
 

Full citation: Benwell, G.L., & MacDonell, S.G. (1994) Assessing the graphical and algorithmic 
structure of hierarchical coloured Petri net models, Australian Journal of Information Systems 2(1), 
pp.17-28. 

Assessing the Graphical and Algorithmic Structure of  
Hierarchical Coloured Petri Net Models 

George L. Benwell and Stephen G. MacDonell 
Department of Information Science 

University of Otago 
Dunedin, New Zealand 

 
Abstract 

Petri nets, as a modelling formalism, are utilised for the 
analysis of processes, whether for explicit understanding, 
database design or business process re-engineering.  The 
formalism, however, can be represented on a virtual 
continuum from highly graphical to largely algorithmic.  
The use and understanding of the formalism will, in part, 
therefore depend on the resultant complexity and power 
of the representation and, on the graphical or 
algorithmic preference of the user.  This paper develops a 
metric which will indicate the graphical or algorithmic 
tendency of hierarchical coloured Petri nets. 
 
1. INTRODUCTION TO PETRI NETS 

Since the 1960s when Petri nets were first devised (Petri, 
1962) they have been modified and advanced.  As a result 
their power and useability have increased.  The 
application domain has also increased to reflect these 
improvements.  Originally a Petri net was defined as a 
bipartite graph consisting of places, transitions, arcs and 
tokens, such that; 

P = {p1, p2, .... pn} is the set of n places (graphically 
represented as circles) 

T = {t1, t2, .... tm} is the set of m transitions 
(graphically represented by rectangles) 

A = {the set of directed arcs connecting places and 
transitions}, and 

M = {the set of tokens resident in places at a given 
instant} (tokens are represented by  dots). 

In addition to these constructs a net has associated sets of 
enabling and firing rules.  These rules control the actions 
relating to transitions.  The enabling rules determine 
under what conditions (or particular marking) a transition 
is enabled and therefore may fire.  The firing rules 
determine what action will occur as a transition is fired.  
Originally, these rules were simplistic, but nonetheless 
appropriate.  They were; a transition, Ti, is enabled iff all 
its input places have a token and none of its output places 
have a token (Symons 1982), that is; 

 Ti is enabled when PI = 1 AND PO = 0 

 where 

  PI is the set of input places for Ti, and 

  PO is the set of output places for Ti. 

The result of this early theory was that the nets were 
complex even when modelling relatively simple 
processes.  This was considered to be a disadvantage, and 
in part, was responsible for a reluctance to use the nets.  
There was little point in producing a model that was 
potentially more complex than the phenomenon being 
modelled.  It is important to emphasise here that 
complexity refers to structure of the graphical formalism.  
As the rules were simplistic a process had to be 
decomposed almost to an atomic level.  Simple rules led 
to the creation of complex graphics.  Again, complexity 
needs to be clarified.  The formalism has only four 
constructs so complexity arises not from that number, but 
rather from their excessive and repetitive use. 

These deficiencies were addressed with the introduction 
of coloured Petri nets and also hierarchical coloured Petri 
nets (Reisig 1991).  The extension of the theory allowed 
for coloured tokens and complex algorithmic rules (op. 
cit.) to control the flow structure of the net.  The rules 
supplemented and extended the notion of enabling and 
firing rules.  Rules could now be far more complex.  The 
result was that nets were no longer rampantly complex in 
terms of graphics.  It is now possible to represent a 
complex process with minimal graphics, where the 
graphical structure is transformed into coloured tokens 
and complex rules.  So Petri nets can be now described in 
the following manner (Purvis and Purvis, 1993); 

- a net structure, which is just like that of ordinary 
Petri nets, 

- a set of data declarations, and 

- a set of net inscriptions. 

The net structure is like that of Place/Transition nets:  
nodes consisting of places and transitions, and directed 
arcs that always connect nodes of different types (either 
places or transitions). 

The declarations component, defines the colours, number 
and types of variables in the net.  Each place, instead of 
having a capacity attached to it, now will have a colour 
set attached to it.  Colour sets are analogous to abstract 
data types in programming languages, and just as with 
abstract data types, each colour set can have an associated 



 

set of operations and functions that can be applied to 
tokens of that colour.  Because of this analogy with 
abstract data types, the declarations component could be 
expressed in terms of any of a number of programming 
notations.  For example, Jensen's (Jensen, 1990) original 
notation of Standard ML could be used as it is in a 
commercial implementation of coloured Petri nets 
(MetaSoft Corp., 1992). 

