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Abstract 

In this work a finite element model is proposed to describe the swelling of poly(acrylic 

acid) hydrogels under the influence of an external electric field. The specific application 

of this model is for optical applications, but the design could be used equally well for 

other applications such as sensors and actuators. 

 

The model is proposed as five individual modules, which work in conjunction with each 

other but which can also function independently. This independence allows the model to 

provide intermediate results to the user, and also permits each module to be improved or 

adjusted individually without affecting the operation of the overall model. The first 

module is the Electrical module, which calculates the external electric field present in 

the hydrogel by solving Laplace’s equation. The second module is the Chemical 

module, which uses the electric field to calculate the diffusion and migration of ions 

through the hydrogel/solvent regions. The third module is the Force module, which uses 

the change in ion concentrations to calculate the resulting change in osmotic pressure 

(force). This force is then used in the Mechanical module to calculate the deformation 

of the hydrogel, based on the assumption of linear elasticity. Finally, the fifth module is 

the Optical module, which uses the deformation to calculate the theoretical change in 

focal length.  

 

To verify the operation of the model, numerous experiments were conducted with the 

deformation of a poly(acrylic acid) hydrogel being measured under various external 

voltages with different electrode configurations. Overall, the model agrees quite well 

with the experimental results, but also highlights some interesting discrepancies that 

will need to be considered in future work. There is also some scope for improvement in 

the experimental method used, but again this is left for future work. 
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1. Introduction 

1.1. Background 

Whether used directly, or as a part of the manufacturing processes, optical lenses have 

come to play some part in almost every consumer product that is manufactured. Yet 

traditional lenses (constructed from glass or plastic) have changed very little since they 

were first developed, and still suffer from one key drawback – namely, that they possess 

a fixed focal length (or more accurately a small range of focal lengths if aberrations are 

considered). Modern engineering has allowed the creation of single lenses which have a 

continuously variable focal length (graded-index lenses), but these efforts still do not 

represent a true changeable focal length lens. Many previous attempts [1, 2] to generate 

a changeable focal length lens have relied upon actuators to deform a standard lens and 

achieve a change in focal length. This is not an ideal solution however, and relies on the 

modification of existing technology. 

 

This research is part of a larger project to develop changeable focal length lenses (CFL), 

particularly in the pursuit of alternative treatments for vision correction. The project is 

primarily interested in the condition of presbyopia, which is an age-related loss of 

accommodation in the eye. Unlike other refractive errors, there is no cure for presbyopia 

and those affected are required to wear correction in the form of bi or tri-focal lenses. 

While this is generally not too inconvenient, problems can arise if a person also suffers 

from additional refractive errors such as myopia (short-sightedness). In this case, two or 

more sets of corrective lenses may be required, with a person needing to switch between 

them to perform different tasks. Although some progress has been made to produce 

lenses with continually varying focal distances (such as graded-index and progressive-

addition lenses), some people experience nausea and dizziness when using these. They 

are also not true changeable focal length lenses, and consist of a finite number of 

discrete focal distances.  Clearly, there is need for a true changeable focal length lens 

that can vary its focal length on demand, which is ideally worn external to the body. 

Some researchers have also suggested surgical means to correct presbyopia. Baikoff [3] 

suggested placing an implant directly into the eye to exert a centripetal force directly on 

the cillary body. This implant allows the eye to achieve greater accommodation, thereby 

correcting the loss of accommodation experienced with presbyopia. It was unclear 
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however whether this surgery has ever been performed. Of course, surgery should 

always be a last resort, and so if the presbyopia can be solved by augmenting the 

refractive power of the eye using a lens, this would be preferable for many people. 

 

Many researchers have attempted to develop changeable focal length lenses. In 1969, 

Basil Wright attempted to develop a changeable focal length lens using an optically 

transparent liquid that was used to change the shape of an elastic membrane [4]. He 

specifically mentions the use of this device to combat presbyopia, but unfortunately did 

not fully develop the idea (he does not consider the refraction of the glass enclosure for 

example). Krupenkin et al. [5] extended on this work using a small amount of 

conductive liquid placed on top of a dielectric material.  It was found that the focal 

length of this microlens can be adjusted by almost 1mm when voltages up to 100V were 

applied. They could adjust the spatial position through careful application of the 

stimulating voltage. They also provided some analytical derivations for the focal length 

as a function of the contact angle, droplet volume and refractive indices of the liquid 

and surrounding media. More recently, Ren and Wu [6] proposed using a radial actuator 

to decrease the aperture of a liquid lens, thereby modifying its focal length. They 

encased a fixed volume of an optically transparent liquid in an enclosed space, and 

adjusting the relative width of this space could stretch an elastic membrane and change 

the focal length. This idea is similar to that suggested by Task [7], except that he used a 

fluid pump to increase the volume of liquid in the cell.  

 

Other researchers have attempted to create a variable focal length lens by adjusting the 

refractive index of a material. Commander et al. [8] varied the birefringence of a liquid 

crystal cell to vary the refractive index of a microlens. Analytical solutions were also 

provided for the change in refractive index for different applied AC voltages (up to 

12V) and various theoretical wavefront aberrations across the lens face. Kulishov [9] 

extended on this idea and built an array of liquid microlenses. By inducing a periodic 

variation in refractive index across the array, Kulishov wanted to generate a variable 

focal length lens of much larger dimensions than that discussed by Commander. 

 

There has also been significant commercial interest in the development of a variable 

focal length lens. By far, the most successful has been Royal Philips Electronics [10], 

who have developed a variable focal length lens based on the electrowetting effect. The 

lens boasts a wide range of focal lengths, quick response and almost no current draw 
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when maintaining a specific focal distance.  It has been reported however [11], that this 

lens does require relatively high voltages (50V DC) to operate, which may limit its use. 

Triton Systems [2] have also developed a prototype variable focal length lens that 

utilises silicone.  Using ultrasonic actuators, Triton passes pressure waves through the 

silicon causing the atoms to vibrate, which then generates density variations throughout 

the material.  Thus far, only a small area in the centre of the material has experienced a 

refractive index change, but by using more powerful actuators it is expected that this 

can be increased. Triton is also investigating a liquid glycerin lens, but the results of this 

are unknown.  Although the use of ultrasonic waves is quite practical, the long-term 

stability of the material and/or actuators may need to be examined.  

 

In the past decade, polymers that respond to electricity have become grouped into a 

much larger group of materials known as electroactive polymers (EAP). EAP materials 

are generally considered to be divided into two broad categories - electronic polymers 

and ionic polymers [12].  The former are made up of the more traditional piezoelectric 

and electrostrictive polymers (such as polyurethane), which while still being actively 

researched, appear to be becoming less popular. This is most probably because they are 

typically quite brittle and also require high voltages. 

 

Ionic polymers are further divided into two smaller groups: ionic polymer-metal 

composites (IPMC) and conjugated polymers. A third class of materials are the 

polyelectrolyte hydrogels which are polymers that contain ionisable groups on their 

main chains, and are the main focus of this work. What makes these materials different 

from other polymers is that when they are placed in water (and dependent on pH) the 

ionisable groups on their chains dissociate and allow the polymer to take on a net 

charge. Since polyelectrolyte hydrogels rely on ion transport mechanisms however, they 

are generally grouped with the ionic polymers. 

 

One of the most prolific research groups in the field of EAPs is that led by Yoseph Bar-

Cohen, who has published extensively in this field over the last decade. In 1997, Bar-

Cohen and his associates investigated the use of perfluorinated ion-exchange membrane 

platinum (PIEP) composites as a comparison to the more traditional shape memory 

alloys (SMA) [13]. They found that the PIEP material was superior to the SMA in terms 

of generated strain and actuator displacement. Together with Leary, he extended on this 

work in 2000 [14] and investigated the bending of Nafion and Flemion membranes 
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under the influence of an electric field. Their work also served to highlight some of the 

difficulties that occur when trying to characterise the behaviour of EAPs. The same 

group has also written a number of papers summarising the state and direction of the 

field of EAPs [15-19], which recently culminated in a book [20]. 

 

IPMCs are manufactured by depositing a noble metal (usually platinum) into the 

polymer network of an ionic polymer. The resulting material is both stronger and faster 

than its ionic counterpart, and so is attracting interest for use as an actuator material. 

One of the first authors to conduct research into IPMCs was Shahinpoor who compared 

them to SMAs and electroactive ceramics (EAC) [21]. Experimental evidence was 

presented which showed that IPMC materials displayed superior accuracy and 

repeatability and had good deformation and strain characteristics. Later, in a review 

paper [22], Shahinpoor presented experimental data that showed an IPMC capable of 

generating a force equivalent to 40 times its own weight! 

 

The conjugated polymers have possibly received less attention, yet they are still a vital 

part of the EAP field. Smela [12] recently provided a very good overview of conjugated 

polymers, and focused particularly on using these materials in biomedical applications. 

She summarised a number of the advantages of these materials, most of which are also 

applicable to IPMCs: 

 

• They generate large amounts of strain. 

• They have high strength. 

• They require low voltages. 

• They are lightweight. 

• They can hold a constant strain under DC voltages. 

• They can work at ambient temperature. 

 

Unfortunately, ionic polymer hydrogels also suffer from disadvantages, which limit 

their use. Some of these disadvantages are: 

 

• They generally involve diffusion processes, which causes slow response unless 

produced on a very small scale. This is because the speed of diffusion is 

inversely proportional to the square of the smallest direction.  
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• They are “wet” materials, and integration into traditionally “dry” environments 

is difficult. This leads to the additional complication of needing to encase the 

materials, which can alter or restrict their behaviour. 

• They lack the strength of traditional materials and also damage easily. 

• As with many electrochemical processes, hydrogen gas is produced during the 

swelling process. While this is generally not a concern in the laboratory, it is a 

factor which can affect where and how these materials are used. 

 

These problems are slowly being overcome however, with many researchers focusing 

on methods to improve the material properties of polymer hydrogels and IPMCs. 

Tamagawa and Nogata [23] have demonstrated the controllable deformation of a Nafion 

(Dupont) membrane, achieved without the use of a surrounding solvent. This suggests 

that it may be possible to develop dry ionic polymers in the future.  Ozmen and Okay 

[24] have developed a method for increasing the elastic modulus of 2-acrylamido-2-

methylpropane sulfonic acid (AMPS) hydrogel by almost an order of magnitude. The 

swelling speed of these hydrogels was also faster than their traditional counterparts, 

suggesting that the strength and deformation speed of current hydrogel materials is far 

from optimum. 

 

In recent years, research into EAPs appears to have become divided according to 

whether IPMCs or conjugated polymers are used.  Those scientists and engineers who 

are focusing on actuation and artificial muscles tend to cluster towards IPMCs because 

of the increased strength and speed at which these materials operate. Shahinpoor and 

Kim [25] recently presented a good summary of the field of IPMCs, including a detailed 

discussion of their mechanical, electrical and electrochemical properties. They also 

presented experimental evidence that the electrochemical process at work in an IPMC is 

diffusion controlled. Shahinpoor has also published widely on the use of IPMCs in the 

development of artificial muscles [21, 26-28]. Other scientists and engineers are 

focusing on using polymer hydrogels for drug delivery methods or temperature sensing 

where possibly more accuracy and control of the swelling deformation is required and 

high strength is a secondary consideration. 

 

The overall thrust in this research is in controlling the deformation of polymer 

hydrogels under the influence of an electric field in order to generate a changeable focal 

length lens. This approach is a radical departure from the more traditional methods of 
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creating a variable focal length lens, but previous work on both poly(acrylic acid) and 

polyurethane [29, 30] has demonstrated that it is possible to use EAP materials as a lens 

material. Polymer hydrogels are a particularly attractive choice for a number of reasons, 

including: 

 

• They operate with low voltages. Polymer hydrogels can be controlled with 

relatively low DC voltages, as opposed to traditional electrostrictive materials 

which can require stimulation voltages in the order of kilovolts. 

• They consist mainly of water. This makes them biologically safer, and suitable 

for use on or near the body. Eventually, it is hoped that these materials could be 

directly implanted into the eye, which makes this point important. 

• They are biomimetic, with the deformation of a hydrogel under the influence of 

an electric field closely resembling the deformation of the lens of the eye. 

• They possess good optical characteristics. Due to the large amount of water 

content present in these materials, they are amorphous and have good optical 

characteristics throughout the visible spectrum. The exact composition of these 

materials can also be adjusted to provide better optical properties if desired. 

IPMCs and EAPs are also generally opaque, and so are not well suited for 

optical applications. 

 

It is worth mentioning that other investigators have attempted to develop CFL using 

electroactive polymers. Smith and Wnek [31] studied a wide range of polymers 

including poly(ethylene oxide), poly(acrylic acid) and poly(methylmethacrylate) in an 

attempt to generate a variable focal length lens by electrically modulating the refractive 

index. Although they presented a wide range of experimental results (including the 

wavelength dependence on refractive index), no analytical or numerical formulation 

was included. Another surgical application was suggested in a patent by Shahinpoor et 

al. [32]. This patent is for a surgical procedure that could correct refractive errors in the 

eye. The system uses bands of ionic polymers such as poly(acrylonitrile) that respond to 

an electrical signal and generate a change of accommodation in the eye. Shahinpoor 

reports that a change of one to three diopters may be possible using this device.  

 

In the last seven years, the development of a changeable focal length lens has been the 

focus of the Smart Lens group at the Diagnostics and Control Research Centre (DCRC) 

of AUT. Two approaches have been used, one by using flexible electroactive polymer 
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films that could be used as a CFL [29, 33] while the second is by using electroactive 

gels [30, 34, 35]. The second approach has resulted in reasonably well shaped gel discs 

that produce mushroom-type deformation and which could be used as a CFL. However, 

two obstacles were observed during the development of these lenses. The first one is to 

encapsulate the gel and improve its clarity to have a lens suited for commercialisation. 

This is left for future work at the DCRC. The second is a more serious problem. If 

construction of a CFL of specific dimensions was desired, a tedious trial-and-error 

procedure needed to be performed. To overcome this, a thorough engineering solution 

was needed. This thesis proposes a solution in terms of a mathematical model that could 

be used to identify how much voltage is needed to generate an appropriate lens 

deformation for a required focal length change. In addition to the fact that a closed form 

model is impossible due to the complexity of the process and the number of differential 

equations involved, the literature lacks an appropriate model to meet this requirement. 

1.2. Review of Literature 

Although the focus of this work is on the model development, a review of the literature 

on the development of CFLs is appropriate at this stage. In 1949 Katchalsky [36] and 

Kuhn [37] first independently reported on chemo-mechanical deformation of collagen 

fibres, and raised the possibility of using these materials as artificial muscles. They 

postulated that by varying the pH of a surrounding solvent, the polymers could be 

chemically contracted or swollen, thus behaving as an artificial muscle.  A year later, 

the same authors demonstrated that this postulation was correct [38]. Subsequently, it 

was found that the deformation could also be triggered by many other stimuli including 

temperature, stress, pressure, pH, electromagnetic radiation (both visible and infrared), 

magnetic fields, electric fields and also certain types of chemical triggers such as 

glucose [39-43]. Because of the large choice of stimuli, these polymers have therefore 

become known as “stimuli-responsive”, “intelligent”, “environmentally sensitive” or 

“smart” [44-46]. Their intelligence is due to the fact that they have the potential to 

“sense, recognise, discriminate and adjust to their environmental changes in ways that 

maximise their function” [47]. Interest in these materials is diverse and the exact 

stimulus used is dependent on the specific use of the material. For example, Sershen et 

al. [48] has investigated novel drug delivery techniques using pH-triggered hydrogels, 

which is a logical choice for in-vivo use, as many disorders generate a change in pH in 

the surrounding tissue. 
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The first person to demonstrate the electroactive behaviour of certain copolymers was 

Hamlen et al. [49] in 1965, yet electroactive polymers did not come to much attention 

until Toyoichu Tanaka performed experiments on them in 1982 [39]. Tanaka 

demonstrated the reversible collapse of an acrylamide cylinder submerged in a 50:50 

acetone-water solution under the influence of a 5V DC electric field. Although no 

results were presented, it was also stated that by reversing the polarity of the applied 

field, the gel could be caused to swell to a volume 500 times its original. Four years 

later, De Rossi et al. [50] performed experiments on strips of poly(vinyl) alcohol-

poly(acrylic acid) hydrogels and confirmed Tanaka’s results.  

 

In 1990, Grimshaw et al. [51] demonstrated the electrically induced swelling of a thin 

poly(methacrylic) acid (PMAA) membrane sandwiched between two regions with 

differing chemical potentials, thereby introducing the concept of an electrical-chemical 

interaction.  In 1992, Osada et al. [52] extended on this work and demonstrated the first 

example of electrically-driven motility of a polymer hydrogel. In that work, they 

demonstrated a “gel looper” device which could move at 25cm min-1. Two years later, 

Gong et al. [53] attempted to describe and model the swelling deformation of hydrogels 

under the influence of an electric field. They showed that the electrically-induced 

contraction of a hydrogel was caused by the transport of hydrated ions and water, and 

also demonstrated that a significant potential drop occurred at the gel-electrode interface 

due to double-layer effects. Gong indicated that a voltage drop of 4.3V occurred (with 

an applied voltage of 10V) at the interface, and that the contraction rate was dependent 

on the magnitude of the applied electric field. Gulch et al. [54] performed excellent 

experimental work on the electrical control of electroactive polymers, focusing 

particularly on the influence of an external electric field on the Donnan potential of the 

hydrogel. They postulated that the Donnan potential of a hydrogel arises from the 

distribution of ions within it, and so the greatest change in potential should occur at the 

current inflow and outflow regions. This agreed with the results obtained by Gong. 

Gulch also showed that the deformation velocity was constant over a wide range of 

angles, and was dependent only on the current density flowing across the gel and not on 

the applied voltage as suggested by Gong. Both Gong and Gulch indicate that 

contraction results directly from the movement of ions, and so deformation should 

theoretically not occur for neutral polymer gels. Filipsei et al. [55] demonstrated 

however, that under the influence of an electric field some neutral polymer gels could 

be made to swell in media other than water. The deformation resulted from 
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electrostriction however, and so did not use the same deformation mechanisms 

discussed by Gong and Gulch. 

 

Shahinpoor [26] performed experimental comparisons between the swelling of polymer 

hydrogels under the influence of an electric field and under the influence of a pH 

gradient. They found similar results for both, and suggested that there are two distinct 

mechanisms involved in the swelling of electroactive polymers. The first mechanism 

produces a subtle response to an external electric field, while a second slower 

mechanism is also at work in response to an advancing pH gradient. They speculated 

that the short-time response is due to the migration of the unbound counterions, and that 

it is the surplus or deficiency of these ions that is predominantly responsible for the 

bending of polymer hydrogels under the influence of an electric field. 

 

Li and Tanaka [56] also studied the swelling kinetics of acrylamide hydrogels with three 

different shapes – small discs, large discs and long cylinders. They found that the gel 

swelling and shrinking processes were not pure diffusion processes and that the gel 

adjusts its shape in order to minimise the total shear energy. They also found that the 

apparent diffusion coefficient is smaller than the pure diffusion coefficient and that the 

observed apparent diffusion constant was time independent. Futhermore, they showed 

that the diffusion constant and relaxation time were geometry dependent. Horkay et al. 

[57] studied the equilibrium swelling ratio of sodium poly(acrylate) gels submerged in 

differing concentrations of alkali metal salts (for example, Li+ and Na+) and alkaline 

earth metal salts (for example, Ca2+ and Sr2+) and related these to the standard Flory 

theories [58] on polymer hydrogel swelling. They showed that monovalent (alkali 

metal) counterions only influenced the ionic contribution, while the divalent (alkaline 

earth metal) counterions affected both the ionic and mixing terms in the free energy. 

Neither ion significantly affected the elastic term. Silbertberg-Bouhnik et al. [59] 

examined the effect of differing degrees of neutralisation on the osmotic pressure of 

poly(acrylic acid) (PAA) hydrogels. They found that the osmotic pressure was linearly 

proportional to the concentration and that the swelling capacity of PAAC gels increases 

with the degree of ionisation. Efforts to directly measure the force generated by the 

swelling of a polythiophene-based polymer hydrogel were conducted by Irvin et al. 

[60]. They found that when a +0.8/-0.5V DC square wave was applied to the gel, a 

mean pressure of 12kPa was developed. This mean pressure also increased due to 
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hysteresis effects, clearly demonstrating that the structure of a hydrogel changes over 

time. 

1.2.1. Models Describing Hydrogel Swelling 

One of the first attempts to describe the relationship between deformation and polymer-

solvent interactions was the THB model developed by Tanaka et al. in 1973 [61]. The 

THB model was developed to describe the thermal fluctuations occurring in polymer 

hydrogels, and used linear elasticity and force balances. The theory provided reasonable 

results, but was limited to small isotropic swelling. Grimshaw et al. [51] further 

extended this work by developing a multicomponent one-dimensional model to describe 

the swelling of hydrogel membranes with ionisable charge groups. This model aimed to 

simultaneously solve the Nernst-Planck equation and a mechanical equation based on 

Darcy’s Law. A one-dimensional dynamic model was also developed by Segalman et 

al. [62], who later extended it [63] to two-dimensions and used finite element 

techniques to describe an eroding hydrogel for use in drug-delivery systems. Futher, 

Yoshimura and Sekimoto [64] have developed a theoretical model to relate the diffusion 

of ions in a N-isopropylacrylamide (NIPA) hydrogel to the resulting deformation. In 

particular, they studied swelling of hydrogels in binary solvents using hydrodynamic 

theories. Their results showed a strong correlation between the composition of the 

surrounding solvent and the final equilibrium swelling ratio. 

 

One of the first attempts to describe the swelling of polyelectrolyte hydrogels under the 

influence of an external electric field was that of Doi et al. [65], who developed a semi-

quantitative model of the ion concentration profiles under the influence of an electric 

field. They conclusively showed the relationship between the deformation of a polymer 

hydrogel, the pH of the surrounding solution and the polarity of the electrodes. 

Accordingly, when a polymer hydrogel is placed under the influence of an electric field, 

the side of the gel closest to the anode deforms. This is contrary to the results obtained 

by Salehpoor et al. [66] and our group [35, 67] where deformation occurred on the 

cathode side of the hydrogel. This apparent contradiction is explained by Qui et al. [46], 

who also gave a very good review on a number of different stimuli-responsive 

hydrogels (responding to temperature, pH, glucose, electric fields and light). They 

explained that hydrogels swell under the influence of an electric field due to the 

migration of H+ ions towards the cathode with a loss of water on the anode side. Use of 

a cationic solvent causes swelling on the cathode side, but if the hydrogel is placed in 
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contact with the electrode (as in [66] and [35]), the swelling is different from a hydrogel 

which is suspended between two electrodes (as in [65]). The deformation of a 

poly(acrylic acid) hydrogel under the influence of an electric field was also modelled by 

Shahinpoor [27]. He related the deformation of a hydrogel under the influence of an 

electric field to physical parameters such as resistance and capacitance, and concluded 

that it was possible to analytically describe the swelling of polymer hydrogels. This 

work presented two different deformation mechanisms and showed good agreement 

between theory and experiment. 

 

Shiga et al. [68] has also contributed greatly to this field. They performed detailed 

experiments using a variety of different electrode configurations and solvent pHs. They 

showed that the type of deformation induced by an electric field was determined by four 

main parameters: the pH of the surrounding solution, the concentration of salt in the 

surrounding solvent, the position of the electrodes and the shape of the gel. This last 

point is not typically mentioned by other authors, but clearly is of some importance. 

Achilleous et al. [69, 70] developed a transport model based on the work of  Powell et 

al. [71] and Segalman et al. [62], but further extended it to explain the swelling of 

polyelectrolyte gels in salt solutions. The model offered a detailed description of the 

chemical gradients in a hydrogel under the influence of an electric field. It is some of 

the best finite element modeling to date in this field. They also developed a very good 

quantitative method [72] for the real-time visualisation of gel swelling using a pulsed 

UV laser to validate their model. Wang et al. [73] recently presented a model describing 

the transport of ions through a polypyrrole system that was doped with 

dodecylbenzenesulfphonate (PPyDBS). Similarly to the model developed in this work, 

the basis of their model was the Nernst-Planck equation. This appeared to generate 

reasonable results. 

 

There has also been significant modeling using other numerical methods, such as Monte 

Carlo (MC) methods. Baek and Srinivasa [74] used a slightly different approach to the 

above authors, and developed a model to describe the swelling of an ionic hydrogel 

using variational methods. They identified two ways to describe the swelling of a 

polymer hydrogel – using the electrical repulsive force or Flory’s osmotic pressure. 

They assumed that the charge distributions played a significant part in the swelling 

process, and so used the first approach. Baek and Srinivasa assumed a random 

distribution of ions however, and also neglected interdiffusion among various species, 
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but this does not detract greatly from their work. Kekare et al. [75] used a combination 

of discontinuous molecular dynamics (DMD) and MC techniques to create a model that 

describes the swelling of athermal gels in an athermal, monomeric solvent. The most 

remarkable point about this work was that it lacked the complexity of similar models 

developed using other numerical methods, but still provided good agreement with 

experimental results. This suggests, in theory at least, that it is possible to develop a 

simple model that can describe the complex gel swelling phenomena. A similar idea 

was suggested by deGennes et al. [76] who built a relatively simple “inflation mode” 

model that provided plausible results.  

 

Li et al. [77, 78] used meshless Hermite cloud methods to develop a multi-effect-

coupling thermal-stimulus (MECtherm) model. Using this, they modelled the swelling 

of temperature-sensitive poly(N-isopropylacrylamide) hydrogels in response to changes 

in solvent concentration and crosslink density. They achieved good agreement with 

experimental data, and also demonstrated that the swelling capability of the hydrogels 

increases with decreasing solvent concentration and decreasing crosslink density. These 

results were in agreement with similar experiments performed by Feng [79], who found 

that the swelling ratio of poly(acrylamide-co-2-acrylamido-2-methyl-1-

propanesulphonic acid) (PAMPS) hydrogels decreased with increasing solvent solution. 

Li et al. then extended on their earlier work [80], and developed a multi-effect-coupling 

pH (MECpH) model (again using Hermite cloud methods). This model attempted to 

explain the coupling between the ionic fluxes within the hydrogel and solution, the 

electric potential and the mechanical deformation, and once again agreed well with 

experimental data. Madkour [81] performed similar simulations using a combined 

statistical mechanics/molecular dynamics approach. He used the standard Flory free 

energy of mixing theories combined with the Wall theory of elasticity to describe the 

swelling of polymer hydrogels. Newbury and Leo [82] developed a linear constitutive 

model to relate the physical deformation of an IPMC to the electromechanical coupling. 

Their theory is based on electrical circuit theory (using resistors and capacitors) and is 

similar to models proposed by Shahinpoor et al. [26, 83]. 

 

The modeling of the water/polymer interface has also been studied by some authors. 

Otero et al. [84] used Molecular Dynamics Simulations to simulate the diffusion of 

chloride ions across the interface into the gel. They observed that the diffusion 

coefficient dropped two orders of magnitude when moving from the bulk water into the 
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polymer. The simulation time used in Otero’s work was extremely short however, 

which limits its usefulness to this work. A more detailed interface model was developed 

by Boyd and Ambati [85] who were particularly interested in the double-layer effects 

that occur at the electrode/polymer interface. They presented the beginnings of a 

particularly detailed model, which can hopefully be incorporated into this work. 

  

Some authors have also tackled the equally important task of attempting to model the 

structure of the various polyelectrolyte polymers and to solve some of the problems 

mentioned earlier (such as the lack of strength and slow response). Given the 

complexity of polymer structures, stochastic (such as Monte Carlo methods) and 

experimental methods are almost always used, as standard numerical methods do not 

cope well with the large number of calculations that need to be performed. Nosaka and 

Takasu [86] used MC methods to calculate theoretical structures of polymer hydrogels 

created using free-radical polymerisation. Kong et al. [87] attempted to decouple the 

rheological parameters from the internal concentration to generate hydrogel drug 

delivery systems. They analysed sodium alginate samples with different crosslinker 

concentrations and monomer concentrations, and attempted to find an empirical 

relationship between them.  

 

This work is not the first to suggest a modular approach to solve the gel deformation 

problem. Lee [88] used bond-graph techniques to build a dynamic model for the real-

time control of a polymer actuator system. He used bond-graphs to couple different 

energy domains together, which is an approach also being followed in this work. 

Wallmersperger et al. [89] also built a detailed numerical model to describe the gel 

deformation, attempting to divide the problem into a number of different parts that were 

then solved concurrently. They subsequently used this model [90] to describe the ion 

concentrations in the hydrogel and solvent regions for a variety of different 

gel/electrode configurations. Their work suggested that the greatest deformation occurs 

when a polymer hydrogel is placed in contact with an electrode, which is similar to the 

experimental results presented by other authors (e.g. Doi [65]). An elasto-electro-

chemical model was also proposed by Xiao and Bhattacharya [91], but this was one-

dimensional and described the deformation of IPMCs (and not polyelectrolyte 

hydrogels). One interesting result from Xiao was the observation that IPMCs do not 

seem to respond to high frequency vibrations, which may make them ideal for use in 

environments such as aeroplanes. 
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All of the above models however, were not designed with optical applications in mind, 

and so are not quite suited for use in this work. These models are also not practical for 

our purposes, as they each deal with only a small piece of the overall gel deformation 

problem. Another difference is that many of these models are designed to model the 

maximum swelling of a polymer hydrogel, whereas for this work, the maximum 

deformation is not necessarily what is required. 

1.2.2. The Use of Polymer Hydrogels as Optical Elements 

The amount of available literature on the use of polymer hydrogels in optical 

applications is quite limited, but has been growing steadily in recent times. The use of 

EAPs for optical applications tends to focus on three specific optical elements – lenses, 

mirrors and windows/shutters. 

 

EAPs have been proposed as possible mirrors for space-based applications. Xao et al. 

[92] recently proposed a thin-film mirror and determined analytical relationships 

between the strain in the film and the resulting f-number. They also performed finite 

element method (FEM) simulations that confirmed their analytical results. Kornbluh et 

al. [93] also discussed the use of dielectric EAPs for space-based mirrors, but instead 

used them as part of an active control system. They discussed two novel designs 

including a laminated mirror structure and an “inflatable” mirror. Experimental 

demonstrations of both of these ideas were shown, which provide great promise for the 

future. Some EAPs also exhibit electrochromic effects (changing color when a voltage 

is applied), and some researchers such as Xu et al. [94, 95] are investigating these for 

use as electromagnetic shutters on windows.  

 

In this work, our particular interest is in the use of EAP hydrogels as lenses. The most 

useful paper in this respect is that by Salehpoor et al. [66] who specifically mention the 

use of polymer hydrogels as adaptive optical components.  They attempted to create 

components for use in an adaptive optics setup and demonstrated the potential of using 

EAP hydrogels as lenses. While the results were far from ideal, they did provide the 

idea of using polymer hydrogels to generate a variable focal length lens. Li et al. [41] 

also measured the light transmittance of polymer hydrogels, although their study was 

concerned with the transmittance variation of 440nm photons as a function of swelling 

time. Previous work by our group has shown that by controlling certain parameters 

(such as gel composition, solvent concentration and applied voltage) repeatability of the 
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volume phase transition can be achieved [34, 35]. It was also demonstrated that by 

controlling the relative concentrations of the monomer and crosslinker, good optical 

transmittance can be achieved (>90% for visible radiation).   

 

The remainder of this work will focus on the development and implementation of a 

finite element model to describe the swelling of a poly(acrylic acid) hydrogel under the 

influence of a DC voltage. The theoretical predictions made by the model will be 

compared to experimental results, and conclusions on the suitability of this model will 

be drawn. Optical measurements will also be used to determine the possible range of 

focal lengths for a hydrogel lens, and to evaluate the potential feasibility of this work.  

1.2.3. Development of a Model to Describe Hydrogel Swelling 

Although the ultimate aim of our group is the development and commercialisation of a 

true variable focal length lens, the specific aim of this work is the development of a 

computer model that accurately describes the swelling of polyelectrolyte hydrogels 

under the influence of an electric field. Other models have tended to focus on one 

specific aspect of the hydrogel deformation process (such as change in ion 

concentration), and do not completely describe the entire swelling process. These 

models are also not built with optical devices in mind, and so may not be suitable when 

applied to this work. 

 

In general, the process of gel swelling consists of a number of interactions across 

multiple energy domains. Under the influence of an external electrical field (electrical 

domain), ions in the hydrogel region and surrounding solvent (chemical domain) 

migrate through the gel/solvent regions (electro-chemical domain). These ions change 

the free energy within the hydrogel, leading to pressure (force) build up within the 

hydrogel. These forces act on the hydrogel, causing deformation (mechanical domain). 

This deformation causes a change in focal length (optical domain) and possible a 

change in the different optical parameters (such as refractive index and transmittance).  

 

Due to the large number of different energy domains involved, finding an analytical 

expression for the deformation is difficult, and numerical methods have to be employed 

in order to find useful data. For this work, an ideal computer model should: 
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1. Provide results which are useful in determining the effect of different 

experimental setups including electrode placement, applied electric field, gel 

composition and solvent composition.  

2. Consist of individual pieces that allow individual parts of the model to be 

adjusted and improved as necessary. Ideally, each part of the model should also 

be able to function independently to allow verification of each individual part. 

3. Not require the use of a supercomputer. 

4. Be portable, and platform independent. 

 

Clearly, the first point is the most important aspect of this work, and it is hoped that this 

model will give the ability to perform experiments in a “virtual laboratory”. This will 

save researchers significant time as experiments can be simulated prior to performing 

the actual experiment in a laboratory. While it is not anticipated that this work will 

complete the massive task of developing a full description of all the processes 

occurring, it is hoped that a framework will be built which can then be extended on by 

others. 

 

The requirement that the model consist of a number of discrete parts stems directly from 

the use of multiple energy domains. Using discrete parts provides a number of other 

benefits – different parts can be added and removed from the model as necessary; pieces 

can be built separately and then readily integrated into the model; and pieces can also be 

reused allowing the model to be adapted to model other similar events. 

 

The third point relates to the use of supercomputers. The use of supercomputers has 

become quite common for performing numerical simulations in recent years, 

particularly when modeling the behavior of polymers. These types of computers boast 

large amounts of physical memory with many parallel processors and can process large 

amounts of data in a short period of time. Unfortunately, at the start of this research no 

supercomputing facilities were available and so it was decided to build the model to 

function on a standard desktop computer. Although this will cause the simulation to 

take noticeably longer, a more critical issue is the amount of random-access memory 

(RAM) available. Numerical simulations consume vast quantities of memory, so 1Gb of 

memory was considered the minimum for running this simulation. Towards the end of 

this research, access to a supercomputer was acquired, but it was decided to continue 

with the original design of this project that did not require supercomputing. It is 
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anticipated that future work on this model will extend its capabilities and allow 

functioning on a parallel-processing machine.  

 

The approach followed in this work is to divide the gel swelling process into five 

overlapping, yet discrete parts (modules) corresponding to the different energy domains.  

The basis of this method is the “black box” approach, whereby a complex problem may 

be broken down into a number of smaller, simpler problems. The results of each smaller 

problem can be added to provide the overall result. In this work, we have broken the 

complex problem of hydrogel swelling into five parts, which are considered in five 

separate modules and explained in the objectives of this work. The modules developed 

in this work are: 

 

• Electrical module. This part of the model is concerned with the electrodes, 

including factors such as electrode material, geometry and location. It will be 

used to calculate the effects of different electrode geometries and locations on 

the generated electric field. This information will then be used to determine the 

relative importance of the electrodes on the overall gel swelling process. 

• Chemical module. This part of the model is responsible for all chemical, electro-

chemical and chemo-optical processes that occur during gel swelling. Because 

this module covers interactions across three energy domains, it is anticipated that 

it will be significantly larger and more complex than the other modules. This 

module must also relate the microstructure inside the hydrogel to the 

macroscopic manifestations of those changes (such as transmittance, elastic 

modulus and output forces generated) 

• Mechanical module. This module relates the forces generated by the electro-

chemical interactions occurring in the hydrogel to the mechanical work that 

leads to deformation. While this sounds relatively simple, the viscoelastic 

properties and variable density of a hydrogel can generate significant 

complexities in the modeling process. 

• Force module. The force module could be considered part of the Chemical 

module, in that it converts the change in free energy calculated by the Chemical 

module into an equivalent force (pressure). It is placed into a separate part of the 

overall model to allow for easy modification and verification of the generated 

forces. 
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• Optical module. As discussed previously, the overall aim of this project is to 

develop a computational algorithm which can be used to determine the focal 

length generated by an applied electric field. This module uses the controlled 

deformation generated by the Mechanical module to calculate a resulting change 

in focal length. It is anticipated that much of the information required by this 

module will be empirical, as many of the needed parameters cannot easily be 

analytically determined (for example, the refractive index). Any potential 

candidate for use as an optical material also needs to have excellent 

transmittance over the visible spectrum, poor transmittance in the infrared and 

ultraviolet spectrums and a suitable and comparable refractive index to standard 

optical materials. This is highly dependant on the chemical composition of the 

material, as well as the environmental conditions during preparation.   

 

Another important consideration is the specific type of numerical method used to model 

the gel swelling behavior. New methods are being developed constantly, but some of 

the more common ones include the finite difference method (FDM), finite element 

method (FEM), finite cloud method (FCM) and boundary element method (BEM). By 

far the most widely used method is FEM, and this method is frequently used by those 

working in this field.  FEM is only suited however, for cases where continuous 

deformation occurs, and where that deformation from equilibrium is not too great. 

While much research focuses on achieving maximum deformation, in this work we are 

concentrating on smaller, more highly controlled deformations. For this reason, FEM is 

ideal for this work. 

 

Currently, there are numerous private and commercial finite element analysis (FEA) 

packages available which each implement the FEM in slightly different ways. Some of 

the main commercial programs include ABAQUSTM, NastranTM and ANSYSTM.  Using 

any of these packages to fully describe the complete swelling process is impossible, and 

requires intensive modifcation of any of those programs. Due to the highly-specific 

requirements of the developed model and the difficulty in obtaining intermediate results 

(the 2nd requirement of this model), it was decided to develop the FEM code directly in 

this work instead of relying on commercial FEA programs. 
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Normally, FEM code is developed using one or more medium level programming 

languages such as C, C++, FORTRAN, Pascal and more recently, JAVA. While all of 

these languages are well suited to implementing the finite element method, greater 

advantage can be achieved by using a higher-level language. All of the aforementioned 

languages (with the exception of JAVA) need to be compiled prior to use, which for 

long programs can be frustrating, particularly if changes are constantly being made. The 

mathematical ability of C, C++ and JAVA is also somewhat limited, and requires the 

use of numerous external function libraries. 

 

Fortunately, many mathematical programming languages have now been developed that 

allow complex engineering and science problems to be solved without the need for 

external libraries. Examples of these include Maplesoft’s Maple [96] and The 

Mathwork’s MATLAB (MATrix LABoratory) [97]. MATLAB in particular is ideally 

suited to implementing the finite element method for the following reasons: 

 

1. It provides extensive and powerful numeric computing methods which allow 

different ideas to be tested and experimented on, without needing to compile a 

program prior to running. Once the optimum solution has been found, MATLAB 

can facilitate the exportation of the program into C or FORTRAN code for more 

efficient operation. 

2. MATLAB was developed to solve problems in linear algebra using matrix 

methods, which also forms the fundamental basis of the finite element method. 

3. It offers a number of toolboxes that provide a complete suite of tools for solving 

common mathematical problems (such as matrix inversion). These toolboxes are 

similar to the different modules developed in this model. 

4. It has numerous interactive tools for iterative exploration, design and problem 

solving. 

5. There are powerful 2-D and 3-D graphics libraries built directly into the program 

that allows data and results to be rapidly visualised. 
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The ideal nature of MATLAB for solving FEM-type problems has also not escaped the 

notice of commercial companies. By far the most successful company in this regard is 

the COMSOL Group, who developed the FEM-analysis program, FEMLAB [98]. The 

Mathworks has also developed its own PDE Toolbox for solving FEM-type problems, 

but this substantially lacks the power of FEMLAB. 

