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Thesis abstract 

Fast bowlers have the highest incidence of injury compared to any other position in cricket. A bowling 

volume that is too high or too low – measured by the number of deliveries bowled in a session – can 

increase the chance of injury. Despite the importance and the simplicity of measuring bowling volume, 

it is rarely done at an amateur level due to the monotonous task of manually counting bowls and the 

effort required to analyse the data. Bowling volume by itself is also not a true measure of bowling 

workload, as it does not consider the intensity of each delivery. Bowling workload is now considered 

a combination of bowling volume and bowling intensity. Due to tactical and motivational reasons, fast 

bowlers will often bowl at different intensities during a match and in training. There are also variations 

in bowling technique, run-up speed, and anthropometrical characteristics of players. Therefore, the 

forces exerted on the body are not constant across players or deliveries. 

This thesis explores whether an inertial measurement unit (IMU) can predict bowling volume and 

different intensity metrics – ball release speed, perceived intensity, and ground reaction forces (GRF). 

These metrics allow a more comprehensive picture of intensity, as each captures slightly different 

constructs related to bowling workload. This can provide researchers with a mechanism to determine 

possible links between workload and injury, leading to a more personalised approach to injury 

management, and give coaches and players a tool to monitor fatigue and performance. 

In Chapter 2, a systematic literature review was conducted to examine methods for activity 

classification in court and field-based sports using IMUs. A key finding was that machine learning 

techniques had shown promising results across a range of sports. However, only user-defined 

algorithms had been used in cricket, meaning the application of machine learning had yet to be tested. 

Chapter 3 was the first of five studies to develop a system that could estimate bowling workload. A 

standard IMU was positioned on the upper back in a training setting, and five different machine 

learning models were used to estimate bowling volume. When tested against outfield throws, several 

models achieved an F-score of 1.0, meaning perfect differentiation of bowling versus throwing. The 

analysis was repeated with several down-sampled datasets (i.e., 250 Hz to 25 Hz) to simulate a low-

cost IMU that samples data less frequently. A minimal drop in accuracy was observed (F-score = 0.97). 

In chapter 4, bowling intensity was quantified by predicting two metrics, (1) ball release speed, and 

(2) perceived intensity, using the same IMU as Chapter 3 located on the upper back. The gradient

boosting algorithm (XGB) was the most consistent machine learning model for measuring ball release

speed (mean absolute error (MAE) = 3.61 km/h at 25 Hz) and the perceived intensity zone (F-score =

0.88 at 25 Hz). The results were again consistent across different sampling frequencies, meaning a
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range of different IMUs might be able to quantify these bowling intensity parameters, including 

consumer-grade wearables. 

The aim of Chapter 5 was to examine whether an IMU placed on the dominant (bowling arm) and non-

dominant wrist (instead of the upper back) could improve the previously observed results in Chapters 

3 and 4. For practical application, a research-grade IMU (capable of measuring 100 g) was compared 

against a consumer-grade Apple Watch (32 g). XGB models had the best results across all bowling 

volume and bowling intensity measures. A slight improvement was observed compared to the 

previous study (bowling volume: F-score = 1.0; ball release speed: MAE = 2.76 km/h; perceived 

intensity: F-score = 0.92). There was no significant difference between the research-grade IMU and 

Apple Watch; however, IMUs on the dominant wrist classified perceived intensity significantly better 

than on the non-dominant wrist. 

In Chapter 6, another component of bowling intensity was introduced – the GRF experienced during 

the front foot contact of the delivery. Peak force and loading rate, measured by a force plate, were 

significantly different across three perceived intensity zones in the horizontal and vertical axes 

(Cohen’s d range = 0.14–0.45, p < 0.01).  When ball release speed increased, peak force and loading 

rate also increased in the horizontal and vertical axes (ηp
2 = 0.04–0.18, p < 0.01). Lastly, moving from 

high to medium intensity, or medium to low intensity, was associated with a larger relative decrease 

in GRF compared to the relative decrease in ball release speed. For example, reducing bowling effort 

from high to medium intensity resulted in a 7–17% decrease in the horizontal GRF compared to only 

a 5% decrease in ball release speed. This finding could influence bowlers’ strategies during an 

unlimited overs match, as they could conserve energy and reduce workload with only a small 

reduction in bowling speed.  

Similar machine learning techniques as the previous chapters were used in Chapter 7 to estimate GRF. 

As earlier research had only used accelerometer data to estimate GRF in other sports, this study also 

assessed whether the addition of gyroscope data could improve accuracy. Research-grade IMUs were 

attached to the upper back and bowling wrist. A mean absolute percentage error (MAPE) of 22.1% for 

vertical and horizontal peak force, 24.1% for vertical impulse, and 32.6% and 33.6% for vertical and 

horizontal loading rates were observed, respectively. The linear support vector machine model had 

the most consistent overall results. In general, there were no significant differences between using 

data only from the accelerometer compared to data from the accelerometer and gyroscope. Although 

the results were similar to previous studies that estimated GRF, the magnitude of error would likely 

prevent its use in individual monitoring. However, due to the large differences in raw GRFs between 
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participants, researchers may be able to help identify links among GRFs, injury, and performance by 

categorising values into levels (i.e., low and high). 

It is hoped that the methods explored in this thesis can be used as a foundation for future applications 

that automatically estimate bowling workload across weeks or seasons. As access to smart devices is 

increasing in developing nations, such a system has the potential to reach most of the cricketing 

population. 
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Chapter 1 – Introduction 

Background 

Fast bowlers have the highest incidence of injury compared to any other position in cricket.1 The 

incidence of injury during a season where one or more matches are missed is 20.6%, which is more 

than twice as much as spin bowlers (6.7%), batsmen (7.4%), and wicketkeepers (4.7%).2 This is coupled 

with an average length of time on the sidelines of 4.5 weeks.3 Common injuries include stress fractures 

to the lumbar spine, hamstring strains, and rotator cuff tendon injuries.4 Modifiable and non-

modifiable risk factors intertwine to increase the likelihood of injury. Non-modifiable risk factors 

include genetic susceptibility to injury, while modifiable risk factors currently include bowling 

technique and bowling volume, measured by the number of deliveries bowled in a session.5-7 

Retrospective studies have shown that fast bowlers who bowl too many and too few deliveries during 

a week, month and year, have an increased chance of injury.1,4,8-16  

Caution needs to be used when interpreting results from bowling volume studies due to researchers 

relying on participants to fill in bowling logs accurately.5 This reason has caused some researchers to 

exclude data from training sessions which can make up a large proportion of a bowler’s weekly 

workload.13,17,18 A potential reason for the poor adherence to measuring bowling volume is the 

monotonous task of counting bowls manually. This, along with the effort taken to analyse data, could 

also be a reason why it is also not recorded regularly at any playing level.5,17  

Bowling volume by itself is also not a true measure of bowling workload as it does not consider the 

intensity of each delivery.5,19,20 Fast bowlers will often bowl at different intensities in match and 

training settings due to tactical and motivational reasons.5,21-25 There are also variations between 

technique, run-up speed, and anthropometrical characteristics (e.g., height and weight).5 Therefore, 

the forces exerted on the body are not constant between each bowl or player. Although there is a lack 

of consensus on the best way to measure bowling intensity,5,19 current methods use a perceived 

intensity rating scale,17,26 speed radar gun,26 or a force plate built into the cricket pitch.24 However, 

these methods are manually intensive or require considerable outlay, time, and expertise to set 

up.5,20,24 Consequently, a lack of bowling intensity data exists, meaning that researchers have rarely 

been able to study the effects of bowling intensity (and therefore bowling workload) on injury. 

A cost-effective, automatic, and portable method of recording bowling workload (bowling volume and 

bowling intensity) is needed. Ideally, this method would capture different measures of bowling 

intensity (i.e., ball release speed, ground reaction forces (GRF), and perceived intensity) as they assess 

slightly different constructs.26 For example, due to slight changes in technique, which can alter the 
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timing of the kinetic chain, the perceived effort could still be at maximum; however, ball release speed 

may not. Having a more accurate measure of bowling volume and different intensity metrics could 

assist researchers in understanding the cause of injury and offer a more personalised approach to 

bowling workload management.5,19 In addition, intensity measures could be used to improve and track 

performance. For example, higher ball release speeds are linked to improved performance,27-29 and 

certain high GRFs are linked to an increase in bowling speed.6,30-32 

Thesis rationale 

A potential solution to this problem is to use an inertial measurement unit (IMU). An IMU typically 

consists of an accelerometer, gyroscope, and magnetometer. An accelerometer measures linear 

acceleration (measured in g-force), the gyroscope measures angular velocity (degrees per second), 

and the magnetometer measures the strength and direction of the local magnetic field. IMUs are small 

(< 12 cm3), lightweight (< 10 grams), cheap (< 50 USD), and accessible to most of the world’s 

population due to being installed in the majority of smart devices (e.g., smartwatches and 

smartphones).33 This is important as over half the cricketing population comes from developing 

countries.34  

When determining the type of IMU to use, considerations need to be made around what sensors (e.g., 

accelerometer and gyroscope) to use, sampling frequency and sensor threshold limits. Although the 

gyroscope and accelerometer will likely play a crucial role in measuring bowling volume, ball release 

speed and the perceived intensity zone,20 studies using IMUs to estimate GRF in other sports have not 

included data from the gyroscope.35-38 Regarding sampling rate, low-sampling rate IMUs will use less 

power, require smaller memory storage, and are often inexpensive.  However, as less data are 

recorded, key events (such as the point of ball release) could be missed, which could affect overall 

accuracy. The opposite is true for high-sampling rate IMUs – these are more expensive and produce 

larger datasets. This may require more computational power, which has implications for practical 

application, particularly on any smart device.   

The location of the IMU on the bowler’s body can change the g-forces and rotational velocities an IMU 

is subjected to during the delivery. Possible options in cricket include the upper back (T1) and the wrist 

of the bowling and non-bowling arm. The upper back is a more discrete location for the bowler and 

offers protection for the unit. As it is closer to the centre of mass, it may be the ideal location for 

measuring GRFs.39,40 It is also subjected to less g-force and rotational movement. IMUs with standard 

sensor thresholds limits (e.g., accelerometer 16–32 g) may benefit from this location as no data would 
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be lost due to thresholding. However, the information recorded by the sensor is not a specific 

representation of upper body rotation during a cricket bowl. Therefore, accuracy might diminish when 

classifying the difference between a bowl and a throw or estimating ball release speed. An IMU on the 

wrist will provide more data specific to the bowling arm; however, it will be subjected to high g-force 

and rotational velocity (upwards of 70 g and 1500 °/s). As mentioned previously, thresholding would 

occur without a high specification IMU. In particular, data would be lost from the crucial point of ball 

release where the highest forces are observed.41,42 Another potential limitation is that some bowlers 

do not like wearing anything on their bowling wrist. As non-bowling arm speed is also correlated with 

ball release speed,43 the non-dominant wrist may offer an alternative location.  

The second important factor to consider is the type of algorithm used to estimate bowling workload. 

Researchers have successfully implemented user-defined algorithms (based on a set of user-specified 

rules) and machine learning approaches to classify movement patterns or estimate variables in 

sports.44 Manually-defined algorithms offer simplicity and interpretability. However, whether these 

algorithms can distinguish between more complex movements or estimate metrics like ball release 

speed remains unclear.44 There are several supervised machine learning approaches (e.g., random 

forest, neural networks) that take a set of input variables and map them to a particular outcome. The 

outcome can be a category (e.g., bowl or throw) or numeric value (e.g., ball release speed).  The 

drawbacks of this approach include requiring more computational power due to the increased amount 

of data needed and the complex implementation and interpretation of machine learning models.45  

 

Statement of purpose 

The overarching question of the thesis is to determine whether an IMU can predict bowling workload 

through bowling volume and different measures of bowling intensity (ball release speed, the 

perceived intensity zone, and GRF).  To achieve this aim, the thesis will be organised into several 

chapters, where the primary objectives are to: 

1. To systematically review existing research that have used IMUs in court and field-based sports, 

focusing on determining the best approach to classifying bowling workload (Chapter 2). 

 

2. Assess the accuracy of an IMU combined with machine learning to classify bowling workload 

by: 

a. Determining the accuracy of an IMU located on the upper back to predict bowling volume 

(Chapter 3). 
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b. Examining the accuracy of an IMU located on the upper back to predict ball release speed

and the perceived intensity zone (Chapter 4).

c. Investigating whether accuracy improves when an IMU is positioned on the bowling and

non-bowling wrist (Chapter 5).

d. Analysing whether GRFs change with increased ball release speed and the perceived

intensity zone (Chapter 6).

e. Determining whether an IMU can predict GRFs (Chapter 7).

3. Compare the accuracy of a consumer-grade IMU (Apple Watch) to a research-grade IMU for

measuring bowling workload (Chapter 5).

Thesis organisation 

Context 

The thesis format fulfils the guidelines for a thesis by publication pathway. Chapters 2 to 8 are 

presented in the same format as the final copy sent to the target journal.  Therefore, some repetition 

of information occurs. Each chapter begins with a preface and ends with a summary of how the work 

contributes to the body of knowledge. The themes of each chapter follow a sequential progression 

that culminates in a cohesive whole. The thesis is organised into eight chapters (see Figure 1.1). 
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Figure 1-1. Thesis structure and flow. 

Candidate contribution 

This thesis fulfils the requirements of an Auckland University of Technology Doctoral degree through 

a significant and unique contribution to this field; classification and measurement of bowling volume 

and intensity using IMUs and machine learning. In collaboration with co-supervisors, the candidate 

developed the research questions in this thesis. This process has led the candidate to build 

considerable research skills and attitudes necessary to operate in academia.  

The candidate collected all data for Chapters 2 to 5. Chapters 6 and 7 required specialised equipment 

that was only available in England. Due to COVID-19 travel restrictions, data were collected by 

Loughborough University in England under the training and guidance of the candidate. Data 

Introduction 

Chapter 1. Introduction 

Chapter 2. Upper body activity classification using an inertial measurement unit in 

court and field-based sports: a systematic review. 
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Chapter 3. Cricket fast bowling 
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Chapter 4. Can an inertial measurement 

unit in combination with machine learning 

measure fast bowling speed and perceived 
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Chapter 5. Quantifying cricket fast bowling volume, speed and perceived intensity 

zone using an Apple Watch and machine learning. 

Chapter 6. The relationship between 

bowling intensity and ground reaction 

forces in cricket fast bowling. 

Chapter 7. Can an inertial measurement 

unit, combined with machine learning, 

accurately measure ground reaction 

forces in cricket fast bowling. 

Conclusion Chapter 8. General discussion 
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processing from all chapters were carried out by the candidate with assistance from Dr Jono Neville. 

Under the supervision of Dr Tom Stewart, the candidate carried out all machine learning and statistical 

analysis. The candidate conducted the write-up for all chapters with input from corroborating authors. 
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Chapter 2 - Upper body activity classification using an inertial 

measurement unit in court and field-based sports: a systematic 

review. 

Preface 

A systematic literature review was conducted to explore past research that classified upper body 

movements in court and field-based sports using inertial measurement units (IMU). This aided future 

chapters of the thesis by identifying equipment and techniques that worked successfully and possible 

gaps in the literature. It also provided the sports science field with a review that explained in a non-

technical way how these systems work, as well as the benefits and limitations that need to be 

considered when using IMUs. 

This paper was published in 2020 in the Journal of Sports Engineering and Technology, 235(2), 83-95. 
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Abstract 

Inertial measurement units (IMUs) are becoming increasingly popular in activity classification and 

workload measurement in sports. This systematic literature review focuses on upper body activity 

classification in court or field-based sports. The aim is to provide sports scientists and coaches with an 

overview of the past research in this area and the processes and challenges involved in activity 

classification. The SPORTDiscus, PubMed, and Scopus databases were searched, resulting in 20 

articles. Both manually defined algorithms and machine learning approaches have been used to 

classify IMU data with varying degrees of success. Manually defined algorithms may offer simplicity 

and reduced computational demand, whereas machine learning may benefit complex classification 

problems. Inter-study results show that no one machine learning model is best for activity 

classification; differences in sensor placement, IMU specification, and pre-processing decisions can 

affect model performance. Accurate classification of sporting activities could benefit players, coaches, 

and team medical personnel by providing an objective workload estimate. This could help prevent 

injuries, enhance performance, and provide valuable data to the coaching staff. 

Key points 

• IMUs, combined with manually-defined algorithms or machine learning, can classify upper

body movements in court or field-based sports with varying levels of success.

• The number of IMUs, their placement location, and the sensor specifications need to be

considered when developing a classification system, as these can affect accuracy.

• Classification accuracy is also affected by data processing (e.g., filtering, windowing, feature

engineering) and the classification model used, regardless of the sport or action performed.

• As movement patterns can vary between elite and sub-elite athletes, a broad range of skill

levels should be considered when training an algorithm for improved generalisation.
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Introduction 

Activity classification is a fundamental part of movement analysis for most athletes and coaches. It is 

important for enhancing performance, athlete monitoring, and injury prevention. Movement data for 

activity classification is often captured using video analysis, which can be expensive, have low 

portability, and be labour intensive to analyse.46,47 In addition, the placement or angle of video 

cameras can lead to missed body movements or orientation issues.48-50 An alternative approach that 

may overcome some of these limitations is using an inertial measurement unit (IMU). IMUs are 

wearable sensors that contain an accelerometer, gyroscope, and sometimes a magnetometer. The 

accelerometer measures linear acceleration (measured in g-force), the gyroscope measures angular 

velocity (degrees per second), and the magnetometer measures the strength and direction of the local 

magnetic field. This information can be used for activity classification, analysis of movement 

parameters, and measurement of physical load.  

The IMU (including battery, processing unit, wireless unit and local storage) can now be made smaller 

than a matchbox, allowing comfortable attachment with minimal disturbance to normal movement.51 

The price can vary; however, consumer-grade IMUs can cost less than 100 USD, making them 

affordable for most athletes in developed nations. IMUs embedded in smartphones have recently 

been used for activity classification in basketball,52 cross country skiing,53 and soccer and hockey.51 As 

smartphone subscriptions are expected to rise to 8.3 billion in 2023,54 IMUs could be accessible to 

most of the world’s population. 

The present review focuses on research that classifies upper body movements in court or field-based 

sports using an IMU. The reason for this scope is that upper body movement patterns can have high 

variability between sports (e.g., cricket batting strokes, volleyball spike), therefore, providing 

additional challenges for classification. Lastly, this review will provide sports scientists and strength 

and conditioning coaches with an overview of the processes involved in activity classification and the 

various study design and data processing decisions that can affect classification performance. This 

information may assist with judging the applicability of IMU-based activity classification in different 

sporting contexts.  