The net inscriptions, are expressions which can be 
attached to a place, a transition, or an arc; 

- Places can have colour sets and initialisation 
expressions (analogous to the capacities and initial 
markings of Place/Transition nets). 

- Transitions can have guards, which are boolean 
expressions that may contain operations on objects, 
such as constants, variables, and functions that have 
been defined in the declarations component.  Guards 
must evaluate to TRUE in order for the transition to 
fire.  If a guard always evaluates to TRUE, then it is 
not shown. 

- Arcs may contain arc expressions, which also 
contain constants and items that have been defined in 
the declarations component.  When the arc 
expressions are evaluated, their variables are bound to 
the appropriate colours.  The value of the expression 
must be equal to a multi-set (bag) of the colour that is 
attached to the place at one end of the arc.  The arcs 
associated with a single transition (whether incoming 
or outgoing) have a common scope:  any variable that 
appears more than once must be bound to the same 
colour. 

The end result is that there is now a continuum of 
combinations.  A net could be highly graphical with little 
more than simple rules or at the other end of the 
spectrum, it could be hardly graphical and highly 
algorithmic.  Figure 1 presents this concept. 

It is contended that it is appropriate to derive a 
measurement to assess the relative percentages of 
graphics and algorithmic rules of a net.  In the short term, 
this metric could be simply to determine if there are 
classes of nets.  In the long term, it could be possible to 
match ‘net type’ with ‘end user type’ to maximise the 
outcome of the application of the Petri net formalism.  
This paper uses the term ‘structure’ as a measure of the 
relative percentages shown in Figure 1.  It may be argued 
that it would have been better to use ‘complexity’.  This 
latter term is related here more to the number of 
constructs in use rather than their alternate 
representations (graphical or algorithmic). 

This definition is supported by Symons (1982, p3) where 
he states; 

The structure of a net is defined by the 
interconnection pattern of the places and transitions 

To be absolutely sure then, this paper deals with 
measuring the two forms of representation - graphical and 
algorithmic and at this moment is not concerned with 
comparing two different nets for complexity (number 
constructs).  The latter would be important when 
measurements of efficiency and clarity are required. 

 
Figure 1. 

 
2. PETRI NETS AND INFORMATION 

SYSTEMS 

Petri nets have been utilised in information science since 
they were devised in the 1960s.  It is true to say, however, 
that the use has not been wide spread.  It is claimed that 
this is due to their complexity, though this objection is 
surely diminishing with the advent of coloured and 
hiearachical nets.  In fact Petri nets have been seen as a 
rigorous formalism and as such an appropriate substitute 
for data flow diagrams (Tse et al, 1989, p1).  In that 
vision the complexity was not denied and it should not be 
regarded as totally negative nor insurmountable.  A 
synergy is required between the ‘simplicity and 
informality’ of data flow diagrams and the ‘complexity 
and rigour’ of Petri nets.  Benwell et al. (1991) have 
proposed an extended use of Petri nets in the system 
development life cycle. 

When an information system is to be created it is 
necessary to understand the phenomena to be modelled.  
Any representation of the reality depends upon some 
method for categorising and defining what is being 
observed in a given situation.  For example, for any 
situation being observed it may be desirable to categorise 
items as entity types or processes.  During the 
observation, all phenomena and their most obvious 
situation-related processes are then classified.  For 
instance, in a VEHICLE RENTAL situation (such as 
Figure 5a), a CUSTOMER and a VEHICLE would be 
classified as entity types.  This method, with some 
variations, has been described as an object-oriented 
approach to systems analysis (Bailin, 1989).  In entity 
relationship models entity types may be people, objects or 
events.  In structured process modelling the emphasis is 
more on processes which relate to the dynamics of 
information in reality.  Using this method, the reality of 
the situation being observed can be described in terms of 
its data and processes.  The next step is to produce an 
entity relationship model and data flow diagrams.  So a 
variance on existing system development methods is one 
that is seen to model dynamic processes rather than static 
models of data. 
 