 

For these reasons, it was decided to develop a FEM model to describe the swelling of 

ionic polymer hydrogels under the influence of an external electric field. The model will 

be implemented in MATLAB, as this offers the best compromise between computer 

power and convenience. MATLAB is not without its problems however, most notable 

being its inefficient use of physical memory. MATLAB only permits calculations using 

64-bit variables, which is wasteful if only eight bits of precision are required. 
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2. Overall Model 

2.1. Introduction 

Predicting the swelling response of electroactive polymer hydrogels has always been a 

difficult and complicated task. Systems can involve numerous coupled partial 

differential equations and can be complicated or impossible to solve analytically. 

Numerical methods are frequently used in an attempt to predict the swelling response, 

but these are also usually limited by the numbers of equations involved. 

 

The overall swelling process consists of many different processes that all occur 

simultaneously. An externally-applied electric field creates a voltage potential in the 

hydrogel region. Under this potential, chemical ionisation occurs and any free ions in 

the hydrogel and solvent regions migrate and diffuse through the polymer matrix, 

carrying with them a number of water molecules. The migrating ions tend to accumulate 

around their respective electrodes, and the extra water introduced into that region causes 

deformation (mechanical swelling). This deformation consequently leads to a focal 

length variation. From the brief description given previously, it can be seen that the 

swelling process consists of electrical stimulation; chemical ionisation; mechanical 

deformation and optical variation. 

 

In this work, the overall model is speculated as a module-based model, where the 

overall behaviour of hydrogel swelling is divided into five smaller components. Each 

one of these components is solved independently, which overcomes any coupling that 

may be present if the entire system is viewed at once. This approach allows the overall 

model to dramatically simplify the systems of equations used to describe the gel 

swelling and predict the swelling resulting from the application of an external electric 

field. 
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The proposed model consists of five primary modules, which are all executed from a 

central control program. Each module deals with one part of the overall gel system:  

 

• The Electrical module calculates the voltage distributions arising in the hydrogel 

as a result of an externally applied electric field. 

• The Chemical module calculates the mass transport of ions into and out of the 

hydrogel matrix. 

• The Force module calculates the osmotic pressure resulting from the ion 

transport. 

• The Mechanical module calculates the deformation resulting from the osmotic 

pressure on the hydrogel. 

• The Optical module calculates the change in focal length resulting from the 

hydrogel deformation. 

 

A flowchart of the overall model is shown in Figure 2-1. 
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Figure 2-1: Overall model 
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2.2. Theoretical Development 

The overall model is implemented in MATLAB using the finite element approximation, 

where the method of weighted residuals is used to generate approximate solutions to a 

series of sequential partial differential equations. Many of the solutions provide input 

into the following differential equation, but each equation is solved independently and 

can function without the preceding (or succeeding) equation, provided sufficient input is 

supplied. 

 

In order to allow the overall model to be executed on a moderately low-power computer 

system, a number of general assumptions are made. There are also a number of specific 

assumptions related to each module, but these will be discussed in the following 

chapters. Some of the general assumptions include: 

 

• Two-dimensional system: because of symmetry (see Figure 8-2), the model 

treats the hydrogel/solvent as a two-dimensional system, which allows many 

simplifications to be made. Three-dimensional governing equations are 

inherently more complex than their two-dimensional equivalents, and by using a 

two-dimensional system, significant complexity is removed from the model. 

• Linearity: this allows the model to simply add the results from each module 

without needing to perform any transformations. 

 

In order to increase the flexibility of the model, linear triangular elements are used with 

each element having three nodes and the variable interpolation within the element being 

a linear function of x and y (Figure 2-2). Any point, u(x,y), within the element can be 

described by a weighted sum of nodal values according to: 

Equation Chapter 1 Section 1 

1 1 2 2 3 3( , ) ( , ) ( , ) ( , )u x y H x y u H x y u H x y u= + +  (2.1) 

 

where the weighting functions (H1, H2 and H3) are piecewise continuous functions 

known as the shape functions.  
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By definition, the shape functions obey the following rules [99]: 

 

( , )i j j ijH x y δ=  (2.2) 

3

1
1i

i
H

=

=∑  (2.3) 

 

where δ is the Kronecker delta, defined by: 

 

0    for 

1    for 
ij i j

i j

δ = ≠

= =
 (2.4) 

 

Equation (2.2) simply conveys that if the point u(x,y) coincides with a node, equation 

(2.1) should equal the value of that node (i.e. if u(x,y) = u1, then H1 = 1, H2 = H3 = 0).  

 

In general, it is difficult to describe the shape functions for triangular elements using 

Cartesian coordinates, and for this reason area coordinates are preferred. Area 

coordinates are the natural coordinate system for triangles, since they are based on the 

area ratios of different triangles. As an example, consider an arbitrary point u(x,y) 

within a triangular finite element (Figure 2-2). 
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Figure 2-2: Area coordinates of an element 
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In this figure, the shape functions in equation (2.1) (in area coordinates) are given by 

[100]: 

( ) ( ) ( )

1

2 2

3 3

2 3 3 2 2 3 3 2

23
123

1
1 1

2
1

1
2

Area
H

Area

x y
x y

A
x y

x y x y y y x x x y
A

=

=

= − + − + −⎡ ⎤⎣ ⎦

 (2.5) 

 

( ) ( ) ( )

2

3 3

1 1

3 1 1 3 3 1 1 3

13
123

1
1 1

2
1

1
2

Area
H

Area

x y
x y

A
x y

x y x y y y x x x y
A

=

=

= − + − + −⎡ ⎤⎣ ⎦

 (2.6) 

( ) ( ) ( )

3

1 1

2 2

1 2 2 1 1 2 2 1

12
123

1
1 1

2
1

1
2

Area
H

Area

x y
x y

A
x y

x y x y y y x x x y
A

=

=

= − + − + −⎡ ⎤⎣ ⎦

 (2.7) 

 

where A is the overall area of the triangle <123> given by: 

 

( )

1 1

2 2

3 3

2 3 3 1 1 2 3 2 1 3 2 1

1
1123 1
2

1
1
2

x y
Area x y

x y

x y x y x y x y x y x y

=

= + + − − −

 (2.8) 

 

To obtain solutions for each partial differential equation, the differential equations are 

integrated over the entire system domain. In two-dimensions, integration over an area 

can be approximated as the discrete sum of the individual element areas. Shape 

functions allow the finite element method to express the integral equations as linear 
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algebraic functions that when combined, provide an algebraic equation with nodal 

values as the unknowns. 

 

The exact form of the integral equations depends on the specific type of weighting 

function used.  A number of options exist, but some of the most common are the 

coallocation method (where the weighting functions depend on the distance to each 

node); the least squares method (where the weighting functions depend on the 

derivatives of the residual) and the Galerkin method (where the weighting functions are 

the shape functions). In practice, all three methods provide approximately the same 

result, and the choice mainly depends on the specific nature of the equation being 

approximated. In this work, the Galerkin method is used since it results in symmetric 

matrices that are ideal for use in MATLAB. 

 

Time integration is performed using forward or central-difference time integration as 

discussed in later chapters. The central-difference scheme is employed in the 

Mechanical module, as the relationship between t, t-∆t and t+∆t is similar to the 

relationship between velocity, acceleration and displacement. Both the forward- and 

central-difference schemes are only conditionally stable, with the stability being 

determined by the size of the timestep. The overall model does contain a large number 

of error checking mechanisms however, and any instability is quickly recognised, 

causing the model to halt. Thus, a user of this model is given a certain amount of 

freedom to experiment with different timesteps, model geometries and operating 

conditions. 

2.3. Implementation in Code 

Each module in the model will be dealt with in individual chapters, and this chapter will 

concentrate solely on the main control program (control.m). The main control program 

forms the front-end of the overall model, and oversees all aspects of model operation. A 

complete listing of the overall model and the different scripts is given in Appendix B. 

2.3.1. Predefined Parameters 

Prior to entering the time loop (Figure 2-1), the program is designed to undertake the 

following six steps: 
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Step 1 

The predefined parameters section of the model appears at the beginning.  It includes a 

section where all user-adjustable information appears, which includes: 

 

• Constants - parameters such as the ambient temperature 

• Geometry - parameters such as the number of rows and columns in the system, 

the types of elements used and the real physical dimensions of the hydrogel 

• Time control - parameters such as the size of the timestep, the start and end 

times for the model 

• Post-processing visualisation - these parameters determine whether the overall 

model generates any visualisations based on the model results. Generally this 

visualisation is graphical, but the model can easily be adjusted to provide other 

types of post-processing, if required. 

• Electrical parameters - including the voltage of the anode and cathode 

• Chemical parameters - initial concentrations of all ionic species in the system 

and diffusion coefficients 

• Mechanical parameters - including Young’s modulus, Poisson ratio and 

damping coefficients 

 

Step 2 

The model then takes the user-adjustable information and generates other information 

required by the model. This information includes the number of elements and nodes in 

the overall system as well as the global coordinates of all nodes. The model also sets up 

correctly sized vectors for the concentration of each ionic species in the system, the 

velocity, displacement and acceleration for all nodes. This allows a user to rapidly 

customise the overall model to specific situations. A user is not required to enter any 

information on which nodes are associated with each element or even what the global 

node and element numbers are - only basic information on the geometry of the system is 

required. 

 

Step 3 

The control program then proceeds to call the script flager.m which, using information 

on the geometry of the system, calculates the global node and element numbers of those 

elements appearing in both the hydrogel and solvent regions of the system (Figure 2-3). 
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While this may seem unimportant, many of the modules in the overall model need to be 

able to discriminate between nodes in the gel and solvent regions, and the information 

provided by flager.m is therefore seen as critical.  
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Figure 2-3: Nodes associated with solvent and hydrogel 

Step 4 

The model then proceeds to generate the initial concentrations of ions present in the 

hydrogel and solvent regions using scramble.m and gel_distribute.m. Both these 

functions are discussed in more detail in chapter 4, and are merely mentioned here for 

completion. 

 

Step 5 

The script control.m then sets up the finite element structure for the Mechanical module 

(chapter 6). This operation could be performed at any time in the model prior to the first 

operation of the Mechanical module, but is performed outside the time loop to increase 

the model’s operational speed. These operations all appear as “predefined parameters” 

in the model flowchart (Figure 2-4). 

 

Step 6 

Using information entered by the user on the voltages applied to the anode and cathode, 

the model proceeds to generate the electric field distribution in the gel region by 

executing the Electrical module. The Electrical module is discussed in more detail in the 

next chapter, and its mention here is to illustrate the flow of the overall model. The 

Electrical module returns a matrix containing the electric potential at all points in the 

system. The script control.m first calculates the gradient of this potential matrix to 

derive the electric field, and then wraps this matrix into a vector suitable for use by 

other modules. The model also includes error display messages, in the event that the 

information returned by the Electrical module is not suitable. 
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These self-checking mechanisms are scattered throughout the overall model, and act as 

controls by preventing the continuation of the model if any instability is detected. A 

flowchart of the predefined parameters section is shown in Figure 2-4. 
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Figure 2-4: Predefined parameters section of overall model 

2.3.2. Time-Integration Loop 

All of the previously mentioned parameter generation and ion distribution occurs before 

the time loop.  The time loop is the heart of the overall model, and serves to evolve the 

ion concentrations and forces present on and within the gel through time. However, the 

modular approach of the overall model does allow any of the previously mentioned 

operations to be made time-dependent if required. The time loop is designed to 

encounter the following steps: 

 

Step 1 

As will be discussed in chapter 4, there is an excess of ions in the solvent and therefore 

the ion concentration is assumed to be constant. The first operation performed by the 
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overall model in the time loop is to restore the concentration of ions in the solvent to 

their original values. This is neccessary, because ions will diffuse from the solvent 

region into the hydrogel and reduce the solvent concentration. 

 

Step 2 

The model then proceeds to call the Chemical module (chapter 4), which also receives a 

vector with the concentration of each species at each node in the system. The module 

calculates the change in concentration which is returned to control.m.  

 

Step 3 

The model then calculates the change in ion concentration for each node in the system 

by comparing the information passed and received from the Chemical module. 

 

Step 4 

This information is then passed to the Force module (chapter 5), which calculates the 

force generated by the change in ion concentrations. 

 

Step 5 

The model then passes the calculated force to the Mechanical module (chapter 6), which 

calculates the elastic deformation of the hydrogel. The Mechanical module returns the 

deformation of each node in the system.  

 

Step 6 

This deformation is then passed to the Optical module (chapter 7), which generates the 

theoretical change in focal length. 

 

Step 7 

Once the model has completed all iterations in the time loop, it calls a visualisation 

module that generates animations based on the deformation, change in ion concentration 

or any other parameters defined by the user.   
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3. Electrical Module 

3.1. Introduction 

The Electrical module is the first module in the overall model. It calculates the 

externally-applied electric field in the hydrogel region (Figure 3-1).  This electric field 

is then superimposed onto the electric field that results from the charges of the ions 

(calculated by the Chemical module, chapter 4). 

 

 

Figure 3-1: Electrical module  

 

In the proposed model, the Electrical module is placed outside the time loop, as the 

externally applied electric field is assumed to be constant. The modular design of the 

overall model does allow significant flexibility however, and the Electrical module 

could be rapidly implemented in the time loop if required. 

3.2. Assumptions 

In order to simplify the number and complexity of the equations in this component, the 

Electrical module implements the following assumptions concerning geometry and 

material properties. 

3.2.1. Geometrical Assumptions 

The model makes the following assumptions concerning the geometry of the hydrogel: 

 

• The gel samples studied are cylinders and two-dimensional, the 

hydrogel/solvent/air system takes on a form similar to that shown in Figure 3-2. 

This means that the hydrogel region may take any x- and y-dimensions; the 
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solvent regions are constrained to be a single row/column of elements.  The 

module was initially designed to be able to handle any hydrogel/solvent region, 

but this caused immense complexity of the script, and it was decided to restrict 

the solvent region. 

• The hydrogel region possesses an odd number of nodes along the x-axis.  This is 

a necessary condition to ensure an equal number of columns on each side of the 

cathode. If this condition is not met, the module will not execute, and will 

display an error message. 
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Figure 3-2: Model geometry 

3.2.2. Material Property Assumptions 

The model also makes the following assumptions concerning the properties of the 

hydrogel and solvent: 

 

• The conductivity of the hydrogel is homogeneous and does not change with 

time. This is necessary to prevent the module from needing to calculate the 

electric field within the hydrogel for each timestep. If time-dependent 

conductivity was required, the Electrical module could readily be integrated into 

the time loop, however this does increase the required calculation time. 

• The number of free ions in the hydrogel region does not change during 

polymerisation. 

• The current flows only from an anode to a cathode, and follows the shortest path 

available.  

• The hydrogel and solvent are perfect conductors, and have constant electrical 

parameters. Thus in Figure 3-2 all of the solvent nodes are at the same potential 

x

y
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as the anode and the solvent acts as one “C-shaped” electrode.  The height of 

this electrode is dependent on the volume of solvent used. 

• Any node in the system that is in direct contact with an electrode is at the same 

potential as that electrode.  

• Double-layer effects are considered to be negligible in comparison to the voltage 

of the electrodes, and the Donnan theory is assumed to be valid. Double-layer 

effects result from the build up of charged ions at the electrode/solvent interface. 

This effect results in a slight voltage drop occuring at the interface, and so the 

actual voltage is lower than the indicated voltage. The Donnan potential of a 

hydrogel does change under the influence of an external electric field, but in this 

work this change is assumed to be small. This thinking is similar to that 

discussed by Shiga [68] who showed that under the influence of an electric field, 

the perturbation of the Donnan potential from equilibrium was very small, and 

could be ignored. This is contrary to results published by Gong et al. [53] 

however, who showed that a large potential drop occurred at the 

electrode/hydrogel interface. It is hoped that future work will clarify the 

importance of the issues, and either include or exclude them from this model. 

• The solvent ions are evenly distributed throughout the solvent regions, and the 

ion concentration can be considered homogeneous. 

3.3. Theoretical Development 

In order to model the electrical field distributions in the hydrogel and solvent regions, 

one has to solve the appropriate governing equations subject to some initial and 

boundary conditions.   

3.3.1. Initial Voltage Distribution 

Most of the difficulties in calculating the electric field arise from different anode and 

cathode geometries which can be readily overcome by assuming a specific geometry (as 

discussed in section 3.2). The basis for the calculation of the electric field stems from 

Maxwell’s equations, which in free space can be expressed as [101]: 

 

0

ρ
ε

∇ ⋅ =E  (3.1) 

0∇ ⋅ =B  (3.2) 
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t
∂

∇× = −
∂
BE  (3.3) 

0 0 0 t
µ ε µ ∂

∇× = +
∂
EB J  (3.4) 

 

where E is the electric field intensity, ρ is the charge density, ε0 is the permittivity of 

free space, B is the magnetic flux density and J is the vector current density. In an 

electrical conductor, there also exists a linear relationship between the vector current 

density (J) and electric field intensity (E), namely: 

 

σ=E J  (3.5) 

 

where σ is the resistivity of the material. Equation (3.5) is known as Ohm’s Law, and 

generally holds only for certain voltage ranges (i.e. it breaks down in the presence of 

large potential differences).  

 

The electric field (E) is also defined in terms of the gradient of the scalar voltage 

potential, φ , by: 

 

φ= −∇E  (3.6) 

 

which allows equation (3.1) to be rewritten as: 

 

( )
0

ρφ
ε

∇ ⋅ −∇ =  (3.7) 

 

or, 

( )
0

2

0

ρφ
ε
ρφ
ε

∇ ⋅ ∇ = −

∇ = −
 (3.8) 

where 
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

. Equation (3.8) is known as Poisson’s equation, and occurs in 

many different fields of physics.  
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In two dimensions, Poisson’s equation can be written as: 

 
2 2

2 2
0x y

φ φ ρ
ε

∂ ∂
+ =

∂ ∂
 (3.9) 

 

In any conductor, ρ is always equal to zero and equation (3.9) is consequently also zero 

(Laplace’s equation). Both Poisson’s and Laplace’s equations are a consequence of 

conservation of flux. To illustrate how Laplace’s equation is applicable to this work, 

consider a point (node) in the hydrogel, labelled as P and surrounded by nodes 1, 2, 3 

and 4 (as shown in Figure 3-3). 

 

 

Figure 3-3: System of connected nodes 

 

For the case shown in Figure 3-3 with ρ=0, equation (3.9) can be written as [102]:   

 
2 2

2 2x y
φ φ∂ ∂
= −

∂ ∂
 (3.10) 

 

If the potential of each node is assumed to be φi, then equation (3.10) can be written as: 

 

( ) ( ) ( ) ( )1 3 2 4P P P Px x y y
x y

φ φ φ φ φ φ φ φ− − ∆ + − ∆ − ∆ − − ∆⎛ ⎞ ⎛ ⎞
≈ −⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

 (3.11) 

 

where the equality has been replaced by an approximation in light of the discrete spatial 

differences introduced.  If ∆x = ∆y, equation (3.11) can readily be simplified to give: 

 

1 2 3 4 4 0Pφ φ φ φ φ+ + + − ≈  (3.12) 
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In electrical circuit theory, Laplace’s equation manifests itself as Kirchoff’s current law 

(KCL), which states that the sum of currents (i) into and out of each node must equal 

zero [103], or: 

 

0i =∑  (3.13) 

 

Using Ohm’s law, the current (i) can be written as: 

 

R
φ∆

=i  (3.14) 

 

where ∆φ is the potential difference and R is the electrical resistance. The electrical 

resistance is equal to L Aσ , where L is the length and A is the area. Equation (3.13) 

may then be written as: 

 

31 2 4 0PP P P

R R R R
φ φφ φ φ φ φ φ−− − −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
               (3.15) 

 

This is the main governing equation for the field distribution. If the resistance is 

assumed to be constant throughout the material, equation (3.15) reduces to: 

 

1 2 3 4 4 0Pφ φ φ φ φ+ + + − =  (3.16) 

 

which is identical to equation (3.12). Therefore in the Electrical module, Kirchoff’s 

current law will be used as an equivilant to Laplace’s equation. 

3.3.2. Boundary Conditions 

Boundary conditions are an essential part of any model, and the Electrical module is no 

different.  The most difficult problem associated with the system described by Figure 

3-2 are the air/hydrogel boundaries, as shown in Figure 3-4.  
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Figure 3-4: Boundary and "air" nodes 

 

Physically, no current can flow between the hydrogel and air regions, and thus for any 

node in the air region, equation (3.16) is identically zero. This results in large potential 

differences occurring between the edges of the hydrogel and air regions and also results 

in the electric field being constrained to the shape of the hydrogel region.  This is 

clearly an unphysical situation, caused by the fact that electric fields do not require a 

medium to exist, whereas current does require a medium in which to flow. 

 

This problem can be corrected by forcing the model to assume an asymmetrical current 

relationship.  Current is permitted to flow from the air region into the hydrogel region 

but not from the hydrogel region into the air region. However, since the air region is not 

conductive it always has zero current, and thus no current will ever physically flow into 

the hydrogel region. This asymmetrical current relationship allows the model to create a 

continuous medium with discontinuous current flow, leading to a realistic electric field 

within the hydrogel and air regions. Therefore, the model predicts that the current 

flowing from the boundary nodes into the air is zero. 

3.4. Implementation in Code 

The Electrical module is the first component in the model, and calculates the electric 

field distribution of the externally applied electric field by solving a system of linear 

equations. A complete listing of the Electrical module and the different scripts is given 

in Appendix B. 
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The Electrical module is executed from the main control program by calling the script 

efield.m. The Electrical module has three variants, which are each related to a different 

electrode configuration (Figure 3-5). 
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Figure 3-5: Different hydrogel/solvent geometries 

 

The three variants of efield.m differ from each other in the following ways: 

 

• efield1.m (Figure 3-5a) assumes that once the hydrogel is placed into the 

solvent, it completely displaces all the solvent and as a result no solvent is 

present under the hydrogel. This is justified because in reality, the gel could 

displace the solution at the bottom surface. 

• efield2.m (Figure 3-5b) assumes that the hydrogel does not completely displace 

all of the solvent, and as a result there still exists a thin, continuous layer of 

solvent underneath the hydrogel. This is case where the weight of the hydrogel 

may not completely displace the solvent from the bottom surface.   

• efield3.m (Figure 3-5c) utilises a cathode that almost completely covers the top 

surface of the hydrogel (as opposed to efield1.m and efield2.m which utilise a 

“needle-type” cathode). 
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In this work, the term “efield.m” will be used when referring to elements common to all 

three variants. All three involve the use of “air” regions, which are the unshaded nodes 

to the sides of the hydrogel region (Figure 3-4). During operation, the Electrical module 

runs the following three steps: 

 

Step 1 

When called, the Electrical module first sets up a number of different matrices and 

vectors required by different parts of the script. By using the assumptions discussed in 

section 3.2, efield.m is able to build a complete picture of the hydrogel/solvent/air 

system. 

 

Five variables are passed to efield.m – the x- and y-dimensions (in nodes) of the 

hydrogel region; the potentials of the anode and cathode, and the level of the solvent.  

Because all of the solvent nodes are at the same potential, the model is able to 

approximate the solvent as two single columns of nodes on each side of the hydrogel 

with or without a single row of nodes underneath the hydrogel (efield1.m or efield2.m, 

respectively).   

 

Because of symmetry, efield.m is only required to calculate the voltage potentials for 

one half of the hydrogel/solvent/air system, which are then mirrored onto the other side. 

This dramatically reduces calculation time, while not adversely affecting the 

calculations. An example of this symmetry can be seen in Figure 3-6, which uses 

efield2.m. 
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Figure 3-6: Symmetry around y-axis 
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In order to use symmetry however, the Electrical module needs to generate a new 

variable that represents the half-width of the gel. efield.m creates the variable, gel_half 

which is defined as: 

__
2

gel xgel half ceiling ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.17) 

 

where ceiling is defined as the nearest integer to x rounded towards positive infinity. 

Thus, in Figure 3-6 gel_half would be equal to 5. 

 

Step 2 

Once the Electrical module has set up the different system matrices and vectors, it 

begins to set up the system of linear equations that will be solved to provide the voltage 

distribution. In order for this to occur, each node in the system is classified dependent 

on its position within the hydrogel/solvent system. Individual nodes are labelled as Vn 

and specific columns in the hydrogel/solvent system are labelled as C-n, as shown in 

Figure 3-7.   

 

Figure 3-7: Numbering of nodes 

 

One interesting feature of the Electrical module is that only nodes with unknown 

voltage potentials are calculated (with those potentials known a priori being used to 

calculate the unknowns). This is necessary due to the inherent rounding errors present 

during numerical modeling that cause deviation from given values. Thus, the anode may 

be at a constant voltage of 1V, whereas if calculated by the Electrical module the value 

may fall to 0.998V. While these errors are minor in themselves, the compounding 

nature of rounding errors makes this problem potentially quite large. 

 

 

C-1: First column of nodes 

C-2: Second column of nodes 

C-G: General column of nodes (may consist 

of multiple columns) 

C-aC: Column adjacent to centre column 

C-C: Column of nodes in centre of gel 
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To better illustrate the operation of the Electrical module, an example using efield2.m 

will be used. Consider node V14 in Figure 3-7, with a close-up showing the current 

flowing into and out of that node shown in Figure 3-8. As mentioned before, the model 

assumes that current always flows from the anode to the cathode, and thus the direction 

of the arrows is as shown.  If the anode and cathode were swapped, the arrows in Figure 

3-8 would point in the opposite directions. 

 

V14
V13 V15

V9

V19  

Figure 3-8: Implementation of Laplace's Equation on node 14 

 

To implement the KCL equation for node 14, equation (3.15) is used.  This gives: 

 

15 14 9 14 14 13 14 19V V V V V V V V
R R R R
− − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                (3.18) 

 

If the resistance is assumed to be constant throughout the hydrogel, then equation (3.18)  

becomes: 

 

9 13 14 15 194V V V V V φ− − + − − =                 (3.19) 

 

which in general form is written as: 

 

4up left n right downV V V V V φ− − + − − =                 (3.20) 

 

where Vup, Vdown, Vright and Vleft are the voltages at the nodes above, below and to the 

right and left of the node currently being examined. Usually φ = 0 in equation (3.20), 

but if the specified node was directly adjacent to a node of known potential, Vup (or a 
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similar variable in equation (3.20)) would equal that potential. In this case, φ would be 

non-zero for that node. 

 

The Electrical module sets up a matrix of simultaneous equations by iteratively forming 

the equivalent KCL equation for each node in the system not known a priori. This 

yields n equations (n=29 for Figure 3-8) with the exact form of equation (3.20) being 

dependent on both x and y coordinates of the node being examined.  

 

Using these coordinates, the Electrical module classifies each node into a specific type 

(for example, a boundary node). Here the advantages of using a constrained geometry 

(discussed earlier) become apparent, as the number of possible node types is constrained 

and is not dependent on the size of the system. The first variant (efield1.m) of the 

Electrical module classifies each node into one of 24 types; the second variant 

(efield2.m) into one of 28 types; the third variant (efield3.m) into one of 22 types. The 

difference in the number of node types between variants is due to the differing electrode 

configurations. 

 

In general, the columns in the hydrogel region (Figure 3-7) are classified as: 

 

• first column of system (C-1) 

• second column of system  (C-2) 

• general columns (C-G) 

• column adjacent to centre column (C-aC)  

• centre column (C-C).   

 

Within each of these categories, the Electrical module also classifies the node type 

dependent on the y-coordinate (row), which are discussed in more detail below: 

 

First column: C-1 nodes  

The first (C-1) column of nodes (Figure 3-7) in the system consists of nodes in the air 

and solvent regions of the system (nodes V1, V7, V12, V17).   

 

All C-1 nodes have a coefficient of zero for the Vleft potential in equation (3.20) and can 

be classified into three possible row types - “first row” (V1), “row above solvent” (V17) 

and “generic row” (V11). 
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The “first row” node differs from the “generic row” nodes by the lack of an upwards 

current path from the node (i.e. the coefficient of Vup is zero).  Also, since the solvent 

region is assumed to be at the same potential as the anode, the “row above solvent” 

node has φ=Vanode in equation (3.20) and a zero coefficient for the Vdown node. The 

remaining nodes are all classified as “generic” nodes and the Laplace equation takes on 

the general form shown in equation (3.20). 

 

Second column: C-2 nodes  

The second (C-2) column of nodes (Figure 3-7) is the first column in the hydrogel 

region.  As previously discussed, current can flow into this region from the air region, 

but is prevented from flowing out of the hydrogel region into the air region.  

Mathematically, this is accomplished by setting the coefficient of Vleft in equation (3.20) 

equal to zero for all C-2 nodes. 

 

C-2 nodes can be broken down into five possible types: “first row” (V2), “row above 

solvent” (V18), “solvent row” (V22), “last row” (V26) and “generic row” (V13).   

 

Depending on the variant of efield.m that is used, the equations for each node differ 

slightly. For the case where efield2.m is used, the C-2 “first” and “generic” nodes are 

identical to their C-1 counterparts, with the “first” node having a zero coefficient for 

Vup. Since the “solvent row” nodes are adjacent to the anode potential, the value of φ in 

equation (3.20) is equal to Vanode (similar to the C-1 “row above solvent” node). The C-

2 “row above solvent” node differs from the C-1 “row above solvent” node in that the 

coefficient of Vdown is not zero, which allows an extra current path from this node. The 

C-2 “last row” node differs from all the other nodes in this system, in that it is the only 

node with 2 current paths to the anode, and also has a zero coefficient for Vdown.   For 

the C-2 “last row” node, equation (3.20) becomes: 

 

27 26 22 26 26 26

22 26 27

OR
4 2

anode anode

anode

V V V V V V V V

V V V V

− + − = − + −

− + − =
             (3.21) 
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General columns: C-G nodes 

General (C-G) nodes (Figure 3-7) are nodes that do not fulfil the criteria for any of the 

other four types of nodes in the system, and for this reason the majority of nodes are of 

this type. As with the C-2 nodes, there are five possible types of C-G nodes: “first row” 

(V3), “row above solvent” (V19), “solvent row” (V23), “last row” (V27) and “generic 

row” (V14).  In general, these nodes have similar characteristics to their equivalent C-1 

and C-2 nodes (i.e. the coefficient of Vtop is equal to zero for “first row” nodes, the 

coefficient of Vbot is equal to zero for “last row” nodes) and so will not be repeated for 

brevity. 

 

Column adjacent to centre: C-aC nodes  

The nodes (Figure 3-7) in the column adjacent to the centre column (C-aC) are almost 

identical to the general column (C-G) nodes, and follow the same classification: “first 

row” (V4), “row above solvent” (V20), “solvent row” (V24), “last row” (V28) and 

“generic row” (V10).  In efield2.m, the only difference between the C-G and C-aC 

nodes occurs with the “first row” node which has φ in equation (3.20) equal to Vcathode. 

 

Centre column: C-C nodes  

The centre column nodes (Figure 3-7) are different from all of the other node types 

already discussed. This is because although symmetry does allow the model to only deal 

with half of the system, equation (3.20) must still account for the entire system. Again, 

for the case of efield2.m, the Centre column (C-C) nodes can be classified as: “second 

row” (V11), “row above solvent” (V21), “solvent row” (V25), “last row” (V29) and 

“generic row” (V16). 

 

When using efield2.m, the major difference between the C-C “first row” nodes and 

other nodes is that the coefficients of Vleft, Vright, Vup and Vdown are all zero. From the 

potential of the “first row”, the “second row” node also differs from the “generic” nodes 

of other columns, and φ in equation (3.20) is equal to Vcathode. In order to compensate for 

the discarded half of the system, the model assumes that the current flux in the negative-

x direction (towards the left in Figure 3-9) is equal to the current flux in the positive-x 

direction (right). 
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V7 

V11 

V17

V12

 

Figure 3-9: Using the centre column to account for symmetry 

 

Thus, from Figure 3-9 it can be seen that the coefficient of Vright is zero, while the 

coefficient of Vleft is equal to 2.  Aside from these differences, the “row above solvent”, 

“solvent row”, “last row” and “generic row” nodes are identical to those for the C-G 

nodes. 

 

By iteratively forming the KCL equations for each node in the system, the Electrical 

module builds up a series of simultaneous equations (Figure 3-10) that MATLAB can 

then solve.  The main difficulty is ensuring that each node in the system is classified 

correctly, as an incorrect classification will lead to the incorrect form of KCL equation 

being used.   

 

Node 1: 1 2 3 42 0 0 0V V V V+ + + =  

Node 2: 1 2 3 40 0 0 anodeV V V V V+ + + =  

Node 3: 1 2 3 40 0 cathodeV V V V V+ + + =  

Figure 3-10: Simultaneous KCL equations 

 

Step 3 

Once the equations for each node have been calculated, the Electrical module then 

assembles them into a global node matrix as shown in equation (3.22). 

 

4

011 2 0 0
20 1 0 0

0 0 1 1

anode

cathode

V
VV

VV

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

             (3.22) 
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The system of simultaneous equations in (3.22) can be solved by MATLAB to give the 

voltage potentials Vn of each of the nodes. One possible problem with using this method 

is that if the coefficient matrix in equation (3.22) is a sparse matrix, MATLAB cannot 

solve the system accurately.  However, in this case MATLAB would display an error 

message with details concerning the accuracy of the returned results, which a user could 

then compensate for. 

 

Once equation (3.22) has calculated the voltage potentials of each of the nodes in the 

system, the Electrical module combines these values with those potentials known a 

priori and returns the entire voltage potential matrix (Figure 3-11) to the main control 

program. 

 

 

5 5 5 5 5 5 5 5 5 5 5
5 4.7871 4.6592 4.5833 4.5396 4.5245 4.5396 4.5833 4.6592 4.7871 5
5 4.4892 4.2662 4.1344 4.0506 4.0189 4.0506 4.1344 4.2662 4.4892 5

4.1772 3.9035 3.7821 3.6376 3.5096 3.4498 3.5096 3.6376 3.7821 3.9035 4.1772
3.6282 3.4391 3.3212 3.1242 2.9004 2.761 2.9004 3.1242 3.3212 3.4391 3.6282
3.2682 3.0926 2.9394 2.6375 2.2068 1.7936 2.2068 2.6375 2.9394 3.0926 3.2682
3.0838 2.8994 2.7061 2.2797 1.4955 0 1.4955 2.2797 2.7061 2.8994 3.0838  

Figure 3-11: Matrix of voltage potentials, with Vanode=5 and Vcathode=0 

 

The main purpose for calculating the voltage potential matrix is to enable the main 

control program to calculate the electric field present within the hydrogel region (Egel). 

The module also returns pseudo-values for the air regions (shaded areas in Figure 3-11), 

but as previously mentioned, these are not used by the model, and are discarded. 

 

From equation (3.6), it can be seen that the electric field is equal to the negative gradient 

of the potential field.  This is calculated in MATLAB using the numerical gradient 

(gradient.m), which uses a centred-difference method and one-sided differences at the 

edges of the matrix. A flowchart of the operation of efield.m is shown in Figure 3-12. 
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Figure 3-12: Flowchart of efield.m 
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4. Chemical Module 

4.1. Introduction  

The Chemical module is the second module in the overall model. It calculates the 

material flux within the gel/solvent system and the change in ion concentrations 

throughout the polymer and solvent regions. The change in ion concentrations is then 

used by the Force module to calculate the forces on the hydrogel. These forces are then 

passed to the Mechanical module, which calculates the deformation of the hydrogel 

region. The Chemical module is also the first module inside the time loop and it takes 

information from the previous timestep concerning the spatial ion concentrations in the 

gel and solvent regions. 

 

The main inputs into this module are: 

 

• Information concerning the chemical nature of the system (including ion 

concentrations, diffusion coefficients and other thermodynamic constants).  

• Information on the externally-applied and intrinsic electric fields (resulting from 

the charge of the different ions) generated by the Electrical module.  

• Information on the geometry and operational controls of the system (including 

information on global nodes/elements and timestep values used for time-

integration).  

 

The outputs of this module are the spatial concentrations of all ions in the system as 

well as the temporal change in ion concentrations (Figure 4-1). 

 

 

Figure 4-1: Position of Chemical module in overall model 
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The hydrogel used in this work consists of partially neutralised poly(acrylic acid) 

(PAAC), which partially dissociates (based on the pH during the gel formation) to leave 

negatively charged COO- groups attached to the polymer backbone and positive mobile 

counterions (Na+) in the hydrogel. The gel is placed into an aqueous NaCl solution, 

which is assumed to be completely dissociated, containing an excess of ions. This 

solvent provides a source of mobile Na+ and Cl- ions (as illustrated in Figure 4-2). 

 

COO-

Cl-

Cl- Cl- Cl- Cl- Cl-Na+ Na+ Na+ Na+ Na+ Na+

Na+
Na+

Na+

GEL

SOLVENT
COO-

COO-

 

Figure 4-2: Ion concentration in gel and solvent regions 

The Chemical module treats the charged ions in the system as three separate species – 

mobile Na+ ions, mobile Cl- ions and stationary COO- ions (present in the hydrogel 

region). It calculates the mass transport of these three ions based on diffusion and 

migration under the influence of an externally-applied electric field to provide spatial 

and temporal information on the change in ion concentrations.  

4.2. Assumptions 

In developing the Chemical module, the following assumptions are made: 

 

• The different ionic species do not interact physically with each other, and could 

therefore theoretically occupy the same region of space. While this assumption 

generally only holds for very low ionic concentrations, it does simplify the 

required calculations and so is used in this module. The module does consider 

electrostatic interactions between different ionic species however, and this 

prevents like ions from occupying the same regions of space 

• The initial concentrations of ions present in the system do not change (i.e. the 

Chemical module does not consider dissociation/recombination reactions, which 

greatly increase the complexity of the model).  This allows the model to 

calculate the initial ion concentration distributions and evolve these steadily 

through time. 

• The charges on the polymer backbone are unable to move, and thus do not 

change in position. In reality, the polymer chains can deform and this does 
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provide some mobility to the stationary COO- ions. The stationary COO- ions do 

interact with the other species in the system through electrostatic interactions. 

• There is an excess of Na+ and Cl- ions in the solvent surrounding the hydrogel, 

and thus there is no change in concentration as ions move into or out of the 

solvent region. 

• The system is at constant temperature and pressure. 

4.3. Theoretical Development 

The theoretical development of the Chemical module is divided into two main parts: 

 

1) Determination of the initial ion concentrations for ions in the solvent and 

hydrogel regions. 

2) Determination of the mass transport equations for each ionic species in the 

model. 

4.3.1. Initial Ion Concentrations 

The solvent surrounding the hydrogel consists of an aqueous solution of NaCl salt, 

which by definition completely dissociates into an equal number of Na+ and Cl- ions. 

The concentration of these ions in the solvent region is easily calculated from 

knowledge of the salt concentration used in the preparation of the solvent (i.e. 1mol of 

NaCl dissolved into 1L would provide a concentration of 1 mol L-1). These ions are 

assumed to be distributed evenly throughout the solvent region, and available in excess 

so that their concentration remains essentially constant. 

 

Calculation of the initial ion concentrations in the hydrogel region is slightly more 

involved, and requires knowledge of both the pre-gel concentrations and preparation 

conditions. Hydrogels are known to be heterogeneous in structure [104], which makes it 

difficult or impossible to accurately describe the charge distribution within the 

hydrogel. Counterions are known to play the main role in electrical conduction, and the 

appearance of periodic current variations is a direct feature of the crosslinked nature of 

polymer hydrogels. Osada et al. [104] states that the speed of deformation is dependent 

only on the amount of charge being transported and not on the applied field, but this in 

direct contradiction to Salehpoor et al. [66] who showed a speed dependence on the 

magnitude of the applied electric field. The polymer hydrogel used in this work is 

formed from partially-neutralised acrylic acid (AAC), a weak acid with an ionisable 
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carboxy group (Figure 4-3) that provides the stationary COO- groups found in the 

hydrogel.  

