
Logical Methods in Computer Science
Vol. 9(2:10)2013, pp. 1–44
www.lmcs-online.org

Submitted Nov. 1, 2012
Published Jun. 25, 2013

TREE-AUTOMATIC WELL-FOUNDED TREES ∗

MARTIN HUSCHENBETT a, ALEXANDER KARTZOW b, JIAMOU LIU c, AND MARKUS LOHREY d

a Technische Universität Ilmenau, Germany
e-mail address: martin.huschenbett@tu-ilmenau.de

b,d Universität Leipzig, Germany
e-mail address: {kartzow, lohrey}@informatik.uni-leipzig.de

c Auckland University of Technology, New Zealand
e-mail address: jiamou.liu@aut.ac.nz

Abstract. We investigate tree-automatic well-founded trees. Using Delhommé’s decom-
position technique for tree-automatic structures, we show that the (ordinal) rank of a
tree-automatic well-founded tree is strictly below ω

ω. Moreover, we make a step towards
proving that the ranks of tree-automatic well-founded partial orders are bounded by ωωω

:
we prove this bound for what we call upwards linear partial orders. As an application
of our result, we show that the isomorphism problem for tree-automatic well-founded
trees is complete for level ∆0

ωω of the hyperarithmetical hierarchy with respect to Turing-
reductions.

1. Introduction

Various classes of infinite but finitely presented structures received a lot of attention in
algorithmic model theory [2]. Among the most important such classes of structures is
the class of string-automatic structures [17]. A (relational) structure is string-automatic if
its universe is a regular set of words and all relations can be recognized by synchronous
multi-tape automata. During the past 15 years a theory of string-automatic structures
has emerged. This theory was developed along two interrelated branches. The first is a
structural branch, which leads to (partial) characterizations of particular classes of string-
automatic structures [9, 16, 18, 19, 22]. The second is an algorithmic branch, which leads to
numerous decidability and undecidability, as well as complexity results for important algo-
rithmic problems for string-automatic structures [4, 18, 21]. One of the most fundamental

2012 ACM CCS: [Theory of computation]: Logic; Formal languages and automata theory—Tree
languages.

Key words and phrases: hyperarithmetical hierarchy, isomorphism problem, ordinal rank, tree-automatic
structures, well-founded trees.
∗ An extended abstract of this paper appeared at CiE 2012 [14] .

b,d The second and fourth author are supported by the DFG research project GELO.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(2:10)2013

c© M. Huschenbett, A. Kartzow, J. Liu, and M. Lohrey
CC© Creative Commons

http://creativecommons.org/about/licenses


2 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

results for string-automatic structures states that their first-order theories are uniformly
decidable [17].

By replacing strings and string automata by trees and tree automata, respectively,
Blumensath [3] generalized string-automatic structures to tree-automatic structures and
proved that their first-order theories are still uniformly decidable. However compared to
string-automatic structures, the theory of tree-automatic structures is less developed. The
only non-trivial characterization of a class of tree-automatic structures we are aware of
concerns ordinals. In [9] Delhommé proved that an ordinal is tree-automatic if and only if
it is strictly below ωωω

. Some complexity results for first-order theories of tree-automatic
structures are shown in [21]. Recently, Huschenbett proved that it is decidable whether a
given tree-automatic scattered linear order is string-automatic [12].

In this paper, we study tree-automatic well-founded trees. We stress here that in this
paper the term tree always refers to order trees T = (T,≤), i.e., partial orders that have the
shape of a tree, as opposed to successor trees where the edge relation is not transitive (except
for trivial cases). Using Delhommé’s decomposition technique for tree-automatic structures
[9], we show that the rank of a tree-automatic well-founded tree is strictly below ωω. As a
generalization of trees, we introduce the class of upwards linear partial orders. These are
orders where the elements above any fixed element form a linear suborder. If such an order
is well-founded and tree-automatic, then its rank is strictly below ωωω

. Unfortunately,
we do not know if this bound holds for all tree-automatic well-founded partial orders.
We will show in Example 3.27 that there is no hope to extend Delhommé’s technique
in order to obtain bounds on the ranks of all tree-automatic well-founded partial orders.
Thus, characterizing the ranks of well-founded partial orders requires the development of
completely new techniques.

We apply this result to the isomorphism problem for tree-automatic well-founded trees.
In [20], it was shown that the isomorphism problem for string-automatic well-founded trees
is complete for level ∆0

ω of the hyperarithmetical hierarchy. In other words, the isomorphism
problem for string-automatic well-founded trees is recursively equivalent to true arithmetic.
We show that the rank of well-founded computable trees determines the complexity of the
isomorphism problem in the following sense: The isomorphism problem for well-founded
computable trees of rank at most λ (where λ is a computable limit ordinal) belongs to level
∆0

λ of the hyperarithmetical hierarchy. Since we know that the rank of a tree-automatic
well-founded tree is strictly below ωω, this implies that the isomorphism problem for tree-
automatic well-founded trees belongs to level ∆0

ωω of the hyperarithmetical hierarchy. We
also provide a corresponding lower bound. We prove that the isomorphism problem for
tree-automatic well-founded trees is ∆0

ωω -complete under Turing-reductions.
Let us remark that for non-well-founded order trees, the isomorphism problem is com-

plete for Σ1
1 (the first existential level of the analytical hierarchy) already in the string-

automatic case [20], and this complexity is in a certain sense maximal, since the isomor-
phism problem for the class of all computable structures is Σ1

1-complete as well [6, 10]. Let
us also emphasize that our proof techniques do not work for successor trees.

2. Preliminaries

We write N>0 for N \ {0}. For M,N sets, 2M denotes the powerset of M and NM denotes
the set of functions from M to N . We denote by M ⊔ N (by

⊔

i∈N Mi, respectively) the



TREE-AUTOMATIC WELL-FOUNDED TREES 3

disjoint union of the sets M and N ((Mi)i∈N , respectively). For any (partial) function f
we write dom(f) for the domain of f .

A (finite and relational) signature τ = (R, ar) is a finite set R of relation symbols
together with a map ar : R → N>0 assigning to each each R ∈ R its arity ar(R). A τ -
structure S = (S, (RS)R∈R) consists of a domain S and an ar(R)-ary relation RS on S for
each R ∈ R. For T ⊆ S, we denote the substructure of S induced by the restriction of S
to the set T as S↾T . In this paper we consider only structures with countable domains.

A partial order A = (A,≤) is regarded as a structure over a signature consisting of a
single binary relation symbol ≤. Every substructure of A is again a partial order. We call
a subset B ⊆ A an antichain if for all distinct a, b ∈ B, neither a ≤ b nor b ≤ a.

Let A be a (not necessarily finite) set. We use � to denote the prefix order on finite
words in A∗, i.e., for u, v ∈ A∗, u � v if v = uw for some w ∈ A∗. For a language L ⊆ A∗,
let pref(L) = {w ∈ A∗ | ∃u ∈ L : w � u} be its prefix-closure.

2.1. Trees, forests and upwards linear partial orders. Let P = (P,≤) be a partial
order. We say that P is connected if the undirected graph (P, {(a, b) | a ≤ b or b ≤ a}) is
connected. For an element p ∈ P let ↑ p = {a ∈ P | p < a} be its (strict) upwards closure
and ↓ p = {a ∈ P | a < p} be its (strict) downwards closure. Two elements a, b ∈ P are
comparable if a ≤ b or b ≤ a. We say that P is upwards linear if for every p ∈ P , ↑ p induces
a linear order P↾↑p. A forest is an upwards linear partial order F = (F,≤) such that for
every p ∈ P the set ↑ p induces a finite linear order. A tree is a forest which has a greatest
element, which is called the root of the tree. Note that a forest is a disjoint union of (an
arbitrary number of) trees and all its substructures are also forests. For a given forest F,
we denote as 〈F〉 the tree that results from adding a new root (i.e., a new greatest element)
to F. If F is the domain of F we write 〈F 〉 for the domain of 〈F〉. For a node u in F, F(u)
denotes the subtree of F at u, i.e., F(u) = F ↾{v∈F |v≤u}. We define the successor relation of
F as

EF = {(x, y) ∈ F 2 | x > y,¬∃z : x > z > y}.

For x ∈ F the set of children of x in F is EF(x) = {y ∈ F | (x, y) ∈ EF}. The set of
leaves of F is leaves(F) = {x ∈ F | EF(x) = ∅}. A partial order P = (P,≤) is well-founded,
if it does not contain an infinite descending chain a1 > a2 > a3 > · · · . The sum of two
partial orders P1 = (P1,≤1) and P2 = (P2,≤2) with P1 ∩ P2 = ∅ is the partial order
P1 + P2 = (P1 ∪ P2,≤), where a ≤ b if either (a, b ∈ P1 and a ≤1 b), or (a, b ∈ P2 and
a ≤2 b), or (a ∈ P1 and b ∈ P2).

We write wulpo as an abbreviation for well-founded upwards linear partial order. Note
that the class of wulpo’s contains all ordinals and all well-founded forests and is closed
under taking substructures.

Let P = (P,≤) be some partial order. In the following, we set p < ∞ for all p ∈ P .
In particular, ∞ is comparable to every p ∈ P ∪ {∞} and max(p,∞) = ∞ for every
p ∈ P ∪{∞}. For p1 ∈ P and p2 ∈ P ∪{∞} with p1 ≤ p2, we denote by [p1, p2) the interval
{p ∈ P | p1 ≤ p < p2}. We call this interval branching free if for all p ∈ [p1, p2) we have

↓ p =↓ p1 + [p1, p).

In other words: [p1, p2) is branching free, if for every p ∈ [p1, p2) and every x < p, the points
x and p1 are comparable.



4 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Lemma 2.1. Let p1 ∈ P and p2 ∈ P ∪{∞} with p1 ≤ p2. If [p1, p2) is branching free, then
for every p ∈ [p1, p2) also [p1, p) is branching free.

Proof. Assume that x < p′ ∈ [p1, p). We have to show that x and p1 are comparable. But
this clear, since also x < p′ ∈ [p1, p2) and the latter interval is branching free.

Lemma 2.2. Let P = (P,≤) be an upwards linear partial order and let a, c ∈ P and
b, d ∈ P ∪ {∞} with a ≤ b and c ≤ d. If [a, b) and [c, d) are branching free and not disjoint,
then a and c are comparable, and b and d are comparable.

Proof. Assume that [a, b) and [c, d) are not disjoint and let p ∈ [a, b) ∩ [c, d). Since P is
upwards linear, the assumptions p < b and p < d imply that b and d are comparable. More-
over, since c ≤ p ∈ [a, b) and [a, b) is branching free, the elements c and a are comparable
too.

We call a branching free interval maximal branching free if it is maximal with respect
to set inclusion. We use this interval notation mostly for upwards linear partial orders. In
this case every interval induces a linear suborder.

Lemma 2.3. Let P = (P,≤) be an upwards linear partial order and let a, c ∈ P and
b, d ∈ P ∪ {∞} with a ≤ b and c ≤ d. If [a, b) and [c, d) are maximal branching free, then
they are either disjoint or equal.

Proof. If [a, b) and [c, d) are not disjoint, Lemma 2.2 implies that max(b, d) and min(a, c) are
defined. We claim that [min(a, c),max(b, d)) is also branching free. Since we assumed [a, b)
and [c, d) to be maximal branching free, this implies [a, b) = [min(a, c),max(b, d)) = [c, d).

Let us now prove the claim. If a = c or b = d or (a < c, d < b) or (c < a, b < d) then
[min(a, c),max(b, d)) is [a, b) or [c, d) and hence branching free. The remaining two cases
are symmetric. Hence we can assume that a < c and b < d and we have to show that [a, d)
is branching free. Since a ≤ b and a ≤ c, we have either b ≤ c or c < b. If b ≤ c, then the
intervals [a, b) and [c, d) would be disjoint. Hence we have

a < c < b < d.

To show that [a, d) is branching free, let x ∈ [a, d) and y < x. We have to show that a and
y are comparable.

If x ∈ [a, b) then a and y are comparable since [a, b) is branching free. So, assume that
x < b does not hold. Since P is upwards linear and a ≤ b, a ≤ x, it follows b ≤ x. In
particular x ∈ [c, d). Since [c, d) is branching free, c and y must be comparable. If c ≤ y
then also a ≤ y. Hence y < c. Since c ∈ [a, b) and [a, b) is branching free, y and a are
comparable.

Lemma 2.4. Let P be a wulpo. Every node of P is contained in a unique maximal branching
free interval.

Proof. Fix a node p ∈ P . Firstly, we define a node p+ > p, secondly we define a node
p− ≤ p, and finally, we prove that [p−, p+) is maximal branching free. If for all p′ > p and
all p′′ < p′, p′′ and p are comparable, set p+ := ∞. Note that [p, p+) is branching free.
Otherwise, by well-foundedness and upwards linearity, there is a minimal element p+ > p
for which there exists p′ < p+ incomparable to p. Thus, [p, p+) is branching free.

Lemma 2.2 implies that, for all p1 ≤ p, p2 ≤ p, if [p1, p+) and [p2, p+) are branching
free, then p1 and p2 are comparable. By well-foundedness, there is a minimal p− ≤ p such
that I := [p−, p+) is branching free.



TREE-AUTOMATIC WELL-FOUNDED TREES 5

In order to prove maximality, assume that for some p1 ≤ p < p2, [p1, p2) is branching
free. First we show that p+ 6∈ [p1, p2): If p+ ∈ [p1, p2) then, since [p1, p2) is branching
free, for every p′ < p+, p

′ and p1 are comparable. By upwards linearity, if p′ and p1 are
comparable then also p′ and p are comparable. Hence, every p′ < p+ is comparable to p.
But this contradicts the choice of p+. Hence, we have p+ 6∈ [p1, p2).

Since p < p2 and p < p+, p2 and p+ are comparable. We cannot have p+ < p2. Hence,
max(p2, p+) = p+. By Lemma 2.3, the interval

[min(p1, p−), p+) = [min(p1, p−),max(p2, p+))

is branching free. But by definition of p−, I is the minimal branching free interval of the
form [p, p+). Thus, p− ≤ p1 and [p1, p2) is contained in I. This shows that I is maximal
branching free.

Lemma 2.3 and 2.4 imply that every wulpo is partitioned into its maximal branching
free intervals.

Lemma 2.5. Let P be a wulpo and I 6= J two different maximal branching free intervals
of P. For p1 ∈ I and p2 ∈ J , if p1 < p2 then there is a p ∈ P such that p < p2 but p and
p1 are incomparable, i.e., ↓ p2 6=↓ p1 ∪ [p1, p2).

Proof. Heading for a contradiction, assume that

↓ p2 =↓ p1 ∪ [p1, p2). (2.1)

Note that there is a pm ∈ P ∪ {∞} such that K := [p1, pm) = {p ∈ P | p1 ≤ p ≤ p2}. Due
to (2.1), K is branching free. Using Lemma 2.3 we conclude that I ∪K ∪ J is branching
free contradicting maximality of I and J .

We finally discuss the replacement of maximal branching free intervals in wulpo’s. Let
P = (P,≤) be a wulpo and I = [p0, p1) a maximal branching free interval. For each i ∈ I
and each p ∈ P \ I we have

p ≤ i if and only if p ≤ i′ for all i′ ∈ I and

p ≥ i if and only if p ≥ i′ for all i′ ∈ I

Let J be some ordinal. Then we can replace I by J and obtain the wulpoP′ = ((P\I)⊔J,≤′)
where p ≤′ p′ if

(1) p, p′ ∈ P \ I and p ≤ p′,
(2) p, p′ ∈ J and p ≤ p′ in J ,
(3) p ∈ P \ I, p′ ∈ J and p ≤ p0, or
(4) p ∈ J , p′ ∈ P \ I and p0 ≤ p′.

Note that the maximal branching free intervals of P′ are J and the maximal branching free
intervals of P except for I. Analogously, one can also replace simultaneously all maximal
branching free intervals of a wulpo by new ordinals. This kind of replacement will be used
in Lemma 3.15.



6 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

2.2. Ordinal arithmetic and the ordinal rank. We use standard terminology concern-
ing ordinals; see e.g. [25]. We briefly recall the operations of natural sum and natural
product on ordinals. The natural sum of ordinals α and β, denoted by α⊕ β, is the largest
(well-founded) linearization of α ⊔ β (cf. [7], where the following statements can be found).
It is commutative, associative and strictly monotone, i.e., α⊕β < α⊕γ if and only if β < γ.
Furthermore,

α⊕ β = ωγ implies α = ωγ or β = ωγ . (2.2)

The natural product (cf. [7]) of α and β, denoted as α ⊗ β, is the largest (well-founded)
linearization of the direct (Cartesian) product of α and β with the componentwise order.
It is commutative, associative, and strictly monotone, i.e., for α 6= 0 we have α⊗β < α⊗ γ
if and only if β < γ. Furthermore,

α⊗ β = ωωγ

implies α = ωωγ

or β = ωωγ

. (2.3)

Lemma 2.6. Let α, β, γ be ordinals. Then

(α ⊗ β) + (α⊗ γ) ≤ α⊗ (β + γ)

where + is the usual sum of ordinals.

Proof. Observe that (α⊗β)+(α⊗γ) is a well-order with domain (α×β)⊔(α×γ) = α×(β⊔γ)
such that for all a < a′ ∈ α, b < b′ ∈ β and c < c′ ∈ γ we have (a, b) < (a′, c), (a, b) < (a′, b),
(a, c) < (a′, c), (a, b) < (a, b′), and (a, c) < (a, c′). Thus, we conclude that it is a linearization
of the product of the orders α and β + γ. Since α ⊗ (β + γ) is the largest linearization of
these two orders, the claim follows immediately.

Let us recall the (ordinal) rank of a well-founded partial order. For a set of ordinals
M , we denote by sup(M) the supremum of M , where sup(∅) = 0.

Definition 2.7. Let P be a well-founded partial order. The rank of an element p ∈ P is
inductively defined by

rank(p,P) = sup{rank(p′,P) + 1 | p′ < p ∈ P}.

The rank of P (also called the ordinal height of P) is

rank(P) = sup{rank(p,P) + 1 | p ∈ P}.

