resource issues to con-
sider; training and classifications would have taken longer. Also, ac-
cording to Breiman [192] the number of trees in a RF should be set to
200 initially. It can then be tuned as required. The initial number of
random features for RF is given by the square root of the maximum
number of features [192]. In the final feature-speed optimised test,
there were 20 features used to construct the test classifier, C3. Thus,
following Breiman'’s [192] rule-of-thumb, the ideal number of random
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features provided to the model for training should have been around
five. These two parameters were evaluated in WEKA Experimenter, us-
ing the approximate guidelines suggested by Breiman [192].

In the first analysis, twenty-one RF models were loaded into WEKA
Experimenter for testing. The results showed the processing time ex-
ponentially increased as the number of trees increased (refer to Figure
6.4, pg. 87). The tests also indicated beyond a certain number of trees,
there was little improvement in the out of bag error. For example, the
gains were not significant after N = 150. Therefore, on the balance
between processing time, resource usage and error reduction the to-
tal number of trees for the test classifier C4, was set at N = 50. The
test classifier C4 was re-run via TWS. The total model processing was
around 11 x faster than C1; 30 x faster than C2 and 2 x faster than C3.
Thus, a considerable improvement in processing time was achieved
by optimising the features and number of trees.

In the second analysis, twenty RF models were added to WEKA Ex-
perimenter. The results indicated, the classifier performance improved
when more random features were provided to the model for train-
ing (refer to Figure 6.5, pg.88). These evaluations also confirmed of
Breiman’s [192] rule-of-thumb for selecting the ideal number of ran-
dom features. For example, at M = 8 the ooy, = 0.62%. This was
slightly better than the out of bag error returned for classifier C4,
00p = 1.083%. These improvements were gained at little processing
expense. Therefore, the final monitoring classifiers were constructed
with N =50 and M = 8.

7.6.4 Benchmarking classifier performances

Calibration investigations confirmed the ideal features that should be
provided to the monitoring classifiers for training. Also, the ideal tun-
ing parameters for the RF models. However, although the RF model
is the default machine learner in TWS, many different types of WEKA
machine learners were available [93, 123, 186].In theory, other could
have been selected and trained to classify the monitoring images.
For example, support vector machines (SVM) are popular classifiers
[78, 158, 193]. They also perform well in some imaging applications
[78, 193]. Until recently SVMs were considered to be one of the most
accurate classifiers available [161].

Therefore, the final test classifier, CF (N = 50, M = 8) was com-
pared to other well known machine learners, using WEKA Experi-
menter. The purpose of these tests were to gauge the performance
of the RF models, over other types of machine learners. Specifically,
when applied to the data-set created from the representative stack
of nest images. Four RF models were added to the experiment. The
final monitoring classifier was added as the benchmark model. Six
other models were included; these are listed below. All other clas-
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sifiers were left at WEKA or FIJI default settings. The percentage of
correctly classified instances were reported (refer to Table 6.2, pg. 9o).

Benchmark results showed there were no significant improvements
by any other models over CE. Three gave results that were statisti-
cally worse. The naive Bayes model (M8) did not perform as well as
classifier CF on the test data-set. Correctly classified instances were
lower at 90.63%. The ZeroR (M2) was the baseline classifier so was
expected to give the lowest benchmark. It returned a result of 90.35%.
The VotedPerceptron (Mg) and SMO (M10) models returned a lower
number of correctly classified instances compared to CF; 95% and
96.72% respectively. The results are listed below. They include a brief
description of the model, the percentage correctly classified instances
and the WEKA model file-identifier, indicating the number of tuning
parameters associated with each classifier.

M1 Final monitoring classifier (CF)-99.42%.
hr.irb.fastRandomForest.FastRandomForest-11501-K181-S11

M2 Baseline model-94.88%:=
rules.ZeroR

M3 WEKA Decision Tree-98.37%
trees.J48-C 0.25 -M | 2

M4 WEKA Random Tree-98.02%
trees.RandomTree-Klo!-Ml1.0!1-Vl0.00101-S 1

Ms WEKA Random Forest-99.19%
trees.RandomForest-I1101-Klol-S11|-num-slots | 1

M6 TwS Fast Random Forest-98.95%
hr.irb.fastRandomForest.FastRandomForest-11501-K121-S11

My Tws Fast Random Forest-99.07%
hr.irb.fastRandomForest.FastRandomForest-11200-K|21-S|1

M8 WEKA Naive Bayes-90.35%#*
bayes.NaiveBayes

Mg WEKA Neural Network-95.71%=
functions.VotedPerceptron-II11-E 1.0/-S11|-M 10000

Mio WEKA Support Vector Machine-96.74%*
functions.SMO-Cl1!-L1.0o1!-Pl1.0E-12|-Nlol-VI-1|-WI1]-K|
functions.supportVector.PolyKernel-E | 1.0 | -C | 250007

7.6.5 Interpreting results

The test results could not be used to preclude the usefulness of other
classifiers for the nest-image segmentations [93, 185, 186]. However,
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the results did highlight the difficulties associated with calibrating
some models [73, 161, 186]. Extensive skills are required to tune spe-
cific machine learners for any given task. Most require tuning for
each specific task [73, 161]. In the benchmark tests only two of the RF
models were tuned; the C4 and CF test classifiers. The other models
were left at FIJT or WEKA default settings. This was because most were
too complex to attempt tuning. As previously mentioned, WEKA has
at least fifty different types of models [93]. Each model requires spe-
cific tuning. The number of optimisation parameters varies between
classifiers. The tuning options for each algorithm can be identified
from the WEKA model names. For example, the VotedPerceptron (Mg)
has 8 tuning parameters and the SMO (M10) has 16. The complexity
of the optimisation task for each model, increases with each added
parameter. Therefore, no final conclusions were reached about the
performance of one type of classifier, over another type.

The overall objectives of the image-centric monitoring system were
equally important to consider. One of the aims of this research was to
present a practical image-centric monitoring method for native bees.
Ideally by selecting the most appropriate tools currently available,
during each stage of the imaging pipeline. Also, by using tools which
could be easily used, with methods that could be replicated. How-
ever there were no major constraints regarding the types of tools des-
ignated for the imaging system. Therefore, the benchmark tests con-
firmed two central ideas:

1. It was more productive to concentrate on tuning a single
machine learner very well, using fully documented methods,
rather than comparing the performance of different algorithms.

2. On the nest-image segmentation task, and in comparison to
other WEKA models, the RF classifier was easy to tune, train and

apply.

Image classification tools were a key aspect of the image-centric
monitoring system, at the segmentation stage of the imaging pipeline.
Because of this, it was apparent the entire training process would
need to be easily replicated by others. It is possible other algorithms
could have outperformed the RF. However, without a good knowl-
edge of the affects of tuning parameters, the optimisation of other
models was considerably more complex. In comparison to some
WEKA algorithms, the RF classifier was straightforward to tune, and
easy to train. When it was applied to the stack of representative nest
images, the segmentations results were sufficient. For these reasons,
the RF classifier was selected for monitoring image segmentations.
The remaining discussions therefore concentrate on the RF classifier.
As it was applied, to segment images of active nests.
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7.6.6  Segmentation performance

In biomedical imaging applications, segmentation metrics are gen-
erally applied to measure the performance of techniques of meth-
ods [174]. This is because microscopic images are normally central in
most analyses. In these applications, the most common benchmarking
method is to provide manually annotated ground truth labels. These
are used in final comparisons. In these cases, there are few other av-
enues that can be used to determine the validity of automated image
segmentations. However, in this research, the number of active nests
that were represented in each of the monitoring images, were manu-
ally counted in the field. Therefore the manual-field nest counts pro-
vided a valid benchmark for comparison [176]. It was not necessary to
evaluate the image-centric monitoring system results, in terms of the
segmentation metrics. Even though manual-image nest counts were
also recorded, the agreements between manual-field and automated
counts were more critical in the final analyses. Nevertheless, visual as-
sessments of nest image segmentations were a necessary part of the
development of the image-centric monitoring system. Image segmenta-
tions were constantly checked. They were used to optimise classifiers
and refine post processing operations. These methods are discussed
in the following paragraphs.

7.6.7  Preliminary assessments

The representative image stack of six images were fully processed us-
ing the final test classifier CF. The results were visually assessed. The
original training for the test classifiers was completed in a single ses-
sion. This was not enough training to properly construct the test clas-
sifier. The segmentations from CF were post-processed. The final nest
counts did not correspond well with the manual-image or manual-
field counts for the representative stack of images. At least, not over
the entire image stack. The number of objects counted in slice 6 was
particularly high at 64, as shown in Table 7.2. Therefore, a single trace
was added and the model was trained again (CF2). The segmentation
results were checked. Another trace was added and the model was
trained (CF3). The final counts were visually checked against raw RGB
images for verification. They were verified against the manual field
counts. This is summarised in Table 7.2 below. The output log from
TWS training is documented below, in Listing 7.1 (pg. 138).

The number of pixels representing active nests (class 1) was not al-
tered for classifier CF re-training. The number of background pixels
(class 2) for CF1 = 816, CF2 = 864 and CF3 = 996. The output results
showed little change in the out of bag error between classifiers: CF1-
00y = 0.581%, CF2-00y, = 0.661% and CF3-o00y = 0.577%. However,
the segmentations changed markedly. The number of objects counted
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Table 7.2: The final automatic count results on representative images (slices
s1-s6) using CF,¢ compared to manual-image and manual-field counts.

Method slice 1 slice 2 slice 3 slice 4 slice 5 slice 6
CF1 21 11 14 22 4 64
CF2 21 2 3 13 3 14
CF3 7 3 8 4 3 8
Manual image 3 3 3 2 2 2
Manual field 2 4 4 3 4 9

CF1 Training input:
3 # of pixels selected as class 1: 44
# of pixels selected as class 2: 816
5 Creating training data took: 38ms
Training classifier...
7 FastRandomForest of 50 trees, each constructed while considering 8 random
features.
Out of bag error: 0.581%

CF2 Training input:
11 # of pixels selected as class 1: 44
# of pixels selected as class 2: 864
13 Creating training data took: 34ms
Training classifier...
15 FastRandomForest of 50 trees, each constructed while considering 8 random
features.
Out of bag error: 0.661%
17 mmm e
CF3 Training input:
19 # of pixels selected as class 1: 44
# of pixels selected as class 2: 996
21 Creating training data took: 28ms
Training classifier...
23 FastRandomForest of 50 trees, each constructed while considering 8 random
features.
Out of bag error: 0.577%

Listing 7.1: FIIT output log from test classifier (CF) re-training.
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in slice 1 and 3 were marginally raised. All other slices were reason-
ably well segmented. These results highlighted several concepts:

1. Nest-classifiers could be retrained using a very minimal number
of corrective-traces.

2. For nest images these corrections were always traces of back-
ground pixels (e.g. class 2).

3. It was difficult to train the test classifiers to properly segment
all the slices in the representative stack (e.g. slice 1 and 3).

4. The out of bag error could not be relied on to reflect the quality
of image segmentations.

7.6.8 Summary of classifier tests

The lessons gained from empirical analyses and test classifier perfor-
mance tests were important. They contributed greatly towards the
training methods adopted for monitoring images. There are no stan-
dard procedures that can be applied. Generally, each machine learn-
ing model is tuned to perform well on a specific task [73]. Also,
since the advent of digital images, hundreds of automatic and semi-
automatic segmentation algorithms have been developed [188]. No
single method could be considered appropriate for all types of im-
ages. Those designed for a particular type of image, are not always
applicable to others. In this research the RF was selected. The tests
confirmed they are easy to train, tune and apply.

The variability of active nest images presents a challenge for any
classifier model. Monitoring photographs were inconsistent and di-
verse. The same active nest monitored over time could change in
colour and texture. This was because the local landscapes naturally al-
tered. The nests of native bees were variable at coarse and fine scales.
Nests within the same community could be vastly different. They
also varied between geographically separated communities as natu-
ral landscapes changed.

Therefore, some general rules for training were adopted. This was
in order to gain the best possible performance of the RF classifier for
this analyses and so training could be closely replicated by others. The
term closely replicated, comes with a caveat. The semi-supervised
training method cannot actually be repeated. This is because, each
time a classifier is trained, the final model will always be different.
When a new model is applied to the same dataset, it will produce al-
ternative segmentation results. RF models are also constructed with a
random seed. The seed is used during training. Because the processes
are stochastic, the random seeds, models and trace data-sets would
be necessary in order to reproduce the same image segmentations.
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The tests highlighted both the strength and weakness of semi-
supervised machine learning. User-supervised learning can improve
image classifications. This is because humans draw on considerably
more knowledge when performing manual segmentations. But, a
human-interactive approach is dynamic. Therefore, the performance
of final classifier models are dependent on a number of subjective
choices. Such as the images used for training, the human-selected
traces provided during training and the suitability of features sup-
plied to the classifier during construction. As mentioned previously,
feature engineering can be ill-defined. Although the importances of
single features can be analysed, it is the combined value of all fea-
tures that contributes to final model performances. The interaction
between training features cannot be fully analysed. The process is
dynamic and it occurs during classifier training.

Nevertheless, and despite these considerations, on the task of seg-
menting active nest images, there were few other image analysis op-
tions. No other methods could perform appropriately with the mon-
itoring images. As demonstrated, most traditional methods cannot
be used to segment the range of nest images gathered during field
monitoring. Some could be used to segment horizontal grounds nest
images. However, this was because they were much easier to thresh-
old. Most traditional methods, which are based only on the intensity
information of pixels, are not suitable for segmenting the range of
variable nest images.

The tools and methods to test, train and apply machine algorithms
are freely available, in software platforms such as TWS and WEKA. The
TWS plug-in was designed to use human knowledge in the segmen-
tation process. This technique improves the accuracy of the labelled
regions. The algorithms in TWS have been developed for medical im-
ages. However, they can easily be applied to other tasks. Classifiers
such as the RF can be adapted for other types of images, in differ-
ent applications, using the TWS platform. The software is easy to
work with and is accessible to experienced and inexperienced users.
The methods used to train RF classifiers for segmenting the nest-
monitoring images, using TWS, are discussed in the next sections.

7.7 MONITORING CLASSIFIERS

As previously discussed, the more trees and features that are used
to train RF classifiers, the better the final image segmentations are.
However, the computational costs increase as the number of features
and trees grow [191]. This was an important consideration. Computer
hardware and performance limited the final design of monitoring
classifiers. For this reason a minimalistic approach was adopted. Clas-
sifiers were optimised for speed to reduce the overall time required to
process the monitoring images. A total of 1896 slices were processed,
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each image was 32-bit RGB, 500 x 500 pixels in size. Final classifica-
tions were completed in a day. This was a substantial improvement
on previous analyses [21, 29, 40, 41, 43]. Additionally, any obvious
processing errors could be quickly rectified. The batch classifications
could be re-run.