 

C

C C

O

O HH

H

H

 

Figure 4-3: Acrylic Acid monomer 

 

Using the acid dissociation constant (Ka), the Chemical module calculates the initial 

concentration of COO- and Na+ ions in the hydrogel region. This is discussed in more 

detail in chapter 7. 

 

Unlike ions in the solvent region, ions in the gel region are not assumed to be uniformly 

distributed. While an even distribution of ions is sometimes assumed to exist in the 

hydrogel region (similar to the distribution of the solvent ions), it is well known that in 

poly(acrylic acid) hydrogel, spatial inhomogeneities exist [105] and that “clusters” of 

ions form within the hydrogel. Therefore, to distribute the ions within the hydrogel 

region, the overall model considers two types of electrostatic interactions:  Coulombic 

and Lennard-Jones. 

 

Coulombic interactions are considered fundamental, and occur between all charged 

particles in nature. The Coulombic potential energy between a pair of point charges is 

defined as [106]: 

 

0

1
4

i j
c

ij

v v
U

rπε
=  (4.1) 

 

where vi is the valence of the ith ion and rij is the distance between the two ions.  

Equation (4.1) describes the interactions between particles in free space, and generally 

does not hold when considering real materials. In particular, polyelectrolyte hydrogels 

consist of a large number of charges which are confined (by the geometry of the 

material) to be in close proximity to each other. In this case, one must also consider 
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effects such as Manning condensation [107], whereby charges “condense” onto the 

polymer backbone and decrease the amount of apparent charge present. The limiting 

factor for this occurs when the charge density within the polyelectrolyte exceeds one 

charge per Bjerrum length, Bλ , which is given by [108]: 

 
2

04B
r B

e
k T

λ
πε ε

=  (4.2) 

 

where ε0 and εr are the permittivity of free space and the solvent respectively, kB is the 

Boltzmann constant and T is the temperature.  As a result of Manning condensation, the 

Coulombic potential energy within polyelectrolyte hydrogels may be written as [109]: 

 

i j
c B B

ij

v v
U k T

r
λ=  (4.3) 

 

which is the definition that will be used in this work to distribute the COO- and Na+ ions 

within the hydrogel region. 

 

Particles also interact via a Lennard-Jones (L-J) potential of the form [110], which 

amongst other things prevents any two ions from occupying the same region of space. 

 
12 6

( ) 4ij ijU r
r r
σ σε

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (4.4) 

 

where σ is the molecular separation and εij is the depth of the potential well. The L-J 

potential in this work acts predominantly as a repulsive force (since most of the 

attractive/repulsive force stems from the Coulombic interaction).  Since the polymer 

hydrogel consists mainly of water, the model uses the values of water for σ, εij and εr. 
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4.3.2. Determination of the Mass Transport Equations  

In order to calculate the mass transport equations for the ionic species present in the 

system, it is necessary to examine the fundamental mechanisms responsible for mass 

transport. 

 

The second law of thermodynamics states that any system initially not in equilibrium 

will always move towards a state of equilibrium, and the changes that occur to the 

system are generally considered to be irreversible.  For a closed system to be in 

equilibrium, the entropy of the system (S) must be maximal [111]. Therefore, the 

entropy of the system should not vary as the energy, volume or number of particles 

changes, or: 
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=

 (4.5) 

 

where S is the entropy, iE  is the energy, iV  is the volume and iN  is the number of 

particles in region i.  In a system that is at constant temperature, pressure and volume, 

the first two terms are easily satisfied. For particle equilibrium (equal particle density in 

all regions in the system), the entropy of the system must not change when changing the 

number of particles.  In other words: 

 

1 1 2 2
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1 2, ,E V E V

S S
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⎛ ⎞ ⎛ ⎞∂ ∂
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 (4.6) 
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In electrochemistry it is usually more convenient to use the chemical potential, iµ , 

which is defined as: 

,i i

i
i i

i E V

S
T

N
µ

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (4.7) 

 

where Ti is the temperature of the system. Using equation (4.7), and assuming constant 

temperature and pressure, equation (4.6) may be rewritten as: 

 

1 2µ µ=  (4.8) 

 

Equation (4.7) can also be rewritten with different thermodynamic variables held 

constant, for example the Helmholtz free energy (F) or Gibbs free energy (G):  

 

,T V

F
N

µ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (4.9) 

 

,T P

G
N

µ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (4.10) 

 

where P is the pressure and T is the temperature. It is also possible to express other 

thermodynamic variables in terms of the chemical potential.  For example, the volume 

is also given by: 

 

,T N

V
P
µ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

 (4.11) 

 

To relate the chemical potential to the activity (and concentration) of a species, consider 

an ideal gas.  
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Using equation (4.11) in combination with the ideal gas law, one can derive an equation 

for the chemical potential at a point r ( ( , , )r x y z=r ) in the system [112]: 

 

[ ]0( ) ( ) ln ( )i i iRT aµ µ= +r r r  (4.12) 

 

where 0 ( )iµ r  and ia  are the reference potential and activity of species i, respectively. 

The activity (and more particularly the activity coefficient) relates the concentration of a 

species to its actual thermodynamic activity, and in practice has limited use.  For low 

concentrations however (<1 mol L-1), the activity can usually be assumed to be 

approximately equal to the concentration (Ci) of species i.  Additionally, if there is an 

electrostatic potential present in the solution, an extra term must be added to equation 

(4.12), to give: 

[ ]0( ) ( ) ln ( ) ( )i i i iRT a z Fµ µ φ= + +r r r r  (4.13) 

 

where iz  is the charge number, ( , )x yφ is the electrostatic potential and R, T and F are 

the molar gas constant, temperature and Faraday constant, respectively. In 

electrochemical systems, the chemical potential is the main driving mechanism for the 

mass transport process.   

 

Flux (J) of species i will occur to alleviate any differences in the chemical potential, 

with that flux being proportional to the gradient of the chemical potential: 

 

i iµ∝ ∇J  (4.14) 

 

where the r has been dropped for convenience.  Experimentally, it was found [113] that 

the constant of proportionality is given by: 

 

i iC D
RT

γ = −  (4.15) 

 

 where iC  is the concentration of species i and iD is a species-specific “diffusion 

coefficient” that is empirically determined. Netz and Dorfmuller [114, 115] performed 

Monte Carlo simulations on the path of “tracer” particles to determine the effects of 

geometrical obstructions on the diffusion in hydrogels and found for 2-dimensional 
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systems with a moderate concentration of obstacles, the diffusion was anomalous (i.e. 

did not obey Fick’s 2nd law) for short distances and was normal over long distances. In 

the case of this work, the distances are considered to be large, and so normal diffusion is 

assumed to apply. 

 

The negative sign in equation (4.15) results from the fact that flux moves from regions 

of higher potential to regions of lower potential.  Equation (4.14) can then be written as: 

 

( )0 lni i
i i i i

C D
RT a z F

RT
µ φ⎛ ⎞ ⎡ ⎤= − ∇ + +⎜ ⎟ ⎣ ⎦⎝ ⎠

J  (4.16) 

 

The first term in equation (4.16) is constant, and thus its gradient is zero.  Considering 

only the second term, and using equation (4.15) gives: 
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 (4.17) 

 

for each species i, with the activity replaced with the concentration as discussed earlier. 

Equation (4.17) is commonly referred to as Fick’s first law of diffusion, and serves to 

equilibrate the concentration. Diffusion occurs in all liquids and gases, and is a direct 

consequence of the second law of thermodynamics.  For systems containing only 

neutral species (z=0), equation (4.17) represents the total driving force for mass 

transport within the system and for this reason is usually considered to be one of the 

most important phenomenon in electrochemistry. 

 

The third term in equation (4.16) is commonly referred to as the migratory flux and can 

be written as: 

[ ],
i i

i mig i

i i i

C D
z F

RT
C D z F

RT

φ

φ

⎛ ⎞= − ∇⎜ ⎟
⎝ ⎠

= − ∇

J
 (4.18) 
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Einstein [116] discovered a relationship between the electrolytic mobility (the velocity 

of a particle under an electric field of unit strength) of a particle and the diffusion 

coefficient (Di), which is described by the Einstein-Smoluchowski (or Nernst-Einstein) 

equation: 

 

i i
i

z FD
U

RT
=  (4.19) 

 

Substituting equation (4.19) into equation (4.18) gives: 

 

,
i

i mig i i
i

U
C z

z
φ= − ∇J  (4.20) 

 

Equation (4.20) results from the various species in the system having different 

mobilities.  By combining equations (4.17) and (4.20), one can derive a general 

equation for mass transport in electrochemical systems: 

 

i
i i i i i

i

U
D C C z

z
φ= − ∇ − ∇J  (4.21) 

 

which is known as the Nernst-Planck equation.  In general, the Nernst-Planck equation 

also incorporates a term to describe convection within the system, in which case 

equation (4.21) becomes: 

 

i
i i i i i i

i

U
D C C z C

z
φ= − ∇ − ∇ +J v  (4.22) 

 

where v  is the flow velocity of the surrounding solution.  In this work however, it is 

assumed that the system is quiescent (i.e. there is no forced convection) and so 

convection can be ignored. This allows equation (4.21) to be used in this work.   

 

In order to gain better insight into the gradient of the electrostatic potential, it is 

sometimes more useful to describe equation (4.21) in terms of electrical flux, j, instead 

of the material flux, Ji.  
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Faraday’s law [113] can be used to relate the electrical and material flux: 

 

i i
i

z F= ∑j J  (4.23) 

 

which allows equation (4.21) to be rewritten as: 

 

i
i i i i i i i

i i i

i i i i i i
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U
z F D C z F C z

z
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φ
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⎝ ⎠ ⎝ ⎠

= − ∇ − ∇

∑ ∑

∑ ∑

j
 (4.24) 

 

Equation (4.24) can be further simplified by identifying that the conductivity σ  is given 

by: 

 

1
i i i

i
z FU C

R
σ = =∑  (4.25) 

 

where R is the electrical resistance.  Thus, equation (4.24) becomes: 

 

i i i i
i

z FD C σ φ= − ∇ − ∇∑j  (4.26) 

 

which can be rearranged into: 

 

i i i
i i

z FD C
φ

σ σ

∇
∇ = − −

∑ j
 (4.27) 

 

From (4.27) it can be seen that the electric potential is the sum of two terms. The first 

term arises from spatial concentration differences of each ion species i, with differing 

charge numbers and is usually referred to as the diffusion potential gradient.  The 

second term is Ohm’s law, and is the result of an externally imposed voltage gradient on 

the system.  For this reason, the second term is usually referred to as the ohmic potential 

gradient, and is generally larger than the diffusion potential gradient. 
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In order to describe the change in concentration in both time and space, it is necessary 

to derive an equation with concentration as a dependent variable, and space and time as 

independent variables. Equation (4.21) is useful, but is also spatially dependent and thus 

unsuitable in its current form. 

 

In order for equation (4.21) to be of use in this work, it is necessary to describe the 

change in concentration as a function of both space and time which can be achieved 

using the material flux. In a theoretical region of space bounded by a surface S (Figure 

4-4), the change in the amount of physical material, M, as a function of time is related to 

the flux (J) across the surface of that region, or: 

 

 (4.28) 

 

where the integral is taken over the entire surface S and the normal vector dS points 

outwards from the surface.  

 

 

Figure 4-4: Flux over a surface 

 

M is also related to the change in concentration over time for some volume, dV: 

 

iCM dV
t t

∂∂
=

∂ ∂∫  (4.29) 

 

Using equations (4.28) and (4.29) the flux, J, can be related to the change in 

concentration over time by: 

 

i

V

C
dV d

t
∂

= − ⋅
∂∫ ∫ J S  (4.30) 
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The divergence theorem can then be utilised to relate the surface integral to a volume 

integral: 

 

V

d dV⋅ = ∇ ⋅∫ ∫J S J  (4.31) 

 

which allows equation (4.30) to be rewritten as: 

 

iC
t

∂
= −∇ ⋅

∂
J  (4.32) 

 

Using equation (4.21) and equation (4.32), one can derive an expression for the spatial 

and temporal change in concentration of species i: 

 

2 2i i
i i i i i

i

C U
D C z C C

t z
φ φ

∂
⎡ ⎤= ∇ + ∇ +∇ ∇⎣ ⎦∂

 (4.33) 

 

Under the assumption of electroneutrality (where the number of positive charges is 

equal to the number of negative charges), the Laplacian operator of the potential field is 

zero and the second term in (4.33) is zero.  Thus, we finally arrive at the governing 

equation for the Chemical module, which for each species i is given by: 

 

2i i
i i i i

i

C U
D C z C

t z
φ

∂
= ∇ + ∇ ∇

∂
 (4.34) 

 

In order to calculate the temporal change in concentration, the Chemical module 

implements the two-dimensional equivalent of equation (4.34), which is given by: 
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 (4.35) 
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where the constants 1α  and 1β  are introduced for convenience.  In order to calculate an 

approximate solution to equation (4.35), the Chemical module uses Galerkin’s method 

of weighted residual with a forward-difference time-integration scheme. The module 

solves equation (4.35) for each species i in the system, and the various species are 

assumed not to interact physically (i.e. they could theoretically operate in the same 

region of space).   

 

The ions do still interact electrostatically however, and like ions tend to move away 

from each other while unlike ions are attracted to each other.  As discussed in chapter 2, 

the Galerkin method uses the original shape (basis) functions (H1, H2 and H3) of the 

elements as a weight function (w), which for linear triangular elements are given by 

[99]: 

 

( ) ( ) ( )
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3 1 2 2 1 1 2 2 1
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H x y x y y y x x x y
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H x y x y y y x x x y
A

H x y x y y y x x x y
A

= − + − + −⎡ ⎤⎣ ⎦

= − + − + −⎡ ⎤⎣ ⎦

= − + − + −⎡ ⎤⎣ ⎦

 (4.36) 

 

where H is the shape function, A is the area, and xi and yi are the ith node of each 

triangular element. Integration of the weighted residual of equation (4.35) over the 

domain  Ω  and boundary  Γ  yields: 
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∂
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∂
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− + Ω⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
− + + Ω− Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
=

∫

∫

∫ ∫

 (4.37) 

 

which can be simplified using integration by parts to give the weak form (where no 

derivative is greater than first order) of equation (4.37): 
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C w C w CI w d d
t x x y y
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x y x y n

α
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− + + Ω− Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ∫

∫ ∫
      (4.38) 

 

The last term in (4.38) describes the flux normal to the boundary of the system (mass 

transport into or out of the system), and for this module presents some interesting 

challenges.  By examining Figure 4-5 it can be seen that the system consists of three 

parts:  

 

(1) a gel submersed in a  

(2) surrounding solvent with  

(3) air above the solvent and next to the gel. 

 

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

OOOOOOOOO

Gel

Solvent

Air
Free space

 

Figure 4-5: Gel and solvent system 

Realistically, no material flux can pass through the air regions and thus, these regions 

must be isolated from equation (4.38).  If these space regions were not isolated and were 

given the accurate value of zero (since there are clearly no ions in these regions), ion 

transport would occur from the gel or solvent into these regions (since diffusion occurs 

from a region of finite concentration to a region of zero concentration). This problem is 

overcome in the Chemical module by separating the entire system into two subsystems 

that overlap as shown in Figure 4-6. 
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Figure 4-6: System separated into "solvent" and "gel" subsystems 
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This separation of subsystems is similar to that which occurs when a Gibbs ensemble 

method is used to model hydrogel swelling, as discussed by Kenkare et al. [75]. In that 

case, two simulation cells are used with one cell being for the bulk solvent phase and 

one cell being for the gel phase. In this work, these subsystems are referred to as the 

“gel” and “solvent” subsystems, and operate independently of each other. As expected, 

this method of solving boundary-flux problems generates its own unique difficulties, the 

most notable being the extra computational time required to calculate equation (4.38) 

multiple times. Since each species in this module is treated independently, the Chemical 

module solves equation  (4.38) for the concentration of each species i at each node, 

resulting in s instances of equation (4.38), where s is the number of species in the 

system. Since the entire system is now divided into two subsystems (“gel” and 

“solvent”) the number of instances grows to a total of 2s.  In our case where there are 

two species (Na+ and Cl-), equation (4.38) is solved four times.  The solvent system is 

calculated first, and this also results in the “gel” subsystem lagging behind the “solvent” 

subsystem. 

 

Another major problem with dividing the system into “solvent” and “gel” subsystems is 

that while the “gel” subsystem consists solely of elements associated with the gel, the 

“solvent” subsystem also has an interface between the hydrogel and surrounding 

solvent. To overcome this problem when modeling hydrogel systems, this interface is 

treated as a semi-permeable membrane which effects the diffusion of ions into the gel 

system.  However, since this is the first generation of this model, the gel/solvent 

interface is assumed to not noticeably affect the diffusion of ions and water into the gel.  

This issue will need to be set aside for future investigation. 

 

The advantage of using the subsystem method however, is that now both subsystems 

have zero-flux boundary conditions ( C∂ / 0n∂ = ), which is a consequence of their 

independence. Equation (4.38) can then be simplified to:  
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∫
 (4.39) 

 

 



64 

which is now an integral over the domainΩ , only. Substituting (4.36) into (4.39) gives: 
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∫

∫
 (4.40) 

 

for each element in the subsystem, where { }nC  is the concentration of local node n. The 

variables A-E represent the following combinations of shape function derivatives: 
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 (4.41) 
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The first variable (A) in equation (4.41) can be simplified by making use of the integral 

expression [117]: 

( )1 2 3
! ! ! 2

2 !
a b c a b cL L L dxdy

a b c∆

= ∆
+ + +∫∫  (4.42) 

 

where ∆ is the area. Simplifying the variables in equation (4.41) gives: 
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 (4.43) 

Using equation (4.43), equation (4.40) can then be simplified to give: 
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 (4.44) 

 

which is the general equation for each element in the subsystem. Since this module 

utilises linear triangular elements, each element has three nodes and thus the 

concentration vector in equation (4.44) is 1 3×  elements long.  The “element mass” 

[ME] and “element stiffness” [KE] matrices in equation (4.44) also have dimensions of 

3 3×  elements as a result.  To calculate the concentration of each node in the subsystem, 
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the “element mass” and “element stiffness” matrices need to be assembled into the 

overall “mass” and “stiffness” matrices for each subsystem: 
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(4.45) 

where the concentration vectors { }C  are now 1 n× elements long and the “mass” and 

“stiffness” matrices have dimensions  n n× , where n is the number of nodes in the 

subsystem. 

 

The “element stiffness” matrix [K2
E] in equation (4.44) also contains a term describing 

the gradient of the electrostatic potential.  The two-dimensional equivalent of equation 

(4.27) is given by: 
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 (4.46) 

 

As discussed previously, the first term in (4.46) results from differences in the 

electrolytic mobility of the different ions, while the second term arises from an 

externally-applied electric field. Although equation (4.46) contains both an x- and y-

derivative of Ci, it cannot be used directly in equation (4.39). The Chemical module can 

only solve the weak form of equation (4.39), and using equation (4.46) directly would 

cause the order of the differentiation to increase (thus destroying the weak form of the 

equation). This problem can be overcome however, by noting that the first term in 

equation (4.46) is small compared to the second term, which is constant. The Chemical 

module therefore solves equation (4.46) numerically during each timestep, and uses this 

value directly in equation (4.45).  

 

To calculate the time derivative in equation (4.45), the Chemical module uses a  

forward-difference time-integration scheme in which the change in concentration is 

approximated by the linear function: 
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This allows equation (4.45) to be simplified to give: 
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for each species i, where [K] = [K1]+[K2].  Equation (4.48) can be rearranged to give: 

 

[ ] [ ]( )( ) [ ]( )C Ct t t
i iM K t M+∆+ ∆ =  (4.49) 

 

where Ct
i  is the concentration of the nodes at the previous timestep.  The forward-

difference method is ideal for calculating the concentration of the nodes at the following 

timestep, since by default, the initial concentration 0Ci  of all of the nodes is known.   

4.4. Implementation in Code 

The Chemical module can be broken down into three separate parts – two of these parts 

are responsible for generation of the initial system conditions (and occur outside of the 

time loop), while the third is used to calculate the change in ion concentrations 

throughout the gel/solvent region. A complete listing of the Chemical module and the 

different scripts is given in Appendix B. 

4.4.1. Initial Ion Distributions – Solvent Region 

As mentioned in section 4.3.1, the initial concentration of ions in the solvent region is 

easily determined, but to be used in the overall model this concentration needs to be 

distributed to nodes associated with the solvent. The overall model uses the script 

scramble.m to assign the concentrations of the Na+ and Cl- ions to those nodes 

associated with the solvent region, and consists of two steps: 
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Step 1 

The model first sets up system vectors and matrices, dependent on the size of the 

solvent system. Information on which nodes are associated with the gel and solvent 

regions is received by the script from flager.m (chapter 2), which allows scramble.m to 

determine the matrix sizes. 
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Figure 4-7: Nodes associated with solvent (in bold) 

Step 2 

Using the information from step 1, the model then looks iteratively at each node in the 

system to determine whether it is associated with the solvent or hydrogel regions. If a 

node is associated with the hydrogel region, it is assigned a value of zero (since 

scramble.m only calculates the ion distribution for the surrounding solvent). Nodes 

associated with the solvent regions are assigned a concentration of Na+ and Cl- ions 

(shown in bold in Figure 4-7).  A flowchart of scramble.m is shown in Figure 4-8. 
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Figure 4-8: Flowchart of scramble.m 

 

4.4.2. Initial Ion Distributions – Hydrogel Region 

The distribution of ions within the hydrogel is significantly more complex than the 

distribution of ions in the solvent region. To distribute the ions within the hydrogel, the 

model calls the script gel_distribute.m which distributes the ions within a hydrogel by 

minimizing the electrostatic interactions between ions with different valences. This 

differs from the approach used in scramble.m, which evenly distributes ions throughout 

the solvent region. The distributions generated by gel_distribute.m are generally not 

uniform, but are ordered around the hydrogel region. The gel_distribute.m script 

consists of three steps: 

 

Step 1 

The first operation performed by gel_distribute.m is to verify the resolution of the 

global system, and to scale this if necessary.  The system uses information concerning 

the physical dimensions of the hydrogel combined with the number of elements in that 

dimension to determine the distance between two adjacent elements.  If this distance is 

deemed to be too high, gel_distribute.m increases the number of elements to 



70 

temporarily improve the resolution.  This change does not affect any other parts of the 

model, and only needs to be used when executing the model on computers with small 

amounts of physical memory (since a large matrix is created only once, and destroyed 

immediately after execution allowing memory to be returned to the system). 

 

The purpose of scaling is that if the number of elements is too low, the closest physical 

distance between two ions could be in the order of centimetres, which is clearly 

unphysical and may affect calculations. To compensate for this, the model increases the 

number of elements to decrease the element-to-element distance.  The value of the 

scaling parameter controls the distance between the different ions. 

 

Step 2 

gel_distribute.m then places a Na+ ion randomly within the hydrogel system.  The script 

works to minimise the sum of the Coulombic and Lennard-Jones electrostatic potentials 

(equations (4.3) and (4.4)) by iteratively moving a second Na+ through the entire 

system.  The model then alternately repeats this process n times using either a Cl-
  or 

Na+ ion, where n is the number of Na+ or Cl- ions in the system.  Thus, for the third ion 

placed, gel_distribute.m will determine the maximum electrostatic potential by 

considering both the attractive and repulsive forces of the first and second ions that were 

placed into the system. The fourth ion will consider the attraction and repulsion of the 

first, second and third ions and so forth. 

 

The main disadvantage of using this method is that the speed of operation is directly 

proportional to the number of ions and size of the system, and rapidly decreases as the 

number of ions or elements increases.  This is somewhat mitigated by the fact that all of 

the quantities in (4.3) and (4.4) are scalar quantities, and thus not computationally 

difficult. 

 

By examining equation (4.3), it can be seen that the potential is minimised for an unlike 

charge when the separation distance (rij) is zero, and for a like charge when the 

separation distance is infinity. The geometry of the system prevents a separation 

distance of infinity, and equation (4.4) prevents a separation distance of zero.  This is 

demonstrated in Figure 4-9. The L-J potential (equation (4.4)) prevents the white ion 

from overlapping the black ion, while the Columbic potential causes the white ion to be 



71 

placed to the left of the black ion (and not to the right of the black ion, as shown by 

dotted outline). 

 

Ion has equal
attraction to 
either side

of unlike ion 

Due to like-like repulsion, ion
moves to far side of unlike ion

 

Figure 4-9: Initial distribution of ions 

 

One advantage of using MATLAB to model the ion distributions is that the point of 

zero separation can readily be found by simply observing when equation (4.3) becomes 

infinity. While the idea of dividing by zero may seem gauche to more traditional 

programmers, zero and infinity are extremely powerful concepts provided care is taken 

with the implementation.  The 8th line of gel_distribute.m does include a command to 

suppress the “divide-by-zero” error message – this command is not essential for the 

program to operate correctly, but does help prevent “screen clutter” when the script is 

running. 

 

gel_distribute.m does make the assumption of a quasi-static system, where the ions 

already placed in the system do not move from their location. This constraint is 

necessary to prevent the program from running in an endless loop, and provides 

sufficient initial conditions (as discussed in chapter 6 ) to be used in the model. 

 

Step 3 

Lastly, once all the ions have been distributed throughout the hydrogel region, 

gel_distribute.m recompresses the ion matrix using the resolution factor mentioned in 

the beginning of this section. This results in groups of elements being combined into 

single elements with an obvious loss of spatial data. A flowchart of gel_distribute.m is 

shown in Figure 4-10. 
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Figure 4-10: Flowchart of gel_distribute.m 
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4.4.3. Mass Transport Equations 

The Chemical module calculates the mass transport equations by calling the script 

chemmod.m. This script consists of 12 separate steps: 

 

Step 1  

Initially, the Chemical module is passed information on the geometry of the 

hydrogel/solvent system as well as two concentration vectors (one each for the Na+ and 

Cl- ions). Linear triangular elements are used in this module but this could easily be 

modified to use other types of elements if required. For this element type, the Chemical 

module calculates: 

 

• The number of degrees-of-freedom (DOF) for each node in the module.  

• The total DOF for the entire hydrogel/solvent system  

• The number of DOF per element  

 

Although this information could be calculated in the main control program, the 

advantage of calculating it directly in the Chemical module is that only three variables 

(row, col, solvent_level) need to be passed. To pass the entire geometry of the system 

would require passing eight variables (4 x- and 4 y-coordinates). 

 

Step 2 

The Chemical module then calls gcoord.m to calculate the global coordinates for each 

node in the system and nodes.m to determine which nodes are associated with each 

element.  While some other FEM systems rely on the user supplying this information, 

this model simplifies the process by using basic geometry (such as number of columns 

and rows) to determine all associated node and element information.  

 

Step 3 

Once the nodes and elements associated with each subsystem are known, the Chemical 

module calculates the “element mass” [ME] and “element stiffness” [KE] matrices in 

equation (4.44) for the solvent subsystem. 

 

As in section 4.4.1, the script flager.m provides information on which elements and 

nodes are associated with the “solvent” and “gel” subsystems. This information is 
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required to calculate the shape functions (H1, H2 and H3) in equation (4.36), and when 

used in combination with the global element and node matrices also provide 

information on local nodes and element numbers. The variables from flager.m are also 

used in a more minor role to generate the local variables sol_nodes, gel_nodes, sol_elem 

and gel_elem which provide a convenient method of describing the number of nodes 

and elements in the “gel” and “solvent” subsystems.  

 

The “element mass” matrix [ME] for each element in the solvent subsystem is calculated 

by the script felpt2t3.m. The “element stiffness” matrices [K1
E and K2

E] for each 

element are calculated by the scripts felp2dt3.m and felp2dt3b.m respectively, and 

immediately multiplied by the constants, α and β. The “element damping” matrix [CE] 

can also be calculated by the Chemical module, but in this work it is not used. 

 

The functions felp2dt3.m, felpt2t3.m are scripts originally written by Kwon and Bang 

[99]. Although scripts that perform an identical function could have been written for 

this work, these pre-written scripts were fine, and little improvement could be gained by 

rewriting them. For this reason, these excellent scripts were incorporated directly into 

this work with little change. 

 

Step 4 

To calculate the potential in equation (4.46) for the solvent subsystem, the Chemical 

module uses the built-in MATLAB function for the numerical gradient, gradient.m. 

 

The nodal concentrations for each species in the system are stored as n×1 vectors, but 

the MATLAB numerical gradient requires spatially-representative matrices.  For 

example, if a system had six nodes, the concentration would be stored as a 6 1×  vector.  

In order to use this vector with gradient.m, the vector would first need to be reshaped 

into a matrix representative of the system geometry.  
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For example, if the system consisted of three rows and two columns, the vector would 

be reshaped to: 

a
b

a b
c

c d
d

e f
e
f

⎧ ⎫
⎪ ⎪
⎪ ⎪ ⎡ ⎤
⎪ ⎪ ⎢ ⎥→⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪
⎩ ⎭

 (4.50) 

 

Once the Chemical module has calculated the numerical gradient, the resulting matrix is 

reshaped back into a vector for use in equation (4.46).  The conductivity (σ) is 

calculated and combined with the remaining constants in (4.46) to provide the full first 

term of that equation.  

 

The second term in equation (4.46) relates to externally-applied electric fields, and these 

are calculated in the Electrical module (chapter 3). To calculate the potential gradient, 

both terms are summed and then multiplied by the “element stiffness” matrix, [K2
E]. 

 

Step 5 

Once the element mass, stiffness and damping matrices have been calculated, the 

Chemical module assembles them into the overall solvent subsystem matrices. 

 

The “element mass” matrices are assembled into the solvent mass matrix, [M] in 

equation (4.49) by feasmbl.m. The “element stiffness” matrices are also assembled into 

the solvent stiffness matrix, [K] using feasmbl.m.  Prior to assembly, the “element 

stiffness” matrix [K2
E] is multiplied by the potential gradient calculated in step 4, above. 

 

Step 6 

Once the “element mass” and “element stiffness” matrices have been calculated and 

assembled into equation (4.45), the Chemical module solves equation (4.45) for the 

concentrations (Ci) of each of the subsystem nodes at the next timestep.   

 

In MATLAB, this operation can be achieved by using the ldivide (left divide) 

command, which is equivalent to equation (4.51) but calculated in a different way.  The 
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left divide command does have certain limitations however, and cannot be used if the 

matrix A is [118]: 

 

• A nonsingular square matrix, or 

• A tall matrix such that ATA is nonsingular, or 

• A wide matrix such that AAT is nonsingular. 

 

In equation (4.49) however, the sum of [M]+[K]∆t does not fail any of these criteria, 

and so ldivide can be used to calculate the concentration at a time t+∆t.  One important 

and useful feature of MATLAB is that if equation (4.49) did fail to meet any of these 

criteria, an error message would be displayed informing the user. 

 

Step 7 

Once the Chemical module has calculated the concentration vector of each species for 

the following timestep, it combines this answer into the species concentration vector for 

the entire hydrogel/solvent system. Since the gel subsystem overlaps the solvent 

subsystem, some nodes in the gel region may have changed due to calculations by the 

solvent region, and these changes need to be reflected before the calculations in the gel 

subsystem. 

 

Step 8 

The Chemical model then repeats steps 3-7 performed for the solvent subsystem, again 

for the gel subsystem. The “element mass” [ME] and “element stiffness” [KE] matrices 

for the gel subsystem are calculated, as in step 3. 

 

Step 9 

This step repeats the calculation of the potential in equation (4.46) for the gel 

subsystem, as discussed in step 4. 

 

Step 10 

Once the element mass, stiffness and damping matrices have been calculated, the 

Chemical module assembles them into the overall gel subsystem matrices, as discussed 

in step 5. 
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Step 11 

The Chemical module then solves equation (4.45) for the concentrations (Ci) of each of 

the gel subsystem nodes at the next timestep.    

 

Step 12 

Finally, the Chemical module combines the calculated concentration vector for the gel 

subsystem back into the global concentration vector. 

 

The Chemical module provides the main engine for the overall model, and generates the 

concentration vectors for each species i in the system. Finally, the global concentration 

vector for each species, i, in the system is returned to the main control program for use 

by the Force module (chapter 4).  The Force module uses the temporal and spatial 

change in concentration to determine the forces experienced by the hydrogel which are 

then passed to the Mechanical module. A flowchart of the Chemical module is shown in 

Figure 4-11. 
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Figure 4-11: Flowchart of Chemical module 
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5. Force Module 

5.1. Introduction 

Using the concentrations calculated in the Chemical module, the Force module 

calculates the osmotic pressure (force) on the hydrogel generated by differences in 

chemical potential between the hydrogel and solvent regions. This force is then passed 

to the Mechanical module, through a translator that transforms the force from a two 

element per row finite element structure (used in the Chemical module) into a four 

element per row finite element structure (used in the Mechanical module) (as shown in 

Figure 5-1). 

 

One major advantage of the modular design of the overall model is that individual 

modules can operate independently of each other, using different numbers of 

nodes/elements as well as different finite element structures. Translator modules form a 

critical part of this independence by ensuring modular compatibility. The translator used 

after the Force module allows the Mechanical module to use a greater number of 

elements than the Electrical or Chemical module. The Mechanical module is the only 

module where each node has more than one degree-of-freedom, and by using a greater 

number of elements, the accuracy of the Mechanical module is improved. 

 

Although only one translator is used in the present model, these could be used between 

all major modules if required. 

 

 

Figure 5-1: Force and Force Translator modules in overall model 
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In this work, the swelling behaviour of polymer hydrogels is analysed within the 

framework of the Flory-Rehner (F-H) theory [119], of which the main basis is the 

osmotic pressure (π).  According to the F-H theory, the osmotic pressure on a gel can be 

considered to be made up of three terms: 

 

1. The osmotic pressure due to ionic interactions (πion). 

2. The osmotic pressure due to polymer/solvent mixing (πmix). 

3. The osmotic pressure due to elasticity (πelas). 

 

Solvent moves into or out of the hydrogel region until such time as the forces on the 

hydrogel are balanced, or: 

 

0ion mix elasπ π π π= + + =  (5.1) 

5.2. Theoretical Development 

The Force module only deals with the ionic and mixing forces as the elastic force is 

dealt with in the Mechanical module (chapter 6). This separation of forces is another 

result of the modular design of the overall model, and can sometimes be helpful in 

simplifying the overall gel swelling problem.  The individual terms in equation (5.1) 

will be discussed in the following sections. 

5.2.1. Osmotic Pressure Due to Ionic Interactions 

The ionic osmotic pressure (πion) is the pressure created by an unequal concentration of 

charged species on each side of a semi-permeable gel/solvent boundary, and is a direct 

consequence of the driving force generated by differences in chemical potential.  The 

ionic osmotic force is described by the Van’t Hoff equation [120]: 

 

( )G S
ion i i

i
RT C Cπ = −∑  (5.2) 

 

where Ci
G and Ci

S are the concentration of mobile species i in the hydrogel and solvent 

regions, respectively. In this work, a binary gel/solvent system is used, and thus i in 

equation (5.2) is equal to two (corresponding to the Na+ and Cl- ions in the surrounding 

solvent).  
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In the model, an excess of Na+ and Cl- is assumed in the solvent surrounding the 

hydrogel. This, the ion concentration is assumed to remain constant as ions are 

transported from the solvent region into or out of the hydrogel region (i.e. Ci
S is 

constant in time).  This ion transport causes the difference in concentration between the 

hydrogel and solvent regions to decrease (either under the influence of an external 

electric field or through migrative diffusion) and eventually reach zero after some finite 

number of timesteps.  The exact time for this to occur depends on both the initial 

concentration differences as well as the respective diffusion constants of the different 

ions. 

 

The initial concentration of ions in the hydrogel region can be controlled by adjusting 

the pH during the preparation of the gel (as discussed in chapter 7).  In the current work, 

the concentration of ions in the hydrogel is generally less than the concentration of ions 

in the surrounding solvent, and thus ionic osmotic force will typically cause the 

hydrogel to swell when placed in a NaCl solution. 

 

Equation (5.2) is only applicable to regions where the gel is surrounded by solvent, as 

other regions do not have a contiguous gel and solvent node (as illustrated in Figure 

5-2), and does not apply equally to all nodes in the hydrogel/solvent system. 
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Figure 5-2: Gel/solvent interaction regions (elements not shown) 
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Equation (5.2) provides the osmotic pressure generated by the concentration differences 

in the hydrogel/solvent regions.  In order to use this information in the Mechanical 

module (chapter 6), the pressure must be converted into an equivalent force.  By 

definition, pressure is equivalent to the average force per unit area: 

 

ionF Aπ= ⋅  (5.3) 

 

where A is the cross-sectional area, which differs for each face of the gel. The cross-

sectional area in equation (5.3) cannot be described using a purely 2-dimensional 

representation, and therefore it is necessary to extend the overall model to 3-dimensions 

for the Force module (as shown in Figure 5-3).  

 

Solvent level

Width of gel
Width of gel

F

  

Figure 5-3: Hydrogel/Solvent interaction regions (2D and 3D representations) 

 

The cross-sectional area of the lower face of the gel is given by the square width of the 

gel, while the cross-sectional area of the side faces is given by the width of the gel 

multiplied by the level of solvent (see Figure 5-3). From equation (5.3), the force on 

each face is given by: 

 

( ) ( )width of gel solvent levelside ionF π= ⋅ ×⎡ ⎤⎣ ⎦  (5.4) 

( )2width of gelbottom ionF π= ⋅  (5.5) 
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Figure 5-4: Nodes on left surface 

 

The ionic force generated by equations (5.4) and (5.5) is distributed among the nodes 

located at that surface proportionate to their difference in concentration. For example, if 

the total difference in concentration between nodes 1/1′, 2/2′ and 3/3′ was 1mol L-1, and 

the difference in concentration for each node was 0.3 mol L-1 (node 1), 0.5 mol L-1 

(node 2) and 0.2 mol L-1 (node 3), the Force module would assign 30% of the force 

generated by equation (5.4) to node 1, 50% to node 2 and 20% to node 3.  This method 

of proportionate distribution ensures that those nodes with large concentration 

differences experience proportionally large forces. An alternative approach to this 

method is to equally distribute the force along the left, right and bottom sides of the 

hydrogel (to create a distributed “line load”). Using a distributed line load overcomes 

any problems associated with moving from two dimensions to three dimensions, but 

also does not specifically take into account any localised force differences. This idea 

could possibly be tested in future versions of this model. 

5.2.2. Osmotic Pressure Due to Mixing  

The osmotic pressure due to mixing (πmix) is generated by a change in entropy resulting 

from the interaction of a polymer with its surrounding solvent and was first described 

quantitatively by Huggins [121] and Flory [122] in 1941/1942. 

 

 During polymerisation, polymer chains interact with each other and with the polar 

water molecules in the pre-gel solution causing chain stretching and deformation. As 

expected, the resulting polymer hydrogel has greater entropy than either the water or 

monomer in their pure states. 
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When the polymerised hydrogel is placed in contact with a surrounding solvent, and 

under the influence of an externally-applied electric field or concentration gradient, ions 

are transported between the hydrogel and solvent regions. As these ions move, they 

carry with them one or more water molecules that further alter the entropy of the 

hydrogel by changing the relative volume fractions of the polymer and water. 

 

The exact nature of the polymer/solvent interaction is dependent on the experimentally 

determined Flory-Huggins interaction parameter (χ), with the mixing osmotic pressure 

being given by [58]:  

 

( ) 2n 1mix P P P
S

RT l v v v
V

π χ⎡ ⎤= − − + +⎣ ⎦  (5.6) 

 

where VS  is the volume of solvent and vP is the volume fraction of polymer in the 

hydrogel. As mentioned previously, in this work the ion concentration within the 

hydrogel is generally less than the ion concentration in the surrounding solvent causing 

ion transport (and therefore an influx of water) to occur from the solvent region into the 

hydrogel.  The resulting influx of water molecules causes the hydrogel to swell and 

reduces the volume fraction of polymer (vP) within the gel region. 