Methods 

Search strategy 

This systematic literature review followed the PRISMA guidelines. The databases PubMed, 

SPORTDiscus, and Scopus, were searched for articles dated from January 1st, 2000, to December 20th, 
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2018. The terms used for each database search can be observed in Table 2-1. The inclusion criteria 

consisted of full-length journal articles or published conference papers written in English. Articles must 

have presented classification results for an upper body movement in court or field-based sports using 

an IMU. 

 

Table 2-1: Database search terms used. 

PubMed 

(((((((wearable OR microsensor OR device OR IMU OR inertial measurement unit OR triaxial OR sensor OR accelerometer OR gyroscope)) 
AND ((Movement detection OR event classification OR classification OR workload OR recognition OR analysis)) AND (cricket OR baseball 
OR softball OR handball OR American football OR discus OR volleyball OR tennis OR table tennis OR badminton OR throwing)) NOT (clinical 
OR review)))) 

SPORTDiscus 

( wearable OR microsensor OR device OR IMU OR inertial measurement unit OR triaxial OR sensor OR accelerometer OR gyroscope ) AND 
( Movement detection OR event classification OR classification OR workload OR recognition OR analysis ) AND ( cricket OR baseball OR 
softball OR handball OR American football OR discus OR volleyball OR tennis OR table tennis OR badminton OR throwing ) NOT ( clinical 
OR review ) 

Scopus 

wearable  OR  microsensor  OR  device  OR  IMU  OR  "inertial measurement unit"  OR  triaxial  OR  sensor  OR  accelerometer  OR  gyroscope  
AND  "Movement detection"  OR  "event classification"  OR  classification  OR  workload  OR  recognition  OR  analysis  AND  cricket  OR  
baseball  OR  softball  OR  handball  OR  "American football"  OR  discus  OR  volleyball  OR  tennis  OR  table  AND tennis  OR  badminton  
OR  throwing  AND NOT  clinical  OR  review 

 

Results 

Selection process 

A flow diagram of the process used to identify and select articles is detailed in Figure 2-1. The initial 

search resulted in 1,454 articles. The titles of these articles were then screened for duplicates and 

relevance to the inclusion criteria. In total, 79 article abstracts were screened, of which 43 were 

reviewed in their entirety. Out of these articles, 13 met the inclusion criteria. The reference lists of 

these articles were then reviewed, which netted an additional seven articles. This brought the total 

number of included articles to 20. 

 

  



26 

 

Figure 2-1: PRISMA flow diagram of the systematic search. 
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Table 2-2 summarises the study characteristics from the 20 research articles. Eight out of the 20 

studies examined stroke classification in a racket sport (tennis,48,55-60 badminton,55,61 and squash55), 

while the remaining studies looked at classification in cricket fast bowling,62-64 cricket batting,65 

baseball,66,67 hockey,51 volleyball,67 beach volleyball,68 and basketball.49,52,69,70 Eight studies included 

both novice and experienced athletes, while the other studies used either novice participants (n= 1), 

experienced participants (n = 6), developmental athletes (n = 2) or did not state experience levels (n 

= 5). The study sample size ranged from 2 to 70, with the median being 12 participants. 
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Table 2-2: Summary of past studies that used IMUs to quantify sport-specific movements. 

Reference Study aim and Participants IMU Objectives (O) Data signal processing (SP), 
Segmentation (S), Event 

detection (ED) 

Feature computation (FC), 
Validation method (VM), 

Classification method (CM) 

Results 

Anand et al. (2017)55 Stoke detection and 
classification in tennis, 
badminton and squash. 

Tennis = 31 participants. 

Badminton = 34 
participants. 

Squash = 5 participants. 

Samsung smartwatch Gear 
S2. Triaxial ACC (±8 g) and 
GYR (±2000 deg·s−1). SF = 
100 Hz.  

IMU mounted on the 
dominant wrist. 

 

O1: Stroke detection in all 3 
sports. 

O2: Stoke classification  
(Tennis, 5 strokes;  
Badminton, 4 stokes; 
Squash, 2 strokes). 

SP: Not specified. 

S: Event detection window 
(size not specified). 

ED: A combination of ACC 
and GYR thresholds, jerk 
based detection and shape-
based detection of the time 
warp signal.  

FC: ~2000 time domain and 
correlation-based. Reduced 
to an unspecified number 
by feature selection. 

VM: Two independent 
groups. 

CM: O1: Refer to ED; O2: 
Machine learning (LR, 
DCNN, BLSTM). 

O1: F-score: Tennis = 92%, 
Badminton = 88%, Squash = 
96%.  

O2: Average accuracy 
across sports:  LR = 86.1%, 
DCNN = 88.1%, BLSTM = 
88.9%. 

Bai et al. (2016)52 Classification of shooting 
attempts in a one-to-one 
basketball game. 

2 participants. 

Microsoft Band & Android 
phone. Triaxial ACC, GYR. SF 
= 32 Hz & 100 Hz 
respectively.  

Microsoft Band device 
mounted on the dominant 
wrist and an Android phone 
placed in the trouser 
pocket.  

O1: Detecting shot event. 

O2: Detecting shooter.   

SP: Not Specified.  

S: Sliding window (length 
individualised to the player, 
4-6 s, 1 s overlap). 

ED: N/A. 

FC: Time and frequency 
domain features for 
Microsoft Band (66) and 
Android phone (15). 

VM: 10-fold cross-
validation.  

CM: O1: Machine learning 
(RF, NB, CT, SVM, KNN); O2: 
Machine learning (RF, SVM, 
KNN).  

O1: RF had the highest 
accuracy (88%). 

O2: SVM had the highest F-
score (92.80%). 

Connaghan et al. (2011)48 Stroke classification in 
tennis. 

8 participants of different 
playing abilities. 

TennisSense IMU system. 
Triaxial ACC ± 10 g, GYR ± 
1200 deg·s−1 and MAG ± 6 
Gauss. SF = not specified. 

IMU mounted distally on 
the dorsal surface of the 
forearm.  

O1: Stroke and non-stroke 
detection during a 
competitive match.  

O2: Determining the best 
sensor modality for 
classifying data into 3 main 
strokes. 

SP: Data was filtered for 
noise (filter not stated).  

S: Event detection window 
(size not specified). 

ED: ACC magnitude > 3 g. 

 

FC: Unspecified. 

VM: O1: 10-fold cross-
validation; O2: LOOCV.  

CM: Machine learning (NB).  

O1: Accuracy = 85%, F-score 
= 77.61%. 

O2: Individually, the ACC 
had the highest accuracy 
(79%). A combination of all 
three sensors gave the best 
accuracy (90%).  

Hölzemann and Van 
Laerhoven (2018)69 

Classification of activities in 
basketball. 

3 experienced participants 
(M). 

Custom IMU (MPU-9250). 
Triaxial ACC. SF = 200 Hz 
(down-sampled to 25 Hz). 

IMU mounted on the wrist. 

O1: Classify 4 movement 
activities related to 
basketball.  

  

SP: Not specified.  

S: Sliding window (1 s).  

ED: N/A. 

FC: 6 time-domain features. 

VM: LOOCV.  

CM: Machine learning 
(KNN, RF). 

O1: RF had the highest 
accuracy (87.48%) and F-
score (69.45%).  
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Kautz et al. (2017)68 Stroke classification in 
beach volleyball.  

30 participants of different 
playing abilities. (M&F). 

Bosch BMA280 IMU. 
Triaxial ACC (±16 g). SF = 39 
Hz. GYR was not used.  

IMU mounted on the dorsal 
surface of the wrist of the 
dominant hand. 

O1: Classifying data into 9 
beach volleyball actions (1 
null class). 

O2: Determine if accuracy 
improves with feature 
selection.  

SP: High-pass Butterworth 
filter (8 Hz), then a low-pass 
Butterworth filter (3 Hz).  

S: Event detection window 
(4 s).  

ED: Max ACC signal > 5.1 
m·s-2 & absolute ACC 200 
ms before maximum.  

FC: O1: 39 time and 
frequency domain features; 
O2: Reduced to 12 selected 
features by feature 
selection. 

VM: 10-fold cross-
validation. 

CM: Machine learning 
(SVM, KNN, NB, CT, RF, 
VOTE, DCNN).  

O1: DCNN had highest 
balanced accuracy (79.5%). 
SVM = 59.7%.  

O2: Accuracy with feature 
selection was consistently 
lower. 

Khan et al. (2017)65 Classification of different 
cricket batting shots.  

6 participants of different 
playing abilities (M&F).  

4 IMUs. Triaxial ACC, GYR, 
MAG. SF = 100 Hz.  

IMUs mounted on the 
lower part of all 4 limbs.  

O1: Five different levels of 
classification. 1 = Shot or no 
shot, 2 = hit of miss, 3 = 
shot direction, 4 = type of 
footwork used, and 5 = shot 
type. 

SP: Not specified. 

S: Sliding window (1.6 s).  

ED: N/A. 

FC: 464 time and frequency 
domain features. 

VM: LOOCV.  

CM: Machine learning (CT, 
KNN, SVM).  

O1: No significant 
difference between type of 
classifier used and level of 
classification. Average F-
score across all levels: SVM 
= 84.14%, KNN = 83.26%, 
DT = 79.24%. 

Kos and Kramberger 
(2017)56

Stroke classification in 
tennis.  

7 participants of different 
playing abilities. 

IMU: Triaxial ACC (±16 g) 
and GYR (±2000 deg·s−1). SF 
= 1000 Hz. 

IMU was mounted on the 
posterior surface of the 
wrist.  

O1: Classify into 3 main 
strokes. 

SP: Not specified. 

S: Event detection window 
(size not specified).  

ED: Derivative average of all 
3 ACC axes > 300.  

FC: 4 time-domain features. 

VM: Not specified.  

CM: Manually defined 
algorithm (GYR max in y 
axis = backhand; GYR max 
in x & min in z = serve; GYR 
max in x & min in y + min in 
z < 1500 deg·s−1= serve, > 
1500 deg·s−1= forehand).  

O1: Accuracy: Serve = 
98.8%, Forehand = 93.5% 
and backhand = 98.6%. 

Kos et al. (2016)57 Stroke classification in 
tennis.  

3 players of different 
playing abilities. 

IMU: Triaxial ACC (±16 g) 
and GYR (±2000 deg·s−1). SF 
= 1000 Hz.  

IMU was mounted on the 
posterior surface of the 
wrist. 

O1: Classify into 3 main 
strokes. 

SP: Not specified.  

S: Event detection window 
(size not specified).   

ED: Derivative average of all 
three GYR axes > 
determined threshold.  

FC: 5 time-domain features. 

VM: Not specified. 

CM: Manually defined 
algorithm (GYR max in y 
axis & min in x = backhand; 
GYR max in x & min in z = 
serve; GYR max in x & min 
in y = forehand).  

O1: Accuracy: Serve = 
100%, Forehand = 96.23% 
and backhand = 98.11%. 

Mangiarotti et al. (2019)70 Classification of activities in 
basketball between two 
participants.  

2 Custom IMU (MPU-6050). 
Triaxial ACC ± 16 g and GYR 
±2000 deg·s−1. SF = 250 Hz. 

O1: Classify 3 movement 
activities related to 
basketball. 

SP: Butterworth low pass 
filter. 

S: Sliding window (1 s, 80% 
overlap).  

FC: Unspecified number of 
time-domain features.  

VM: Non-independent 
training and testing group. 

O1: F-score = 94.56%. 
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IMUs were mounted on the 
posterior surface of the 
wrist. 

ED: N/A. CM: Machine learning 
(Combination of KNN and 
SVM). 

McGrath et al. (2019)63 Fast bowling detection in 
cricket. 

17 experienced participants 
(M).  

Sabel Sense IMU. Triaxial 
ACC ± 16 g and GYR ±2000 
deg·s−1. SF = 250 Hz. 

IMU was mounted to the 
upper posterior trunk 
between the shoulder 
blades. 

O1: Bowling detection. 

O2: Determine the best 
window size. 

O3: Bowling detection with 
sampling frequency down-
sampled to 125 Hz, 50 Hz 
and 25 Hz.  

SP: 1Hz Butterworth low 
pass filter.  

S: Event detection window 
(10 s and 1 s).  

ED: Peaks > 500 deg·s−1 in 
the magnitude of GYR x, y 
and z axis.  

FC: 282 time and frequency 
domain features. Reduced 
to 223 by feature selection. 

VM: Two groups (6 new 
participants in the testing 
group, 4 the same) 

CM: Machine learning (RF, 
SVM, PSVM, NN, XGB).  

O1: F-score: SVM & PSVM = 
100%.  

O2: No significant 
difference between 10 s 
and 1 s for any classifiers. 

O3: F-score: No significant 
difference at 25 Hz. XGB 
and RF = 97%. 

McNamara et al. (2015)62 Fast bowling detection in 
cricket.  

Training phase: 12 
experienced fast bowlers 
(M).  

Competition phase: 5 
experienced fast bowlers 
(M). 

Catapult MinimaxX S4 IMU. 
Triaxial ACC ± 10 g, GYR ± 
1200 deg·s−, and MAG. SF = 
100 Hz. 

IMU was mounted to the 
upper posterior trunk 
between the shoulder 
blades. 

O1: Classifying training data 
into bowling and non-
bowling events. 

O2: Classifying competition 
data into bowling and non-
bowling events. 

SP & S not stated.  

ED: See CM.  

FC: Not specified.  

VM: Not specified. 

CM: Manually defined 
algorithm. Back-foot 
contact (ACC) and peaks in 
the rotation speed (GYR) of 
the upper torso (> 500 
deg·s−1). 

O1: Sensitivity = 99%, 
specificity = 98.1%. 

O2: Sensitivity = 99.5%, 
specificity = 74%.  

Mitchell et al. (2013)51 Classification of activities in 
five-a-side soccer and field 
hockey using an IMU from a 
smartphone.  

Soccer = 15 amateur 
participants.  

Hockey = 17 elite 
participants. 

1 Google Nexus One or HTC 
Desire smartphone. Triaxial 
ACC. SF = 16 Hz & 25 Hz 
respectively.  

IMU was mounted to the 
upper posterior trunk 
between the shoulder 
blades. 

 

O1: Classifying data into 7 
activities common to both 
sports.  

O2: Determining the best 
window length for both 
sports.  

O3: Determine the best 
mother wavelet function 
and DWT level.  

SP: Filter designed by DWT.  

S: Event detection window 
(varying window length, 1 
to 9 s). 

ED: Not specified.  

 

 

 

FC: 42 descriptive features 
extracted utilising DWT. 

VM: Repeated (10x) cross-
validation (66/33% 
train/test split).    

CM: Machine learning 
(SVM, KNN, NB, CT, NN).  

O1: Hockey: NN had the 
highest F-score (82.3%), 
Soccer: NB (79.9%). 
Combination: Hockey = 
88.8%, Soccer = 86.3%. 

O2: Hockey 7 s, Soccer 3 s.  

O3: Wavelet. Hockey = 
bior1.1, Soccer = rbio1.1 
(Level 6 for both).  

Mlakar and Luštrek 
(2017)58 

Stroke classification in 
tennis.  

5 experienced participants.  

Catapult S5. GPS = 10 Hz, 
triaxial ACC ± 16 g, GYR ± 
2000 deg·s−, and MAG. SF = 
100 Hz. 

IMU was mounted to the 
upper posterior trunk 
between the shoulder 
blades. 

O1: Shot detection. 

O2: Classify into 3 main 
strokes. 

SP: Butterworth bandpass 
filter (1.5 & 25 Hz) applied 
to windowed data.  

S: Sliding window (0.8 s and 
1.2 s). 

ED: N/A.  

FC: Unspecified number of 
time-based features. 

VM: LOOCV. 

CM: O1 & O2: Machine 
learning (RF).  

O1: F-score = 94.1%  

O2: F-score: Forehand = 
91%, Backhand = 92.1%, 
Serve = 99%. 
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Murray et al. (2016)66 Pitching and throwing 
detection in baseball. 

17 development athletes.  

Catapult MinimaxX S4 IMU. 
Triaxial ACC ± 10 g, GYR ± 
1200 deg·s−, and MAG. SF = 
100 Hz. 

IMU was mounted to the 
upper posterior trunk 
between the shoulder 
blades. 

O1: Classifying training data 
into bowling and non-
bowling events. 

O2: Classifying competition 
data into bowling and non-
bowling events. 

SP & S not stated.  

ED: See CM. 

FC: Not specified.  

VM: Not specified. 

CM: Manually defined 
algorithm. Unspecified 
peaks in the rotation 
velocity (GYR), unspecified 
ACC measures.  

O1: Sensitivity = 100%, 
specificity = 79.8%. 

O2: Sensitivity = 100%, 
specificity = 74.4%. 

Nguyen et al. (2015)49 Classification of activities in 
basketball. 

3 participants. 

5 custom IMUs (LSM9DS0). 
Triaxial ACC. SF = 200 Hz 
(down-sampled to 40 Hz). 

IMUs mounted on the 
lower back, both feet and 
both knees. 

O1: Classify 7 movement 
activities related to 
basketball.  

  

SP: Low pass filter (15 Hz).  

S: Sliding window (3.2 s, 
50% overlap).  

ED: ACC Z axis > 4 g. 

FC: 80 time and frequency 
domain features. An 
unspecified number of 
cross-correlation 
coefficients. 

VM: LOOCV. 

CM: Machine learning 
(SVM). 

O1: Overall accuracy = 
~67.2%.  

Rawashdeh et al. (2016)67 Classification of volleyball 
serves and baseball throws.  

11 participants of different 
playing abilities. 

Custom made IMU. Triaxial 
ACC ± 16 g, GYR ± 2000 
deg·s−1, MAG ± 8 Gauss. SF 
= 50 Hz.  

IMU was mounted to the 
medial surface of the upper 
arm of the dominant arm. 

O1: Classifying data into 
volleyball serves and 
baseball throws. Non-
events included shoulder 
rehab exercises.  

SP: No specified.   

S: Event detection window 
(size not specified). 

ED: Event detection: 
Elevation of Arm > 45 deg 
and Angular Rate > 400 
deg·s−1. 

FC: 81 time and frequency 
domain features. Reduced 
to 8 features by feature 
selection. 

VM: Cross-validation 
(40/60% train/test split).    

CM: Machine learning (DT). 

O1: Accuracy = 86%. 

 

 

Salman et al. (2017)64 Legality analysis of fast 
bowling in cricket. 

14 medium to fast-paced 
bowlers (M).  

3 Custom IMU. Triaxial ACC 
and GYR. SF = 150 Hz.  

IMU was mounted on the 
upper arm, forearm, and 
wrist.  

O1: Classify the legality of 
bowling action.  

O2: Determine if accuracy 
improves with feature 
selection. 

SP: Filter not stated. 

S: Event detection window 
(7 s).  

ED: GYR maxima in the x-
axis. 

FC: 120 time-domain 
features. Reduced to 21 by 
feature selection. 

VM: LOOCV.  