7.7.1  Variability of training images

Four training stacks were collated for each site. Each site-grid classi-
fier was trained separately using respective stacks. This was to sim-
plify and speed up the training process. This method also improved
overall classifications. This was because models could be constructed
on a sub-sample of variable images. Thus, they could be tuned for
the specific image types, associated with each monitoring site. There
were twelve stacks in total, four per site.

7.7.2  Morphological operators tuned for segmentations

Several morphological operations and pipeline combinations were
empirically tested, using the small test stack. This was before the fi-
nal post-processing operations were applied to the classified stack of
monitoring images. When the morphological operations were com-
pleted, the counted results were visually checked against the origi-
nal RGB monitoring images. They were verified against the manual
field counts. The post-processing operations were tuned specifically
for the segmented monitoring-images produced using the CF clas-
sifiers. If new classifiers were constructed, new post-processing op-
erators would most likely be necessary. This is because, even if the
same method is used to construct the nest-classifiers, the final mod-
els would not be exactly the same. Thus, they would not produce
replica image segmentations.

Additionally, the performance of final classifier segmentations were
compared to nest-segmentations produced using classical methods.
There was no attempt to tune the post-processing operators for image-
segmentations produced from the classical intensity-based methods.
It is possible, although very unlikely, the final nest count results from
the classical methods could have been improved by morphological
operators.

78 VERIFICATION METHODOLOGY

As discussed previously, classifier performance evaluations provided
confirmation of the suitability of the RF, as machine learning tool for
nest image segmentation. When combined with the functionality the
TWS workbench, they were easy to train, test and apply. Segmentation
of nest images using the model, were good enough given the irregu-
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larity of image data. They were considerably better than the classical
methods tested. When the RF was compared against other machine
learners, classifier tests and benchmark investigations did not neces-
sarily preclude the suitability of other models (Table 6.2). But, there
were practical benefits associated with the RF classifier that could not
be underestimated. These benefits probably account for the popular-
ity of RFs in real-world data applications [169, 194, 195]. They con-
tributed to the adoption of the model for nest image-segmentations.

However, the main verification of the image-centric monitoring
method primarily focused on the agreements between manual-field
and automatic nest counts. Secondary to this, were the differ-
ences between manual-image counts, compared to the automatic
and manual-field counts. Inter-observer correlations between manual-
image counts were also measured [179]. There were insufficient data
for inter-observer correlations between the manual-field counts by
two observers (refer to Chapter 4, Section 4.2). This was because field
data were collected primarily by a single observer. Before the final
comparisons were made, the automatic nest count results were modi-
fied. The reasons for this are outlined further in the proceeding para-
graphs.

7.8.1  Replica image collections?

Each image collection was comprised of near-replica images. They
were data collected from the same location, grid and day but sep-
arated by minutes and seconds. Separate collections were therefore
comprised of different images. Each single one, was acquired un-
der varying natural conditions. During preliminary analyses, there
were some individual nest counts that were vastly different between
the collections. This was unexpected. The reasons for the variations
were investigated further. Where count data was significantly differ-
ent between the collections, the raw monitoring images were visually
checked. A pdf document comprising of raw RGB monitoring images,
alongside the count overlay results, was used to visually investigate
discrepancies. It was found that in most cases, the exposure and illu-
mination varied considerably between image collections. This there-
fore produced some very different image segmentations and final
count results. To mitigate this issue, the median counts were taken
across the three image collections. These were the final data which
were used to compare manual-field, manual-image and automatic
methods.
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7.8.2  Lin’s concordance correlation coefficient measure

Lin’s concordance correlation coefficient is an accepted measure used
to determine the level of agreement, accuracy and precision between
different methods [176, 179]. There are several points to consider
when using the assessment. Firstly, it cannot be used to judge the
correctness of the separate methods in isolation; only the degree to
which the different methods agree with each other [196]. Secondly,
descriptive scales for the concordance correlation coefficients have
not been formally established. McBride [197] has provided unofficial
guidelines for the measures of agreements (of continuous variables);
these are shown in Table 7.3 below. Finally, the guidelines shown were
designed for laboratory applications; they are included here because
they are the only descriptions documented to date. They provide the
ideal standards for continuous variables using laboratory methods.
The same level of control over experimental conditions are not fea-
sible when collecting natural, outdoor biological data. For these rea-
sons, it is reasonable to expect more relaxed levels for the nest-count
analyses discussed here; as has been reported in similar types of ap-
plications [177, 178].

Table 7.3: Guidelines for the strength of agreements using concordance of
correlation (p¢) for laboratory methods. There are no published guidelines
for field biology; a more relaxed scale for natural data is expected.

Range of p, Description
0.00 - 0.65 Poor

0.65 - 0.80 Moderate

0.80 - 0.90 Substantial
0.99 - 1.00 Almost perfect

7.8.2.1  Manual-field, image and automated nest counts

The level of agreement, accuracy and precision between the number
of nests counted by different methods was measured using Lin’s
concordance correlation coefficient [176, 179]. The most important
of these comparisons were between the number of nests counted in
the field (which were the gold-standard measures) and the automatic
counts derived from the CF classifier.

In order to better understand the range of results, method com-
parisons were ranked in order of the total sum of performance mea-
sures. These are shown in Table 7.4 (pg. 145). Inter-observer counts
were ranked the highest. The differences between the manual-image
counts from two scorers (n = 170) showed there was good agree-
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ment (p. = 0.867), precision (r = 0.891) and accuracy (Cy, = 0.973).
The differences between the automated counts (n = 1284) derived by
thresholding (a-th) and classification (a-CF), were ranked the lowest.
There was no agreement (p. = 0.04), precision (r = 0.284) or accuracy
(Cp =0.164).

These results appeared valid. According to similar types of analy-
ses, inter-observer variability and measurements were within accept-
able ranges [177, 178]. The counts derived from the a-th method were
not expected to be reasonable. This was because only 1/3 of the image
data could be sufficiently segmented using intensity measurements
(i.e. only the horizontal ground nests). Therefore, in the absence of
more appropriate guidelines, these upper and lower ranks were used
to assess the validity of the other comparisons.

The manual-field and a-CF methods were ranked second overall.
There was good agreement between manual-field and a-CF counts
(pc = 0.738), with good precision (r = 0.828) and accuracy (Cy, =
0.891). The manual-image and a-CF methods were ranked third. They
showed a similar agreement (p. = 0.679) and precision (r = 0.705)
and slightly higher accuracy (Cy, = 0.963). The manual-field and
manual-image methods were ranked in fourth place. Overall there
was much less agreement (p. = 0.622) and precision (r = 0.641) but
still a reasonable accuracy (Cp = 0.970).

7.8.3 Interpreting results

In summary, these results indicated the automated a-CF counts were
in closer agreement with the true nest count values, than those es-
timated from images. The automated counts showed greater varia-
tion. The manual-field counts were generally lower and more dis-
crete. Manual-field nest counts were more likely to be rounded up, or
down to the nearest whole numbers; counts above forty were always
estimated. Data were highly skewed with a very high dispersal in-
dex (refer to Figure 6.10, pg. 99). They were not normally distributed
[45, 47] (refer to Figure 6.10, pg. 99). Data were not transformed for
analyses. The relative methods performances and yearly trends were
sufficiently apparent when raw count data was used. A graphical
analysis of the mean nest counts and the standard error of the means
(error bars), were used to describe the trends in active nests by three
different methods. The standard errors for mean nest counts per site
and year were moderate to high in most instances. They were indica-
tive of the wide variation in the numbers of active nests. Similar types
of standard error trends have been reported for nest counts in related
studies [16, 64, 66].
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Table 7.4: Methods ranked by performance measures of precision (r), agree-
ment (p.) and accuracy (Cyp).

Rank Method 1 Method 2 n T Pec Cp

1 m-image ob1 m-image ob2 170 0.891 0.867 0.973

2 m-field a-CF 520 0.828 0.738 0.891

3 m-image a-CF 170  0.705 0.679 0.963

4 m-field m-image 170  0.641 0.622 0.970

5 a-ths a-CF 1284 0.244 0.040 0.164
Table key

Automatic (a-) and manual (m-) methods

Images segmented by monitoring classifier CF

Images segmented by default thresholds

Nests counted from images by two scorers

Number of (paired) samples

Pearson’s correlation coefficient (precision)

Lin’s Concordance of Correlation (agreement)

Bias correction factor (accuracy)
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7.8.3.1  Nest-counts, population trends and other ecological observations

Long term, quantitative records would be required before substan-
tial conclusions about ecological trends could be reliably established.
Nevertheless, the nest-count data indicated a general decline in pop-
ulations of native bees, at all three monitoring locations, over five
years. To examine these trends, nest-count data collected during the
first monitoring season at each site (i.e. 2010 for S1 and S2, and 2011
for S3) were used as a benchmark to compare against subsequent
years. The trends showed general moderate to marked decreases. The
percentage declines varied between 27-70%, at all three locations be-
tween 2010 and 2013. These are summarised in Table 7.5 below. There
were not enough data collected in 2014 (Ngaqys = 3) to establish firm
conclusions about trends for that year. Some data appeared unstable
(e.g. see m-field for S1, Figure 6.16, pg. 108 ). However, the graphical
analysis suggested slight increases in nest numbers.

The underlying ecological processes contributing towards the de-
creases in the numbers of active nests of native bees (at the loca-
tions monitored) are probably multifaceted. The community changes
could be a consequence of: 1) natural cyclic successions [198, 199],
2) an alteration of community landscapes creating habitat fragmenta-
tion/degradation, 3) the affects of environmental pollutants/toxins,
or 4) increasing competition with exotic bees for food resources.

Without long term monitoring, it is difficult to determine if fluctu-
ations in populations (as indicated by the decline in nest counts) are
suggestive of a population-crisis or if they are part of a much larger
natural cycle?

General observations have indicated macro and micro climatic
changes could be a confounding factor impacting communities of
native bees in Whangarei. For example, no nest-count data were col-
lected in 2009, the year monitoring was initiated. This was due to a
severe drought which impacted Northland. Although surveys indi-
cated native bees were emerging normally, they were only active for
a few weeks.

7.9 PERFORMANCE-COST MEASURES

The time taken to construct the features stacks, train and apply clas-
sifiers was an important consideration in this research. This was prin-
cipally due to the limited capabilities of the desktop computer that
was used for imaging tasks (refer to Table 5.1, pg. 57). It would not be
considered high performing, by most current standards. There were
some adjustments made to the operating system environment that
helped to optimise the desktop for image processing tasks; these are
discussed further in the sections below.

From initial analysis of classifier settings using the representative
stack of six images, a range of feature importances were investigated.
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Table 7.5: Decline in the number of active nests (%), benchmarked against
nest counts in 2010 for S1 and S2; 2011 for S3. The upper (*) and lower (**)
percentage decreases are shown for automatic (a-CF) and manual field (m-
field) methods. The trends show a decrease in the number of active nests
(51-S3) between the years 2011—2013. Although based on a small sample, a
slight rise in 2014 is indicated (A).

Site Method 2011 2012 2013 2014

S1  a-CF 41-47 45-48 55-58 5-154
m-field 32-33 36-40 48-49 40 - 46

S2  a-CF 35 66 42 - 43 26 - 37
m-field 27 54 -55 27-29 38-39 A

S3 a-CF 67-70 65-69** 48-59
m-field 37 36 4% -13

Table key

Automatic (a-) and manual (m-) methods

Images segmented by monitoring classifier CF a-CF

Percentage increase indicated A

Lowest percentage decrease *

Highest percentage decrease o
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Of those tested, Gaussian blur, Mean, Minimum, Median, and Struc-
tures filters produced sufficient segmentations (see Figure 6.3). More-
over, they were all shown to have importances that contributed to
final classifications. The number of sigma was reduced from the de-
fault setting to 0 = 2. This also reduced processing expenditure. Com-
bined with the raw RGB and HSB images, a total of 20 features were
used for training for the final monitoring-classifiers. Monitoring im-
ages were processed in a single day and classifications could be easily
repeated if and when required.

7.9.1  Operating system environment

During previous analyses, there were significant memory problems
during processing. This problem normally surfaced as out of mem-
ory exceptions. They were thrown during TWSs. Some of the early
classifications required days to process. A range of solutions were
tested such as increasing RAM memory and reducing the size of im-
age stacks. Although most solutions helped a little, the performance
of processing considerably improved when the operating system was
changed to Linux (early 2014). FIJl and WEKA are cross-platform. How-
ever, the performance of both software packages were noticeably en-
hanced under Linux. The operating system was more versatile. It was
easily configured for the specific imaging tasks. Ubuntu swap mem-
ory was turned off during image processing jobs. This stopped pro-
cesses from being swapped out of physical memory. Virtual memory
options were passed to the JavaVM from FIJI's main configuration file.
This was to increase the memory heap size. Combined these adjust-
ments improved the stability of the operating system, software perfor-
mance and final classification processing times. The memory leakage
problems that occurred during previous analysis, were entirely miti-
gated during final classifications.

7.10 IMAGING PIPELINE DESIGN
The final image pipeline design is shown in Figure 7.13 below. A

list of corresponding software tools and methods that were used to
complete each task, are listed for reference in Table 7.6 (pg. 150 ).
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Table 7.6: Image pipeline tasks and tools.

Stage and task

Tools

A) Acquisition:
Copying, sorting, stor-
ing and sharing data.

B-C) Preprocessing:
Rename by EXIF data.

Crop to region of inter-
est.

Collate, adjust parame-
ters and review infor-
mation.

D) Classify:

Features and classifica-
tion.

E) Post processing:
Enhance for segmenta-

tion.

Count segmented ar-
eas.

Prepare CSV  results

data for analysis.

F-G) Verification:

Real-time logs.

Compare classifiers.

Visualisation.

Sharing.

Transfer from SD card to PC — Linux terminal
bash command [200]. Store on partition hard-
drive and external drive [200]. Share data via
Git-hub repository [201, 202].

pyRenamer — mass file re-namer for GNOME
[203]. Exif tool — read, write and edit meta infor-
mation [204].

Xnview — viewing, converting, organising and
editing raster images [150].

FIJI — image processing workbench [101].

FIJI TWS plug-in — machine learning algorithms
and selected image features for pixel-based seg-
mentations. [101].

FIII — morphological binary operations such as
erosion, dilatation and thinning to remove iso-
lated pixels [101].

FIJT Analyze particles plug-in — count number of
objects based on size and circularity, save as CSV
file.