 

During each timestep, the model calculates the difference in concentration for all nodes 

in the hydrogel by examining the nodal concentrations from the previous timestep. To 

account for any water molecules dragged with the migrating ions, this difference can be 

multiplied by a constant (or randomly generated number) which does allow a user to 

incorporate the movement of water molecules into the overall model. By adding or 

subtracting the volume of ions and water added to each node during the current 

timestep, the model can calculate the new total volume (Vtot) of the system.  This total 

volume is used to calculate the new volume fraction of polymer (vP) in the hydrogel 

region, which is required in equation (5.6). 
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Figure 5-5: Hydrogel region (2D and 3D representations) 

 

Equation (5.2) and equation (5.6) provide the pressure generated by the mixing of the 

polymer and solvent that needs to be converted into an equivalent force. As with 

equations (5.4) and (5.5), the cross-sectional area of the gel faces needs to be considered 

(Figure 5-5) to allow the equivalent force to be calculated using: 

 

( ) ( )width of gel height of gelleft right mixF F π= = ⋅ ×⎡ ⎤⎣ ⎦  (5.7) 

( )2width of gelbottom top mixF F π= = ⋅  (5.8) 

 

As with the ionic osmotic pressure, the model again proportionally distributes the 

mixing force amongst all the nodes located at that surface, this ensures that those nodes 

which experience a large change in ion concentration (and hence volume) also 

experience a proportionally large mixing force. 

 

The total force on each node (final result) the sum of the forces generated by equations 

(5.2) and (5.6), which is then returned to the main control program (control.m) as a 

force vector. This vector contains a force in both the x- and y-directions for each node 

in the hydrogel region, and is 2n elements long (where n is the number of nodes). 

5.2.3. Translation of Force Vector 

Once the total force vector has been calculated, it is passed directly to a “translator” 

sub-module, which effectively doubles the size of the force vector. This allows the 

Mechanical modules to use a greater number of elements than the Electrical or 

Chemical module and offers improved accuracy when calculating the nodal 

deformations. 
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A translator sub-module was found to be necessary in the Mechanical module after it 

was noticed that when using a two element per row finite element structure the module 

did not respond equally to nodal forces. This is illustrated in Figure 5-6 (shown with 

only 50 nodes for clarity), where an equal force is applied to the nodes labelled A-D 

(with no constraints on the boundaries). The Mechanical module predicted that nodes A 

and D would deform more than nodes B and C – clearly an incorrect result (Figure 5-6). 

 

A B

C D 

Figure 5-6: Nodal responses to force 

 

This error was eventually traced to inaccuracies in MATLAB when dealing with nodes 

common to more than one element. To combat this, the Mechanical module utilises a 

four element per row finite element structure where each type of node (corner, boundary 

or interior) is common to the same number of elements (Figure 5-7). In a four-element-

per-row structure, each corner node is common to two elements and boundary nodes are 

common to four elements. 

 

 

Figure 5-7: New element structure 
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Theoretically, a translator module could be built for any number of elements and 

element shapes, and this allows the overall model much greater flexibility over models 

that only work with a single finite element structure. As mentioned previously, a 

translator also allows each individual module in the model to operate independently of 

one another. It also makes it possible to use these individual modules in different finite 

element models if required. 

5.3. Implementation in Code 

The Force module (forcer.m) is implemented in the model directly after the Chemical 

module.  It takes as input information the nodal concentrations of each ion, the 

necessary thermodynamic constants and information on the geometry of the system 

(including what nodes/elements are associated with the gel and solvent subsystems). 

The Force module performs the following ten steps to calculate the forces generated by 

the hydrogel. A complete listing of the Force module and the different scripts is given in 

Appendix B. 

 

Step 1 

The model first initialises force vectors to store the calculated nodal forces, and also 

calculates the cross-sectional areas used when converting the osmotic pressures into 

osmotic forces. 

 

Step 2 

To calculate the osmotic pressure due to ionic differences, the module must calculate 

the global node numbers for nodes bordering on the solvent region (Figure 5-3).  This is 

done using information on the geometry of the system passed from control.m to 

forcer.m. The module calculates an n×3 matrix where the first column corresponds to 

the global node number of the node in the hydrogel region; the second column 

corresponds to the global node number of the neighbouring solvent node and the third 

column corresponds to the global node number if the gel was considered without the 

solvent. 

 

Step 3 

The module calculates the total ion difference between the node in the hydrogel region 

and its neighbouring solvent node, and then uses this concentration difference to 

calculate the ionic osmotic pressure. 
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Step 4 

The pressure calculated by equation (5.2) is then converted into its equivalent force by 

using equations (5.4)-(5.5) and proportionally distributed among the boundary nodes as 

discussed previously. 

 

Step 5 

The module then proceeds to calculate the ionic force due to mixing. To calculate the 

mixing osmotic pressure, forcer.m first calculates the difference in concentration for 

every node in the hydrogel region by using the passed variable flg_gel_node (discussed 

earlier).  

 

Step 6 

As ions migrate, they carry with them some number of water molecules which either 

adds-to or subtracts-from the total volume of the hydrogel. Using this new volume, 

forcer.m calculates the new total volume of the hydrogel system as well as the volume 

fraction of polymer (vP).  

 

Step 7 

The module then calculates the osmotic pressure due to mixing using equation (5.6). As 

before, this pressure is then converted into an equivalent force, by using equations (5.4)-

(5.5). 

 

Step 8 

To distribute the mixing osmotic force amongst the nodes in the gel region, forcer.m 

first proportionally distributes the mixing osmotic force based on the change in 

concentration of each node. The force on each node is then divided into four equal parts 

that are applied in turn to a set number of nearest neighbours or directly onto the node, 

depending on its type.  For example, those nodes on the boundary experience one 

quarter of the mixing force while those on the corners experience one half of the mixing 

force. General nodes do not experience any force, as all the force is applied to the four 

nearest neighbours. This force distribution mechanism is illustrated in Figure 5-8. 
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Figure 5-8: Application of force to gel nodes 

 

Conceptually this method of dividing the mixing force can be explained by examining 

the node in the centre of Figure 5-8. If the volume of this node increased, it would not 

generate any force directly on that node, but the extra volume would push the four 

neighbouring nodes away from this main node. This is equivalent to a force acting on 

the four adjacent nodes.  Similarly it can be seen that the node at the top and bottom-left 

of Figure 5-8 are exceptions to this behaviour, and both experience either ¼ or ½ of the 

force generated by that node, respectively. 

 

Step 9 

Once the forces generated by the ionic and mixing osmotic pressures are known, they 

are summed to provide the net force on each node in both the x- and y-directions.  As 

discussed previously, the lower row of nodes is assumed to rest on a rigid surface, and 

thus any force applied to this node immediately generates a reaction force on the nodes 

directly above it (the second row of the gel), as illustrated in Figure 5-9. 
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Reaction force

 

Figure 5-9: Reaction force on gel 

 

Step 10 

The Force module then checks the signs of the applied forces to ensure that they are 

consistent with the geometry of the system. 

If the pressure (force) calculated by the module is negative, the hydrogel swells.  Thus, 

nodes on the left of the hydrogel will move in the negative x-direction while the right 

nodes will move in the positive x-direction. To account for these differences, the 

module multiplies the pressure by -1 to ensure its direction is consistent.  A flowchart of 

the Force module is illustrated in Figure 5-10. 
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Figure 5-10: Flowchart of Force module 

π π 
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5.4. Translation of Force Vector 

The force translator module (force_changer.m) takes the force vector generated by 

forcer.m and converts this into a force suitable for use in a four-element-per-row 

structure (as discussed previously). There are a variety of different methods available to 

do this, but one of the simplest methods is to pad the force vector with zeros to increase 

its size (as shown in Figure 5-11). This has the advantage of speed, and also increases 

the size of the force vector without modifying any of the force components within it 

(which could generate additional errors).  
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⎪ ⎪⎩ ⎭

 

Figure 5-11: Converting 2 elements per row to 4 elements per row 

 

The resulting force vector is then passed to the Mechanical module, which calculates the 

deformation of the hydrogel by applying this force vector to the gel network. 
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6. Mechanical Module 

6.1. Introduction 

The Mechanical module is the penultimate module in the overall model, and is used to 

calculate the deformation of the hydrogel from the various forces calculated by the 

previous modules. The Mechanical module receives information about the magnitude, 

direction and location of forces being applied to the hydrogel.  By using the theory of 

linear elasticity, the module calculates the predicted deformation resulting from these 

forces, which can then be displayed graphically. This provides a quick, easy method of 

verifying the predictions of the overall model. 

 

 

Figure 6-1: Position of Mechanical module in overall model 

 

6.2. Assumptions 

While a number of assumptions are made in the Mechanical module, possibly the most 

significant are those related to the elasticity of the hydrogel. The Mechanical module 

assumes that: 

 

• The hydrogel material obeys linear elasticity relationships, and that the elasticity 

of the gel is uniform and time invariant. Poly(acrylic acid) hydrogels are known 

to consist of regions of high and low density [105], and this does cause spatial 

variation in the hydrogel elasticity. Real hydrogels also possess viscoelastic 

properties (and not purely elastic) which cause hysteresis effects. Some 

hydrogels can also vary their elasticity under influence of an electric field [68], 

further complicating material assumptions. In the case of this work however, the 

assumption is justified by the fact that the hydrogel behaves linearly in 
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quasistatic situations and because the hydrogel is extremely elastic. The use of 

this assumption drastically reduces the complexity of the equations that need to 

be solved by the model. 

• The gravitational and frictional forces experienced by the gel are negligible. The 

gravity force is assumed to be countered by the upwards force on the lower 

region of the hydrogel generated by the gel support. Friction may be assumed to 

be negligible as the solvent surrounding the hydrogel acts as a lubricant, by 

reducing the surface-to-surface contact (section 6.3.4) (as shown in Figure 6-2). 

Although, these two forces are ignored in this model, the modular approach 

followed throughout this work ensures that they could be readily added if 

required. 

 

Electrodes

Gravity force

Reaction

Rigid base

Solvent

Friction (negligible)  

Figure 6-2: Gravitational and frictional forces 

 

6.3. Theoretical Development 

The Mechanical module takes as its input a force vector and returns a nodal 

displacement vector as output. Hence, it is necessary to derive a governing equation to 

describe the motion of an elastic body under the influence of an external force (Figure 

6-3).  
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Figure 6-3: Forces applied to a finite element 

 

Newton’s second law (at time t) is ideally suited to this problem, and can be written as: 

 

{ } { }[ ]
ttF M d=∑                       (6.1) 

 

where F is an externally-applied force, [M] is a mass matrix and d is a nodal 

displacement vector. If elastic restoring and viscous damping forces (that act against the 

externally-applied force) are considered, equation (6.1) can be rewritten as: 

 

{ } { } { }( ) { }[ ] [ ] [ ]
t tt tF K d C d M d− − =                       (6.2) 

 

where [K] is a stiffness matrix and [C] is a damping matrix.  Equation (6.2) can then be 

rearranged to give: 

 

{ } { } { } { }[ ] [ ] [ ]
t t t tM d C d K d F+ + =                      (6.3) 

 

In order to formulate the finite element approximation for equation (6.3), the mass, 

stiffness and damping matrices must be calculated for each element and then assembled 

into global mass, stiffness and damping matrices.  For convenience, these matrices are 

assumed to be independent of time, but could be readily modified to include time-

dependence if required. 

6.3.1. Element Stiffness Matrix [K] 

In order to calculate the element stiffness matrix, it is useful to simplify equation (6.3) 

by assuming a purely elastic body with [M] = [C] = 0 (no inertia or damping). By 
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conservation of energy, the internal strain energy (elastic restoring energy) generated by 

the body must then be equivalent to the external work applied (applied force). Thus, 

under the influence of an externally applied force, an elastic body would deform and 

cause strain energy in the amount [99]: 

 

{ } { }1
2

t
strainU dσ ε

Ω

= Ω∫  (6.4) 

 

where σ is the stress and ε is the strain, integrated over the entire element area (Ω). 

Equation (6.4) can also be written in the more familiar form: 

 

1
2

E
strainU K d

Ω

⎡ ⎤= Ω⎣ ⎦∫  (6.5) 

 

where [KE] is the element stiffness matrix. 

 

From the fundamental definitions of elasticity, the engineering strain is defined in terms 

of displacements by the equation: 

0
i

L
L

ε ∆
=  (6.6) 

 

where the change in length ∆L, is taken in the ith direction and L0 is the initial 

longitudinal length of the element.  

 

From equation (6.6), for a given displacement of u and v in the x- and y-directions 

respectively, the two-dimensional strain vector can be written as [123]: 

 

x

y

xy

u
x
v
y

u v
y x

ε
ε
γ

⎧ ⎫∂
⎪ ⎪

∂⎪ ⎪⎧ ⎫
⎪ ⎪∂⎪ ⎪ =⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪∂ ∂
+⎪ ⎪∂ ∂⎩ ⎭

 (6.7) 
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where εx, εy are the strain in the x- and y-directions respectively and γxy is the shear 

strain.  

 

In order to evaluate equation (6.7) in a finite element formulation, the shape functions 

introduced in chapter 2 must be used. In this work, the element domain is discretised 

using linear triangular elements with shape functions (H1, H2 and H3): 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2 1

1
2
1

2
1

2

H x y x y y y x x x y
A

H x y x y y y x x x y
A

H x y x y y y x x x y
A

= − + − + −⎡ ⎤⎣ ⎦

= − + − + −⎡ ⎤⎣ ⎦

= − + − + −⎡ ⎤⎣ ⎦

                      (6.8) 

where the coordinates (xi , yi) are associated with the ith
 node (as shown in Figure 6-4). 

(x1,y1) (x2,y2)

(x3,y3)

 

Figure 6-4: Finite element with local node numbers 

 

By definition, any x- or y-displacement can be written in terms of the shape functions 

and so a displacement of u and v (in the x- and y-directions, respectively) can be written 

as: 
3

1
3

1

( , ) ( , )

( , ) ( , )

i i
i

i i
i

u x y H x y u

v x y H x y v

=

=

=

=

∑

∑
 (6.9) 
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which in matrix form becomes: 

( )
( )

1

1

1 2 3 2

1 2 3 2

3

3

0 0 0,
0 0 0,

u
v

H H H uu x y
H H H vv x y

u
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎢ ⎥⎢ ⎥
⎣ ⎦⎩ ⎭ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.10) 

 

Using equation (6.10) in equation (6.7) leads to: 

 

1
31 2

1

231 2

2

33 31 1 2 2

3

0 0 0

0 0 0
x

y

xy

uHH Hu
vx x xx
uHH Hv
vy y y y
uu v H HH H H H

y x y x y x y x v

ε
ε
γ

⎧ ⎫⎡ ⎤⎧ ⎫ ∂∂ ∂∂ ⎪ ⎪⎢ ⎥⎪ ⎪
∂ ∂ ∂∂ ⎪ ⎪⎢ ⎥⎪ ⎪⎧ ⎫

⎪ ⎪⎢ ⎥∂⎪ ⎪ ∂ ∂∂⎪ ⎪ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂∂ ∂ ∂ ∂

+⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦ ⎩ ⎭

  (6.11) 

 

which in abbreviated form can be written as: 

 

{ } [ ]{ }uε = B  (6.12) 

 

where [B] is known as the kinematic matrix. Substituting equation (6.8) into equation 

(6.11) allows the [B] matrix to be written as: 

 

[ ]
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 3 3 1 1 2

3 2 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0
1 0 0 0

2

y y y y y y
x x x x x x

A
x x y y x x y y x x y y

⎡ ⎤− − −
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

B

 (6.13) 
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For a triangle with three nodes having coordinates (x1,y1), (x2,y2) and (x3,y3), the area 

(A) is given by the determinant [100]: 

 

1 1

2 2

3 3

2 3 1 2 3 1 2 1 1 3 3 2

1
1 1
2

1

2

x y
A x y

x y
x y x y x y x y x y x y

=

+ + − − −
=

 (6.14) 

 

In an isotropic material with plane stress, the strains in equation (6.7) are related to their 

respective 2-dimensional stresses through Hook’s law [100]: 

 

( )21x x y
Eσ ε νε
ν

= +
−

 (6.15) 

 

( )21y y x
Eσ ε νε
ν

= +
−

 (6.16) 

 

( )
1
2 1xy xy

Eτ γ
ν

=
−

 (6.17) 

 

In a matrix form, equations (6.15)-(6.17) can be written as: 

 

2

1 0
1 0

1
10 0

2

x x

y y

xy xy

E
σ ν ε
σ ν ε

ν
τ ν γ

⎡ ⎤
⎢ ⎥⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎩ ⎭⎢ ⎥
⎣ ⎦

 (6.18) 

or, 

{ } [ ]{ }σ ε= D  (6.19) 

 

where D is a material properties matrix.   
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If the material has residual strains and stresses resulting from initial processing 

conditions, then equation (6.18) can be extended to [117]: 

 

{ } [ ] { } { }( ) { }0 0
σ ε ε σ= − +D  (6.20) 

 

where ε0 and σ0 are the residual strain and stress in the material.  In this work, because 

the polymer hydrogel is a highly elastic material at equilibrium under naturally small 

loads, the residual stresses/strains are considered to be minimal and so are disregarded. 

 

Using equations (6.12) and (6.19), the element stiffness matrix from equation (6.5) can 

be written as: 

{ } { }

[ ]{ }( ) { }

[ ][ ]( ) [ ]{ }
[ ] [ ][ ]{ }

tE

T

T

T

K

u

u

σ ε

ε ε

⎡ ⎤ =⎣ ⎦

=

=

=

D

D B B

B D B

 (6.21) 

 

since [D] is a symmetric matrix. 

 

6.3.2. Element Mass Matrix [M] 

The mass matrix provides the inertial term in equation (6.3), with its exact form 

depending on the shape functions of the elements used.  The general form of the mass 

matrix for each element is given by: 

 

[ ] [ ]
e

TEM N N dρ
Ω

⎡ ⎤ = Ω⎣ ⎦ ∫  (6.22) 

 

where ρ is the mass density and [N] is a matrix of shape functions integrated over the 

entire element area (Ωe).  Using the shape function matrix, equation (6.22) can be 

written as:  
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[ ] [ ]
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H H H H H H
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Ω

Ω

Ω

⎡ ⎤ = Ω⎣ ⎦
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= Ω⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= Ω⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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∫

∫

∫

 (6.23) 

which can be solved using the area integral identity [117]: 

 

( )1 2 3
! ! ! 2

!e

a b c ea b cH H H dA
a b c

Ω

⋅ ⋅ ⋅ = Ω
+ +∫                    (6.24) 

 

where Ωe is the area of the element.  Using (6.24) in (6.23) gives: 

 

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 112
1 0 1 0 2 0
0 1 0 1 0 2

E AM ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                    (6.25) 

 

which is known as the consistent mass matrix. The thickness of the element is assumed 

to be unity and is not shown in equation (6.25). In order to simplify equation (6.25), the 

mass is sometimes assumed to be “lumped” at the nodes in equal parts.   

 

For triangular elements (with three nodes per element) the mass matrix then becomes: 

 

[ ]63
E AM Iρ⎡ ⎤ =⎣ ⎦                     (6.26) 
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where [I6] is a 6×6 identity matrix. In practice, equation (6.25) and (6.26) give similar 

results, but the use of equation (6.26) can be computationally advantageous since it can 

be stored in less memory, as will be discussed in section 6.4.  

6.3.3. Element Damping Matrix [C] 

The form of the damping matrix is almost identical to the mass matrix, and also depends 

on the specific shape functions used. In general terms, the damping matrix for each 

element is given by: 

 

[ ] [ ]
e

TEC N N dµ
Ω

⎡ ⎤ = Ω⎣ ⎦ ∫  (6.27) 

 

where µ is a matrix of viscosity parameters and [N] is a matrix of shape functions 

integrated over the entire element area (Ωe).  

 

 

 

In reality, exact knowledge of the viscosity parameters is often difficult and so the 

damping matrix is sometimes approximated as [117]: 

 
E E E

R RC M Kα β⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (6.28) 

 

where αR and βR are experimentally determined parameters and [M] and [K] are the 

mass and stiffness matrices from equations (6.21) and (6.22). Equation (6.28) is known 

as the Raleigh damping, and has some computational advantages over equation (6.27). 

By adjusting the αR and βR constants, different system effects can be achieved. For 

example, by biasing β with respect to α, high frequency over-damping can be achieved 

that helps counter any high frequencies generated by using the finite element 

approximation. 
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As with the mass matrix, a lumped matrix approach can also be used if µ is now taken 

to be a “viscosity density” term.  In this case, equation (6.27) can be written as: 

 

[ ]63
E AC Iµ⎡ ⎤ =⎣ ⎦                     (6.29) 

 

Again, the use of a lumped damping matrix has computational advantages, which can 

result in both memory and time savings. Although no damping is used in the current 

version of the model, it is mentioned here for completeness. 

6.3.4. Boundary Conditions 

Boundary conditions are generally classed into two types – natural or geometrical, and 

the Mechanical module can deal with either type. Natural boundary conditions generally 

concern fluxes at the domain boundary while geometric boundary conditions (also 

known as essential boundary conditions) offer constraints in the form of given 

displacements. In the case of the Mechanical module, geometrical boundary conditions 

are more intuitive, as any physical constraints placed on the hydrogel (for example by 

the surrounding container) immediately present themselves as a zero displacement on 

the affected nodes.   

 

The gel is placed in a free environment except at the bottom, where the gel is in contact 

with a rigid base through the solution (Figure 6-5). Solvent and air surrounding the gel 

are assumed to offer negligible resistance, and nodes situated on the sides and top of the 

hydrogel are assumed to be free to move in both the x- and y-directions. The underside 

of the hydrogel is constrained however, by the bottom of the vessel containing the 

gel/solvent system and therefore those nodes at the bottom of the hydrogel are 

constrained in the negative (downwards) y-direction.  Although the bottom nodes are 

free to move in the positive (upwards) y-direction, in reality the weight of the hydrogel 

would counter this movement, with the net result that there would be no upwards 

movement of the bottom nodes of the hydrogel. Thus, in this model the nodes in the 

bottom of the hydrogel are assumed to be constrained only in the y-direction. 

Movement in the x-direction is unrestrained, and it is further assumed that the 

surrounding solvent ensures negligible friction between the hydrogel and the walls of 

the surrounding vessel. 
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Figure 6-5: Constrained nodes in hydrogel 

 

6.3.5. Velocity and Displacement Through Time Integration 

In order to calculate the nodal displacements at each timestep, the Mechanical module 

employs a central-difference time integration (CDTI) scheme to solve equation (6.3).  

While a wide variety of time integration schemes are available, the CDTI scheme is 

frequently used in structural mechanics problems since it can provide displacment, 

velocity and acceleration data for the system. The CDTI is only conditionally stable 

however, and so care must be taken to ensure an appropriate timestep is selected. In this 

work, the CDTI is implemented in the “summed” form [124], which provides 

displacement, velocity and acceleration data for each node in the system for each 

timestep.  While the Mechanical module only utilises displacement data, the availability 

of velocity and acceleration data ensures that it could be used in later modules if 

required. 

 

The CDTI immediately presents two potential problems, and these must be examined 

before the suitability of the scheme can be evaluated for use in the Mechanical module. 

The first problem is that it requires an initial velocity solution at the fictitious time of 

-0.5∆t (Figure 6-6). This can be calculated by using the standard time integral 

approximation: 

{ } { } { }0
0.5

t
t d d

d
t

−∆
− ∆ −

=
∆

                      (6.30) 

 

where { }0d  is the initial displacement and { } td −∆  is the displacement at the fictitious 

time -∆t.   
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Figure 6-6: Calculating fictitious displacements and velocities 

 

The fictitious displacement at time -∆t can be calculated using the linear relationships 

between displacement, velocity and acceleration: 

 

{ } { } { } { }
20 00

2
t t td d t d d−∆ ∆

= − ∆ +                      (6.31) 

 

where { }0
d  and { }0

d  are the velocity and acceleration at t = 0.  If the initial 

displacement, velocity and acceleration are all zero, then equation (6.31) can be 

simplified to:  

{ } { }0t td d−∆ =                       (6.32) 

 

Using equation (6.32) in equation (6.30) gives an initial velocity at t = -0.5∆t of zero. 

Therefore, the need for a fictitious initial velocity does not preclude the use of the CDTI 

scheme in this model.   

 

The second potential problem with the CDTI scheme is that displacements and 

accelerations are calculated at the same timestep, but velocities are calculated midway 

through each timestep (i.e. at t + 0.5∆t).  This is only problematic if velocities are 

required for each timestep, whereas this model only utilises the nodal displacements.  

Thus, the misalignment of the velocity data does not preclude the use of the CDTI 

scheme in this work. 

 

During each timestep, the Mechanical module first calculates the acceleration by 

rearranging equation (6.3) to give: 

 

{ } { } { } { }( )1[ ] [ ] [ ]
t tt td M F C d K d−= − −              (6.33) 



106 

 

where the initial displacements and velocities of each node are assumed to be zero. In 

order to calculate the velocity at a time t + 0.5∆t, the model utilises the relationship 

between acceleration and velocity: 

 

 { } { }
0.50.5

0.5

t tt t

t t

d d dt
+ ∆

+ ∆

− ∆

= ∫                       (6.34) 

 

which in discrete form can be expressed as: 

 

{ } { } { }0.5 0.5t t t t t
d d t d

+ ∆ − ∆
= + ∆                       (6.35) 

 

Finally, to calculate the displacement at a time t + ∆t, the model again uses the 

relationship between velocity and displacement: 

 

{ } { }
t t

t t

t

d d dt
+∆

+∆ = ∫                       (6.36) 

 

which in discrete form can be expressed as: 

 

{ } { } { } 0.5t tt t td d t d
+ ∆+∆ = + ∆                       (6.37) 

 

6.4. Implementation in Code 

The Mechanical module (mech.m) is called during each time iteration, and uses 

information on the magnitude and location of the nodal forces from the Force module, 

as well as the nodal displacement and velocity information from the previous timestep. 

A complete listing of the Mechanical module and the different scripts is given in 

Appendix B. 
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As input, the Mechanical module is passed the following information:  

 

• Mechanical properties such as Young’s modulus, Poisson’s ratio, mass density 

and viscous damping coefficient. The mechanical properties are determined 

experimentally and from values in literature (eg [125]). These constants could 

also have been stored within the Mechanical module, but for ease of use are all 

accumulated in the main control program. 

• Geometrical parameters on the hydrogel such as global coordinates and nodal 

elements. The number of nodal degrees-of-freedom (two, for x- and y-

displacement) is included in the Mechanical module, as it is the only module 

with nodes possessing more than one degree-of-freedom. 

 

 As with previous modules, the Mechanical module is run in a number of steps. 

 

Step 1 

The Mechanical module first initialises the global stiffness ([K]), mass ([M]) and 

damping ([C]) matrices along with their associated matrices. By definition, these 

matrices are also square matrices of size 2n×2n elements, where n is the number of 

nodes in the system, each with two degrees-of-freedom. The initialisation of these 

matrices is performed locally in the Mechanical module and not passed from the main 

control program, as the passing of large matrices is both time and memory intensive. 

The module also sets up the boundary conditions, which for this work are of a 

geometrical type.  

 

Step 2 

Once the global matrices are initialised, the module calculates the material properties 

matrix [D] from the passed Mechanical parameters (for example, the Young’s 

modulus). To calculate the material properties matrix [D], the script fematiso.m is called 

which implements equation (6.18).   

 

Step 3 

The matrix then iteratively calculates the element matrices for each element in the 

hydrogel. The module first calculates the system degree-of-freedom for each of the 

three nodes associated with each element. The Mechanical module then proceeds to 

calculate the area of that element, which is required by the stiffness matrix. 
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Step 4 

Once the module has calculated the area of each element, the kinematic matrix [B] and 

stiffness matrix [K] for each element is calculated. To calculate the kinematic matrix 

[B] in equation (6.13), the module first calculates the area of the triangular element 

using equation (6.14).  Using the shape functions from equation (6.11), the module 

calculates the x- and y-displacements using equation (6.8).  The kinematic matrix [B] 

for each element is then assembled using the script fekine2d.m. To compute the element 

stiffness matrix [KE] for each element, the module uses equation (6.21). 

 

The scripts used to generate the [B] and [D] matrices were written by Kwon and Bang 

[99] and are used in their original forms as discussed previously.   

 

Step 5 

The module then calculates the damping matrix [C] for each element, but as discussed 

earlier, this is not used in this work. 

 

Step 6 

Finally, the Mechanical module calculates the mass matrix [M] for each element in the 

hydrogel. To calculate the mass [M]E and damping [C]E matrices for each element, the 

Mechanical module calls the script mmtriang.m, which can calculate consistent or 

lumped matrices depending on the argument passed to it. The similarity between the 

form of the mass and damping matrices allows mmtriang.m to be used for both, with a 

different constant (mass density or viscosity) being passed for each matrix. 

 

Step 7 

The module then repeats steps 3-6 to assemble the stiffness, damping and mass matrices 

for each element into a global stiffness, damping and mass matrix. The script 

feasmbl1.m is used, which places the element matrices into the correct location within 

the global matrix. 

 

Step 8 

Once the stiffness, damping and mass matrices are known for the system, the module 

proceeds to perform time integration in order to calculate the displacement. The module 

first calculates the acceleration for each node in the system for the current timestep 

using equation (6.33).  As discussed in previous chapters, the inversion of the mass 
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matrix can also be accomplished by using the MATLAB ldivide (left divide) command 

subject to the mass matrix meeting certain requirements [118]. 

 

Step 9 

Once the acceleration is known, the Mechanical module applies the boundary conditions 

discussed in the first step to calculate the velocity for each node for the following 

timestep. To apply the boundary conditions, mech.m initialises a vector containing the 

degrees-of-freedom associated with the nodes along the bottom of the hydrogel. As 

discussed in section 6.3.4, these nodes are constrained in the y-direction, but free to 

move in the x-direction. 

 

Step 10 

Using this velocity, the module uses equation (6.37) to calculate the displacement of 

each node in the hydrogel for the following timestep.  Using this method, the 

deformation of each node in the hydrogel can be calculated. To calculate the velocity 

and displacement vectors for the t+1 timestep, the Mechanical module uses equations 

(6.35) and (6.37). 

The module then returns these velocities and displacements to the main control 

program, where they are used to generate deformation plots. The greatest concern in this 

module is the memory allocation problems associated with MATLAB. By default, 

MATLAB defines all matrix elements as type double, each of which take 8 bytes of 

memory.  Thus, for a moderate size finite element model with 1,000,000 nodes there are 

2,000,000 degrees-of-freedom. The element matrices are then each (2,000,000)2 = 

2×1012
 elements in size and each matrix is therefore 32Tb (32×1012bytes) large. This is 

unmanageable for a standard desktop computer, and methods need to be sought to 

enable MATLAB to deal with large matrices more efficiently.  While MATLAB does 

offer the ability to create 8-, 16- and 32-bit signed and unsigned integers, it only permits 

the use of double values in mathematical calculations [126] and so single integer types 

still need to be converted in order to be used. 

The situation can be improved by realising that although the stiffness, mass and 

damping matrices are large, they are also sparse and therefore can be dealt with in 

MATLAB using the sparse matrix types.  This is similar to the approach used by 

commercial FEA programs. In MATLAB, sparse matrices are still strored in double-

precision format, but this effectively squeezes the zero elements from the matrix which 
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dramatically reduces its size. While this situation is not ideal, in practice it has not 

produced any significant errors in the results. A flowchart of the Mechanical module is 

shown in Figure 6-7. 
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and damping 

matrices

Constants from MAIN

Set up boundary 
conditions matrix
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next timestep

NO YES
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Figure 6-7: Flowchart of Mechanical module
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7. Optical Module 

7.1. Introduction 

Whether the gel is used for optical applications or an actuator, the output of the 

Mechanical module can be used without affecting the generality of the whole model. In 

this work however, the Optical module is the final component in the overall model, and 

as such returns the final result of the model (i.e. a change in focal length).  It takes as its 

input the deformation calculated by the Mechanical module and uses this to calculate 

the theoretical change in the radius of curvature and refractive power (Figure 7-1).  

 

 

Figure 7-1: Position of Optical module in overall model 

 

The Optical module is not a critical part of the model, as its output is not required by 

any other modules in order to function (e.g. the Mechanical or Chemical modules). For 

this reason, the Optical module is also one of the smallest modules in the model. 

7.2. Assumptions 

As with all the modules in this work, the Optical module makes some general 

assumptions (discussed earlier) and also some assumptions related only to this chapter. 

Some of the assumptions that are particularly relevant to this chapter are: 

 

1. The module assumes that the deformation of the upper hydrogel lens surface can 

be approximated as either a spherical or paraboloidal surface. Since the 

deformation is taken to be symmetrical about the y-axis, and both a sphere and a 

paraboloid are symmetrical functions about the y-axis, this assumption is 

reasonable. This approximation has also been used by other authors, for example 

Sugiura [97] who developed an analytical formulation for a variable focal length 
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liquid lens. They assumed that the lens deformed from a flat surface into a 

paraboloid. 

2. The refractive index of the hydrogel, as well as the refractive index of the 

surrounding air is constant. While the refractive index of any material is 

dependent on both its density and temperature, in most laboratories this is kept 

quite constant and so any change in refractive index can assumed to be minimal. 

7.3. Theoretical Development 

All of the theory in the Optical module stems from basic Euclidean geometry. The 

module receives information from the Mechanical module on the deformation of the 

upper left, centre and right nodes, and then curve fits this to either a circle or parabola, 

dependent on the choice of the user.  Analysis of the theoretical data is discussed in 

more detail in the next section, along with information on the different fitting routines. 

7.3.1. Analysis of Data from the Mechanical Module 

The primary variable of interest in this module is the radius of curvature, as this is 

primarily responsible for changing the focal length (as shown in Figure 7-2). 

 

   

Figure 7-2: Focal length change resulting from change in radius of curvature 

 

To calculate the radius of curvature for the hydrogel lens, the model first measures the 

deformation of the left, centre and right nodes of the hydrogel’s upper surface. An 

illustration of this idea (not using actual data) is seen in Figure 7-3. 

 

Initial position of left node
Final position of left node (unchanged) Final position of right node

Initial position of right node

Final position of centre node
Initial position of centre node

 

Figure 7-3: Initial and final positions of nodes 
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By comparing the height of the centre node with the heights of the nodes at the edge of 

the surface, the Optical module calculates the average change in height, ∆y as shown in 

Figure 7-4. 

 
∆y

 

Figure 7-4: Curve fitting hydrogel deformation 

 

In general, maximum deformation occurs at the centre of the top hydrogel surface while 

the top edges experience minimal deformation. The model first verifies this assumption, 

and returns an error message if this criterion is not met. The model then uses this change 

in height with the radius of the lens to fit the deformation to either a sphere or a 

parabola and calculate the new focal length (assumed initially to be infinity). A 

comparison of the circular and parabolic line fits is shown in Figure 7-5, with each 

fitting routine discussed in more detail in the following sections. 

 

 

Figure 7-5: Comparison of sphere and parabolic line fit (adapted from [127]) 

 

7.3.2. Curve Fitting to a Parabola 

From basic geometry, the equation for a parabola in Cartesian coordinates is given by 

the equation: 

 
2 4x fy=  (7.1) 
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where f is the distance from the vertex (assumed to be at the origin) to the focus of the 

parabola. By examining Figure 7-4 and Figure 7-6, it can be seen that the difference in 

height between the left and right nodes with the centre node is given by the distance ∆y. 

Thus, equation (7.1) can be solved for the focal length f by noting that y = ∆y at x = r, 

where r is the radius of the hydrogel disc. To ensure a best fit, the Optical module uses 

the average distance between the left/centre and right/centre nodes, which generally 

results in one of the edge nodes lying below the fitted line, and the other edge node 

lying above the fitted line. 

 

 

Figure 7-6: Curve fitting to a parabola 

7.3.3. Curve Fitting to a Circle 

The Optical module can also fit the theoretical deformation to a circle, although this 

generally results in a worse fit than for a parabola. To calculate the focal length for data 

which has been fitted to a circle, slightly more calculations are required than for a 

parabola. Using circle geometry, the following relationships can be noted (Figure 7-7): 

 

( )

2 22

4 2

c R d

h R h

= −

= −
 (7.2) 

 

which can be rearranged to give: 
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+

=  (7.3) 

 



115 

R

c

s

θ

h

d

 

Figure 7-7: Curve fitting to a circular surface 

 

Equation (7.3) contains three unknowns – R, c and h. Clearly, from Figure 7-4 it can be 

seen that h represented the change in height (∆y) and c is the radius of the lens. This 

allows equation (7.3) to be solved for the radius of curvature, R. The focal length, f is 

then given by half of the radius of curvature: 

 

2
Rf =  (7.4) 

 

7.3.4. Relating the Curvature to the Refractive Power 

Once the radius of curvature is known together with the refractive indices of the 

hydrogel and air, the Optical module can also calculate the refractive power of the 

resulting lens using [128]:  

 

n nP
R

′−
=  (7.5) 

 

where n is the refractive index of the medium the ray passes through before reaching the 

surface and n’ is the refractive index of the medium on the emergent surface.  For the 

first refracting surface, n=n1 and n’=n2 while for the second refracting surface n=n2 and 

n’=n1. 

7.4. Implementation in Code 

Initially the Optical module is passed information on the overall size of the hydrogel 

region; the initial positions of all nodes in the hydrogel, the deformation of each node in 

the hydrogel region, the width of the hydrogel region (in meters) and the size of each 
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element in the hydrogel (in meters). As with previous modules, the Optical module is 

implemented in a number of steps. A complete listing of the Optical module and the 

different scripts is given in Appendix B. 

 

Step 1 

The Optical model first uses the variables gel_flg_node and col to determine the centre 

node of the hydrogel region, as well as the two nodes on the edges of the top of the 

hydrogel region.  

 

Step 2 

Using the information obtained from step 1, the Optical module calculates the change in 

position of the centre node, as well as the change in position of the two side nodes 

(Figure 7-3). The module can then calculate the resulting change in height, ∆y. 

 

Step 3 

The model asserts that the deformation of the side nodes is minimal compared to the 

deformation of the centre node, and returns an error if this is found to be false. 

 

Step 4 

Using the width of the hydrogel and average change in height, the Optical module then 

fits the deformation to either a parabola or a circle, depending on the choice of the user.  

 

Once fitted, the module returns the focal length and theoretical refractive power of the 

hydrogel lens to the user. A flowchart of the Optical module is shown in Figure 7-8. 
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Figure 7-8: Flowchart of Optical module 

∆
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8. Experimental Validation 

8.1. Introduction 

In order to verify the theoretical predictions made by the model, experiments were 

conducted on a number of gel samples. The preparation and measuring methods utilised 

in these experiments are discussed in this chapter. 

8.2. Preparation of Hydrogels 

To prepare the polymer hydrogels used in this work, an acrylic acid (AAC) monomer is 

polymerised using thermally-triggered free radical polymerisation. The method of 

polymerisation was developed by the author [30] and is based on a combination of 

methods developed by others [105, 129-132]. 

 

First, 4.8mL (70mmol) of AAC (Alfa Aesar, 99%, used as received), and dissolved into 

50mL of doubly-distilled deionised water (DI) to create a 1.277 mol L-1 solution. In an 

aqueous solution, the carbolic acid part of the AAC monomer (COOH) dissociates 

according to the chemical equation: 

 

[ ]COOH H COO+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (8.1) 

 

where the amount of dissociation is represented by the acid dissociation constant (Ka): 

 

[ ]
( )a

H COO
K COOH

COOH

+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ =  (8.2) 

 

Using a Ka value of 5.74×10-5 [133], the concentration of [H+] and [COO-] ions for a 

1.277 mol L-1 pre-gel solution can be found. This provides an initial [COO-] 

concentration of 8.48×10-3 mol L-1 and a theoretical pH of 2.07. The commercial AAC 

was inhibited with 200ppm 4-methoxyphenol (MEHQ), which when combined with 

oxygen (air) prevents runaway polymerisations. Although the MEHQ can be removed 

from the AAC, Cutié et al. [134] found that in isothermal persulfate-initiated 
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polymerisations, MEHQ acted as an inhibitor and slowed, but did not prevent a 

polymerisation from occurring.  