CM: Machine learning 
(SVM, K-NN, NB, RF, NN). 

O1: F-score: NB = 80.7%, 
SVM = 89%, KNN = 90.3%, 
NN = 87%, RF = 86%. 

O2: Highest F-score was 
obtained after feature 
selection for all classifiers.  

Srivastava et al. (2015)59 Stroke classification in 
tennis.  

14 participants of different 
playing abilities. 

Samsung smartwatch Gear 
S. Triaxial ACC (±8 g) and 
GYR (±2000 deg·s−1). SF = 25 
Hz. 

IMU mounted on the wrist. 

O1: Classify into 3 main 
strokes. 

O2: Classify 3 main sub-
strokes.  

SP: Pan Tomkin’s algorithm 
was used to isolate shot 
signal from noise.  

S: Sliding window 
(3*sampling rate).  

ED: ACC spike above an 
unspecified threshold.   

FC: Not specified. 

VM: Not specified.  

CM: Machine learning 
(Phase 1: DTW. Phase 2: 
QDTW). 

O1: Sensitivity: Professional 
= 99.6%, Novice = 99.3%. 

O2: Sensitivity: Professional 
= 90.7%, Novice = 86.2%. 
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Wang et al. (2016)61 Stroke classification in 
badminton. 

12 club participants. 

4 IMUs. Triaxial ACC ± 16 g, 
GYR ± 500 deg·s−1, biaxial 
GYR ± 500 deg·s−1. SF = 500 
Hz. 

IMUs mounted to both 
wrists, waist, and right 
ankle. 

O1: Classifying data into the 
14 strokes and 4 non-stoke 
motions during a 
competitive match.  

O2: Determining the best 
segmentation approach.  

SP: Low pass filter designed 
from a Wavelet function 
Coif5. 

S: Sliding window (1 s, 50% 
overlap) vs sliding window 
with high acceleration (> 
1.5 g) vs event detection 
window (1 s). 

ED: ACC magnitude > 1.5 g 
& > 1 s removed from 
adjacent max. 

FC: 120 time-domain and 
frequency-domain features. 

VM: 4-fold cross-validation.  

CM: Machine learning 
(HMM, NB, CT, SVM, LDF).  

O1: HMM had the highest 
accuracy (97.96%). 

O2: The event detection 
window had the highest 
accuracy (97.96%).  

Whiteside et al. (2017)60 Stroke classification in 
tennis.  

19 development athletes 
(M&F). 

IMeasureU IMU. Triaxial 
ACC ± 16 g, GYR ± 2000 
deg·s−1. SF = 500 Hz. 

IMU was mounted distally 
on the ventral surface of 
the forearm of the hitting 
limb. 

O1: Classifying data into the 
3 main stokes and false 
stroke.  

O2: Classifying data into 8 
strokes and false stroke. 

SP: Linear interpolation 
(smoothed using a 50-point 
moving average).  

S: Event detection window 
(1 s).  

ED: Max ACC signal > 25 
m·s-2 & > 1.25 s removed 
from adjacent max. GYR > 
400 deg·s−1 within 0.06 s 
either side of ACC max.   

FC: 40 features (5 features x 
8 waveforms).  

VM: 10-fold cross-
validation. 

CM: Machine learning 
(SVM, DA, RF, KNN, CT, 
NN).  

 

O1 & 2: SVM (cubic kernel) 
had the highest overall F-
score (O1 = 94.33%, O2 = 
90.01%).   

Key: ACC = Accelerometer; bior1.1 = Biorthogonal 1.1; BLSTM = Bidirectional long short-term memory networks; DCNN = Deep convolutional neural networks; CT = Classification tree; DA = Discriminant analysis; DTW = 
Dynamic time warping; DWT = Discrete wavelet transform; F = Female; FBC = Feature based classification; GYR = Gyroscope; HMM = Hidden Markov model; KNN = K-nearest neighbour; LDF = Linear discriminant 
function; LOOCV = Leave one out cross-validation; LR = Logistic regression; MAG = Magnetometer; M = Male; N/A = Non-applicable; NB = Naive Bayesian classifiers; NN = Neural network; PSVM = Polynomial SVM; 
QDTW = Quaternion dynamic time warping; arad = Radial acceleration; RBF = Radial basis function; RF = Random forest; rbio 1.1 = Reverse biorthogonal 1.1 wavelet; SF = Sample frequency; SVM = Support vector 
machine; ωtan = Tangential angular velocity; VOTE = Plurality voting; VM = Validation method; XGB = Gradient boosting.  
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Discussion 

Evaluation metrics 

Included studies used a range of metrics to evaluate the performance of their classification models. 

The classification of a binary event has four possible outcomes: (1) true positive (TP), where the event 

is labelled correctly as an event by the algorithm; (2) true negative (TN), where a non-event is labelled 

correctly as a non-event by the algorithm; (3) false positive (FP), where a non-event is incorrectly 

labelled as an event by the algorithm; and (4) false negative (FN), where an event is incorrectly labelled 

as a non-event by the algorithm. These outcomes can be presented in several ways, but commonly 

used methods include sensitivity (also known as recall), specificity (also known as the true negative 

rate), precision (also known as the positive predictive value), accuracy (the fraction of correctly 

identified events and non-events), F-score (the harmonic mean of precision and sensitivity), and 

balanced accuracy (the mean of sensitivity and specificity). Table 2-3 provides formulas and a 

description of each metric. Thirteen studies reported (or displayed classification matrices so the 

reader could calculate) more than one evaluation metric.51,52,58,60,62-65,67-70 Depending on the nature of 

the classification problem, reporting only accuracy can misrepresent the results; data with imbalanced 

classes (e.g. a low number of observations in one activity class relative to another) can lead to inflated 

overall accuracy. Balanced accuracy and F-score are preferred in this regard. While the acceptable 

level of accuracy may depend on the application (e.g., a higher error rate might be acceptable for a 

system that predicts step counts for general consumers but unacceptable when quantifying bowling 

frequency in elite cricket players), the goal of fitting classification models is to achieve the best 

accuracy possible. An accurate classification model is particularly important when there is a 

relationship between activity parameters (e.g., load, volume, technique) and injury or performance. 

Table 2-3: Description of the performance measures used. 

Format Formula Description 

Accuracy TP + TN
TP + TN + FP + FN

The fraction of correctly identified events and non-events. 

Sensitivity TP
TP + FN

The proportion of correctly identified events, regardless of all non-events. 

Specificity 
(Recall) 

TN
TN + FP

The proportion of correctly identified non-events, regardless of all events. 

Precision TP
TP + FP

The proportion of correctly identified events relative to the total number of events 
detected. 

F-score 2 x precision x sensitivity
precision + sensitivity

The harmonic mean of precision and sensitivity. 

Balanced 
accuracy 

sensitivity + specificity
2

The mean of sensitivity and specificity. 

Key: FN = False negative; FP = False positive; TN = True negative; TP = True positive. 
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IMU number 

Using multiple IMUs means that sensors can be attached to both the trunk and extremities. This may 

provide complementary information to classification algorithms, therefore improving accuracy.45 In 

this review, six studies49,52,61,64,65,70 used multiple IMUs (between 2 and 5). Only one study examined 

individual versus combined accuracy and found that accuracy from a single IMU on the playing wrist 

was high (95%) when classifying four main badminton shots (forehand serve, backhand serve, 

forehand clear, and backhand clear).61 However, when classifying ten additional sub-shots, the 

accuracy was significantly reduced (76%). When using a combination of four IMUs to classify the main 

and sub-shots, improved accuracy of 97% was observed. This may have been one of the reasons for 

the reduced accuracy when using a single IMU for classifying sub-shots in tennis,59,60 compared to the 

results obtained by classifying main shots. Although multiple IMUs may improve classification 

performance, there are limitations regarding cost, simplicity of use, computational demand, 

movement restriction, and comfort, meaning a single IMU may still be preferred in a given context. 

IMU specification 

The three main specifications commonly reported for an IMU include: sampling frequency; the 

accelerometer, gyroscope, and magnetometer measurement range; and the number of axes each 

sensor can record. Triaxial IMUs can capture more data, improving classification accuracy, particularly 

for limb-based movements.71 Sampling frequency ranged from 16 Hz to 1000 Hz in the reviewed 

studies, and sensor measurement range varied from 8 to 16 g for the accelerometer and 500 to 2000 

degrees per second for the gyroscope. Although studies have shown that accuracy can be high when 

using a low sampling rate IMU,51,59,63,68 only one study compared the accuracy of a high versus low 

sampling rate when detecting fast bowling events in cricket.63 The accuracy did not significantly 

decrease when data were down-sampled from 250 Hz to 25 Hz (F-score 1.0 vs 0.97). It is important to 

note that this classification problem only had two possible outcomes (bowl or non-bowl), and the IMU 

was attached to the torso. Attaching an IMU with a low sampling rate or measurement range to an 

extremity may mean that a significant amount of information is lost during high-velocity movements. 

For example, a cricket bowl can generate upwards of 80 g at the wrist, but many IMUs are limited to 

16 g.  It is currently unclear how this impacts classification accuracy for different movements. Future 

studies should compare the minimum specifications required to inform the appropriate choice of IMU 

for each movement.  

Lastly, it should also be mentioned that sensor resolution, which is seldom reported, can play an 

essential role in the accuracy of recorded data.  IMU resolution refers to the smallest change that the 

sensor can detect in the activity that it is measuring. It is influenced by the full-scale range of the IMU. 
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For example, a higher resolution is desired when slight changes in acceleration are of interest without 

limiting the full range of the accelerometer.  Most standard IMU units will have a minimum 8-bit 

resolution, with the vast majority being 16-bit or above. 

IMU location 

IMUs can be positioned at several locations on the body. This includes anywhere on the torso and all 

four extremities. The optimal placement location is likely specific to the sport under study.72 Five 

studies mounted an IMU solely on the participants’ torso,51,58,62,63,66 while the remaining 15 studies 

had at least one IMU located on an extremity (e.g. wrist or ankle). A common location for the torso is 

between the shoulder blades on the upper thoracic spine.51,58,62,63,66 The benefit of this location is that 

it does not impede movement, is protected from more common frontal impacts, and can be 

embedded in clothing.60,73 These reasons make it a popular choice for sports that involve high impact 

forces on the body (e.g. rugby). It is also a convenient location for IMUs with lower accelerometer and 

gyroscope maximum ranges, as there is generally less acceleration and angular velocity than in a limb-

based location.51,63 Alternatively, IMUs with higher dynamic ranges have been successfully attached 

to extremities in sports with significant limb movement, such as tennis60 and badminton.61 These 

locations may provide an improved classification of limb movements, as the trunk is predominately 

exposed to linear acceleration and may not provide adequate spatiotemporal information to 

distinguish limb-based events.74 This was evident in a study that examined badminton stroke 

classification,61 which showed a wrist-mounted IMU of the dominant hand had an overall accuracy of 

81.6% compared to 42.6% when placed on the waist. As IMUs with higher sampling frequency and 

measurement ranges are embedded in affordable wrist-worn consumer-grade products (e.g., the 

Apple Watch), developing classification algorithms for these systems may increase the accessibility to 

accurate activity classification.  

Sensor modality 

Activity classification algorithms can use data from just one sensor (i.e., the accelerometer, gyroscope, 

or magnetometer) or several sensors simultaneously. The magnetometer is used the least frequently 

of the three sensors present in most IMUs. This is because a controlled magnetic field without any 

distortion is required for optimal results,75 especially with fast linear motions.74 Two studies,48,65 used 

data from all three sensors (accelerometer, gyroscope and magnetometer), while the remaining 

studies used either a combination of the accelerometer or gyroscope52,56-64,66,67,70,76 or only the 

accelerometer49,51,68,69. Only one study investigated different combinations of sensors for classifying 

tennis strokes.48 The accelerometer showed slightly higher classification accuracy (79%) compared to 

the gyroscope (76%) and the magnetometer data (76%), but 90% accuracy was achieved when 

combining all three sensors. The authors proposed that the lower accuracy observed using gyroscope 

data could be related to high variation in the temporal orientation of a given tennis stroke due to 
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differing skill levels between participants. The importance of the gyroscope may depend on the 

movement being performed, the IMU placement position, and the gyroscope features that are 

quantified (see section ‘Feature engineering and feature selection’). McGrath et al. (2019)63 showed 

that when using a trunk-mounted sensor, gyroscope features consistently had higher importance for 

all classification models when detecting cricket bowls. This could have been because trunk rotation 

patterns are more distinct between activities (bowl and throw) compared to acceleration patterns. 

The low classification accuracy of volleyball strokes observed by Kautz et al. (2017)68 may have been 

due to the omission of gyroscope data, as rotational patterns of different volleyball strokes are likely 

to be distinct. Although most studies do not report feature importance or compare sensor modalities, 

it is likely that accelerometer and gyroscope features are equally important for classifying movements 

in sports that have high rotational velocity. 

Pre-processing 

Pre-processing is an important step in the classification process, as it can improve accuracy and reduce 

the computational load for the classifier.77,78 Pre-processing generally involves filtering raw data, data 

segmentation, feature engineering, and feature selection. 

Filtering 

Filtering makes raw data more representative of the desired activity by minimising the amount of data 

not associated with human movement tasks. This is often called signal artefact or noise and is usually 

caused by clothing, skin, muscle and other subcutaneous tissue movements.79 A wide range of 

algorithmic approaches can convert raw data to time, frequency and discrete domains of 

representation so that it is easier to apply different filtering techniques.77 Several filters have been 

specified, including moving average filters,60 wavelet functions,51,61 low pass filters,49,58,63,68,70 and high 

pass filters.58,68 Wavelet functions allow time-frequency characteristics to be examined, which help 

detect events involving a non-repetitive movement that varies over time (e.g. cricket batting).78 

Furthermore, wavelet functions can capture sudden changes in signals that are common in 

accelerometer and gyroscope readings.77 There were no studies in this review that compared different 

filtering techniques. However, a low pass filter is the most common filter as the artefact is typically 

represented as high-frequency signals.78 IMU filtering techniques must be not over-aggressive and 

preserve signal characteristics relevant to the activity of interest.45 

Data segmentation 

Data segmentation involves arranging data into windows (segments of data), so that features can be 

extracted. Despite the potentially large impact that different window types and sizes can have on 

classification accuracy,45,71 the comparison of window techniques is rarely performed,67,80 especially 

when classifying sporting events. 
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The sliding window technique is a common segmentation approach that requires no prior 

identification of potential events. Signals are divided into fixed-length windows that can be arranged 

sequentially or overlapping. A total of eight studies used this approach, in cricket,65 basketball,49,52,69,70 

tennis,58,59 and badminton.61 Four of these studies used an overlapping sliding window (ranging from 

16 to 50 % overlap).49,52,61,70 This helps prevent one of the limitations of traditional sliding windows 

when activities occur at either end of the window segment.61,81 Another potential limitation is a large 

amount of null data (data not of interest) retained. This can increase the error rate and the 

computation demand during the modelling process.67 Sliding windows may be beneficial when 

classifying all activities within a given period, such as movements of interest and recovery periods 

(e.g., standing still).  

An event-defined window is formed around a previously detected signal event. This windowing 

technique can decrease the processing time and improve model performance by only retaining data 

around potential events of interest. This type of window is often used in event classification involving 

sporadic movements,80 and most of the studies (12 studies) used this approach. Event detection 

methods included using a predetermined threshold from either raw or derived accelerometer 

data,48,49,56,59,61,68 raw or derived gyroscope data,57,63,64,67 or a combination of the two.55,60 However, a 

single threshold rule may not be enough to reliably detect events due to heightened noise around 

signal peaks and events with more than one peak. Five studies included additional rules as follows: 

two excluded peaks within a certain timeframe of an adjacent peak;60,61 Kautz et al. (2017)68 averaged 

absolute acceleration values of all three axes over a 200 ms interval before the maximum deflection 

occurred in a beach volleyball stroke; Rawashdeh et al. (2016)67 only included volleyball and throwing 

events when the arm elevated above 45 degrees; and Anand et al. (2017)55 used jerk and shaped based 

detection of the time warp signal for tennis, badminton and squash.  

One study compared sliding and event-defined windows in badminton.61 The event-defined window 

had the highest accuracy, lowest computation time and aided in describing the movement 

characteristics of badminton strokes due to the consistency of the event data in each window. 

Generally, improving event detection accuracy leads to more precise activity classification and reduces 

model complexity.45,72 

Deciding on the appropriate window length to apply is another consideration. Only one study 

investigated the effects of different window durations (1 to 9 seconds) when using an event-defined 

window to classify activities common to both five-a-side football and field hockey.51 Their results 

showed that the most optimal window length was 3 seconds for football and 7 seconds for hockey. 

When deciding on an appropriate window length, one must factor in the activity of interest and the 

type of window used. Choosing a too long window increases the chances of two or more activities 

occurring within one window and greatly increases classification difficulty.51 A window that is too short 
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may mean that the complete task is not included in the window. Viewing raw data may help determine 

appropriate window lengths. 

Feature engineering and feature selection 

Feature engineering or feature computation involves identifying and extracting quantitative measures 

from the data either manually or automatically. Most supervised machine learning models do not 

create their features, so their performance is based on the quality of the features computed. For signal 

data, it is common to compute features in the time and frequency domain, such as mean, standard 

deviation, and signal power.72,78,82 Patterns among these features are used to distinguish between 

different movements or activities. Fourteen studies specified the number of features used, ranging 

from 4 to ~2000 features. Eight studies used only time-domain features,55-58,60,64,69,70 while seven used 

a combination of features in the time and frequency domain.49,52,61,63,65,67,68 No studies compared 

whether time or frequency domain features were more important for classifying certain movements; 

however, a broad range of features from both domains are likely to be beneficial. There is not enough 

evidence to propose an optimal feature set for the classification of specific movements, as it likely 

depends on the type of activity performed, in combination with IMU specifications and placement 

location.  

Feature selection refers to reducing the number of features in the dataset while still representing the 

original feature set. A dataset with many features (i.e., high dimensionality) requires more training 

data to model parameter estimates,45 increases computation time and can cause overfitting.72,83 Five 

studies stated that they performed feature selection.55,63,64,67,68 There are numerous ways to perform 

feature selection; a common method is to remove highly correlated features.63 However, as shown by 

Kautz et al. (2017),68 selecting too few features (39 features down to 12) severely reduced accuracy 

for all tested models. This may lead to insufficient information for the classification algorithm. It should 

be noted that some machine learning algorithms (e.g. certain neural networks (NN) and random 

forests (RF)) can learn the relevance of individual features and may not require feature selection.78 

Activity classification 

The reviewed studies observed two general activity classification approaches: manually defined 

algorithms and supervised machine learning techniques. Manually defined algorithms involve human-

set rules that are usually based on previous observations. Data are classified by meeting or not 

meeting these sets of rules. Four studies used this approach to classify cricket fast bowling,62 

baseball,66 and tennis strokes56,57 with a moderate to high accuracy. The two tennis studies achieved 

high accuracy (> 93%) when classifying three main tennis strokes. Their algorithm was based on 

maximum gyroscope values among all three axes. McNamara et al. (2015)62 used peaks in upper body 

rotational speed (gyroscope > 500 °/s deg·s−1), front foot contact (accelerometer value unspecified), 
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and GPS (value unspecified) to detect cricket bowls. Lastly, following a similar approach, Murray et al. 