If the partial order P is clear from the context, we will write rank(p) instead of
rank(p,P). Note that rank(p,P) = rank(P↾↓p). Also note that the rank of the ordinal
α is exactly α. Next, we collect some useful facts about the rank.

Lemma 2.8. Let P = (P,≤) be a well-founded partial order and S ⊆ P a subset. The
induced suborder P↾S has rank at most rank(P).

Proof. By induction on the rank of an element s ∈ S (with respect to P) one easily shows
that the rank of s in P↾S is bounded by the rank of s in P.



TREE-AUTOMATIC WELL-FOUNDED TREES 7

We will also use a result proved by Khoussainov and Minnes on decomposition of partial
orders into suborders.

Lemma 2.9 ([16], Lemma 3.3). Let P = (P,≤) be a well-founded partial order, and let
P = P1 ⊔ P2 be a partition of the domain of P. Setting Pi = P ↾Pi

for i ∈ {1, 2}, we have
rank(P) ≤ rank(P1)⊕ rank(P2).

Lemma 2.10. Let P = (P,≤) be a well-founded partial order and p1 ∈ P , p2 ∈ P ∪ {∞}
with p1 ≤ p2. If [p1, p2) is branching free, then rank(p) = rank(p1) + rank([p1, p)) for each
p ∈ [p1, p2). Moreover, if p2 ∈ P , then rank(p2) ≥ rank(p1) + rank([p1, p2)).

Proof. Let p ∈ [p1, p2). We prove the first statement of the lemma by induction on α :=
rank([p1, p)). We distinguish three cases:

Case 1. α = 0. We must have [p1, p) = ∅, i.e., p1 = p2. Hence rank(p2) = rank(p1) + 0.

Case 2. α is a successor ordinal, i.e., α = β + 1. Then by definition of the rank there is an
element p′ ∈ [p1, p) such that

rank(p′, [p1, p)) = rank([p1, p
′)) = β.

Moreover, rank(p) ≥ rank(p′) + 1 since p′ < p. By induction hypothesis, we conclude that

rank(p) ≥ rank(p′) + 1 = rank(p1) + β + 1 = rank(p1) + α.

Moreover, for every p′ ∈ [p1, p) we must have rank([p1, p
′)) ≤ β. Since [p1, p2) is branching

free, we have ↓ p′ =↓ p1 + [p1, p
′) for every p′ < p. Therefore

rank(p) = sup{rank(p′) + 1 | p′ ∈ [p1, p)}.

By induction,
rank(p′) = rank(p1) + rank([p1, p

′)) ≤ rank(p1) + β.

Hence, rank(p) ≤ rank(p1) + β + 1 = rank(p1) + α.

Case 3. α is a limit ordinal. Since [p1, p2) is branching free, for each p′ < p one of the
following holds.

(1) p′ ∈ [p1, p) and there is some β < α such that rank([p1, p
′)) = β. By induction hypoth-

esis, rank(p′) = rank(p1) + β.
(2) p′ < p1 whence rank(p′) ≤ rank(p1).

Thus, we have

rank(p) ≤ sup{rank(p1) + β + 1 | β < α}

= sup{rank(p1) + β | β < α}

= rank(p1) + α.

On the other hand, rank([p1, p)) = α implies that for each β < α there is a node pβ ∈ [p1, p)
such that β ≤ rank([p1, pβ) < α. By induction, we get rank(pβ) ≥ rank(p1) + β. Thus,

rank(p) ≥ sup{rank(pβ) + 1 | β < α}

≥ sup{rank(p1) + β + 1 | β < α}

= sup{rank(p1) + β | β < α}

= rank(p1) + α.



8 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Finally, the second statement of the lemma follows easily:

rank(p2) ≥ sup{rank(p) + 1 | p ∈ [p1, p2)}

= sup{rank(p1) + rank([p1, p)) + 1 | p ∈ [p1, p2)}

= rank(p1) + rank([p1, p2))

This concludes the proof of the lemma.

Corollary 2.11. Let P be a partial order and p1 ≤ p2 ∈ P such that [p1, p2) is branching
free. For every p ∈ [p1, p2), rank(p) < rank(p1) + rank([p1, p2)).

2.3. Finitely labeled trees. We identify a non-empty, finite, prefix-closed subset T ⊆
{0, 1}∗ with the tree (T,�) and call T a finite binary tree. Note that ε is the largest
element of the inverse prefix relation � and hence the root of the tree. We denote the set
of all finite binary trees as T fin

2 . For T ∈ T fin
2 let

fr(T ) = T{0, 1} \ T and cl(T ) = T ∪ fr(T )

be the frontier and closure of T . Notice that cl(T ) ∈ T fin
2 .

A finite Σ-labeled binary tree is a pair (T, λ), where T ∈ T fin
2 and λ : T → Σ is a

labeling function. We denote the set of all finite Σ-labeled binary trees by T fin

2,Σ; elements

of T fin

2,Σ will be denoted by lower case letters (s, t, . . .). When Σ is the singleton set {♯},

we will simply consider a tree t ∈ T fin

2,Σ as unlabeled, i.e., t ∈ T fin
2 . The set of leaves of

t = (T, λ) is leaves(t) = leaves(T,�). We use the following operations on labeled trees
t = (T, λ) ∈ T fin

2,Σ. For d ∈ T , the subtree rooted at d is the tree t(d) = (U, µ) ∈ T fin

2,Σ with

U = {u ∈ {0, 1}∗ | du ∈ T} and µ(u) = λ(du). For trees t1, . . . , tn ∈ T fin

2,Σ and nodes

d1, . . . , dn ∈ cl(T ) forming an antichain (i.e., di is not a prefix of dj for i 6= j) we consider

the tree t[d1/t1, . . . , dn/tn] ∈ T fin

2,Σ which is obtained from t by simultaneously replacing for

each i the subtree rooted at di by ti. Formally, t[d1/t1, . . . , dn/tn] = (V, ν) is defined by

V = (T \ ({d1, . . . , dn}{0, 1}
∗)) ∪

⋃

1≤i≤n

diTi and

ν(v) =

{

λi(u) if v = diu for some (unique) i ∈ {1, . . . , n},

λ(v) otherwise,

where ti = (Ti, λi).
We fix a new symbol ⋄ 6∈ Σ. Let Σ⋄ denote the set Σ ⊔ {⋄} and Σn

⋄ the n-fold product
Σ⋄ × · · · × Σ⋄. Let t̄ = (t1, . . . , tn) ∈ (T fin

2,Σ)
n be a tuple of trees with ti = (Ti, λi). The

convolution of t̄ is the Σn
⋄ -labeled binary tree ⊗t̄ = (T, λ) ∈ T fin

2,Σn
⋄
defined by

T =
⋃

1≤i≤n

Ti and

λ(u) = (λ′
1(u), . . . , λ

′
n(u)) , where

λ′
i(u) =

{

λi(u) if u ∈ Ti,

⋄ if u ∈ T \ Ti.



TREE-AUTOMATIC WELL-FOUNDED TREES 9

Instead of ⊗(t1, t2, . . . , tn) we sometimes also write t1 ⊗ · · · ⊗ tn. Finally, for any n-ary
relation R ⊆ (T fin

2,Σ)
n we define

⊗R = {⊗t̄ | t̄ ∈ R} ⊆ T fin

2,Σn
⋄
.

2.4. Tree automata and tree-automatic structures. Let Σ be a finite alphabet. A
(top-down) tree automaton over Σ is a tuple A = (Q,∆, I, F ), where Q is the finite
set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, and
∆ ⊆ (Q \ F )× Σ×Q×Q is the transition relation.1 Given a finite Σ-labeled binary tree
t = (T, λ) ∈ T fin

2,Σ, a successful run of A on t is a mapping ρ : cl(T ) → Q such that

(1) ρ(ε) ∈ I,
(2) ρ(fr(T )) ⊆ F , and
(3) (ρ(d), λ(d), ρ(d0), ρ(d1)) ∈ ∆ for every d ∈ T .

Let L(A) be the set of all t ∈ T fin
2,Σ which admit a successful run of A. A set L ⊆ T fin

2,Σ is

called regular if there is a tree automaton A over Σ with L = L(A).
A successful run ρ of A on t = (T, λ) ∈ T fin

2,Σ naturally defines a ((Σ× (Q \ F )) ∪ F )-

labeled binary tree tree(ρ) = (cl(T ), µ) such that µ(d) = (λ(d), ρ(d)) for every d ∈ T and
µ(d) = ρ(d) for every d ∈ fr(T ). Run(A, t) denotes the set of all trees tree(ρ) where ρ is a
successful run of A on t. Let Run(A) =

⋃

t∈L(A) Run(A, t). This is also a regular set: a tree

automaton for Run(A) can be obtained by replacing every transition (p, a, p1, p2) ∈ ∆ by
(p, (a, p), p1, p2) and adding transitions (f, f,⊥,⊥) for each final state f ∈ F where ⊥ is a
new state which is the only final state of the new automaton. For notational simplicity we
refer to tree(ρ) simply as ρ.

A tree automaton A = (Q,∆, I, F ) is called bottom-up deterministic if

(1) for all p, q ∈ Q and a ∈ Σ there is a unique r ∈ Q with (r, a, p, q) ∈ ∆ and
(2) F is a singleton set.

In this situation, for F = {q0}, a tree t = (T, λ) ∈ T fin

2,Σ, a node u ∈ cl(T ), a set U ⊆ fr(T )

and a map ζ : U → Q we recursively define a state A(t, u, ζ) ∈ Q by

A(t, u, ζ) =







r if u ∈ T and (r, λ(u),A(t, u0, ζ),A(t, u1, ζ)) ∈ ∆,

ζ(u) if u ∈ U ,

q0 if u ∈ fr(T ) \ U .

We omit the second parameter if u = ε and the third one if U = ∅. Notice that A(t, u) =
A(t(u)) for all u ∈ T . The tree t admits a successful run ρ of A if and only if A(t) ∈ I. It
is well known that for each tree automaton A one can compute a bottom-up deterministic
tree automaton A′ with L(A) = L(A′).

An n-ary relation R ⊆ (T fin
2,Σ)

n is called tree-automatic if there is a tree automaton AR

over Σn
⋄ such that L(AR) = ⊗R. A relational structure S is called tree-automatic over Σ if

its domain S is a regular subset of T fin

2,Σ and each of its atomic relations RS is tree-automatic;
any tuple P of automata that accept the domain and the relations of S is called a tree-
automatic presentation of S. In this case, we write S(P) forS. If a tree-automatic structure
S is isomorphic to a structure S′, then S is called a tree-automatic copy of S′ and S′ is

1In contrast to the usual definition, we disallow transitions starting in final states. Obviously this re-
stricted version of tree-automata is equivalent to the usual one. Our definition simplifies some constructions
because runs on a tree t only assume final states on the frontier of t.



10 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

tree-automatically presentable. In this paper we sometimes abuse the terminology referring
to S′ as simply tree-automatic and calling a tree-automatic presentation of S also a tree-
automatic presentations of S′. We also simplify our statements by saying “given/compute
a tree-automatic structure S” for “given/compute a tree-automatic presentation P of a
structureS(P)”. The structures (N,+) and (N, ·) are examples of tree-automatic structures.

A tree-automatic structure over a singleton alphabet (i.e., the domain of the structure
is a subset of T fin

2 ) is called unary tree-automatic. Moreover, let

Tbin = {t ∈ T fin

2 | ∀u ∈ t : u0 ∈ t ⇔ u1 ∈ t}

be the set of all finite (unlabeled) full binary trees. We will make use of the following simple
lemma.

Lemma 2.12. For every tree-automatic structure S there is an isomorphic unary tree-
automatic structure S′ whose domain is a subset of Tbin. Moreover, there is a computable
isomorphism from S to S′.

Proof. Let Σ be some finite alphabet; w.l.o.g. assume that Σ = {1, 2, . . . , n}. For 1 ≤ i ≤ n
let ai = pref({0, 10, 110, . . . , 1i−10, 1i}) ∈ Tbin. We inductively define an injective mapping
unlabel : T fin

2,Σ → Tbin as follows: Let t = (T, λ) ∈ T fin

2,Σ and for i ∈ {0, 1} let ti = t(i) be the

subtree of t rooted at node i, where we set ti = ∅ if i /∈ T . Then

unlabel(t) = {ε, 0} ∪ 00unlabel(t0) ∪ 01unlabel(t1) ∪ 1aλ(ε),

where we set unlabel(∅) = ∅. By induction over the size of t it easily follows that the mapping
unlabel is indeed injective. We show that for every tree-automatic relation R ⊆ (T fin

2,Σ)
k, the

relation
unlabel(R) = {(unlabel(t1), . . . , unlabel(tk)) | (t1, . . . , tk) ∈ R}

is also tree-automatic. SupposeA = (Q,∆, I, F ) is a tree automaton recognizing the relation
R. We construct a (top-down) tree automaton A′ as follows: The state set of A′ contains
the set

Q ∪ (Q×Q) ∪ {⋄, 1, 2, . . . , n}n ∪ {⊥}

(in addition A′ contains some auxiliary states that we do not specify), where ⊥ is final
(states from F are no longer final). For a state q ∈ Q, A′ contains the following transitions
(we omit here the unique node label, which formally should be the second component of
every transition):

(q, (p, r), (x1, . . . , xk)) if (q, (x1, . . . , xk), p, r) ∈ ∆ and (q,⊥,⊥) for q ∈ F.

For a state (p, r) ∈ Q×Q, ∆′ contains the following transitions:

((p, r), p, r).

Finally, the tree automaton A′ contains additional states and transitions such that from a
state (x1, . . . , xk) ∈ {⋄, 1, 2, . . . , n}n only the tree pref(s1 ⊗ s2 ⊗ · · · ⊗ sn) with

si =

{

axi
if xi ∈ {1, . . . , n},

{ε} if xi = ⋄.

is accepted. Now let t1, . . . , tk ∈ T fin

2,Σ and q ∈ Q. A straightforward induction on the size

of trees shows that A accepts the convolution t1 ⊗ · · · ⊗ tk via a run ρ with ρ(ε) = q if and
only if A′ accepts unlabel(t1)⊗ · · · ⊗ unlabel(tk) via a run ρ′ with ρ′(ε) = q.



TREE-AUTOMATIC WELL-FOUNDED TREES 11

The above considerations shows that for every tree-automatic structure S there exists
an isomorphic unary tree-automatic structure S′, whose domain is a subset of Tbin. An
isomorphism between S and S′ is given by the computable mapping unlabel. This proves
the lemma.

Consider FO[τ ] + ∃∞ + ∃chain, the first-order logic over the signature τ extended by
the quantifiers ∃∞ (“there are infinitely many”) and the chain-quantifier ∃chain (if ϕ(x, y)
is some formula, then ∃chainϕ(x, y) asserts that ϕ is a partial order and there is an infinite
increasing ϕ-chain). Let ϕ(x1, . . . , xm, y1, . . . , yn) be a formula of this logic in the signature
of some structure S. For all b̄ ∈ Sn we define the m-ary relation

ϕS(·, b̄) = {ā ∈ Sm | S |= ϕ(ā, b̄)}

on S. In case of n = 0 we simply write ϕS instead of ϕS(·). The following theorem from
[3, 13, 26] lays out the main motivation for investigating tree-automatic structures.

Theorem 2.13. From a tree-automatic presentation P of a structure S(P) over the signa-
ture τ and an FO[τ ]+∃∞+∃chain-formula ϕ(x) one can compute a tree automaton accepting

⊗ϕS(P). In particular, the FO[τ ] + ∃∞ + ∃chain-theory of any tree-automatic structure S is
(uniformly) decidable.

Note that the property of being a tree is expressible in FO[≤] + ∃∞. Moreover, the
chain-quantifier allows to define well-foundedness of a tree. Hence, we obtain:

Corollary 2.14. The class of tree-automatic well-founded trees is decidable.

Let K be a class of tree-automatic presentations. The isomorphism problem Iso(K) is
the set of pairs (P1,P2) ∈ K×K of tree-automatic presentations with S(P1) ∼= S(P2). If K
is the class of tree-automatic presentations for a class C of relational structures (e.g. trees),
then we briefly speak of the isomorphism problem for (tree-automatic members of) C. The
isomorphism problem for the class of all tree-automatic structures is complete for Σ1

1, the
first level of the analytical hierarchy; this holds already for string-automatic trees [18, 20].

3. Bounding the rank of tree-automatic wulpo’s and well-founded trees

In this section we show that the rank of a tree-automatic wulpo is strictly below ωωω
. As a

corollary, we obtain that the rank of every tree-automatic well-founded tree is strictly below
ωω. The first part of our proof is a refinement of Delhommé’s decomposition theorem for
tree-automatic structures [9]. This result shows that for a given tree-automatic structure
A and a first-order formula ϕ(x, ȳ) all substructures induced by ϕ (via different tuples
s̄ of parameters) are composed from a finite set SA

ϕ of structures using the operations
of box-augmentation and sum-augmentation. Roughly speaking, a structure A is a sum-
augmentation of structures B1, . . . ,Bn if there is a finite partition of the domain of A
which induces the substructures B1, . . . ,Bn (see Definition 3.1). The structure A is a box-
augmentation of B1, . . . ,Bn if its domain is a finite product of copies of the domains of
B1, . . . ,Bn such that fixing all but the ith component of this product arbitrarily results in
a structure isomorphic to Bi (see Definition 3.1).

Let ν be a function assigning ordinals to structures. An ordinal α is ν-indecomposable if
for all structuresB1, . . . ,Bn and all sum- or box-augmentations A of them, ν(A) = α implies
ν(Bi) = α for some i ∈ {1, . . . , n} (see Definition 3.7). Delhommé’s result implies the
following. The substructures of a tree-automatic structure A (induced by a fixed first-order



12 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

formula ϕ) only take finitely many ν-indecomposable values. Unfortunately, Delhommé
never published a proof of this result. Since our further arguments rely on this proof, we
reprove his result in Sections 3.1 and 3.2. More precisely, we strengthen his result in the
following way.

• All box-augmentations occurring in the decomposition of tree-automatic substructures
provided by Delhommé’s result are tamely colorable. Roughly speaking, A is a tamely
colorable box-augmentation of B1, . . . ,Bn if there are finite colorings of the Bi and a
simple rule how to completely reconstruct A from the Bi and these colorings.