 



 

3. INTRODUCTION TO METRICS 

To assess the structure of a Petri net model it may be 
appropriate substantially to adopt techniques from the 
field of software metrics, particularly those investigations 
that have attempted to assess and analyse graphical 
product representations.  Software metrics is the common 
name for the branch of software engineering that is 
concerned with the (normally quantitative) assessment of 
software project effort, quality assurance and the like.  
Underlying all of these major goals is the fundamental 
attribute measurement of products, resources and 
processes (Fenton 1991).  As a Petri net is a tangible 
system representation, this paper is most interested in 
methods of product assessment.  Some previously 
proposed product measures are very simple, for example, 
the number of lines of code in a program, or the number 
of modules on a structure chart.  Others, such as Basili 
and Hutchens' SynC family of measures (1983) and the 
Macro/Micro measures proposed by Harrison and Cook 
(1987), are more complicated combinations of several 
product attributes. 

Software product measures such as these have been used 
in a wide variety of functions.  Some have been used, for 
example, in the estimation of software development costs, 
or to assist in the prediction of maintenance requirements, 
or in the evaluation of particular development strategies 
(MacDonell 1992).  In some cases, however, the validity 
of these investigations has been subsequently challenged, 
as the measures used have been chosen inappropriately 
and have therefore failed to actually assess the 
characteristic(s) of interest (Fenton 1991).  This has 
occurred most especially when assessments of poorly-
defined attributes such as ‘understandability’ or 
‘useability’ have been the goal.  The concern in this 
paper, however, is only with the direct assessment of Petri 
net structure.  It is therefore likely that problems of 
validity can be largely avoided through the use of 
relatively rigorous measurement definitions.  Once this 
assessment has been shown to be valid, it may then be 
possible to determine useful relationships between the 
structure metrics and other aspects of the software 
process.  In addition, discussion here is not concerned 
with functionality as this should appear in both (or any) 
representations of the same system.  The core theme is to 
only consider the structure of the chosen representation in 
terms of path/decision metrics.  Figures 2a and b provide 
a simple example.  While being simple it must be said that 
the example also displays some relaxed theoretical rules.  
That is, the sink or counter at P4 in (a) and P3 in (b), once 
marked by a token would bar the transition T1 from being 
enabled again.  This relaxed rule matters little in terms of 
the measurement of structure being discussed here.  
Figures 2a and 2b are equivalent. The functionality 
represented graphically in Figure 2a is distributed 
between graphics and explicit algorithmic rules in Figure 
2b. 

As described earlier, a Petri net is a system representation 
formalism that incorporates both graphical and 
algorithmic components.  Structural assessment of the 
whole would intuitively require separate assessment of 
each aspect, as both contribute to overall net size and 
structure.  Given that the algorithmic component is 

concerned with processing control (Jensen, 1990), which 
can also be depicted graphically, it would seem 
appropriate to use graphical analysis methods for both 
Petri net components. 

 

 
Figure 2. 

Metrics that are derivable from graphic product 
representations are widespread in the software 
engineering literature; for example, the methods described 
by Chen (1978), Benyon-Tinker (1979) and Szulewski et 
al. (1981).  Some are based on conceptual or functional 
system descriptions, such as DeMarco's Bang method 
(1982).  Others are derived from design documents, and 
are therefore generally based on a product's calling 
structure.  Of most interest here, however, are those 
assessment techniques that may be applied to lower level 
product abstractions as represented in graph form, as 
these will be directly applicable to the graphical structure 
of Petri nets.  Although many of these methods were 
initially proposed as measures of software product 
complexity (for example, see McCabe (1976), Woodward 
et al. (1979) and Chen (1978)), the underlying rationale 
of the methods is appropriate for the less ambitious 
assessment of Petri net structure. 
 
4. MEASUREMENT OF PETRI NET 

STRUCTURE 

A graphical structure assessment method adapted directly 
from software metrics (but which, interestingly was 
originally derived from graph theory) is that which 
determines the ‘cyclomatic complexity’ of a program 
flowgraph (McCabe 1976).  As a Petri net can be 
considered in terms of a directed graph C (Peterson 1977) 
with nodes p and t (places and transitions), edges a (arcs), 
and connected components c, the formulation of the graph 
cyclomatic number v is as follows (Berge 1973): 

 v(C) = a - p - t + c     (1) 

Equation (1) applies when the Petri net graph is strongly 
connected (for strong connections see, Symons, 1982, 
p7);   that is, a directed path may be traced between any 
pair of nodes in the graph. 