Apache Open Office — Software suite for word
processing, spreadsheets, presentations, graph-
ics, databases. [205].

FIII TWS plug-in — runtime logs of performance
measures [101].
The WEKA workbench — a collection of machine

learning algorithms for data mining tasks. [93,
108].

RStudio-software environment for statistical
computing and graphics.[206]

SmartGit — GUI tools for committing (git-gui)
and browsing [207].
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7.11 SUMMARY OF DISCUSSIONS

Three communities of native bees were monitored over five years.
The number of active nests were manually counted. Images of the
nests were collected for analyses. Monitoring methods were primar-
ily designed to reduce the number of variables influencing image
data. Therefore, exactly the same nests were monitored, in nearly the
same way, approximately the same time each collection day, every
season. Despite this, the images of active nests were highly variable.
They proved difficult to segment. Because outdoor images were a re-
quirement, many of the problems were unavoidable. There were also
limitations with the hardware tools used for field image collections,
processing and analysis. These constraints were not easily overcome.
Finally, data management and protection was another factor impact-
ing the outcomes of this research. Lightning strikes were the most
likely cause of a fatal hardware failure in 2012; the incident resulted
the loss of some key image data. Combined these issues had an im-
pact on the design of the final image-centric monitoring system pre-
sented in this thesis.

A complete imaging pipeline was developed, tested and verified
using open-source tools and methods. The software tools, code and
scripts that were used to process the monitoring images and confirm
results, were fully documented for easy replication. Monitoring im-
ages were segmented using TWSs and were based on the RF classifier.
The RF uses a number of random choices during the learning process.
As a result, this aspect of the imaging pipeline would be difficult to
replicate. Trainable image segmentation methods are relatively new
technologies, as are some of the concepts and theories they are based
upon. This includes a synergy of current image analysis theory, ap-
plied machine learning, data mining concepts and knowledge discov-
ery. FIJI and the TWS workbench have been invaluable tools in this re-
search. However, FIJI was designed for biomedical applications. Con-
sequently, there were few general procedures to follow. There were no
known documented examples to draw upon during the development
of the image-centric monitoring system. Therefore, the methods that
were used to test, train, construct and apply the monitoring classifiers
were fully outlined. There could be alternative methods that are more
suitable for the monitoring application described. All the same, the
techniques were developed and refined over many hours of empirical
tests. They provide a good platform for future developments.

Segmentation metrics are often used to evaluate the performance
of imaging systems. However, these metrics were not used to test the
performance of the image-centric nest monitoring system. Rather, the
level of agreements between counts by different methods were mea-
sured [176, 179]. The number of actual active nests provided the bench-
mark. All other data were compared to these counts. Five analyses

151



were conducted; the differences between manual-field, manual-image
and automated counts derived from classical threshold methods, or
from the final monitoring classifier (CF) were compared. Similar re-
sults have been reported for inter-observer variability between visual
scorers assessing plant diseases [177].

The automated a-CF counts were in closer agreement with the true
nest count values, than those estimated from images. There was mod-
erate agreement between manual-field and a-CF counts (p. = 0.738),
with good precision (r = 0.828) and accuracy (C, = 0.891). The
manual-field and manual-image methods indicated there was much
less agreement (p. = 0.622) and precision (r = 0.641); but still good
accuracy (Cy = 0.970).

Graphical analyses of the mean nest counts and the standard error
of the means (error bars), were used to describe the trends in active
nests, by three different methods. The standard errors for mean nest
counts per site and year, were moderate to high in most instances.
They were indicative of the wide variation in the numbers of active
nests and similar to levels reported in related studies [16, 64, 66].

The nest count results taken over five years showed moderate to
marked decreases. The percentage declines varied between 26-69%,
at all three locations. There was not enough data collected in 2014
to form substantial conclusions. However, the graphical analyses sug-
gests a slight upward trend in nest numbers.
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CONCLUSIONS

SYNOPSIS

There are few tools to aid in the study of New Zealand’s native bees.
Thus, base-line data on the population health and status of native
bees are limited. Traditional field methods can be time consuming
and complicated. This situation appears unlikely to change in the
near future. Therefore, the main aims of this study were to design, ap-
ply and verify the performance of a simplified image-centric type mon-
itoring system for New Zealand’s native bees. There were no specific
constraints about the types of imaging methods or technologies used.
There were a range of approaches that could have been taken. Look-
ing towards the future, community scientists could play an important
role as human sensors. Monitoring initiatives might even be commu-
nity initiated and driven. Therefore, open source solutions were more
viable. For this reason the research design was fundamentally solu-
tions driven. This chapter provides an overall summary of the research
outcomes and a perspective on future developments.

THE KEY CONCEPTS:

e If the populations of solitary ground nesting bees can be esti-
mated by the number of active nests in a community, then the
number of active nests can be manually counted.

¢ If the number of active nests can be manually counted in the field,
then they can be estimated from images.

e If they can be counted from images, then it is also feasible to
automate the processes.

This research was based on the idea that the number of active nests
of native bees, could provide a proxy for populations. That, it was possi-
ble to design field methods, to reliably count the number of active nests
at communities of native bees over space and time. That digital im-
ages could be used in the place of manual counts; simplifying methods.
Finally, that it was possible to process digital images to reliably count
active nests.
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THE OUTCOMES OF THIS RESEARCH ARE:
1. The fully documented designs of the image-centric system.
2. The monitoring data collected over five years.
3. The interpretation of results.

4. The considerations for future developments.

A PRACTICAL MONITORING PROGRAMME was designed to col-
lect manual nest counts and images of active nests. These data were
used for comparative analysis and proof of concept. Monitoring was
conducted over five years, at three communities of native bees in
Whangarei (New Zealand). A total of 1896 images were collected,
representing 158 monitoring days. They were processed and used in
a comparative analysis against manual field nest counts.

THE PERFORMANCE EVALUATION of the image-centric system
was based on a straightforward statistical analyses, using Lin’s con-
cordance coefficient of correlation. The agreement between manual-
field and automated counts were tested. Results indicated the image-
centric monitoring system could be used in the place of manual sam-
pling. There was reasonable agreement, accuracy and precision be-
tween manual-field and automated methods.

OPEN SOURCE TOOLS WERE SELECTED for all nest imaging pro-
cedures. Including data management, pre-processing, classifications,
post-processing and analyses. The image processing pipeline and
methods were described in detail. Field acquisition tools and equip-
ment were off-the-shelf or easily constructed. Therefore, any of the
techniques could be quickly replicated, adapted or modified for sim-
ilar projects.

MONITORING IMAGES WERE HIGHLY VARIABLE. The pixel areas
representing active nests were not easily defined. Therefore, classi-
cal segmentation techniques were not appropriate. In the past, there
were few alternatives to classical methods. However, there are new
techniques based on interactive machine learning. Therefore in this
research, nest image segmentations were achieved using a semi-
supervised machine learner and the TWS workbench.

THE PROCEDURES DEVELOPED TO OPTIMISE, train and apply
machine learning classifiers were described in detail. Although repli-
cation of the machine learning methods could be more difficult, the
central concepts were detailed. The image processing scripts, raw-
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field and raw-image data were made available via GitHub" [201, 202]
and Appendices F and E.

THE FINAL MONITORING RESULTS gave reliable estimations of
the number of active nests, at the communities evaluated. Also, the
changes in nest numbers over time. Therefore this research has pro-
vided sufficient evidence to show the populations of native bees could
be reliably measured, by using the image-centric monitoring method
outlined.

IN THE FUTURE nest image data could be collected using random
sampling methods. Thus, providing data that could be used for a
more rigorous scientific analysis. The field sampling methods have
little impact on the performance of the image-centric monitoring sys-
tem.

THE IMAGE-CENTRIC METHOD COULD STAND ALONE. It would
not depend on collecting manual nest count data. It could also be
possible to modify aspects of the image acquisition methods. For ex-
ample, imaging methods could incorporate remote imaging/sensing
technology. This would reduce the dependence on manual labour and
increase data capture for analyses.

THE IMAGE-CENTRIC SYSTEM WAS DESIGNED around four key
aspects. These are itemised below; with reference to original research
questions. Future developments are included in some of the points
discussed.

¢ What indicators could be used to establish the general health of
bee communities?

1. There was some reasonable evidence supporting the idea
that the active nests of solitary ground nesting bees can provide
a good proxy for populations [16, 64, 65, 66].

2. This hypothesis was not confirmed. However, in the future,
this could be tested in the field. Monitoring would need to
include other methods. For example, emergence traps, nest
core samples, or mark release recapture techniques [54].

3. There are good possibilities other types of digital data
could be incorporated into future research. For exam-
ple, mark release recapture techniques could be based
on audio-type sampling technologies (e.g. the system by
Potamitis et. al [84]).

¢ Could images be used to capture or quantify key indicators?

1 NZbees-http:/ /nzbees.github.io
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1.

Several image-types could have been used to quantify as-
pects of the biology and behaviour of native bees and
their communities. For example, Figure 7.1 (b) (Chapter 7)
shows images that could be used in survey-type methods.
They could be adapted for biodiversity-type sampling.

However, active nests were the basis for the image-centric
method presented in this thesis. There were several reasons
for this. Firstly, there was reasonably good evidence sup-
porting the methodology [16, 65, 66]. Secondly, compared
to other image-types, the images of active nests were much
easier to capture, process and analyse. Specifically:

a) The images of active nests were easy to capture.
b) The image area was easy to regulate.

¢) The image analyses required only two objects to be seg-
mented.

d) The results from analyses provided nest counts.

e) Nest counts could be directly used to measure popula-
tions.

. The segmentation tasks for active nests were more straight-

forward when compared to other types of images. It was
only necessary to segment areas of active nests from all
other backgrounds. Furthermore, data from image analysis
was based on the number of active nests in the images. This
data directly relates to estimations of populations. Because
of this, interpretation of results were straightforward. They
were achieved with minimal post-processing and statistical
treatments.

¢ Can image handling, acquisition and analyses be standardised?

1.

Some of the imaging tasks were standardised - other tasks
were not as straightforward.

. Since outdoor images were required, it was not possible to

regulate the variation in images (e.g. brightness and illu-
mination). This aspect could not be standardised. Conse-
quently, some of the methods would be more difficult to
replicate (e.g. classification based image segmentations).
Nevertheless, general image acquisition methods could be
easily replicated. Off-the-shelf tools and equipment were
used. The grid-based image acquisition technique was
straightforward and could be easily adapted.

* What pattern recognition, segmentation or classification tech-
niques best suit the image data?
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1. Classification based segmentation techniques were the only
valid option for the images of active nests. This was due to
the wide variability of images. Traditional intensity, edge
or region-based methods were not appropriate for the seg-
mentation stages of the imaging pipeline.

2. Feature engineering concepts are central to many machine
learning-based classification techniques. These could be
further investigated. Future developments around image-
centric monitoring for biological field sampling, could fo-
cus solely on feature engineering. For example, in some in-
stances several features may be closely correlated. In these
cases, is it really possible to determine which features are
important?

3. Also, as a concept feature engineering is often ill-defined;
but it is central to the success of machine learning tech-
niques. Is it possible to develop a selection of feature-
optimisation criteria for general outdoor imaging applica-
tions?

4. The RF was applied as a classification tool. It is well suited
to applications involving natural data. Consequently, RFs
are popular. Current research indicates RF classifiers are in
fact, the most powerful and accurate learners available. For
these reasons they were a good choice for image segmen-
tations used in this research.

5. However, despite their popularity, the statistical mechanisms
are still not that well understood. This is partly because
they are based on stochastic processes. Also, they operate
within algorithmic codes. Therefore, some of the processes
are effectively existing within black-boxes. Finally, while
other machine learners can be visualised, a RF could have
many thousands of branching trees. Therefore, they are
nearly impossible to visualise on monitors. These are all as-
pects of RFs that warrant deeper scholastic investigations.

¢ What methods can be used to verify the accuracy and precision
of imaging methods?

1. Manual-field nest counts were directly compared to counts
taken from images of active nests, and those derived from
classification-based image segmentations. Thus, verifica-
tion was straightforward.

2. Lin’s concordance of correlation statistics were used to
measure the degree of agreement, precision and accuracy
of methods. This was a comparative analyses.

3. The final analyses showed the number of nests counted
from images (visually) or by automated-image counts,
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compared favourably with manual-field counts. These data
indicated manual-field methods could be substituted with
the image-centric methods outlined.

4. There are a range of performance measures that were not
tested.

a) Image-based segmentation metrics were not checked.
However, they are commonly used measures in
biomedical imaging applications [174]. Segmentation
metrics are important tools. But, there were no valid
reasons to apply them in this research. The proper
ground-truth measures were the actual number of ac-
tive nests counted in the field.

i. In the future, image segmentations could be ap-
plied in real-time, in the field. Thereby confirm-
ing the number of nests counted via the auto-
mated methods, are entirely consistent with the
number of active nests counted in the field. This
would only be required once (per location). Classi-
fier training could be based on this initial calibra-
tion.

ii. Real-time calibration of the image-centric monitor-
ing system could be reasonably achieved with mini-
mal effort. This would improve the overall perfor-
mance of the design and increase the reliability of
classifications.

b) A range of machine learning performance measures
were not used. As with segmentation metrics, there
were no clear reasons to apply the tests. Furthermore,
most measures are important for machine learning
outcomes. Especially during the development of algo-
rithms; or comparative tests. However, they are not
necessarily relevant to studies involving the applica-
tion of machine learning algorithms. They were not
relevant to the outcomes of this research.

8.1 FINAL CONSIDERATIONS

COMMUNITY-BASED MONITORING Citizen science collaborations
might provide benefits beyond the collection of ecological data [208]. In
the future, citizen scientists could play an important role as kaitiaki
(stewards) of native bee communities. Lessons taken from established
initiatives, such as the Backyard Kiwi #, might help to springboard
community-based, bee-monitoring initiatives in Northland. This re-

2 http://www.backyardkiwi.org.nz/
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search provides a good basis for further development of community-
based methods for monitoring native bees, throughout Aotearoa (New
Zealand) and abroad. But, there are several important aspects to con-
sider:

* Many people are aware of the importance of honey and bum-
ble bees; and can easily identify the insects. This is not generally
the case for New Zealand’s native bees. They are frequently
misidentified as wasps or flies. Therefore, raising public aware-
ness is the first, critical step towards increasing the conservation
and protection of native bees and their habitats.

1. Knowledge sharing is an important consideration that may
impact the conservation of native bees. For instance, there
are at least five anecdotal accounts, where home-owners
have fly-sprayed entire communities of native bees, mis-
taking the insects for wasps.