• We introduce a notion of ν-indecomposability for intervals of ordinals: we say [α1, α2] is
ν-indecomposable if
(1) for all structuresB1, . . . ,Bn and all sum-augmentations A of them, ν(A) = α2 implies

ν(Bi) = α2 for some i ∈ {1, . . . , n} and
(2) for all structures B1, . . . ,Bn and all tamely colorable box-augmentations A of them,

ν(A) = α2 implies ν(Bi) ∈ [α1, α2] for some i ∈ {1, . . . , n}.

It follows directly that for a sequence α0 < α1 < α2 < · · · of ordinals such that each
interval [αi, αi+1] is ν-indecomposable, the substructures of a tree-automatic structure A

(induced by a first-order formula ϕ) take only finitely many values among the αi under ν
(Proposition 3.9).

In Section 3.3, we prove that the rank of any tree-automatic wulpo is bounded by
ωωω

and in the case of a tree-automatic well-founded forest its rank is bounded by ωω.
We prove this result using rank-indecomposability: we can prove that all intervals of the

form [ωωα
, ωωα+1

] are rank-indecomposable (if we restrict the domain of rank to the class
of wulpo’s). Thus, there are infinitely many rank-indecomposable intervals below ωωω

. A
simple transfinite induction shows that for every well-founded partial order P of rank α
and for all β < α, there is a node p ∈ P such that P↾{p′|p′<p} is of rank β. Thus, for
a fixed tree-automatic well-founded partial order P, the automaton corresponding to the
formula x < y induces substructures of all ranks β < rank(P). For a tree-automatic wulpo
P we have seen that these substructures may only take finitely many values of the form

ωωi
. Thus, one concludes immediately that rank(P) < ωωω

. The bound on the ranks of
tree-automatic forests follows from an analogous proof: writing rankF for the restriction of
rank to forests, we can prove that the interval [ωi, ωi+1] is rankF -indecomposable.

Note that Delhommé’s original result is too weak for our proof. Using the definition
of rank-indecomposable values with respect to all box-augmentations, the ordinals 0 and
1 are the only rank-indecomposable values. The problem is that any forest containing an
infinite antichain is the box-augmentation of two infinite antichains. Note that an infinite
antichain has rank 1. Hence, ordinals above 1 are not rankF -indecomposable with respect
to Delhommé’s original definition. The crucial point is that such a box-augmentation of
two infinite antichains in general is not tamely colorable.

3.1. Delhommé’s decomposition theorem for tree-automatic structures. In this
section we reprove Delhommé’s decomposition theorem [9]. Beforehand, we give the precise
definitions of sum- and box-augmentations. After providing a proof of Delhommé’s original
result, we introduce tamely colorable box-augmentations and improve this result. For the
rest of this section, we fix a relational signature τ = (R, ar).

Definition 3.1. Let A and B1, . . . ,Bn be τ -structures.



TREE-AUTOMATIC WELL-FOUNDED TREES 13

(1) We say that A is a sum-augmentation of (B1, . . . ,Bn) if there is a partition

A =
⊔

1≤i≤n

Ai

of the domain of A such that A↾Ai
∼= Bi for all 1 ≤ i ≤ n.

(2) We say that A is a box-augmentation of (B1, . . . ,Bn) if there is a bijection

η :
∏

1≤i≤n

Bi → A

such that for each 1 ≤ k ≤ n and all d̄ = (d1, . . . , dk−1, dk+1, . . . , dn) ∈
∏

1≤i≤n,i 6=k Bi

ηd̄k : Bk → A

ηd̄k(e) = η(d1, . . . dk−1, e, dk+1, . . . dn)

is an (isomorphic) embedding of Bk into A.

Remark 3.2. Whenever A is a sum- or box-augmentation of (B1, . . . ,Bn), the Bi are
substructures of A. In particular, if A is a forest or a wulpo, the Bi are also forests or
wulpo’s, respectively.

To simplify notation, for a τ -structure A, an FO[τ ]+∃∞+∃chain-formula ϕ(x, y1, . . . , yn),
and a tuple s̄ ∈ An we use A↾ϕ,s̄ as an abbreviation for A↾ϕA(·,s̄). Delhommé’s decomposition
theorem is the following.

Theorem 3.3. From a given tree-automatic τ -structure A and an FO[τ ] + ∃∞ + ∃chain-
formula ϕ(x, y1, . . . , yn), one can compute a finite set SA

ϕ of tree-automatic structures such
that for all s̄ ∈ An the substructure A↾ϕ,s̄ is a sum-augmentation of box-augmentations of

elements from SA
ϕ .

Proof. Let AR, where R ∈ R, (resp. Aϕ) be a bottom-up deterministic tree automaton

accepting ⊗RA (resp. ⊗ϕA) and QR (resp. Qϕ) be its state set. For each t = (T, λ) ∈ T fin

2,Σ

and all R ∈ R of arity r we define ⊗
R
t = ⊗(t, . . . , t) ∈ T fin

2,Σr
⋄
where the convolution is

made up of r many copies of t. We further consider the tree t⊗
n
∅ = (T, λ′) ∈ T fin

2,Σ1+n
⋄

with

λ′(u) = (λ(u), ⋄, . . . , ⋄), where the number of ⋄-symbols is n.
As a first step towards proving the claim, we construct the set SA

ϕ . Before we construct

the set, let us give some intuition on the structures we are interested in. SA
ϕ consists of

structures Bγ that are substructures of the structures A↾ϕ,s̄ which are obtained as follows:
we fix an element t of A↾ϕ,s̄ and we fix a node d in t that is outside of the domain of s̄. Now
the domain of Bγ consists of all elements of A↾ϕ,s̄ that are obtained from t by replacing the
subtree rooted at d by some other tree. Thus, the structures Bγ are the substructures of
all A↾ϕ,s̄ whose domain is obtained by only local changes to a fixed tree.

Let Γ =
∏

R∈R QR × Qϕ ×
∏

R∈R 2QR . For each γ = ((qR)R∈R, qϕ, (PR)R∈R) ∈ Γ we
define a structure Bγ with domain

Bγ = {t ∈ T fin

2,Σ | AR(⊗
R
t) = qR for all R ∈ R and Aϕ(t⊗

n
∅) = qϕ} (3.1)

and relation R ∈ R (with arity r = ar(R)) interpreted by

RBγ = {t̄ ∈ (Bγ)
r | AR(⊗t̄) ∈ PR}. (3.2)



14 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

t

u1 u2

D

t↾D

t(u1) t(u2)

U

Figure 1: The s̄-type of some example tree t. The dashed line surrounds t↾D and U consists
of all nodes within the dotted line.

Clearly, Bγ is tree-automatic. Finally, we let SA
ϕ be the finite set

SA
ϕ = {Bγ | γ ∈ Γ}.

It remains to show that for each tuple s̄ = (s1, . . . , sn) ∈ An the substructure A↾ϕ,s̄ is a
sum-augmentation of box-augmentations of structures from {Bγ | γ ∈ Γ}.

For this purpose, we fix such a tuple s̄ and consider the finite binary tree D =
⋃

1≤i≤n Si,

where si = (Si, µi). The s̄-type of a tree t = (T, λ) ∈ T fin

2,Σ is the tuple

tps̄(t) = (t↾D, U, (ζR)R∈R, ζϕ),

where

(1) t↾D = (T ∩D,λ↾(T∩D)) ∈ T fin

2,Σ is the restriction of t to the domain T ∩D,

(2) U = T ∩ fr(D) ⊆ fr(T ∩D),
(3) ζR : U → QR is a map with ζR(u) = AR(⊗

R
t(u)), and

(4) ζϕ : U → Qϕ is a map with ζϕ(u) = Aϕ(t(u)⊗
n
∅).

Figure 1 illustrates the choice of t↾D and U . Observe that for tu := t(u)⊗
n
∅ the equation

⊗(t, s̄) = ⊗(t↾D, s̄)[(u/tu)u∈U ]

holds, whence
Aϕ(⊗(t, s̄)) = Aϕ(⊗(t↾D, s̄), ζϕ). (3.3)

Therefore, tps̄(t) determines whether t ∈ ϕA(·, s̄). Since D and R are finite, there are only
finitely many distinct s̄-types. Consequently, the equivalence relation ∼s̄ on T fin

2,Σ defined

by t ∼s̄ t′ if and only if tps̄(t) = tps̄(t
′) has finite index. Due to (3.3), ∼s̄ saturates the

set ϕA(·, s̄), i.e., ϕA(·, s̄) is a disjoint union of some ∼s̄-classes. Assume that Z1, . . . , Zℓ ⊆
ϕA(·, s̄) are these ∼s̄-classes. Then A↾ϕ,s̄ is a sum-augmentation of A↾Z1

, . . . ,A↾Zℓ
.

As the next step, we fix a single ∼s̄-class Z ⊆ ϕA(·, s̄). We show that Z = A↾Z is a
box-augmentation of a tuple of structures from SA

ϕ . Let (t, U, (ζR)R∈R, ζϕ) be the s̄-type
corresponding to Z. Note that the domain of t is contained in the set D. For u ∈ U we
define

γ(u) = ((ζR(u))R∈R, ζϕ(u), (PR(u))R∈R) ∈ Γ,



TREE-AUTOMATIC WELL-FOUNDED TREES 15

where for each relation R

PR(u) = {q ∈ QR | AR(⊗
R
t, ζR[u 7→ q]) ∈ IR}. (3.4)

Here IR ⊆ QR is the set of initial states of AR, and ζR[u 7→ q] is the map ζR with the value
at position u changed to q. Finally, we put Xu = Bγ(u) and denote the domain of Xu by
Xu. By definition of the the domain Bγ(u) of Xu (see (3.1)), y ∈ Xu is equivalent to

AR(⊗
R
y) = ζR(u) for all R ∈ R (3.5)

Aϕ(y⊗
n
∅) = ζϕ(u). (3.6)

It remains to prove that Z is a box-augmentation of (Xu)u∈U . First, observe that the map

η :
∏

u∈U

Xu → T fin

2,Σ

defined by
η((xu)u∈U ) = t[(u/xu)u∈U ]

is injective. Moreover, a tree x = (X,λ) ∈ T fin

2,Σ is contained in the image of η if and only if

(1) x↾D = t,
(2) X ∩ fr(D) = U , and
(3) x(u) ∈ Xu for each u ∈ U .

Note that by (3.5) and (3.6), condition (3) is equivalent to AR(⊗
R
x(u)) = ζR(u) for all

u ∈ U and R ∈ R and Aϕ(x(u)⊗
n
∅) = ζϕ(u) for all u ∈ U . Hence, the conjunction of (1),

(2), and (3) is equivalent to tps̄(x) = (t, U, (ζR)R∈R, ζϕ) which again is equivalent to x ∈ Z.
Thus, η is a bijection onto its image Z.

Finally, we show that η is a componentwise embedding of the (Xu)u∈U into Z. For
u0 ∈ U and x̄ = (xu)u∈U\{u0} ∈

∏

u∈U\{u0}

Xu define the map ηx̄u0
: Xu0

→ Z by

ηx̄u0
(xu0

) = η((xu)u∈U ).

For all R ∈ R of arity r and (t1, . . . , tr) ∈ (Xu0
)r we have

⊗
(
ηx̄u0

(t1), . . . , η
x̄
u0
(tr)
)
=

(

⊗
R
t
[
(u/xu)u∈U\{u0}

]
)

[u0/⊗ (t1, . . . , tr)] .

Since AR(⊗
R
xu) = ζR(u) for all u ∈ U \ {u0}, this implies

AR(⊗(ηx̄u0
(t1), . . . , η

x̄
u0
(tr))) = AR(⊗

R
t, ζR[u0 7→ AR(⊗(t1, . . . , tr))]) . (3.7)

We obtain the following chain of equivalences

(ηx̄u0
(t1), . . . , η

x̄
u0
(tr)) ∈ RZ ⇐⇒ (ηx̄u0

(t1), . . . , η
x̄
u0
(tr)) ∈ RA

⇐⇒ AR(⊗(ηx̄u0
(t1), . . . , η

x̄
u0
(tr))) ∈ IR

(3.7)
⇐⇒ AR(⊗

R
t, ζR[u0 7→ AR(⊗(t1, . . . , tr))]) ∈ IR

(3.4)
⇐⇒ AR(⊗(t1, . . . , tr)) ∈ PR(u0)

(3.2)
⇐⇒ (t1, . . . , tr) ∈ RXu0



16 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

showing that ηx̄u0
is an embedding of Xu0

into Z. Consequently, Z is a box-augmentation of
(Xu)u∈U .

After all, let us take a closer look at the properties of the box-augmentation Z of (Xu)u∈U
in the previous proof. Consider some R ∈ R and let r = ar(R). For all x̄1, . . . , x̄r ∈

∏

u∈U Xu

with x̄i = (xi,u)u∈U we have

⊗(η(x̄1), . . . , η(x̄r)) = (⊗
R
t)[(u/⊗ (x1,u, . . . , xr,u))u∈U ]

and hence
AR(⊗(η(x̄1), . . . , η(x̄r))) = AR(⊗

R
t, ζ), (3.8)

where ζ : U → QR is defined by ζ(u) = AR(⊗(x1,u, . . . , xr,u)). Thus, the tuple (ζ(u))u∈U
determines whether (η(x̄1), . . . , η(x̄r)) ∈ RA.

This observation leads to an improved version of Theorem 3.3, namely Corollary 3.6
below. As an abstraction of our observation, we introduce the notion of tamely colorable
box-augmentations in the following definition. Therein for R ∈ R a finite R-coloring of a
τ -structure A is a map σ : Aar(R) → C into a finite set C such that for all x̄, ȳ ∈ Aar(R) with
σ(x̄) = σ(ȳ) we have x̄ ∈ RA if and only if ȳ ∈ RA.

Definition 3.4. Let A and B1, . . . ,Bn be τ -structures. We say that A is a tamely colorable
box-augmentation of (B1, . . . ,Bn) if

(1) there exists a bijection η :
∏

1≤i≤nBi → A witnessing that A is a box-augmentation of

(B1, . . . ,Bn) and
(2) for every R ∈ R of arity r = ar(R) there are finite R-colorings σi : Br

i → Ci of
each Bi such that the map σ : Ar → C1 × · · · × Cn mapping (a1, . . . , ar) ∈ Ar with
aj = η(bj,1, . . . , bj,n) for 1 ≤ j ≤ r to

σ(a1, . . . , ar) = (σ1(b1,1, . . . , br,1), . . . , σn(b1,n, . . . , br,n)) ,

is a finite R-coloring of A.

Roughly speaking, the last condition says that the colors assigned to the tuples of the
“componentwise preimages” of the ai under η already determine whether (a1, . . . , ar) ∈ RA.

Remark 3.5. In the situation of Definition 3.4, assume that A and the Bi are directed
graphs and all Ci are the same set, say {1, . . . ,m}. For 1 ≤ i ≤ n the structure Xi =
(
Bi;R

Xi

1 , . . . , RXi
m

)
with RXi

c = σ−1
i (c) can be regarded as a coloring of the edges of the

complete directed graph on Bi with m colors. Since this coloring is compatible with the
edge relation of Bi, the graph A is a generalized product—in the sense of Feferman and
Vaught—of the structures X1, . . . ,Xn using only atomic formulas.

We conclude by proving the “tamely-colorable” version of Theorem 3.3.

Corollary 3.6. Given a tree-automatic τ -structure A and an FO[τ ] + ∃∞ + ∃chain-formula
ϕ(x, ȳ), one can compute a finite set SA

ϕ of tree-automatic τ -structures such that for all
s̄ ∈ An the substructure A↾ϕ,s̄ is a sum-augmentation of tamely colorable box-augmentations

of elements from SA
ϕ .

Proof. We show that the box-augmentation Z of (Xu)u∈U constructed in the proof of Theo-
rem 3.3 is tamely colorable. Therefore, consider the bijection η :

∏

u∈U Xu → Z witnessing
this box-augmentation and fix some R ∈ R with arity r = ar(R). Due to the definition
of RXu in (3.2), for each u ∈ U the map σu : Xr

u → QR with σu(x̄) = AR(⊗x̄) is a finite
R-coloring of Xu. Finally, (3.8) shows that condition (2) from Definition 3.4 holds.



TREE-AUTOMATIC WELL-FOUNDED TREES 17

3.2. Sum- and box-indecomposability. Suppose that C is a class of τ -structures and ν
is a function assigning an ordinal ν(A) to each A ∈ C.2 In this situation, we say that C is
ranked by ν.

Definition 3.7. Let C be a class of τ -structures ranked by ν.

(1) An ordinal α is called ν-sum-indecomposable if for every A ∈ C with ν(A) = α and all
τ -structures B1, . . . ,Bm such that A is a sum-augmentation of (B1, . . . ,Bm), there is
1 ≤ i ≤ m such that Bi ∈ C and ν(Bi) = α.

(2) An interval [α1, α2] of ordinals is called ν-tamely-colorable-box-indecomposable if for
every A ∈ C with ν(A) = α2 and all τ -structures B1, . . . ,Bm such that A is a tamely
colorable box-augmentation of (B1, . . . ,Bm), there is 1 ≤ i ≤ m such that Bi ∈ C and
ν(Bi) ∈ [α1, α2].

Remark 3.8. For classes C which are closed under taking substructures, like the classes
of forests and wulpo’s, the requirement Bi ∈ C is always satisfied. Hence in this case
explicitely requiring Bi ∈ C is not necessary.

The decomposition results from the previous section imply that ν may only take finitely
many ν-sum-indecomposable and ν-tamely-colorable-box-indecomposable values among the
substructures of the form A↾ϕ,s̄ (defined just before Theorem 3.3) for a fixed FO[τ ] + ∃∞ +

∃chain-formula ϕ(x, ȳ).

Proposition 3.9. Let C be a class of τ -structures ranked by ν and α0 < α1 < α2 < . . . an
infinite sequence of ν-sum-indecomposable ordinals such that [αi, αi+1] is ν-tamely-colorable-
box-indecomposable for all i ∈ N. Moreover, let A be a tree-automatic τ -structure and
ϕ(x, y1, . . . , yr) an FO[τ ] + ∃∞ + ∃chain-formula. Then there are only finitely many i ∈ N

which admit a tuple s̄ ∈ Ar with A↾ϕ,s̄ ∈ C and ν(A↾ϕ,s̄) = αi.