(2016)66 used unspecified gyroscope and accelerometer peaks to classify baseball pitches. 

Interestingly, specificity in both studies decreased when moving from a training environment to a 

game setting. This could be due to the unstructured nature of actions performed during competition 

– confusing the algorithm. Although manually defined algorithms may offer simplicity, interpretability, 

and reduced computational demand, future research needs to determine if this approach can 

distinguish between more complex movements (e.g., different tennis sub-shots).  

Common supervised machine learning models used for activity classification include the support 

vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LR), classification tree 

(CT), RF, k-nearest neighbour (KNN), naive Bayes (NB), and NNs. Supervised machine learning 

techniques were used in 16 of the studies to classify tennis,48,55,58-60 badminton,55,61 volleyball,67 beach 

volleyball,68 baseball,67 cricket,63-65 basketball,49,52,69,70 hockey,51 and squash.55 

Two studies compared the difference between deep learning neural networks (DNNs) versus 

conventional machine learning approaches.55,68 Like conventional NNs that mirror some of the basic 

principles of a biological brain, DDNs use more than one hidden layer (typically five to more than a 

hundred). Different DDNs have been used for activity classification, for example, long short-term 

memory networks (LSTM) and convolutional neural networks (CNNs). Recently, Kautz et al. (2017)68 

found significant improvement in balanced accuracy (+19.2%) when using CNNs compared to 

conventional machine learning approaches. In addition, Anand et al. (2017)55 found improvements in 

CNNs and LSTM versus LR (88.1% & 88.9% vs 86.1%, respectively). DDNs can learn high-level features 

with more complexity and abstraction than NNs when using many samples to train.84 Further work is 

needed to investigate the effectiveness of deep learning methods, especially with higher sampling 

rate IMUs, which produce more voluminous data.  

By examining classification results among the reviewed studies, no single model is best for activity 

classification in sport. For example, the support vector machine (SVM) was effective at classifying 

shooting attempts in basketball,52 cricket bowling,63,64 and strokes in tennis,60 badminton,61 and 

cricket65 (all > 84 % accuracy). However, it was poor at classifying movements in beach volleyball (59.7 

% accuracy),68 where movement patterns are similar to tennis and cricket (spike vs serve and bowl). 

This is consistent with what has been termed the ‘no free lunch theorem’, where machine learning 

models will not perform equally well on all problems.85 Additional reasons include changes to the 

number of sensors used,45 the sensor location,45 the sampling frequency,71 and pre-processing 

techniques.45,51,68 The lack of a clear classification model is not unique to sport, as these results are 

consistent in activity classification involving tasks of everyday living.45 Combining different models may 

also be a viable option for improving accuracy.51,70 Mitchell et al. (2013)51 fused the best model for 
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each activity in hockey and five-a-side football and improved the F-score by 6% compared to the best 

individual model.  

When fitting machine learning models, attention must be paid to avoid overfitting. Overfitting is the 

development of a model so specific to the training data that it can’t be generalised to new data.86 For 

most models, overfitting can be avoided by performing cross-validation. This is a process where a 

model is tested on an independent data set, ideally a separate sample from the training data.68,87 In 

this review, only Anand et al. (2017)55 stated using two independent groups, while McGrath et al. 

(2019)63 had partially independent groups (six new participants, four from the training group). If it is 

not feasible to have two independent groups, other methods such as k-fold cross-validation can be 

used. In this case, the sample population is split into k groups (folds, e.g., 10-fold), and the model is 

trained on all groups except one, which is reserved for testing the model. This training and testing 

procedure is repeated so that each group acts as the test set. The results are then averaged. Leave-

one-subject-out-cross-validation (LOOCV) is a popular form of k-fold where k is equal to the number 

of participants. The advantage of this method is that nearly all the data (all except one participant) is 

used for each training iteration, and thus produces relatively stable estimates. A total of five 

studies48,52,60,61,68 performed a k-fold cross-validation with k ranging from 4–10, while six studies 

performed LOOCV.48,49,58,64,65,69 Alternately, two studies51,67 used a train/test split, where all data are 

randomly split into two groups: a training group and a testing group. The disadvantage of this method 

is that data from the same participant could be used to train and test the model, which may inflate 

accuracy estimates. 

Additional considerations 

It is important to note that many studies included in this review used small sample sizes (average = 

12, range 3–34). It was common to have few participants performing a large number of repetitions of 

varying movements.48,49,52,55-58,62,65,69,70 This increases the likelihood that the classification algorithm 

will not generalise well to other people or populations.88 This is especially true when classifying 

sporting movements due to the variability in technique among athletes.48,89 Training a classification 

algorithm on elite athletes may not generalise well to novice athletes and vice versa.48 Therefore, 

caution must be used when interpreting results from studies that train their algorithm using small 

samples without varied skill levels. A detailed description of each movement may help to alleviate 

these issues, but this is not always presented. For example, Murray and Black66 did not specify the 

different slot angles (i.e. over the top or side arm) that participants used when performing the 

throwing tasks in baseball. In addition, none of the tennis studies stipulated the type of serve used 

(i.e., a top spin or slice serve).  
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Avenues of future work  

When developing a classification system, numerous factors need to be considered. These include: the 

number of IMUs; their specification; their placement location; and pre-processing decisions such as 

filtering, segmentation, feature engineering, and model selection. There are many combinations of 

these factors in the reviewed literature, but little formal comparison among them. This means that 

the optimal set of decisions to classify each movement type is unclear and will likely vary depending 

on the movement of interest. Given these findings, there are several recommendations for future 

research. Work that compares the minimum IMU specifications (e.g., sampling rate), sensor modality 

(e.g., accelerometer vs accelerometer + gyroscope), and IMU number and placement (e.g., single vs 

multiple IMUs; torso vs wrist placement) will assist researchers and practitioners with the selection of 

the most accurate and cost-effective device setup for their needs. The comparison of different data 

processing techniques is also warranted. No studies compared different filtering methods or whether 

time or frequency domain features were more important for classifying certain movements. A formal 

comparison of these decisions and presenting these results (as opposed to just presenting the most 

accurate model) will aid the progression of this field. Comparing deep learning frameworks to more 

traditional supervised learning methods is also warranted, given the promising results seen in other 

areas. Interestingly, as the success of a classification system in sport relies on the accuracy of 

classifying the individual, it is surprising that no study has looked at the effectiveness of individually-

trained models (i.e., trained using one subject’s data) relative to the generalisability of a single model 

trained on many subjects’ data. This could be an effective approach in classifying upper body sporting 

movements, particularly those where technique can differ considerably between participants. 

Conclusion 

This systematic literature review examined upper body activity classification using an IMU in court or 

field-based sports. Both manually defined rule-based algorithms and machine learning approaches 

have been used to classify movements across several sports, with varying degrees of success. In 

addition to the choice of algorithm or model, a classification system includes the number of IMUs, 

their specifications and placement location, and numerous data processing decisions (e.g., data 

filtering, data segmentation, feature engineering and selection). Due to the limited number of studies 

that compare these decisions, no definitive approaches for classifying upper body movements can be 

recommended. However, this also presents an avenue for future work; formally comparing these 

decisions within the classification workflow will assist in identifying the optimal set of decisions to 

classify each movement of interest.  
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Chapter 3 - Cricket fast bowling detection in a training setting using 

an inertial measurement unit and machine learning. 

Preface 

The first part of delivering a system that can predict bowling workload is to classify a bowl versus other 

rotation arm movements seen in cricket (i.e., a throw). Without performing this first step, the intensity 

cannot be obtained as the algorithm would not know when a bowl occurred. The systematic literature 

review established that machine learning would likely provide the best results for measuring bowling 

workload. This is due to the complex biomechanical nature of a cricket bowl involving the whole body 

and how an outfield throw can mimic a bowl. However, the review found a lack of research detailing 

the best inertial measurement unit (IMU) specification, data processing technique, or machine 

learning algorithm for any given sport. The following chapter classified a cricket bowl using a standard 

IMU device (±16 G and ±2000 °/s) located on the upper back and compared the accuracy of several 

sampling frequencies and machine learning algorithms. 

This paper was published in 2019 in the Journal of Sports Sciences, 37(11), 1220-1226.  
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Abstract 

Purpose: Fast bowlers are at a high risk of overuse injuries. Specific bowling frequency ranges have 

negative or protective effects on fast bowlers. Inertial measurement units (IMUs) can quantify 

movements in sports; however, some consumer-grade sensors can be expensive for amateur athletes. 

As a large number of the world’s population has access to an IMU (e.g., smartphones), a system that 

works on a range of different IMUs may increase the accessibility of automated workload monitoring 

in sports. Methods: Seventeen elite fast bowlers in a training setting were used to train and/or validate 

five machine learning models by bowling and performing fielding drills. The accuracy of machine 

learning models trained using data from all three bowling phases (pre-delivery, delivery and post-

delivery) were compared to those trained using only the delivery phase at a sampling rate of 250 Hz. 

Next, models were trained using data down-sampled to 125 Hz, 50 Hz, and 25 Hz to mimic results from 

lower specification sensors. Results: Models trained using only the delivery phase showed similar 

accuracy (> 95%) to those trained using all three bowling phases. When delivery-phase data were 

down-sampled, the accuracy was maintained across all models and sampling frequencies (> 96%). The 

linear support vector machine had the shortest computational time among all models (P < 0.001). 

Conclusion: Machine learning can accurately classify fast bowling events from different sampling 

frequencies using data from just the delivery phase. No single machine learning model clearly 

outperformed the others. 
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Introduction 

It has been reported that fast bowlers cover on average 22.6 km in a full day of cricket, which is 

between 20% to 80% more than other players.90 During high-intensity bowling efforts, fast bowlers 

cover 1.8 to 7 times more distance and have at least 35% less recovery time than other positions.10 It 

is no surprise that fast bowlers are the most injury-prone. Injury data from 2005 through 2014 at the 

state and national levels in Australia indicated that fast bowers had a 19.9% chance of injury each 

season, much higher than batsmen (7.2%), spin bowlers (7.2%) and wicketkeepers (5.1%).2 

Researchers have linked acute and chronic bowling frequency to injury risk for fast bowlers across all 

ages,4,8-15 with some bowling frequencies having adverse or protective effects. For example, Orchard 

et al. (2015a)4 found that bowling greater than 50 overs in a match and a high previous season 

workload (> 400 overs) increases the chance of tendon injuries, whereas a high medium-term 

workload (> 150 overs in the last three months) was found to be protective. There can also be an 

increased risk of injury three to four weeks after acute overload, possibly due to damaging immature 

repair tissue.12 

Despite the importance of monitoring acute and chronic bowling frequency, most age-group, club and 

elite bowlers do not undertake this consistently as it requires players and coaches to input and analyse 

data manually. A potential solution is to use a wearable inertial measurement unit (IMU) to 

automatically and accurately log bowling frequency.62 Although IMUs are seen as a cost-effective 

monitoring tool for professional teams, consumer-grade sensors can be expensive (upwards of 500 

USD), precluding their use by amateur athletes. As smartphone subscriptions are expected to rise to 

8.3 billion in 2023,54 IMUs are accessible to a large percentage of the world’s population. Therefore, a 

solution that works on a range of different IMUs may increase the accessibility of automated workload 

monitoring. However, differences in IMU specifications may be problematic for identifying bowling 

motion.71 For example, different sampling frequencies can lead to varying volumes of data passed to 

classification algorithms. Despite these limitations, recent advances in predictive modelling may help 

overcome these challenges. For example, a bowling detection algorithm based on back-foot contact 

and upper torso rotation movement greater than 500 degrees per second has been used.62 Although 

specificity was high during training (98.1%), it decreased during a game situation (74%). An alternative 

approach is machine learning, where different algorithms allow a computer to learn patterns among 

data without being explicitly programmed. Inter-study results that have compared various machine 

learning models show that no single model is the best for event detection in sports.72 Results may vary 

depending on the IMU sampling rate, how features are generated from the raw sensor data, and the 

type of activity being classified.71 

A machine learning approach has not been used for event detection in cricket bowling. Therefore, this 

study aims to examine the accuracy of machine learning models for classifying bowling events by: (1) 
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comparing the accuracy of models trained using data from all three bowling phases (pre-delivery, 

delivery and post-delivery) versus just the delivery phase; and (2) determine the accuracy of each 

model when data are down-sampled to 125 Hz, 50 Hz, and 25 Hz to mimic results from sensors with 

different sampling frequencies. 

 

Methods 

Participants 

Seventeen male fast bowlers (average age, 24 years) were recruited from the Auckland Cricket 

premier men’s cricket competition. To be eligible, participants had to be over 16 years of age, classed 

as a fast or medium pace bowler (>115 km/h), and be fit and healthy at testing. Ethical approval was 

granted by the Auckland University of Technology Ethics Committee (16/383). 

Design 

This cross-sectional study consisted of testing session one and testing session two in a training setting.  

Testing session one 

Data from 121 bowls were collected from 11 fast bowlers. In addition, non-bowling data consisted of 

57 flat throws from a short run-up (5 metres) and 45 long throws from a long run-up (15 metres). 

Testing was conducted in artificial indoor or outdoor grass cricket nets. Participants were instructed 

to perform their regular warm-up and bowl and throw at their usual intensity.  

Testing session two 

Ten participants (six different bowlers from testing session one) were instructed to bowl 12 deliveries 

at a self-selected length at three different velocities (low = 75 to 84% of maximum, medium = 85% to 

94% and high = 95% to 100%). Each participant’s maximum bowling velocity was measured before the 

commencement of testing.  Participants were asked to repeat deliveries that did not meet the velocity 

requirements, so all participants bowled a total of 401 deliveries. Ball velocity was measured using a 

Stalker radar gun (Radar Sales, Minneapolis, US), positioned behind the bowler at a sampling 

frequency of 250 Hz. The radar gun is a valid and reliable measure of velocity compared to a photocell 

system.91 Non-bowling data included a fielding drill specific to a game situation, illustrated in Figure 

3-1. This comprised of walking in, multidirectional running, followed by a flat or long throw.  

Participants repeated each throw three times and were asked to throw at their normal intensity. In 

total, there were 206 non-bowling events. 
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Figure 3-1: Explanation of the fielding drill during testing session two. 

Equipment 

One SABEL Sense IMU (SABEL Labs, Australia) consisting of a triaxial accelerometer (±16 G), gyroscope 

(±2000 °/s) and magnetometer (±1200 μT) (MPU-9150) was attached via a sports vest to each 

participant’s upper posterior trunk between the shoulder blades. The sampling frequency of the IMU 

was 250 Hz. Pilot testing revealed that the ±16 G and ±2000 °/s were sufficient for capturing high-

velocity rotational events when attached to the trunk. The IMU was orientated so that x was aligned 

with the medial-lateral axis, y aligned with the vertical axis and the z aligned with the anterior-

posterior axis. 

Data pre-processing and feature engineering 

All IMU data were downloaded from the device using SABEL software (SABEL Labs, Australia). A fourth-

order 1 Hz Butterworth low pass filter was used for baseline removal.58,68 The magnitude of the 

gyroscope’s x, y and z axis was calculated and peaks greater than 500 degrees per second were used 

to determine a possible bowling event. A 10-second event detection window was then used, which 

was further split into pre-delivery (5.5 seconds), delivery (1 second) and post-delivery (3.5 seconds) 

phases.  

A total of 282 features from the time and frequency domains were computed using MATLAB (release 

2017a, The MathWorks, Inc., MA, USA) from the individual axes and the magnitude of the 

accelerometer and gyroscope sensors. These features were similar to those used previously,68 and 

included mean, standard deviation, maximum, minimum, skewness, kurtosis, amplitude, frequency, 

energy, the position of the minimum and maximum, and correlations between x, y and z axes. A 

complete list of features can be found in the Appendix (Table 3-5). 

Walk in 
(5 metres)

Run forward 
(10 metres)

Run right
(10 metres)

Flat throw in the 
orginal direction the 
player was waking in

Run left
(10 metres)

Run forward (10 
metres) in opposite 

direction

Long throw in the 
orginal direction the 
player was waking in
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Model training and testing 

Five machine learning models were evaluated, namely the random forest (RF), linear support vector 

machine (LSVM), polynomial SVM (PSVM), neural network (NN), and gradient boosting (XGB) 

algorithms. These models were chosen because they effectively classified other sporting activities with 

similar movement patterns to cricket bowling.60,68 Data from testing session one were used to train 

and tune each model, while data from testing session two were treated as the validation set and used 

to evaluate model performance. All models were trained and tuned in R (R Core Team, Austria) using 

the ‘train’ function in the ‘caret’ package.   

Due to the high dimensionality of the dataset (282 features), redundant features that were highly 

correlated with other features (r > 0.95) were removed, leaving the total number of features used for 

modelling at 223 (see Appendix 1). Data were then centred and scaled (normalised) for all models, 

apart from the RF, using the centre and scaling functions in the caret package. Optimal model tuning 

parameters for all models (e.g., polynomial degree for PSVM model, the number of trees in RF model) 

were determined using 10-fold cross-validation. The optimal values were chosen to maximise the 

receiver operating characteristic (ROC) metric. The final models were then used to predict bowling 

events on the test set (i.e., data from testing session two).  

This process was initially undertaken using data sampled at 250 Hz for all three bowling phases (pre-

delivery, delivery, and post-delivery) and then repeated using data from only the delivery phase. As 

models trained on just the delivery phase performed equally compared to all three phases, the 

delivery phase data were then down-sampled to 125 Hz, 50 Hz and 25 Hz to simulate sensors of 

different sampling rates.71 The delivery phase data contained 75 features. The computer used to 

perform modelling consisted of an Intel® Xeon® CPU E3-1505M v6 @ 3.00 GHz, 32 GB of RAM and a 

64-bit operating system.  

Statistical analysis 

The performance of each model was evaluated by computing the sensitivity, specificity, accuracy, and 

F-score of the predictions made on the test set. Sensitivity refers to the proportion of positive cases 

that are correctly identified (e.g., the proportion of bowling events identified as bowling), while 

specificity refers to the proportion of negative cases correctly identified (i.e., the proportion of non-

bowling events identified as such). The accuracy is the proportion of correct predictions. The F-score92 

was computed as a supplementary measure because, unlike accuracy, it is not influenced by class 

distribution (our dataset contained more bowls than throws). To examine the contribution of each 

feature to model performance, the ‘varImp’ function in the ‘caret’ package was applied to each model. 