2. A social network site, nzbees3, was established to engage
with a larger audience and share more information about
New Zealand’s native bees.

a) However, management and creation of web-content
has proven to be a time-consuming task. This aspect
may need further investigation.

b) Also, there are other avenues for disseminating infor-
mation, through schools, marae (community houses)
and other community-based groups. These have not
been widely explored in this research.

3. A GitHub account, nzbees 4, was created as a repository to
share and distribute image-data for analysis. This includes
a dedicated website for nzbees®, with content designed for
distribution of information to the public.

a) As above, the management of the website and repos-
itories can be time-consuming. Furthermore, GitHub
was not designed for storage of image based big-data.
Therefore, these aspects require further consideration.

b) Digital image database structures and the manage-
ment of centralised processing are significant areas
that were not investigated in this work. In the future
however, they could require careful planning.

3 https://www.facebook.com/NZBees
4 https://github.com/nzbees
5 http://nzbees.github.io/
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INDIGENOUS PERSPECTIVES A strong oral history in Aotearoa,
suggests there is a wealth of valuable indigenous knowledge about
the natural world, which is yet to be fully explored [209, 210].

* Alternative ways of knowing, can enrich understandings and
an increased awareness may even enhance traditional scien-
tific knowledge. The depth of these concepts are explored by
Roberts [211, pg.741]:

In common with other oral societies, New Zealand Maori
constructed mental maps by means of which they made
sense of their phenomenological world. Their cognitive tem-
plate, called whakapapa, consists of a genealogical frame-
work upon which spiritual, spatial, temporal and biophysi-
cal information about a particular place is located.

1. Whakapapa and other important oral histories surround-
ing native bees and their habitats, were not investigated in
this research. However, in the future, research into these
aspects could provide new and valuable insights.

¢ Traditional Maori knowledge systems were founded on empirical
observations of the natural world. These were collated over time
and space; and all aspects of nature were viewed as interrelated.

1. In this research, recorded observations have not been dis-
cussed, although they may provide valuable information.
For instance, native bees (Leioproctus spp.) were observed
nesting during the months of April-May in 2015. This phe-
nomenon has not previously been reported.

2. Therefore, this research could be extended further. To in-
vestigate any changes occurring within communities of na-
tive bees. For example, to examine whether the nesting be-
haviours of some species are changing; and, if there are
measurable changes, what the reasons might be?
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Part IV

APPENDIX



ACRONYMS

ARFF Attribute-relation file format

CART Classification and regression trees
ccc Concordance correlation coefficient
CR Compression ratio

Csv Comma separated values

cv Cross validation

DataONE  Data Observation Network for Earth

DPI Dots per inch

DSLR Digital single-lens reflex

EDM Euclidean distance map

EXIF Exchangeable image file format
FIJI Fiji is Just Image]

GB Gigabyte

GIS Geographical information systems
GPS Global positioning system

GUI Graphical user interface

HD Hard drive

HSB Hue saturation and brightness

HSI Hue saturation and intensity

M Image] macro

J2P JPEG 2000

JPEG Joint photographic experts group
KNB Knowledge Network for Bio-complexity
KNIME Konstanz Information Miner

LCD Liquid-crystal display
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ODG Open document graphics

oDpP Open document presentation
ODS Open document spreadsheet
ODT Open document text

oob Out of bag error

PC Personal computer

RAM Random-access memory

RF Random forest

RGB Red green and blue

ROI Region of interest

SD Secure digital device

spP Saturated pixels

SRM Statistical region merging
SVM Support vector machine

TIFF Tagged image file format
TWS Trainable Weka Segmentation
UAV Unmanned aerial vehicle
WEKA Waikato Environment for Knowledge Analysis
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GLOSSARY

Erode

Dilate

Open

Close

Shrinks the image, holes became larger and deletes
small details.

Enlarges object borders so holes become smaller.

Erode and Dilate, smooths objects contours, removes
isolated elements and breaks thin connections.

Dilate and Erode, smooths objects contours, fill
small holes and joins breaks.
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NOTATIONS

. . __original image data volume
Compression ratio CR= Compressed fmage daka volume e 33
P(A) —P(E)
Kappa statistic e 2
pp T—P(A) 4

(v+1/v+u?)

> 71 78

Bias correction factor Cy = |
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IMAGE EXIF DATA

Information stored in EXIF data from a single JPEG image of tiger bee-
tle nests — refer to Figure 7.3.

File

Filename P1010979.JPG

Filepath ~/ch3_imgs/test_format/JPEG

File size 4.14 MiB (4,337,982)

Note** RAW file = 10.51 MiB (11,022,336) therefore CR = 2.54

Creation date/time
Modified date/time

Accessed date/time

26/05/15 - 10:18 AM
11/05/15 12:05 PM
26/05/15 - 10:19 AM

Rating 0

Colour Label 0

Image

Format JPEG TrueColor (v1.1)
Width 4000

Height 2248

# of bits 24

Color model RGB

Print size 141.11X79.30 ¢m, 55.56x31.22 inches
Compression JPEG

Progressive mode No

Sub-sampling 2X1,1X1,1X1
Estimated quality 95

Images/frames count 1

Origin Top-Left

Camera

Info 1/640s f/5.6 1ISO100
Model DMC-G1

Date taken 11/05/15 12:05 PM
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#Copy images of a certain type/size into a new folder

#!/bin/bash

recup_dir="${1%/}" [ -d "$recup_dir" 1 ||

{echo "Usage:_$0_recup_dir";

echo "Mirror_files_from_recup_dir_into_recup_dir.by_ext,_organized_by,
extension";

exit 1};

find "$recup_dir" -type f | while read k; do

ext="¢{k##x.}";

ext_dir="$recup_dir.by_ext/$ext";

[ -d "$ext_dir" ] || mkdir -p "$ext_dir";

echo "${k%/*}" ln "$k" "$ext_dir"; done

#Sort images into newly created date-time based folders.

$w_dir = '/home/nh/ext_dir’;

$r_dir = '"/home/nh/photos/’

$jhead_bin = ’'/usr/bin/jhead’;

@rec_dirs = ‘ls ${w_dir} | grep recup_dir’

foreach $recup_dir (@rec_dirs) {print "Scanning_${recup_dir}...";

chomp $recup_dir;

@photos_in recup = ‘find ${w_dir}${recup_dir}/*jpg -type f -size +800k‘;

foreach $photo_file (@photos_in_recup)

{chomp $photo_file; print "IMG_$photo_file_in_$recup_dir\n";

@exif = ‘$jhead_bin -v $photo_file‘;

print "$jhead_bin_-v_$photo_file\n";

foreach $line (@exif) {if ($line =~ /Time\sx*:\s*x([0-9]{4}):([0-9]1{2})
:([0-9]1{2})\s[0-9:1{8}$/) {print "IMG_$photo_file_$1-$2-$3\n";

system("mkdir_${r_dir}$1-$2-$3");

system("mv_$photo_file_$r dir/$1-$2-$3/");last; }}}}

Listing E.1: Bash script to sort Photorec recovered images by extension; and
into date-time based folders.

#JavaVM options passed from Fiji configuration file.

jre/bin/java -Xms3000m -Xmx4000m -Xincgc -cp -XX:MaxPermSize=256m
-XX:PermSize=256m

-XX:NewRatio=5

-XX:CMSTriggerRatio=20

-XX:+UseCompressedOops

-XX:+UseParNewGC

-XX:MinHeapFreeRatio=5

-XX:MaxHeapFreeRatio=10

-- ij.jar ij.Imagel

cat /proc/sys/vm/swappiness
gksudo leafpad /etc/sysctl.conf
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# Decrease swap usage to a more reasonable level--or turn off
vm.swappiness=10

# Improve cache management

vm.vfs_cache_pressure=50

Listing E.2: JavaVM memory options passed from Fiji’s configuration files;
and Ubuntu swap memory and cache adjustments. These were made to
improve the stability of the operating system for image processing tasks.

#Use exiftool -tagsFromFile to get tages from files...cp copy from DIR -
to DIR#

ref_id //copy exif tags//copy_from Dir //save_to Dir

exiftool -tagsFromFile cp /071 _sort_collections/imgdata/10/1 _T110ANCM/C1l
/1/1.101124_124112.7pg

/081 _sorted_collections/imgdata/10/1 T110ANCM/C1/1C1/1C1_101124 124112 1.
ipg

exiftool -tagsFromFile cp

/071 _sort_collections/imgdata/10/1_T110ANCM/C1/1/1 101124 124113.jpg /081
_sorted_collections/imgdata/10/1_T110ANCM/C2/1C2/1C2_101124 124113 2
-jpg

Listing E.3: Bash snippet to sort collections.

Collate images into stacks and save.

run("Image_Sequence..."," _open=[t110_1cl]_convert_to_rgb_sort");
saveAs ("TIFF",st110_1cl+"st110_1c1l");

Enhance contrast.

run("Enhance_Contrast...", "saturated=0.4_process_all");
saveAs("Tiff", \_1lcl.tif");

Listing E.4: FII pre-processing example. Collate images into stacks and
enhance contrast.

//open classified image stacks and post-process

run("Make_Binary", "method=Default_background=Default_calculate");
run("Options...", "iterations=1_count=1_edm=Overwrite _do=[Fill_Holes] ,
stack");

run("Options...
)3

run("Options...
stack");

run("Options...

"iterations=10_count=5_pad_edm=0verwrite_do=Close_stack

"iterations=1_count=1_edm=0verwrite_do=[Fill_Holes]

"iterations=2_count=3_pad_edm=0verwrite_do=0pen_stack")

//count nests using three schemes....

run("Analyze_Particles...","size=10-Infinity_circularity=0.10-1.00_show=[
Overlay_Outlines]

run("Analyze Particles...","size=15-Infinity circularity=0.10-1.00 show=[
Overlay Outlines]

run("Analyze_Particles...","size=20-Infinity_circularity=0.10-1.00_show=[
Overlay_Outlines]

Listing E.5: FIJI post-processing snippet.
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//Contrast enhancement by saturated pixels
raw="/enhance_contrast/raw/"; //source and output dir
slice="/enhance_contrast/slice/";
stack="/enhance_contrast/stack/";
pre_process="/enhance_contrast/pre_process/";
montage="/enhance_contrast/montage/";
setBatchMode(true);
//open image and saturate pixels by 0.4, 40 and 90%
open(raw + "sc.tif");//scheme A
//makeRectangle (154, 85, 30, 30);
run("Enhance_Contrast...", "saturated=0.4_update");
saveAs ("TIFF", slice +"sl.tif");
open(raw + "sc.tif");//scheme B
//makeRectangle (154, 85, 30, 30);
run("Enhance_Contrast...", "saturated=40_update");
saveAs ("TIFF", slice +"s2.tif");
open(raw + "sc.tif");//scheme C
//makeRectangle (154, 85, 30, 30);
run("Enhance_Contrast...", "saturated=90_update");
saveAs ("TIFF", slice +"s3.tif");
run("Collect _Garbage");
//open adjusted images, measure histogram and save
open(slice +"sl.tif");makeRectangle(0, 0, 400, 400);
run("Histogram", "stack"); run("Canvas_Size...", "width=400_
height=400_position=Center_zero");
saveAs ("TIFF", slice + "s4 _hist.tif");
open(slice +"s2.tif");makeRectangle(0, 0, 400, 400);
run("Histogram", "stack"); run("Canvas_Size...", "width=400_
height=400_position=Center_zero");
saveAs ("TIFF", slice + "s5_hist.tif");
open(slice +"s3.tif");makeRectangle(0, 0, 400, 400);
run("Histogram", "stack"); run("Canvas_Size...", "width=400_
height=400_position=Center_zero");
saveAs("TIFF", slice + "s6_hist.tif");
setBatchMode(true);//do not display images
run("Image_Sequence...", "open=/tests/enhance_contrast/slice/0
_Ohist.tif_sort");
saveAs("Tiff", stack + "ecs.tif");
open(stack + "ecs.tif");
run("Make_Montage...", "columns=3_rows=2_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label_use");
saveAs("Tiff", montage + "1lms.tif"); saveAs("PNG", docf +
"mec.png");
setBatchMode(false);run("Close_All");//end

Listing E.6: FIJI saturated pixels example.

//Contrast enhancement for image stacks
raw="/pre_processing/raw/"; //source and output dir
slice="/pre_processing/slice/";
stack="/pre_processing/stack/";
pre_process="/pre_processing/pre_process/";
montage="/pre_processing/montage/";
setBatchMode(true);
//open image and apply contrast using 5 schemes
open(stack + "sc.tif");

saveAs("TIFF", stack + "O_sec.tif"); //raw stack
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open(stack + "sc.tif");//scheme 1
run("Enhance_Contrast...", "saturated=35");
saveAs("TIFF", stack + "l_sec.tif");
open(stack + "sc.tif");//scheme 2
run("Enhance_Contrast...", "saturated=35_equalize_process_all");
saveAs ("TIFF", stack +"2_sec.tif");
open(stack + "sc.tif");//scheme 3 //**x*xUSED
run("Enhance_Contrast...", "saturated=0.4_process_all");
saveAs ("TIFF", stack +"3_sec.tif");
open(stack + "sc.tif");//scheme 4
run("Enhance_Contrast...", "saturated=35_process_all_use");
saveAs ("TIFF", stack +"4_sec.tif");
open(stack + "sc.tif");//scheme 5
run("Enhance_Contrast..."
");
saveAs ("TIFF", stack +"5_sec.tif");
//open processed stacks and make montage
open(stack + "O_sec.tif"); //original unchanged
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label_use");
saveAs("TIFF", slice + "O_mscec.tif"); //
open(stack + "1 sec.tif");//scheme 1
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label_use");
saveAs ("TIFF", slice + "1l _mscec.tif");
open(stack + "2_sec.tif");//scheme 2
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label_use");
saveAs ("TIFF", slice +"2_mscec.tif");
open(stack + "3_sec.tif");//scheme 3 //xxx
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label_use");
saveAs ("TIFF", slice +"3_mscec.tif");
open(stack + "4_sec.tif");//scheme 4
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label_use");
saveAs("TIFF", slice +"4_mscec.tif");
open(stack + "5_sec.tif");//scheme 5
run("Make_Montage...", "columns=2_rows=2_scale=0.50_first=1_last
=7_increment=2_border=4_font=20_label");
saveAs("TIFF", slice +"5_mscec.tif");
//open processed stacks and measure histograms
open(stack + "O_sec.tif"); //original unchanged
run("Histogram", "stack"); run("Canvas _Size...", "width=402_
height=402_position=Center_zero");
saveAs ("TIFF", slice + "O_hist.tif");
open(stack + "1 sec.tif");
run("Histogram", "stack"); run("Canvas_Size...", "width=402_
height=402__position=Center_zero");
saveAs ("TIFF", slice + "1 _hist.tif");
open(stack +"2_sec.tif");
run("Histogram", "stack"); run("Canvas_Size...", "width=402_
height=402__position=Center_zero");
saveAs("TIFF", slice + "2_hist.tif");
open(stack +"3_sec.tif");
run("Histogram", "stack"); run("Canvas_Size...", "width=402_
height=402__position=Center_zero");

, "saturated=35_equalize_process_all_use
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saveAs ("TIFF", slice + "3_hist.tif");
58 open(stack +"4_sec.tif");

run("Histogram", "stack"); run("Canvas_Size...", "width=402_
height=402__position=Center_zero");
60 saveAs ("TIFF", slice + "4 _hist.tif");
open(stack+"5_sec.tif");
62 run("Histogram", "stack"); run("Canvas,_Size...", "width=402_

height=402_, position=Center_zero");
saveAs ("TIFF", slice + "5_hist.tif"); run("Collect_

Garbage");
64 //collate image stack and stack montage
run("Image_Sequence...", "open=/tests/pre_processing/slice/0_sec.
tif_sort");
66 saveAs ("Tiff", stack + "scec.tif");
open(stack + "scec.tif");
68 run("Make_Montage...", "columns=4_rows=3_scale=0.80_first=1_last

=12_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "lmscec.tif"); saveAs("PNG",
docf + "mscec.png");
70 setBatchMode(false);run("Close_All");//end

Listing E.7: FIJI stack pre-processing example.