Proof. Let SA
ϕ be the finite set of structures which exists by Corollary 3.6. Consider

an i ∈ N>0 satisfying the condition above, witnessed by s̄ ∈ Ar, i.e., A↾ϕ,s̄ ∈ C and
ν(A↾ϕ,s̄) = αi. There are structures X1, . . . ,Xk such that each of them is a tamely colorable

box-augmentation of elements from SA
ϕ and A↾ϕ,s̄ is a sum-augmentation of (X1, . . . ,Xk).

Due to the definition of ν-sum-indecomposability, there is a 1 ≤ j ≤ k such that Xj ∈ C
and ν(Xj) = αi. There are structures Y1, . . . ,Yℓ ∈ SA

ϕ such that Xj is a tamely col-
orable box-augmentation of (Y1, . . . ,Yℓ). By the definition of ν-tamely-colorable-box-
indecomposability, there is an 1 ≤ h ≤ ℓ such that Yh ∈ C and ν(Yh) ∈ [αi−1, αi]. Thus, i
belongs to the set

{i ∈ N>0 | ∃B ∈ SA
ϕ ∩ C : ν(B) ∈ [αi−1, αi]},

which is finite since each B ∈ SA
ϕ satisfies the condition above for at most two distinct i’s.

2All our applications use isomorphism invariant functions, which means that ν(A) = ν(B) if A ∼= B.
In fact, the results of this section apply to arbitrary class functions but are only useful if the function is
isomorphism invariant for the important part of the class C because for other functions there are not enough
indecomposable values. Thus, upon first reading of the following part, we recommend the reader to think
of ν as an isomorphism invariant function.



18 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

3.3. Rank-tamely-colorable-box- and rank-sum-indecomposability. Let us briefly
prove that the ordinals ωα are rank-sum-indecomposable for the class of all well-founded
partial orders. Afterwards, we characterize rank-tamely-colorable-box-indecomposable in-
tervals for the classes of wulpo’s and well-founded forests. For this purpose let rankul be
the function obtained from rank by restriction of the domain to the class of wulpo’s and
analogously let rankF be rank restricted to the class of well-founded forests.

Proposition 3.10. The ordinals of the form ωα are rank-sum-indecomposable for the class
of well-founded partial orders.

Proof. Let P = (P,≤) be a well-founded partial order and assume that P is a sum-
augmentation of (P1, . . . ,Pn). If rank(P ↾P\P1

) < ωα and rank(P1) < ωα, then

rank(P)
Lemma 2.9

≤ rank(P1)⊕ rank(P ↾P\P1
) < ωα,

where the last inequality follows from Property (2.2) of ⊕ (see page 6). Thus, rank(P) = ωα

implies rank(P1) = ωα or rank(P ↾P\P1
) = ωα. The claim follows by induction on n.

It follows trivially that the ordinals of the form ωα are rankul-sum-indecomposable and
rankF -sum-indecomposable.

We want to show that [ωωα
, ωωα+1

] is a rankul-tamely-colorable-box-indecomposable
interval for each ordinal α and [ωα, ωα+1] is a rankF -tamely-colorable-box-indecomposable
interval for each ordinal α. We start with the observation that every box-decomposition
of a wulpo only contains at most one proper wulpo in the sense that if a wulpo is a box-
augmentation of (P1,P2, . . . ,Pn) then all but one of the Pi are disjoint unions of ordinals.
In order to prove this fact, we introduce the following notation. Let P = (P,≤) be some
partial order. We call a ∈ P a branching node (of P), if there are b, c ∈ P such that b < a,
c < a and neither b ≤ c nor c ≤ b (i.e., b and c are incomparable).

Lemma 3.11. Let P, P1, and P2 be wulpo’s. If P is a box-augmentation of (P1,P2) then
P1 or P2 does not contain a branching node.

Proof. Let P = (P,≤) and Pi = (Pi,≤i). Heading for a contradiction assume that
ai, bi, ci ∈ Pi for i ∈ {1, 2} are nodes such that bi <i ai, ci <i ai and neither bi ≤i ci
nor ci ≤i bi.

Let η : P1 × P2 → P be the bijection that witnesses that P is a box-augmentation of
(P1,P2). Then P contains the chains

η(b1, b2) < η(b1, a2) and

η(b1, b2) < η(a1, b2).

Since P is a wulpo, the elements above η(b1, b2) are linearly ordered and we may assume
that η(b1, a2) < η(a1, b2) without loss of generality. Thus, we obtain

η(b1, c2) < η(b1, a2) < η(a1, b2).

Furthermore, we have

η(b1, c2) < η(a1, c2).

Again, the elements above η(b1, c2) are linearly ordered and we obtain that η(a1, c2) and
η(a1, b2) are comparable in P. By definition of a box-augmentation, we obtain that c2 and
b2 are comparable in P2 as well, which contradicts our assumptions. Thus, P1 or P2 does
not contain a branching node.



TREE-AUTOMATIC WELL-FOUNDED TREES 19

Corollary 3.12. Let P and P1, . . . ,Pn be wulpo’s such that P is a box-augmentation of
(P1, . . . ,Pn). There is at most one i ∈ {1, . . . , n} such that Pi contains a branching node,
i.e., there is an i ∈ {1, . . . , n} such that Pk is a disjoint union of well-orders for all k 6= i.

Proof. Let η :
∏n

i=1 Pi → P be the bijection of the box-augmentation. Choose numbers
1 ≤ j < k ≤ n and a tuple b̄ = (b1, . . . , bj−1, bj+1, . . . , bk−1, bk+1, . . . , bn) ∈

∏

i∈{1,...n}\{j,k} Pi

arbitrarily but fixed. Then ηb̄j,k : Pj × Pk → P with ηb̄j,k(bj , bk) = η(b1, . . . , bn) induces a

box-augmentation of some subwulpo P′ ≤ P. Application of Lemma 3.11 yields the claim.

Remark 3.13. In the following, our proofs for the case of wulpo’s and the case of well-
founded forests proceed completely analogous. The difference in the results stems from an
observation concerning Corollary 3.12: if a well-founded forest F is a box-augmentation of
partial orders P1, . . . ,Pn then the Pi occur as substructures of F. Hence, these are also
well-founded forests. But if a well-founded forest is a disjoint union of ordinals, all these
ordinals must be finite. Thus, each connected component of such a disjoint union has finite
rank and the whole structure has rank at most ω. In contrast, if a disjoint union of ordinals
is a tree-automatic wulpo each connected component is a tree-automatic ordinal whence its
rank is bounded by ωωω

and all smaller ordinals can be reached. This difference causes the
different results with respect to box-indecomposability.

Lemma 3.14. Let P and P1, . . . ,Pm be wulpo’s such that P is a box-augmentation of
(P1, . . . ,Pm) via η :

∏m
i=1Pi → P. Let Ii ⊆ Pi be a well-order. The substructure P′ ⊆ P

induced by η(
∏m

i=1 Ii) is a well-order.

Proof. Note that P′ is a wulpo because it is a substructure of P. Thus, it suffices to show

that P′ is linear. Let aji ∈ Ii for each 1 ≤ i ≤ m and j ∈ {1, 2}. Set mi = min(a1i , a
2
i ). For

j ∈ {1, 2},

η(m1,m2, . . . ,mn) ≤ η(aj1,m2, . . . ,mn) ≤ · · · ≤ η(aj1, a
j
2, . . . , a

j
n).

Since the elements above η(m1, . . . ,mn) are pairwise comparable, the elements η(a11, . . . , a
1
n)

and η(a21, . . . , a
2
n) are comparable. Since the aji have been chosen arbitrarily any two ele-

ments of P′ are comparable, i.e., P′ is linear.

In the following lemma, the term “replacement” refers to the replacement operation
introduced at the end of Section 2.1.

Lemma 3.15. If a wulpo P is the box-augmentation of ordinals C1, . . . ,Cn and a wulpo Q

via the bijection η, then P results from Q by replacing every maximal branching free interval
I of Q by η ((

∏n
i=1 Ci)× I) (which is a well-order by Lemma 3.14).

Proof. We first show the following two claims.

(1) For all q0, q1 ∈ Q and for all bi, ci ∈ Ci the nodes η(b1, . . . , bn, q0) and η(c1, . . . , cn, q1)
are incomparable if and only if q0 and q1 are incomparable.

(2) For all bi, ci ∈ Ci and q0, q1, q ∈ Q such that q0 < q and q1 < q but q0 and q1 are
incomparable, η(b1, . . . , bn, q1) < η(c1, . . . , cn, q).

The first statement is easy to show: If η(b1, . . . , bn, q0) ≤ η(c1, . . . , cn, q1) then the elements
η(max(b1, c1), . . . ,max(bn, cn), q0) and η(max(b1, c1), . . . ,max(bn, cn), q1) are both above the



20 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

element η(b1, . . . , bn, q0) and therefore comparable. By the definition of a box-augmentation,
also q0 and q1 are comparable. For the other direction, if q0 ≤ q1, then

η(min(b1, c1), . . . ,min(bn, cn), q0) ≤ η(min(b1, c1), . . . ,min(bn, cn), q1).

Thus, η(b1, . . . , bn, q0) and η(c1, . . . , cn, q1) are both above η(min(b1, c1), . . . ,min(bn, cn), q0)
and therefore comparable.

Let us now prove the second claim. Due to the first claim, q1 < q implies that
η(b1, . . . , bn, q1) and η(c1, . . . , cn, q) are comparable. Moreover,

for all ai ∈ Ci, η(a1, . . . , an, q0) and η(a1, . . . , an, q1) are incomparable, (3.9)

because q0 and q1 are incomparable and P is a box-augmentation. Similarly, it is clear that

η(min(b1, c1), . . . ,min(bn, cn), qi) ≤ η(min(b1, c1), . . . ,min(bn, cn), q) ≤ η(c1, . . . , cn, q) and

η(min(b1, c1), . . . ,min(bn, cn), qi) ≤ η(b1, . . . , bn, qi)

for i ∈ {0, 1}. Since P is a wulpo, the nodes above η(min(b1, c1), . . . ,min(bn, cn), qi) are
linearly ordered. Hence η(c1, . . . , cn, q) and η(b1, . . . , bn, qi) are comparable for i ∈ {0, 1}.
Note that

η(b1, . . . , bn, qi) ≤ η(c1, . . . , cn, q) ≤ η(b1, . . . , bn, q1−i)

for i ∈ {0, 1} would contradict (3.9). Analogously, if

η(c1, . . . , cn, q) ≤ η(b1, . . . , bn, q1) and

η(c1, . . . , cn, q) ≤ η(b1, . . . , bn, q0),

then upwards linearity would lead to a contradiction with (3.9). Thus, we conclude that

η(b1, . . . , bn, q1) ≤ η(c1, . . . , cn, q),

which shows the second claim.
Using these two claims, we now show that for every pair I1, I2 of distinct maximal

branching free intervals of Q and for all q1 ∈ I1, q2 ∈ I2, and for all bi, ci ∈ Ci we have

q1 < q2 ⇐⇒ η(b1, . . . , bn, q1) < η(c1, . . . , cn, q2). (3.10)

First assume that q1 < q2. Since q1 and q2 come from different maximal branching free
intervals, Lemma 2.5 implies that there is a q3 < q2 such that q1 and q3 are incomparable.
Due to the second claim, this immediately shows that η(b1, . . . , bn, q1) < η(c1, . . . , cn, q2).
By symmetry, we conclude that q2 < q1 implies η(b1, . . . , bn, q2) < η(c1, . . . , cn, q1). More-
over, because of the first claim, if q1 and q2 are incomparable then η(b1, . . . , bn, q1) and
η(c1, . . . , cn, q2) are incomparable as well.

By (3.10), P is obtained from Q by replacing every maximal branching free interval I
of Q by a box-augmentation of (C1, . . . ,Cn, I), which is a well order by Lemma 3.14. This
concludes the proof of the lemma.

Lemma 3.16. Let P be a wulpo that is a box-augmentation of ordinals C1, . . . ,Cn and a
wulpo Q via the bijection η. Let q ∈ Q and q′ ∈ Q ∪ {∞} such that q < q′ and [q, q′) is a
maximal branching free interval in Q. Let α := rank([q, q′)) > 0 and 0i the minimal element
of Ci for each 1 ≤ i ≤ n. Then

rank(η(01, 02, . . . , 0n, q),P) ≤ rank(C1)⊗ rank(C2)⊗ · · · ⊗ rank(Cn)⊗ rank(q,Q) (3.11)

and for each q̂ ∈ [q, q′) and ci ∈ Ci we have

rank(η(c1, c2, . . . , cn, q̂),P) < rank(C1)⊗ rank(C2)⊗· · ·⊗ rank(Cn)⊗(rank(q,Q)+α). (3.12)



TREE-AUTOMATIC WELL-FOUNDED TREES 21

Proof. We prove both claims simultaneously by induction. If rank(q,Q) = 0, then q is
minimal in Q. By Lemma 3.15, η(01, 02, . . . , 0n, q) is minimal in P. Hence, its rank is also
0 as desired.

Now assume that (3.11) is true for some q ∈ Q inducing a maximal branching free
interval [q, q′) ⊆ Q and let ci ∈ Ci and q̂ ∈ [q, q′). Due to Lemma 3.15, I := η(

∏n
i=1 Ci ×

[q, q′)) is a maximal branching free interval of P with minimal element η(01, 02, . . . , 0n, q).
The rank of I can be at most rank(C1)⊗ · · · ⊗ rank(Cn)⊗ α. The interval

J := [η(01, . . . , 0n, q), η(c1, . . . , cn, q̂)) ⊆ P

is strictly contained in I whence

rank(J) < rank(C1)⊗ · · · ⊗ rank(Cn)⊗ α. (3.13)

Thus, we get

rank(η(c1, . . . , cn, q̂),P)

Lem.
=

2.10
rank(η(01, . . . , 0n, q),P) + rank(J)

(3.13)
< rank(η(01, . . . , 0n, q),P) + rank(C1)⊗ · · · ⊗ rank(Cn)⊗ α

(3.11)

≤ (rank(C1)⊗ · · · ⊗ rank(Cn)⊗ rank(q,Q)) + (rank(C1)⊗ · · · ⊗ rank(Cn)⊗ α)

Lem.
≤
2.6

rank(C1)⊗ · · · ⊗ rank(Cn)⊗ (rank(q,Q) + α).

Finally, let q, q′ ∈ Q be nodes such that [q, q′) is maximal branching free and all maximal
branching free intervals below q satisfy the claims. Lemma 2.4 shows that for each q1 < q
there is a maximal branching free interval I := [q0, q2) with q2 ≤ q such that q1 ∈ I. Then
for all ci ∈ Ci

rank(η(c1, c2, . . . , cn, q1),P)
IH
<rank(C1)⊗ · · · ⊗ rank(Cn)⊗ (rank(q0,Q) + rank(I))

Lem.
≤
2.10

rank(C1)⊗ · · · ⊗ rank(Cn)⊗ (rank(q2,Q)

≤rank(C1)⊗ · · · ⊗ rank(Cn)⊗ (rank(q,Q).

By Lemma 3.15 all elements below η(01, 02, . . . , 0n, q) are of the form η(c1, c2, . . . , cn, q1)
with q1 < q. Thus,

rank(η(01, 02, . . . , 0n, q) ≤ rank(C1)⊗ · · · ⊗ rank(Cn)⊗ (rank(q,Q),

which proves the lemma.

Corollary 3.17. Assume that P is a wulpo that is a box-augmentation of connected wulpo’s
Q1, . . . ,Qn. Then

rank(P) ≤ rank(Q1)⊗ · · · ⊗ rank(Qn).

Proof. By Corollary 3.12 we can assume that Q2, . . . ,Qn are ordinals with minimal elements
02, . . . , 0n. For each node p ∈ P there is a maximal branching free interval [p0, p1) ⊆ P

such that p ∈ [p0, p1) (where p1 = ∞ is possible). There is a q0 ∈ Q1 such that p0 =



22 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

η(q0, 02, . . . , 0n) and there is a q1 ∈ Q1 ∪ {∞} such that I := [q0, q1) is maximal branching
free. By Lemma 3.16, we have

rank(p,P) < rank(Q2)⊗ · · · ⊗ rank(Qn)⊗ (rank(q0,Q1) + rank(I))

≤ rank(Q2)⊗ · · · ⊗ rank(Qn)⊗ rank(Q1),

where in case that p = p0 the strict inequality follows from rank(I) ≥ 1.

Having studied connected wulpo’s, we now have to deal with disconnected ones. For this
purpose, we have to restrict our attention to tamely colorable box-augmentations. As a first
step, we analyze boxes of antichains. If a wulpo P is a tamely colorable box-augmentation
of n antichains then the rank of P is bounded by some constant that only depends on the
tame colorings of the antichains and on n. In order to prove this fact, we first introduce
a notion of same factor equivalence on the elements of a box-augmentation. Elements are
equivalent with respect to this equivalence if and only if their preimages in each of the
factors of the box are contained in the same connected component.

Definition 3.18. Let P be a wulpo that is a box-augmentation of (wulpo’s) (P1, . . . ,Pn).
Let Pi = (Pi,≤i). For ai, bi ∈ Pi we write ai ≡i bi if ai and bi are in the same connected
component of Pi. Due to upwards linearity, this is equivalent to saying that ai ≡i bi if there
exists some ci ∈ Pi such that ai ≤i ci and bi ≤i ci.

Let η be the bijection witnessing that P is box-augmentation of (P1, . . . ,Pn). For
a, b ∈ P we define the same factors equivalence by a ≡ b if ai ≡i bi for all 1 ≤ i ≤ n where
a = η(a1, . . . , an) and b = η(b1, . . . , bn). For p ∈ P we write [p]≡ for the equivalence class
{p′ | p′ ≡ p}.

Lemma 3.19. Let P = (P,≤) be a wulpo that is a box-augmentation of (P1, . . . ,Pn) via
the bijection η. If C ⊆ P is a chain that contains elements of k distinct ≡-classes, then P

contains a chain C ′ of length k such that C ′ ⊆ η(A1 × · · · × An) where Ai is an antichain
in Pi.