Some graphs, however, are not strongly connected.  For 
example, a given model may have logical starting or 



 

ending points, or both.  This can be observed in the form 
of ‘start’ nodes s or ‘finish’ nodes f, places that only have 
inputs or outputs respectively.  For Petri net graphs of this 
type the above formulation must be adjusted accordingly 
(Henderson-Sellers 1992).  This is important as, at least 
intuitively, they are two basic net forms.  The first may be 
called cyclic, having no end or beginning, and is a net that 
models the ongoing logic of a system.  The other may be 
called episodic, which clearly have start and finish nodes.  
The fact that the difference may only be the level of 
abstraction or the ‘view’ of the system or process does not 
remove the need for the classification.  Thus for nets that 
include a start place and/or a finish place the equation for 
the cyclomatic number becomes: 

 v(C) = (a + 1) - p - t + c     (2) 

Finally for nets that have two or more start places or two 
or more finish places the calculation of the cyclomatic 
number is of the form: 

 v(C) = ((a + 1) + (s + f)) - (p + t + 2) + c     (3) 

Figure 3 is an example of how equations (1) to (3) may be 
applied to small nets. 

Values of v (as calculated from equations (1) and (2)) 
were used by McCabe (1976) as measures of graph 
‘complexity’, and subsequently as a basis for determining 
software testing strategies.  This approach was based on 
the underlying assumption that a greater number of 
decision constructs meant a greater number of paths, and 
that this in turn contributed significantly to higher product 
complexity (also see (Peterson, 1981, p118)).  Since it 
was first proposed, McCabe's method has been the subject 
of extensive investigation, with somewhat mixed results.  
Some empirical support has appeared - for example, see 
the studies reported by Curtis et al. (1979) and Hartman 
(1982) - and, on the whole, the measure is viewed as one 
of the more effective software metrics (Boehm 1981;  
Arthur 1985;  Li and Cheung 1987).  In contrast, 
however, it has also been the subject of some criticism in 
relation to its treatment of path control constructs.  This 
has led in some cases to metric refinements being 
proposed based on notions of intuitive complexity (Myers 
1977;  Hansen 1978;  Ramamurthy and Melton 1988).  In 
the current study, however, the issue of varying construct 
complexity is of minimal concern, as the interest lies only 
in the underlying path structure of a Petri net (which is 
unaltered by construct variations), not how this relates to 
complexity or understanding (Shepperd 1988).  Thus the 
measures are used here simply to provide standardised 
indicators of the graphical and algorithmic path structure 
of Petri nets. 

The c term in equations (1) to (3) relates to the number of 
connected components.  McCabe (1976) adopted this 
term as an adjustment factor for the use of sub-programs, 
so that the number of components equalled the main 
module plus all called modules.  Thus when determining 
the value of v for a single module the value of c was equal 
to 1.  In the current context it seems natural to take the 
same approach - the value of c for each distinct self-
contained Petri net will therefore also be set equal to 1.  
In addition there may be some need to consider the 
hierarchical nature of coloured Petri nets as a contributing 
factor to the structure of a net.  This is believed to have 

more to do with functionality than structure (as already 
defined).  So those places and transitions which link 
layers in the hierarchy will not be given any higher weight 
than they do as ordinary nodes.  It has also been shown 
that transitions and places can be transposed into places 
and transitions to produce an equivalent net (Peterson, 
1981, p13).  It would therefore seem logical that places 
and transitions are all nodes of equal significance.  Given 
these conditions the three equations above may be 
reduced (Stetter, 1984;  Henderson-Sellers, 1992): 

Equation 1 becomes, 

 v(C) = a - p - t + 1     (4) 

Equation 2 becomes, 

 v(C) = a - p - t + 2     (5) 

 Equation 3 becomes, 

 v(C) = a - p - t + s + f     (6)  

 
Figure 3. 