//Try all thresholds (16 methods)

2 raw="/tryall/raw/"; //source and output dir
slice="/tryall/slice/";

4 stack="/tryall/stack/";
pre_process="/tryall/pre_process/";

6  logf="/tryall/log/";
montage="/tryall/montage/";

8 //open single raw image and pre-process
setBatchMode(true);

10 open(raw + "5.tif");//enhance contrast

run("Enhance_Contrast...", "saturated=0.4_update");
12 saveAs("TIFF", slice +"ec5.tif");
open(slice +"ec5.tif");//convert to 8 bit
14 run("8-bit");

saveAs("TIFF", slice +"gec5.tif");
16 open(slice +"gec5.tif");//Try all thresholds (16 methods)
run("Auto_Threshold", "method=[Try_all]_white_show");
18 saveAs("TIFF", slice +"mgec5.tif"); saveAs("PNG", docf +"
mgec5.tif");
selectWindow("Log");
20 saveAs("Text", logf + "Log-tryall.txt");
setBatchMode(false);run("Close_All");//end

Listing E.8: FIJI thresholding tests.

1 /Automatic thresholding on an image of a horizontal ground nest by six
schemes,
//including some typical post processing operation examples.
3 //Started t.ijm at Fri Jun 05 16:56:46 NZST 2015
//Started t.ijm at Fri Jun 05 16:56:56 NZST 2015
5 //Process completed in 10 seconds.
raw="tests/t_six/raw/";
7 slice="tests/t_six/slice/";
stack="tests/t_six/stack/";
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montage="/tests/t_six/montage/";
post_process="/tests/t_six/post_process/";
logf="/tests/t_six/log/";
docf= "/gfx/chp3/"; //for publishing images
setBatchMode(true);//do not display images
//open and apply automatic threshold method
open(raw + "5-gs.tif");
run("Auto,_Threshold", "method=Default show");
saveAs ("Tiff", slice + "1 Default.tif");
open(raw + "5-gs.tif");
run("Auto_Threshold", "method=Huang_show");
saveAs("Tiff", slice + "2_Huang.tif");
open(raw + "5-gs.tif");
run("Auto_Threshold", "method=Mean_show");
saveAs("Tiff", slice + "3_Mean.tif");
open(raw + "5-gs.tif");
run("Auto_Threshold", "method=MinError(I)_show");
saveAs("Tiff", slice + "4_MinError.tif");
open(raw + "5-gs.tif");
run("Auto_Threshold", "method=Minimum_show");
saveAs("Tiff", slice + "5_Minimum.tif");
open(raw + "5-gs.tif");
run("Auto_Threshold", "method=0tsu_show");
saveAs ("Tiff", slice + "6_0tsu.tif");
selectWindow("Log");
saveAs ("Text", logf + "Log-thresh-six.txt");
//post-process binary results
run("Image_Sequence...", "open=/tests/t_six/slice/1-Default.tif_sort");
saveAs ("Tiff", stack + "t-six.tif");
open(stack + "t-six.tif");
run("Options...", "iterations=2_count=2_do=0pen_stack");//open
operator
saveAs("Tiff", post_process + "t-open-22.tif");
open(post_process + "t-open-22.tif");
run("Options...", "iterations=1_count=1_do=[Fill_Holes]_stack");
//fill holes
saveAs("Tiff", post_process + "t-fh.tif");
open(post_process + "t-fh.tif");
run("Options...", "iterations=2_count=4_pad_do=Close_stack");//
close operator
saveAs ("Tiff", post_process + "t-close-24.tif");
open(post_process + "t-close-24.tif");
run("Analyze_Particles...", "size=500-50000_circularity=0.1-0.9_
show=0utlines,_display, clear_summarize_in_situ_stack");//
particle count
saveAs ("Tiff", post_process + "t-cb.tif");
selectWindow("Summary_of_t-close-24.tif");//save count summary
saveAs("Text", post_process + "t-cb.txt");
run("Close_All1");
//make stack montage and save results
open(stack + "t-six.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "1lmt-six.tif");saveAs("PNG",
docf + "Imt.png");
open(post_process + "t-open-22.tif");
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run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "2mt-open-22.tif");saveAs("PNG",
docf + "2mt.png");
open(post_process + "t-fh.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "3mt-fh.tif");saveAs("PNG", docf
+ "3mt.png");
open(post_process + "t-close-24.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "4mt-close-24.tif");saveAs("PNG"
, docf + "4mt.png");
open(post_process + "t-cb.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "5Smt-cb.tif");saveAs("PNG", docf
+ "5mt.png");
setBatchMode(false);run("Close_All1");//end

Listing E.9: FIJT thresholding by six common methods.

//Binirization tests on representative sample images of active nests.
raw="/tests/challenge/raw/";

slice="/tests/challenge/slice/";

stack="/tests/challenge/stack/";

montage="/tests/challenge/montage/";
post_process="/tests/challenge/post _process/";
logf="/tests/challenge/log/";

docf= "/gfx/chp3/";

setBatchMode(true);//do not display images

//open and process stack

open(stack + "c.tif"); //convert to 8 bit

run("8-bit");

saveAs ("Tiff", stack + "8bit.tif");
open(stack + "8bit.tif"); //threshold by Otsu method
run("Auto,_Threshold", "method=0tsu_stack");
saveAs ("Tiff", stack + "otsu.tif");
open(stack + "otsu.tif");//open operator

run("Options...",

"iterations=2_count=2_do=0pen_stack");

saveAs("Tiff", stack + "open-11.tif");
open(stack + "open-11.tif"); //fill holes operator

run("Options...",

"iterations=1_count=1_do=[Fill_Holes]_stack");

saveAs ("Tiff", stack + "fh.tif");
open(stack + "fh.tif");//close operator

run("Options...",

"iterations=2_count=4_pad_do=Close_stack");

saveAs ("Tiff", stack + "close-43.tif");

open(stack + "close-43.tif");//particle count

run("Analyze_Particles...", "size=500-50000_circularity=0.1-0.9_
show=0utlines_display,_clear_summarize_in_situ_stack");

saveAs("Tiff", stack + "cb.tif");

selectWindow("Summary_of_close-43.tif");//save count summary
saveAs("Text", stack + "cp.txt");

//make stack montage and save results

open(stack + "c.tif");
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run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mc.tif"); saveAs("PNG", docf +

"Omc.png");
open(stack + "8bit.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last

=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "m8bit.tif"); saveAs("PNG", docf
+ "lmc.png");
open(stack + "otsu.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "otsu.tif");saveAs("PNG", docf +

"2mc.png");
open(stack + "open-11.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last

=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mopen-11.tif");saveAs("PNG",
docf + "3mc.png");
open(stack + "fh.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mcfh.tif");saveAs("PNG", docf +
"4mc.png");
open(stack + "close-43.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "mclose-43.tif");saveAs("PNG",
docf + "5mc.png");
open(stack + "cb.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mccb.tif"); saveAs("PNG", docf
+ "émc.png");
setBatchMode(false); run("Close_All"); //end

Listing E.10: FIJT otsu thresholding on variable nest images.

//Edge detection by Canny-Deriche filtering
raw="/tests/edge/raw/";//home dir
slice="/tests/edge/slice/";
stack="/tests/edge/stack/";
montage="/tests/edge/montage/";
post_process="/tests/edge/post_process/";
logf = "/tests/edge/log/";
docf= "/gfx/chp3/"; //for publishing images
//open and apply edge detection with different smoothing values
open(raw + "5-gs.tif");
run("Deriche...", "alpha=1.0");run("8-bit");
saveAs("Tiff", slice + "1.tif");
open(raw + "5-gs.tif");
run("Deriche...", "alpha=0.9");run("8-bit");
saveAs ("Tiff", slice + "2.tif");
open(raw + "5-gs.tif");
run("Deriche...", "alpha=0.75");run("8-bit");
saveAs ("Tiff", slice + "3.tif");
open(raw + "5-gs.tif");
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run("Deriche...", "alpha=0.6");run("8-bit");
saveAs("Tiff", slice + "4.tif");
open(raw + "5-gs.tif");
run("Deriche...", "alpha=0.45");run("8-bit");
saveAs ("Tiff", slice + "5.tif");
open(raw + "5-gs.tif");
run("Deriche...", "alpha=0.15");run("8-bit");
saveAs ("Tiff", slice + "6.tif");
run("Close_All");
//post-process binary results
run("Image_Sequence...", "open=/tests/edge/slice/l.tif_sort");
saveAs ("Tiff", stack + "edge.tif");
open(stack + "edge.tif");
run("Find_Edges", "stack"); //run global find edges plugin over
entire image stack
saveAs ("Tiff", stack + "fe.tif");
open(stack + "fe.tif");
run("Make_Binary", "method=Minimum_background=Default_calculate _
list"); //invert binary
saveAs ("Tiff", stack + "min.tif");
open(stack + "min.tif");
run("Options...", "iterations=3_count=3_do=Close_stack");//close
operator
saveAs ("Tiff", stack + "close-33.tif");
selectWindow("close-33.tif");
run("Options...", "iterations=1_count=1_do=[Fill_Holes] stack");
//fill holes
saveAs ("Tiff", stack + "fh.tif");
selectWindow("fh.tif");
run("Options...", "iterations=4_count=3_do=0pen_stack");//open
operator
saveAs("Tiff", stack + "open-43.tif");
selectWindow("open-43.tif");
run("Analyze_Particles...", "size=1000-50000_circularity=0.1-0.9_
show=0utlines_display _clear_summarize_in situ_stack"); //
particle count
saveAs("Tiff", stack + "cb.tif");
selectWindow("Summary_of_open-43.tif");
saveAs ("Text", logf + "cb.txt"); //save count summary
run("Close_All1");
//make stack montage and save results
setBatchMode(true);//do not display images
open(stack + "fe.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "fe.tif");saveAs("PNG", docf + "
1medge.png");
open(stack + "min.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "min.tif");saveAs("PNG", docf +
"2medge-b.png");
open(post_process + "close-33.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label_use");
saveAs("Tiff", montage + "close-33.tif");saveAs("Tiff",
docf + "3medge-close.png");
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open(post_process + "fh.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label_use");
saveAs("Tiff", montage + "fh.tif");saveAs("PNG", docf + "
4medge-fh.png");
open(post_process + "open-43.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label_use");
saveAs ("Tiff", montage + "open-43.tif");saveAs("PNG",
docf + "5medge-open.png");
open(post_process + "cb.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.8_first=1_last=6
_increment=1_border=4_font=20_label_use");
saveAs("Tiff", montage + "cb.tif");saveAs("PNG", docf + "
6medge-cb.png");
setBatchMode(false);run("Close_All");//end

Listing E.11: Segmentation by edge detection.

//Statistical region merging (srm)
//Started srr.ijm at Sat Jun 06 20:05:38 NZST 2015
//Started srm.ijm at Sat Jun 06 20:05:49 NZST 2015
raw="/tests/srm/raw/";//home dir
slice="/tests/srm/slice/";
stack="/tests/srm/stack/";
montage="/tests/srm/montage/";
logf = "/tests/srm/log/";
docf= "/gfx/chp3/"; //for publishing images
//open and run srm with varying Q
open(raw + "5-gs.tif");
run("Statistical_Region_Merging", "g=1_showaverages");
saveAs("Tiff", slice + "1.tif");
open(raw + "5-gs.tif");
run("Statistical_Region_Merging", "g=2_showaverages");
saveAs ("Tiff", slice + "2.tif");
open(raw + "5-gs.tif");
run("Statistical _Region_Merging", "q=3_showaverages");
saveAs ("Tiff", slice + "3.tif");
open(raw + "5-gs.tif");
run("Statistical_Region_Merging", "q=6_showaverages");
saveAs ("Tiff", slice + "4.tif");
open(raw + "5-gs.tif");
run("Statistical_Region_Merging", "q=8_showaverages");
saveAs ("Tiff", slice + "5.tif");
open(raw + "5-gs.tif");
run("Statistical_Region_Merging", "q=16_showaverages");
saveAs("Tiff", slice + "6.tif");
run("Close_All1");
//post-process binary results
run("Image_Sequence...", "open=/tests/srm/slice/1l.tif_sort")
saveAs("Tiff", stack + "srm.tif");
open(stack + "srm.tif");
run("8-bit");
run("Make_Binary", "Minimum_background=Default"); //invert
binary
saveAs ("Tiff", stack + "min.tif");
open(stack + "min.tif");
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run("Options...", "iterations=1_count=1_do=0pen_stack");//open
operator
saveAs("Tiff", stack + "open-11.tif");
selectWindow("open-11.tif");
run("Options...", "iterations=1_count=1_do=[Fill_Holes]_stack");
//fill holes
saveAs ("Tiff", stack+ "fh.tif");
selectWindow("fh.tif");
run("Options...", "iterations=1_count=1_pad_do=Close_stack");//
close operator
saveAs ("Tiff", stack + "close-11.tif");
selectWindow("close-11.tif");
run("Analyze_Particles...", "size=1000-50000_circularity=0.1-0.9
show=0utlines_display _clear_summarize_in_situ_stack"); //
particle count
saveAs("Tiff", stack + "cb.tif");
selectWindow("Summary_of_close-11.tif");
saveAs("Text", logf + "srm-cb.txt"); //save count summary
//make stack montage and save results
setBatchMode(true);//do not display images
open(stack + "srm.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "srm.tif");saveAs("PNG", docf +
"lmsrm.png");
open(stack + "min.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs ("Tiff", montage + "min.tif");saveAs("PNG", docf +
"2msrm.png");
open(stack + "open-11.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "open.tif");saveAs("PNG", docf +
"3msrm.png");
open(stack + "fh.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "fh.tif");saveAs("PNG", docf + "
4msrm.png");
open(stack + "close-11.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs ("Tiff", montage + "close.tif");saveAs("PNG", docf
+ "5msrm.png");
open(stack + "cb.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "cb.tif");saveAs("PNG", docf + "
6msrm.png");
setBatchMode(false);run("Close_All");//end

—

Listing E.12: Segmentation by region merging.