 

In order to increase the swelling capacity of the poly(acrylic acid) (PAAC) hydrogel, the 

monomer solutions were pre-neutralised using 5.6mL (28mmol) of 5 mol L-1 NaOH 

(Univar, analytical grade). To describe the effects of altering polymerization conditions, 

Elliot et al. [135] developed a kinetic model and used it to show that by increasing the 

amount of water present during polymerization, the amount of swelling that can be 

achieved is increased. This was explained as an increase in cyclization, whereby the 

polymer chain essentially links up with itself. Elliot also showed that performing the 

polymerisation in a basic environment causes the cyclization to decrease, since the 

carboxylic groups become ionized and move further apart (due to electrostatic 

interactions). For this reason, polymers formed under acidic conditions swelled to only 

1/3 of the volume of those prepared under basic conditions. Silberberg-Bouhnik et al. 

[2] performed similar experiments and showed that maximum swelling can be achieved 

using an approximately 35% neutralised PAAC gel.  In this work however, a 40% 

neutralised gel is used for convenience. One disadvantage of using pre-neutralised AAC 

however, is that the polymerisation rate is known to decrease with increasing pH [136]. 

This effect can be counteracted by neutralising the PAAC hydrogel after 

polymerisation, but Yin et al. [137] has suggested that this may generate different 

polymer structures to those created using pre-neutralised AAC.  

 

The effect of the addition of NaOH to the pre-gel solution can be described by the 

chemical equation: 

 

[ ] [ ]2[ ]COOH OH H O COO− −⎡ ⎤+ ⎣ ⎦  (8.3) 

 

where the spectator Na+ ions in equation (8.3) have been omitted for clarity. The 

addition of 28mmol of NaOH neutralises an equivalent number of moles of AAC, 

leaving 42mmol of AAC. The new concentrations of AAC and NaOH are then given 

by: 
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 (8.4) 

 

where VOLi is the volume of component i. Using the concentrations calculated in 

equation (8.4), the theoretical pH of the pre-gel solution can be calculated to be 4.06. 

Equation (8.3) provides the concentration of COO- and Na+
 ions in the pre-gel solution, 

which are assumed to remain constant as the hydrogel polymerises. Equations (8.2) and 

(8.3) can therefore be used to provide the initial concentrations of ions in the hydrogel 

region 

 

In order to create a hydrogel, the pre-gel solution must be mixed with a suitable 

crosslinking agent that links the polymer chains together and provides structural 

rigidity. Two of the most common thermally-initiated crosslinkers are N,N-methylene-

bis-acrylamide (BIS) and trimethylol-propanetriacrylate (TMPTA), and each provides 

certain advantages and disadvantages. Yin et al. [137] studied the solubility of both BIS 

and TMPTA in AAC, and found almost no difference when using unneutralised AAC, 

but found that BIS was 50% more efficient than TMPTA when using partially 

neutralised AAC.  

 

The choice of crosslinker is also important in determining the optical properties of the 

formed PAAC hydrogel. Travas-Sejdic et al. [138] showed that the use of hydrophobic 

crosslinkers (such as BIS) creates static inhomogeneities within the polymer matrix, and 

that the magnitude of these inhomogeneities is directly dependent on the amount of 

crosslinker added. Pekcan et al. [105] extended on this work by showing that the 

intensity of 440nm photons moving through the hydrogel decreased as crosslinker 

concentration was increased. This effect was also confirmed by the author [34].  
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Thus, to preserve the optical properties of the formed PAAC hydrogel, it is necessary to 

use the smallest amount of crosslinker possible. Given its increased solubility in 

partially neutralised AAC, BIS is clearly a more suitable crosslinker for use in this work 

and Applichem Ultrapure BIS is used as the crosslinking agent for all experiments. The 

crosslinker concentration also affects the structural properties (eg elasticity) of the 

hydrogel, and thus must be above some empirically determined minimum value. In this 

work, it was found that a BIS concentration of 2% (by mole) of monomer provided 

sufficient structural rigidity while not overly affecting the transparency of the formed 

hydrogel. 

 

The pre-gel solution consisting of AAC, NaOH and BIS crosslinker is then placed under 

vacuum and stirred vigorously for 15 minutes to ensure all components are thoroughly 

mixed. Some gel-preparation methods also bubble nitrogen gas through the pre-gel 

solution to displace any free oxygen that may be present (and act as an inhibitor). This 

technique was investigated for this work, but was found to have almost no effect on the 

produced hydrogel, and so was not used. 

 

After 15 minutes of stirring, the seal of the vacuum was broken and 0.04g potassium 

persulfate (KPS) (Scientific Supplies, AR grade, used as supplied) and 10µL of 

N,N,N’,N’-tetramethylethylenediamine (TEMED) (Sigma, electrophoresis grade, used 

as supplied) were added to the pre-gel solution.  KPS is a thermally-triggered 

polymerisation initiator, and is used to provide free radicals to the pre-gel solution. The 

use of TEMED is not essential for polymerisation to occur but it does act as an 

accelerator, and given the slightly higher pH, is considered essential in this work. The 

pre-gel solution was then again placed under vacuum and thoroughly stirred for a 

further 5 minutes. 

 

The solution was then transferred to one or more glass Petri dishes (depending on the 

required heights of the PAAC hydrogels), with a diameter of 10cm and height of 1cm. 

The Petri dishes were placed into a vacuum oven (Lab-line, DuoVac 3610) at a 

temperature setting of 70oC and pressure of -44kPa until polymerisation was complete 

(typically 1.5 hours). It was found experimentally that when the oven was set to 

temperatures below 70oC, no polymerisation occurred and that when the oven was set to 

temperatures above 80oC, the pre-gel solution evaporated (the lower boiling point 

resulting from the decreased pressure). The use of a vacuum was also found to be 
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necessary, as performing the polymerisations in air tended to leave a rippled effect on 

the surface of the formed hydrogels. For optical applications, these ripples are 

unacceptable. 

 

Once completely polymerised, the hydrogel discs were removed from the oven and 

allowed to cool. When cooled, the discs were thoroughly washed using DI water and 

allowed to equilibrate with the atmosphere for a period of 24 hours.  

 

In order to conduct swelling experiments, smaller gel discs were cut from the Petri 

dishes using a sharpened glass cylinder. The diameter of these discs was constrained by 

the cylinder to be 19mm, while the height of the disc was controlled by the amount of 

pre-gel solution used during preparation. These discs were then used without any further 

modifications (Figure 8-1). 

 

 

Figure 8-1: Pre-cut gel discs 

 

8.3. Hydrogel Swelling Dynamics 

In order to investigate the swelling dynamics of the polymer hydrogel discs, the discs 

were placed into a NaCl solution and subjected to an external voltage of 5, 7.5 or 10V.  

 

From previous work [30], it is known that the type/material/location of the electrodes 

used in swelling experiments affects the deformation of the PAAC hydrogel and 

information on the type and location of electrodes needed to generate the required 

deformation are known a priori. Experiments were conducted using a ring anode 

(diameter 60mm, height 3mm) and a thin disc-shaped cathode (diameter 15mm), as 

shown in Figure 8-2. Both electrodes were made of high-purity electrical grade 

aluminium (Ling In Electronics Company Ltd).  
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Figure 8-2: Experimental configuration 

Many previous authors [68, 79, 119, 139] have demonstrated that the swelling ratio of 

PAAC hydrogels is dependent on the concentration of salt in the surrounding solution. 

In order to maximise the deformation, these authors generally use salt concentrations in 

the range of 10-3
 to 10-1 mol L-1. In this work however, maximum swelling is of 

secondary importance, with the primary objective being the generation of controlled and 

predictable swelling. For this reason, the concentration of the NaCl solution used in this 

work is significantly higher (4 mol L-1) than that used by other authors, which limits the 

overall swelling of the hydrogel discs. To ensure good conductivity, all experiments 

utilised a sufficient quantity of NaCl to completely cover the ring anode (approximately 

25ml). 

 

Although the experimental setup shown in Figure 8-2 is ideal for obtaining the required 

data, in practise this setup was found to be completely non-functional. When the 

hydrogel swelled in response to an electric field, the gel would displace the cathode and 

the electrical circuit would be broken. A number of options for electrode configurations 

were investigated to solve this, with three possible choices shown in Figure 8-3. 

 

A B C

 
 

Figure 8-3: Possible electrode configurations 
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Figure 8-3A involved placing an additional wire onto the cathode disc, but this was 

found to restrain the swelling of the gel in the vertical direction. Figure 8-3B extended 

on this idea by moving the wire to one side of the cathode. However, when the hydrogel 

swelled, it pushed the cathode off to the side and resulted in a short circuit. Figure 8-3C 

was a further improvement on Figure 8-3B based on a triangle, and was found to 

function the best of all methods investigated. The vertical sides of the triangle provide 

the rigidity necessary to hold the electrode in place, while the bottom side of the triangle 

is able to deform in the vertical direction (and thus does not prevent the gel from 

swelling, as in Figure 8-3A). The operation of the triangular cathode is shown in Figure 

8-4.  

 
Vertical sides 
provide rigidity

Bottom side free 
to deform  

Figure 8-4: Triangular cathode 

 

To record the deformation of the hydrogel cylinders during swelling, a digital video 

camera (Sony TRV25E) was placed adjacent to the gel/solvent system (as shown in 

Figure 8-5). Data was recorded at a resolution of 720×625, 25fps and then down-

converted into 640×480, 25fps Microsoft Windows Media format® (WMF) file to allow 

for easier manipulation of the video data. 
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Figure 8-5: Recording gel swelling data 

 

Using a standard video editing program (TMPGEnc, Pegasys Inc), frames were 

captured from the video file at 30s intervals and manually analysed. An example of a 

captured frame is shown in Figure 8-6, along with an outline showing the positions of 

the anode, cathode and gel. A complete series of captured images is shown in 

Appendix A. 

 

GEL
ANODE

CATHODE

 

Figure 8-6: Captured frame 

 

Although some image recognition software can automatically identify and measure the 

gel deformation, in this case a number of factors could interfere with the measurement. 

The transparent nature of the hydrogel makes focusing and boundary identification 

difficult, and the liquid exuded from the hydrogel causes stray reflections which can 
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confuse imaging software. For this reason, data analysis is performed manually for each 

frame, which should ensure consistent measurement errors, and also eliminates the two 

aforementioned problems. To measure the deformation, the distances of three 

strategically important points on the hydrogel are measured relative to the fixed anode 

(as shown in Figure 8-7). This approach is similar to methods employed by Achilleous 

et al. [72] and Marra et al. [140] who used a laser to etch a grid onto the gel samples 

and then measured the deformation between points on the grid. 
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Figure 8-7: Measuring gel dimensions 

 

The deformation of the centre of the hydrogel is possibly the most important data set, as 

this is where the maximum deformation is predicted to occur. Since each swelling 

experiment utilises a new gel disc, it is difficult to achieve identical positioning and 

lighting for each experiment. Therefore, to improve the comparability of different 

experiments, the deformations of the gel edges were also measured. A readily 

identifiable point on the gel edge is chosen, and then tracked as the hydrogel swells. 

This also provides a method of observing the relative deformation of the hydrogel 

relative to the centre. To account for any differences in camera positioning, the 

measured deformations are scaled to ensure a similar scale for all experiments. This is 

accomplished by using knowledge of the measured dimensions of the gel and 

comparing this to the dimensional recorded on film. 

8.4. Mechanical and Optical Properties 

As well as providing validation for the overall model, many of the constants required by 

the model are obtained through the use of experimental methods. 

 

Mechanical parameters (such as Young’s modulus and Poisson’s ratio) are highly 

variable for different polymer hydrogels, and depend on a number of intrinsic (such as 

preparation conditions) and extrinsic properties (such as ambient temperature). Johnson 
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et al. [125] performed a variety of tests on pH-sensitive 2-hydroxyethyl methacrylate 

(HEMA)-acrylic acid (AAC) gels to determine the relationships between ultimate 

tensile strength, Young’s modulus and percentage elongation at break with changes in 

pH, crosslinker weight percentage and polymerisation time. Johnson found that the 

Young’s modulus for HEMA-AAC gels varied from 0.03MPa to 124MPa for 

crosslinker weight percentages in the range 0.2-20 wt%. He also demonstrated that as 

the hydrogel swells, its Young’s modulus decreased, and for this reason can only be 

considered constant for small deformations. Johnson also measured the average 

Poisson’s ratio for swollen and unswollen hydrogels, and obtained an average value of 

0.43. Mahaffy et al. [141] used atomic force microscopy (AFM) to measure the 

Young’s modulus and Poisson’s ratio for an AAC hydrogel with BIS content of 0.8 

wt%. They obtained a value of 2160Pa for the Young’s modulus and 0.33 for the 

Poisson ratio. Matsuda [142] and Miyakazi [143] performed experiments on 

temperature-sensitive AAC copolymers, and obtained values in the order of 50MPa for 

gels with crosslinker amounts of 0.3-10 mol%. There is also some evidence to suggest 

that an externally-applied electric field alters the modulus of elasticity [55], which is 

clearly of importance in this work. Experimental validation of this modulus change is 

somewhat limited however, and was also not perfromed in this work. It is anticipated 

future work will measure the change in modulus. 

 

Ideally, for this work, the Young’s modulus and Poisson’s ratio for the produced 

hydrogels would be measured. However, a lack of accuracy in available equipment 

meant that directly-measured experimental values could not be obtained. To obtain 

values for the gels used in this work (with crosslinker weight percentages of 0.3), the 

results obtained by Johnson for gels with 0.2 and 0.5 crosslinker weight percentages 

were interpolated to provide a value of 0.0547MPa for the Young’s modulus and 0.43 

for the Poisson’s ratio. 

 

Most of the optical characteristics of a hydrogel lens are determined by the shape of the 

resulting deformation. While the refractive index of the hydrogel material can be 

determined theoretically, in practice it is generally easier to measure experimentally.  

 

To measure the refractive index of the PAAC hydrogel, the measurement protocols 

developed by Leica Microsystems [144] for determining the refractive index of solid 
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materials was followed. A CETA Prisma refractometer was used for measurements, 

with silicone oil (Aldrich, n=1.4043) being used as a contact fluid. 

8.5. Force Generated by Polymer Hydrogel 

Another important consideration in this work is knowledge of the maximum amount of 

force generated by the hydrogel as it deforms. This force provides constraints on 

different experimental setups, measurement methods and eventual containment 

methods. 

 

Although the swelling force is typically measured directly, due to the experimental 

setup used (particularly the placement of electrodes) this was found to be impossible. 

Therefore, a novel technique of measuring the swelling force had to be developed, that 

did not require changing the location of the electrodes. 

 

This was done by constraining the top surface of the hydrogel (with the electrode), and 

then measuring the force developed on the bottom of the hydrogel. The hydrogel is 

placed onto a sensitive laboratory scale and as deformation occurs, the force generated 

is detected as an increase in weight. This can then readily be converted into an 

equivalent force. This technique therefore provides a convenient method of measuring 

the maximum force generated, and is illustrated in Figure 8-8. 
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Figure 8-8: Measurement of maximum force 

 

Overall, it is expected that the experimental techniques discussed in this chapter will 

provide some insight into the workings of the model developed in this work. Although 

it is impossible to measure all of the events occuring as the hydrogel deforms, these 

experiments should provide enough information to validate the model. 



129 

9. Results and Discussion 

9.1. Introduction 

This chapter examines the theoretical swelling behaviour predicted by the model 

developed in this thesis, and then contrasts this with measured experimental values for 

the deformation. Theoretical and experimental results from each module will also be 

analysed, and discussed. Although experimental verification of the Electrical and 

Chemical modules was attempted, no satisfactory method could be found that was able 

to produce reliable results. Therefore, for these two modules (where no experimental 

results are available), the operation and intermediate results of these modules are 

presented and discussed. Problems will also be identified and discussed along with 

possible solutions to these problems. 

9.2. Electrical Module 

The Electrical module is the first module in the model, and calculates the theoretical 

field distributions generated using different electrode configurations and gel/solvent 

geometries, under the geometrical assumptions mentioned in chapter 3. This model can 

use any of three possible variants of the Electrical module, depending on the 

requirements of the user. Once the main control program receives the matrix of voltage 

potentials from the Electrical module, it calculates the electric field by evaluating the 

numerical gradient and uses this to plot voltage contours and electric field lines. 

 

The first variant of the Electrical module (efield1.m) calculates the field based on the 

situation where the anodes are located on the sides of the hydrogel and the cathode is at 

the middle of the top surface. Figure 9-1 shows the theoretical electric field (arrows) 

generated based on the assumption of no solvent (or a discontinuous solvent region) 

existing under the hydrogel. Figure 9-1 also shows the voltage contours (equipotential 

surfaces) connecting regions of equal potential under a cathode voltage of 0V, an anode 

voltage of 4.0V and the regions of air surrounding the hydrogel constrained to be at zero 

potential. 

 

The air regions are constrained to be zero, causing large fields to build up at the 

hydrogel/air and solvent/air boundaries. The field lines also curve outwards towards the 
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bottom of the hydrogel region as current is forced to flow only from the sides of the 

hydrogel to the top surface. This also results in the appearance of large fields around the 

cathode as current converges to a single point.  All of these effects are expected, given 

knowledge of the physical geometry of the system. 
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Figure 9-1: Field generated by efield1.m. Numbers in figure in volts. 

 

The second variant of the Electrical module (efield2.m) features an almost identical 

geometry to the first variant, except that in this case the solvent is also assumed to be 

present under the gel. This solvent layer connects the two anodes on the sides of the gel, 

and causes the anode to become almost ‘C’ shaped. As with the first variant of the 

Electrical module, the air regions are again constrained to be zero, leading to large fields 

at the hydrogel/air and solvent/air boundaries. The curvature of the field lines at the 
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bottom of the hydrogel is less than for the first variant however, owing to the current 

path at the bottom of the hydrogel. As expected, large fields still occur around the 

cathode as the current again converges. Figure 9-2 shows an example of an electric field 

generated by the second variant of the Electrical module. As with Figure 9-1, this figure 

shows the voltage contours connecting regions of equal potential under a cathode 

voltage of 0V and an anode voltage of 4.0V. 
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Figure 9-2: Field generated by efield2.m. Numbers in figure in volts. 

 

The Electrical module can also calculate the theoretical potential distribution when a 

hard boundary does not exist between the hydrogel/solvent and the air regions 

surrounding them.  An example of this feature is shown in Figure 9-3 and Figure 9-4. 

As expected, in Figure 9-3 the large fields at the hydrogel/air boundary disappear, 
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which also causes the curvature of the calculated field lines to decrease significantly 

from Figure 9-2.  The field distribution is again different from the previous variants as 

shown in Figure 9-3. As before the cathode voltage is held at 0V and the anode voltage 

at 4.0V. 

 

 

Figure 9-3: Field generated by efield2.m (no constraints). Numbers in figure in volts 

The modification of the original Electrical module to include continuous boundaries 

arose due to subtle, but important differences between Kirchoff’s current law and 

Laplace’s equation. Although electric fields can readily pass between mediums of 

different permittivity, at voltages below the breakdown voltage, current will not flow 

from a medium of low resistance (such as the hydrogel) into a medium of high 

resistance (such the surrounding air). For this reason, current flow ends abruptly at the 

hydrogel/air and solvent/air interfaces, which presented a major challenge for this work. 

In order to satisfy Laplace’s equation at the boundary, it had to be possible for current to 

flow across the boundary. To satisfy Kirchoff’s current law at the boundary, no current 

should flow across the boundary. As discussed in chapter 3, this was solved by creating 

a one-way current flow. Since no current could ever physically flow from the air into 

the hydrogel, current was permitted to flow in this way, but not back into the air (thus 

simultaneously satisfying Laplace’s equation and Kirchoff’s current law at the 

boundary). Due to the differences in permittivity, the electric field does still change 

from the hydrogel into the air region, but to ease the computational requirements of this 
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initial model, it was decided to assume this change was negligible. Future 

improvements to this work will certainly focus on this aspect of the Electrical module or 

perhaps a commercial FEM program may be used to calculate the field distributions.  

 

The third variant (efield3.m) of the Electrical module is the one predominantly used in 

this work. It consists of an upper electrode (cathode) which mostly covers the top 

surface of the hydrogel. The extent of coverage can be adjusted, and in this work is 

configured to cover all but the final column of nodes in the hydrogel region 

(corresponding to approximately 70%, which matches the experimental conditions). In 

Figure 9-4, the cathode voltage is set to 0V and the anode voltage to 1.0V. As in Figure 

9-3, the air regions surrounding the hydrogel are not constrained to be at zero potential 

and the field is continuous across the gel/air boundary. When the third variant of the 

Electrical module was used, the calculated field was again different. Owing to the large 

cathode on the top surface of the hydrogel, the curvature of the field lines is 

significantly less than for the first two variants (Figure 9-4).  
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Figure 9-4: Field generated by efield3.m. Numbers in figure in volts 
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In practice however, it was found that when simulations were conducted using the large 

fields calculated by the Electrical module, the model became unstable. The role of the 

Electrical module in this instability was confirmed through a rigorous process that 

isolated each module in turn and examined its effect on stability. It was found that due 

to the relatively small dimensions of the hydrogel, large electric fields were generated 

by the Electrical module, which while not affecting the Electrical module, did cause the 

Chemical module to become unstable. The nature of this instability will be discussed in 

the next section, but its relevance to the Electrical module will be mentioned here. 

Because of this instability, the output from the Electrical module had to be scaled to 

ensure that no value exceeded 1V cm-1 (a value that was found empirically). While this 

will certainly affect the overall output of the model, the addition of this scaling factor 

will not alter any trends, which still allows useful information to be derived from this 

work. 

 

Another problem with the Electrical module is that the theoretical predictions are 

difficult to verify experimentally, particularly with the geometry used in this work. 

While the use of a scaling parameter and lack of experimental verification certainly 

affects the overall result of the model, the model can still be useful in determining 

trends and patterns that occur during swelling. Results from other numerical simulations 

can also be used to verify some of the results generated.  

 

Although the ion transport through the hydrogel is not directly simulated by the model, 

examination of the experimentally-measured current flowing through the hydrogel can 

possibly be used to provide insight into the ion transport mechanisms occurring. A 

graph of the average resistance of the hydrogel versus time is shown in Figure 9-5. In 

the case of a perfect conductor, one would expect the resistance to be constant over time 

and for all applied voltages. From Figure 9-5, it can be seen that the hydrogel is not a 

perfect conductor and its resistance rises and falls regularly over time, with the peak-to-

peak value of these oscillations steadily decreasing. This rise and fall in the resistance 

(and hence current, since the voltage is constant) seems to indicate a capacitive 

charging/discharging effect – something mentioned by other authors working with 

poly(acrylic acid) (such as Shahinpoor). Although more data is required to conclude that 

the resistance of the hydrogel is converging, the general trend certainly appears to 

suggest that this is possibly the case. The calculated resistance values are also 
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significantly higher than expected, but this most probably results from poor contact 

between the hydrogel and electrodes.  

 

As expected, due to the increased current flowing through the gel, the resistance values 

for 7.5V are higher than those for 5V. The data for 10V is anomalous however, and is 

lower than for 7.5V. This suggests that between 7.5V and 10V, Ohm’s law becomes 

invalid for the hydrogel material, and the simple analysis applied here is no longer 

applicable (see Figure 9-5). In any event, more study needs to be made of the current 

flow to assert the validity of the above observations. A complete set of data is given in 

Appendix A. 

 

Overall, the results from this section are encouraging and do offer reasonable 

predictions for the potential distribution in the hydrogel region using different 

electrode/hydrogel/solvent geometries. A major advantage of the modular design used 

in this work is that the Electrical module can be run completely independently. This 

allows a user to generate a library of voltage potentials for different electrode 

configurations, and then test these on hydrogels with different parameters. 
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9.3. Chemical Module 

The Chemical module is the second module in the overall model, and also provides the 

main engine to the model. In its current incarnation, the Chemical module is the first 

module in the time loop, and therefore possibly the most important module in the 

overall model. Ion and water movement through the hydrogel from the solvent is 

responsible for the creation of the forces that act to deform the hydrogel. As discussed 

in chapter 4, the Chemical module is responsible for two aspects of the overall model – 

the initial ion distribution in the hydrogel and solvent regions, and the ion transport 

through the hydrogel. 

 

An example of a generated initial ion distribution in the hydrogel is shown in Figure 

9-6. This information is calculated outside the main time loop by two smaller scripts 

that pass their results to the main part of the Chemical module for use. This module 

calculates the initial ion distribution based on Coulombic and Lennard-Jones (L-J) 

interactions, which differs from some models where a uniform ion distribution is 

assumed to exist. In practice however, it was found that this model produced similar 

results when using either a uniform or calculated initial ion distribution, indicating that 

the initial ion distribution may be less important than first thought. Since the initial ion 

distribution can be calculated prior to running the overall model, Coulombic and L-J 

interactions can be used without adversely affecting the overall run time of the model. 

 

Although other physical interactions also occur (such as Van der Waals forces), this 

model only considers the Coulombic and L-J interactions as these are considered to be 

the dominant influences in the initial ion distribution. The Coulombic interaction 

accounts for the behaviour of charged species in a confined space, while the L-J 

interaction stipulates the minimum distance two ions can be to each other. Another 

advantage of the modular design of this model is that additional interactions can be 

added at a later time, if required. 
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Figure 9-6: Possible ion distribution in hydrogel region, 50 ions on a 100x100 grid 

 

As expected, using this approach causes negative and positive ions to cluster together, 

and then the groups of ions try to move as far apart from other pairs as possible. This 

results in pairs of ions appearing at uniform distances along the outside of the hydrogel 

region, while the middle of the hydrogel region has ion pairs scattered randomly 

throughout. The ion distribution along the edges of the hydrogel region is to be 

expected, and in fact is mentioned by Limbach and Holm [108] in their modeling of 

DNA chains, and the distribution in the middle of the hydrogel is similar to that 

obtained when using a uniform ion distribution. Although the ion pairs in Figure 9-6 

appear to overlap, this is merely a by-product of the axis scale used. 

 

There are also some potential sources of error in this part of the Chemical module. 

Some of the constants for poly(acrylic acid) hydrogels used by the module to calculate 

L-J and Columbic potentials could not be obtained and in these cases, the corresponding 

constants for water were assumed to be satisfactory. Since the L-J interaction is 

predominantly used to ensure ions do not move closer than their physical radii will 

allow, using the values of water for the constants may force the ions to move further 

from each other than actually occurs. Since the poly(acrylic acid) hydrogels used in this 

work do consist predominantly of water however, it is expected that any errors resulting 

from the use of water constants will be minimal. 

hydrogel 

solvent 
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A more significant problem in this module is that the initial ion concentration in the 

hydrogel is calculated using static conditions. Once an ion is placed into the system, its 

position is used to calculate the positions of all of the ions placed subsequently. This 

static approach is the cause of the single ion in the centre-left of Figure 9-6. One 

advantage of using a static approach however, is that it allows the model to use “one-to-

many” calculations (where one equation is compared against many). The number of 

equations grows linearly as the number of ions in the system is increased, which allows 

control over the total calculation time. This module also does not consider the 

generation or recombination of ion pairs and any long distance screening effects, which 

may prove significant. In reality, each ion dynamically redistributes itself based on the 

locations of all the other ions. This is an example of a “many-to-many” problem, which 

cannot easily be solved in a reasonable amount of time. Ions also combine with each 

other, and new ions are spontaneously generated, which further complicates the 

calculations. 

 

Another potential problem is that if the number of elements is significantly low, the 

model cannot provide reasonable results. For example, if a one-dimensional distance of 

1cm was divided amongst 5 elements, each element would be 0.2cm apart. If a positive 

ion was initially placed at the origin, the model would attempt to place a negative ion as 

close as possible to the origin (owing to Coulombic attraction). A L-J interaction would 

prevent the negative ion from being placed directly on the positive ion however, and so 

the negative ion would be placed 0.2cm from the positive ion – clearly, an unphysical 

result. To combat this, a user can input a “resolution factor” which attempts to create a 

more realistic situation. For example, if a resolution factor of 1000 was used the model 

would divide 1cm into 5 × 1000 = 5000 elements, with each element then being 

0.001cm apart. By increasing the number of elements the operation speed of this part of 

the Chemical module decreases, but as discussed previously, this is not necessarily 

critical. 

 

Although calculating the initial ion distribution is one function of the Chemical module, 

its main function is to calculate the change in the concentration of each ionic species in 

the system in both space and time. The main equation in the Chemical module is 

equation (4.34), which includes terms to describe both the diffusive (1st term) and 

migrative (2nd term) flux through the hydrogel for each species.  
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The diffusive flux is controlled by the diffusion coefficient (D), and so one would 

expect systems with a larger diffusion coefficient to move more rapidly to equilibrium. 

This effect is clearly demonstrated in Figure 9-7, which was generated using only the 

diffusive term of equation (4.34) and shows the concentration of each node in the 

system for a particular species. As expected, the system attempts to equilibrate itself by 

making each node in the system the same concentration. As expected, the flux changes 

logarithmically and nodes having the greatest difference between initial and equilibrium 

concentrations move more rapidly than nodes whose initial concentration is close or 

equal to the equilibrium concentration. The concentrations and diffusion coefficient 

used to generate Figure 9-7 are substantially larger than any used in this work, but this 

is useful as the previously mentioned effects are magnified. This magnification is also 

useful in detecting errors in the module, which may not be visible when using actual 

concentrations and diffusion coefficients. Figure 9-7 shows the change in concentration 

for each node in the system with no external electric field applied. In this case, the 

migration term in equation (4.45) is small, and the diffusion term is the main driving 

force for any changes that occur in the system. Figure 9-7 shows the concentration of 

each node in the system using different diffusion coefficients (D) over a simulation 

period of 10 seconds. As expected, those systems with larger diffusion coefficients 

move more rapidly towards equilibrium than those systems with a smaller diffusion 

coefficient. This confirms that the diffusion term in equation (4.45) is functioning as 

expected. 
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To examine the effect of the migrative term in equation (4.34), a similar procedure to 

that discussed for the diffusive term is used. The behaviour of the Chemical module 

with and without the presence of an external electric field is shown in Figure 9-8 and 

Figure 9-9. Under the influence of an external electric field, ions should migrate through 

the solvent and hydrogel regions dependending on their valence and the polarity of the 

electrodes. This should cause a higher than normal concentration of these ions at some 

point in the system. Figure 9-8 shows the concentrations of all nodes in the hydrogel 

with no external electric field and the surrounding solvent concentration is held constant 

at 0.045mol L-1. Figure 9-9 shows the identical situation with an external electric field 

applied.  

 

These results appear as an inversion of those shown in Figure 9-7, since in the case of 

Figure 9-8 and Figure 9-9, the initial concentration of each node is set to be zero. The 

concentration of the surrounding solvent is fixed at 0.045mol L-1, which results in ions 

flowing from the solvent region into the hydrogel region. With no electric field present 

(Figure 9-8), the situation is identical to the results obtained in Figure 9-7. Ions move 

from the solvent into the hydrogel in an attempt to equilibrate the concentration with the 

concentration of the surrounding solvent. Due to the large excess of solvent, the 

concentration is assumed not to change appreciably as diffusion occurs from the 

solvent. When an external electric field is applied however (Figure 9-9), the situation 

changes dramatically. As in Figure 9-8, flux occurs in order to bring the nodes 

originally at zero up to the concentration of the solvent. When this concentration is 

reached however, the flux does not stop as in Figure 9-7 and Figure 9-8. Rather, ions 

continue to diffuse into the different nodes giving them a concentration higher than that 

of the surrounding solution. The flux does steadily decrease however, and eventually 

becomes constant, but at a concentration significantly higher than the surrounding 

solvent. The exact reason for the concentration becoming constant is unknown, but 

probably results from the way the Chemical and Electrical modules interact. The effects 

shown in Figure 9-9 do offer clear proof however of the effect of applying an external 

electric field on the Chemical module.  
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Figure 9-8: Concentration of nodes with no external electric field applied 

 
 

Figure 9-9: Concentration of nodes with external electric field applied 

 

 

Time (s)

Time (s)

 C
on

ce
nt

ra
tio

n 
(m

ol
 L

-1
) 

 C
on

ce
nt

ra
tio

n 
(m

ol
 L

-1
) 

Concentration of surrounding solvent 

Concentration of surrounding solvent 



144 

Lastly, it is important to discuss the stability of the Electrical and Chemical modules. 

During operation, it was noticed that occasionally the concentration of one or more 

elements in the Chemical module would rapidly rise to infinity, causing the module 

(and overall model) to become unstable. The exact start time of this instability was 

random and grew rapidly once initiated. However, this instability, while concerning, 

does not suggest any great error in this model or indeed with the overall approach 

followed in this work. The most likely cause is the order in which the Chemical module 

performs the different calculations. A relatively minor change in the order of the 

calculations could cause the overall model to divide or multiply by either zero or 

infinity leading to model instability. In this case, the exact cause of the instability could 

be extremely difficult to trace. 

 

To verify the origin of this instability, each module in the overall model was isolated 

and tested in the order of operation until the instability was located.  Fortunately, the 

instability was found to first occur in the Chemical module, and thus it was only 

necessary to examine two of the five overall modules (the Electrical and Chemical 

modules). Since the Electrical module does not appear within the time loop, and the 

instability appears to be time-dependent, the most likely source of the instability was 

somewhere in the Chemical module. To find the cause of this instability, it was thought 

useful to examine the long-time behaviour of the total ion concentration in the system. 

The premise behind this argument is that the cause of the instability may be periodic, 

and only occur with some iterations – by examining which iterations, clues may be 

gained as to the exact location of the problem. To examine the long-time behaviour, the 

Chemical module was given a non-uniform initial ion distribution and was allowed to 

equilibrate over time. The system was closed, and as such, the total concentration in the 

system should not change as the concentration of each element moves towards 

equilibrium. Any instability would appear as sharp spikes in the total concentration as 

the model was run. The total concentration of the system is shown in Figure 9-10. 
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Figure 9-10: Stability of total concentration 

 

As can be seen from the figure, the overall ion concentration does not change 

significantly over 5,000 iterations. In fact, the total concentration decreases by 

approximately 0.008% between the 500th and 5000th iteration, and there are no 

anomalous spikes present anywhere in the graph. Since the error does not appear to be 

inherent to the Chemical module, the other most likely source is that it is carried into the 

Chemical module from the Electrical module. 

 

After more exhaustive testing, the most probable source of the instability was identified 

as being related to the method that the Chemical module used when handling input from 

the Electrical module. When the Chemical module was passed the value of the electric 

field calculated by the Electrical module, the instability mentioned previously would 

occur. When the maximum value of the electric field was reduced so that no point 

exceeded 1V cm-1, no instability occurred. This upper bound offers further proof that a 

“divide-by-zero” error is responsible for the model instability, as repeated division by a 

number greater than one can rapidly cause the quotient to drop to zero – if this number 

was then used as a divisor, the overall result would be infinite. 
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It is important to realise however, that the tests performed in this work to verify the 

location of the instability are inconclusive – it is entirely possible that the applied 

electric field is coupled to another variable in the Chemical module which is ultimately 

responsible for the instability. Lowering the magnitude of the electric field may prevent 

this variable from causing instability, but a very real threat to the overall model may 

still remain. While scaling the output of the Electrical module will certainly affect the 

overall output of the model, any trends that occur will still be visible and can be used to 

gather useful information on the gel swelling process. Another point is that since 

MATLAB can easily handle the concepts of zero and infinity, locating a “divide-by-

zero” error can be extremely cumbersome. When this model is compiled into C or 

FORTRAN, it is expected that the source of the instability will become apparent, as 

these languages do not tolerate “divide-by-zero” errors.  

 

The overall aim of this work however, was to create a general framework for an overall 

model to describe the swelling of polymer hydrogels under the influence of an electric 

field. Although the Chemical module is not yet functioning perfectly, it is expected that 

the minor bugs still present will be easily removed by future work. 

9.4. Force Module 

The Force module is the third module in the overall model, and is also the first where 

experimental data can be collected and compared against the theoretical predictions 

made by the overall model. As discussed in section 9.3, the use of a scaling parameter 

means that overall values cannot be directly compared, however trends between the 

theoretical and experimental data will be identified and examined. The output of the 

Force module is the force applied to each node in the hydrogel system for each timestep. 

Experimentally, it is impossible to measure the force on individual parts of the 

hydrogel, as the mere act of measurement creates forces which alter the forces on other 

parts of the gel. To counter this, the overall pressure on the upper surface of the 

hydrogel (with the bottom constrained) was measured. The edges of the hydrogel were 

free to expand or contract and this causes the overall measured force to be lower than if 

the edges were also constrained. A comparison of the experimental and theoretical total 

force generated is shown in Figure 9-11. A complete set of data is given in Appendix A. 

 

Two features are immediately apparent in Figure 9-11 when the experimental data is 

examined. Firstly, the amount of force generated by the hydrogel as it swells is very 
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small. However, as previously mentioned, the edges of the hydrogel are not constrained 

in this setup, allowing energy to be lost through the sides of the hydrogel. It is likely 

that a greater force could be generated by the top surface if the sides were constrained, 

but this assumption was not verified. The second interesting feature of the experimental 

data is the appearance of an upper bound for the generated force. Both sets of 

experimental data grow linearly for the first 40s, and then begin to move asymptotically 

towards some maximum force. This maximum force is between 100mN and 110mN for 

both sets of data and results from the finite elasticity of the hydrogel. As the force 

generated expands the hydrogel, an elastic restoring force is also developed. If one 

assumes linear elasticity, this force grows as the square of the deformation, and very 

rapidly becomes equal to the generated force. Once these forces match each other, no 

further deformation occurs and the generated force becomes constant. 

 

The theoretical predictions made by this model differ from those recorded 

experimentally. As with the experimental data, the theoretical data will be discussed in 

the context of two key parameters: the amount of force generated and the trend of the 

generated force. In this work, the Force module predicts that the swelling force on the 

upper surface of the hydrogel climbs from approximately 60mN to 70mN over a period 

of 100s - significantly lower than the experimentally measured force of 110-120mN. 

This phenomenon can be explained however, when one recalls that the difference most 

probably results from the scaling of the electric field (as discussed in section 9.3). When 

the full results from the Electrical module can be used in the Chemical module, it is 

expected that a force closer to the experimentally-measured values will be achieved.  

 

The second feature of the data predicted by the model is that it follows a linear trend, 

and not the polynomial trends followed by the experimental data. This trend can be 

explained however, when one considers the modular approach followed in this work. In 

the experimental data, the swelling force decreases in response to an elastic restoring 

force. In the theoretical model, the elastic restoring force is calculated by the 

Mechanical module and so is not available to the Force module. As such, the forces 

generated by the Force module are only one part of the total force experienced by the 

hydrogel – the Mechanical module provides the elastic restoring force at a later stage 

and the combination of these forces provides the net force on the hydrogel. This 

unfortunately does question the validity of using a sequential model; however in the full 

model (with all the modules operating together) all of the calculated forces are 
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available. One possible solution to this problem is the use of a feedback loop between 

the Force and Mechanical modules, which is left as a future development on this model. 

 

The amount of force generated by the hydrogel is not critical to the operation of this 

model, but is important when considering the overall design of a hydrogel lens system. 

The low amount of force generated requires that flexible, easily deformable materials be 

used to encase the hydrogel to allow the hydrogel to deform under the influence of an 

electric field. 