Proof. Let a1 < a2 < · · · < ak be a chain of pairwise ≡-inequivalent elements of P. There

are aji ∈ Pi such that aj = η(aj1, . . . , a
j
n). Let

Aj
i := {aj

′

i | aji ≡i a
j′

i }

be the connected component of aji restricted to those elements that appear as factors of the

aj
′
with 1 ≤ j, j′ ≤ k. Due to upwards linearity, for all 1 ≤ i ≤ n and 1 ≤ j ≤ k there is a

minimal mj
i ∈ Pi such that for all x ∈ Aj

i , x ≤i m
j
i . By definition, we have

mj
i = mj′

i ⇔ aji ≡i a
j′

i ⇔ Aj
i = Aj′

i . (3.14)

By definition of a box-augmentation we have

aj = η(aj1, . . . , a
j
n) ≤ η(mj

1, a
j
2, . . . , a

j
n) ≤ · · · ≤ η(mj

1, . . . ,m
j
n).

Thus, a1 ≤ aj ≤ η(mj
1, . . . ,m

j
n) for all 1 ≤ j ≤ k. Due to upwards linearity, the set

C ′ := {η(mj
1, . . . ,m

j
n) | 1 ≤ j ≤ k}

forms a chain. Note that η(mj
1, . . . ,m

j
n) = η(mj′

1 , . . . ,m
j′

n ) would imply mj
i = mj′

i , i.e.,

aji ≡i a
j′

i (by (3.14)) for all 1 ≤ i ≤ n. But this would lead to the contradiction aj ≡ aj
′
.

Thus, the chain C ′ consists of k elements. We conclude by proving that Ai := {mj
i | 1 ≤



TREE-AUTOMATIC WELL-FOUNDED TREES 23

j ≤ k} is an antichain in Pi. Heading for a contradiction assume that there are j 6= j′ such

that mj
i < mj′

i . Then clearly mj
i ≡i m

j′

i holds and hence also aji ≡i a
j′

i holds. With (3.14)

we conclude that mj
i = mj′

i contradicting our assumption mj
i < mj′

i .

The previous result can be used to bound the length of ordinals occurring in the image
of antichains in a tamely colorable box-augmentation.

Lemma 3.20. Let P = (P,≤) be a wulpo which is a tamely colorable box-augmentation
of (P1,P2, . . . ,Pn) via η. There is a constant c ∈ N such that the following holds: For
all choices of antichains Ai ⊆ Pi (for each 1 ≤ i ≤ n), the substructure of P induced by
η(
∏n

i=1Ai) does not contain a chain of length c.

Proof. For each 1 ≤ i ≤ n we fix a finite coloring σi : Pi ×Pi → Ci of Pi such that the map
σ : P × P → C with C =

∏

1≤i≤nCi and

σ(η(p1, . . . , pn), η(q1, . . . , qn)) = (σ1(p1, q1), . . . , σn(pn, qn)).

is a finite coloring of P.
By Ramsey’s theorem [23] there exists a constant c ∈ N such that every complete simple

graph with at least c nodes whose edges are colored by |C| colors contains a monochromatic
triangle.

For the sake of a contradiction, assume that for each 1 ≤ i ≤ n there exists an antichain
Ai in Pi such that η(

∏n
i=1 Ai) contains a chain of length c. Due to the choice of c there

exist three elements p1 > p2 > p3 in this chain and a color c̄ = (c1, . . . , cn) ∈ C such that

σ(p1, p2) = σ(p1, p3) = σ(p2, p3) = c̄.

Let pj = η(pj1, . . . , p
j
n), where pji ∈ Ai. For each 1 ≤ i ≤ n we obtain

σi(p
1
i , p

2
i ) = σi(p

1
i , p

3
i ) = σi(p

2
i , p

3
i ) = ci.

For p′ = η(p21, p
1
2, . . . , p

1
n) we get σ(p1, p3) = σ(p′, p3). Since p1 > p3, this implies p′ > p3.

As the elements above p3 are linearly ordered, we conclude that p′ and p1 are comparable.
Recall that η(·, p12, . . . p

1
n) embeds P1 into P. We conclude that p11 and p21 are comparable

in P1. Since A1 is an antichain and p11, p
2
1 ∈ A1, this implies p11 = p21.

Analogous arguments for the other coordinates show that p1i = p2i for each 1 ≤ i ≤ n,
i.e., p1 = p2. However, this contradicts p1 > p2.

We now head for the following result. Given a wulpo that is a tamely colorable box-aug-
mentation we can write it as a finite sum-augmentation of wulpo’s whose rank is bounded
in terms of the ranks of the connected components of the factors of the box.

Lemma 3.21. Let P = (P,≤) be a countable wulpo which is a tamely colorable box aug-
mentation of (P1, . . . ,Pn) via the bijection η. Let c ∈ N such that the image of antichains
under η does not contain a chain of length c (exists by Lemma 3.20). Then there is a map
µ : P → {1, . . . , c} such that for all chains L ⊆ P , and all p, p′ ∈ L we have µ(p) = µ(p′) if
and only if p′ ≡ p.

Proof. Fix an enumeration m1,m2, . . . of the minimal elements of P. Let µ0 be the partial
function with empty domain. We define µ as the limit of partial functions µi satisfying the
lemma (restricted to their domain). This limit µ is a total function because we guarantee



24 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

that

dom(µi) =
i⋃

j=1

[mj ,∞).

Assume that µj has already been defined.
First we set µj+1(x) = µj(x) for all x ∈ dom(µj). By transfinite induction we extend

µj+1 to all nodes y ∈ [mj+1,∞)\
⋃j

i=1[mi,∞). For this purpose assume that y ∈ [mj+1,∞)\
⋃j

i=1[mi,∞) and assume that we have defined µj+1(x) for all mj+1 ≤ x < y. Hence, the
domain of the current µj+1 is

D =

j
⋃

i=1

[mi,∞) ∪ [mj+1, y).

We assume that for all chains L ⊆ D, and all p, p′ ∈ L we have µj+1(p) = µj+1(p
′) if and

only if p′ ≡ p. Let
J = {1, . . . , c} \ µj+1(D ∩ [mj+1,∞)).

Then J 6= ∅: D∩ [mj+1,∞) is a chain. By Lemma 3.19 and the choice of c, each chain in P

contains elements of at most c−1 many ≡-classes. Hence, the elements from D∩ [mj+1,∞)
fall into at most c−1 many ≡-classes. By our assumption on the current µj+1, this mapping
takes at most c − 1 different values among the elements from D ∩ [mj+1,∞). Hence, J is
not empty.

Now we extend µj+1 to y as follows:

µj+1(y) :=

{

µj+1(p) if p ∈ D ∩ [mj+1,∞) and p ≡ y,

min(J) otherwise.

Each of the µj is a well-defined partial function and setting µ =
⋃

j∈N µj settles the claim.

Corollary 3.22. Let P, c, and µ be defined as in Lemma 3.21. Let 1 ≤ i ≤ c and
a, b ∈ µ−1(i) such that a and b are in a connected component of the suborder induced by
µ−1(i) ⊆ P. Then we have a ≡ b.

Proof. Let µ(a) = i = µ(b) and assume that a and b are in a connected component of
the suborder induced by µ−1(i) ⊆ P. Since this suborder is again a wulpo, there exists
p ∈ µ−1(i) with a ≤ p and b ≤ p. Lemma 3.21 together with µ(a) = µ(p) = µ(b) implies
a ≡ p ≡ b, i.e., a ≡ b by transitivity of ≡ .

Corollary 3.23. Let P be a wulpo that is box-augmentation of (wulpo’s) (P1,P2, . . . ,Pm)
such that there is some n ∈ N with rank(Pj) < ωωn

for all 1 ≤ j ≤ m.

(1) For µ as in Lemma 3.21, rank(P↾µ−1(i)) ≤ ωωn
for all i in the range of µ.

(2) Moreover, if P is a forest and there is n ∈ N with rank(Pj) < ωn for all 1 ≤ j ≤ m,
then rank(P↾µ−1(i)) ≤ ωn for all i in the range of µ.

Proof. Let Cj be the set of connected components of Pj for all 1 ≤ j ≤ m. Due to Corollary
3.22, P↾µ−1(i) is isomorphic to some suborder of the disjoint union

⊔

(D1,...,Dm)∈C1×···×Cm

P↾η(D1×···×Dm).



TREE-AUTOMATIC WELL-FOUNDED TREES 25

Note that every Dj ∈ Cj is a substructure of Pj , hence rank(Dj) < ωωn
. Due to Lemma

3.17,

rank(P↾η(D1×···×Dm)) ≤ rank(D1)⊗ · · · ⊗ rank(Dm))
(2.3)
< ωωn

.

Thus,

rank




⊔

(D1,...,Dm)∈C1×···×Cm

P↾η(D1×···×Dm)



 ≤ ωωn

.

Hence, the same holds for the substructure P↾µ−1(i).
If P is a forest, then without loss of generality P2, . . . ,Pm are disjoint unions of finite

ordinals (cf. Remark 3.13). Thus, rank(P↾η(D1×···×Dm)) ≤ rank(D1) ⊗ c = α ⊗ c for some
finite ordinal c < ω and some α < ωn. We get

α⊗ c ≤ α⊕ α⊕ · · · ⊕ α
︸ ︷︷ ︸

c many

(2.2)
< ωn,

where the first inequality follows from the fact that every linearization of the direct product
α ⊗ c can be viewed as a linearization of the disjoint union of c copies of α (one can
actually show that equality holds at the place of the first inequality). We can now conclude
completely analogously to the wulpo case.

We are now prepared to establish box-indecomposable intervals with respect to the
rank function on the domain of wulpo’s. Recall that we denote by rankul the function rank

restricted to wulpo’s and by rankF its restriction to well-founded forests.

Proposition 3.24. Let i ∈ N.

(1) The interval [ωωi
, ωωi+1

] is rankul-tamely-colorable-box-indecomposable.
(2) The interval [ωi, ωi+1] is rankF -tamely-colorable-box-indecomposable.

Proof. For the first claim let P = (P,≤) be a wulpo of rank ωωi+1

. Heading for a contradic-
tion, assume that it is a tamely colorable box-augmentation of wulpo’s (P1, . . . ,Pn) such

that rank(Pj) < ωωi
for all 1 ≤ j ≤ n.

Take c ∈ N and the mapping µ : P → {1, . . . , c} from Lemma 3.21. The preimages

µ−1(i) of µ induce a sum-decomposition of P into c partsP↾µ−1(1), . . . ,P↾µ−1(c). Since ω
ωi+1

is rank-sum-indecomposable by Proposition 3.10, we can assume (perhaps after renaming of

colors) that rank(P↾µ−1(1)) = ωωi+1

. But Corollary 3.23 implies that rank(P↾µ−1(1)) ≤ ωωi

which is clearly a contradiction.
For the case of forests, we use exactly the same arguments, and the second part of

Corollary 3.23 yields a similar contradiction.

Using Propositions 3.9, 3.10 and 3.24, we obtain directly the desired bounds on the
ranks.

Theorem 3.25.

(1) Every tree-automatic wulpo has rank strictly below ωωω
.

(2) Every tree-automatic well-founded forest has rank strictly below ωω.



26 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Proof. Concerning the first claim, let αi = ωωi
for each i ∈ N. Due to Propositions 3.10

and 3.24 (part (1)), the sequence α0 < α1 < α2 < . . . satisfies the conditions of Propo-
sition 3.9. For the sake of a contradiction to this latter proposition, assume that P is a
tree-automatic wulpo of rank at least ωωω

. Let ϕ be the formula ϕ(x, y) = x < y. By well-
foundedness, for each i ∈ N there is a p ∈ P such that P↾ϕ,p has rank αi, contradicting
Proposition 3.9.

For (2), we proceed analogously with αi = ωi. This time we use the second part of
Proposition 3.24.

Note that this result has an analogous counterpart in the world of string-automatic
structures: Khoussainov and Minnes [16] and Delhommé [9] independently proved that the
ordinal ranks of string-automatic well-founded partial orders are the ordinals strictly below
ωω and this bound is optimal because for each α < ωω the ordinal α is string-automatic.
In contrast, we [14, 15] proved that every string-automatic forest has rank strictly below
ω2 and this bound is also optimal. In the next section, we construct tree-automatic well-
founded trees of all ranks strictly below ωω. Moreover, since ordinals are wulpo’s, our bound
on the ranks of wulpo’s is also optimal. Thus, tree-automatic forests realize much smaller
ranks than tree-automatic partial orders (as it is also the case in the string-automatic
setting). Note that there is no non-trivial bound on the ranks of arbitrary well-founded
tree-automatic partial orders. But our new result on the subclass of all wulpo’s and the
analogy to the string-automatic case support the following conjecture.

Conjecture 3.26. Every tree-automatic well-founded partial order has rank below ωωω
.

Beside upwards linearity, well-founded forests also have the property that one cannot
embed an infinite linear order. One might wonder whether the class of tree-automatic partial
orders without infinite linear suborder already satisfies that the ranks are bounded by ωω.
The example below answers this question negatively be showing that for each α < ωωω

there exists such a partial order of rank α.

Example 3.27. Let α < ωωω
be an ordinal. We show that the the direct product of α

and ω∗ (the reverse of ω) as strict partial orders is a tree-automatic partial order which has
rank α and contains no infinite linear suborder.

More formally, we consider the partial order P = (P,�) on

P = {(β, k) | β < α, k ∈ N}

whose induced strict partial order ≺ is given by

(β, k) ≺ (β′, k′) ⇐⇒ β < β′ and k > k′.

As a direct product of the tree-automatic structures α and ω∗, P is also tree-automatic.
Note that P does not contain an infinite linear suborder because any such suborder

could be projected to an infinite strictly descending sequence in α or to an infinite strictly
ascending sequence in ω∗.

We prove that rank(P) = rank(α) by transfinite induction. For β = 0 and k ∈ ω∗ we
have rank((β, k),P) = 0 because (β, k) is a minimal element. For β > 0, k ∈ ω∗,

rank((β, k),P) = sup{rank((β′, k′),P) + 1 | (β′, k′) ≺ (β, k) ∈ P}

= sup{β′ + 1 | β′ < β} = β.



TREE-AUTOMATIC WELL-FOUNDED TREES 27

Thus, we conclude that

rank(P) = sup{rank((β, k),P) + 1 | (β, k) ∈ P} = sup{β + 1 | β < α} = α.

The structure P also shows that Delhommé’s decomposition technique cannot be used to
prove our conjecture that all tree-automatic partial orders have ranks below ωωω

. Note
that for all α′ ∈ α the substructure P↾{(α′,n)|n∈ω∗} is isomorphic to the countably infinite

antichain (ω∗,=). Similarly, for all n ∈ ω∗ the substructure P↾{(α′,n)|α′∈α} is isomorphic to

the countably infinite antichain (α,=). Thus, P is a partial order of rank α that is a tamely
colorable box-augmentation of two antichains. Since infinite antichains have rank 1, we
conclude that applications of box-decomposition to well-founded partial orders may destroy
all information about the rank. Thus, there is no hope that one could provide bounds on
the ranks of tree-automatic well-founded partial orders using Delhommé’s decomposition
technique.

4. Upper bound for the isomorphism problem for well-founded trees

We first introduce hyperarithmetical sets. Afterwards we provide the upper bound for the
isomorphism problem of well-founded tree-automatic trees.

4.1. Hyperarithmetical sets. We use standard terminology concerning recursion theory;
see e.g. [24]. We use the definition of the hyperarithmetical hierarchy from Ash and
Knight [1], see also [11]. We first define inductively a set of ordinal notations O ⊆ N>0.
Simultaneously we define a mapping a 7→ |a|O from O into ordinals and a strict partial
order <O on O. The set O is the smallest subset of N>0 satisfying the following conditions:

• 1 ∈ O and |1|O = 0, i.e., 1 is a notation for the ordinal 0.
• If a ∈ O, then also 2a ∈ O. We set |2a|O = |a|O + 1 and let b <O 2a if and only if b = a
or b <O a.

• If e ∈ N is such that Φe (the eth partial computable function) is total, Φe(n) ∈ O
for all n ∈ N, and Φe(0) <O Φe(1) <O Φe(2) <O · · · , then also 3 · 5e ∈ O. We set
|3 · 5e|O = sup{|Φe(n)|O | n ∈ N} and let b <O 3 · 5e if and only if there exists n ∈ N with
b <O Φe(n).

An ordinal α is computable if there exists a ∈ O with |a|O = α. The smallest non-computable
ordinal is the Church-Kleene ordinal ωck

1 . If a ∈ O then the restriction of the partial order
(O,<O) to B = {b ∈ O | b <O a} is isomorphic to the ordinal |a|O [1, Proposition 4.9].
Moreover, the set B is computably enumerable and an index for B can be computed from
a [1, Proposition 4.10].

Next, we define the hyperarithmetical hierarchy based on ordinal notations. For this we
define sets H(a) for each a ∈ O as follows:

• H(1) = ∅,
• H(2b) = H(b)′ (the Turing jump of H(b); see e.g. [24]),
• H(3 · 5e) = {〈b, n〉 | b <O 3 · 5e, n ∈ H(b)}; here 〈·, ·〉 denotes a computable pairing
function.

Spector has shown that |a|O = |b|O implies that H(a) and H(b) are Turing equivalent. The
levels of the hyperarithmetical hierarchy can be defined as follows, where α is a computable
ordinal.



28 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

• If α is infinite, then Σ0
α is the set of all subsets A ⊆ N that are recursively enumerable in

some H(a) with |a|O = α (by Spector’s theorem, the concrete choice of a is irrelevant).
For n > 0 finite, one defines Σ0

n as the set of all subsets A ⊆ N that are recursively
enumerable in H(a) with |a|O = n− 1.3

• Π0
α is the set of all complements of Σ0

α-sets.
• ∆0

α = Σ0
α ∩Π0

α

A relation R ⊆ Nk is X0
α (with X ∈ {Σ,Π,∆}) if the set {〈x1, . . . , xk〉 | (x1, . . . , xk) ∈ R}

is X0
α, where 〈·, . . . , ·〉 denotes a computable encoding of k-tuples.
For any two computable ordinals α, β, α < β implies Σα ∪ Πα ( ∆β. The union of all

classes Σ0
α where α < ωck

1 yields the class of all hyperarithmetical sets. By a classical result
of Kleene, the hyperarithmetical sets are exactly the sets in ∆1

1 = Σ1
1 ∩ Π1

1, where Σ1
1 is

the first existential level of the analytical hierarchy, and Π1
1 is the set of all complements of

Σ1
1-sets.