//Statistical region merging on represntative sample images
//Started srm_all.ijm at Sun Jun 07 14:56:55 NZST 2015
//Started srm_all.ijm at Sun Jun 07 14:57:02 NZST 2015
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raw="/tests/srm_all/raw/";//home dir
slice="/tests/srm_all/slice/";
stack="/tests/srm_all/stack/";
montage="/tests/srm_all/montage/";
logf = "/tests/srm_all/log/";
setBatchMode(true);//do not display images
//open and run srm on representative images
open(raw + "1.tif");
run("Statistical _Region_Merging", "q=16_showaverages");
saveAs ("Tiff", slice + "1.tif");
open(raw + "2.tif");
run("Statistical_Region_Merging", "q=16_showaverages");
saveAs("Tiff", slice + "2.tif");
open(raw + "3.tif");
run("Statistical _Region_Merging", "q=16_showaverages");
saveAs("Tiff", slice + "3.tif");
open(raw + "4.tif");
run("Statistical _Region_Merging", "q=16_showaverages");
saveAs("Tiff", slice + "4.tif");
open(raw + "5.tif");
run("Statistical_Region_Merging", "q=16_showaverages");
saveAs("Tiff", slice + "5.tif");
open(raw + "6.tif");
run("Statistical _Region_Merging", "q=16_showaverages");
saveAs ("Tiff", slice + "6.tif");
run("Close_All1");
//post-process binary results
run("Image_Sequence...", "open=/tests/srm_all/slice/1l.tif_sort");
saveAs("Tiff", stack + "srm_all.tif");
open(stack + "srm_all.tif");
run("8-bit");
run("Make_Binary", "Minimum_background=Default"); //invert
binary
saveAs ("Tiff", stack + "min_all.tif");
open(stack + "min_all.tif");
run("Options...", "iterations=2_count=2_do=0pen_stack");//open
operator
saveAs("Tiff", stack + "open-22_all.tif");
open(stack + "open-22_all.tif");
run("Options...", "iterations=1_count=1_do=[Fill_Holes] _stack");
//fill holes
saveAs ("Tiff", stack+ "fh_all.tif");
open(stack + "fh_all.tif");
run("Options...", "iterations=2_count=4_pad_do=Close _stack");//
close operator
saveAs ("Tiff", stack + "close-24_all.tif");
open(stack + "close-24_all.tif");
run("Analyze_Particles...", "size=100-50000_circularity=0.1-0.9_
show=0utlines_display _clear_summarize_in_situ_stack"); //
particle count
saveAs("Tiff", stack + "cb_all.tif");
//make stack montage and save results
open(stack + "srm_all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "srm_all.tif");saveAs("PNG",
docf + "Imsrmall.png");
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open(stack + "min_all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "min.tif");saveAs("PNG", docf +
"2msrmall.png");
open(stack + "open-22_all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "open.tif");saveAs("PNG", docf +
"3msrmall.png");
open(stack + "fh_all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "fh.tif");saveAs("PNG", docf + "
4msrmall.png");
open(stack + "close-24 all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "close.tif");saveAs("PNG", docf
+ "Smsrmall.png");
open(stack + "cb_all.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.80_first=1_last
=6_increment=1_border=4_font=30_label");
saveAs("Tiff", montage + "cb.tif");saveAs("PNG", docf + "
6msrmall.png");
setBatchMode(false);run("Close_All");//end

Listing E.13: SRM on variable nest images.

//RF tests on representative sample images of active nests.

//Started r.ijm at Sat Jun 06 19:13:54 NZST 2015

//Started r.ijm at Sat Jun 06 19:14:28 NZST 2015

raw="/tests/rf/raw/";

slice="/tests/rf/slice/";

stack="/tests/rf/stack/";

montage="/tests/rf/montage/";

post_process="/tests/rf/post_process/";

logf="/tests/rf/log/";

docf= "gfx/chp3/";

//open and process stack

open(stack + "c.tif");

run("Trainable_Weka_Segmentation");wait(2000);

//select foreground active nest pixels Class 1

makeOval(203, 376, 4, 6);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "1");

makeOval(220, 353, 5, 5);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "2");

makeOval(86, 268, 4, 5);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "3");

makeOval(139, 337, 17, 7);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "4");

makeOval(210, 109, 12, 4);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "4");

makeOval(254, 146, 6, 10);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "5");

makeOval(287, 192, 9, 4);call("trainableSegmentation.Weka_Segmentation.
addTrace", "0", "6");
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//select background pixels Class 2
makeRectangle(15, 267, 47, 2);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "1");
makeRectangle(98, 85, 2, 18);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "1");
makeRectangle(91, 232, 3, 22);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "1");
makeRectangle(44, 354, 4, 15);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "2");
makeRectangle(12, 162, 5, 6);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "3");
makeRectangle(267, 268, 6, 5);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "5");
makeRectangle(99, 105, 2, 17);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "5");
makeRectangle(85, 134, 5, 14);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "6");
makeRectangle(216, 276, 2, 19);call("trainableSegmentation.
Weka_Segmentation.addTrace", "1", "6");
//select RF training parameters and filters for features stack.

call("trainableSegmentation.Weka_Segmentation.setFeature", "Hessian=false
")

call("trainableSegmentation.Weka_Segmentation.setFeature", "Sobel _filter=
false");

call("trainableSegmentation.Weka_Segmentation.setFeature", "
Difference_of_gaussians=false");

call("trainableSegmentation.Weka_Segmentation.setFeature",
Membrane_projections=false");

call("trainableSegmentation.Weka_Segmentation.setFeature", "Mean=true");

call("trainableSegmentation.Weka_Segmentation.setFeature", "Minimum=true"
)

call("trainableSegmentation.Weka_Segmentation.setFeature", "Median=true")

call("trainableSegmentation.Weka_Segmentation.setFeature", "Structure=
true");
call("trainableSegmentation.Weka_Segmentation.setMaximumSigma", "2.0");
call("trainableSegmentation.Weka_Segmentation.setMembranePatchSize", "1")
call("trainableSegmentation.Weka_Segmentation.setClassifier", "hr.irb.
fastRandomForest.FastRandomForest", "-I_50_-K_ 2_-S_-5571395");
//train classifier and save data
call("trainableSegmentation.Weka_Segmentation.trainClassifier");//train
classifier
call("trainableSegmentation.Weka_Segmentation.saveClassifier", logf + "rf
.model");//save classifier
call("trainableSegmentation.Weka_Segmentation.saveData", logf + "rf.arff
");//save data
call("trainableSegmentation.Weka_Segmentation.getResult");
saveAs ("Tiff", stack + "rf.tif");
selectWindow("Log") ;saveAs("Text", logf +"rf.txt");//save log
//post process
run("Collect_Garbage"); setBatchMode(true);
open(stack + "rf.tif"); //convert to 8 bit
run("8-bit");
saveAs("Tiff", stack + "rf8bit.tif");
open(stack + "rf8bit.tif"); //threshold by Otsu method
run("Make_Binary", "method=0tsu_background=Default");
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saveAs("Tiff", stack + "otsu.tif");
open(stack + "otsu.tif");//open operator
run("Options...", "iterations=2_count=2_do=0pen_stack");
saveAs("Tiff", stack + "open-22.tif");
open(stack + "open-22.tif"); //fill holes operator
run("Options...", "iterations=1_count=1_do=[Fill_Holes]_stack");
saveAs ("Tiff", stack + "fh.tif");
open(stack + "fh.tif");//close operator
run("Options...", "iterations=2_count=4_pad_do=Close_stack");
saveAs ("Tiff", stack + "close-24.tif");
open(stack + "close-24.tif");//particle count
run("Analyze_Particles...", "size=100-50000_circularity=0.1-0.9_
show=0utlines_display_clear_summarize_in_situ_stack");
saveAs("Tiff", stack + "cb.tif");
selectWindow("Summary_of_close-24.tif");//save count summary
saveAs("Text", stack + "cp.txt");
//make stack montage and save results
open(stack + "rf.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label_use");
saveAs("Tiff", montage + "mrf.tif"); saveAs("PNG", docf +

"Omrf.png");
open(stack + "rf8bit.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last

=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "mrf8bit.tif"); saveAs("PNG",
docf + "Imrf.png");
open(stack + "otsu.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mrfotsu.tif");saveAs("PNG",
docf + "2mrf.png");
open(stack + "open-22.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_Llabel");
saveAs ("Tiff", montage + "mrfopen-22.tif");saveAs("PNG",
docf + "3mrf.png");
open(stack + "fh.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "mrffh.tif");saveAs("PNG", docf
+ "4mrf.png");
open(stack + "close-24.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs ("Tiff", montage + "mrfclose-24.tif");saveAs("PNG",
docf + "5mrf.png");
open(stack + "cb.tif");
run("Make_Montage...", "columns=6_rows=1_scale=0.50_first=1_last
=6_increment=1_border=4_font=20_label");
saveAs("Tiff", montage + "mrfcb.tif"); saveAs("PNG", docf
+ "emrf.png");
setBatchMode(false); run("Close_All");//end

Listing E.14: TWS on variable nest images.

## load libraries used
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library(knitr)
library(survival)
library(epiR)
library(ggplot2)

afirst <-read.table("Al.csv", header=TRUE, sep=",", na.strings="", dec=".
", strip.white=TRUE)
## Spearman rank correlation matrix table
srcc <- cor(afirst[,c("acfAl","cafAl")], use="complete")
kable(head(srcc[,1:2]), digits = 4, format = "latex")
## CC correlation plot and correlation matrix table
acmod <- afirst[,c("acfAl")] cauto <- afirst[,c("cafAl")]
cccfirst <- epi.ccc(cauto, acmod, ci = "z-transform", conf.level = 0.95)
firstr <- cccfirst$rho.c
kable(head(firstr[,1:3]), digits = 4, format = "latex")
tmpfirst <- epi.ccc(cauto, acmod, ci = "z-transform",conf.level = 0.95)
lab <- paste("ccc:__", round(tmpfirst$rho.c[,1], digits = 2),"_(95%_CI_",
round(tmpfirst$rho.c[,2], digits = 2),"-",round(tmpfirst$rho.c[,3],
digits = 2), ")", sep = "") z <- lm(cauto~acmod) par(pty = "s")
plot(jitter(cauto),jitter(acmod), xlim = c(0, 300), ylim = c(0,100), cex
=1, xlab = "Automatic_counts_by_threshold", ylab = "Automatic_counts
_by_CF_model", pch = 1)
abline(a = 0, b = 1, 1ty = 2) abline(z, lty = 1)
text(x = 200, y = 100, labels = lab)

Listing E.15: RStudio concordance correlation script for automatic counts by
thresholding and the CF classifier.

## load libraries used

library(knitr)

library(car)

library(survival)

library(epiR)

library(methods)

library(ggplot2)

mic_mfc_ac_ob <-

read.table("analysis/main/r/mic_mfc_ac_ob/csv/mic_mfc_ac_ob_4R.csv",
header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=

TRUE)

## Spearman rank correlation matrix table
m_ac <- cor(mic_mfc_ac_ob[,c("acf_t","mfc_t")], use="complete")
kable(head(m_ac[,1:2]), format = "markdown")

## Concordance correlation plot:
ac <- mic_mfc_ac_ob[,c("acf_t")]
mfc <- mic_mfc_ac_ob[,c("mfc_t")]

acmc.ccc <- epi.ccc(mfc, ac, ci = "z-transform",conf.level = 0.95)

rslts <- acmc.ccc$rho.c

rsltsl <- as.data.frame(rslts, row.names = NULL, responseName = "Rho",
tringsAsFactors = TRUE)

kable(head(rsltsl[,1:3]), format = "markdown")

lab <- paste("CCC:__", round(acmc.ccc$rho.c[,1], digits = 2), "_(95%_CI_"

round(acmc.ccc$rho.c[,2], digits = 2), "_-.",

[
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28

30

32

34

10

12

14
16
18

20

22
24
26
28
30

32

34
36

38

round(acmc.ccc$rho.c[,3], digits = 2), ")", sep = "")

z <- lm(mfc ~ ac)

par(pty = "s")

plot(jitter(mfc),jitter(ac), xlim = c(0, 60), ylim = c(0,80), cex=1, xlab
= "Manual_field_counts", ylab = "Automatic_counts", pch = 1)

abline(a = 0, b =1, 1ty = 2)

abline(z, lty = 1)

legend(x = "topleft", legend = c("Line_of_perfect_concordance", "Reduced
major_axis"), lty = c(2,1), lwd = c(1,1), bty = "n")

text(x = 15, y = 69, labels = lab)

Listing E.16: Automatic and manual concordance correlation.

##Spearman rank correlation matrix table obsl obs2
##Lin's Concordance correlation

library(knitr)

library(car)

library(survival)

library(epiR)

library(methods)

library(ggplot2)

mic_mfc_ac_ob <-
read.table("analysis/r/mic_mfc_ac_ob/csv/mic_mfc_ac_ob_4R.csv",
header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=

TRUE)
## Spearman rank correlation matrix table

obs <- cor(mic_mfc_ac_ob[,c("mic_obl","mic_ob2")], use="complete")
kable(head(obs[,1:2]), format = "markdown")

## Spearman rank correlation

##scatterplot(mic_obl~mic_ob2, reg.line=lm, smooth=FALSE, spread=FALSE,
boxplots=FALSE, span=0.5, jitter=list(x=1, y=1),

## cex=0.5, cex.axis=1, cex.lab=1, data=mic_mfc_ac_ob)

##par(pty = "s")

## Concordance correlation plot:
mic_oblt <- mic_mfc_ac_ob[,c("mic_obl")]
mic_ob2t <- mic_mfc_ac_ob[,c("mic_ob2")]

micob.ccc <- epi.ccc(mic_oblt, mic_ob2t, ci = "z-transform",
conf.level = 0.95)

lab <- paste("CCC:_", round(micob.ccc$rho.c[,1], digits = 2), "_(95%_CI_"

2)’ n n

—- e !