 

 

Fo
rc

e 
ge

ne
ra

te
d 

un
de

r 5
V 

D
C

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

0
20

40
60

80
10

0
12

0

Ti
m

e 
(s

)

Force (N)

Te
st

 1

Te
st

 2

Th
eo

re
tic

al

Po
ly

. (
Te

st
 2

)

Po
ly

. (
Te

st
 1

)

Li
ne

ar
 (T

he
or

et
ic

al
)

Fi
gu

re
 9

-1
1:

 F
or

ce
 g

en
er

at
ed

 b
y 

up
pe

r 
su

rf
ac

e 
of

 h
yd

ro
ge

l 



149 

9.5. Mechanical Module 

Recall from chapter 6 that the Mechanical module takes as its input the force on each 

node as calculated by the Force module. The Mechanical module then calculates the 

deformation of each node in the hydrogel based on the assumptions of linear elasticity 

with no hysteresis.  Although deformation data is calculated for each node in the 

system, in this work we are particularly interested in the deformation of the nodes on 

the upper surface of the gel. In particular, the deformation of the upper left, centre and 

right nodes (as discussed in chapter 8). 

 

To generate the theoretical results for this module, the output of the Mechanical module 

was recorded and analysed for two variants of the Electrical module under varying 

applied voltages. Recall from earlier discussion, that the different variants of the 

Electrical module correspond to different electrode configurations, and so it is 

interesting to examine what (if any) effects each variant has on the predicted 

deformation of the hydrogel. The sampling interval was chosen as 30s, to coincide with 

the experimentally-measured deformation, and the results are shown in Figure 9-12 to 

Figure 9-14. 

 

In all three figures, the deformation produced by using the second variant of the 

Electrical module far exceeds the deformation generated using the third variant. This is 

most probably due to the wider surface area of the cathode used in the third variant 

reducing the overall deformation of the top surface. For all three applied voltages, the 

Mechanical module also predicts an asymptotic swelling towards some maximum 

deformation, but this is expected when one considers the asymptotic nature of the 

applied force. 
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When the deformation of the centre node is examined (Figure 9-12), it can be seen that 

the swelling rate of the hydrogel remains almost constant under all applied voltages. 

This is contrary to the expected behaviour, as the swelling rate of hydrogels generally 

increases with increasing voltage (as reported by other authors, e.g. Salehpoor [66]). 

The absolute deformation does increase with increasing voltage however, which is 

unexpected since deformation is generally considered to be independent of applied 

voltage. After 300 seconds, using the second variant, the Mechanical module predicts a 

maximum deformation of 0.28mm (5V), 0.31mm (7.5V) and 0.33mm (10V) for the 

centre of the hydrogel. The maximum deformation predicted using the third variant is 

0.04mm for all applied voltages.  

 

The deformation of the left and right edges of the hydrogel (Figure 9-13 and Figure 

9-14) display similar trends to the centre node, except that the Mechanical module 

predicts the deformation to decrease with increasing voltage – in direct contrast to the 

predicted deformation of the centre. The predicted deformation of the left edge using the 

second variant is 0.75mm (5V), 0.63mm (7.5V) and 0.56mm (10V). Using the third 

variant, a deformation of 0.11mm (5V), 0.10mm (7.5V) and 0.09mm (10V) is predicted. 

Similar deformation occurs for the right edge of the hydrogel. Using the second variant, 

the Mechanical module predicts a deformation of 0.53mm (5V), 0.45mm (7.5V) and 

0.39mm (10V); a deformation of 0.08mm (5V), 0.07mm (7.5) and  0.06mm (10V) is 

predicted when the third variant is used. These results are interesting, as they suggest 

that the deformation of the hydrogel edges will be substantially larger than the 

deformation of the centre, even though most of the current is focused on that region.  

 

To verify these predictions, the results predicted by the Mechanical module need to be 

compared to the experimental results. Figure 9-15 to Figure 9-17 show the 

experimentally-measured deformation of the centre, left and right edges of the hydrogel 

under an applied electric field of 5, 7.5 and 10V DC. 

 

Each experiment was run numerous times, with three “good” experiments for each 

applied voltage being chosen for verification purpose. In some cases, significantly more 

than three “good” data sets were available, but to ensure consistency between 

experiments, only three data sets were used. In this work, a “good” experiment was 

defined as one where the deformation of the hydrogel was clearly captured on film and 
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which did not have significant artifacts present (such as changing shadows and stray 

reflections).  

 

One major difference between the theoretical and experimental data is that the 

experimentally-measured deformation follows a linear trend, while the deformation 

predicted by this theoretical model follows a polynomial trend. The deformation of the 

centre node predicted by the model is also significantly less than that measured 

experimentally. There are numerous possible reasons for this discrepancy, but two of 

the most probable causes are the use of incorrect material parameters in the overall 

model and the scaling of the applied electric field. It is possible that the weight of the 

cathode also has some effect on the results. 

 

Experimentally it is observed that the deformation and swelling rate of the centre 

increases with increasing voltage, which is similar to the behaviour predicted by the 

Mechanical module. Experimentally, it is observed that the absolute deformation of the 

centre increases with increasing voltage which is also predicted by the Mechanical 

module. It is also observed that under 10V the rate of swelling is almost double that 

under 5V. There is almost no difference in the swelling rate between 5V and 7.5V 

however, indicating that some change in the hydrogel occurs between 7.5V and 10V. 

This compares against an almost constant swelling rate predicted by the Mechanical 

module.  

 

The most notable difference between the theoretical predictions and the experimental 

results occurs however, when the deformation of the left and right edges of the hydrogel 

is examined (Figure 9-16 and Figure 9-17). In both cases, the Mechanical module 

predicts deformation in the positive y-direction (upwards), but experimentally 

deformation occurs in the negative y-direction (downwards)! There are many possible 

causes for this behaviour, but the most likely is that some kind of physical obstruction 

blocks the upwards movement of the hydrogel edges. Since the sides of the gel are not 

constrained, the only possible cause of a physical obstruction is the cathode placed over 

the surface. As discussed in the experimental design (chapter 8), the cathode was 

carefully designed to minimise any loading onto the hydrogel surface. It is possible 

however, that due to the small forces generated by the hydrogel, the cathode may still be 

too restrictive. Future developments of this work may be forced to seek an alternative 
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method of attaching the cathode to the surface, or possibly working with significantly 

thinner and lighter materials. 
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One interesting observation concerning Figure 9-16 and Figure 9-17 is that the absolute 

deformation of the edges increases with increasing voltage, but the swelling rate 

decreases with increasing voltage. This is similar to the behaviour predicted by the 

Mechanical module, and opposite to the behaviour of the centre of the hydrogel. This 

suggests that there may exist a finite amount of energy available for swelling. If the 

majority of this energy was used to deform the centre of the hydrogel (for example 

under 10V), not much energy is available to deform the edges of the hydrogel (leading 

to a correspondingly low edge deformation).  

 

The experimentally-measured deformation of the left edge was -0.7mm (5V), -0.5mm 

(7.5V) and -0.8mm (10V). This is compared to the predicted deformation values of 

0.75mm (5V), 0.63mm (7.5V) and 0.56mm (10V). The larger deformation of the right 

edge under 10V appears to be anomalous, as this is the only measurement where a 

larger voltage caused a larger deformation. The experimentally-measured deformation 

of the right edge was -1.2mm (5V), -0.8mm (7.5V) and -0.5mm (10V), which is also 

compared to the predicted deformation of 0.53mm (5V), 0.45mm (7.5V) and 0.39mm 

(10V). As predicted by the Mechanical module, the largest deformation of the edges 

occurs when the lowest voltage is applied.  

 

The difference in deformation direction most probably occurs as a result of the 

movement of nodes in the y-direction. This effect is not considered by the Mechanical 

module, and if the edges were constrained, it is likely that the nodes at the edge of the 

hydrogel would move in an upwards direction (as predicted by the Mechanical module). 

Overall, the general predictions made by the Mechanical module do not appear to 

coincide with the measured experimental deformation! The most probable cause of this 

discrepancy is the inaccuracy of the experiemental data, although bugs in the model 

may also be a factor. Once more precise measurements of the material parameters are 

made and any effects from the cathode is removed, it is hoped that closer agreement will 

occur between the experimental and theoretical results. 

9.6. Optical Module 

The Optical module receives as input the deformation data shown in Table 11-4 and 

Table 9-3. As discussed in chapter 7, the module then fits this data to either a parabolic 

or circular line, and uses this shape to determine the resulting change in focal length. 

The focal length data is calculated using equations (7.1), (7.3) and (7.4) for both a 
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paraboloidal and a spherical fit. A comparison of the predicted focal length for each of 

the applied voltages (5V, 7.5V and 10V) versus time is shown in Figure 9-18 to Figure 

9-20. For each of the graphs, the two theoretical focal lengths generated by the two 

variants of the Electrical module are compared with the experimental values. Since the 

difference between the parabolic and spherical fits is quite small, the graphs are plotted 

using the parabolic fit data. Since the experimentally-measured deformation occurs in 

the opposite direction to the theoretically-predicted deformation, the sign of focal length 

is also negative. Once the experiemental techniques used in this thesis are improved, it 

is expected that the sign of the experimental and theoretical focals will match. 

 

Under both a 5V and 7.5V field, the trends of the theoretically predicted focal length 

from the second variant of the Electrical module and the experimentally-determined 

focal length are very similar. Both exhibit almost the same initial change in focal length, 

and both display a decreasing trend as time increases. The experimental data for 10V is 

extremely low however, which again suggests that some significant change occurs in 

the swelling mechanisms when the voltage is increased from 7.5V to 10V.  

 

The change in the theoretical focal length generated by the third variant of the Electrical 

module is similar to that generated by the second variant, except that the initial change 

in focal length is significantly lower. This is due to the smaller deformation calculated 

by the third variant, which results in a large initial focal length, and less variation in that 

focal length. 

 

Another point of interest is that the theoretical focal length of the third variant appears 

to increase after 240 seconds. This may result from an elastic restoring force in the 

hydrogel attempting to restore the initial flat surface of the gel discs. Although it is 

unclear why such behaviour may occur, it is thought that it may result from the wider 

cathode area used in the third variant of the Electrical module. Future work will need to 

examine the exact cause of this behaviour. 
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Although the refractive index is not used directly in this model, it is crucial to the 

development of a hydrogel lens.  Several refractive index measurements were made on 

different gel samples, prior to swelling and are listed in Table 9-1.  Unfortunately, 

during swelling the gel became slightly opaque which prevented accurate post-swelling 

refractive index measurements from being made. It is suspected that the NaCl salt forms 

in the hydrogel during swelling, and this is clearly a concern for the future development 

of a hydrogel lens. 
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Table 9-1: Refractive index of hydrogel 

Sample Refractive 
index (± 0.01) 

1 1.35 
2 1.36 
3 1.36 
4 1.33 
5 1.34 

MEAN 1.35 
 

As shown in Table 9-1, when the refractive index of the hydrogel was measured, an 

average value of 1.35 was obtained. This is within the expected range, since the 

refractive index of AAC is 1.42 [133], while the refractive index of water is 1.33 [103]. 

Given that the PAAC hydrogel consists mainly of water, it is expected that the 

refractive index will be closer to water than to AAC. Future development will hopefully 

attempt to improve this refractive index, and move it closer to the refractive index of 

glass (1.5) or possibly some types of plastic. 

9.7. Overall Model 

While there is still some variance between the experimentally-measured results and the 

theoretically-predicted results, the overall trends displayed by the model are 

encouraging. The model predicts that the swelling rate of the gel edges should decrease 

with increasing voltage, and this is observed experimentally. Once accurate material 

properties are available for the hydrogel used in this work, and the instability in the 

Electrical module is located, the model should be able to provide definite insights into 

the swelling deformation of PAAC hydrogels. 
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10. Conclusion 

This work represents the first stage of the development of a computer model to describe 

the swelling of polymer hydrogels under the influence of an external electric field. 

Although, the specific aim of this work is the development of a model for optical 

applications, this work could be readily adapted to other hydrogel applications. From 

chapter 2, recall that this model had four overall objectives: 

 

1. Provide results which are useful in determining the effect of different 

experimental setups including electrode placement, applied electric field, gel 

composition and solvent composition. 

 

This is the most important objective, and possibly also the hardest to quantify. While 

the model is not yet fully capable of providing details on the full effects of different 

experimental setups, it is certainly capable of demonstrating general effects. The model 

allows a user complete control over a myriad of different system parameters, including 

electrode geometry, solvent concentration and material properties. Although many of 

the modules that comprise this work are still at the early stages of development, it is 

expected that as these are developed, the overall power of this model will improve.  

 

2. Consist of individual pieces that allow individual parts of the model to be 

adjusted and improved as necessary. Ideally, each part of the model should also 

be able to function independently to allow verification of each individual part. 

 

The modular approach followed in this work is a direct consequence of this 

requirement, and intermediate results are available to the user. This allows problems 

with this work to be readily identified and hopefully solved. Most importantly, minor 

modifications are neccessary to enable each module to function independently, if 

required. 
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3. Not require the use of a supercomputer. 

 

The third requirement of this model is not critical, and mainly aesthetic and practical. 

Recall from chapter 2 that at the time of beginning this work, no supercomputing 

facilities were available, and so the model had to be capable of running without 

significant computer resources. Surprisingly, even with a moderately low-powered 

computer, good results can be obtained after only a few hours of computation. The 

computer used to run the simulations in this work is a Pentium 4 processor with 512MB 

of RAM, and could run a reasonably sized simulation in 4-5 hours. While this may seem 

long, experiemental investigations normally took 6-7 hours, and so this work still 

represents a significant time saving. Although the computer used to run these 

simulations is humble by today’s standards, as technology improves, the speed of this 

model will improve with it. Thus, in a few years it may be possible to run this 

simulation in a matter of seconds! 

 

4. Be portable, and platform independent. 

 

One of the main advantages of this model is that is implemented using MATLAB, and 

is therefore capable of being run on any system with this program installed. Failing this, 

MATLAB can compile the model into an executable file, suitable for use on an MS-

DOS based system. The use of MATLAB also allows individual users the ability to 

improve this model as necessary, and for any new features that are developed for 

MATLAB to be rapidly integrated into this model. 

 

Overall, the initial results generated by the model are extremely encouraging, and 

demonstrate that although the gel swelling process is complex, it is possible to provide a 

macroscopic overview using relatively simple ideas. At this early stage of development, 

the model can already predict general trends that are also observed experimentally. This 

is a remarkable achievement, as this early model lacks detailed knowledge of the 

hydrogel or solvent structure and properties, and uses very simple relationships to 

describe any coupling between them. Many of the modules utilise very simple theories, 

and it is exciting to think what this model could predict once it is developed to its full 

potential. 
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Many of the recommendations for improving this model have already been discussed, 

either in the specific chapter on that part of the model, or in the discussion that 

followed. This is the most logical place to mention any future improvements, as these 

are then able to be viewed in context with the supporting evidence in close proximity. 

 

It is important however, to highlight some of the more critical problems with this model 

that require attention before any additional improvements are made. 

 

1. The most critical problem in this work is the cause of the instability somewhere 

in the Electrical or Chemical module. While the cause is almost certainly a 

minor error at some stage of the programming, its effect on the overall model is 

detrimental. Although several attempts have been made in this work to isolate 

the exact location and nature of this error, the exact source remains unclear and 

the results are inconclusive. 

2. There are also two main improvements that need to be made to the experimental 

procedure followed in this work. Firstly, the exact effect of the weight of the 

cathode needs to be determined. If this is found to be restricting the hydrogel, 

alternative methods of transferring a current to the hydrogel will need to be 

found. Indium tin oxide (ITO) is sometimes used in work of this kind, as it is 

highly conductive and transparent. It is unclear however, whether ITO would 

adhere to the surface of the hydrogel, and what effect this would have on the 

hydrogel structure. The second improvement to the experimental procedure is 

the accuracy of the measured results. Stray reflections and altering light 

conditions prevented accurate information on the deformation of the hydrogel 

from being recorded. It is recommended that future work be conducted in a 

light-controlled environment to allow the recording of high-quality images. 

Once this is achieved, it may be possible to use automated image-processing 

software to measure the swelling deformation and provide better information on 

the gel swelling dynamics. 

3. In this model, no hard boundary is assumed to exist between the hydrogel and 

the solvent. This is clearly unphysical, and may be the cause of some of the 

differences between the theoretical and experimental deformation of the 

hydrogel.  

4. Many of the differences between the theoretical and experimental results also 

result from the lack of accurate material properties of the hydrogel. It is 



169 

imperative that accurate pre- and post-swelling measurements of the Young’s 

modulus and Poisson’s ratio be made.  This will probably be challenging, as a 

hydrogel is a viscoelastic material and so has a time-dependent elasticity. 

5. The last recommendation is to examine the effect of using other types of salt in 

the surrounding solvent in an attempt to improve the transparency of the 

hydrogel. 
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Appendix A: Raw Experimental Data 

In this appendix, the raw experimental data for gel swelling experiments conducted in 

this work is given. The captured movie frames for each of the three “good” runs given 

in chapter 9 is also shown, along with theoretical predictions made by this model. Only 

the theoretical predictions generated using the second variant of the Electrical module 

(efield2.m) are shown, as the deformation predicted by the third variant (efield3.m) is 

too small to be easily observed. 

A.1 Results from Electrical Module 

Table 11-1: Ion flux (current) through hydrogel (in amps) 

5V 7.5V 10V Time (s) Run1 Run2 Mean Run1 Run2 Mean Run1 Run2 Mean
0 0 0 0 0 0 0 0 0 0 
60 0.05 0.05 0.05 0.13 0.04 0.13 0.28 0.11 0.195

120 0.04 0.27* 0.04 0.15 0.05 0.15 0.37 0.89* 0.37 
180 0.04 0.07 0.055 0.15 0.04 0.15 0.44 0.16 0.3 
240 0.05 0.06 0.055 0.16 0.05 0.16 0.63 0.15 0.39 

uncertainty ± 0.1A 
* : These values are clearly anomolous, and so are not used in calculating the mean.  

 

Table 11-2: Normalised ion flux (resistance) through hydrogel (in ohms) 

5V 7.5V 10V Time 
(s) Run1 Run2 Mean Run1 Run2 Mean Run1 Run2 Mean
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

60 100.00 100.00 100.00 57.69 187.50 122.60 35.71 90.91 63.31
120 125.00 18.52* 125.00 50.00 150.00 100.00 27.03 11.24* 27.03
180 125.00 71.43 98.21 50.00 187.50 118.75 22.73 62.50 42.61
240 100.00 83.33 91.67 46.88 150.00 98.44 15.87 66.67 41.27

uncertainty ± 0.1A 
* : These values are clearly anomolous, and so are not used in calculating the mean.  
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A.2 Results from Force Module 

Table 11-3: Average force exerted by upper hydrogel surface 

 Force (mN)  
 

Time (s) Run 1 
 

Run 2 
Model 

(average) 
0 0.0 0.0 0.0 
5 7.8 17.7 61.9 
10 36.3 27.5 62.5 
20 39.2 34.3 63.6 
30 53.0 35.3 64.7 
40 69.7 37.3 65.8 
50 81.4 50.0 66.9 
60 111.8 53.0 68.0 
70 111.8 59.8 69.1 
80 110.9 68.7 70.2 
90 111.8 74.6 71.2 

uncertainty ±0.1 ±0.1 - 

 

A.3 Results from Mechanical Module 

Table 11-4: Average deformation of upper nodes (in mm) from model using efield2.m 

5V 7.5V 10V Time 
(s) Left Centre Right Left Centre Right Left Centre Right
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 
60 0.05 0.01 0.04 0.05 0.01 0.04 0.05 0.01 0.03 
90 0.07 0.02 0.05 0.07 0.02 0.05 0.06 0.02 0.05 
120 0.08 0.02 0.06 0.08 0.02 0.06 0.08 0.02 0.06 
150 0.09 0.03 0.07 0.09 0.03 0.06 0.08 0.03 0.06 
180 0.10 0.03 0.08 0.09 0.03 0.07 0.09 0.03 0.06 
210 0.10 0.03 0.08 0.10 0.03 0.07 0.09 0.03 0.06 
240 0.11 0.04 0.08 0.10 0.04 0.07 0.09 0.04 0.06 
270 0.11 0.04 0.08 0.10 0.04 0.07 0.09 0.04 0.06 
300 0.11 0.04 0.08 0.10 0.04 0.07 0.09 0.04 0.06 
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Table 11-5: Average deformation of upper nodes (in mm) from model using efield3.m 

5V 7.5V 10V Time 
(s) Left Centre Right Left Centre Right Left Centre Right
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.14 0.06 0.09 0.12 0.06 0.08 0.11 0.07 0.07 
60 0.31 0.12 0.22 0.28 0.13 0.19 0.25 0.14 0.17 
90 0.44 0.17 0.31 0.38 0.18 0.27 0.35 0.19 0.24 

120 0.53 0.21 0.37 0.46 0.22 0.32 0.41 0.23 0.28 
150 0.59 0.23 0.41 0.51 0.25 0.35 0.46 0.26 0.32 
180 0.64 0.25 0.45 0.55 0.27 0.38 0.49 0.29 0.34 
210 0.68 0.26 0.48 0.58 0.29 0.41 0.52 0.30 0.36 
240 0.71 0.27 0.50 0.61 0.30 0.42 0.54 0.32 0.37 
270 0.73 0.28 0.52 0.62 0.30 0.44 0.55 0.32 0.39 
300 0.75 0.28 0.53 0.63 0.31 0.45 0.56 0.33 0.39 

 

Table 11-6: Experimental deformation (in mm) of hydrogel under 5V 

Run 1 Run 2 Run 3 Average 
Time (s) 

Left Mid Right Left Mid Right Left Mid Right Left Mid Right 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.1 0.4 0.0 0.0 -0.1 -0.5 -0.1 0.0 0.2 0.0 0.1 -0.1 

60 0.1 0.4 0.0 -0.2 -0.1 -0.9 -0.6 0.5 0.0 -0.2 0.3 -0.3 

90 -0.1 0.3 0.1 -0.5 0.0 -0.8 - 0.5 0.0 -0.2 0.3 -0.2 

120 0.0 0.5 -0.1 -0.2 0.2 -0.9 - 0.2 -0.1 -0.1 0.3 -0.3 

150 0.3 0.4 0.0 -0.6 0.1 -1.0 - 0.4 -0.5 -0.1 0.3 -0.5 

180 0.0 0.6 -0.2 -0.1 0.4 -0.9 - 0.2 -0.5 0.0 0.4 -0.5 

210 -0.1 0.6 -0.1 -0.5 0.3 -1.3 - 0.3 -0.7 -0.2 0.4 -0.7 

240 -0.4 0.7 -0.1 -0.7 0.3 -1.2 - 0.5 -0.9 -0.3 0.5 -0.7 

270 -0.9 0.9 -0.2 -0.9 0.2 -1.4 - 0.5 -1.2 -0.6 0.5 -0.9 

300 -1.5 0.9 -1.2 -0.8 0.2 -1.5 - 0.5 -0.9 -0.7 0.5 -1.2 

uncertainty ±0.15mm ±0.17mm ±0.15mm ±0.47mm 

- : Indicates that no data could be obtained for that measurement 

 

Table 11-7: Experimental deformation (in mm) of hydrogel under 7.5V 

Run 1 Run 2 Run 3 Average 
Time (s) 

Left Mid Right Left Mid Right Left Mid Right Left Mid Right 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 -0.4 -0.4 -0.4 -0.4 0.0 -0.3 -0.5 0.2 0.5 -0.4 -0.1 -0.1 

60 -0.4 0.0 -0.5 -0.4 0.5 -0.3 0.0 0.3 -0.5 -0.3 0.2 -0.5 

90 -0.9 -0.2 -0.4 -0.3 0.8 -1.0 - 0.2 -0.5 -0.4 0.2 -0.6 

120 -1.2 0.0 -0.8 -0.7 0.8 -0.6 - 0.1 -0.7 -0.6 0.3 -0.7 

150 -0.9 0.4 -0.5 - 0.8 -0.7 - 0.0 -0.7 -0.3 0.4 -0.6 

180 -1.3 0.2 -0.4 - 0.6 - - 0.3 -1.9 -0.4 0.4 -0.8 

210 -1.2 0.1 -0.5 - 0.6 - - 0.2 -1.8 -0.4 0.3 -0.8 

240 -1.3 0.2 -0.6 - 0.9 - - 0.4 -0.9 -0.4 0.5 -0.5 

270 -1.5 0.1 -0.9 - 0.9 - - 0.3 -1.9 -0.5 0.5 -0.9 

300 -1.4 0.1 -0.5 - 0.8 - - 0.3 -1.9 -0.5 0.4 -0.8 
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uncertainty ±0.14mm ±0.14mm ±0.17mm ±0.45mm 

- : Indicates that no data could be obtained for that measurement 

 

Table 11-8: Experimental deformation (in mm) of hydrogel under 10V 

Run 1 Run 2 Run 3 Average 
Time (s) 

Left Mid Right Left Mid Right Left Mid Right Left Mid Right 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 -0.6 0.1 0.3 0.2 0.3 -2.0 -0.8 0.3 -0.5 -0.4 0.3 -0.7 

60 -1.2 0.4 0.1 -0.3 0.2 - -0.8 0.7 -0.2 -0.8 0.4 0.0 

90 -2.2 0.1 -0.6 - 0.3 - -2.5 0.7 - -1.6 0.3 -0.2 

120 -2.9 0.1 -0.8 - 0.4 - -2.5 1.0 - -1.8 0.5 -0.3 

150 - 0.1 -1.3 - 0.6 - -2.5 0.8 - -0.8 0.5 -0.4 

180 - -0.1 -1.4 - 0.4 - -2.5 1.4 - -0.8 0.6 -0.5 

210 - 0.1 - - 0.7 - -2.5 1.5 - -0.8 0.8 - 

240 - 0.2 - - 0.6 - -2.5 1.7 - -0.8 0.8 - 

270 - 0.1 - - - - - - - -0.8 1.0 - 

300 - 0.1 - - - - - - - -0.8 1.0 - 

uncertainty ±0.17mm ±0.17mm ±0.17mm ±0.51mm 

- : Indicates that no data could be obtained for that measurement 

 

A.4 Results from Optical Module 

Table 11-9: Average focal length (in mm) from deformation data generated using efield2.m 

5V 7.5V 10V 
Time (s) Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
0 ∞ ∞ ∞ ∞ ∞ ∞ 
30 -1615 -1615 -1660 -1660 -1704 -1704 
60 -704 -704 -741 -741 -766 -766 
90 -526 -526 -563 -563 -597 -597 

120 -457 -457 -501 -501 -545 -545 
150 -426 -426 -481 -482 -541 -541 
180 -415 -415 -484 -484 -566 -566 
210 -414 -414 -502 -502 -614 -614 
240 -421 -421 -534 -534 -695 -695 
270 -434 -434 -582 -582 -815 -815 
300 -454 -454 -649 -649 -1000 -1000 
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Table 11-10: Average focal length (in mm) from deformation data generated using efield3.m 

5V 7.5V 10V 
Time (s) Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
0 ∞ ∞ ∞ ∞ ∞ ∞ 
30 -442 -442 -780 -780 -1704 -1704 
60 -168 -168 -253 -253 -386 -386 
90 -124 -124 -193 -193 -309 -309 

120 -105 -105 -167 -167 -285 -285 
150 -94 -94 -152 -152 -272 -272 
180 -86 -86 -141 -141 -263 -263 
210 -80 -80 -132 -132 -253 -253 
240 -75 -76 -124 -125 -243 -243 
270 -72 -72 -118 -118 -235 -235 
300 -68 -68 -113 -113 -226 -226 

 

Table 11-11: Average focal length (in mm) from experimental deformation data  

5V 7.5V 10V 
Time (s) Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
Parabola 

fit 
Circular 

fit 
0 ∞ ∞ ∞ ∞ ∞ ∞ 
30 168 168 9840 9840 28 28 
60 44 44 38 38 35 35 
90 49 49 30 31 27 27 

120 52 52 23 24 20 20 
150 42 42 28 28 20 20 
180 40 40 23 24 19 19 
210 29 30 26 26 22 22 
240 22 22 23 23 21 21 
270 18 19 20 20 17 17 
300 16 16 22 23 18 18 
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A.5 Raw Video Frames 

Table 11-12: Gel deformation visualisation (5V) 

Time (s) Run 1 Run 2 Run 3 Model  
(using efield2.m) 

0 

 

30 

 

60 

 

90 

 

120 

 

150 

 

180 

 

210 

 

240 
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270 

 

300 

 

 

Table 11-13: Gel deformation visualisation (7.5V) 

Time (s) Run 1 Run 2 Run 3 Model 

0 

 

30 

 

60 

 

90 

 

120 

 

150 

 

180 
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210 

 

240 

 

270 

 

300 
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Table 11-14: Gel deformation visualisation (10V) 

Time (s) Run 1 Run 2 Run 3 Model 

0 

 

30 

 

60 

 

90 

 

120 

 

150 

 

180 

 

210 

 

240 

 

270 
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300 
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Appendix B: Listing of MATLAB code 

This appendix gives the full MATLAB code listing for the overall gel swelling model 

developed in this work. Each of the scripts discussed in this work is displayed here, and 

where scripts developed by other authors are used, these are acknowledged in the first 5 

lines of the script.  A complete flowchart of the model follows on the next page and the 

scripts used are then listed in alphabetical order.  A complete list (with page numbers) 

and a brief description of the code are shown below. For a more detailed description, the 

reader is directed towards the chapter where that module is discussed. 

 

• Chemmod.m (p. 196). This is the script for the Chemical module which is 

discussed in chapter 4. 

• Control.m (p. 200). This script oversees the calling and error checking for all of 

the modules in the overall model. All user enterable data occurs in this module, 

and the main control of the program is handled here. 

• Draw.m (p. 204). This script is responsible for the post-processing visualisation, 

some of which is shown in Appendix A. This module is extremely useful, as any 

instability in the model can generally be easily seen by visualisation. 

• Efield1.m (p. 206). This is the script that implements the first variant of the 

Electrical module, discussed in more detail in chapter 3. 

• Efield2.m (p. 210). This is the script that implements the second variant of the 

Electrical module, discussed in more detail in chapter 3. 

• Efield3.m (p. 214). This is the script that implements the third variant of the 

Electrical module, discussed in more detail in chapter 3. 

• Feasmbl1.m (p. 217).  This script was originally written by Kwon and Bang 

[97]. It is used in both the Mechanical and Chemical modules and assembles the 

local element matrices into the global element matrix. 

• Feeldof.m (p.217). This script was originally written by Kwon and Bang [97]. It 

is used predominantly in the Mechanical module, where it returns the system 

degrees-of-freedom for each node in the system. 

• Fekine2d.m (p.218). This script was originally written by Kwon and Bang [97]. 

It is implemented in the Mechanical module, and uses the kinematic equation to 

determine the relationship between the applied strains and resulting 

displacments. 
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• Felp2dt3.m (p.218). This script was originally written by Kwon and Bang [97]. 

This script is used in the Chemical module to generate the element “stiffness” 

matrix. 

• Felp2dt3b.m (p.219). This script was originally written by Kwon and Bang [97]. 

This script is used in the Chemical module to generate another variation of the 

element “stiffness” matrix. 

• Felpt2t3.m (p. 219). This script was originally written by Kwon and Bang [97]. 

It is used to calculate the “mass” matrix in the Chemical module. 

• Fematiso.m (p. 220). This script was originally written by Kwon and Bang [97]. 

It is used to calculate the constitutive matrix in the Mechanical module. 

• Flager.m (p. 221). This script identifies which elements and nodes are 

associated with the hydrogel and solvent. It is of critical importance, as some 

modules require knowledge of where the hydrogel/solvent boundary is located. 

• Force_changer.m (p. 222). As discussed in chapter 6, the module translates the 

force received from the Force module into a force suitable for application in a 5 

node/row configuration. 

• Forcer.m (p. 222). This is the script for the Force module, discussed in chapter 

5. 

• Gel_distribute.m (p. 226). This script is responsible for generating the initial ion 

distributions in the hydrogel. It is discussed in more detail in  chapter 4. 

• Globecord.m (p. 228). This script calculates the coordinates of each node in the 

system using a four nodes/row geometry. 

• Globecord2.m (p. 228). This script calculates the coordinates of each node in the 

system using a five nodes/row geometry. 

• Mech.m (p. 229). This is the script for the Mechanical module, discussed in 

chapter 6. 

• Mmtriang.m (p. 230). This script generates either a consistent or lumped mass 

matrix for the linear triangular elements used in the Mechanical module. 
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• Nodalcon.m (p. 231). This script generates a matrix detailing which elements are 

associated with each node using a four nodes/row geometry. 

• Nodalcon2.m (p.232). This script generates a matrix detailing which elements 

are associated with each node using a five nodes/row geometry. 

• Optical.m (p. 233). This is the script for the Optical module, discussed in chapter 

7. 
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Chemmod.m code listing 

function[fsol1,fsol2,fsol3,sdof] = 
chemmod(row,col,solvent_level,D,U,F,R,T,z,deltt,flg_gel_elem,flg_gel_node,flg_sol_elem,f
lg_sol_node,fsol1,fsol2,fsol3,nel,nnel,nnode,EF_sol,EF_gel) 
 
%---------------------------------------------------------- 
%  Purpose: Chemical module - solves mass transport equations for each ion in system 
% 
% Last modified : 15/04/2005 
%----------------------------------------------------------- 
 
 
ndof=1;                                     % number of dofs per node 
sdof=nnode*ndof;                            % total system dofs   
edof=nnel*ndof;                             % degrees of freedom per element 
 
sol_x1 = 1; sol_x2 = col;                   % solvent boundaries 
sol_y1 = 1; sol_y2 = solvent_level;         % solvent boundaries                      
gel_x1 = 2; gel_x2 = col-1;                 % gel boundaries 
gel_y1 = 2; gel_y2 = row;                   % gel boundaries 
 
sol_nodes = size(flg_sol_node,2); 
sol_elem = size(flg_sol_elem,2); 
gel_nodes = size(flg_gel_node,2); 
gel_elem = size(flg_gel_elem,2); 
 
 
%--------------------------------------------------------------------------------------- 
%   Global coordinate values : gcoord(i,j) where i->node no. and j->x or y  
%--------------------------------------------------------------------------------------- 
 
gcoord = globecord(nnode,col); 
 
%--------------------------------------------------------------------------------------- 
%   Nodal connectivity for each element : nodes(i,j) where i-> element no. and j-> 
connected nodes 
%--------------------------------------------------------------------------------------- 
 
nodes = nodalcon(nel,col); 
 
%--------------------------------------------------------------------------------------- 
%   1) Solvent calculations 
%--------------------------------------------------------------------------------------- 
 
%%%%%%%%%%  Initialization of matrices and vectors %%%%%%%%%% 
 
kk1a=zeros(sol_nodes,sol_nodes);                          % system matrix - first part 
kk2a=zeros(sol_nodes,sol_nodes);                         
kk3a=zeros(sol_nodes,sol_nodes);                     
 
kk1b=zeros(sol_nodes,sol_nodes);                          % system matrix - second part 
kk2b=zeros(sol_nodes,sol_nodes);                
kk3b=zeros(sol_nodes,sol_nodes);                 
 
kk1=zeros(sol_nodes,sol_nodes);                           % system matrix - overall 
kk2=zeros(sol_nodes,sol_nodes);                  
kk3=zeros(sol_nodes,sol_nodes);                  
 
mm1=zeros(sol_nodes,sol_nodes);                           % system mass matrix 
mm2=zeros(sol_nodes,sol_nodes);                  
mm3=zeros(sol_nodes,sol_nodes);                  
 
%%%%%%%%%%  Assemble required matrices from system vectors %%%%%%%%%% 
 
for i=1:sol_nodes 
    fsol1s(i,1) = fsol1(flg_sol_node(i));           % copy from system solution vector 
    fsol2s(i,1) = fsol2(flg_sol_node(i));            % copy from system solution vector 
    fsol3s(i,1) = fsol3(flg_sol_node(i));         % copy from system solution vector 
end; 
 
row_count = 1; 
for i=1:(sol_y2 - sol_y1 + 1) 
    for j=1:(sol_x2 - sol_x1 + 1) 
        soln1(i,j) = fsol1s(row_count);    
% expand vector into matrix, so as to accurately represent x- and y-derivatives 
        soln2(i,j) = fsol2s(row_count); 
        soln3(i,j) = fsol3s(row_count); 
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        row_count = row_count + 1; 
    end; 
end; 
 
%%%%%%%%%%  Potential difference %%%%%%%%%% 
 
conduct = 
sum([z(1)^2*U(1)*sum(fsol1s);z(2)^2*U(2)*sum(fsol2s);z(3)^2*U(3)*sum(fsol3s)]); 
 
[DX1 DY1] = gradient(soln1); 
[DX2 DY2] = gradient(soln2); 
[DX3 DY3] = gradient(soln3); 
 
row_count = 1;  
for i=1:(sol_y2 - sol_y1+1) 
    for j=1:(sol_x2 - sol_x1+1) 
        dC1(row_count) = DX1(i,j) + DY1(i,j);       %concentration gradient for 1st 
species 
        dC2(row_count) = DX2(i,j) + DY2(i,j);  
        dC3(row_count) = DX3(i,j) + DY3(i,j);  
        row_count = row_count + 1; 
    end; 
end; 
 
phi_sol = -(R*T/F) * (sum([ z(1)*U(1)*dC1 ; z(2)*U(2)*dC2 ; z(3)*U(3)*dC3]) / conduct); 
phi_sol = phi_sol - EF_sol; 
 
%%%%%%%%%%  Assembly of element matrices  %%%%%%%%%% 
 
for iel=1:sol_elem                      % loop for the total number of elements 
     
    nd(1)=nodes(flg_sol_elem(iel),1);    % 1st connected node for (iel)-th element 
    nd(2)=nodes(flg_sol_elem(iel),2);    % 2nd connected node for (iel)-th element 
    nd(3)=nodes(flg_sol_elem(iel),3);    % 3rd connected node for (iel)-th elemen 
     
    x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node 
    x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node 
    x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node 
     
    nodes_sol = nodalcon(sol_elem,sol_x2-sol_x1+1); 
     
    nd(1)=nodes_sol(iel,1);    % 1st connected node for (iel)-th element 
    nd(2)=nodes_sol(iel,2);    % 2nd connected node for (iel)-th element 
    nd(3)=nodes_sol(iel,3);    % 3rd connected node for (iel)-th element 
 
    index=feeldof(nd,nnel,ndof);          % extract system dofs associated with element 
    k1a = D(1) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k1b = (U(1)*z(1)/abs(z(1))) * felp2dt3b(x1,y1,x2,y2,x3,y3);             
% assemble element matrices - part II 
    m1 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
    k2a = D(2) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k2b = (U(2)*z(2)/abs(z(2))) * felp2dt3b(x1,y1,x2,y2,x3,y3);             
% assemble element matrices - part II 
    m2 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
    k3a = D(3) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k3b = (U(3)*z(3)/abs(z(3))) * felp2dt3b(x1,y1,x2,y2,x3,y3);             
% assemble element matrices - part II 
    m3 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
     
    kk1a=feasmbl1(kk1a,k1a,index);           % assemble element matrices  
    kk1b=feasmbl1(kk1b,k1b,index); 
    mm1= feasmbl1(mm1,m1,index);            % assemble element matrices   
    kk2a=feasmbl1(kk2a,k2a,index);           % assemble element matrices  
    kk2b=feasmbl1(kk2b,k2b,index); 
    mm2= feasmbl1(mm2,m2,index);            % assemble element matrices    
    kk3a=feasmbl1(kk2a,k3a,index);           % assemble element matrices  
    kk3b=feasmbl1(kk2b,k3b,index); 
    mm3= feasmbl1(mm2,m3,index);            % assemble element matrices    
end; 
 
for i = 1:size(fsol1s,1) 
    kk1b(:,i) = kk1b(:,i) * phi_sol(i); 
    kk2b(:,i) = kk2b(:,i) * phi_sol(i); 
    kk3b(:,i) = kk3b(:,i) * phi_sol(i); 
end; 
 
 
kk1 = kk1a + kk1b; 
kk2 = kk2a + kk2b; 
kk3 = kk3a + kk3b;  
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%%%%%%%%%%  Calculations   %%%%%%%%%% 
 
fsol1s = (mm1 + deltt*kk1) \ (mm1 * fsol1s); 
fsol2s = (mm2 + deltt*kk2) \ (mm2 * fsol2s); 
fsol1s = (mm3 + deltt*kk3) \ (mm3 * fsol3s); 
 