For our purposes, it is convenient to present an alternative definition of the hyperarith-
metical hierarchy using computable infinitary formulas, see [1, Chapter 7]. Fix a predicate
R(x) ⊆ Nk where k ≥ 1. If R is computable, then a Σ0

0 (resp. Π0
0) index for R is a triple

(Σ, 0, e) (resp. (Π, 0, e)) where e is an index for R. Next, let 0 < α < ωck
1 be a computable

ordinal. Case 1. α = β + 1 is a successor ordinal. Then, a Σ0
α (resp. Π0

α) index for R is a

triple (Σ, a, e) (resp. (Π, a, e)) where |a|O = α and e is a Π0
β (resp. Σ0

β) index for a predicate

P (x, y) ⊆ Nk+1 such that for all x ∈ Nk:

R(x) ⇔ ∃y : P (x, y)
(

resp. R(x) ⇔ ∀y : P (x, y)
)

.

Case 2. α is a limit ordinal. Then, a Σ0
α (resp. Π0

α) index for R is a triple (Σ, a, e) (resp.
(Π, a, e)), where |a|O = α and Φe is a total computable function such that the following
holds: For all n ∈ N, Φe(n) is a Π0

βn
(resp. Σ0

βn
) index for some predicate Pn(x) ⊆ Nk,

β0 < β1 < . . . < α with sup{βn | n ∈ N} = α, and for all x ∈ Nk:

R(x) ⇔
∨

i∈N

Pi(x)
(

resp. R(x) ⇔
∧

i∈N

Pi(x)
)

.

Essentially, we can view a Σ0
α (resp. Π0

α) index as a finite representation of a computable
infinitary formula that defines the corresponding Σ0

α (resp. Π0
α) predicate. For instance, the

Σ0
α index (Σ, a, e), where |a|O is a limit ordinal, represents the computable infinitary formula
∨

i∈N ϕi, where ϕi is the computable infinitary formula represented by the index Φe(i). In

this paper we use the notions of Σ0
α (resp. Π0

α) predicates and indices interchangeably.
Formally, we do not allow negation in computable infinitary formulas. But if ϕ(x) defines
the Σ0

α (resp. Π0
α) set A ⊆ Nk, then one can construct effectively a Π0

α (resp. Σ0
α) formula

for Nk \A; and we therefore may define this formula as ¬ϕ(x), see [1, Theorem 7.1].

4.2. Hyperarithmetic Upper Bound. It turns out that the rank for well-founded com-
putable trees yields an upper bound on the recursion-theoretic complexity of the isomor-
phism problem. Recall that we defined forests as particular partial orders. For the isomor-
phism problem, it is useful to assume that also the direct successor relation is computable.
When speaking of a computable forest in the following theorem, we mean a forest F = (F,≤)

3The distinction between finite and infinite ordinals is made in order to have a correspondence between
the arithmetical hierarchy and the finite part of the hyperarithmetical hierarchy, see also [1, pp. 74 and 75].



TREE-AUTOMATIC WELL-FOUNDED TREES 29

such that F , ≤, and the direct successor relation EF are all computable.4 Note that the
direct successor relation of a tree-automatic forest is even tree-automatic because it is first-
order definable.

Theorem 4.1. Let α be a computable ordinal and assume that α = λ+k, where k ∈ N and
λ is not a successor ordinal. The isomorphism problem for well-founded computable trees
of rank at most α belongs to level Π0

λ+2k+1 of the hyperarithmetical hierarchy.

Proof. Let us fix a well-founded forest F = (F,≤). We define a computable infinitary
Π0

λ+2k+1 formula expressing F(x) ∼= F(y) for nodes x and y of F of rank at most λ + k,
where k ∈ N and λ = 0 or λ is a limit ordinal. This suffices because the disjoint union of
two computable trees is a computable forest.

Let E = EF be the direct successor relation of F. For every ordinal α we define a
computable infinitary formula isoα(x, y) over F as follows: Let

iso0(x, y) = ∀z(¬(x > z) ∧ ¬(y > z)).

This is a Π0
1 formula. For a successor ordinal α+ 1 let5 isoα+1(x, y) be

∀u ∈ E(x) ∪ E(y) ∀ℓ ≥ 1

(

∃≥ℓv ∈ E(x) isoα(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) isoα(u, v))

∧ isoα(u, u).

)

Finally, for a limit ordinal α, we define isoα(x, y) as

∧

β<α

∀u ∈ E(x) ∪ E(y) ∀ℓ ≥ 1






∃≥ℓv ∈ E(x) isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) isoβ(u, v))

∧
∨

β<α

isoβ(u, u).






Let us argue by induction that isoλ+k (where k ∈ N and λ = 0 or λ a limit ordinal) is a
Π0

λ+2k+1-formula. The case λ = k = 0 is clear. For the case k = 0 and λ > 0 note that the

subformula ∀u ∈ E(x) ∪ E(y) :
∨

β<λ isoβ(u, u) is Π
0
λ+1. Moreover, the subformula

∀u ∈ E(x) ∪ E(y) ∀ℓ ≥ 1 : (∃≥ℓv ∈ E(x) : isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) : isoβ(u, v))

is Π0
λ′+2k′+3, where β = λ′ + k′ < α (with k′ ∈ N and λ′ = 0 or λ′ a limit ordinal). Since

λ is a limit ordinal, we have λ′ + 2k′ + 3 < λ. This shows that isoλ(x, y) is a conjunction
of a Π0

λ-formula and a Π0
λ+1-formula, and hence also Π0

λ+1. Finally, for the case that

k > 0 and λ > 0 note that if isoλ+k(x, y) is a Π0
λ+2k+1-formula, then isoλ+k+1(x, y) is a

Π0
λ+2k+3-formula, since two alternating quantifier blocks are added for successor ordinals.

It remains to show that if rank(x) ≤ α and rank(y) ≤ α, then F |= isoα(x, y) if and only
if F(x) ∼= F(y). This is the content of Claim 2 below. As an auxiliary step we show the
following claim.

Claim 1. If F |= isoα(x, y) then rank(x) ≤ α and rank(y) ≤ α.

We prove Claim 1 by induction on α. The case α = 0 is clear because trees of rank
0 do only consist of one node. Next, consider an ordinal α > 0 such that the claim
holds for all β < α. Assume that F |= isoα(x, y). Note that the second conjunct of

4On the other hand, if we would omit the requirement of a computable direct successor relation in
Theorem 4.1, then we would only have to replace the constants in the theorem by larger values.

5We use ∃≥ℓ
x : ϕ(x) as an abbreviation for ∃x1 · · · ∃xℓ :

∧
1≤i<j≤n

xi 6= xj ∧
∧n

i=1
ϕ(xi). The quantifier

∃≥ℓ
x can be encoded by an ordinary single existential quantifier.



30 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

isoα(x, y) and the induction hypothesis imply that all children of x have rank < α. Thus,
rank(x) ≤ sup{β + 1 | β < α} = α. For y we conclude analogously.

Claim 2. If rank(x) ≤ α and rank(y) ≤ α, then F |= isoα(x, y) if and only if F(x) ∼= F(y).

We prove Claim 2 by induction on α. Again, the case α = 0 is clear. Next, consider some
ordinal α > 0 and assume that rank(x) ≤ α and rank(y) ≤ α.

First, assume that F(x) ∼= F(y). Fix β < α, u ∈ E(x)∪E(y), and ℓ ≥ 1. By assumption,
we have rank(u) < α. Furthermore, due to Claim 1, if β < rank(u), then there is no v such
that isoβ(u, v) holds. Thus, in this case

(

∃≥ℓv ∈ E(x) : isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) : isoβ(u, v)
)

.

holds. Moreover, if rank(u) ≤ β < α, then Claim 1 and the induction hypothesis imply that

∃≥ℓv ∈ E(x) : isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) : isoβ(u, v)

is equivalent to

∃≥ℓv ∈ E(x) : F(u) ∼= F(v) ⇐⇒ ∃≥ℓv ∈ E(y) : F(u) ∼= F(v).

Since F(x) ∼= F(y) the latter is clearly satisfied. Moreover, by induction hypothesis for each
u ∈ E(x) ∪ E(y) we have isorank(u)(u, u) (note that rank(u) < α). Hence

∨

β<α isoβ(u, u)

holds as well. Thus isoα(x, y) is satisfied.
For the other direction, assume that F |= isoα(x, y). Then for each u ∈ E(x) ∪ E(y),

there is some β < α such that isoβ(u, u) holds. Due to Claim 1 this implies that rank(u) < α
for each child u of x or y. Using the induction hypothesis and Claim 1, we conclude that
for all u ∈ E(x) ∪ E(y) and all ordinals rank(u) ≤ β < α,

∃≥ℓv ∈ E(x) : isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) : isoβ(u, v) (4.1)

is equivalent to

∃≥ℓv ∈ E(x) : F(u) ∼= F(v) ⇐⇒ ∃≥ℓv ∈ E(y) : F(u) ∼= F(v). (4.2)

Since isoα(x, y) holds, for each u ∈ E(x) ∪ E(y) there is a rank(u) ≤ β < α such that (4.1)
holds. Hence, (4.2) holds for all children u of x or y, which implies that F(x) ∼= F(y).

Remark 4.2. If we are only interested in the isomorphism problem for computable trees
of rank at most λ for a limit ordinal λ it suffices to consider the Π0

λ-formula
∧

β<α

∀u ∈ E(x) ∪E(y) ∀ℓ ≥ 1 : (∃≥ℓv ∈ E(x) : isoβ(u, v) ⇐⇒ ∃≥ℓv ∈ E(y) : isoβ(u, v))

(where the formulas isoβ are constructed as above). This is because if the rank of the root
is bounded by λ, any child of the root has rank strictly below λ and satisfies isoβ(u, u) for
some β < λ.

Corollary 4.3. The isomorphism problem for well-founded tree-automatic trees belongs to
∆0

ωω .

Proof. The Σ0
ωω formula

∨

α<ωω isoα(x, y) expresses F(x) ∼= F(y) for all x, y with rank(x),
rank(y) < ωω.

With Remark 4.2, we also obtain a Π0
ωω formula expressing F(x) ∼= F(y) for all x, y with

rank(x), rank(y) < ωω.
Due to Theorem 3.25, the rank of every tree-automatic well-founded tree is strictly

below ωω. Thus, the isomorphism problem for these trees belongs to Σ0
ωω ∩Π0

ωω = ∆0
ωω .



TREE-AUTOMATIC WELL-FOUNDED TREES 31

5. Lower bound for the isomorphism problem for well-founded trees

In this section, we prove hyperarithmetical lower bounds for the isomorphism problem for
well-founded tree-automatic trees. More precisely, we show that for every ordinal ωi, there
exists a well-founded tree V such that the set of all tree-automatic copies of V is hard for
the class Π0

ωi . Moreover, for the class of all well-founded tree-automatic trees, we prove

that the isomorphism problem is ∆0
ωω -hard under Turing-reductions.

5.1. Isomorphism for computable trees of rank < ωω. Basically, our hardness proof
is a reduction from computable well-founded trees to tree-automatic well-founded trees. For
this, we make use of a construction from [11], which works for all computable ordinals. We
use this construction only for ordinals strictly below ωω. In this section, a computable tree
is a computable prefix-closed subset S ⊆ N∗

>0.
6 We identify S with the tree (S,�). Recall

that � is the inverse prefix relation. Hence, the empty word ε is the root of (S,�).
First, we have to fix the so called fundamental sequence for every limit ordinal < ωω.

Each ordinal α < ωω can be written in its Cantor normal form as

α = ωei · ni + ωei−1 · ni−1 + · · ·+ ωe1 · n1,

where ei > ei−1 > · · · > e1 ≥ 0 and nj > 0 are natural numbers for 1 ≤ j ≤ i. Assume that
e1 > 0 so that α is a limit ordinal. Then

α = sup{αk | k ≥ 1},

where we define αk as

αk = ωei · ni + ωei−1 · ni−1 + · · ·+ ωe2 · n2 + ωe1 · (n1 − 1) + ωe1−1 · k + 1, (5.1)

for k ≥ 1. Note that αk is a successor ordinal and we call (αk)k≥1 the fundamental sequence.
Next, we define for every ordinal α < ωω a computable well-founded tree Sα ⊆ N∗

>0 by
induction on α. Let S0 = {ε} be the tree consisting of a single node. If α = β + 1 < ωω is
a successor ordinal then

Sβ+1 = {nu | n ∈ N>0, u ∈ Sβ} ∪ {ε}.

Hence, Sβ+1 consists of ℵ0 many copies of Sβ together with a new root. Finally let α < ωω

be a limit ordinal with the fundamental sequence (αk)k≥1 defined in (5.1). Then

Sα = {ku | k ∈ N>0, u ∈ Sαk
} ∪ {ε}.

Thus, Sα consists of all the trees Sαk
(k ∈ N>0) together with a new root. By induction on

α < ωω, it is straightforward to show that Sα is well-founded and computable. Moreover,
also the set of leaves leaves(Sα) ⊆ N∗

>0 is computable. Let A ⊆ leaves(Sα). Then we denote
the structure consisting of the tree Sα together with the additional unary predicate A by
(Sα, A).

The following result is implicitly shown in [11, Proposition 3.2], where it is stated for
all computable ordinals. But since we only defined fixed fundamental sequences for limit
ordinals below ωω, we restrict to ordinals below ωω.

6For technical reasons, it is useful to exclude 0. This makes the construction of tree-automatic copies
easier.



32 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Theorem 5.1. Given a limit ordinal α < ωω and k ∈ N>0 ∪ {∞} (resp., a successor
ordinal α < ωω), one can compute indices of a computable subset Lα

k ⊆ leaves(Sα) (resp.,
computable subsets Aα, Eα ⊆ leaves(Sα)) such that the following holds:

From a natural number n ∈ N and a Π0
α index (Π, a, e) for a set P ⊆ N one can compute

an index for a computable subset TP,n ⊆ leaves(Sα) such that the following holds:

• (Sα, Aα) 6∼= (Sα, Eα) and (Sα, L
α
∞) 6∼= (Sα, L

α
k ) for all k ∈ N>0, respectively.

• If α is a successor ordinal, then

(Sα, TP,n) ∼=

{

(Sα, Aα) if n ∈ P

(Sα, Eα) if n /∈ P.

• If α is a limit ordinal, then

(Sα, TP,n) ∼=

{

(Sα, L
α
∞) if n ∈ P

(Sα, L
α
k ) for some k ∈ N>0 if n /∈ P.

Proof. In Proposition 3.2 from [11], the computable subset Aα ⊆ leaves(Sα) is replaced by
a computable tree Aα ⊆ Sα (and similarly for Eα, L

α
k , TP,n). For our purpose it is more

convenient to work with computable subsets of the leaves of the fixed tree Sα. Nevertheless,
the construction works analogously to the proof of Proposition 3.2 from [11], except for the
induction base α = 1. In [11], the tree A1 consists of a single node and the tree E1 consists
of a root with infinitely many children (i.e., E1 ∼= S1). For the construction of TP,n, one
chooses a computable set Q ⊆ N× N such that P ′ = {n | ∃xQ(x, n)} is the complement of
the Π0

1-set P . Then the tree TP,n consists of the root and x ∈ N>0 is a child of the root if
and only if there exists y ≤ x satisfying Q(y, n). Hence, TP,n ∼= E1 if there exists x with
Q(x, n) and TP,n ∼= A1 if ¬Q(x, n) for all x.

In our context, we define the subsets A1, E1, TP,n ⊆ N>0 = leaves(S1) as follows: let
A1 = ∅, E1 be the set of all non-zero even numbers, and TP,n = {2x | ∃y ≤ x : Q(y, n)}.
Then, we have (S1, TP,n) ∼= (S1, E1) if there exists x with Q(x, n) and (S1, TP,n) ∼= (S1, A1)
if ¬Q(x, n) for all x.

Let us now discuss the induction step. As remarked above, it works analogously to the
proof of Proposition 3.2 from [11], but we present the details for the sake of completeness.
Let α < ωω, n ∈ N, and (Π, a, e) be a Π0

α index for a set P ⊆ N. Hence, |a|O = α. We
distinguish three cases:

Case 1. α = β + 1 for a successor ordinal β < ωω. Note that we can compute indices for
the sets Aβ, Eβ ⊆ leaves(Sβ) from β. The following constructions are illustrated in Figure
2. We define the sets Aα, Eα ⊆ leaves(Sα) = {mu | m ∈ N>0, u ∈ leaves(Sβ)} as follows
(here and in the following, we use square brackets to enclose single numbers in finite words
over N):

Aα = {mu | n ∈ N>0, u ∈ Eβ},

Eα = {[2m]u | n ∈ N>0, u ∈ Eβ} ∪ {[2m − 1]u | m ∈ N>0, u ∈ Aβ}.

Clearly, indices for these computable sets can be computed from the indices for Aβ and Eβ .
Since (Sβ , Eβ) 6∼= (Sβ , Aβ), we also have (Sα, Eα) 6∼= (Sα, Aα)

The index e from (Π, a, e) is a Σ0
β index for a set Q ⊆ N × N such that n ∈ P if and

only if (n,m) ∈ Q for all m ∈ N. From e one can compute a Π0
β index f for the complement

of Q [1, Theorem 7.1]. By induction, one can compute from f and (n,m) ∈ N×N an index



TREE-AUTOMATIC WELL-FOUNDED TREES 33

Aα

Eβ Eβ Eβ . . .
=

Eβ

ℵ
0

Eα

Aβ Eβ Aβ Eβ . . .
=

Eβ

ℵ 0

Aβ

ℵ
0

TP,n

Eβ

ℵ0

TQ̄,n,0

ℵ0

TQ̄,n,1

ℵ
0

TQ̄,n,2

ℵ
0

. . .

Figure 2: Trees for Case 1 from the proof of Theorem 5.1 (here and in the following pictures
we write an ℵ0 labeled edge from a node d to a subtree T if d has edges to countably
infinitely many subtrees isomorphic to T ).

of a computable set TQ,n,m ⊆ leaves(Sβ) such that:7

(Sβ , TQ,n,m)
∼=

{

(Sβ , Aβ) if (n,m) /∈ Q,

(Sβ , Eβ) if (n,m) ∈ Q.