2)’ u)u' sep = uu)

round(micob.ccc$rho.c[,2], digits
round(micob.ccc$rho.c[,3], digits

z <- lm(mic_oblt~mic_ob2t)

par(pty = "s")

plot(jitter(mic_oblt),jitter(mic_ob2t), xlim = c(0, 60), ylim = c(0,80),
cex=1, xlab = "Manual_image_counts,_by, observer_1", ylab = "Manual,
image, counts, by, observer 2", pch = 1)

abline(a = 0, b =1, 1ty = 2)
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40 abline(z, lty = 1)
legend(x = "topleft", legend = c("Line_of_perfect_concordance",
42 "Reduced_major_axis"), lty = c(2,1), lwd
= c(1,1), bty = "n")
text(x = 14, y = 70, labels = lab)

Listing E.17: Image counts by two observsers.
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RAW FIELD DATA

Key:
rec_id:

site:

y/m/d:

dayc:
imgc:
grid:

mfc_t:

Count data records Table F.1 below.
Unique record identifier
Monitoring locations
1-Mt. Tiger

2-Mt. Parihaka
3-Memorial Drive

Year, month, day
Collection season

Image collection 1 of 4.
Quadrat 1 of 4

Manual field count (total)

reciid site 'y m d dayc imgc grid mfc_t

1 1 10 11 23 1 1 1 1
2 1 10 11 24 2 1 1 0
3 1 10 11 26 3 1 1 1
4 1 10 11 28 4 1 1 16
5 1 10 11 29 § 1 1 13
6 1 10 11 30 6 1 1 29
7 1 10 12 1 7 1 1 16
8 1 10 12 2 8 1 1 15
9 1 10 12 § 9 1 1 2
10 1 10 12 6 10 1 1 3
11 1 10 12 8 11 1 1 1
12 1 10 12 9 12 1 1 2
13 1 10 12 10 13 1 1 5
14 1 10 12 11 14 1 1 1
15 1 10 12 12 15 1 1 6
16 1 10 12 13 16 1 1 20
17 1 10 11 23 1 1 2 1
18 1 10 11 24 2 1 2 2
continued ...
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recid site 'y m d dayc imgc grid mfc_t

19 1 10 11 26 3 1 2 0
20 1 10 11 28 4 1 2 25
21 1 10 11 29 5 1 2 2
22 1 10 11 30 6 1 2 30
23 1 10 12 1 7 1 2 17
24 1 10 12 2 8 1 2 16
25 1 10 12 § 9 1 2 4
26 1 10 12 6 10 1 2 10
27 1 10 12 8 11 1 2 2
28 1 10 12 9 12 1 2 12
29 1 10 12 10 13 1 2 12
30 1 10 12 11 14 1 2 1
31 1 10 12 12 15 1 2 10
32 1 10 12 13 16 1 2 1
33 1 10 11 23 1 1 3 1
34 1 10 11 24 2 1 3 40
35 1 10 11 26 3 1 3 1
36 1 10 11 28 4 1 3 30
37 1 10 11 29 5§ 1 3 20
38 1 10 11 30 6 1 3 25
39 1 10 12 1 7 1 3 2
40 1 10 12 2 8 1 3 2
41 1 10 12 5§ 9 1 3 2
42 1 10 12 6 10 1 3 10
43 1 10 12 8 11 1 3 5
44 1 10 12 9 12 1 3 1
45 1 10 12 10 13 1 3 4
46 1 10 12 11 14 1 3 1
47 1 10 12 12 15 1 3 20
48 1 10 12 13 16 1 3 21
49 1 10 11 23 1 1 4 3
50 1 10 11 24 2 1 4 50
51 1 10 11 26 3 1 4 0
52 1 10 11 28 4 1 4 30
53 1 10 11 29 § 1 4 12
54 1 10 11 30 6 1 4 10
continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

12

10

55
56

10 12

1

57 1 10 12

58
59

10

12

10

11

10 12

1

10 12 12
13
14
15
16

1

60

S

10 12 10

1

61

12 11

10

62

12
13
23
24
25
26

10 12

1

63

1 10 12

64
65

11

10

11

10

66

2 10 11

67
68
69
70

10 11

2

10 11

2

10 11

2

71

10 12

2

72

73

2 10 12

74
75

11

10 12

2

12
13
14
15
16

12

10

76

12

10

77
78

10 12 10

2

10 12 11

2

79

12
23
24
25
26
28
29
30

12

10

8o

11

10

81

15

10 11

2

82

10 11

2

83

11

10

84
85

10 11

2

2 10 11

86

7

87 2 10 11
88

89
90

12

10

10 12

2

10

10 12

2

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

11

12

10

91

10 12 12
13
14
15
16

2

92

10 12

2

93

94 10 12 10

95
96

10 12 11

2

12
23
24
25
26
28
29
30

10 12

2

2 10 11

97
98

13
13
10

11

10

10 11

2

99

10 11

2

100

11

10

101

11

10

102

10 11

2

103

2 10 12

104

10

12

10

105

10

2 10 12

106

11

2 10 12

107

2 10 12 12
13
14
15
16

108

12

10

109

10 12 10

2

110

10 12 11

2

111

12
23
24
25
26
28
29
30

12

10

112

11

10

113

10 11

2

114

10

10 11

2

115

11

10

116

11

10

117

10 11

2

118

7

2 10 11

119

12

10

120

2 10 12

121

10

2 10 12

122

11

2 10 12

123

12
13
14

12

10

124

2 10 12

125

10 12 10

2

126

continued ...
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recid site 'y m d dayc imgc grid mfc_t

127 2 10 12 11 15 1 4 5
128 2 10 12 12 16 1 4

129 1 11 11 11 1 1 1 3
130 1 11 11 12 2 1 1 10
131 1 11 11 13 3 1 1 10
132 1 11 11 14 4 1 1 2
133 1 11 11 15 5 1 1 12
134 1 11 11 16 6 1 1 10
135 1 11 11 17 7 1 1 15
136 1 11 11 18 8 1 1 10
137 1 11 11 21 9 1 1 9
138 1 11 11 22 10 1 1 40
139 1 11 11 23 11 1 1 0
140 1 11 11 24 12 1 1 20
141 1 11 11 25 13 1 1 1
142 1 11 11 28 14 1 1 3
143 1 11 12 7 15 1 1 15
144 1 11 12 9 16 1 1 2
145 1 11 11 11 1 1 2 12
146 1 11 11 12 2 1 2 10
147 1 11 11 13 3 1 2 15
148 1 11 11 14 4 1 2 3
149 1 11 11 15 5 1 2 10
150 1 11 11 16 6 1 2

151 1 11 11 17 7 1 2

152 1 11 11 18 8 1 2 2
153 1 11 11 21 9 1 2 2
154 1 11 11 22 10 1 2 12
155 1 11 11 23 11 1 2 2
156 1 11 11 24 12 1 2 2
157 1 11 11 25 13 1 2 4
158 1 11 11 28 14 1 2 7
159 1 11 12 7 15 1 2 7
160 1 11 12 9 16 1 2 1
161 1 11 11 11 1 1 3 40
162 1 11 11 12 2 1 3 0

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

11 13
14
15
16

11

163

11

11

164

11

11

165
166
167
168
169

11

11

11 17
18
21

11

11

11

11

11

10

22
23
24
25
28

11

11

170

11

11

11

171

12
13
14
15
16

11

11

172
173
174
175
176
177
178

14
25

11

11

11

11

12

11

12

11

11

11

11

12
13

11

11

11

11

179
180

14
15
16
17
18
21

11

11

11

11

181

11

11

182

11

11

183

A a a4 a4 o & o o

11

11

184

11

11

185

10

22
23
24
25
28

186 11 11

187
188

11

11

11

12
13

11

11

11

11

189

14
15

11

11

190

12

11

191

~

16

12

11

192
193

11 11

11

12
13

11

11

194
195

11

11

14
15
16

196 11 11

197
198

11

11

11

11

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

11 17
18
21

11

199
200

11

11

11

11

201

10

22
23
24
25
28

11

11

202

11

11

11

203

12
13
14
15
16

11

11

204

11

11

205

11

11

206

12

11

207

11

12

11

208

11

11

11

209

12
13
14
15
16

11

11

210

11

11

211

11

11

212

11

11

213

11

11

214

11 17
18
21

11

215

11

11

216

11

11

217

10

22
23
24
25
28

11

11

218

11

11

11

219

12
13
14

11

11

220

11

11

221

11

11

222

A a o oo

15

16
1
2

12
12
11
11

11
11
11
11

223
224
225
226

(ea}

11 13
14
15
16

11

227

11

11

228

11

11

229

11

11

230

11 17
18
21

11

231

11

11

232
233

11

11

11 22 10

11

234

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

11

23
24
25
28

11 11

235
236

12
13
14
15
16

11

11

11

11

237
238
239
240

11

11

12

11

12

11

11

11

11

241

12
13
14
15
16

11 11

242
243

11

11

11

11

244
245

11

11

11

11

246
247
248
249
250

11 17
18
21

11

11

11

11

11

10

22
23
24
25
28

11

11

11

11

11

251

12
13
14
15
16

11

11

252
253

11

11

11

11

254
255

12

11

12

11

256

11 11

11

257
258

12
13
14
15
16

11

11

11

11

259
260

11

11

11

11

261

11

11

262

11 17
18
21

11

263

11

11

264

11

11

265

10

11 22
23
24
28

11

266

11

267 11 11

268
269

12
13
14

11

11

11

11

12

11

270

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

15
16

12

11

12 20

11

11

11

11

12
13
14
15

11

11

(o T a0 NN A NN 42

271

272
273
274
275
276
277

11

11

11

11

11

11

N O 10
N N
L I
O DN o©
O DN oo
L
oo o
- -
- o o
L B
N N oM
L N 9
DN DN O
(9 IS BN

21

11

11

281

10

22
23
24
25
28

11

11

282

11

11

11

283

12
13
14
15
16

11

11

284

11

11

285
286
287
288
289

11

11

12

11

12

11

11

11

11

12
13
14
15
16

11

11

290

11

11

291

11

11

292
293
294
295
296

11

11

11

11

11 17
18
21

11

11

11

11

11

297
298
299
300

10

22
23
24
25
28

11

11

11

11

11

12
13
14
15
16

11

11

11

11

301

11

11

302
303
304
305
306

12

11

12

11

11 11

11

11 12

11

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

10
14
10

13
14
15
16

11

11

307
308
309
310

11

11

11

11

11

11

11 17
18
21

11

311

11

11

312
313
314
315
316
317
318
319
320

11

11

10

22
23
24
25
28

11

11

11

11

11

12
13
14
15
16

11

11

11

11

15

11

11

12

11

15

12

11

11

12

321

11 10

12

322
323
324
325
326
327
328
329
330
331

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

11

12

11

12

11

12

10

11

12

23

11

12

12

12 11 12
13

12

332
333

10

12 12

12

11

12

334
335

11 10

12

336 12 11 11

337
338

12
13
14
15
16
18

11

12

20

11

12

339 12 11

340
341

11

12

15

11

12

11

12

342

continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

10

11 19 10

12

343
344
345
346
347
348
349
350
351

11

12

12

12 11 12
13

12

12 12

12

11

12

11 10

12

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

352
353

11

12

11

12

354
355

11

12

10

356 12 11

357
358

11

12

12

12 11 12
13

12

12 12

12

359

H = == O
<+ <+ < <
R R A
- NN <

©O = o
S\ W
LI R R
H o= = A
A o o
S I B
H o= o= A
QO = o o
O O O O
o nonoon

13
14
15
16
18
19

11

12

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

11

12

11

12

11

12

11

12

10

11

12

11

12

12

12

12 11 12
13

12

10

12 12

12

11

12

11 10

12

11 11

12

11 12
13
14

12

11

12

11

12
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d

y m

site

rec_id

imgec grid mfc_t

dayc

15
16
18
19

11

12

379
380

11

12

11

12

381

10

11

12

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

11

12

12

12 11 12
13

12

12 12

12

11

12

11 10

12

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

11

12

11

12

11

12

10

11

12

11

12

12

12
13

12 11

12

12 12

12

11

12

11 10

12

11 11

12

401

12
13
14
15
16

11

12

402
403
404
405
406
407
408
409
410

11

12

11

12

11

12

11

12

11

12

11 19

12

12

12

12 11 12

12

a o o o

ST

12
9

10

11

12
11
11
11

12
12
12
12

411
412
413
414
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imgec grid mfc_t

d dayc

y m

site

rec_id

12
13
14

11

12

415
416
417

11

12

11

12

<+ <+ <+ <
- - L
N oo o ©
In O o O
- (= L
L I | Ll L
- - L
S S
L I | L L
N N N N
©® o O o
+ <+ < <

11

12

12

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

12 11 12
13

12

12 12

12

11

12

11 10

12

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

11

12

11

12

11

12

10

11

12

11

12

12

12 11 12
13

12

12 12

12

437
438
439
440
441
442
443
444
445
446

11

12

11 10

12

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

11

12

11

12

11

12

10

11

12

447
448
449
450

11

12

12

12 11 12
13

12

12 12

12

continued ...

197



d

y m

site

rec_id

imgec grid mfc_t

dayc

11

12

451
452
453
454
455
456

11 10

12

11 11

12

12
13
14
15
16
18
19

11

12

11

12

11

12

11

12

457
458
459
460

11

12

11

12

10

11

12

11

12

12

461

12
13

12 11

12

462
463
464
465

12 12

12

11

12

11 10

12

N O o <

11 11
11 12
11 13
11 14

12
12
12
12

466
467
468
469

15
16
18
19

11

12

470
471
472
473
474
475
476

11

12

11

12

10

11

12

11

12

12

12 11 12
13

12

12
18
19
21

12

12
13
13
13
13
13
13
13
13
13
13

11

1

477
478
479
480

11

1

10

11

1

22
23
24
25
26
28
30

11

1

11

1

481

11

1

482
483
484
485
486

11

1

11

1

11

1

10

11

1

continued ...