This function computes a ROC curve for each predictor and uses the area under the ROC curve as an 

indicator of feature importance. Models were compared using the accuracy metric and were deemed 
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significantly different if the 95% confidence intervals did not overlap. The training times of each model 

were compared using an ANOVA and Tukey HSD post hoc test where applicable. 

 

Results 

Classification results for all the models when trained on data from all three bowling phases and data 

from only the delivery phase can be observed in Table 3-1. Overall, all models exhibited an accuracy > 

95%. When all three phases were used for training, the SVM models had significantly higher accuracy 

than the other models (i.e., non-overlapping confidence intervals). There were no significant 

differences among models for the delivery phase or when comparing all phases with the delivery 

phase. The delivery phase models had shorter computational times than those that used all phases 

(mean difference = 49.9 seconds; P = 0.07). 

 

Table 3-1: Classification results for models trained using all phases and just the delivery phase (250 

Hz). 

 Accuracy (95% CI) Specificity Sensitivity F-score Train time (sec) 
All Del All Del All Del All Del All Del 

RF 0.95  
(0.93–0.97)  

0.95  
(0.93–0.97) 1.00 1.00 0.93 0.93 0.93 0.93 84.6 43.8 

LSVM 1.00  
(0.99–1.00) 

0.99  
(0.98–1.00) 1.00 0.99 1.00 0.99 1.00 0.98 9.0 6.6 

PSVM 1.00 
(0.99–1.00) 

0.99 
(0.98–1.00) 1.00 0.99 1.00 0.99 1.00 0.99 201.0 88.8 

XGB 0.96  
(0.95–0.98) 

0.98 
(0.96–0.99) 1.00 0.99 0.95 0.97 0.95 0.97 49.8 34.8 

NN 0.96  
(0.94–0.97) 

0.99 
(0.97–0.99) 0.99 0.99 0.94 0.99 0.94 0.98 373.8 294.6 

Key: All = data from all three phases; Del = data from just the delivery phase; LSVM = Linear support vector machine; NN = Neural network; 
PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

 

A confusion matrix detailing the number of correct and incorrect predictions for each model shown in 

Table 3-1 is presented in Table 3-2. The LSVM and PSVM correctly classified all bowling and non-

bowling events when all three phases were used. More bowling events were misclassified compared 

to non-bowling events. 
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Table 3-2: Confusion matrix comparing data from three phases and the delivery phase (250 Hz). 

   Predicted 
   All three phases Delivery phase 

   Bowl Non-Bowl Bowl Non-bowl 

O
bs

er
ve

d 

Bo
w

l 
RF 373 28 371 30 

LSVM 401 0 397 4 

PSVM 401 0 398 3 

XGB 379 22 390 11 

NN 378 23 395 6 

N
on

-b
ow

l 

RF 1 205 0 206 

LSVM 0 206 3 203 

PSVM 0 206 3 203 

XGB 0 206 2 204 

NN 2 204 2 204 

Key: LSVM = Linear support vector machine; NN = Neural network; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

 

The effects of down-sampling to 125 Hz, 50 Hz, and 25 Hz can be observed in Table 3-3. All models 

had an accuracy across all sampling rates of > 96%. Although these differences were not significant, a 

decline of approximately 1% was seen with each down-sampling step. There were no significant 

differences in accuracy among models within each of the three sampling rates. When comparing the 

average model training times across the four sampling frequencies, all models were significantly 

different from each other (all post hoc P < 0.001). 

 

Table 3-3: Classification results for models trained using delivery phase data. 

 
Accuracy (95% CI) Specificity  Sensitivity F-score Train time (sec) 

125 Hz 50 Hz 25 Hz 125 Hz 50 Hz 25 Hz 125 Hz 50 Hz 25 Hz 125 Hz 50 Hz 25 Hz 125 Hz 50 Hz 25 Hz 

RF 0.98  
(0.96–0.99) 

0.98 
(0.97–0.99) 

0.98 
(0.97–0.99) 1.00 1.00 0.99 0.96 0.97 0.98 0.96 0.97 0.97 46.2 45.6 54.0 

LSVM 0.99 
(0.98–1.00) 

0.98 
(0.96–0.99) 

0.96 
(0.94–0.98) 0.99 0.96 0.92 0.99 0.98 0.98 0.99 0.96 0.94 5.4 4.8 4.8 

PSVM 0.99 
(0.97–0.99) 

0.98 
(0.96–0.99) 

0.96 
(0.94–0.98) 0.99 0.96 0.92 0.98 0.98 0.98 0.98 0.96 0.94 88.8 87.6 88.8 

XGB 0.99 
(0.98–1.0) 

0.98 
(0.97–0.99) 

0.98 
(0.97–0.99) 0.99 0.98 0.97 0.99 0.98 0.99 0.98 0.97 0.97 36.0 37.2 39.6 

NN 0.99 
(0.97–0.99) 

0.98 
(0.97–0.99) 

0.96 
(0.95–0.98) 0.99 0.95 0.92 0.99 1.00 0.99 0.98 0.97 0.95 292.2 297.6 295.8 

Key: LSVM = Linear support vector machine; NN = Neural network; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

 

The confusion matrix detailing the number of correct and incorrect predictions for each model shown 

in Table 3-3 is presented in Table 3-4. Bowling misclassification was similar across all sampling 
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frequencies, while the number of misclassified non-bowling events increased as the sampling rate 

decreased. 

Table 3-4: Confusion matrix comparing data down-sampled to 150 Hz, 50 Hz, and 25 Hz. 

Predicted 

125 Hz 50 Hz 25 Hz 

Bowl Non-Bowl Bowl Non-bowl Bowl Non-bowl 

O
bs

er
ve

d 

Bo
w

l 

RF 386 15 390 11 393 8 

LSVM 398 3 394 7 394 7 

PSVM 394 7 394 7 394 7 

XGB 397 4 393 8 395 6 

NN 396 5 399 2 395 6 

N
on

-b
ow

l 

RF 0 206 0 206 3 203 

LSVM 3 203 8 198 16 190 

PSVM 2 204 8 198 16 190 

XGB 3 203 4 202 6 200 

NN 3 203 10 196 16 190 

Key: LSVM = Linear support vector machine; NN = Neural network; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

Figure 3-2 depicts important features for two models: the RF (250 Hz) and XGB (50 Hz) models trained 

using delivery phase data. These models were chosen because they performed well at their respective 

sampling frequencies, but all models had very similar feature importance rankings. The top 10 features 

are shown (out of 75) and are scaled to 100 to allow for comparison. The gyroscope's primary 

frequency amplitude in the y axis was the most important feature in both models. Gyroscope features, 

in general, were prominent among the top 10 in both models. 

Figure 3-2: Top 10 feature importance plots illustrating RF (250 Hz) and XGB (50 Hz) models for the 

delivery phase. 
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Discussion 

This study investigated whether machine learning models can accurately detect fast bowling events 

using a range of different IMU sampling frequencies. Although there were differences in accuracy 

among classifiers at certain sampling frequencies, these were small and, in most cases, non-significant. 

Every model showed high accuracy (> 95%), regardless of how many bowling phases were used to 

train the model or the sampling frequency used. These results suggest that when paired with machine 

learning algorithms, IMUs with different sampling frequencies have the potential to record bowling 

frequency, thereby forming the basis for monitoring bowling workload. This represents a significant 

progression from previous work and has practical applications in the sporting arena.  

All tested machine learning models could classify bowling and non-bowling events with high accuracy, 

and no one model was consistently better than another. This corresponds with the ‘no free lunch’ 

theorem, which implies no one machine learning model will perform the best on all problems.85 This 

is seen with the SVM models, which had the highest accuracy (and F-score) when trained using 250 Hz 

data but had the lowest accuracy when trained on down-sampled 25 Hz data. While SVMs performed 

well in the current study, two studies51,68 found that SVMs were poor at classifying soccer and beach 

volleyball movements. The latter included movement patterns (shoulder extension) like a cricket 

bowl. It is known that small changes in data processing methodology, including data segmentation80 

and feature computation,51,68 can positively or negatively affect model performance.  

Our results illustrate that several features consistently showed higher importance (i.e., higher 

contribution to discerning bowling and non-bowling events) irrespective of the model used. In most 

cases, these features were derived from the gyroscope sensor. This may be because trunk acceleration 

patterns are similar during a bowl and a throw. However, this can differ significantly among bowlers 

due to the variability in body mass and bowling technique. The most important feature was the 

gyroscope's primary frequency amplitude on the y axis. This may indicate that a bowling action 

primarily comprises a single dominant frequency component from a long continuous rotation. In 

contrast, a throw includes a more complex rotation with a wider range of frequencies at shorter 

durations. Gyroscope energy in the y-axis was also an important feature, indicating that bowling 

causes a greater medial-lateral rotation than throwing (a greater duration and angular displacement 

in the torso is often associated with bowling due to a more extensive follow-through). The most 

prominent accelerometer feature was the primary frequency in the y-axis. During the delivery phase, 

this may equate to the back-foot landing followed by the front-foot landing, which might differ from 

a throw due to the longer duration between steps. Collectively, these features help to explain why 

data from only the delivery phase is needed to classify a bowl accurately. This has additional benefits, 

such as less computational expense and may reduce the chances of false positives. Our results show 

several models had higher specificity using delivery-phase data than data from all phases.  
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An important aspect of this study was that accuracy was maintained when data were down-sampled 

to simulate sensors with different sampling frequencies. Several other studies have used low sampling 

rate sensors51,67,68 and have achieved modest results. Data sampled at a lower frequency has a higher 

chance of missing accelerometer and gyroscope peaks. Our results indicate that any loss of 

information did not significantly impact model performance. The accuracy observed in the current 

study is higher than the majority of previous studies that have examined event detection in 

sports.48,49,51,65,67,68 However, a classification problem with only two possible values (i.e., a bowl or not) 

and testing under controlled conditions may have inflated the observed accuracy. Two recent 

studies62,66 found a significant decrease in event detection accuracy during a game setting, so the 

random nature of actions performed during competition can likely confuse event detection models.  

Practical applications 

An IMU recording at different sampling frequencies combined with machine learning can accurately 

predict bowling frequency. This forms the basis for monitoring the bowling workload, which comprises 

bowling frequency and intensity. As research has found specific bowling frequency ranges can have a 

negative or protective effect on fast bowlers, this device could assist decision making to reduce injury 

rates and improve performance.  

There are limitations to this study that the reader needs to be aware of when interpreting the findings. 

Firstly, of the 10 participants who took part in testing session two, which formed the validation 

dataset, four were also participants in testing session one. This means that the training and validation 

datasets were not completely independent, as training and testing on the same participants may have 

led to elevated accuracy. Another limitation of this work was assuming that down-sampling the data 

would be an accurate simulation of a low specification sensor, which may not be the case in reality.  

Future work should also consider examining a broader range of participants, including children and 

females, as they have similar bowling injury rates to adult males.93,94  As our study focused on senior 

cricketers, determining whether these models hold with less experienced participants will need to be 

established.48 With bowling workload in mind, a future avenue of progression will be to deduce 

whether a measure of bowling intensity can be extracted from IMU data. When paired with bowling 

frequency, this would provide a comprehensive measure of workload. This is important as not all 

deliveries exert the same stress on the body.   

Conclusions 

This study investigated whether machine learning models could accurately predict fast bowling events 

using a range of different IMU sampling frequencies. All models exhibited high accuracy (>95%) 

regardless of the number of bowling phases used or the sampling frequency (25 Hz – 250 Hz). Features 

derived from the gyroscope sensor were significant contributors to the accuracy of each model: an 
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important finding for future event-detection work. Future work will also need to evaluate the 

generalisation ability of these models in a game setting and test players of different ages, skill levels 

and bowling actions. The next step will be to examine whether a valid and reliable prediction of 

bowling intensity can be obtained using this IMU protocol, as this will better indicate the overall 

bowling workload and assist in preventing injury. 

Appendix 

Table 3-5: Features used. 

Accelerometer Gyroscope 

Feature Phase one Phase two Phase three Feature Phase one Phase two Phase three 
Mean x, y, z, mag x, y, z, mag x, y, z, mag Mean x, y, z, mag x, y, z, mag x, y, z, mag 

SD x, y, z, mag x, y, z, mag x, y, z, mag SD x, y, z, mag x, y, z, mag x, y, z, mag 
Max x, y, z, mag x, y, z, mag x, y, z, mag Max x, y, z, mag x, y, z, mag x, y, z, mag 
Min x, y, z, mag x, y, z, mag x, y, z, mag Min x, y, z, mag x, y, z, mag x, y, z, mag 

Skewness x, y, z, mag x, y, z, mag x, y, z, mag Skewness x, y, z, mag x, y, z, mag x, y, z, mag 
Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag 

Freq amp x, y, z, mag x, y, z, mag x, y, z, mag Freq amp x, y, z, mag x, y, z, mag x, y, z, mag 
Freq x, y, z, mag x, y, z, mag x, y, z, mag Freq x, y, z, mag x, y, z, mag x, y, z, mag 

Energy x, y, z, mag x, y, z, mag x, y, z, mag Energy x, y, z, mag x, y, z, mag x, y, z, mag 
Pos of the max x, y, z, mag x, y, z, mag x, y, z, mag Pos of the max x, y, z, mag x, y, z, mag x, y, z, mag 
Pos of the min x, y, z, mag x, y, z, mag x, y, z, mag Pos of the min x, y, z, mag x, y, z, mag x, y, z, mag 

Correlation xy, xz, yz xy, xz, yz xy, xz, yz Correlation xy, xz, yz xy, xz, yz xy, xz, yz 
Key: Features with a strikethrough (e.g., mag) were removed due to being highly correlated with another feature (r > 0.95). Mag = magnitude of x, y and z.  
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Chapter 4 - Can an inertial measurement unit in combination with 

machine learning measure fast bowling speed and perceived intensity 

in cricket? 

Preface 

The previous chapter found that accurate delivery classification is possible using an inertial 

measurement unit (IMU) and machine learning. However, bowling volume was only half of the 

bowling workload equation as it does not give bowlers, coaches, and researchers insight into the 

intensity of each delivery. Therefore, the next chapter determined if the same IMU located on the 

upper back can accurately predict bowling intensity through ball release speed and the perceived 

intensity.  

This paper was published in 2021 in the Journal of Sports Sciences, 39(12), 1402-1409.   
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Abstract 

This study examined whether an inertial measurement unit (IMU), combined with machine learning, 

could accurately predict two indirect measures of bowling intensity – ball release speed and the 

perceived intensity zone. One IMU was attached to the thoracic back of 44 fast bowlers. Each 

participant bowled 36 deliveries at two different perceived intensity zones (low = 24 deliveries at 70 

to 85% of maximum perceived bowling effort; high = 12 deliveries at 100% of maximum perceived 

bowling effort) in random order. IMU data (sampling rate = 250 Hz) was down-sampled to 125 Hz, 50 

Hz, and 25 Hz to determine if sampling frequency affected model accuracy. Data were analysed using 

four machine learning models. A two-way repeated-measures ANOVA was used to compare the mean 

absolute error (MAE) and accuracy scores (separately) across the four models and four sampling 

frequencies. Gradient boosting models were the most consistent at measuring ball release speed 

(MAE = 3.61 km/h) and the perceived intensity zone (F-score = 88%) across all sampling frequencies. 

This method could be used to predict ball release speed and the perceived intensity zone, which may 

contribute to a better understanding of the overall bowling workload, which may help reduce injuries. 
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Introduction 

Since the widespread implementation of T20 cricket (20 overs per innings) in 2005, match days in the 

elite cricketing calendar have increased by over 30% (2004 compared to 2015).1,95 Although genetics, 

bowling technique and athlete conditioning impact injury rates, it is likely that increased bowling 

workloads explain why injuries have increased compared to the pre-T20 era.1,96 In particular, fast 

bowlers have the highest incidence of injury during a season (20.6%) compared to wicketkeepers 

(4.7%), spin bowlers (6.7%) and batsmen (7.4%).1 This is no surprise, considering fast bowlers cover 

between 20 to 80% more distance (22.6 km)90, cover 1.8 to 7 times more distance at a higher intensity, 

and have 35% less recovery time10 compared to other positions. 

Research has linked acute and chronic bowling frequency (number of balls bowled) to injury risk for 

fast bowlers across all ages,1,4,8-16 with some bowling frequencies having a negative or protective 

effect. However, bowling frequency alone may not provide an accurate picture of the overall bowling 

workload. A measure that could quantify bowling intensity may give a better understanding of the 

overall bowling workload as bowlers typically bowl at different intensities during training and 

competition, meaning that the stress exerted on bowlers will vary.5,21-25 However, only a limited 

number of injury prevalence studies have included a measure of bowling intensity due to the cost of 

equipment, time constraints, and no consensus on the best methodology to assess it.5,95  

Two studies that included a measure of intensity used a subjective recall of perceived exertion from 

an entire training session.10,16 Although both studies showed a link with injury, obtaining these 

measures relies on consistent manual documentation after each training session and game: a 

limitation that is recognised in the literature.5,17 To overcome this, inertial measurement units (IMUs) 

have been proposed as a user-friendly tool that can provide an objective indirect measurement of 

bowling intensity.5,95  

Modern IMUs are wearable sensors that normally consist of a tri-axial accelerometer, gyroscope, and 

magnetometer. The accelerometer measures linear acceleration (measured in g-force), the gyroscope 

measures angular velocity (degrees per second), and the magnetometer measures the strength and 

direction of the local magnetic field. Of the three sensors used, the magnetometer is used the least 

frequently in activity classification and prediction.97 The data obtained from these devices can be 

processed with either user-defined algorithms, machine learning techniques or a combination of the 

two.97 Three studies have used an IMU to identify bowling deliveries and thus determine bowling 

frequency. McNamara et al. (2015)62 applied a user-defined algorithm to data collected from a training 

setting (specificity = 98.1%) and a competition setting (specificity = 74%). While the other two studies 

used machine learning in a training and match setting with F-scores greater than 98%.63,98 

Only two studies have used an IMU to indirectly quantify bowling intensity by estimating ball speed 

and analysing accelerometer data. The first study99 used polynomial regression to determine the 
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association between perceived intensity (at four different intensities), ball speed, and certain IMU 

outputs, including PlayerLoad. Although the PlayerLoad metric lacks standardisation in the published 

literature, 100 McNamara described it using the following equation: 

PlayerLoad =�(𝑎𝑎𝑦𝑦1−𝑎𝑎𝑦𝑦−1)2+(𝑎𝑎𝑥𝑥1−𝑎𝑎𝑥𝑥−1)2+(𝑎𝑎𝑧𝑧1−𝑎𝑎𝑧𝑧−1)2

100
 

where x, y, and z are the three acceleration axes. Their results showed that perceived intensity (R = 

0.83 ± 0.19) and relative ball speed (R = 0.82 ± 0.20) were associated with peak PlayerLoad. The last 

study101 developed a method to predict ball speed using accelerometer data and a user-defined 

algorithm. Although this approach showed promise, they could not predict true speed as they did not 

have access to a radar gun.   