Algorithmic structure assessment is likely to follow a very 
similar approach, as the coded rules in a Petri net perform 
essentially the same function as the graphical form;  that 
is, they control the sequence of functions through the use 
of conditional tests (Purvis and Benwell, 1993).  Thus the 
graphical assessment methods discussed above will also 
be adapted for use with the algorithmic net component.  
This clearly requires the development and measurement 
of a flowgraph for each place, transition or arc in which 
rules are used. The total structure measure for the 
algorithmic component would be the sum of the 
individual block measures adjusted for the number of 
blocks (Henderson-Sellers, 1992). 

The Petri net shown in Figure 2b will serve as an initial 
example.  Figure 4 shows the concept of forming a 
graphic equivalent of the algorithmic component for 
assessment purposes.  The net originally shown in Figure 
2(b) is therefore now represented as two graphs, with the 



 

numbers on each indicating the counts of places, arcs and 
transitions.  The derivation of the algorithm-based graph 
(on the right of Figure 4) is intuitive - place 1 (P1) 
represents the IF statement, arc 1 is equivalent to the 
THEN branch, arc 2 the ELSE branch, the transitions 
represent the two "actions", and arcs 3 and 4 represent the 
implicit return of control to the next sequential statement, 
the ENDIF in P2. 

 

 
Figure 4. 

Using equations (5) and (6) the metrics for graphical 
structure (Sg) and algorithmic structure (Sa) for Figure 4 
can be expressed as; 

 Sg = a - p - t  + s + f     (7) 

 Sa = a - p - t  + 2     (8) 

So, from Figure 4 it is determined that; 

 Sg = (3 - 3 - 1 + 1 + 2) = 2 

and 

 Sa = (4 - 2 - 2 + 2) = 2 

It may be held that it is necessary to determine the 
number of tokens in the net as a contributing factor 
toward structure.  While this may be so, tokens are not 
considered separately as; 

1. the number of types of tokens is the significant 
factor not the number of tokens, 

2. the types of tokens are considered indirectly in the 
assessment of the algorithmics, 

3. the number of tokens relates more to net 
complexity than net structure.  Safeness and 
conservational aspects of a net, directly concern 
tokens but relate to complexity and are not 
assessed here. 

As an example consider a Petri net modelling a car hire 
process (Benwell, Firns and Sallis, 1991) (see Figure 5).  
In a part of the net, cars are represented by tokens; the 
number of cars will dictate the number of coloured tokens 

(but not necessarily the number of colours).  This will not 
inherently change the structure of the net nor in fact 
complexity until such time as the processes to handle the 
number of cars change.  Then a new process is being 
modelled so it should be expected that structure (and 
maybe complexity too) will be different.  Therefore a net 
to model 10 cars or a 100 cars will have the same 
structure, provided all cars are treated equally and the 
process to handle the number of cars is the same. 

 
Car Hire Net (adapted from (Benwell et. al. 1991)) 

Figure 5. 

 
5. INDICATORS OF OVERALL PETRI 

NET STRUCTURE 

With appropriate indicators of both graphical and 
algorithmic structure, denoted Sg and Sa respectively, an 
overall measure of Petri net structure, Sp, can be 
determined.  The two individual measures can also be 
used to determine whether a Petri net is dominated by 
graphical or algorithmic structure.  This could be, in the 
future, extended to meet the longer term aims mentioned 
earlier.  Given that the two components (graphical and 
algorithmic) are directly dependent, in that high 
utilisation of one will result in proportionally lower use of 
the other, a function of the sum of the components would 
seem to be an appropriate indicator of overall structure.  
In determining the graphical or algorithmic dominance in 
a given Petri net, however, a ratio would intuitively 
provide a useful method of assessment.  Therefore, Petri 
net structure, is equal to, 

 Sp = (Sg + Sa) - (c - 1)     (9) 



 

Given that the structure measure equates to the number of 
linearly independent paths (McCabe, 1976) in a net it is 
again necessary to reduce the raw sum of the two 
components by (c - 1).  This is in fact a specific instance 
of the formulation introduced by Henderson-Sellers 
(1992), whereby the total value of the path measure is 
always equal to the sum of the contributing component 
values minus the number of components plus one.  Thus, 
if Sa = 0, that is there is no algorithmic component, then c 
= 1. 