198



recid site 'y m d dayc imgc grid mfc_t

487 1 13 11 18 1 1 2 4
488 1 13 11 19 2 1 2 5
489 1 13 11 21 3 1 2 5
490 1 13 11 22 4 1 2 3
491 1 13 11 23 5§ 1 2 3
492 1 13 11 24 6 1 2 4
493 1 13 11 25 7 1 2 3
494 1 13 11 26 8 1 2 5
495 1 13 11 28 9 1 2 3
496 1 13 11 30 10 1 2 6
497 1 13 11 18 1 1 3 1
498 1 13 11 19 2 1 3 1
499 1 13 11 21 3 1 3 1
500 1 13 11 22 4 1 3 1
501 1 13 11 23 5 1 3 2
502 1 13 11 24 6 1 3 3
503 1 13 11 25 7 1 3 10
504 1 13 11 26 8 1 3 4
505 1 13 11 28 9 1 3 15

3

4

4

4

4

4

4

4

4

4

4

1

506 1 13 11 30 10 1 17
507 1 13 11 18 1 1 4
508 1 13 11 19 2 1 10
509 1 13 11 21 3 1 1
510 1 13 11 22 4 1 1
511 1 13 11 23 5 1 5
512 1 13 11 24 6 1 4
513 1 13 11 25 7 1 5
514 1 13 11 26 8 1 12
515 1 13 11 28 9 1 7
516 1 13 11 30 10 1 5
517 2 13 11 18 1 1 2
518 2 13 11 19 2 1 1 2
519 2 13 11 21 3 1 1 2
520 2 13 11 22 4 1 1 2
521 2 13 11 23 5 1 1 2
522 2 13 11 24 6 1 1 1
continued ...
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imgec grid mfc_t

d dayc

y m

site

rec_id

25
26
28
30

11

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
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recid site 'y m d dayc imgc grid mfc_t

505 3 13 11 28 9 1 4 4
506 3 13 11 29 10 1 4 7
597 1 14 11 21 1 1 1 0
598 1 14 11 27 2 1 1 1
599 1 14 12 4 3 1 1 10
600 1 14 11 21 1 1 2 3
601 1 14 11 27 2 1 2 13
602 1 14 12 4 3 1 2 10
603 1 14 11 21 1 1 3 1
604 1 14 11 27 2 1 3 5
605 1 14 12 4 3 1 3 6
606 1 14 11 21 1 1 4 1
607 1 14 11 27 2 1 4 3
608 1 14 12 4 3 1 4 12
609 2 14 11 21 1 1 1 6
610 2 14 11 27 2 1 1 10
611 2 14 12 4 3 1 1 10
612 2 14 11 21 1 1 2 6
613 2 14 11 27 2 1 2 6
614 2 14 12 4 3 1 2 7
615 2 14 11 21 1 1 3 3
616 2 14 11 27 2 1 3 3
617 2 14 12 4 3 1 3 3
618 2 14 11 21 1 1 4 3
619 2 14 11 27 2 1 4 6
620 2 14 12 4 3 1 4 5
621 3 14 11 21 1 1 1 1
622 3 14 11 27 2 1 1 1
623 3 14 12 4 3 1 1 3
624 3 14 11 21 1 1 2 2
625 3 14 11 27 2 1 2 1
626 3 14 12 4 3 1 2 2
627 3 14 11 21 1 1 3 6
628 3 14 11 27 2 1 3 6
629 3 14 12 4 3 1 3 6
630 3 14 11 21 1 1 4 3
continued ...
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recid site 'y m d dayc imgc grid mfc_t

631 3 14 11 27 2 1 4 5
632 3 14 12 4 3 1 4 10

Table F.1: Raw manual nest counts
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Key: General ecological data records Table F.2 below.

rec_id: Unique record identifier
site: Monitoring locations
1-Mt. Tiger

2-Mt. Parihaka

3-Memorial Drive

y/m/d: Year, month, day

dayc: Collection season

temp: Temperature in degrees Celsius

hum: Percentage relative humility

wind-s: Speed in meters per second

cloud.c:  Cloud cover as a percentage (subjective)

flight.act: Flight activity high, medium and low (subjective)

nest.act:

Nest activity high, medium and low (subjective)

rec_id site ym:d dayc temp hum wind-s cloud-c flight-act nest-act
1 1 10:11:23 1
2 1 10:111:24 2 22 53 1.2 L L
3 1 10011:26 3 L L
4 1 10:11:28 4 21 59 2.5 M M
5 1 10:111:29 5 23 70 1.2 70 M M
6 1 10:11:30 6 23 56 1.9 40 M M
7 1 10:12:1 7 20 76 1.4 60 M H
8 1 10:11:2 8 20 64 1.1 70 L L
9 1 10:11:5 9 20 75 1.2 60 M L
10 1 10:11:6 10 20 62 1.4 5 H H
11 1 10:11:8 11 20 63 1.1 60 M L
12 1 10:11:9 12 19 58 2.4 10 H M
13 1  10:11:10 13 26 48 1.2 5 H M
14 1 10112:11 14 22 49 1.4 10
15 1 10:12:12 15 23 69 3.7 H H
16 1 10:12:13 16 21 69 4.2 M L
17 2 10:11:23 1 22 65 3
18 2 10:11:24 2 24 47 1.1 10 M M
19 2 10:11:126 3 20 66 1.3 60 M M
20 2 10:11:128 4

continued ...
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rec_id site ym:d dayc temp hum wind-s cloud-c flight-act nest-act

21 2 10:11:29 5 24 66 1.4 40 M M

22 2 10:111:30 6 24 58 1.8 40 M H

23 2 10:11:1 7 23 65 0.1 60 M M

24 2 10:11:2 8 16 72 3.6 20 M L

25 2 10:11:5 9 26 59 0.1 30 M M

26 2 10:11:6 10 27 57 1.1 5 H H

27 2 10:11:8 11 22 62 1.1

28 2 101119 12 26 47 0.1 0 H H

29 2  10:11:10 13 24 47 1.3 0 H H

30 2 10:12:11 14 24 49 3.6 5 H H

31 2 10:12:112 15 22 65 1.6 10 H H

32 2 10:12:13 16 23 58 1.3 5 M M

33 1 I1:11:11 1 16 68 0.7 L L

34 1 111112 2 15 579 0.8 L L

35 1 11:11:13 3 18 622 0.1 60 L L

36 1 11:11:14 4 16 658 o1

37 1 11:11:15 5 18 666 08

38 1 11:11:16 0 6 18 579 0

39 1 111117 7

40 1 11:11:18 8 17 68 0.6

41 1 11:11:21 9 19 641 0.7 10

42 1 11:11:22 10 21 60.1 0 10 M M

43 1 11:11:23 11 21 59.9 2.05 10 M M

44 1 11:11:24 12 15 79.4 0.9 60 L L

45 1 11:11:28 13 25 57.8 0 60 M L

46 1 11127 14 20 742 0.6 20 M M

47 1 11:12:9 15

48 1 11:12:20 16

49 2 111111 1 28 407 0.1 L L

50 IR § 65 & 5 -] 31 48.6 0 L

51 2 1111113 3 27 42.8 0 L

52 2 11111114 4 27 507 0.7

53 2 11:11:115 5 23 50 0.6

54 2 1111116 6 23 78 2.2

55 2 1111117 7 31 354 0.1

56 2 11:11:18 8 24 49.4 0 M M
continued ...

205



rec_id site ym:d dayc temp hum wind-s cloud-c flight-act nest-act

57 2 11:11:21 9 22 612 07 10 M H
58 2  11:11:22 10 28 493 24 10 M M
59 2 11:11:23 11

60 2 111124 12 22 678 29 M M
61 2 11:11:28 13 22 608 1.1 M L
62 2 1111217 14 22 838 1.8 10 H H
63 2 11:12:9 15 21 68.1 1.5

64 2 11:12:20 16 20 609 1.5 H H
65 3 11111 1 L L
66 3 1111112 2 26 36.5 0.7 L L
67 3 11:11:13 3 23 538 o7 L L
68 3 11:11:14 4 26 43.5 1.1

69 3 1111115 5 22 45 0

70 3  11:11:16 6 23 564 23

71 3 111117 7 26 673 0.6

72 3  11:11:18 8 22 50 0.6

73 3  1L:11:21 9 26 51.6 1

74 3  11:11:22 10 31 44.5 0.7

75 3 11:11:23 11

76 3 1111124 12 24 582 06 M M
77 3 11:11:28 13 24 608 0.6 5 H H
78 3 11:12:7 14 25 56.1 0.7 5 H H
79 3 11:12:9 15 30 55.6 06

80 3  11:12:20 16

81 1 12:11:9 1

82 1 12:11:10 2

83 1 12:11:11 3 14 694 0.3 20 L L
84 1 1211112 4 16 774 04 50 L L
85 1 12:11:13 5 17 722 0.4 10 M M
86 1 12:11:14 6 14 696 0.3 60 L L
87 1 121115 7 15 821 0.5 80 L L
88 1 12:11:16 8 19 629 04 50 L L
89 1 12:11:18 9 19 532 06 30 L L
90 1 12:111:19 10 17 53.9 0.4 60 L L
91 1 121124 11 20 59 0.6 10 H H
92 1 12:12:11 0 12 26 52 0.3 5 H H

continued ...

206



rec_id site ym:d dayc temp hum wind-s cloud-c flight-act nest-act
93 1 12:12:12 13 20 58 0.2 5 H H
94 2 12:11:9 1 22 503 0.5

95 2 12:11:10 2 29 423 03 10 L L
96 2 121111 3 17 873 0 40 L L
97 2 1211112 4 20 63 0.3 70 M M
98 2 1211113 5 18 608 0.3 10 L L
99 2 12111114 6 15 625 04 100 L L
100 2 12:11:15 7 17 71.1 0.4 8o L L
101 2 12:111:16 8 22 531 0.3 L L
102 2 12:11:18 9 20 504 0.5 50 L L
103 2 12:11:19 10 20 556 03 100 L L
104 2 12114 11 21 67.5 04 20 M L
105 2 121111 12 30 43 0.4 5 M H
106 2 12:11:12 13 21 61.8 03 10 L M
107 3 12119 1 24 49 1.1

108 3 12:11:10 2

109 3 1211111 3 19 53.1 0 60 L L
110 3 12:11:12 4 22 551 0.1 60 L L
111 3 12:11:113 5 23 653 0.3 8o L L
112 3 12111114 6 16 642 04 30 L L
113 3 12:11:115 7 18 703 0.5 20 L L
114 3 1211:16 8 22 531 03 L L
115 3 12:11:118 9 21 549 0.6 L L
116 3 12:11:19 10 20 563 0.1 L L
117 3 12:11:4 11 23 612 03 60 M M
118 3 1211111 12 29 51 0.3 20 M L
119 3 12111112 13 25 56.6 03 30 M M
120 1 13:111:18 1 24 607 04 20 M M
121 1 13:111:19 2 28 45.6 0.5 70 M M
122 1 13:11:21 3 20 67 0.5 100 L L
123 1 131122 4 20 61 0.5 80

124 1 13:111:23 5 20 69 0.4 50

125 1 13:11:24 6 21 68 0.4 H H
126 1 13:111:25 7 23 53 0.1 10 H H
127 1 131126 8 27 55 0.3 40 H H
128 1 13:11:28 9 26 51 0 20 M M

continued ...

207



rec_id site ym:d dayc temp hum wind-s cloud-c flight-act nest-act
129 1 13:11:29 10 26 52 0.3 40 H H
130 2 13:111:18 1 27 64 0.1 20 L L
131 2 13111119 2 27 50.6 0.8 8o M M
132 2 131121 3 22 70 0.4 8o M M
133 2 13111122 4 22 61 0.4 90 M M
134 2 1311123 5 22 62 1 30
135 2 1311124 6 26 61 0.1 H H
136 2 13111125 7 22 48 1.1 20 H H
137 2 13:111:26 8 25 70 0.2 100 M M
138 2 13111128 9 25 55 0.5 20 M M
139 2 13:11:29 10 29 47 0.2 30 M M
140 3 13:11:18 1 28 47 0
141 3 13111119 2 29 51 0 90 L L
142 3 1311121 3 23 62 0.7 80
143 3 1311122 4 24 58 0.4 40
144 3 13:11:23 5 25 56 1 20
145 3 1311124 6 22 57 0.6
146 3 1311125 7 24 45 0.3 5
147 3 13:11:26 8 27 65 0 50 M M
148 3 13:111:28 9 32 44 0.3 40 M M
149 3 13:11:29 10 31 37 0.8 8o M M

Table F.2: Raw monitoring data
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EXHIBITION

T RADITION tells of the time when earth mother, Papatuanuku, was
clothed in vegetation [1]. After she was adorned, the Atua (Gods)
turned their attention towards the insects and reptiles of the earth.
There were some who viewed the insects as kutukutu (vermin); in-
festing the body of Papa. The whatukura (enlightened beings), Ruatau

and Rehua intervened. They spoke gently of the creatures to Tane,
the great God of the forests, saying...

Treat kindly the offspring of Torohua and Muhumuhu.
That they may serve as companions for you all.
Some are desirable, others are not.

But they preceded all other things.

209



R ANGI AND PAprA

Native bees live underground as grubs throughout the winter
months. The soil temperature increases as the rays from above reach
the ground. So begins the cue, for a new cycle of life.
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T E WAA.

Bees will start to emerge, at exactly the right time. Male bees pre-
pare first. They begin to dig upwards and outwards and are the first
to emerge from the ground. Days later, females emerge.

©T Wihongi 2013
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E Ao.
T Once all the bees have emerged from the ground, they enter the
outside world. They begin to mate and the seeds of a new generation
are created.

©T Wihongi 2013
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AURI ORA.

When native bees emerge there is a rapid explosion of activity.
Male bees form large mating swarms. Female bees start building new
nests. Many native plants are in full flower.
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HANAU.

Native bees are gregarious nester’s. They form communities
which are described as aggregations and are made up of individual
whanau, hapti and iwi (different species and sub-species).
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ORERO.
K Native bees are often attracted to a single, special tree, close by
their community. William Doherty [212] explained... "

Native trees lived for hundreds of years. In their lifetime they
held all their experiences, felt through their branches and leaves,
at the base.

©T Wihongi 2013
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TIAKI.
T Native bees preserve the natural structure of native forests and
trees, which depend on pollination for their own reproduction.
Through this, can been seen the reciprocal act of kaitiakitanga.

©T Wihongi 2013
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ANA.

Native bees have a long evolutionary history with native plants.
These complex relationships are founded on kaitiakitanga and mana.
The mauri of native trees, forests and ecosystems, depends on polli-
nation from native bees, therefore they have enduring mana whenua.

©T Wihongi 2013
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INE AND TAMARIKI.

Female native bees construct their own nests. They provision
their brood with enough food to grow and sustain them through the
winter months.
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K OTAHI.

Native bees are important pollinators however, it is through ko-
tahitanga, the unity of all groups combined, that maintains the mauri
of the natural world. As described in this whakatauki (saying) by
King Tawhiao:

Ki te kotahi te kiakaho ka whati, ki te kapuia, e kore e whati.
If there is but one toetoe stem it will break.

But, if they are together, in a bundle,

they will never break.
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