IMUs have been used in other sports to estimate ball speed. Regression analysis was used to estimate 

baseball pitch speed with an accuracy of ± 10 km/h.102  Four recent studies have used machine learning 

algorithms to predict peak ball speed from handball throws.103-106  An error range of 23.4–30.4 km/h 

was reported using linear regression and a 250 Hz accelerometer.106 The three other studies found 

promising results with a mean absolute error (MAE) of between 3.8 km/h and 6.3 km/h. All three 

studies used an IMU with a high sampling frequency (500 Hz–1125 Hz), which is higher than most 

consumer-grade IMUs. The extent to which lower sampling frequencies impact speed prediction is 

unknown; however, this may explain the large error observed by Skejø et al. (2018).106 Interestingly, 

Van den Tillaar et al. (2020)103 was the only study to use gyroscope data. Their analysis showed that 

one gyroscope feature (gyroscope amplitude in the z axis) was the most important feature for 

predicting speed. Therefore, the current study aims are: (1) to predict ball speed and the perceived 

intensity zone using IMU data and machine learning; (2) to determine if model accuracy is affected by 

IMU sampling frequency; and (3) to examine the most important IMU signal features for predicting 

these outcomes. 

 

Methods 

Participants 

Forty-four male fast bowlers (mean age = 23 years) were recruited from the Auckland, Surrey and 

Sussex club and county (first-class) cricket competitions. Playing ability ranged from sub-elite (35 

players) to elite (played first-class cricket; 9 players). To be eligible, participants had to be over 16 

years of age, classed as a pace bowler (bowls regularly at 100% intensity from a long run-up), and be 

fit and healthy at the time of testing. Informed consent was obtained from all participants before 

testing, and ethical approval was granted by the Auckland University of Technology Ethics Committee 

(AUTEC Reference 19/47). 
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Design 

This study used a cross-sectional design with data collected from a single testing session. 

Testing session 

Data from 1,584 bowls were collected from 44 fast bowlers (29 deliveries were later removed due to 

speed data not being captured). Participants performed their regular warm-up and were instructed to 

bowl a total of 36 deliveries at two different perceived intensity zones (low = 70 to 85% of maximum 

perceived bowling effort (24 deliveries), high = 100% of maximum perceived bowling effort (12 

deliveries)) in random order at a self-determined bowling length. Ball release speed was measured 

using a Stalker II radar gun (Radar Sales, Minneapolis, US) positioned behind the bowler. The radar 

gun samples at 250 Hz and has been shown as a valid and reliable measure of speed compared to a 

photocell system.91 Testing was conducted in either artificial indoor cricket nets or outdoor grass and 

artificial cricket nets.  

Equipment 

One SABELSense IMU (SABEL Labs, Australia) consisting of a triaxial accelerometer (±16 G), gyroscope 

(±2000 °/s) and magnetometer (±1200 μT) (MPU-9150) was attached via a sports vest to each 

participant’s upper posterior trunk between the shoulder blades. The IMU was orientated so that x 

was aligned with the medial-lateral axis of the body, y was aligned with the vertical axis, and z was 

aligned with the anterior-posterior axis. Before each testing session, a factory calibration was 

performed for the gyroscope, and a standard six axes calibration was performed for the 

accelerometer. The sampling frequency was set at 250 Hz. 

Data pre-processing and feature computation 

All IMU data were downloaded from the device using the SABEL software (SABEL Labs, Australia). 

Bowling events were detected by identifying gyroscope peaks greater than 500 °/s. To help identify 

gyroscope peaks, a fourth-order Butterworth 25 Hz low pass filter was used. A 10-second event 

detection window was used, where each event was split into pre-delivery (starting 5.5 seconds before 

the gyroscope peak), delivery (0.5 seconds before and after the gyroscope peak) and post-delivery 

(finishing 3.5 seconds after the gyroscope peak) phases. Both bowling event detection rule and 

window type were the same as McGrath et al. (2019).63  

For feature extraction, a fourth-order 1 Hz Butterworth high pass filter was used to remove the effects 

of gravity from each channel of the accelerometer. A total of 282 features from the time and frequency 

domains were computed using MATLAB (release 2019a, The MathWorks, Inc., MA, USA) from the 

individual axes and the magnitude of the accelerometer and gyroscope sensors. These features were 

similar to those used previously by Kautz et al. (2017)68 and McGrath et al. (2019).63 These included 

the mean, standard deviation, maximum, minimum, skewness, kurtosis, amplitude, frequency, 
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energy, the position of the minimum and maximum, and correlations between the x, y and z axes (see 

Appendix, Table 4-4).  

Raw IMU features were compared to relative features during preliminary analysis, calculated by 

dividing each feature by the corresponding feature from the participant’s maximum speed delivery. 

The relative features were found to have superior results and were thus used for further analysis. 

Finally, the IMU data were down-sampled to 125 Hz, 50 Hz and 25 Hz to simulate sensors running at 

lower frequencies,71 and the feature generation steps were repeated. 

Model training and testing 

For both ball release speed and the perceived intensity zone, four machine learning models were 

evaluated, namely random forest (RF), linear support vector machine (LSVM), polynomial SVM 

(PSVM), and gradient boosting (XGB). These were chosen because they have been previously effective 

at classifying cricket bowling frequency.63,98 Model training was done separately on each sampling 

frequency (250 Hz, 125 Hz, 50 Hz, 25 Hz; total = 64 models).   

Due to the high dimensionality of the dataset, redundant features that were highly correlated with 

other features (r > 0.95) were removed. Data were then centred and scaled for all models apart from 

RF. Optimal model hyperparameters were determined using 10-fold cross-validation. The values were 

chosen based on maximising the receiver operating characteristic metric for the perceived intensity 

zone models and optimising MAE for ball release speed models. The final models for ball release speed 

and the perceived intensity zone were evaluated using leave-one-participant-out cross-validation. All 

machine learning models were trained and tuned in R (R Core Team, Austria) using the train function 

in the ‘caret’ package.107 To examine the contribution of each feature to model performance, the 

‘varImp’ function in the ‘caret’ package was applied to each model. 

Statistical analysis 

The metrics MAE, mean absolute percentage error, and root mean square error were used to examine 

the performance of each model for predicting ball release speed. For analysing the perceived intensity 

zone, models were evaluated using accuracy, sensitivity, specificity, and F-score.92 The results from 

each cross-validation iteration were used within a two-way repeated-measures ANOVA to compare 

the MAE and accuracy scores (separately) across the four models and four sampling frequencies. 

Model assumptions (i.e., no significant outliers, dependant variable normality, sphericity) were 

checked before fitting each model using the ‘afex’ R package. Both models violated the sphericity 

assumption and were thus adjusted using the Greenhouse-Geisser sphericity correction. Estimated 

means and pairwise contrasts (between models and sampling frequencies) were estimated using the 

‘emmeans’ package, with multiple comparisons adjusted using the Holm method. A priori alpha of 

0.05 was used for all analyses. 
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Studies that use machine learning for activity classification tasks generally do not calculate sample size 

because the number of participants is only one component of creating an accurate model. The volume 

of data collected from each participant and the heterogeneity of the sample is also important.108 

However, when comparing accuracy among the models and sampling frequencies, a post-hoc power 

analysis was performed in the G*Power software. Using a within-factors repeated measures ANOVA, 

a sample size of 44 subjects, a type I error rate of 0.05, a Greenhouse-Geisser sphericity correction of 

0.67, and a correlation among repeated measurements of 0.7, there was an 83% power to detect a 

difference in accuracy among sampling frequencies (Cohen’s ƒ = 0.17, ηp
2 = 0.027) and >99% power to 

detect a difference between models (ƒ = 0.59, ηp
2 = 0.26). 

 

Results 

The MAE and mean accuracy (± 95% confidence intervals) for ball release speed and the perceived 

intensity zone, respectively, for each sampling frequency, are illustrated in Figure 4-1. Results for mean 

ball release speed error at different sampling frequencies are shown in Table 4-1. The pairwise 

contrast results for each model and the sampling frequency for ball release speed and the perceived 

intensity zone are presented in the Appendix (Tables 4-5 - 4-8). All models had an MAE of less than 6 

km/h at 250 Hz. XGB and RF had the lowest MAE at 250 Hz with 3.52 and 3.46, respectively. XGB and 

RF had significantly lower MAE compared to PSVM at all sampling frequencies (all contrasts p < 0.05) 

and a lower MAE than LSVM at 25 Hz (both p < 0.001). When contrasting individual models across 

sampling frequencies, LSVM had significantly higher MAE at 25 Hz compared to 125 Hz (difference = 

2.02 km/h, p = 0.031) and 250 Hz (2.22 km/h, p = 0.016). No other models were significantly different 

across the sampling frequencies. 

 

Table 4-1: Mean ball speed prediction error at different sampling frequencies. 

  MAE MAPE RMSE 
 250Hz 125Hz 50Hz 25Hz 250Hz 125Hz 50Hz 25Hz 250Hz 125Hz 50Hz 25Hz 

RF 3.52 3.53 3.62 3.86 3.52 3.54 3.62 3.85 4.66 4.69 4.77 5.05 

LSVM 4.37 4.58 5.17 6.57 4.36 4.51 6.03 4.97 5.97 6.46 7.37 6.90 

PSVM 5.57 6.62 5.69 5.91 5.53 6.61 5.57 5.73 9.86 12.78 9.39 9.43 

XGB 3.46 3.30 3.46 3.61 3.43 3.27 3.42 3.59 4.53 4.28 4.51 4.71 

Key: LSVM = Linear support vector machine; MAE = Mean absolute error; MAPE = Mean absolute percentage error; PSVM = 
Polynomial SVM; RF = Random forest; RMSE = Root mean square error; XGB = Gradient boosting. 
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Figure 4-1: Model results for ball release speed (BRS) and the predicted perceived intensity zone (PIZ) 

across all sampling frequencies. 

 

Key: LSVM = Linear support vector machine; MAE = Mean absolute error; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient 

boosting. 

 

 

The predicted perceived intensity zone results at different sampling frequencies are compared in Table 

4-2. At 125 Hz, XGB had significantly higher accuracy (86%) compared to every other model (all p < 

0.05). At 250 Hz, 50 Hz and 25 Hz, XGB had a significantly higher accuracy than all but one model at 

each sampling frequency. Interestingly, some models performed better at lower sampling 

frequencies. RF had significantly higher (84%) accuracy at 25 Hz compared to all other frequencies (all 

p < 0.001), and LSVM had significantly better (79%) accuracy at 50 Hz compared to 125 Hz (72%, p = 
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0.002). Finally, PSVM was the most variable, with significantly different accuracy (range = 69–80%) 

across all sampling frequencies (all p < 0.05), except 125–250 Hz. 

 

Table 4-2: The predicted perceived bowling intensity zone classification results at different sampling 

frequencies. 

 Accuracy Sensitivity Specificity F-score 
 250Hz 125Hz 50Hz 25Hz 250Hz 125Hz 50Hz 25Hz 250Hz 125Hz 50Hz 25Hz 250Hz 125Hz 50Hz 25Hz 

RF 70% 76% 71% 84% 77% 82% 79% 91% 58% 63% 57% 70% 78% 82% 79% 89% 

LSVM 76% 72% 79% 77% 77% 72% 83% 78% 75% 72% 71% 73% 81% 77% 84% 82% 

PSVM 80% 80% 74% 69% 89% 91% 93% 99% 61% 59% 37% 09% 85% 86% 83% 81% 

XGB 84% 86% 83% 85% 86% 88% 86% 88% 81% 81% 77% 77% 88% 89% 87% 88% 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

 

Figure 4-2: Top 10 relative sensor features for XGB 250 Hz and XGB 50 Hz models for predicted 

perceived intensity zone (PIZ) and ball release speed (BRS). 

 

Key: acc = Accelerometer; corr = Correlation; enj = Energy; gyr = Gyroscope; freq = Frequency; freqamp = Frequency amplitude; kurt = 
Kurtosis; mag = Magnitude of x, y and z axis; std = Standard deviation; x = x axis; y = y axis; z = z axis; 1 = Pre-delivery; 2 = Delivery; 3 = Post-
delivery. 
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A confusion matrix, which details the correct and incorrect perceived intensity zone predictions, is 

shown in Table 4-3. Sensitivity was greater than 72% for all models. In particular, PSVM and XGB had 

all values above 85%. Only RF and LSVM had any considerable differences in sensitivity between 

sampling frequencies. RF showed the highest sensitivity at 25 Hz (91%) and the lowest at 250 Hz (77%), 

while LSVM at the highest at 50 Hz (83%) and the lowest at 125 Hz (72%). There were considerable 

changes in specificity between the sampling frequencies for RF and PSVM. RF had the largest 

specificity at 25 Hz (70%) and the lowest at 50 Hz and 250 Hz (57% and 58%, respectively). PSVM 

dramatically decreased specificity from a high of 61% at 250 Hz to a low of 9% at 25 Hz. Overall, XGB 

had the lowest MAE for the prediction of ball release speed and the best overall perceived intensity 

zone results compared to the other models for all sampling frequencies. 

Table 4-3: Confusion matrix for the perceived intensity zone classification at different sampling 

frequencies. 

Predicted 
250 Hz 125 Hz 50 Hz 25 Hz 

low high low high low high low high 

O
bs

er
ve

d 

low 

RF 795 240 849 186 813 222 945 90 

LSVM 797 238 742 293 858 177 812 223 

PSVM 922 113 937 98 964 71 1026 9 

XGB 893 142 912 123 893 142 915 120 

high 

RF 221 299 192 328 223 297 155 365 

LSVM 128 392 148 372 152 368 138 382 

PSVM 203 317 212 308 330 190 474 46 

XGB 101 419 100 420 120 400 119 401 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient boosting. 

The top 10 sensor features for all XGB models can be observed in Table 4-4. Features derived from the 

gyroscope during the pre-delivery and delivery phase dominate the list. The most important feature 

in seven of the eight models was the gyroscope's primary frequency in the x-axis during the pre-

delivery (run-up) phase. The gyroscope’s primary frequency in the y-axis followed this during the pre-

delivery phase, which was a top 10 feature in all XGB models apart from one. The relative importance 

of these features for the perceived intensity zone and ball release speed at 250 Hz are illustrated in 

Figure 4-2. 



64 

 

Discussion 

This study investigated whether an IMU located on the thoracic spine can accurately predict ball 

release speed and the perceived intensity zone. With a MAE of 3.61 km/h for ball release speed, and 

an F-score of 88% for the perceived intensity zone, XGB was the best performing model for both 

intensity measures, even when down-sampled. Although XGB was the most accurate, it should be 

noted that other models performed similarly at specific frequencies. In regards to measuring ball 

release speed, these results could only be compared to the three handball studies, where an 

improvement was seen compared to the results obtained by Gençoğlu and Gümüş (2020)104 (MAE = 

6.73 km/h) and Skejø et al. (2020)105 (MAE = 4.75 km/h) and were similar to Van den Tillaar et al. 

(2020)103 (MAE = 3.78 km/h). It is important to note that these studies used IMUs with a high sampling 

frequency between 500–1200 Hz. It appears that an IMU with a low sampling frequency (e.g., 25 Hz) 

can maintain adequate performance, as the results from the down-sampled data do not show a 

decreasing trend in accuracy. This may have important implications, as this could mean that readily 

available consumer-grade IMUs (e.g., smartphones and watches) may be able to predict bowling 

workload accurately.  

Unlike the study by Gençoğlu and Gümüş (2020),104 where MAE was similar in all models, performance 

varied considerably for both ball release speed and the perceived intensity zone. For example, RF 

worked well in determining ball release speed but struggled to predict the perceived intensity zone at 

higher frequencies (250 Hz, 125 Hz, and 50 Hz). This is consistent with the no free lunch theorem, 

which states that no machine learning model will perform best on all problems.85 Changes in the way 

data are pre-processed, the number of features extracted, the amount of data supplied to the model, 

and the model tuning parameters can affect results.97 

It is challenging to determine why XGB worked best in the current study. The XGB algorithm has been 

widely used in winning solutions for several high-profile machine learning and data mining 

challenges.109 It consists of multiple decision trees which are fit sequentially, each of them aiming to 

explain the error resulting from the previous tree until no further improvements can be made.109 The 

most important reason for its success is its scalability in all scenarios like classification and prediction 

problems.109 Gençoğlu and Gümüş104 was the only similar study to compare gradient boosting against 

other models (support vector machine and generalised linear models) but did not find any 

improvement. It is important to note that they did not use any gyroscope data, which may explain 

these differences. Due to a lack of studies investigating similar measures, it is difficult to determine 

why some models do not work well. More studies need to display results comparing multiple machine 

learning classifiers to examine trends.97 

Features derived from the gyroscope during the pre-delivery and delivery phase dominate the feature 

importance list in Table 4. The two most important features for all XGB models were the gyroscope’s 
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primary frequencies in the x and y-axis during the pre-delivery (run-up) phase. This might give an 

indication of run-up speed from the bowler. This is consistent with Salter et al. (2007),43 who found 

that run-up speed, the angular velocity of the bowling arm, and the vertical velocity of the non-bowling 

arm accounted for 80% of the within-bowler variation in ball release speed. Feature importance 

differed from Van den Tillaar et al. (2020),103 with no similar top 10 features for measuring handball 

throw speed when using a RF model. This might highlight the difference in run-ups between both 

studies, as participants threw the handball from a standing, running, or jumping start. Features from 

the post-delivery phase (follow-through) appear less important, with only two of these features seen 

in the top 10 for two separate models. 

Practical applications 

An IMU recording at different sampling frequencies combined with machine learning can estimate ball 

release speed with a MAE of 3.61 km/h and the perceived intensity zone with an F-score of 88%. When 

combined with models that predict bowling frequency,63,98 this suggests that an IMU could be used to 

better estimate bowling workload in a training setting, as not all deliveries exert the same level of 

stress to the bowler. As results were similar across all sampling frequencies, this has the potential to 

be applied to a range of readily available IMUs (e.g., smart devices), which will increase accessibility. 

It also has the potential to be automated, avoiding the need to manually record the number of bowls 

and the session’s rating of perceived exertion. If there is a widespread use of such a device, 

researchers will not have to rely on bowling frequency as the only measure of bowling workload. This 

may improve understanding of the relationship between workload and injury and help inform the 

development of individualised bowling workload and return to play protocols. It could also enable 

players and coaches to monitor loading to help prevent injuries, improve performance, and assist 

coaches with player selection. 

Limitations 

There are several study limitations that the reader should be aware of when interpreting the findings. 