We define the computable set TP,n ⊆ leaves(Sα) as follows (where we write 2N3N for

{n ∈ N | ∃k, l ∈ N n = 2k · 3l}):

TP,n = {[2m3x]u | x,m ∈ N, u ∈ TQ,n,m} ∪ {xu | x ∈ N>0 \ 2
N3N, u ∈ Eβ}.

7Formally, we have to encode the pair (n,m) into a single number in order to apply the induction
hypothesis.



34 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Aα

Lβ
1

ℵ0

Lβ
2

ℵ 0

Lβ
3

ℵ
0

. . .

Eα

Lβ
∞

ℵ0

Lβ
1

ℵ0

Lβ
2

ℵ
0

Lβ
3

ℵ
0

. . .

TP,n

. . . Lβ
3

ℵ0

Lβ
2

ℵ0

Lβ
1

ℵ
0

TQ̄,n,0

ℵ
0

TQ̄,n,1

ℵ
0

TQ̄,n,2

ℵ0

. . .

Figure 3: Trees for Case 2 from the proof of Theorem 5.1.

Note that the leaf-labeled tree (Sα, TP,n) consists of a root together with infinitely many
copies of each of the trees (Sβ , TQ,n,m) for m ∈ N together with infinitely many copies of

the tree (Sβ , Eβ). Also note that each of the subtrees (Sβ , TQ,n,m) is either isomorphic to

(Sβ , Aβ) or (Sβ, Eβ).
If there is an m with (n,m) 6∈ Q, then (Sα, TP,n) consists of infinitely many copies of

(Sβ , Aβ) and infinitely many copies of (Sβ , Eβ). Hence, we have (Sα, TP,n) ∼= (Sα, Eα).
On the other hand, if (n,m) ∈ Q for all m ∈ N then (Sα, TP,n) ∼= (Sα, Aα).

Finally, an index for the computable set TP,n can be computed from (Π, a, e) and n.

Case 2. α = β + 1 for a limit ordinal β < ωω. Hence, from a given k ∈ N>0 ∪ {∞}
one can compute and index of a computable subset Lα

k ⊆ leaves(Sβ). We define the sets
Aα, Eα ⊆ leaves(Sα) = {mu | m ∈ N>0, u ∈ leaves(Sβ)} as follows (cf. Figure 3):

Aα = {[2k−1(2x− 1)]u | k, x ∈ N>0, u ∈ Lβ
k},

Eα = {[2k(2x− 1)]u | k, x ∈ N>0, u ∈ Lβ
k} ∪ {[2x− 1]u | x ∈ N>0, u ∈ Lβ

∞}.

Again, indices for these computable sets can be computed from α. Since (Sβ, L
β
k ) 6∼=

(Sβ , L
β
∞) for all k ∈ N>0, we have (Sα, Eα) 6∼= (Sα, Aα).

As in Case 1, the index e from (Π, a, e) is a Σ0
β index for a set Q ⊆ N × N such that

n ∈ P if and only if (n,m) ∈ Q for all m ∈ N. From e one can compute a Π0
β index f for

the complement of Q. By induction, one can compute from f and (n,m) ∈ N×N an index



TREE-AUTOMATIC WELL-FOUNDED TREES 35

of a computable set TQ,n,m ⊆ leaves(Sβ) such that

(Sβ , TQ,n,m)
∼=

{

(Sβ , L
β
∞) if (n,m) /∈ Q,

(Sβ , L
β
k) for some k ∈ N>0 if (n,m) ∈ Q.

We define the computable set TP,n ⊆ leaves(Sα) as the set

{[22m(2x+ 1)]u | m,x ∈ N, u ∈ TQ,n,m} ∪ {[22k−1(2x+ 1)]u | k ∈ N>0, x ∈ N, u ∈ Lβ
k}.

The leaf-labeled tree (Sα, TP,n) consists of a root together with infinitely many copies of
each of the trees (Sβ , TQ,n,m) for m ∈ N together with infinitely many copies of each of the

trees (Sβ , L
β
k) for k ∈ N>0. Also note that each of the subtrees (Sβ, TQ,n,m) is isomorphic

to one of the trees (Sβ , L
β
k) (k ∈ N>0 ∪ {∞}).

If there is an m with (n,m) 6∈ Q, then (Sα, TP,n) consists of infinitely many copies of

each of the trees (Sβ, L
β
k ) for all k ∈ N>0 ∪ {∞}. Hence, we have (Sα, TP,n) ∼= (Sα, Eα).

On the other hand, if (n,m) ∈ Q for all m ∈ N then (Sα, TP,n) ∼= (Sα, Aα).

Case 3. α is a limit ordinal. Let (αk)k≥1 be the fundamental sequence of α. Recall that
αk is a successor ordinal. We define a computable subset Lα

∞ of the leaves leaves(Sα) =
{ku | k ∈ N>0, u ∈ leaves(Sαk

)} by

Lα
∞ = {ku | k ∈ N>0, u ∈ Aαk

}.

For k ∈ N>0 we define the computable set Lα
k ⊆ leaves(Sα) by

Lα
k = {xu | 0 < x < k, u ∈ Aαx} ∪ {xu | x ≥ k, u ∈ Eαx}.

Recall that (Sαk
, Aαk

) 6∼= (Sαk
, Eαk

) for all k ≥ 1, whence (Sα, L
α
k ) 6∼= (Sα, L

α
∞) for all

k ≥ 1.
For the Π0

α index (Π, a, e) we can assume (using a padding argument) that Φe is a total
computable function such that for all k ≥ 1, Φe(k) is a Π0

αk
index for some set Qk ⊆ N and

P =
⋂

k≥1Qk. Let us define for k ∈ N>0 the set Pk =
⋂k

i=1 Qk. Since Π0
αk

sets are closed

under finite intersections, Pk is a Π0
αk

set. Moreover, a Π0
αk

index for Pk can be computed
from k. By induction, from k ∈ N>0 and n one can compute an index for a computable set
TPk,n ⊆ leaves(Sαk

) such that

(Sαk
, TPk,n)

∼=

{

(Sαk
, Aαk

) if n ∈ Pk,

(Sαk
, Eαk

) if n /∈ Pk.

Define the computable set

TP,n = {ku | k ∈ N>0, u ∈ TPk,n}.

If n ∈ P , then n ∈ Pk for all k ∈ N>0 and we get (Sα, TP,n) ∼= (Sα, L
α
∞). On the other

hand, if n /∈ P then there is some k ∈ N>0 such that n ∈ Pi if and only if i < k. In this
case we get (Sα, TP,n) ∼= (Sα, L

α
k ).



36 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

Lα
∞

Aα1
Aα2

Aα3
. . .

Lα
k

Aα1
Aα2

. . . Aαk−1
Eαk

Eαk+1
Eαk+2

. . .

TP,n

TP1,n TP2,n TP3,n
. . .

Figure 4: Trees for Case 3 from the proof of Theorem 5.1.

5.2. Tree-automaticity of the trees Sωi . In this section, we show that all trees Sωi

(i ≥ 1) from the previous section are tree-automatic. For this, we need the following
lemma.

Lemma 5.2. Let i ≥ 1, n ≥ 1, α ≤ ωi. Then we have

Sα ∪ {uv | u ∈ leaves(Sα), v ∈ Sωi·n} = Sωi·n+α. (5.2)

Note that the tree on the left-hand side of (5.2) is the tree that results from the tree
Sα by replacing every leaf by a copy of the tree Sωi·n.

Proof. We prove the lemma by induction on α ≤ ωi. The case α = 0 is clear. Next, assume
that α = γ + 1 is a successor ordinal. Then

Sα = {ε} ∪ {nu | n ∈ N>0, u ∈ Sγ}. (5.3)



TREE-AUTOMATIC WELL-FOUNDED TREES 37

By induction hypothesis, we have

Sγ ∪ {uv | u ∈ leaves(Sγ), v ∈ Sωi·n} = Sωi·n+γ . (5.4)

Hence, we get

Sα ∪ {uv | u ∈ leaves(Sα), v ∈ Sωi·n}

(5.3)
= {ε} ∪ {nu | n ∈ N>0, u ∈ Sγ} ∪ {nu′v | n ∈ N>0, u

′ ∈ leaves(Sγ), v ∈ Sωi·n}

(5.4)
= {ε} ∪ {nw | n ∈ N>0, w ∈ Sωi·n+γ} = Sωi·n+γ+1 = Sωi·n+α.

Finally, assume that α ≤ ωi is a limit ordinal with the fundamental sequence (αk)k≥1. Then
(ωi · n+ αk)k≥1 is our fundamental sequence for the ordinal ωi · n+ α. We have

Sα = {ε} ∪ {ku | k ∈ N>0, u ∈ Sαk
}. (5.5)

By induction hypothesis, for every k ≥ 1 we have

Sαk
∪ {uv | u ∈ leaves(Sαk

), v ∈ Sωi·n} = Sωi·n+αk
. (5.6)

Hence, we get

Sα ∪ {uv | u ∈ leaves(Sα), v ∈ Sωi·n}

(5.5)
= {ε} ∪ {ku | k ∈ N>0, u ∈ Sαk

} ∪ {ku′v | k ∈ N>0, u
′ ∈ leaves(Sαk

), v ∈ Sωi·n}

(5.6)
= {ε} ∪ {kw | k ∈ N>0, w ∈ Sωi·n+αk

} = Sωi·n+α.

Now we can prove tree-automaticity of Sωi .

Lemma 5.3. For every i ≥ 1, the tree Sωi ⊆ N∗
>0 is tree-automatic. Moreover, there

is a unary tree-automatic copy (L,≤) of Sωi together with a computable isomorphism
f : Sωi → (L,≤).

Proof. We prove the lemma by induction on i. Assume that we have already constructed a
tree-automatic copy (L,≤) of the tree Sωi over a unary alphabet (i.e., L ⊆ T fin

2 is regular)
together with the computable isomorphism f . In addition, we assume that the root of
(L,≤) is the one-node tree {ε}; this property is preserved by the construction. We aim at
constructing a unary tree-automatic copy of Sωi+1 with root {ε}. Let us first construct a
tree-automatic copy of the computable forest

⊔

n≥1Sωi·n. This forest is isomorphic to the
inverse prefix relation on the domain

{nu | n ≥ 1, u ∈ Sωi·n} ⊆ N∗
>0.

Define well-founded trees Tn for n ≥ 1 inductively as follows. Let T1 = Sωi and let Tn+1

result from the tree Sωi by replacing every leaf by a copy of the tree Tn. Formally, we
define

Tn = {u1 · · · ujv | 0 ≤ j < n, u1, . . . , uj ∈ leaves(Sωi), v ∈ Sωi}.

Lemma 5.2 implies Tn = Sωi·n for n ≥ 1. We construct a tree-automatic copy of
⊔

n≥1 Tn

using (L,≤). The universe of this copy is the set L′ of all trees of the form pref(
⋃n

i=1 0
i1ti),

where n ≥ 1, t1, . . . , tn ∈ L and there exists 1 ≤ j ≤ n such that tj is a leaf of (L,≤) for
all j < i and tj = {ε} for all j > i. Since the set of leaves of (L,≤) is regular, the set L′ is
clearly regular. We define a tree-automatic partial order ≤′ on the set L′ by comparing the
ti componentwise. Let t = pref(

⋃m
i=1 0

i1ti) ∈ L′ and t′ = pref(
⋃n

i=1 0
i1t′i) ∈ L′. Then t ≤′ t′



38 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

if and only if n = m and ti ≤ t′i for all 1 ≤ i ≤ n. From this construction, it follows easily
that

(L′,≤′) ∼=
⊔

n≥1

Tn =
⊔

n≥1

Sωi·n.

The set of roots of this forest is {pref(
⋃n

i=1 0
i1) | n ≥ 1}. Let us also define a com-

putable isomorphism f ′ :
⊔

n≥1 Tn → (L′,≤′). Take an element nw from
⊔

n≥1 Tn, where
n ∈ N>0 and w ∈ Tn. There is a unique factorization w = u1 · · · ujv with 0 ≤ j < n,
u1, . . . , uj ∈ leaves(Sωi), and v ∈ Sωi . Since the set leaves(Sωi) is computable, we can
compute this factorization. Next, using the computable isomorphism f : Sωi → (L,≤)
define the trees tk = f(uk) (1 ≤ k ≤ j), tj+1 = f(v), and tj+2, . . . , tn = {ε}. Then
set f ′(nw) = pref(

⋃n
i=1 0

i1ti). It is straightforward to verify that this defines indeed an
isomorphism from

⊔

n≥1 Tn to (L′,≤′).

We derive from (L′,≤′) a tree-automatic copy of the computable forest
⊔

n≥1Sωi·n+1.
This forest is isomorphic to the inverse prefix relation on

{nu | n ∈ N>0, u ∈ Sωi·n+1} = N>0 ∪ {nmw | n,m ∈ N>0, w ∈ Sωi·n}.

Note that in every node u ∈ T fin
2 of the forest (L′,≤′), the root of u has no right child (i.e.,

1 /∈ u). Define the regular set of trees

L′′ = {pref(0n) | n ≥ 1} ∪ {pref({1m} ∪ t) | t ∈ L′,m ≥ 1}.

On the set L′′ we define the partial order ≤′′ as follows. For u, v ∈ L′′, let u ≤′′ v if and
only if either

• u = pref({1m} ∪ s), v = pref({1m} ∪ t) with s, t ∈ L′ and s ≤′ t or
• u = pref({1m} ∪ t), v = pref(0n) with t ∈ L′ of the form pref(

⋃n
i=1 0

i1ti).

This order relation is clearly tree-automatic. Moreover, the construction implies that

(L′′,≤′′) ∼= (N>0 ∪ {nmw | n,m ∈ N>0, w ∈ Sωi·n},�) =
⊔

n≥1

Sωi·n+1.

A computable isomorphism f ′′ :
⊔

n≥1Sωi·n+1 → (L′′,≤′′) can be defined as follows. For a

root n ∈ N>0 let f ′′(n) = pref(0n). A node nmu with n,m ∈ N>0 and u ∈ Sωi·n (hence,
mu ∈ Sωi·n+1) is mapped to f ′′(nmu) = pref({1m} ∪ t) with f ′(nu) = t.

Finally, we add to the forest (L′′,≤′′) the root {ε}; this gives us a tree-automatic copy
of the tree Sωi+1 with root {ε}. A computable isomorphism is obtained by extending f ′′

by f ′′(ε) = {ε}.

5.3. Encoding Σ0
2-sets of binary trees. Theorem 5.1 and Lemma 5.3 show that the

isomorphism problem for the following class of computable structures is Π0
ωi-hard for every

i ∈ N: the class contains all structures of the form (V,⊑,X) where (V,⊑) is the unary tree-
automatic copy of Sωi from Lemma 5.3 and X is a computable unary predicate, which is
moreover a subset of leaves(V,⊑). By Lemma 2.12 we can moreover assume that V ⊆ Tbin,
i.e., V consists of unlabeled full binary trees.

Let us define the set
Tlef = {{ε} ∪ 0u | u ∈ Tbin}.

Thus, Tlef contains all trees t ∈ T fin
2 , where the root of t has no right child (1 /∈ t), the root

has a left child (0 ∈ t), and the subtree rooted at 0 belongs to Tbin, i.e., is a full binary tree.



TREE-AUTOMATIC WELL-FOUNDED TREES 39

In this section, we describe an encoding of Σ0
2-subsets of Tlef by sets of tree-automatic

trees of height 3. Actually, we need this encoding only for computable subsets of Tlef (instead
of Σ0

2-sets), but the proof of Lemma 5.4 is not simpler for a computable set B.

Lemma 5.4. There are two trees U0 and U1 of height 3 (U0 6∼= U1) with the following
property: From a given index of a Σ0

2-set B ⊆ Tlef one can effectively construct a tree-
automatic forest FB of height 3 such that:

• The set of roots of FB is Tlef .
• For every t ∈ Tlef , FB(t) ∼= U0 if t ∈ B and FB(t) ∼= U1 if t /∈ B.

Restricting to trees from Tlef makes our encoding technically a bit simpler, and this
restriction can be easily enforced later when we apply Lemma 5.4.

We prove Lemma 5.4 using a similar statement for words from [20]. First, we have to
introduce a notation from [20]. Let A = (Q,Σ,∆, I, F ) be a finite nondeterministic string
automaton, where Q is the set of states, Σ is the input alphabet, ∆ ⊆ Q×Σ×Q is the set
of transition triples, I is the set of initial states, and F is the set of final states. A successful
run of A on a non-empty word w ∈ Σ+ is a word (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) over
∆ such that q0 ∈ I, qn ∈ F , and w = a1a2 · · · an. The language L(A) accepted by A consists
of all non-empty words (for technical reasons, the empty word was excluded in [20]) that
have a successful run. We define a forest forest(A) in the following. Clearly, (L(A),�)
(recall that � is the prefix relation on words) is a (string-automatic) forest. The set of all
leaves of the forest (L(A),�) is first-order definable whence it is a regular language. It is
the set of all words in L(A) that are not a proper prefix of another word in (L(A). Let
us denote the set of leaves of (L(A),�) with leaves(A). We define the forest forest(A) as
follows:

• The domain of forest(A) is the regular set

L(A) ⊔ {r ∈ ∆+ | r is a successful run of A on some v ∈ leaves(A)}.

• The order relation ≤ of forest(A) is defined by u ≤ v if
(1) either u, v ∈ L(A) and v � u or
(2) v ∈ L(A) and u ∈ ∆+ is a successful run of A on some w ∈ leaves(A) with v � w.

Clearly, forest(A) is string-automatic. Intuitively, we take the forest resulting from the
inverse prefix order on the regular language L(A) and append to each leaf v of (L(A),�)
all successful runs of A on v as children. All these children are leaves in forest(A). In [20],
the following lemma was proved.

Lemma 5.5. There exist two trees U0 and U1 of height 3 (U0 6∼= U1) with the following
property: From a given index of a Σ0

2-set A ⊆ {0, 1}∗1 one can effectively construct a finite
string automaton A (over an alphabet Σ with 0, 1, ♯ ∈ Σ) such that forest(A) is a forest of
height 3 with the following properties.