The measure of overall Petri net structure Sp, as given by 
equation (9), could be solely used as a tool for net 
evaluation.  Notwithstanding that possibility, the thesis of 
this paper is to derive a metric that will classify nets as 
predominantly graphical or algorithmic and then, and only 
then, to draw some conclusions as to any differences 
between the two types. 

Structural dominance can be expressed in terms of 
graphics or algorithmics according to the following; 

 Dpg = Sg/Sp     (10) 

 Dpa = Sa/Sp     (11) 

but, in cases in which Sg and Sa contribute to the 
structure: 

 Dpg + Dpa ≠ 1     (12) 

So, it is not possible to directly compare the influences 
and sum them to 100%.  It is desirable to have the sum of 
equation (12) equal to one.  This can be achieved by 
adjusting Sp.  Therefore, 

 Sp’ = Sp + (c - 1)     (13) 

and 

 Dpg = Sg/Sp’     (14) 

 Dpa = Sa/Sp’     (15) 

and, therefore, 

 Dpg + Dpa = 1     (16) 

Now the two components may be compared directly as 
complementary percentages (equation (16)).  The 
outcome is a direct comparison, but Sp’ no longer 
represents the total count of all paths through the net. 

Equations (14) and (15) enable the assessment of the 
graphical or algorithmic dominance in a given Petri net.  
Some ‘classes’ of Petri net user may prefer graphically or 
algorithmically dominated representations.  The 
consequential matching of a graphical (/algorithmic) net 
with a graphical (/algorithmic) user has not escaped 
attention; though it is not the subject of this paper.  For 
example, project managers as a group, may prefer a 
higher graphic component, as this may enable more 
effective communication.  Conversely, programmers 
might be better served by having algorithmic dominated 
nets, so that the implementation of the functions described 
by the net are made more straightforward.  In addition, 
there may be classes of problems that are better portrayed 

in either representation.  At this stage, however, the paper 
is not concerned with why different preferences exist. 

Given the ratio form of the Petri net dominance 
indicators, the value of Dp(i) will fall somewhere along 
the continuum from graphically dominated to algorithmic 
dominated.  When Dpg equals Dpa the structure is evenly 
distributed between the graphical and algorithmic 
components.  A different rendition of Figure 1 conveys 
the concept in Figure 6. 

 
Figure 6. 

 
6. THE DINING PHILOSOPHERS 

PROBLEM 

The dining philosophers problems is now universally 
established (Peterson, 1981, p65 and Krishnamurthy, 
1989, p54) and is a good practical example for comparing 
the structural dominance of the graphics and algorithmics.  
The Petri net for the philosophers (adopted from Peterson 
(op. cit.)) in given in Figure 7.  The problem is that there 
are five diners and five eating utensils, the latter can be 
assumed to be forks (a, b, c, d, e in Figure 7).  A diner 
needs two forks to eat.  If two forks are not available the 
diner must be a true philosopher and forego eating for 
thinking.  It is only possible for two opposite diners (say 
‘1’ and ‘3’ or ‘1’ and ‘4’ for example) to eat at the same 
time.  Figure 7 represents this situation where diner ‘1’ is 
eating, the immediate left (‘5’) and right (‘2’) dinner 
partners must think, while either of the upper two (‘3’ or 
‘4’) may choose to eat.  If one chooses to eat,  the other 
cannot.  This situation is cyclic and continues ad 
nauseam.  The net configuration, as presented, makes a 
deadlock impossible.  In the more general case it would 
be possible where any diner can select a fork (as distinct 
from a pair) at a given time. 

The graphical measure of this net is given by; 

 Sg = a - p - t  + c = 40 -15 - 10 + 1 = 16 

and Sa = 0, so 

 Sp = (Sa + Sg) - (c - 1) = 0 + 16 - (1 - 1) = 16 

 Sp’ = Sp + (c - 1) = 16 + (1 - 1) = 16 

Therefore, 

 Dpg = Sg/Sp’ = 16/16 = 1 »100% 

 Dpa = Sa/Sp’ = 0 » 0% 

which leads to the obvious conclusion that the net is 
graphically dominated.  Now a new net can be created 
where some or all of the graphical logic is transposed to 
algorithmics.  This is presented in Figure 8.  Calculation 