Firstly, data processing and model implementation were not done in real-time in conditions that 

reflect on-field use.  Although the authors could not find any studies comparing real-time versus 

delayed model implementation, it would be less beneficial to the player or coach if they were not 

receiving immediate feedback. This is because real-time feedback has the potential to improve 

motivation, learning, and performance.110 In addition, models were not implemented in game 

situations, where there are more random actions (e.g. throwing, catching) that could confuse the 

models.62 Furthermore, as the optimal model used relative features, each participant must perform a 

maximum effort delivery before the model can be implemented.  
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Secondly, ball release speed and perceived bowling intensity may not represent the stress exerted on 

the bowler’s body. Although studies have examined ground reaction forces (GRF) in fast bowlers, the 

authors could not find any studies examining the difference in GRF between maximal and submaximal 

effort between the same bowlers. Future studies should determine whether submaximal efforts 

reduce forces that contribute to injury in fast bowlers.24 

Lastly, as the IMU was attached to the thoracic back, it is not completely reflective of distal limb 

kinematics. An IMU with this mounting position may miss information pertinent to ball speed. If future 

studies use a wrist-mounted IMU, they will need to consider the higher acceleration and angular 

velocity values, which may mean that IMUs with low sampling frequencies or measurement ranges 

might not be as accurate compared to the current study.97 

Conclusion 

This study investigated whether an IMU, combined with machine learning, can accurately predict ball 

release speed and the perceived intensity zone. Although model performance varied considerably, 

XGB had the most consistent results for predicting ball release speed and the perceived intensity zone 

at all sensor sampling frequencies. Performance did not change for most models when the data were 

down-sampled, indicating that IMUs with a sampling frequency of at least 25 Hz can predict ball 

release speed and the perceived intensity zone with similar accuracy to an IMU sampling at 250 Hz. 

Features derived from the gyroscope were the most important for predicting ball release speed and 

the perceived intensity zone. Future projects will need to test whether this methodology can work in 

match settings and examine the efficacy of real-time implementation to give immediate feedback to 

players or coaching staff. 
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Appendix 

Table 4-4: Initial feature set. 

Accelerometer Gyroscope 

Feature Pre-delivery Delivery Post-delivery Feature Pre-delivery Delivery Post-delivery 

Mean x, y, z, mag x, y, z, mag x, y, z, mag Mean x, y, z, mag x, y, z, mag x, y, z, mag 

Standard deviation x, y, z, mag x, y, z, mag x, y, z, mag Standard deviation x, y, z, mag x, y, z, mag x, y, z, mag 

Maximum x, y, z, mag x, y, z, mag x, y, z, mag Maximum x, y, z, mag x, y, z, mag x, y, z, mag 

Minimum x, y, z, mag x, y, z, mag x, y, z, mag Minimum x, y, z, mag x, y, z, mag x, y, z, mag 

Skewness x, y, z, mag x, y, z, mag x, y, z, mag Skewness x, y, z, mag x, y, z, mag x, y, z, mag 

Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag 

Frequency 
amplitude  x, y, z, mag x, y, z, mag x, y, z, mag Frequency 

amplitude  x, y, z, mag x, y, z, mag x, y, z, mag 

Frequency x, y, z, mag x, y, z, mag x, y, z, mag Frequency x, y, z, mag x, y, z, mag x, y, z, mag 

Energy x, y, z, mag x, y, z, mag x, y, z, mag Energy x, y, z, mag x, y, z, mag x, y, z, mag 

Position of the 
maximum x, y, z, mag x, y, z, mag x, y, z, mag Position of the 

maximum x, y, z, mag x, y, z, mag x, y, z, mag 

Position of the 
minimum x, y, z, mag x, y, z, mag x, y, z, mag Position of the 

minimum x, y, z, mag x, y, z, mag x, y, z, mag 

Correlation xy, xz, yz xy, xz, yz xy, xz, yz Correlation xy, xz, yz xy, xz, yz xy, xz, yz 
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Table 4-5: Pairwise contrast results for each model for ball release speed. 

SF (Hz) Contrast Estimate Confidence 
intervals (95%) Adj. p.value 

250 

RF - LSVM -0.85 -2.79, 1.08 0.650 

RF - PSVM -2.04 -3.97, -0.10 0.027 

RF - XGB 0.05 -1.88, 1.98 0.948 

LSVM - PSVM -1.18 -3.11, 0.75 0.423 

LSVM - XGB 0.90 -1.03, 2.83 0.650 

PSVM - XGB 2.08 0.15, 4.02 0.027 

125 

RF - LSVM -1.04 -2.98, 0.89 0.307 

RF - PSVM -3.08 -5.01, -1.15 0.000 

RF - XGB 0.22 -1.71, 2.16 0.760 

LSVM - PSVM -2.04 -3.97, -0.11 0.022 

LSVM - XGB 1.27 -0.67, 3.20 0.250 

PSVM - XGB 3.30 1.37, 5.24 0.000 

50 

RF - LSVM -1.54 -3.47, 0.39 0.105 

RF - PSVM -2.07 -4.00, -0.14 0.024 

RF - XGB 0.14 -1.80, 2.07 0.942 

LSVM - PSVM -0.53 -2.46, 1.41 0.942 

LSVM - XGB 1.68 -0.25, 3.61 0.087 

PSVM - XGB 2.20 0.27, 4.14 0.016 

25 

RF - LSVM -2.73 -4.66, -0.80 0.001 

RF - PSVM -2.04 -3.98, -0.11 0.016 

RF - XGB 0.25 -1.69, 2.18 0.736 

LSVM - PSVM 0.68 -1.25, 2.62 0.696 

LSVM - XGB 2.98 1.04, 4.91 0.000 

PSVM - XGB 2.29 0.36, 4.22 0.007 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random 
forest; SF = Sample frequency; XGB = Gradient boosting. Bold text indicates a significant 
difference (p < 0.05). 
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Table 4-6: Pairwise contrast results for each model for the predicted perceived intensity zone. 

SF (Hz) Contrast Estimate Confidence 
intervals (95%) Adj. p.value 

250 

RF - LSVM -6.05 -11.71, -0.38 0.015 

RF - PSVM -9.23 -14.89, -3.57 0.000 

RF - XGB -13.95 -19.61, -8.29 0.000 

LSVM - PSVM -3.18 -8.85, 2.48 0.137 

LSVM - XGB -7.90 -13.56, -2.24 0.001 

PSVM - XGB -4.72 -10.38, 0.94 0.055 

125 

RF - LSVM 3.93 -1.73, 9.60 0.088 

RF - PSVM -4.31 -9.97, 1.35 0.088 

RF - XGB -9.98 -15.64, -4.32 0.000 

LSVM - PSVM -8.25 -13.91, -2.59 0.001 

LSVM - XGB -13.91 -19.58, -8.25 0.000 

PSVM - XGB -5.67 -11.33, -0.01 0.025 

50 

RF - LSVM -7.51 -13.17, -1.85 0.002 

RF - PSVM -2.72 -8.38, 2.94 0.203 

RF - XGB -11.78 -17.44, -6.12 0.000 

LSVM - PSVM 4.79 -0.87, 10.45 0.077 

LSVM - XGB -4.27 -9.93, 1.39 0.092 

PSVM - XGB -9.06 -14.72, -3.40 0.000 

25 

RF - LSVM 7.42 1.76, 13.09 0.001 

RF - PSVM 15.42 9.76, 21.08 0.000 

RF - XGB -0.41 -6.07, 5.26 0.849 

LSVM - PSVM 8.00 2.34, 13.66 0.001 

LSVM - XGB -7.83 -13.49, -2.17 0.001 

PSVM - XGB -15.83 -21.49, -10.17 0.000 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random 
forest; SF = Sample frequency; XGB = Gradient boosting. Bold text indicates a significant 
difference (p < 0.05). 
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Table 4-7: Pairwise contrast results between frequencies for each model for ball release speed. 

SF (Hz) Contrast (Hz) Estimate Confidence 
intervals (95%) Adj. p.value 

RF 

250 - 125 -0.01 -1.96, 1.93 1.000 

250 - 50 -0.10 -2.05, 1.85 1.000 

250 - 25 -0.34 -2.29, 1.60 1.000 

125 - 50 -0.09 -2.03, 1.86 1.000 

125 - 25 -0.33 -2.28, 1.62 1.000 

50 - 25 -0.25 -2.19, 1.70 1.000 

LSVM 

250 - 125 -0.20 -2.15, 1.74 0.855 

250 - 50 -0.79 -2.73, 1.16 0.855 

250 - 25 -2.22 -4.17, -0.27 0.016 

125 - 50 -0.58 -2.53, 1.36 0.855 

125 - 25 -2.02 -3.96, -0.07 0.031 

50 - 25 -1.43 -3.38, 0.51 0.206 

PSVM 

250 - 125 -1.06 -3.00, 0.89 0.902 

250 - 50 -0.13 -2.08, 1.82 1.000 

250 - 25 -0.35 -2.30, 1.59 1.000 

125 - 50 0.93 -1.02, 2.87 1.000 

125 - 25 0.71 -1.24, 2.65 1.000 

50 - 25 -0.22 -2.17, 1.72 1.000 

XGB 

250 - 125 0.16 -1.79, 2.11 1.000 

250 - 50 -0.01 -1.96, 1.94 1.000 

250 - 25 -0.15 -2.09, 1.80 1.000 

125 - 50 -0.17 -2.12, 1.77 1.000 

125 - 25 -0.31 -2.25, 1.64 1.000 

50 - 25 -0.14 -2.08, 1.81 1.000 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random 
forest; SF = Sample frequency; XGB = Gradient boosting. Bold text indicates a significant 
difference (p < 0.05). 
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Table 4-8: Pairwise contrast results between frequencies for each model for the perceived intensity 

zone. 

SF (Hz) Contrast (Hz) Estimate Confidence 
intervals (95%) Adj. p.value 

RF 

250 - 125 -5.27 -10.48, -0.06 0.023 

250 - 50 -0.98 -6.19, 4.23 0.619 

250 - 25 -13.81 -19.02, -8.60 0.000 

125 - 50 4.29 -0.92, 9.50 0.059 

125 - 25 -8.54 -13.75, -3.33 0.000 

50 - 25 -12.83 -18.04, -7.62 0.000 

LSVM 

250 - 125 4.71 -0.50, 9.92 0.068 

250 - 50 -2.44 -7.66, 2.77 0.644 

250 - 25 -0.34 -5.55, 4.87 0.863 

125 - 50 -7.16 -12.37, -1.95 0.002 

125 - 25 -5.05 -10.26, 0.16 0.053 

50 - 25 2.11 -3.11, 7.32 0.644 

PSVM 

250 - 125 -0.35 -5.56, 4.86 0.859 

250 - 50 5.53 0.32, 10.74 0.015 

250 - 25 10.84 5.63, 16.05 0.000 

125 - 50 5.88 0.67, 11.09 0.012 

125 - 25 11.19 5.98, 16.40 0.000 

50 - 25 5.32 0.10, 10.53 0.015 

XGB 

250 - 125 -1.30 -6.51, 3.91 1.000 

250 - 50 1.19 -4.02, 6.40 1.000 

250 - 25 -0.27 -5.48, 4.94 1.000 

125 - 50 2.49 -2.72, 7.70 1.000 

125 - 25 1.03 -4.18, 6.24 1.000 

50 - 25 -1.45 -6.67, 3.76 1.000 

Key: LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random 
forest; SF = Sample frequency; XGB = Gradient boosting. Bold text indicates a significant 
difference (p < 0.05). 
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Chapter 5 - Quantifying cricket fast bowling volume, speed and 

perceived intensity zone using an Apple Watch and machine learning. 

Preface 

The previous two chapters found that an inertial measurement unit (IMU) located on the upper back 

can provide accurate bowling volume and bowling intensity estimates. Chapter 5 extends these results 

by using an IMU located on the wrist. In theory, gathering information from the wrist should give 

machine learning models more relevant data from the bowling hand, improving results – especially 

for measuring ball release speed. However, this method may come with complications of higher forces 

and rotational speeds, which means that most IMUs will reach their measurement thresholds. 

Therefore, a high-range, research grade IMU was also compared to a consumer-grade IMU (Apple 

Watch). The Apple Watch was chosen to determine if this method was feasible using consumer-grade 

wearables, potentially reaching a wider audience. As many bowlers do not feel comfortable with a 

device on their bowling wrist, the non-dominant wrist was also tested.  

This paper was published in 2021 in the Journal of Sports Sciences, 40(3), 323-330. 



73 

 

Abstract 

This study examined whether an inertial measurement unit (IMU) and machine learning models could 

accurately predict bowling volume, ball release speed, and the perceived intensity zone. Forty-four 

male pace bowlers wore a high measurement range, research-grade IMU (SABELSense) and a 

consumer-grade IMU (Apple Watch) on both wrists. Each participant bowled 36 deliveries, split into 

two different perceived intensity zones (low = 70 – 85% of maximum bowling effort, high = 100% of 

maximum bowling effort). Ball release speed was measured using a radar gun. Four machine learning 

models were compared. Gradient boosting models had the best results across all measures (bowling 

volume: F-score = 1.0; ball release speed: mean absolute error = 2.76 km/h; the perceived intensity 

zone: F-score = 0.92). There was no significant difference between the SABELSense and Apple Watch 

on the same hand when measuring bowling volume, ball release speed, and the perceived intensity 

zone. A significant improvement in classifying the perceived intensity zone was observed for IMUs 

located on the dominant wrist. For all measures, there was no added benefit of combining IMUs on 

the dominant and non-dominant wrists. 
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Introduction 

Fast bowlers are at a heightened risk of injury compared to other positions in cricket.1 The main 

modifiable risk factors include bowling technique and bowling volume (the number of bowls 

performed in training and during a match).5,6 The relationship between bowling volume and injury 

have been extensively researched. Retrospective studies have found that too many or too few 

deliveries during a week, month, or year increases the chance of injury.1,4,8-16  

Although it is hard to dispute the link between bowling volume and injury, researchers have stated 

that a more precise understanding of injury risk might be possible by monitoring bowling intensity.5 

This is because the stress or forces experienced by the bowler can vary for each delivery, and across 

training and match settings. However, only two studies have included a measure of bowling 

intensity.10,16 Although both studies found a link with injury, the authors did not directly measure the 

bowling spell intensity, as the whole training session’s rate of perceived exertion was divided by 

bowling volume. Bowling intensity is often not recorded by researchers, players, and coaching staff 

because of the difficulty in capturing this information reliably and no accepted definition or measure 

of bowling intensity.5,17 

If bowling volume and intensity can be recorded effortlessly with minimal equipment outlay, this may 

inform a player’s training decisions, reduce injury rates, and improve performance – particularly when 

recorded over a day, month, year, or multiple seasons. Researchers could also use this information to 

examine more precise relationships between bowling volume, intensity, and injury. A possible 

practical solution to measure bowling volume and intensity is to use an inertial measurement unit 

(IMU). An IMU usually consists of an accelerometer, gyroscope, and magnetometer. An accelerometer 

measures linear acceleration (measured in g-force), the gyroscope measures angular velocity (degrees 

per second), while the magnetometer measures the strength and direction of the local magnetic field. 

IMU’s have a low relative cost and are accessible to most of the world’s population through smart 

devices (i.e., smartphones and smartwatches).97 This is important as most of the cricketing population 

lives in developing nations. 

Recently, IMUs located on the cervical or thoracic spine have been accurate when measuring bowling 

volume, ball release speed, and the perceived intensity zone (i.e., 70 to 85%, and 100% of perceived 

max intensity).62,63,98,111 McNamara et al. (2015)62 used a user-defined algorithm to predict bowling 

volume and found a sensitivity of 99% and a specificity of 98.1% during training. However, specificity 

significantly decreased to 74% during a match situation. This may be due to the unstructured nature 

of actions performed during competition. Jowitt et al. (2020)98 and McGrath et al. (2019)63 used a 

machine learning approach to quantify bowling volume. In a training setting, both studies found an F-

score above 98%. Interestingly, Jowitt et al. (2020)98 were also able to show a high F-score (99%) during 

competition.  



75 

 

Recently, McGrath et al. (2021)111 used an IMU located on the lower cervical spine to quantify bowling 

intensity by predicting ball release speed and the perceived intensity zone. Results showed a mean 

absolute error (MAE) of 3.61 km/h for ball release speed and an F-score of 88% for the perceived 

intensity zone. Although these results are promising, an IMU located on the spine does not consider 

arm speed, which is closely related to ball release speed.43,112 Therefore, a wrist-based IMU may 

provide machine learning models with more relevant information to improve accuracy. However, a 

challenge of placing an IMU on a wrist is that there will be higher acceleration and angular velocity 

measurements compared with an IMU located on the trunk.97 This may mean that an IMU with a 

higher sampling frequency and sensor measurement range might be needed to accurately predict 

bowling volume and intensity through a wrist-based IMU. In addition, some bowlers do not like to 

wear anything on their bowling wrist and may only be comfortable with an IMU attached to their non-

dominant wrist. Given these challenges, the aims of this study are: 1) to investigate whether a high 

measurement range IMU (±100 g) located on the dominant and non-dominant wrists can accurately 

predict bowling volume, ball release speed, and the perceived intensity zone; and 2) to determine if a 

consumer-grade device with a lower measurement range (an Apple Watch; ±16 g) can predict the 

same metrics.  

 

Methods 

Participants 

Forty-four male pace bowlers from the Auckland, Surrey, and Sussex club and county cricket 

competitions were recruited. To be eligible, participants needed to be 16 years or older, free of injury 

at testing and classed as a pace bowler. Informed consent from a legal guardian was required for any 

players aged 16 years. Written informed consent was obtained from all participants before the 

commencement of the study. The mean age was 23 years (SD ± 6), and playing ability ranged from 

sub-elite (35 players) to elite (having played first-class cricket, nine players). The Auckland University 

of Technology Ethics Committee (AUTEC Reference 19/47). 

 

Design 

This study used a cross-sectional design with data collected from a single testing session. 

Testing session 

After completing their regular warm-up, each participant bowled six practice bowls at low intensity 

(70 to 85% of maximum perceived bowling effort) with verbal feedback on bowling speed for 

familiarisation. They were then instructed to perform two tasks. Task one included bowling 36 
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deliveries at two different perceived intensity zones (low = 24 deliveries, high = 12 deliveries at 100% 

of maximum perceived bowling effort) in random order, at a self-determined run-up length, bowling 

length and bowling line. Task two required participants to perform 12 throws. The first six throws 

involved participants walking in five metres, running 10 metres to a stationary ball, and throwing a flat 

throw at 100% intensity over a 30-metre distance. The last six throws involved the same steps, but 

instead of picking up a stationary ball, participants were given a ‘pop’ pass where they would catch 

the ball at waist height before throwing it. The throwing task was designed to be a “worst-case 

scenario” as it closely resembled a delivery. Testing was conducted in either artificial indoor cricket 

nets or outdoor grass and artificial cricket nets. 