%%%%%%%%%%  Recombination  %%%%%%%%%% 
 
for i=1:sol_nodes 
    fsol1(flg_sol_node(i)) = fsol1s(i);             % copy from system solution vector 
    fsol2(flg_sol_node(i)) = fsol2s(i); 
    fsol3(flg_sol_node(i)) = fsol3s(i); 
end; 
 
%--------------------------------------------------------------------------------------- 
%   2) Gel calculations 
%--------------------------------------------------------------------------------------- 
clear soln1 soln2 soln3 kk1a kk2a kk3a kk1b kk2b kk3b mm1 mm2 mm3; 
 
%%%%%%%%%%  Initialization of matrices and vectors %%%%%%%%%%                      
 
kk1a=zeros(gel_nodes,gel_nodes);                          % system matrix - first part 
kk2a=zeros(gel_nodes,gel_nodes);                         
kk3a=zeros(gel_nodes,gel_nodes);                     
 
kk1b=zeros(gel_nodes,gel_nodes);                          % system matrix - second part 
kk2b=zeros(gel_nodes,gel_nodes);                
kk3b=zeros(gel_nodes,gel_nodes);                 
 
kk1=zeros(gel_nodes,gel_nodes);                           % system matrix - overall 
kk2=zeros(gel_nodes,gel_nodes);                  
kk3=zeros(gel_nodes,gel_nodes);                  
 
mm1=zeros(gel_nodes,gel_nodes);                           % system mass matrix 
mm2=zeros(gel_nodes,gel_nodes);                  
mm3=zeros(gel_nodes,gel_nodes);                  
 
%%%%%%%%%%  Assemble required matrices from system vectors %%%%%%%%%% 
 
for i=1:gel_nodes 
    fsol1g(i,1) = fsol1(flg_gel_node(i));             % copy from system solution vector 
    fsol2g(i,1) = fsol2(flg_gel_node(i));             % copy from system solution vector 
    fsol3g(i,1) = fsol3(flg_gel_node(i));             % copy from system solution vector 
end; 
 
row_count = 1; 
for i=1:(gel_y2 - gel_y1 + 1) 
    for j=1:(gel_x2 - gel_x1 + 1) 
        soln1(i,j) = fsol1g(row_count);             
% expand vector into matrix, so as to accurately represent x- and y-derivatives 
        soln2(i,j) = fsol2g(row_count); 
        soln3(i,j) = fsol3g(row_count); 
        row_count = row_count + 1; 
    end; 
end; 
 
%%%%%%%%%%  Potential difference %%%%%%%%%% 
 
conduct = 
sum([z(1)^2*U(1)*sum(fsol1g);z(2)^2*U(2)*sum(fsol2g);z(3)^2*U(3)*sum(fsol3g)]);   
 
[DX1 DY1] = gradient(soln1); 
[DX2 DY2] = gradient(soln2); 
[DX3 DY3] = gradient(soln3); 
 
row_count = 1;  
for i=1:(gel_y2 - gel_y1+1) 
    for j=1:(gel_x2 - gel_x1+1) 
        dC1(row_count) = DX1(i,j) + DY1(i,j);    
        dC2(row_count) = DX2(i,j) + DY2(i,j);  
        dC3(row_count) = DX3(i,j) + DY3(i,j);  
        row_count = row_count + 1; 
    end; 
end; 
 
phi_gel = -(R*T/F) * (sum([ z(1)*U(1)*dC1 ; z(2)*U(2)*dC2 ; z(3)*U(3)*dC3]) / conduct); 
phi_gel = phi_gel - EF_gel; 
 
%%%%%%%%%%  Assembly of element matrices  %%%%%%%%%% 



199 

 
for iel=1:gel_elem                      % loop for the total number of elements 
     
    nd(1)=nodes(flg_gel_elem(iel),1);    % 1st connected node for (iel)-th element 
    nd(2)=nodes(flg_gel_elem(iel),2);    % 2nd connected node for (iel)-th element 
    nd(3)=nodes(flg_gel_elem(iel),3);    % 3rd connected node for (iel)-th elemen 
     
    x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node 
    x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node 
    x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node 
     
    nodes_gel = nodalcon(gel_elem,gel_x2-gel_x1+1); 
     
    nd(1)=nodes_gel(iel,1);    % 1st connected node for (iel)-th element 
    nd(2)=nodes_gel(iel,2);    % 2nd connected node for (iel)-th element 
    nd(3)=nodes_gel(iel,3);    % 3rd connected node for (iel)-th element 
     
    index=feeldof(nd,nnel,ndof);% extract system dofs associated with element 
 
    k1a = D(1) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k1b = (U(1)*z(1)/abs(z(1))) * felp2dt3b(x1,y1,x2,y2,x3,y3);             
% assemble element matrices - part II 
    m1 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
    k2a = D(2) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k2b = (U(2)*z(2)/abs(z(2))) * felp2dt3b(x1,y1,x2,y2,x3,y3);            % 
 assemble element matrices - part II 
    m2 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
    k3a = D(3) * felp2dt3(x1,y1,x2,y2,x3,y3);              % compute element matrix 
    k3b = (U(3)*z(3)/abs(z(3))) * felp2dt3b(x1,y1,x2,y2,x3,y3);             
% assemble element matrices - part II 
    m3 = felpt2t3(x1,y1,x2,y2,x3,y3);                       % compute element matrix] 
     
    kk1a=feasmbl1(kk1a,k1a,index);           % assemble element matrices  
    kk1b=feasmbl1(kk1b,k1b,index); 
    mm1= feasmbl1(mm1,m1,index);            % assemble element matrices   
    kk2a=feasmbl1(kk2a,k2a,index);           % assemble element matrices  
    kk2b=feasmbl1(kk2b,k2b,index); 
    mm2= feasmbl1(mm2,m2,index);            % assemble element matrices    
    kk3a=feasmbl1(kk2a,k3a,index);           % assemble element matrices  
    kk3b=feasmbl1(kk2b,k3b,index); 
    mm3= feasmbl1(mm2,m3,index);            % assemble element matrices    
end; 
 
for i = 1:size(fsol1g,1) 
    kk1b(:,i) = kk1b(:,i) * phi_gel(i); 
    kk2b(:,i) = kk2b(:,i) * phi_gel(i); 
    kk3b(:,i) = kk3b(:,i) * phi_gel(i); 
end; 
 
kk1 = kk1a + kk1b; 
kk2 = kk2a + kk2b; 
kk3 = kk3a + kk3b;  
 
%%%%%%%%%%  Calculations   %%%%%%%%%% 
 
fsol1g = (mm1 + deltt*kk1) \ (mm1 * fsol1g); 
fsol2g = (mm2 + deltt*kk2) \ (mm2 * fsol2g); 
fsol3g = (mm3 + deltt*kk3) \ (mm3 * fsol3g); 
 
%%%%%%%%%%  Recombination  %%%%%%%%%% 
 
for i=1:gel_nodes 
    fsol1(flg_gel_node(i)) = fsol1g(i);             % copy from system solution vector 
    fsol2(flg_gel_node(i)) = fsol2g(i); 
    fsol3(flg_gel_node(i)) = fsol3g(i); 
end; 
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Control.m code listing 

%---------------------------------------------------------- 
%  Purpose: Main control program - this is the "front end" for the overall model 
%   All user enterable data is inputted into this file 
% 
% Last modified : 11/09/2005 
%----------------------------------------------------------- 
 
clear; 
clc; 
close all; 
format short g; 
delete *.*.dat;     % deletes any previous data files - may need reviewing later... 
 
%---------------------------------------------------------------------------------------
%  Constants - these shouldn't need adjustment! 
%--------------------------------------------------------------------------------------- 
e = 1.602e-19;                              % elementary charge 
R = 8.31451;                                % uiversal gas constant 
T = 293.15;                                 % Ambient temperature (Kelvin) 
F = 96485.31;                               % Faraday constant 
kb = 1.38066e-23;                           % Boltzmann 
epsilon0 = 8.854e-12;                       % Permittivity of free space 
epsilonR = 81.07;                           % Dielectric constant of water 
CHI = 0.48;                                 % Flory-Huggins Interaction parameter 
 
%--------------------------------------------------------------------------------------- 
%  Control parameters 
%--------------------------------------------------------------------------------------- 
 
%%% Geometry %%% 
 
x_size = 27; 
y_size = 7; 
dim_x = 19e-3;                          % dimensions of gel in x direction (m) - used to 
scale 
nnel=3;                                 % number of nodes per element (triangular) 
solvent_level = 4;                      % How much solvent?? Absolute, so add one for 
measuring from gel base!! 
 
%%% Time Control %%% 
 
stime = 0;                              % Start time 
ftime = 300;                              % End time 
deltt = 0.1;                           % time step for transient analysis 
ntime = fix((ftime-stime)/deltt);       % number of time increments 
 
%%% Movie generation %%% 
 
makemov = 0;                             
% Generate movie : Options are 0=off, 1=unique filename, 2=set filename to 'swell.avi' 
p_anim = 1;                             % Pause before movie generation? 0=off, 1=on 
frame_grab = 10;                        % Grab every i-th frame 
sound_alert = 0;                        % plays sound when loop finished 
 
%%% Electrical parameters %%% 
 
Vtop = 0;                               % voltage at top of gel region  
Vbot = 7.5;                               % voltage at bottom of gel region 
epsilonLJ = 809*kb;                     % Lennard-Jones potential well depth 
sigmaLJ = 0.265e-9;                      
% Lennard-Jones molecular separation (in meters - r in gel_distribute must have SAME 
UNITS!!!) 
no_ions = 20;                            
% When distributing ions in gel region, this determines into how many parts the ion conc 
is divided into! 
 
%%% Chemical parameters (Na+ = 1; Cl- = 2; OH-stat = 3) %%% 
 
sol_conc = 4;              % Surrounding NaCL solution concentration - molar volume = 
1/sol_conc (m^3/mol) 
gel_conc = [0.46358; 0; 0.46358];           % (1 = 2+3) 
D = [1.545e-5 ; 1.545e-5 ; 0];                                                         % 
diffusion coefficient  
z = [1 ; -1 ; -1];              % charge numbers 
Vs = 50;                      % Amount of water in total system(ml) 
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Vp = 4.8;                     % Amount of polymer solution in total system (ml) 
Vb = 5.6;                    
% Amount of additional liquid elements in total system(eg. NaOH) (ml) 
V_sample = (0.019 * 0.005)*1000;      
% Volume of sample being used (1 * length * height - converted to litres) (L)         
 
%%% Mechanical parameters %%% 
 
emodule=0.0547e6;                              % elastic modulus 
poisson=0.43;                               % Poisson's ratio 
rho = 1.08;                                  % Mass density 
b=0;                                    % Viscous damping coefficient 
ral_alpha = 0;                           
% Raleigh alpha damping constant (leave as zero to use lumped damping) 
ral_beta = 0;                           % Raleigh alpha damping constant 
 
%---------------------------------------------------------------------------------------
%  Generated parameters (from user-entered Control parameters) 
%--------------------------------------------------------------------------------------- 
 
% Geometrical parameters %  
 
col = x_size + 2; 
row = y_size + 1; 
nnode = col*row;                                % total number of nodes in system 
nel = 2 * (row-1) * (col-1);                    % number of elements 
sol_x1 = 1; sol_x2 = col;                       % solvent boundaries 
sol_y1 = 1; sol_y2 = solvent_level;             % solvent boundaries                      
gel_x1 = 2; gel_x2 = col-1;                     % gel boundaries 
gel_y1 = 2; gel_y2 = row;                       % gel boundaries 
scale = dim_x / ((col-1) - 2 + 1);              % size of each element in gel 
 
% Chemical module parameters: Na+ = 1; Cl- = 2; OH- = 3 % 
 
soln1 = zeros(row,col);                                                                 
% CHEMICAL system matrices for each component 
soln2 = zeros(row,col);                                           
soln3 = zeros(row,col);   
U = [D(1)*abs(z(1))*F/(R*T) ; D(2)*abs(z(2))*F/(R*T) ; D(3)*abs(z(3))*F/(R*T)];         
% electrolytic mobility 
Vtot = Vs + Vp + Vb;                                                                    
% Total volume of gel sample (for volume fraction)     
Vs = (Vs/Vtot) * V_sample;                                                              
% Amount of solvent in gel sample 
Vp = (Vp/Vtot) * V_sample; 
Vb = (Vb/Vtot) * V_sample; 
Vcell = V_sample/(x_size*y_size);              % Total volume of gel sample (Vs+Vp+Vb 
should add to this!) 
lambdaB = e^2/(4*pi*epsilon0*epsilonR*kb*T);                                            
% Bjerrum Length 
 
% Mechanical module parameters - Part 1% 
 
displ = zeros(((gel_x2-gel_x1+1)*(gel_y2-gel_y1+1) + ((gel_x2-gel_x1)*(gel_y2-
gel_y1)))*2,1); 
velc = zeros(((gel_x2-gel_x1+1)*(gel_y2-gel_y1+1) + ((gel_x2-gel_x1)*(gel_y2-
gel_y1)))*2,1); 
 
% Movie generation and post-processing parameters % 
 
path_store = cd; 
cd d:\temp;                 % path to movie file 
NAME = sprintf('%d',num2str(now)); 
NAME = num2str(NAME); 
appendTofile(sprintf('%s.dat',NAME),displ',';') 
cd(path_store); 
 
%--------------------------------------------------------------------------------------- 
%  Flags - these identify which nodes & elements are associated with the 
%  sol and gel 
%--------------------------------------------------------------------------------------- 
 
[flg_sol_node,flg_sol_elem,flg_gel_node,flg_gel_elem] = flager(row,col,solvent_level); 
 
%--------------------------------------------------------------------------------------- 
%  Set up gel and solvent matrices with appropriate concentrations 
%--------------------------------------------------------------------------------------- 
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% Distribute solvent ions % 
 
disp('Distributing ions, please wait...') 
 
for i=1:solvent_level 
    for j=1:col 
        if i >= 2 & i <= row & j >= 2 & j <= col-1 
            soln1(i,j) = 0; 
        else 
            soln1(i,j) = sol_conc; 
        end; 
    end 
end 
 
soln2 = soln1; 
 
% Distribute gel region ions % 
% This code can be executed prior, and then loaded directly - gel_distribute is quite 
memory intensive, and this can save time! 
 
% [S1,S3] = 
gel_distribute(row,col,scale,kb,T,lambdaB,epsilonLJ,sigmaLJ,z(1),z(2),gel_conc(1),no_ion
s);    % Uncomment to generate new ion concentration is hydrogel region 
S1 = dlmread('S1data.dat','\t');          % write data using 
dlmwrite('S1data.dat',S1,'\t') after using gel_distribute; 
S3 = dlmread('S3data.dat','\t');          % write data using 
dlmwrite('S3data.dat',S3,'\t') after using gel_distribute; 
 
row_count = 1; 
for i=gel_y1:gel_y2 
    for j=gel_x1:gel_x2 
        soln1(i,j) = S1(row_count); 
        soln3(i,j) = S3(row_count); 
        row_count = row_count + 1; 
    end; 
end; 
 
% Wrap matrices back into vectors % 
 
row_count = 1; 
for i=1:row 
    for j=1:col 
        fsol1(row_count) = soln1(i,j);             % wrap the matrix back into a vector 
(so that is can be multiplied etc). 
        fsol2(row_count) = soln2(i,j); 
        fsol3(row_count) = soln3(i,j); 
        row_count = row_count + 1; 
    end; 
end; 
 
fsol1 = fsol1'; 
fsol2 = fsol2'; 
fsol3 = fsol3'; 
 
cell_vols = (ones(size(flg_gel_node,2),1)) * Vcell;     % Initial volume of cell (based 
on size of gel sample and number of elements) 
 
%---------------------------------------------------------------------------------------
%   Set up nodes and coordinates for Mechanical module - this must be done 
%   here, or the program gets upset!! 
%--------------------------------------------------------------------------------------- 
 
gcoord = globecord2(((gel_x2-gel_x1+1)*(gel_y2-gel_y1+1))+(gel_x2-gel_x1)*(gel_y2-
gel_y1),(gel_x2-gel_x1+1)); 
gnel = size(flg_gel_elem,2)*2; 
gnodes = nodalcon2(gnel,(gel_x2-gel_x1+1)); 
gsdof = (((gel_x2-gel_x1+1)*(gel_y2-gel_y1+1))+(gel_x2-gel_x1)*(gel_y2-gel_y1)) * 2; 
gedof = nnel * 2; 
 
%--------------------------------------------------------------------------------------- 
%  External electric field 
%--------------------------------------------------------------------------------------- 
 
EF = efield2(Vtop,Vbot,col,row,solvent_level); 
 
[px py] = gradient(EF,(dim_x / col)); 
px = px * -1; 
py = py * -1; 
 
G = px+py; 
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G = G/1000   % scaling factor! Needed to ensure stability of Chemical module! :-( 
 
% Wrap E-field matrix into vectors  
 
row_count = 1; 
for i=1:row 
    for j=1:col 
        if i <= sol_y2 
            EF_sol(row_count) = G(i,j); 
            row_count = row_count + 1; 
        end   
    end; 
end; 
 
row_count = 1; 
for i=gel_y1:gel_y2 
    for j=gel_x1:gel_x2 
        EF_gel(row_count) = G(i,j); 
        row_count = row_count + 1; 
    end; 
end; 
 
%--------------------------------------------------------------------------------------- 
%   loop for time integration  
%--------------------------------------------------------------------------------------- 
 
for it=1:ntime 
     
    if mod(it,100) == 0 
        disp('PAUSE - abort NOW if required'); 
        pause(1);             % brief pause to enable you to abort if neccessary! 
    end 
     
    clk = clock; 
    progr = sprintf('Processing... %1.2f%% complete 
[%d.%d.%.0f]',(it/ntime*100),clk(4),clk(5),clk(6)) 
    progr = num2str(progr); 
     
    % Write data to file - for remote monitoring % 
     
    cd H:\data\DEM_reports; 
    delete *.*; 
    dlmwrite(sprintf('%s',progr),0) 
    cd(path_store); 
     
    % Restore original concentrations 
     
    row_count = 1; 
    for i=1:row 
        for j=1:col 
            if soln2(i,j) ~= 0 
                fsol1(row_count) = soln1(i,j); 
                fsol2(row_count) = soln2(i,j); 
            end 
            row_count = row_count + 1; 
        end; 
    end; 
     
    row_count = 1; 
    for i=1:row 
        for j=1:col 
            fsol3(row_count) = soln3(i,j); 
            row_count = row_count + 1; 
        end; 
    end; 
 
    %----------------------------------------------------------------------------------- 
    %   Chemical module  
    %----------------------------------------------------------------------------------- 
     
    [fsol1_new,fsol2_new,fsol3_new,sdof] = 
chemmod(row,col,solvent_level,D,U,F,R,T,z,deltt,flg_gel_elem,flg_gel_node,flg_sol_elem,f
lg_sol_node,fsol1,fsol2,fsol3,nel,nnel,nnode,EF_sol,EF_gel); 
     
    %----------------------------------------------------------------------------------- 
    %   Bridging equations (converted chemical --> forces) 
    %----------------------------------------------------------------------------------- 
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    [ff,cell_vols] = 
forcer(fsol1_new,fsol2_new,fsol3_new,fsol1,fsol2,fsol3,cell_vols,sdof,row,col,solvent_le
vel,flg_gel_node,CHI,Vp,sol_conc,Vtot,R,T,dim_x); 
    [ff] = force_changer(ff,(col-1)-2,row-2);                                                        
% tranlates the forces from 2 elements/row triangles to 4 element/row 
    forces(:,it) = ff;  
     
    %----------------------------------------------------------------------------------- 
    %   Mechanical module  
    %----------------------------------------------------------------------------------- 
  
    [displ,velc] = 
mech(deltt,emodule,poisson,rho,b,ral_alpha,ral_beta,gcoord,gnodes,(gel_x2-
gel_x1+1),nnel,gnel,gsdof,gedof,2,ff,displ,velc); 
 
    %----------------------------------------------------------------------------------- 
    %  Restore solution vectors fsol_new --> fsol  
    %----------------------------------------------------------------------------------- 
     
    fsol1 = fsol1_new; 
    fsol2 = fsol2_new; 
    fsol3 = fsol3_new; 
     
    %----------------------------------------------------------------------------------- 
    %  Store displacement data 
    %----------------------------------------------------------------------------------- 
     
    cd d:\temp; 
    appendTofile(sprintf('%s.dat',NAME),displ',';') 
    cd(path_store); 
     
end;        %%% END OF TIME LOOP 
 
%--------------------------------------------------------------------------------------- 
%  Post processing 
%--------------------------------------------------------------------------------------- 
 
if makemov == 1 
 
    if p_anim == 1 
        clc 
        disp('Press any key to begin post-processing visualisation') 
        pause; 
    end; 
 
    draw(gcoord,(gel_x2-gel_x1),(gel_y2-
gel_y1),gnodes,gnel,deltt,frame_grab,ntime,NAME,makemov) 
    cd(path_store); 
end 
 

Draw.m code listing 

function draw(gcoord,col,row,gnodes,gnel,deltt,frame_grab,ntime,NAME,makemov) 
%---------------------------------------------------------- 
%  Purpose: Drawing module - this calculates the post-visulisation sequences used for 
this work 
% 
% Last modified : 21/06/2005 
%----------------------------------------------------------- 
 
format short g; 
 
% Movie generation / data storage parameters % 
if makemov == 1 
    cd d:\temp; 
    aviobj = 
avifile(sprintf('%s.avi',NAME),'fps',1,'compression','Indeo3','quality',100); 
end; 
if makemov == 2 
    cd d:\temp; 
    aviobj = avifile('swell.avi','fps',1,'compression','Indeo3','quality',100); 
end; 
 
% Plot initial coordinates 
gcoord(:,1) = gcoord(:,1) - (col/2); 
gcoord(:,2) = gcoord(:,2) - (row/2); 
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for it=1:ntime 
 
    % Read displacement data 
 
    if mod(it,frame_grab) == 0 & it ~= 1 
 
        % Output progress report to file - useful for remote monitoring 
 
        clk = clock; 
        progr = sprintf('Plotting... %1.2f%% complete 
[%d.%d.%.0f]',(it/ntime*100),clk(4),clk(5),clk(6)); 
        progr = num2str(progr); 
 
        cd H:\data\DEM_reports; 
        delete *.*; 
        dlmwrite(sprintf('%s',progr),0) 
        cd d:\temp; 
 
        displ = dlmread(sprintf('%s.dat',NAME),';');            % make large vector!! 
        displ = (displ(it,:))'; 
        sdof = size(displ,1); 
 
        %%% Initial nodal positions %%% 
        figure(1); 
        clf; 
        scatter(gcoord(:,1),gcoord(:,2),'yo'); 
        axis([min(gcoord(:,1))-1 max(gcoord(:,1))+1 min(gcoord(:,2))-1 
max(gcoord(:,2))+1]);     % Fitted to size axes 
        hold on; 
 
        current_disp_x = gcoord(:,1) + displ(1:2:sdof); 
        current_disp_y = gcoord(:,2) + displ(2:2:sdof); 
 
        scatter(current_disp_x,current_disp_y,'ko'); 
 
        for i=1:gnel 
            for j=1:3 
                x(j)=current_disp_x(gnodes(i,j)); 
                y(j)=current_disp_y(gnodes(i,j)); 
            end; 
            xvec = [x(1),x(2),x(3),x(1)];                     %. Draw element 
boundaries 
            yvec = [y(1),y(2),y(3),y(1)]; 
            plot(xvec,yvec,'k-'); 
        end; 
 
        text(min(gcoord(:,1)),max(gcoord(:,2)+0.75),sprintf('Time = %1.2f',it*deltt)); 
        drawnow; 
 
        if makemov ~= 0 
            frame = getframe(gca); 
            aviobj = addframe(aviobj,frame); 
        end; 
 
    end; 
end; 
 
if makemov ~= 0 
    aviobj = close(aviobj); 
end; 
 
close all; 
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Efield1.m code listing 

function V2 = efield(gel_x2,gel_x1,gel_y2,gel_y1,sol_y2,Vtop,Vbot,row,col) 
 
%---------------------------------------------------------------------------- 
% Program to generate E-field - Type 1 
% Last modifed : 28/10/04 
% Second version - major modifications to program 
% This is being built to allow a 1-to-1 correlation in the rest of the 
% model - this is why the solvent is shown, although at constant voltage, 
% so those elements will form a zero E-field... 
%  
% This version assumes that there is no solvent (and thus no e-field) below 
% the gel 
%----------------------------------------------------------------------------  
 
solvent_level = sol_y2-gel_y1; 
solvent_col = 3; 
 
gel_x = gel_x2 - gel_x1 + 1; 
gel_y = gel_y2 - gel_y1 + 1; 
 
V2 = zeros(row,col); 
 
%%%%%%%%%%%% form matrices and vectors %%%%%%%%%%%%%% 
 
gel_half = ceil(gel_x/2);               % This is the one that actually counts! 
gel_half2 = gel_half - solvent_col 
rc = 1;                                 % matrix counter 
 
 
V = zeros(gel_y,gel_half) + inf; 
V(1,gel_half) = Vtop; 
V2 = zeros(gel_y,gel_x); 
V3 = zeros(gel_y,gel_x); 
 
for i=1:gel_y-solvent_level-1 
    for j=1:solvent_col 
        V(i,j) = 0; 
    end 
end 
 
for i=gel_y-solvent_level:gel_y 
    for j=1:solvent_col 
        V(i,j) = Vbot; 
    end 
end; 
 
voltage = zeros(size(find(V==inf),1)); 
 
%%%%%%%%%%%% assemble vectors %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row    
    for j=1:size(V,2)   %col 
         
        if V(i,j) == inf 
           
            if j == solvent_col + 1                                 % first column of 
gel 
                if i == 1                                           % first row 
                    voltage(rc,rc) = 2; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+(gel_half2-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i == 2                                       % second row 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage(rc,rc-(gel_half2-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i >= (gel_y - solvent_level)  & i~=gel_y     % solvent rows 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = Vbot; 
                elseif i == gel_y                                   % last row 



207 

                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1;   
                 
            elseif j == (solvent_col + 2) & j ~= (gel_half -1)        % true j = 2 (ie. 
not row before centre) 
                if i == 1                                             % first row 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+(gel_half2-1)) = -1; 
                    voltage2(rc) = 0;  
                elseif i == 2                                           % second row 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half2-1)) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y                                       % last row 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0;  
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
            elseif j == gel_half-1 & j ~= (solvent_col + 2)              % true next to 
centre column 
                if i == 1 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+(gel_half2-1)) = -1; 
                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc-(gel_half2-1)) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
            elseif j == gel_half-1 & j == (solvent_col + 2)                 % dual case 
(ie. both second col and 2nd last col) 
                if i == 1 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+(gel_half2-1)) = -1; 
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                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc-(gel_half2-1)) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
            elseif j == gel_half                                    % centre column 
                if i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = Vtop; 
 
                elseif i == gel_y 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
            else 
                if i == 1 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+(gel_half2-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half2-1)) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage2(rc) = 0; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half2) = -1; 
                    voltage(rc,rc+gel_half2) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
            end 
             
             
        end;  % end of infinity loop     
    end;     % end of j loop 
end;        % end of i loop 
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%%%%%%%%%%%% calculations %%%%%%%%%%%%%% 
 
voltage2 = voltage2'; 
voltage3 = voltage\voltage2; 
 
%%%%%%%%%%%% reassemble matrices %%%%%%%%%%%%%% 
 
rc = 1; 
 
for i=1:size(V,1)       %row    
    for j=1:size(V,2)   %col 
         
        if V(i,j) == inf 
            V(i,j) = voltage3(rc); 
            rc = rc + 1; 
        end; 
    end; 
end; 
 
%%%%%%%%%%%% mirror matrix %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row  
    rc = 0; 
    for j=1:(gel_half-1) 
        V(i,(gel_x-rc)) = V(i,j); 
        rc = rc+1; 
    end; 
end; 
 
%%%%%%%%%% turn matrix upside down... %%%%%%%%%%%%%% 
rc = 1; 
for i=size(V,1):-1:1          
    V2(rc,:) = V(i,:); 
    rc = rc + 1; 
end; 
 
%%%%%%%%%%% plot contours & quivers %%%%%%%%%%%%% 
[c,h] = contour(V2); 
clabel(c,h); 
axis equal; 
axis auto; 
hold on; 
 
x = [1 1 gel_x gel_x 1]; 
y = [1 gel_y gel_y 1 1]; 
anode_x = [gel_half gel_half]; 
anode_y = [gel_y gel_y+1]; 
cath_x = [1 1 gel_x gel_x]; 
cath_y = [solvent_level+1 1 1 solvent_level+1]; 
 
[px,py] = gradient(V2); 
px = px * -1;             % correction factor - because quiver plots point from 
py = py * -1;             % the lowest point to the highest (ie. the 
% opposite to the E-field 
quiver(px,py); 
 
V2 
px+py 
 
%%%%% Reforming into a matrix %%%%%%%%%%% 
 
T = reshape(V',gel_x*gel_y,1); 
rc = 1; 
 
for i=1:row 
    for j=1:col 
        if i > row-sol_y2 
            V2(i,j) = Vbot; 
        end 
        if i <= row - gel_y1 + 1 
            if j >= gel_x1 & j <= gel_x2 
                V2(i,j) = T(rc); 
                rc = rc + 1; 
            end 
        end 
    end 
end 
 
V2; 
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[px,py] = gradient(V2); 
px = abs(px); 
py = abs(py); 
GR = px + py; 

Efield2.m code listing 

function V2 = efield2(Vtop,Vbot,gel_x,gel_y,solvent_level) 
 
%---------------------------------------------------------------------------- 
% Program to generate E-field - Type 2 
% Last modifed : 13/06/05 
% Second version - major modifications to program 
% This is being built to allow a 1-to-1 correlation in the rest of the 
% model - this is why the solvent is shown, although at constant voltage, 
% so those elements will form a zero E-field... 
%  
% This version assumes that there is a solvent (and thus an e-field) below 
% the gel 
%----------------------------------------------------------------------------  
 
%%%%%%%%%%%% Checks for a properly formed matrix %%%%%%%%%%%%%% 
 
if mod(gel_x,2) == 0 
    clc 
    disp('********************************************************************') 
    disp('*** ERROR : E solver needs an odd number of nodes in x-direction ***'); 
    disp('********************************************************************') 
    pause; 
end; 
 
if (gel_y-solvent_level-1) <=2 
    clc 
    disp('*************************************************************************') 
    disp('*** Solvent level is too high for model! Set lower and re-run program ***'); 
    disp('*************************************************************************') 
    pause; 
end; 
 
%%%%%%%%%%%% Form matrices and vectors %%%%%%%%%%%%%% 
 
gel_half = ceil(gel_x/2);               % This is the one that actually counts! 
rc = 1;                                 % matrix counter 
 
V = zeros(gel_y,gel_half) + inf; 
V2 = zeros(gel_y,gel_x); 
 
for i=gel_y-(solvent_level-1):gel_y 
    V(i,1) = Vbot; 
end 
 
V(gel_y,:) = Vbot; 
 
voltage = zeros(size(find(V==inf),1)); 
 
%%%%%%%%%%%% assemble vectors %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row    
    for j=1:size(V,2)   %col 
         
        if V(i,j) == inf 
             
            if j == 1                                               % first column of 
system 
                if i==1 
                    voltage(rc,rc) = 2; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == 2 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == (gel_y - solvent_level)                 % level above 
solvent 
                    voltage(rc,rc) = 3; 
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                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end 
                rc = rc + 1; 
                 
                 
            elseif j == 2                                           % first column of 
gel 
                if i == 1           
                    voltage(rc,rc) = 2; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0;  
                elseif i == 2 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0;       
                elseif i == (gel_y - solvent_level) 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1        % solvent rows 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                elseif i == (gel_y-1)                                   % last row 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = 2*Vbot;                           
                else 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1;   
                 
                 
            elseif j == gel_half-1              % next to centre column 
                if i == 1 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y - solvent_level 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0;            
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
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                elseif i == gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
                 
            elseif j == gel_half                                    % centre column 
                if i == 1 
                    voltage(rc,rc) = 1; 
                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = Vtop; 
                elseif i == gel_y - solvent_level 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
                 
            else                                                    % general gel 
columns 
                if i == 1 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y - solvent_level 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
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                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0;             
                elseif i == gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
            end 
        end;        % end of infinity loop 
    end;     % end of j loop 
end;        % end of i loop 
 
 
%%%%%%%%%%%% calculations %%%%%%%%%%%%%% 
 
voltage2 = voltage2'; 
voltage3 = voltage\voltage2; 
 
%%%%%%%%%%%% reassemble matrices %%%%%%%%%%%%%% 
 
rc = 1; 
 
for i=1:size(V,1)           %row    
    for j=1:size(V,2)       %col 
         
        if V(i,j) == inf 
            V(i,j) = voltage3(rc); 
            rc = rc + 1; 
        end; 
    end; 
end; 
 
%%%%%%%%%%%% mirror matrix %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row  
    rc = 0; 
    for j=1:(gel_half-1) 
        V(i,(gel_x-rc)) = V(i,j); 
        rc = rc+1; 
    end; 
end; 
 
%%%%%%%%%% turn matrix upside down... to properly format for use in main program  
%%%%%%%%%%%%%% 
rc = 1; 
for i=size(V,1):-1:1          
    V2(rc,:) = V(i,:); 
    rc = rc + 1; 
end; 
 
%%%%%%%%%% SUPPLEMENTARY CALCULATONS  %%%%%%%%%%%%%% 
 
% plot contours & quivers - useful for debugging purposes 
% This section is not neccessary, and nothing from here gets returned to main! =) 
% It only serves to provide potentially useful information on how the program is 
functioning 
 
[c,h] = contour(V2); 
clabel(c,h); 
axis equal; 
hold on; 
 
[px,py] = gradient(V2); 
px = px * -1;             % correction factor - because quiver plots point from 
py = py * -1;             % the lowest point to the highest (ie. opposite to the E-
field) 
 
V2 
quiver(px,py); 
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pause; 
close all 
 

Efield3.m code listing 

function V2 = efield3(Vtop,Vbot,gel_x,gel_y,solvent_level) 
 
%---------------------------------------------------------------------------- 
% Program to generate E-field - Type 3 
% Last modifed : 26/07/05 
% Second version - major modifications to program 
% This is being built to allow a 1-to-1 correlation in the rest of the 
% model - this is why the solvent is shown, although at constant voltage, 
% so those elements will form a zero E-field... 
%  
% This version assumes that there is a solvent (and thus an e-field) below 
% the gel 
%----------------------------------------------------------------------------  
 
%%%%%%%%%%%% Checks for a properly formed matrix %%%%%%%%%%%%%% 
 
if mod(gel_x,2) == 0 
    clc 
    disp('********************************************************************') 
    disp('*** ERROR : E solver needs an odd number of nodes in x-direction ***'); 
    disp('********************************************************************') 
    pause; 
end; 
 
if (gel_y-solvent_level-1) <=2 
    clc 
    disp('*************************************************************************') 
    disp('*** Solvent level is too high for model! Set lower and re-run program ***'); 
    disp('*************************************************************************') 
    pause; 
end; 
 
%%%%%%%%%%%% Form matrices and vectors %%%%%%%%%%%%%% 
 
gel_half = ceil(gel_x/2);               % This is the one that actually counts! 
rc = 1;                                 % matrix counter 
 
V = zeros(gel_y,gel_half) + inf; 
V2 = zeros(gel_y,gel_x); 
 
for i=gel_y-(solvent_level-1):gel_y 
    V(i,1) = Vbot; 
end 
 
V(gel_y,:) = Vbot; 
 
voltage = zeros(size(find(V==inf),1)); 
 
%%%%%%%%%%%% assemble vectors %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row    
    for j=1:size(V,2)   %col 
         
        if V(i,j) == inf 
             
            if j == 1                                               % first column of 
system 
                if i==1 
                    voltage(rc,rc) = 2; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == 2 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == (gel_y - solvent_level)                 % level above 
solvent 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
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                    voltage(rc,rc-gel_half) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end 
                rc = rc + 1; 
                 
            elseif j == 2                                           % first column of 
gel (not covered by electrode) 
                if i == 1           
                    voltage(rc,rc) = 2; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = Vtop;  
                elseif i == 2 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0;       
                elseif i == (gel_y - solvent_level) 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1        % solvent rows 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                elseif i == (gel_y-1)                                   % last row 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = 2*Vbot;                           
                else 
                    voltage(rc,rc) = 3; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1;   
                 
            elseif j == gel_half                                    % centre column 
                if i == 1 
                    voltage(rc,rc) = 1; 
                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = Vtop; 
                elseif i == gel_y - solvent_level 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -2; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
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                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
                 
                 
            else                                                    % general gel 
columns 
                if i == 1 
                    voltage(rc,rc) = 1; 
                    voltage2(rc) = Vtop; 
                elseif i == 2 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                elseif i == gel_y - solvent_level 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0; 
                elseif i > (gel_y - solvent_level)  & i~=gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage(rc,rc+(gel_half-1)) = -1; 
                    voltage2(rc) = 0;             
                elseif i == gel_y-1 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-(gel_half-1)) = -1; 
                    voltage2(rc) = Vbot; 
                else 
                    voltage(rc,rc) = 4; 
                    voltage(rc,rc-1) = -1; 
                    voltage(rc,rc+1) = -1; 
                    voltage(rc,rc-gel_half) = -1; 
                    voltage(rc,rc+gel_half) = -1; 
                    voltage2(rc) = 0; 
                end; 
                rc = rc + 1; 
            end 
        end;        % end of infinity loop 
    end;     % end of j loop 
end;        % end of i loop 
 
 
%%%%%%%%%%%% calculations %%%%%%%%%%%%%% 
 
voltage2 = voltage2'; 
voltage3 = voltage\voltage2; 
 
%%%%%%%%%%%% reassemble matrices %%%%%%%%%%%%%% 
 
rc = 1; 
 
for i=1:size(V,1)           %row    
    for j=1:size(V,2)       %col 
         
        if V(i,j) == inf 
            V(i,j) = voltage3(rc); 
            rc = rc + 1; 
        end; 
    end; 
end; 
 
%%%%%%%%%%%% mirror matrix %%%%%%%%%%%%%% 
 
for i=1:size(V,1)       %row  
    rc = 0; 
    for j=1:(gel_half-1) 
        V(i,(gel_x-rc)) = V(i,j); 
        rc = rc+1; 
    end; 
end; 
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%%%%%%%%%% turn matrix upside down... to properly format for use in main program  
%%%%%%%%%%%%%% 
rc = 1; 
for i=size(V,1):-1:1          
    V2(rc,:) = V(i,:); 
    rc = rc + 1; 
end; 
 
%%%%%%%%%% SUPPLEMENTARY CALCULATONS  %%%%%%%%%%%%%% 
 
% plot contours & quivers - useful for debugging purposes 
% This section is not neccessary, and nothing from here gets returned to main! =) 
% It only serves to provide potentially useful information on how the program is 
functioning 
 
% [c,h] = contour(V2); 
% clabel(c,h); 
% axis equal; 
% hold on; 
%  
% [px,py] = gradient(V2); 
% px = px * -1;             % correction factor - because quiver plots point from 
% py = py * -1;             % the lowest point to the highest (ie. opposite to the E-
field) 
%  
% quiver(px,py); 
 