 

of the graphical structure of the Figure 8 representation is 
relatively straight forward; 

 Sg  = a - p - t + c 

  = 4 - 2 - 2 + 1 

  = 1 

The assessment of the algorithmic structure, Sa, however, 
requires some preliminary calculations.  Given that there 
are two blocks of algorithmic code in the representation, 
the value for each block must be determined first; 

 Sa1 = (a + 1) - p + c 

  = (30 +1) - 17 + 1 

  = 15 

 Sa2 = (a + 1) - p + c 

  = (4 + 1) - 4 + 1 

  = 2 

 

 
The Dining Philosophers 

(adapted from, Peterson, 1981, p65) 

Figure 7.  

As stated previously, the total algorithmic structure value 
is the sum of the individual block measures adjusted for 
the number of blocks.  Hence; 

 Sa = (Sa1 + Sa2) - (c - 1) 

  = (15 + 2) - (2 - 1) 

  = 16 

Now that values for Sg and Sa have been obtained the 
remaining indicators of overall structure, Sp, Sp’, Dpg 
and Dpa can be evaluated; 

 Sp = (Sg + Sa) - (c - 1) 

  = (1 + 16) - (2 - 1) 

  = 16 

(as can be expected, the overall structure value for this 
representation is equal to that of the representation in 
Figure 7). 

 Sp’ = Sp + (c - 1) 

  = 16 + (2 - 1) 

  = 17 

Therefore, 

 Dpg = Sg/Sp’ = 1/17 = 0.06 » 6% 

 Dpa = Sa/Sp’ = 16/17 = 0.94 » 94% 

These values now show that the net, as represented in 
Figure 8, is dominated heavily by algorithmic structure.  
An intuitive assessment would no doubt have generated 
the same conclusion; the calculations above, however, 
provide quantitative relative indicators of this fact. 

 

 
Collapsed Dining Philosophers’ Net 

Figure 8. 

 
7. CONCLUSION 

This paper has adopted and derived a numerical technique 
to measure the relative percentages of graphical and 
algorithmic structure of a Petri Net.  The basis for the 
calculation has been the research and development 
undertaken in the area of software metrics.  The metric so 
derived can be utilised to indicate the influence each 
component has on the structure of a Petri Net.  This has 
fulfilled the initial goal of this research.  In the longer 
term it may be possible to match the attributes of a net to 
the characteristics of a user and thereby enhance the 
functionality of Petri Nets as a formalism. 

 
 
 



 

REFERENCES 

Arthur, L.J. (1985) Measuring Programmer Productivity 
And Software Quality, John Wiley & Sons, New York. 

Bailin, S.C. (1989) “An Object-Orientated Requirements 
Specification Method”, Communications of the ACM, 32, 
5. 

Basili, V.R. and Hutchens, D.H. (1983) “An Empirical 
Study of a Syntactic Complexity Family”, IEEE 
Transactions on Software Engineering 9 (6), pp664-672. 

Benwell, G.L., Firns, P.G. and Sallis, P.J. (1991) 
“Deriving Semantic Data Models from Structured Process 
Descriptions of Reality”, Journal of Information 
Technology, No. 6, pp15-25. 

Benyon-Tinker, G. (1979) Complexity Measures In An 
Evolving Large System, Conf. Proc., Workshop on 
Quantitative Software Models for Reliability, Complexity 
and Cost, New York NY, USA (1979, pp117-127. 

Berge, C. (1973) Graphs and Hypergraphs, North-
Holland, Amsterdam. 

Boehm, B.W. (1981) Software Engineering Economics, 
Prentice-Hall, Englewood Cliffs NJ. 

Chen, E.T. (1978) “Program Complexity and Programmer 
Productivity”, IEEE Transactions on Software 
Engineering 4 (3), pp187-194. 

Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A. and 
Love, T. (1979) “Measuring the Psychological 
Complexity of Software Maintenance Tasks with the 
Halstead and McCabe Metrics”, IEEE Transactions on 
Software Engineering 5 (2), pp96-104. 

DeMarco, T. (1982) “Controlling Software Projects”, 
Yourdon, New York. 

Fenton, N.E. (1991) Software Metrics, Chapman & Hall, 
London. 