• The set of roots of forest(A) is {0, 1}∗1♯.
• For every w ∈ {0, 1}∗1, forest(A)(w♯) ∼= U0 if w ∈ A, and forest(A)(w♯) ∼= U1 if w /∈ A.

In order to prove Lemma 5.4 using Lemma 5.5, we have to encode trees from Tlef by
words. A tree t ∈ Tbin can be encoded by a non-empty bracket expression, i.e., a word
over the alphabet {(, )}. Here, we view such a bracket expression as a binary string by
identifying ( with 0 and ) with 1. Thus, we define a nonempty word word(t) ∈ {0, 1}+ as
follows: Consider a depth-first left-to-right traversal of t. Each time, we move from a node
v to one of its children, we write down 0. Each time, we move from a node vi to its parent



40 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

node v, we write down 1. The resulting word is word(t). Formally, let word({ε}) = ε and
for t ∈ Tbin \ {{ε}} such that t = {ε} ∪ 0t1 ∪ 1t2 let

word(t) = 0word(t1)10word(t2)1.

This mapping word is clearly injective. Finally, for t = ({ε} ∪ 0u) ∈ Tlef with u ∈ Tbin let
word(t) = 0word(u)1. Also the mapping word : Tlef → 0{0, 1}∗1 is injective.

Let us now fix an alphabet Σ such that 0, 1, ♯ ∈ Σ (as in Lemma 5.5). Take a word
w = u♯v with u ∈ {0, 1}∗, v ∈ Σ∗ and u = word(t) for some tree t ∈ Tlef . Note that the root
of t has no right child in t. For 1 ≤ i ≤ |v| let ai be the ith symbol of v. We encode w by
the Σ-labeled tree tree(w) = (T, λ) ∈ T fin

2,Σ, where

T = t ∪ {1i | 1 ≤ i ≤ |v|} and

λ(x) =

{

ai if x = 1i for some 1 ≤ i ≤ |v|,

♯ else.

Note that tree(word(t)♯) = t, since we identify an unlabeled tree with a tree where all nodes
are labeled with ♯.

Lemma 5.6. From a given string automaton A over Σ one can construct effectively a tree
automaton B over Σ such that for every tree t ∈ Tlef and every word v ∈ Σ∗ the following
holds: The number of successful runs of A on the string word(t)♯v equals the number of
successful runs of B on the tree tree(word(t)♯v).

Proof. Let A = (Q,Σ,∆, I, F ). Note that tree(word(t)♯v) consists of the tree t to which we
add at the root a right branch of length |v|. The ith node on this branch is labeled with
the ith symbol of ♯v (we count from the root to the leaf). Essentially, the tree automaton
B simulates a tree-walking automaton W (see [5] for a survey on tree walking automata,
but we do not need a formal definition of tree walking automata) that walks over the tree
tree(word(t)$v) in depth-first left-to-right order. Thereby, W simulates the string automaton
A. The automaton W starts in the root of the tree. In a first phase (which is finished if
W returns to the root for the first time), W behaves as follows: each time, W moves down
in the tree (towards the leaves), it simulates a 0-labeled transition of A, and each time, W
moves up in the tree (towards the root), it simulates a 1-labeled transition of A. After the
first phase, the tree t is fully traversed and W goes into the right branch of tree(word(t)♯v)
(which is labeled with the word ♯v) and continues the simulation of A.

Here is a formal definition of the tree automaton B = (Q′,∆′, I ′, F ′), which simulates
a tree-walking automaton W with the above behavior. Fix an arbitrary final state qf ∈ F .
The state set of B is

Q′ = (Q×Q×Q) ∪ (I ×Q) ∪Q,

the set of initial states is I ′ = I ×Q, and the set of final states is F . The set of transitions
is ∆′ = ∆1 ∪∆2 ∪∆3, where

∆1 ={((p1, p2), ♯, (q1, q2, q3), r) | p1 ∈ I, (p1, 0, q1) ∈ ∆, q2 ∈ Q, (q3, 1, p2), (p2, ♯, r) ∈ ∆},

∆2 ={((p1, p2, p3), ♯, (q1, q2, q3), (r1, r2, r3)) |

(p1, 0, q1), q2 ∈ Q, (q3, 1, p2), (p2, 0, r1), r2 ∈ Q, (r3, 1, p3) ∈ ∆}

∪ {((p, p, p), ♯, qf , qf) | p ∈ Q},

∆3 ={(p, a, qf , q) | (p, a, q) ∈ ∆}.



TREE-AUTOMATIC WELL-FOUNDED TREES 41

With the transitions in ∆1 we split the simulation of the tree-walking automaton into its
first and second phase, i.e., p2 in ∆1 is the state reached by the tree-walking automaton
after traversing the tree t. The transitions in ∆2 simulate the traversal of t, whereas the
transitions in ∆3 simulate the the string automaton A on the right ♯v-labeled branch.

Let us now prove Lemma 5.4.

Proof of Lemma 5.4. Fix a Σ0
2-set B ⊆ Tlef . Then the set A = word(B) ⊆ 0{0, 1}∗1 belongs

to Σ0
2 as well (the range of the word-mapping is computable and on its range, the inverse

of word is also computable). Therefore, we can apply Lemma 5.5 to the set word(B). We
obtain (effectively) a finite string automaton A (over an alphabet Σ with 0, 1, ♯ ∈ Σ) such
that forest(A) is a forest of height 3 with the following properties.

• The set of roots of forest(A) is {0, 1}∗1♯.
• For every w ∈ {0, 1}∗1, forest(A)(w♯) ∼= U0 if w ∈ A, and forest(A)(w♯) ∼= U1 if w /∈ A
for two nonisomorphic trees U0 and U1.

To the string automaton A we next apply Lemma 5.6. We obtain (effectively) a tree
automaton B over Σ such that for every tree t ∈ Tlef and every word v ∈ Σ∗ the following
holds: The number of successful runs of A on the string word(t)♯v equals the number of
successful runs of B on the tree tree(word(t)♯v). Since A accepts every word from {0, 1}∗1♯
(this set is the set of roots of forest(A)), B accepts every tree t ∈ Tlef .

By taking the product with a deterministic tree automaton that accepts the set of trees

{tree(word(t)♯v) | t ∈ Tlef , v ∈ Σ∗}

(which is regular), we can assume that

L(B) ⊆ {tree(word(t)♯v) | t ∈ Tlef , v ∈ Σ∗}.

For trees t1 = tree(word(t)♯v1), t2 = tree(word(t)♯v2) let us write t1 ⊑ t2 if v1 is a prefix of
v2. Clearly, this is a tree-automatic relation. Let

max(B) = {t ∈ L(B) | there does not exist t′ ∈ L(B) with t ❁ t′};

this set is regular as well. We can now construct a tree-automatic forest FB of height 3 as
follows. The set of nodes of FB is

L(B) ∪
⋃

t∈max(B)

Run(B, t).

Since max(B) is regular, this set is also regular. The order relation of the forest FB is the
tree-automatic relation

⊒ ∪ {(ρ, t) | t ∈ L(B),∃u ∈ max(B) : t ⊑ u, ρ ∈ Run(B, u)}.

The set of roots of FB is (as required) Tlef . Moreover, for every tree t ∈ Tlef , the construction
directly implies that FB(t) ∼= forest(A)(word(t)♯). Hence, for every tree t ∈ Tlef we have
FB(t) ∼= U0 if and only if forest(A)(word(t)♯) ∼= U0 if and only if word(t) ∈ A = word(B) if
and only if t ∈ B, and similarly, FB(t) ∼= U1 if and only if t /∈ B.



42 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

5.4. Hardness for the isomorphism problem. Hardness of the isomorphism problem
for well-founded tree-automatic trees is established through the following theorem.

Theorem 5.7. From a given i ∈ N>0, one can compute a well-founded tree-automatic tree
Vi such that the following holds: From a given Π0

ωi-set P ⊆ N (represented by a Π0
ωi index)

and n ∈ N one can compute a well-founded tree-automatic tree WP,n such that n ∈ P if and
only if Vi

∼= WP,n

Proof. Fix i ≥ 1, an arbitrary Π0
ωi-set P ⊆ N, and n ∈ N. According to Theorem 5.1

there exists effectively a computable subset Li = Lωi

∞ ⊆ leaves(Sωi) such that the following
holds. From an index for P and n one can compute an index for a computable subset
TP,n ⊆ leaves(Sωi) such that (Sωi , Li) ∼= (Sωi , TP,n) if and only if n ∈ P . By Lemma 5.3,
the tree Sωi is tree-automatic and there exists a unary tree-automatic copy (S,≤) of Sωi

together with a computable isomorphism f : Sωi → (S,≤). Moreover, by Lemma 2.12 we
can assume that S ⊆ Tbin. Finally, by applying the computable bijection t 7→ {ε} ∪ 0t from
Tbin to Tlef , we can even assume that S ⊆ Tlef . Since f is computable and bijective and Li

and TP,n are computable, the sets L′
i = f(Li) ⊆ S and T ′

P,n = f(TP,n) ⊆ S are computable

as well and in particular Σ0
2. We have n ∈ P if and only if (S,≤, L′

i)
∼= (S,≤, T ′

P,n).
Next, using Lemma 5.4 we obtain two trees U0 and U1 of height 3 and from the indices

of the computable sets L′
i and T ′

P,n, we can compute two tree-automatic forests Gi and HP,n

of height 3 such that the following holds.

• The set of roots of Gi (resp. HP,n) is Tlef .
• For every t ∈ Tlef , Gi(t) ∼= U0 if t ∈ L′

i and Gi(t) ∼= U1 otherwise.
• For every t ∈ Tlef , HP,n(t) ∼= U0 if t ∈ T ′

P,n and HP,n(t) ∼= U1 otherwise.

Note that by Theorem 2.13, leaves(S,≤) is a regular set of trees since it is first-order definable
in the tree-automatic tree (S,≤). Let G′

i (resp. H′
P,n) be the restriction of the forest Gi

(resp. HP,n) to those trees with a root from leaves(S,≤). It follows that G′
i and H′

P,n are
again tree-automatic forests of height 3. Moreover, we can assume that the intersection
of the domains of G′

i (resp. H′
P,n) and S equals leaves(S,≤). Finally, let Vi (resp. WP,n)

be the well-founded tree-automatic tree obtained from the union of G′
i (resp. H′

P,n) and

(S,≤). Hence, Vi (resp. WP,n) results from the tree (S,≤) by (i) replacing every leaf which
belongs to L′

i (resp. T
′
P,n) by the tree-automatic height-3 tree U0 and by (ii) replacing every

leaf which does not belong to L′
i (resp. T

′
P,n) by the tree-automatic height-3 tree U1. Since

U0 6∼= U1, we have n ∈ P if and only if (S,≤, L′
i)
∼= (S,≤, T ′

P,n) if and only if Vi
∼= WP,n.

Theorem 5.8. The isomorphism problem for well-founded tree-automatic trees is ∆0
ωω -hard

under Turing-reductions.

Proof. Let Φe be a total computable function that maps i ∈ N to an ordinal notation ai ∈ O
with |ai|O = ωi. Hence 3 · 5e is an ordinal notation for ωω. Recall that ∆0

ωω consists of all
sets that are Turing-reducible to

H(3 · 5e) = {〈a, n〉 | a <O 3 · 5e, n ∈ H(a)}.

This set is Turing-reducible to

A = {〈i, n〉 | i ≥ 1, n ∈ H(ai)}.

To see this, take a pair 〈a, n〉. First, check whether a <O 3 · 5e. Since the set {b ∈ O |
b <O 3 · 5e} is computably enumerable [1, Prop. 4.10], this is effectively possible using the



TREE-AUTOMATIC WELL-FOUNDED TREES 43

halting problem as an oracle. Clearly, the halting problem is computable in H(a1) = H(ω)
and hence in A. If a <O 3 · 5e, we can compute effectively i ∈ N with a <O ai: Simply
enumerate all sets Bi = {b ∈ O | b <O ai} until a is found. Having i ∈ N with a <O ai
we can finally compute m such that m ∈ H(ai) if and only if n ∈ H(a) (more precisely,
from a, ai ∈ O one can compute an index for a many-one reduction of H(a) to H(ai) [24,
p. 437]).

Finally, we reduce the set A to the isomorphism problem for well-founded tree-automatic
trees. Take a pair 〈i, n〉. From i, n (and a Π0

ωi index for the ∆0
ωi-set H(ai), which can be

computed from i) we can compute by Theorem 5.7 two well-founded tree-automatic trees V
and W such that n ∈ H(ai) if and only if V ∼= W. Hence, 〈i, n〉 ∈ A if and only if V ∼= W.
This proves the theorem.

Acknowledgment

We thank Dietrich Kuske and the anonymous referees of this paper and its conference version
for their useful comments. In particular, we thank one of the referees for simplifying our
arguments in Example 3.27.

References

[1] Christopher J. Ash and Julia F. Knight. Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 2000.

[2] Vince Bárány, Erich Grädel, and Sasha Rubin. Automata-based presentations of infinite structures.
In Finite and Algorithmic Model Theory, number 379 in London Mathematical Society Lecture Notes
Series, pages 1–76. Cambridge University Press, 2011.

[3] Achim Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
[4] Achim Blumensath and Erich Grädel. Finite presentations of infinite structures: Automata and inter-

pretations. Theory of Computing Systems, 37:642–674, 2004.
[5] Mikolaj Bojanczyk. Tree-walking automata, 2008. tutorial at LATA 2008,

www.mimuw.edu.pl/~bojan/papers/twasurvey.pdf.
[6] Wesley Calvert and Julia F. Knight. Classification from a computable viewpoint. Bulletin of Symbolic

Logic, 12(2):191–218, 2006.
[7] Philip W. Carruth. Arithmetic of ordinals with applications to the theory of ordered Abelian groups.

Bulletin of the American Mathematical Society, 48:262–271, 1942.
[8] S. Barry Cooper, Anuj Dawar, and Benedikt Löwe, editors. How the World Computes - Turing Cen-

tenary Conference and 8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June

18-23, 2012. Proceedings, volume 7318 of Lecture Notes in Computer Science. Springer, 2012.
[9] Christian Delhommé. Automaticité des ordinaux et des graphes homogènes. Comptes Rendus de

l’Académie des Sciences, Series I, 339:5–10, 2004.
[10] Sergei S. Goncharov and Julia F. Knight. Computable structure and antistructure theorems. Algebra

Logika, 41(6):639–681, 2002.
[11] Denis R. Hirschfeldt and Walker M. White. Realizing levels of the hyperarithmetic hierarchy as degree

spectra of relations on computable structures. Notre Dame Journal of Formal Logic, 43(1):51–64, 2002.
[12] Martin Huschenbett. Word automaticity of tree automatic scattered linear orderings is decidable. In

Cooper et al. [8], pages 313–322.
[13] Alexander Kartzow. First-Order Model Checking On Generalisations of Pushdown Graphs. PhD thesis,

TU Darmstadt Fachbereich Mathematik, July 2011.
[14] Alexander Kartzow, Jiamou Liu, and Markus Lohrey. Tree-automatic well-founded trees. In Cooper

et al. [8], pages 363–373.

www.mimuw.edu.pl/~bojan/papers/twasurvey.pdf 


44 M. HUSCHENBETT, A. KARTZOW, J. LIU, AND M. LOHREY

[15] Alexander Kartzow, Jiamou Liu, and Markus Lohrey. Tree-automatic well-founded trees. CoRR,
abs/1201.5495, 2012. Version 1.

[16] Bakhadyr Khoussainov and Mia Minnes. Model theoretic complexity of automatic structures. Annals
of Pure and Applied Logic, 161(3):416–426, 2009.

[17] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In LCC: International

Workshop on Logic and Computational Complexity, number 960 in Lecture Notes in Computer Science,
pages 367–392. Springer, 1995.

[18] Bakhadyr Khoussainov, André Nies, Sasha Rubin, and Frank Stephan. Automatic structures: richness
and limitations. Logical Methods in Computer Science, 3(2):2:2, 18 pp. (electronic), 2007.

[19] Bakhadyr Khoussainov, Sasha Rubin, and Frank Stephan. Automatic linear orders and trees. ACM
Transactions on Computational Logic, 6(4):675–700, 2005.

[20] Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isomorphism problem on classes of automatic
structures with transitive relations. to appear in Transactions of the American Mathematical Society.

[21] Dietrich Kuske and Markus Lohrey. Automatic structures of bounded degree revisited. Journal of Sym-

bolic Logic, 76(4):1352–1380, 2011.
[22] Graham P. Oliver and Richard M. Thomas. Automatic presentations for finitely generated groups. In

Volker Diekert and Bruno Durand, editors, Proceedings of STACS 2005, number 3404 in Lecture Notes
in Computer Science, pages 693–704. Springer, 2005.

[23] Frank P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society,
2:30(1):264–286, 1930.

[24] Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1968.
[25] Joseph G. Rosenstein. Linear Ordering. Academic Press, 1982.
[26] Anthony W. To and L. Libkin. Recurrent reachability analysis in regular model checking. In Iliano

Cervesato, Helmut Veith, and Andrei Voronkov, editors, Proceedings of LPAR 2008, number 5330 in
Lecture Notes in Computer Science, pages 198–213, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	2. Preliminaries
	2.1. Trees, forests and upwards linear partial orders
	2.2. Ordinal arithmetic and the ordinal rank
	2.3. Finitely labeled trees
	2.4. Tree automata and tree-automatic structures

	3. Bounding the rank of tree-automatic wulpo's and well-founded trees
	3.1. Delhommé's decomposition theorem for tree-automatic structures
	3.2. Sum- and box-indecomposability
	3.3. Rank-tamely-colorable-box- and rank-sum-indecomposability

	4. Upper bound for the isomorphism problem for well-founded trees
	4.1. Hyperarithmetical sets
	4.2. Hyperarithmetic Upper Bound

	5. Lower bound for the isomorphism problem for well-founded trees
	5.1. Isomorphism for computable trees of rank < 
	5.2. Tree-automaticity of the trees Si
	5.3. Encoding 02-sets of binary trees
	5.4. Hardness for the isomorphism problem

	Acknowledgment
	References