Feasmbl1.m code listing 

function [kk]=feasmbl1(kk,k,index) 
%---------------------------------------------------------- 
%  Purpose: 
%     Assembly of element matrices into the system matrix 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [kk]=feasmbl1(kk,k,index) 
% 
%  Variable Description: 
%     kk - system matrix 
%     k  - element matri 
%     index - d.o.f. vector associated with an element 
%----------------------------------------------------------- 
 
  
 edof = length(index); 
 for i=1:edof 
   ii=index(i); 
     for j=1:edof 
       jj=index(j); 
         kk(ii,jj)=kk(ii,jj)+k(i,j); 
     end 
 end 
 
 

Feeldof.m code listing 

function [index]=feeldof(nd,nnel,ndof) 
%---------------------------------------------------------- 
%  Purpose: 
%     Compute system dofs associated with each element  
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [index]=feeldof(nd,nnel,ndof) 
% 
%  Variable Description: 
%     index - system dof vector associated with element "iel" 
%     iel - element number whose system dofs are to be determined 
%     nnel - number of nodes per element 
%     ndof - number of dofs per node  
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%----------------------------------------------------------- 
  
 edof = nnel*ndof; 
   k=0; 
   for i=1:nnel 
     start = (nd(i)-1)*ndof; 
       for j=1:ndof 
         k=k+1; 
         index(k)=start+j; 
       end 
   end 
 
  

Fekine2d.m code listing 

function [kinmtx2]=fekine2d(nnel,dhdx,dhdy) 
 
%------------------------------------------------------------------------ 
%  Purpose: 
%     determine the kinematic equation between strains and displacements 
%     for two-dimensional solids 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [kinmtx2]=fekine2d(nnel,dhdx,dhdy)  
% 
%  Variable Description: 
%     nnel - number of nodes per element 
%     dhdx - derivatives of shape functions with respect to x    
%     dhdy - derivatives of shape functions with respect to y 
%------------------------------------------------------------------------ 
 
 for i=1:nnel 
 i1=(i-1)*2+1;   
 i2=i1+1; 
 kinmtx2(1,i1)=dhdx(i); 
 kinmtx2(2,i2)=dhdy(i); 
 kinmtx2(3,i1)=dhdy(i); 
 kinmtx2(3,i2)=dhdx(i); 
 end 
 
 kinmtx2(3,:) = kinmtx2(3,:) * 0.5; 
 
 

Felp2dt3.m code listing 

function [k]=felp2dt3(x1,y1,x2,y2,x3,y3) 
 
%------------------------------------------------------------------- 
%  Purpose: 
%     element matrix for two-dimensional Laplace's equation 
%     using three-node linear triangular element 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [k]=felp2dt3(x1,y1,x2,y2,x3,y3)  
% 
%  Variable Description: 
%     k - element stiffness matrix (size of 3x3)    
%     x1, y1 - x and y coordinate values of the first node of element 
%     x2, y2 - x and y coordinate values of the second node of element 
%     x3, y3 - x and y coordinate values of the third node of element 
%------------------------------------------------------------------- 
 
% element matrix 
 
 A=0.5*(x2*y3+x1*y2+x3*y1-x2*y1-x1*y3-x3*y2); % area of the triangule 
 k(1,1)=((x3-x2)^2+(y2-y3)^2)/(4*A); 
 k(1,2)=((x3-x2)*(x1-x3)+(y2-y3)*(y3-y1))/(4*A); 
 k(1,3)=((x3-x2)*(x2-x1)+(y2-y3)*(y1-y2))/(4*A); 
 k(2,1)=k(1,2); 
 k(2,2)=((x1-x3)^2+(y3-y1)^2)/(4*A); 
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 k(2,3)=((x1-x3)*(x2-x1)+(y3-y1)*(y1-y2))/(4*A); 
 k(3,1)=k(1,3); 
 k(3,2)=k(2,3); 
 k(3,3)=((x2-x1)^2+(y1-y2)^2)/(4*A); 
 
    

Felp2dt3b.m code listing 

function [k]=felp2dt3(x1,y1,x2,y2,x3,y3) 
 
%------------------------------------------------------------------- 
%  Purpose: 
%     element matrix for two-dimensional Laplace's equation 
%     using three-node linear triangular element 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [k]=felp2dt3(x1,y1,x2,y2,x3,y3)  
% 
%  Variable Description: 
%     k - element stiffness matrix (size of 3x3)    
%     x1, y1 - x and y coordinate values of the first node of element 
%     x2, y2 - x and y coordinate values of the second node of element 
%     x3, y3 - x and y coordinate values of the third node of element 
%------------------------------------------------------------------- 
 
% element matrix 
 
 A=0.5*(x2*y3+x1*y2+x3*y1-x2*y1-x1*y3-x3*y2); % area of the triangule 
 k(1,1)=((x3-x2) + (y2-y3))*(A/3); 
 k(1,2)=((x1-x3) + (y3-y1))*(A/3); 
 k(1,3)=((x2-x1) + (y1-y2))*(A/3); 
 k(2,1)=k(1,1); 
 k(2,2)=k(1,2); 
 k(2,3)=k(1,3); 
 k(3,1)=k(1,1); 
 k(3,2)=k(1,2); 
 k(3,3)=k(1,3); 
 

Felpt2t3.m code listing 

function [m]=felpt2t3(x1,y1,x2,y2,x3,y3) 
 
%------------------------------------------------------------------- 
%  Purpose: 
%     element matrix for transient term of two-dimensional  
%     Laplace's equation using linear triangular element 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [m]=felpt2t3(x1,y1,x2,y2,x3,y3)  
% 
%  Variable Description: 
%     m - element stiffness matrix (size of 3x3)    
%     x1, y1 - x and y coordinate values of the first node of element 
%     x2, y2 - x and y coordinate values of the second node of element 
%     x3, y3 - x and y coordinate values of the third node of element 
%------------------------------------------------------------------- 
 
% element matrix 
 
 A=0.5*(x2*y3+x1*y2+x3*y1-x2*y1-x1*y3-x3*y2); % area of the triangule 
  
 m = (A/12)* [ 2  1   1; 
               1  2   1; 
               1  1   2 ]; 
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Fematiso.m code listing 

function [matmtrx]=fematiso(iopt,elastic,poisson) 
 
%------------------------------------------------------------------------ 
%  Written by Kwon & Bang (2000) 
%  Purpose: 
%     determine the constitutive equation for isotropic material 
%  
% Written by Kwon and Bang 
% 
%  Synopsis: 
%     [matmtrx]=fematiso(iopt,elastic,poisson)  
% 
%  Variable Description: 
%     elastic - elastic modulus 
%     poisson - Poisson's ratio    
%     iopt=1 - plane stress analysis 
%     iopt=2 - plane strain analysis 
%     iopt=3 - axisymmetric analysis 
%     iopt=4 - three dimensional analysis 
%------------------------------------------------------------------------ 
 
 if iopt==1        % plane stress 
   matmtrx= elastic/(1-poisson*poisson)* ... 
   [1  poisson 0; ... 
   poisson  1  0; ... 
   0  0  (1-poisson)/2]; 
 
 elseif iopt==2     % plane strain 
   matmtrx= elastic/((1+poisson)*(1-2*poisson))* ... 
   [(1-poisson)  poisson 0;  
   poisson  (1-poisson)  0; 
   0  0  (1-2*poisson)/2]; 
 
 elseif iopt==3     % axisymmetry 
   matmtrx= elastic/((1+poisson)*(1-2*poisson))* ... 
   [(1-poisson)  poisson  poisson  0;  
   poisson  (1-poisson)   poisson  0; 
   poisson  poisson  (1-poisson)   0; 
   0    0    0   (1-2*poisson)/2]; 
  
 else     % three-dimension 
   matmtrx= elastic/((1+poisson)*(1-2*poisson))* ... 
   [(1-poisson)  poisson  poisson   0   0    0;  
   poisson  (1-poisson)   poisson   0   0    0; 
   poisson  poisson  (1-poisson)    0   0    0; 
   0    0    0    (1-2*poisson)/2   0    0; 
   0    0    0    0    (1-2*poisson)/2   0; 
   0    0    0    0    0   (1-2*poisson)/2]; 
 
 end 
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Flager.m code listing 

function [flg_sol_node,flg_sol_elem,flg_gel_node,flg_gel_elem] = 
flager(row,col,solvent_level) 
%---------------------------------------------------------- 
%  Purpose: Determine which nodes/elements associated with solvent and hydrogel 
% 
% Last modified : 04/04/2005 
%----------------------------------------------------------- 
 
%%%%%%%%%% Element Flags %%%%%%%%%% 
 
row_count = 1; 
 
for i=1:row 
    for j=1:col 
        if i >= 1 & i < solvent_level & j >= 1 & j < col 
            flg_sol_elem(row_count) = j + (i-1)*(2*(col-1)); 
            flg_sol_elem(row_count+(col-1)) = j + (i-1)*(2*(col-1)) + (col-1); 
            row_count = row_count + 1; 
            if j == ((col-1)+(1-1)) 
                row_count = row_count + (col-1); 
            end; 
        end; 
    end; 
end; 
 
row_count = 1; 
 
for i=1:row 
    for j=1:col 
        if i >= 2 & i < row & j >= 2 & j < col-1 
            flg_gel_elem(row_count) = j + (i-1)*(2*(col-1)); 
            flg_gel_elem(row_count+(col-1-2)) = j + (i-1)*(2*(col-1)) + (col-1); 
            row_count = row_count + 1; 
            if j == ((col-1-2)+(2-1)) 
                row_count = row_count + (col-1-2); 
            end; 
        end; 
    end; 
end; 
 
%%%%%%%%%% Node Flags %%%%%%%%%% 
 
row_count = 1; 
for i=1:row 
    for j=1:col 
        if i >= 1 & i <= solvent_level & j >= 1 & j <= col 
            flg_sol_node(row_count) = (i-1)*col + j; 
            row_count = row_count + 1; 
        end; 
    end; 
end; 
 
row_count = 1; 
for i=1:row 
    for j=1:col 
        if i >= 2 & i <= row & j >= 2 & j <= col-1 
            flg_gel_node(row_count) = (i-1)*col + j; 
            row_count = row_count + 1; 
        end; 
    end; 
end; 
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Force_changer.m code listing 

function[forces] = force_changer(ff,add_x,add_y) 
 
%---------------------------------------------------------- 
%  Purpose: Change force for use in a 5-element/row setup 
% 
% Last modified : 14/02/2004 
%----------------------------------------------------------- 
 
forces = zeros((size(ff,1) + 2 * add_x * add_y),1); 
 
col_counter = 0; 
row_counter = 1; 
col = 0; 
 
for i=1:size(ff,1) 
    col = col + 1; 
    forces(col) = ff(i); 
    col_counter = col_counter + 1; 
    if col_counter == 2 * (add_x + 1); 
        col = col + (2 * add_x); 
        col_counter = 0; 
    end 
end; 
 

Forcer.m code listing 

function[forces,cell_vols] = 
forcer(fsol1,fsol2,fsol3,fsol1_old,fsol2_old,fsol3_old,cell_vols,sdof,row,col,solvent_le
vel,flg_gel_node,CHI,Vp,sol_conc,Vtot,R,T,dim_x) 
 
%---------------------------------------------------------- 
%  Purpose: Force module - calculates the force on the hydrogel from information 
supplied by the Chemical module 
% 
% Last modified : 13/09/2005 
%----------------------------------------------------------- 
 
gel_size = 2 * ((col-1)-2+1)*(row-2+1); 
gel_cols = (col-1)-2+1; 
press = zeros(gel_size,1); 
f_assign = zeros(gel_size,1); 
 
scale = dim_x / (col-2); 
 
cross_area_solvent = ((col-2)*(solvent_level-1)*scale^2);   % cross-sectional area of 
gel in solvent 
cross_area_sides = ((col-2)*(row-1)*scale^2);               % cross-sectional area of 
gel sides 
cross_area_top = (col-2)^2*scale^2;                         % cross-sectional area of 
gel top and bottom 
 
%--------------------------------------------------------------------------------------- 
%  Boundaries - calculates boundaries between gel and sol  
% 
% (i,1) = gel node 
% (i,2) = sol node 
% (i,3) = gel node number (stand-alone gel - ie. the number of the node if the gel was 
looked at as a separate system without the solvent) 
% (i,4) = side (left = 0; right =1) Used to indicated what side of the gel the node is 
on! 
% 
% (xb,yb) = borders for ionic force calcs - only looks at gel boundaries in solvent 
%--------------------------------------------------------------------------------------- 
 
% Define edges of hydrogel region in global node numbers terms 
 
gel_x1b = 2 - (2 - 1); 
gel_x2b = (col-1) - (2 - 1); 
gel_y1b = 2 - (2 - 1); 
gel_y2b = row - (2 - 1); 
sol_y2b = solvent_level - 2 + 1; 
ion_force = zeros(2*(gel_x2b*gel_y2b),1); 
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%%%% Find global node numbers associated with edges of hydrogel region %%%% 
 
% x-nodes - left 
 
row_count = 1; 
for i=2:solvent_level 
    xb_left(row_count,1) = (i-1)*col + 2; 
    xb_left(row_count,2) = (i-1)*col + 2 - 1;                  
    row_count = row_count + 1; 
end; 
 
row_count = 1; 
for i=1:sol_y2b 
    xb_left(row_count,3) = (i-1)*gel_x2b + gel_x1b; 
    row_count = row_count + 1; 
end; 
 
% x-nodes - right 
 
row_count = 1; 
for i=2:solvent_level         
    xb_right(row_count,1) = (i-1)*col + (col-1); 
    xb_right(row_count,2) = (i-1)*col + (col-1) + 1; 
    row_count = row_count + 1; 
end; 
 
row_count = 1; 
for i=1:sol_y2b 
    xb_right(row_count,3) = (i-1)*gel_x2b + gel_x2b; 
    row_count = row_count + 1; 
end; 
 
% y-nodes - bottom 
 
row_count = 1; 
for i=2:(col-1) 
    yb(row_count,1) = (2-1)*col + i; 
    yb(row_count,2) = (2-1)*col + i - col; 
    row_count = row_count + 1; 
end; 
 
row_count = 1; 
for i=gel_x1b:gel_x2b 
    yb(row_count,3) = (gel_y1b-1)*gel_x2b + i; 
    row_count = row_count + 1; 
end; 
 
%--------------------------------------------------------------------------------------- 
%   Ionic pressure calcs - only takes gel/solvent surface area into account 
%   2n-1 for x-axis, 2n for y-axis : Use drawmesh.m to find node numbers 
%--------------------------------------------------------------------------------------- 
 
% Calculate differences between left x-nodes (gel - solvent) 
 
for i=1:size(xb_left,1)     
    press1_left(2*xb_left(i,3)-1) =  fsol1(xb_left(i,1)) - fsol1(xb_left(i,2)); 
    press2_left(2*xb_left(i,3)-1) =  fsol2(xb_left(i,1)) - fsol2(xb_left(i,2)); 
    press_left(2*xb_left(i,3)-1) = press1_left((2*xb_left(i,3)-1)) + 
press2_left((2*xb_left(i,3)-1)); 
end; 
  
% Calculate differences between right x-nodes (gel - solvent) 
 
for i=1:size(xb_right,1)     
    press1(2*xb_right(i,3)-1) =  fsol1(xb_right(i,1)) - fsol1(xb_right(i,2)); 
    press2(2*xb_right(i,3)-1) =  fsol2(xb_right(i,1)) - fsol2(xb_right(i,2)); 
    press_right(2*xb_right(i,3)-1) = (press1((2*xb_right(i,3)-1)) + 
press2((2*xb_right(i,3)-1)));  
end; 
 
% Calculate differences between y-nodes (first col - second col in yb) 
 
for i=1:size(yb,1)      
    press1_bot(2*yb(i,3)) =  fsol1(yb(i,1)) - fsol1(yb(i,2));   
    press2_bot(2*yb(i,3)) =  fsol2(yb(i,1)) - fsol2(yb(i,2)); 
    press_bot(2*yb(i,3)) = press1_bot(2*yb(i,3)) + press2_bot(2*yb(i,3)); 
end; 
 
% Add pressure vectors together to give TOTAL ionic osmotic pressure 
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press = sum(press_left) + sum(press_right) + sum(press_bot); 
 
% Forces on left nodes (weighted by greatest concentration difference) 
 
force_left_total = press * cross_area_solvent; 
force_left = force_left_total * (press_left ./ sum(press_left)); 
 
% Forces on right nodes (weighted by greatest concentration difference) 
 
force_right_total = press * cross_area_solvent; 
force_right = -force_right_total * (press_right ./ sum(press_right));   % multiply by -1 
to make swelling positive force in x-direction 
 
% Forces on bottom nodes (weighted by greatest concentration difference) 
 
force_bot_total = press * cross_area_top; 
force_bot = force_bot_total * (press_bot ./ sum(press_bot)); 
 
% Generate force vector for overall gel 
 
for i=1:size(force_left,2) 
    ion_force(i) = ion_force(i) + force_left(i); 
end; 
 
for i=1:size(force_right,2) 
    ion_force(i) = ion_force(i) + force_right(i); 
end; 
 
for i=1:size(force_bot,2) 
    ion_force(i) = ion_force(i) + force_bot(i); 
end; 
 
%--------------------------------------------------------------------------------------- 
%   Mixing force calcs 
%--------------------------------------------------------------------------------------- 
 
for i=1:size(flg_gel_node,2)    
    moles1(i,1) = fsol1_old(flg_gel_node(i)) * cell_vols(i);        % Conc of Na+ ions * 
cell vol to give number of moles 
    fsol1g(i,1) = fsol1(flg_gel_node(i)); 
    moles2(i,1) = fsol2_old(flg_gel_node(i)) * cell_vols(i);        % Conc of Cl- ions * 
cell vol to give number of moles 
    fsol2g(i,1) = fsol2(flg_gel_node(i)); 
end; 
 
moles_init = moles1 + moles2;                                       % initial number of 
moles (from previous timestep) 
 
delta_vol = (((fsol1g + fsol2g) .* cell_vols) - moles_init) ./ (sol_conc - (fsol1g + 
fsol2g));      % change in volume for each cell in gel 
cell_vols = cell_vols + delta_vol; 
vol_frac = Vp / sum(cell_vols);                                                  % 
volume fraction of polymer 
Vsol = 1/(sol_conc*1000);                                                                           
% molar volume of solvent 
 
mixer = (-R*T/Vsol) * ((log(1-vol_frac) + vol_frac + CHI*vol_frac^2));                              
% mixing pressure   
mix_force = mixer * (2*cross_area_sides + 2*cross_area_top);                                        
% mixing force on gel 
delta_vol = delta_vol ./ sum(delta_vol); 
 
for i=1:size(delta_vol,1) 
         
        cnode = i; 
        cnode_up = i + gel_cols; 
        cnode_dn = i - gel_cols; 
        cnode_rt = i + 1; 
        cnode_lt = i - 1; 
         
        pf = (delta_vol(i) * mix_force) / 4;                    % percentage force * 
total force = force on this node 
         
        if cnode <= gel_cols                            % bottom row of gel 
             
            if cnode == 1                               % first column 
                f_assign(1) = f_assign(1) - pf; 
                f_assign(2) = f_assign(2) - pf; 
                f_assign(cnode_rt - 1) = f_assign(3) + pf; 
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                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
                 
            elseif cnode == gel_cols                    % last column 
                f_assign(2*cnode) = f_assign(2*cnode) - pf; 
                f_assign(2*cnode-1) = f_assign(2*cnode-1) + pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
            else 
                f_assign(2*cnode) = f_assign(2*cnode) - pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_rt - 1) = f_assign(2*cnode_rt - 1) + pf; 
                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
            end  
 
        elseif cnode > (gel_size/2) - gel_cols              % top row 
             
            if cnode == ((gel_size/2) - gel_cols + 1)       % first column 
                f_assign(2*cnode) = f_assign(2*cnode) + pf; 
                f_assign(2*cnode - 1) = f_assign(2*cnode - 1) - pf; 
                f_assign(2*cnode_rt - 1) = f_assign(2*cnode_rt) + pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
                 
            elseif cnode == (gel_size/2)                    % last column 
                f_assign(2*cnode) = f_assign(2*cnode) + pf; 
                f_assign(2*cnode - 1) = f_assign(2*cnode - 1) + pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
            else 
                f_assign(2*cnode) = f_assign(2*cnode) + pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_rt - 1) = f_assign(2*cnode_rt - 1) + pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
            end 
             
        else 
            if mod(cnode,gel_cols) == 1                 % first column 
                f_assign(2*cnode - 1) = f_assign(2*cnode - 1) - pf; 
                f_assign(2*cnode_rt - 1) = f_assign(2*cnode_rt - 1) + pf; 
                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
            elseif mod(cnode,gel_cols) == 0             % last column 
                f_assign(2*cnode - 1) = f_assign(2*cnode - 1) + pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
            else 
                f_assign(2*cnode_rt - 1) = f_assign(2*cnode_rt - 1) + pf; 
                f_assign(2*cnode_lt - 1) = f_assign(2*cnode_lt - 1) - pf; 
                f_assign(2*cnode_up) = f_assign(2*cnode_up) + pf; 
                f_assign(2*cnode_dn) = f_assign(2*cnode_dn) - pf; 
            end   
    end                         % put this after all the else-ifs 
end; 
 
forces = ion_force + f_assign; 
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Gel_distribute.m code listing 

function [Qpos,Qneg] = 
gel_distribute(row,col,scale,kb,T,lambdaB,epsilonLJ,sigmaLJ,vpos,vneg,ion_conc,no_ions) 
 
%---------------------------------------------------------------------------- 
% Program to calculate polymer distributions in gel 
% Last modifed : 11/09/05 
%----------------------------------------------------------------------------            
 
warning off MATLAB:divideByZero;                % this is neccessary, as the program 
relies on dividing by zero to generate infinity 
 
gel_x = no_ions*((col-1) - 2 + 1);            % The res variable scales the system up to 
ensure a large grid to work on 
gel_y = no_ions*(row - 2 + 1);  
 
gel_part = (ion_conc / no_ions);                                      % Broken into i 
parts 
 
%%% Initial placment of charged ion %%% 
 
A = zeros(gel_y,gel_x); 
B = zeros(gel_y,gel_x); 
 
x = ceil(rand * gel_x); 
y = ceil(rand * gel_y); 
 
if x == gel_x 
    x2 = x-1; 
elseif x == 1 
    x2 = x+1; 
else  
    x2 = x+1; 
end; 
 
A(y,x) = 1; 
B(y,x2) = 1; 
 
h = waitbar(0,'Distributing ions, please wait...'); 
 
%%% Distributing ions %%% 
 
for k=1:(no_ions-1) 
     
    potPOS = inf; 
    potNEG = 0; 
    [y x] = find(A); 
    [y2 x2] = find(B); 
     
    waitbar(k/(no_ions-1),h,sprintf('Distributing ions... %1.0f percent 
complete',(k/(no_ions-1)*100))) 
     
    for i=1:gel_y 
        for j=1:gel_x 
             
            %%% Positive ions %%% 
             
            for l=1:size(x,1); 
                r = sqrt(((i - y(l))*scale)^2 + ((j - x(l))*scale)^2); 
                temp_pot1a(l) = 4*epsilonLJ*((sigmaLJ/r)^12 - (sigmaLJ/r)^6 - 
sigmaLJ*2^(1/6)); 
                temp_pot2a(l) = lambdaB * kb * T * (vpos*vpos/r);      
            end; 
             
            temp_potA = sum(temp_pot1a) + sum(temp_pot2a); 
             
            if temp_potA < potPOS; 
                keep_yP = i; 
                keep_xP = j; 
                potPOS = temp_potA; 
            end; 
             
            %%% Negative ions %%%  
             
            for l=1:size(x,1); 
                r = sqrt(((i - y(l))*scale)^2 + ((j - x(l))*scale)^2); 
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                temp_pot1b(l) = 4*epsilonLJ*((sigmaLJ/r)^12 - (sigmaLJ/r)^6 - 
sigmaLJ*2^(1/6)); 
                temp_pot2b(l) = lambdaB * kb * T * (vneg*vpos/r); 
            end; 
             
            for m=1:size(x2,1); 
                r = sqrt(((i - y2(m))*scale)^2 + ((j - x2(m))*scale)^2); 
                temp_pot3b(l) = 4*epsilonLJ*((sigmaLJ/r)^12 - (sigmaLJ/r)^6 - 
sigmaLJ*2^(1/6)); 
                temp_pot4b(m) = lambdaB * kb * T * (vneg*vneg/r); 
            end; 
             
            temp_potB = sum(temp_pot1b) + sum(temp_pot2b)+sum(temp_pot3b) + 
sum(temp_pot4b); 
             
            if temp_potB < potNEG & temp_potB ~= -inf 
                keep_yN = i; 
                keep_xN = j; 
                potNEG = temp_potB; 
            end; 
             
        end; 
    end; 
 
    A(keep_yP,keep_xP) = A(keep_yP,keep_xP) + 1; 
    B(keep_yN,keep_xN) = B(keep_yN,keep_xN) + 1; 
end; 
 
close(h); 
 
%%% Plotting ion distributions %%% 
 
% [yp xp] = find(A); 
% [yp2 xp2] = find(B); 
 
% scatter(xp,yp); 
% hold on 
% scatter(xp2,yp2,'r'); 
 
%% Converting wide-field into narrow-field %%% 
 
Ppos = zeros(size(A,1),(col-1) - 2 + 1); 
Qpos = zeros(row - 2 + 1,(col-1) - 2 + 1); 
 
for i=1:size(A,1) 
    rc = 1; 
    for j=1:size(A,2) 
        Ppos(i,rc) = Ppos(i,rc) + A(i,j); 
        if mod(j,no_ions) == 0 
            rc = rc + 1; 
        end; 
    end;  
end; 
 
for i=1:((col-1) - 2 + 1) 
    rc = 1; 
    for j=1:size(A,1) 
        Qpos(rc,i) = Qpos(rc,i) + Ppos(j,i); 
        if mod(j,no_ions) == 0 
            rc = rc + 1; 
        end; 
    end;  
end; 
 
Pneg = zeros(size(A,1),(col-1) - 2 + 1); 
Qneg = zeros(row - 2 + 1,(col-1) - 2 + 1); 
 
for i=1:size(A,1) 
    rc = 1; 
    for j=1:size(A,2) 
        Pneg(i,rc) = Pneg(i,rc) + B(i,j); 
        if mod(j,no_ions) == 0 
            rc = rc + 1; 
        end; 
    end;  
end; 
 
for i=1:((col-1) - 2 + 1) 
    rc = 1; 
    for j=1:size(A,1) 



228 

        Qneg(rc,i) = Qneg(rc,i) + Pneg(j,i); 
        if mod(j,no_ions) == 0 
            rc = rc + 1; 
        end; 
    end;  
end; 
 
%%% Plotting reformed ion distributions %%% 
 
% [yp xp] = find(Qpos); 
% [yp2 xp2] = find(Qneg); 
%  
% figure 
% scatter(xp,yp); 
% hold on 
% scatter(xp2,yp2,'r'); 
 
%%% Scaling and converting into a vector %%% 
 
Qpos = Qpos .* gel_part; 
Qneg = Qneg .* gel_part; 
 
Qpos = Qpos'; 
Qneg = Qneg'; 
 
Qpos = reshape(Qpos,1,(size(Qpos,1)*size(Qpos,2))); 
Qneg = reshape(Qneg,1,(size(Qneg,1)*size(Qneg,2))); 
 

Globecord.m code listing 

function gcoord=globecord(nnode,col) 
%--------------------------------------------------------------------------------------- 
%  Purpose: 
%     Determines the global coordinates for each node using triangular 
%     elements in an equilateral configuration 
%  Synopsis: 
%     gcoord=globecord(nnode,col) 
% 
%  Variable Description: 
%       Output parameters -     gcoord : Global coordinates of all nodes 
%       Input parameters -      nnode : Number of nodes 
%                               col : Number of columns 
%--------------------------------------------------------------------------------------- 
 
cc = 0;                     % Column counter - stores how many columns have counted 
already 
xcord = 0;                  % x-coordinate 
ycord = 0;                  % y-coordinate 
 
for i=1:nnode 
    gcoord(i,1) = xcord; 
    gcoord(i,2) = ycord; 
         
    cc = cc + 1;            % Indicates last column notated 
    xcord = xcord + 1;      % Increase the x-coordinate 
 
    if cc == col            % checks if counter is the edge of the shape 
        ycord = ycord + 1;  % if it is on the edge, increase the row by 1 
        xcord = 0;          % Resets the x-coordinate back to 0 
        cc = 0;             % Resets the column counter 
    end; 
 
end; 
 
 

Globecord2.m code listing 

function gcoord=globecord2(nnode,col) 
%---------------------------------------------------------------------------------------
--- 
%  Purpose: 
%     Determines the global coordinates for each node using triangular 
%     elements in an equilateral configuration 
%  Synopsis: 
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%     gcoord=globecord(nnode,col) 
% 
%  Variable Description: 
%       Output parameters -     gcoord : Global coordinates of all nodes 
%       Input parameters -      nnode : Number of nodes 
%                               col : Number of columns 
%---------------------------------------------------------------------------------------
---- 
 
cc = 0;                     % Column counter - stores how many columns have counted 
already 
xcord = 0;                  % x-coordinate 
ycord = 0;                  % y-coordinate 
col_type = 1;               % indicates even or odd row 
 
for i=1:nnode 
    gcoord(i,1) = xcord; 
    gcoord(i,2) = ycord; 
     
    cc = cc + 1;            % Indicates last column notated 
    xcord = xcord + 1;      % Increase the x-coordinate 
     
    if cc == col            % checks if counter is the edge of the shape 
        ycord = ycord + 0.5;  % if it is on the edge, increase the row by 1 
        if col_type == 1 
            xcord = 0.5;          % Resets the x-coordinate back to 0 
            cc = 1;             % Resets the column counter 
            col_type = 0; 
        else 
            xcord = 0; 
            cc = 0; 
            col_type = 1; 
        end; 
    end; 
end; 
 

Mech.m code listing 

function[displ,velc] = 
mech(deltt,emodule,poisson,rho,damp,ral_alpha,ral_beta,gcoord,gnodes,col,nnel,gnel,gsdof
,gedof,ndof,ff,displ,velc) 
%---------------------------------------------------------- 
%  Purpose: Mechanical module - calculates the deformation of the hydrogel using forces 
from Force module 
% 
% Last modified : 6/07/2005 
%----------------------------------------------------------- 
 
%----------------------------------------- 
%  initialization of matrices and vectors 
%----------------------------------------- 
 
kk=sparse(zeros(gsdof,gsdof));                % system matrix 
mm=sparse(zeros(gsdof,gsdof));                % system matrix 
bb=sparse(zeros(gsdof,gsdof));                % system matrix 
 
index=sparse(zeros(gedof,1));                % index vector 
kinmtx2=sparse(zeros(3,gedof));              % kinematic matrix 
matmtx=sparse(zeros(3,3));                  % constitutive matrix 
 
%--------------------------------------------------------------------------------------- 
%  input data for boundary conditions for node n : bcdof(n) = 2n for y-axis, 2n-1 for x-
axis : Use drawmesh.m to find the nodes 
%--------------------------------------------------------------------------------------- 
 
bcdof = [2:2:2*col];              % constrained DOFs - x and y-direction 
 
 
%--------------------------------------------------------------------------------------- 
%   Constitutive matrix 
%--------------------------------------------------------------------------------------- 
 
matmtx=fematiso(1,emodule,poisson);                 % compute constitutive matrix  [D] 
 
%--------------------------------------------------------------------------------------- 
%  computation of element matrices and vectors and their assembly 
%--------------------------------------------------------------------------------------- 
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for iel=1:gnel                                       % loop for the total number of 
elements 
     
    nd(1)=gnodes(iel,1);                                 % 1st connected node for (iel)-
th element 
    nd(2)=gnodes(iel,2);                                 % 2nd connected node for (iel)-
th element 
    nd(3)=gnodes(iel,3);                                 % 3rd connected node for (iel)-
th element 
     
    x1=gcoord(nd(1),1);  
    y1=gcoord(nd(1),2);                                 % coord values of 1st node 
    x2=gcoord(nd(2),1);  
    y2=gcoord(nd(2),2);                                 % coord values of 2nd node 
    x3=gcoord(nd(3),1); 
    y3=gcoord(nd(3),2);                                 % coord values of 3rd node 
     
    index=feeldof(nd,nnel,ndof);                        % extract system dofs associated 
with element 
     
    %------------------------------------------------------- 
    %  find the derivatives of shape functions 
    %------------------------------------------------------- 
     
    area=0.5*(x1*y2 + x2*y3 + x3*y1 - x1*y3 - x2*y1 - x3*y2);     % area of triangule 
    area2=area*2; 
    dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)];           % derivatives w.r.t. x-axis 
    dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)];           % derivatives w.r.t. y-axis 
     
    kinmtx2=fekine2d(nnel,dhdx,dhdy);                  % compute kinematic matrix [B]   
    k=kinmtx2'*matmtx*kinmtx2*area;                    % compute element stiffness 
matrix  [Ke] 
    m = mmtriang(rho,area,2);                            % compute mass matrix  [M] 
     
    if ral_alpha == 0 & ral_beta == 0 
        b = mmtriang(damp,area,1);                       % Perform lumped damping 
    else 
        b = (ral_alpha * m) + (ral_beta * k);            % Perform Raleigh damping 
    end 
     
    kk=feasmbl1(kk,k,index);                            % assemble element matrices 
    mm=feasmbl1(mm,m,index);                            % assemble element matrices 
    bb = feasmbl1(bb,b,index);                          % assemble element matrices 
 
end; 
 
%----------------------------- 
%   Calculations 
%----------------------------- 
 
acc = mm \ (ff - kk*displ - bb*velc); 
 
for i = 1:size(bcdof,2)                    % apply constraints 
    ibc = bcdof(i); 
    acc(ibc,1) = 0; 
end; 
 
velc = velc + acc * deltt; 
displ = displ + velc * deltt; 
 

Mmtriang.m code listing 

function [m]=mmtriang(rho,area,type) 
 
%------------------------------------------------------------------------ 
%  Purpose: 
%     create a matrix of N'*a*N for use with mass and damping matrices 
%     for linear triangular elements with 6 DOF 
% 
%  Synopsis: 
%     [mm]=mmtriang(rho,area,type)  
% 
%  Variable Description: 
%     rho - mass density 
%     area - area of triangular element    
%     type - type of mass matrix (1=lumped, 2=consistent) 
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%------------------------------------------------------------------------ 
 
if type == 1 
    m = (rho*area/3)*eye(6); 
     
else 
    m = 2*eye(6); 
    m(1,3) = 1; m(1,5) = 1;m(2,4) = 1; m(2,6) = 1; 
    m(3,1) = 1; m(3,5) = 1;m(4,2) = 1; m(4,6) = 1; 
    m(5,1) = 1; m(5,3) = 1;m(6,2) = 1; m(6,4) = 1; 
    m = (rho*area/12)*m; 
end 
 

Nodalcon.m code listing 

function nodes = nodalcon(nel,col) 
%--------------------------------------------------------------------------------------- 
%  Purpose: 
%     Determines the nodal connectivity for each element 
%  Synopsis: 
%     nodes=nodalcon(nel,col) 
% 
%  Variable Description: 
%       Output parameters -     nodes : List of connected nodes for each element 
%       Input parameters -      nel : Number of elements 
%                               col : Number of columns 
%--------------------------------------------------------------------------------------- 
 
rowcounter = 0; 
colcounter = 0; 
even_odd = 1; 
 
temp1 = 1; 
temp2 = 2; 
temp3 = col + 2; 
 
for i = 1:nel         
          
    nodes(i,1) = temp1; 
    nodes(i,2) = temp2; 
    nodes(i,3) = temp3; 
    temp1 = temp1 + 1; 
    temp2 = temp2 + 1; 
    temp3 = temp3 + 1; 
     
    colcounter = colcounter + 1; 
     
     
    if colcounter == (col-1)                    % Changing rows 
          
        if even_odd == 1                        %Indicating odd row --> switch to even 
row     
        temp1 = 1 + (col*rowcounter); 
        temp2 = temp1 + col + 1; 
        temp3 = temp2 - 1; 
        colcounter = 0; 
        rowcounter = rowcounter + 1; 
        even_odd = 0; 
         
    else if even_odd == 0; 
            temp1 = 1 + (col*rowcounter);        
% Indicating even row --> switch to odd row 
            temp2 = temp1 + 1; 
            temp3 = temp1 + col + 1; 
            colcounter = 0; 
            even_odd = 1; 
        end; 
         
         
    end; 
     
 
    end; 
end; 
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Nodalcon2.m code listing 

function nodes = nodalcon2(nel,col) 
%--------------------------------------------------------------------------------------- 
%  Purpose: 
%     Determines the nodal connectivity for each element 
%  Synopsis: 
%     nodes=nodalcon(nel,col) 
% 
%  Variable Description: 
%       Output parameters -     nodes : List of connected nodes for each element 
%       Input parameters -      nel : Number of elements 
%                               col : Number of columns 
% 
% Last modified : 03/08/2004 
%--------------------------------------------------------------------------------------- 
 
colcounter = 0; 
even_odd = 1; 
right_left = 0; 
trigger = 0; 
 
temp1 = 1; 
temp2 = 2; 
temp3 = col + 1; 
 
for i = 1:nel   
     
    nodes(i,1) = temp1; 
    nodes(i,2) = temp2; 
    nodes(i,3) = temp3; 
     
     
    if even_odd == 1;  
        temp1 = temp1 + 1; 
        temp2 = temp2 + 1; 
        temp3 = temp3 + 1;   
        colcounter = colcounter + 1; 
    elseif even_odd == 0 
        if right_left == 0 
            temp2 = temp1 + 1; 
            temp1 = temp1 + col; 
            temp3 = temp3 + 1; 
            right_left = 1; 
        elseif right_left == 1 
            temp1 = temp2; 
            temp2 = temp1 + col; 
            right_left = 0; 
            colcounter = colcounter + 1; 
        end; 
    elseif even_odd == 2 
        temp1 = temp1 + 1; 
        temp2 = temp2 + 1; 
        temp3 = temp3 + 1;   
        colcounter = colcounter + 1; 
    end; 
     
    if colcounter == (col-1)  
         
        if even_odd == 0; 
            even_odd = 2; 
            temp1 = temp1 + col; 
            temp3 = temp2 + 1; 
            temp2 = temp2 - (col-1); 
            colcounter = 0; 
            trigger = 1; 
        elseif even_odd == 1   
            even_odd = 0; 
            temp1 = temp1 - (col-1); 
            colcounter = 0; 
        elseif even_odd == 2 & trigger == 1 
            even_odd = 1; 
            temp1 = temp2; 
            temp2 = temp1 + 1; 
            colcounter = 0; 
            trigger = 0; 
        end 
    end; 
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end; 
 

Optical.m code listing 

function f_length = optical(displ,col,fit,diam) 
%---------------------------------------------------------- 
%  Purpose: Optical module. Calculates the theoretical focal length based on defromation 
data from Mechanical module 
%   All user enterable data is inputted into this file 
% 
% Last modified : 02/09/2005 
%----------------------------------------------------------- 
 
left = size(displ,1) - 2*(col-2)        % y-SDOF of upper left node 
centre = size(displ,1) - (col-2)        % y-SDOF of upper centre node 
right = size(displ,1)                   % y-SDOF of upper right node 
 
diff_left = displ(left,1) - displ(centre,1) % difference between upper left and centre 
diff_right = displ(right,1) - displ(centre,1)   % difference between upper right and 
centre 
av_diff = (diff_left + diff_right)/2; 
 
if fit == 0     % parabolic fit 
    f_length = diam^2 / 4*av_diff 
     
elseif fit == 1     % spherical fit 
    f_length = ((diam^2 + 4*av_diff^2) / 8*av_diff) / 2 
     
end 
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