Hansen, W.J. (1978) “Measurement of Program 
Complexity by the Pair (Cyclomatic Number, Operator 
Count)”, ACM SIGPLan Notices 13 (3), pp29-33. 

Harrison, W.A. and Cook, C. (1987) “A Micro/Macro 
Measure of Software Complexity”, Journal of Systems 
and Software 7, pp213-219. 

Hartman, S.D. (1982) “A Counting Tool for RPG”, ACM 
SIGMetrics PER 11 (3), Fall, pp86-100. 

Jensen (1990,) Coloured Petri Nets:  High Level 
Language for System Design and Analysis, in Advances 
in Petri Nets 1990, Springer-Verlag, Berlin. 

Krishnamurthy, E.V. (1989) Parallel Processing, 
Principles and Practice, Addison-Wesley, Sydney, 332 
pages. 

Li, H.F. and Cheung, W.K. (1987) “An Empirical Study 
of Software Metrics”, IEEE Transactions on Software 
Engineering 13 (6), pp697-708. 

MacDonell, S G. (1992) Quantitative Functional 
Complexity Analysis of Commercial Software Systems, 
unpublished PhD thesis, University of Cambridge. 

McCabe, T.J. (1976) “A Complexity Measure”, IEEE 
Transactions on Software Engineering 2 (4), pp308-320. 

MetaSoft Corp. (1992) MetaSoft Corporation Manual, 
Design/CPN Version 9, MetaSoft Corporation, 
Cambridge, Mass. 

Myers, G.J. (1977) “An Extension to the Cyclomatic 
Measure of Program Complexity”, ACM SIGPLan 
Notices 12 (10), pp61-64. 

Peterson, J.L. (1977) “Petri Nets”, Computing Surveys, 
Vol. 9, No. 3, pp223-252. 

Peterson, J.L. (1981) Petri Net Theory and The Modelling 
of Systems, Prentice-Hall, Eaglewood Cliffs, New Jersey, 
290 pages. 

Petri, C. A. (1962) Communication with Automata, 
Supplement 1 to RADc-TR-65-377 Vol. 1, Griffiss Air 
Force Base, New York, - Originally published in German 
‘Kommunikation mit Automaten’, University of Bonn, 
cited in (Peterson, 1981, p3). 

Purvis, M.K. and Benwell, G.L. (1993) “A Causal Agent 
Approach for Modelling Dynamic Systems”, New 
Zealand Computer Society, Conference Proc., 35th NZCS 
Conference, Hamilton, New Zealand, pp592-604. 

Purvis M.A. and Purvis, M.K. (1993) “Dynamic 
Modelling of the Resource Management Act”, Conf. 
Proc., 5th Annual Colloquium, Spatial Information 
Research Centre, University of Otago, New Zealand, 
pp225-240. 

Ramamurthy, B. and Melton, A. (1988) “A Synthesis of 
Software Science Measures and the Cyclomatic Number”, 
IEEE Transactions on Software Engineering 14 (8), 
pp1116-1121. 

Reisig, W. (1991) A Primer in Petri Net Design, 
Springer-Verlag, Berlin. 

Henderson-Sellers, B.H. (1992) “Modularization and 
McCabe's Cyclomatic Complexity”, Communications of 
the ACM 35 (12), pp17-19. 

Shepperd, M. (1988) “A Critique of Cyclomatic 
Complexity as a Software Metric”, Software Engineering 
Journal, pp30-36. 

Stetter, F. (1984) “A Measure of Program Complexity”, 
Computer Language (UK) 9 (3/4), pp203-208. 

Symons, F.J.W. (1982) “The Application of Petri Nets 
and Numerical Petri Nets”, Research Laboratories Report 
7520, Telecom, Australia. 

Szulewski, P.A., Whitworth, M.H., Buchan, P., and 
DeWolf, J.B. (1981) “The Measurement of Software 
Science Parameters in Software Designs”, ACM 
SIGMetrics PER 10 (1), pp89-94. 

Woodward, M.R., Hennell, M.A., and Hedley, D. (1979) 
“A Measure of Control Flow Complexity in Program 
Text”, IEEE Transactions on Software Engineering 5 (1), 
pp45-50. 

 