Equipment 

Two SABELSense IMUs (SABEL Labs, Australia) were attached to the posterior part of the dominant 

and non-dominant wrist (slightly proximal to where a regular watch would be positioned). Each 

SABELSense IMU consisted of a low measurement range triaxial accelerometer (±16 g), gyroscope 

(±2000 °/s) and magnetometer (±1200 μT) (MPU-9150) and a high measurement range accelerometer 

(±100 g). The sampling frequency was 250 Hz for both low and high measurement range IMUs. In 

addition, two Apple Watches (Series 4) consisting of a triaxial accelerometer (±32 g) and gyroscope 

(±2000 °/s) were attached to each participant’s dominant and non-dominant wrist (directly distal to 

the SABELSense, please see Image 1). The Apple Watch has a sampling frequency of 100 Hz. 

Image 5-1: IMU setup and location. 

Ball release speed was quantified using a speed radar gun (Stalker II radar gun; Radar Sales, 

Minneapolis, US) positioned behind the bowler. The radar gun is a valid and reliable measure of speed 

compared to a photocell system.91 

Data pre-processing and feature computation 

For the SABELSense IMUs, raw data were downloaded from the devices using the SABEL software 

(SABEL Labs, Australia). For the Apple Watch, raw data were first saved to the device by an application 

called SensorLog (SensorLog, Germany) and then transferred to a computer as a CSV file. Event 

detection of bowls and throws were performed by calculating the magnitude of the gyroscope’s x, y, 
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and z axes before identifying peaks greater than 500 °/s.63,111 An event detection window of 10 seconds 

was used to isolate each event. The window was broken into three phases, which included pre-delivery 

(starting 5.5 seconds before the gyroscope peak), delivery (0.5 seconds before and after the gyroscope 

peak) and post-delivery (finishing 3.5 seconds after the gyroscope peak). Features were then extracted 

from the time and frequency domains using MATLAB (release 2020b, The MathWorks, Inc., MA, USA). 

In total, 282 features were computed from the individual axes and the magnitude of the 

accelerometer and gyroscope sensors. These features were similar to those used previously by Kautz 

et al. (2017)68 and McGrath et al. (2019)63 and included the mean, standard deviation, maximum, 

minimum, skewness, kurtosis, amplitude, frequency, energy, the position of the minimum and 

maximum, as well correlations between x, y and z axes (please see Appendix, Table 5:4). Relative 

features were then calculated by dividing each feature by the corresponding feature from the 

participant’s maximum speed delivery. This was shown to have superior results compared to raw 

data.111  

Model training and testing 

Four machine learning models were evaluated for each IMU when predicting bowling volume, ball 

release speed, and the perceived intensity zone, namely random forest (RF), linear support vector 

machine (LSVM), polynomial SVM (PSVM), and gradient boosting (XGB). These were chosen because 

they have been previously effective at classifying bowling volume, ball release speed and the 

perceived intensity zone with IMUs located on the thoracic or lumbar back.63,98,111 In addition, the 

SABELSense dominant and SABELSense non-dominant features were analysed together to determine 

if combined data improved results.  

All machine learning models were trained and tuned in R (R Core Team, Austria) using the ‘train’ 

function in the ‘caret’ package (Kuhn, 2008). Redundant features that were highly correlated with 

other features (r > 0.95) were removed due to the high dimensionality of the dataset. Data were then 

centred and scaled for all models apart from RF. Optimal model hyperparameters were determined 

using 10-fold cross-validation. The optimal values were chosen based on maximising the receiver 

operating characteristic metric for bowling volume and the perceived intensity zone models and 

optimising MAE for ball release speed models. The final models for both bowling volume, ball release 

speed and the perceived intensity zone were evaluated using leave-one-participant-out cross-

validation. To examine the contribution of each feature to model performance, the ‘varImp’ function 

in the ‘caret’ package was applied to each model. 

Statistical analysis 

For analysing bowling volume and the perceived intensity zone, models were evaluated using 

accuracy, sensitivity, specificity, and F-score.92 For predicting ball release speed, the metrics MAE, 

mean absolute percentage error, and root mean square error were used to examine the performance 
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of each model. The results from each cross-validation iteration were used within a two-way repeated-

measures ANOVA to compare the MAE and accuracy scores (separately) across the four models and 

four IMU positions. Model assumptions (i.e., no significant outliers, dependant variable normality, 

sphericity) were checked before fitting each model using the ‘afex’ R package. Both models violated 

the sphericity assumption and were thus adjusted using the Greenhouse-Geisser sphericity correction. 

Estimated means and pairwise contrasts (between models and between corresponding IMUs (e.g., 

SABELSense dominant and Apple Watch dominant) were estimated using the ‘emmeans’ package, 

with multiple comparisons adjusted using the Holm method. An a priori alpha of 0.05 was used for all 

analyses. 

For our analyses comparing accuracy among the models and IMUs, a post hoc power analysis was 

performed in the G*Power software. Using a within-factors repeated measures ANOVA, our sample 

size of 44 subjects, a type I error rate of 0.05, a correlation among repeated measurements of 0.7, and 

a Greenhouse–Geisser sphericity correction (epsilon, ε), we had >99% power to detect a difference in 

accuracy among the four models (Cohen’s ƒ = 0.57, ηp2 = 0.247, ε = 0.45) and >99% power to detect a 

difference among the five IMUs (ƒ = 0.41, ηp2 = 0.145, ε = 0.7). 

 

Results 

The results for predicting bowling volume, ball release speed, and the perceived intensity zone are 

shown in Tables 5-1, 5-2, and 5-3, respectively. The MAE and mean accuracy (± 95% confidence 

intervals) for ball release speed and the perceived intensity zone, respectively, are illustrated in Figure 

5-1. Finally, confusion matrices for bowling volume and the perceived intensity zone are shown in 

Tables 5-4 and 5-5, respectively. 

 

Table 5-1: Results for predicting bowling volume. 

 Accuracy Sensitivity Specificity F-score 

 SSD AWD SSND AWND SSD & 
SSND SSD AWD SSND AWND SSD & 

SSND SSD AWD SSND AWND SSD & 
SSND SSD AWD SSND AWND SSD & 

SSND 

RF 
  ^~  ~                

0.94 1.00 0.96 0.88 0.96 0.96 1.00 0.97 0.94 0.98 0.88 1.00 0.93 0.73 0.90 0.96 1.00 0.97 0.92 0.98 
 Sµ µ                  

LSVM 
  ~  ~                

0.98 0.98 0.95 0.90 0.98 0.99 0.99 0.99 0.97 1.00 0.94 0.96 0.83 0.71 0.95 0.98 0.99 0.97 0.94 0.99 
 µ                   

PSVM 
*                    

0.98 0.98 0.87 0.91 0.87 0.99 0.99 0.96 0.98 0.97 0.96 0.96 0.61 0.67 0.56 0.99 0.99 0.92 0.94 0.92 
¨³ µ  ¨                 

XGB 
*  ^~ *^~ ~                

0.99 0.99 0.97 0.97 1.00 1.00 1.00 0.98 0.99 1.00 0.98 0.98 0.96 0.92 1.00 1.00 0.99 0.98 0.98 1.00 
                    

Key: AWD = Apple Watch dominant; AWND = Apple Watch non-dominant; LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random forest; SSD = 
SABELSense dominant; SSND = SABELSense non-dominant; XGB = Gradient boosting; * = Significantly better to RF; ^ = Significantly better to LSVM; ~ = Significantly 
better to PSVM; w = Significantly better to XGB; S = Significantly better to SSD; ¢ = Significantly better to AWD; ¨ = Significantly better to SSND; = µ Significantly better 
to AWND; ³ = Significantly better to SSD & SSND 
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Table 5-2: Mean ball release speed prediction error. 

 MAE MAPE RMSE 

 SSD AWD SSND AWND SSD & 
SSND SSD AWD SSND AWND SSD & 

SSND SSD AWD SSND AWND SSD & 
SSND 

RF 
  ^ ~  ^ ~           

3.06 3.45 4.39 4.16 3.32 3.04 3.42 4.38 4.16 3.30 4.12 4.52 5.69 5.52 4.36 
               

LSVM 
               

3.82 4.79 6.69 5.51 6.43 3.76 4.67 6.58 5.48 6.33 6.63 8.49 11.45 9.68 11.86 
¨³               

PSVM 
               

3.82 4.75 6.97 5.59 5.18 3.76 4.65 6.83 5.58 5.14 6.68 8.08 12.36 8.34 9.40 
¨               

XGB 
  ^ ~ ^ ~ ^ ~           

2.76 3.31 4.12 3.87 2.84 2.74 3.26 4.08 3.87 2.81 3.61 4.37 5.50 5.13 3.72 
               

Key: AWD = Apple Watch dominant; AWND = Apple Watch non-dominant; LSVM = Linear support vector machine; MAE = Mean absolute error; MAPE = Mean 
absolute percentage error; PSVM = Polynomial SVM; RF = Random forest; RMSE = Root mean square error; SSD = SABELSense dominant; SSND = SABELSense 
non-dominant; XGB = Gradient boosting. * = Significantly better to RF; ^ = Significantly better to LSVM; ~ = Significantly better to PSVM; w = Significantly 
better to XGB; S = Significantly better to SSD; ¢ = Significantly better to AWD; ¨ = Significantly better to SSND; = µ Significantly better to AWND; ³ = Significantly 
better to SSD & SSND 

 

Table 5-3: The predicted perceived bowling intensity zone. 

 Accuracy Sensitivity Specificity F-score 

 SSD AWD SSND AWND SSD & 
SSND SSD AWD SSND AWND SSD & 

SSND SSD AWD SSND AWND SSD & 
SSND SSD AWD SSND AWND SSD & 

SSND 
 ^ ~ ^ ^ ~ ^ ~ ^ ~                

RF 0.90 0.88 0.84 0.81 0.91 0.94 0.92 0.90 0.88 0.94 0.84 0.82 0.71 0.68 0.85 0.93 0.91 0.88 0.86 0.93 
 ¨ µ                   
    ~                 

LSVM 0.80 0.79 0.70 0.73 0.77 0.82 0.78 0.71 0.74 0.76 0.75 0.81 0.68 0.86 0.77 0.84 0.83 0.76 0.78 0.81 
 ¨ µ                   
  ^                   

PSVM 0.79 0.87 0.69 0.67 0.78 0.79 0.91 0.87 0.90 0.79 0.79 0.78 0.35 0.74 0.77 0.84 0.90 0.79 0.79 0.83 
 ¨ Sµ                   
 ^ ~ ^ ^ ~ ^ ~ ^ ~                

XGB 0.90 0.89 0.81 0.81 0.90 0.91 0.90 0.81 0.83 0.90 0.87 0.88 0.79 0.71 0.89 0.92 0.92 0.85 0.85 0.92 
 ¨ µ                   

Key: AWD = Apple Watch dominant; AWND = Apple Watch non-dominant; LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random forest; SSD = 
SABELSense dominant; SSND = SABELSense non-dominant; XGB = Gradient boosting. * = Significantly better to RF; ^ = Significantly better to LSVM; ~ = Significantly better to 
PSVM; w = Significantly better to XGB; S = Significantly better to SSD; ¢ = Significantly better to AWD; ¨ = Significantly better to SSND; = µ Significantly better to AWND; ³ = 
Significantly better to SSD & SSND 

 

For bowling volume, the XGB model had the best overall results (> 97% accuracy across all IMUs), and 

there were no significant differences between the IMUs when using XGB. For ball release speed, the 

XGB and RF models had the best overall results across all IMUs. In particular, XGB for the SABELSense 

dominant sensor had a MAE of ± 2.76 km/h. There were no significant differences between the IMUs 

for the RF and XGB models.  
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Figure 5-1: Model results for ball release speed (BRS) and the predicted perceived intensity zone (PIZ) 

for different IMU devices. 

Key: LSVM = Linear support vector machine; MAE = Mean absolute error; PSVM = Polynomial SVM; RF = Random forest; XGB = Gradient 

boosting. The colour palette in this figure was produced using Manu R package (www.g-thomson.github.io/manu) and is inspired by the 

New Zealand Kererū. 

Lastly, the perceived intensity zone had a similar trend, with RF and XGB having the best overall results 

(> 90% accuracy). These two models were significantly better than the LSVM and the PSVM (except 

for the Apple Watch dominant IMU). There was a significant improvement for the IMU placed on the 

dominant wrist (SABELSense dominant and Apple Watch dominant) compared to the corresponding 
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IMU placed on the non-dominant wrist. Apart from the PSVM, where Apple Watch dominant was 

significantly better than SABELSense dominant, there were no significant differences between IMUs. 

There was no added benefit for combining IMUs (SABELSense dominant & SABELSense non-

dominant).  

 

Discussion 

XGB and the dominant wrist-based IMUs had the best overall results across all measures. If using an 

Apple Watch, which is a readily available consumer-grade device, and the XGB model, bowling volume 

can be predicted with 99% accuracy, ball release speed can be predicted with an error of ± 3.31 km/h, 

and the perceived intensity zone can be predicted with 89% accuracy. Little difference was observed 

between an Apple Watch and a high measurement range IMU (SABELSense), with only a slight non-

significant improvement in ball release speed (± 2.76 km/h compared to ± 3.31 km/h). Although the 

acceleration likely exceeded the threshold limits on the Apple Watch, these results suggest that a high 

measurement range IMU is not necessary to measure the high acceleration and angular velocity seen 

at the wrist. This method of measuring bowling volume, ball release speed and the perceived intensity 

zone could be applied to most IMUs, making it more cost-effective and accessible to players.  It was 

also evident that two IMUs on both the dominant and non-dominant wrist did not improve 

performance. This also has cost-saving benefits, with players only needing one IMU. Interestingly, the 

non-dominant wrist IMUs showed comparable results to the dominant wrist IMUs, with only 

significant differences in measuring the perceived intensity zone. Therefore, bowlers who do not like 

to wear anything on their dominant wrist while bowling can still have bowling volume, ball release 

speed and the perceived intensity zone measured with little change in accuracy.  

The results obtained from this study are comparable to McGrath et al. (2021)111 and McGrath et al. 

(2019 ),63 which both used similar machine learning methods for an IMU attached to the lower cervical 

spine. There was only a slight improvement in the current study for ball release speed (MAE ± 2.76 

km/h compared to ± 3.3 km/h) and the perceived intensity zone (F-score 93% compared to 89%) and 

no difference in predicting bowling volume. This was surprising, as a wrist-based IMU should be more 

reflective of distal limb kinematics.97 Future studies could determine if a smartphone located on the 

lower cervical spine could produce similar results. As smart devices are more accessible each year in 

developing nations,113 this could mean that an accurate measure of bowling volume and intensity 

could be available to most of the cricketing population. What was evident in all studies was that XGB 

was the best overall model for quantifying the variables of interest. Although it is unclear why this is 

the case, a reason for its success in many machine learning challenges is its scalability in classification 

and prediction problems.109 
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Practical applications 

If the models created from this study can be implemented inside a smartwatch application, this could 

provide a cost-effective and easy way of measuring bowling volume, ball release speed and the 

perceived intensity zone. Practical applications exist for the player, coach, and researcher. For 

example, the bowling speed predictor could determine if a change of technique has been successful 

without setting up expensive equipment, therefore improving player performance. The application 

could track the player’s bowling volume and intensity throughout the week, month, and season, 

guiding them when to bowl, to reduce the chances of injury. Players could also better understand how 

each perceived intensity zone affects ball release speed and fatigue levels, thus influencing strategies 

during bowling spells of different durations.  Coaches could be aided in team selection by using all 

three measures to track a player’s progress to determine if they are match fit or can bowl at a higher 

speed for a longer duration. Researchers could look at data from all three measures to establish better 

determinants of injury compared to the most commonly used workload measure, bowling volume.  

Although higher model accuracy is always better, there is no defined accuracy threshold that a device 

must have to be classified as an effective tool for measuring bowling volume, ball release speed and 

the perceived intensity zone in cricket. However, the accuracy presented in this study may be enough 

for a bowler to gain meaningful feedback on performance. For example, a MAE of 3.3 km/h is likely to 

be less than what most batsmen could perceivably recognise between two deliveries.   

Limitations 

There are several limitations that the reader should be aware of. Firstly, the algorithms and IMUs were 

not tested in a game setting. McNamara et al. (2015)62 found that random actions of bowlers during 

a match setting may have confused their user-defined algorithm leading to reduced accuracy. 

However, this may have been a limitation of their user-defined algorithm, as Jowitt et al. (2020)98 

found no reduction in performance during a game setting when using machine learning.  

Secondly, the results obtained from the Apple Watch are not generalisable to all smartwatches. 

Smartwatches have a range of different IMUs built into them. In addition, depending on the software 

installed and applications opened, the proportion of power given to the IMU can vary, leading to 

variation in IMU performance. 

Lastly, although bowling volume has been shown to correlate with injury, no studies have examined 

the relationship between ball release speed, perceived intensity zone or ground reaction forces on 

injury rates. This is likely from a lack of data because of the cost of specialised equipment and the 

expertise needed to measure these bowling workload parameters. 
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Conclusion 

This study found that an IMU placed on either the dominant or non-dominant wrist, combined with 

machine learning, could accurately predict bowling volume, ball release speed and the perceived 

intensity zone. The XGB was the most accurate model across all measures. There was no significant 

difference between the high measurement range IMU (SABELSense) and the Apple Watch on both the 

dominant and non-dominant wrists. There was also no significant difference between the dominant 

wrist and non-dominant wrist for bowling volume and ball release speed; however, a significant 

difference was observed when measuring the perceived intensity zone. There was no benefit to 

combining IMUs (SABELSense dominant and SABELSense non-dominant) for all measures. If the model 

can be implemented in a smartwatch application, this has the potential to improve performance, aid 

in selection, and reduce injury. 
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Appendix 

Table 5-4: Initial feature set. 

Accelerometer Gyroscope 

Feature Pre-delivery Delivery Post-delivery Feature Pre-delivery Delivery Post-delivery 

Mean x, y, z, mag x, y, z, mag x, y, z, mag Mean x, y, z, mag x, y, z, mag x, y, z, mag 

Standard deviation x, y, z, mag x, y, z, mag x, y, z, mag Standard deviation x, y, z, mag x, y, z, mag x, y, z, mag 

Maximum x, y, z, mag x, y, z, mag x, y, z, mag Maximum x, y, z, mag x, y, z, mag x, y, z, mag 

Minimum x, y, z, mag x, y, z, mag x, y, z, mag Minimum x, y, z, mag x, y, z, mag x, y, z, mag 

Skewness x, y, z, mag x, y, z, mag x, y, z, mag Skewness x, y, z, mag x, y, z, mag x, y, z, mag 

Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag Kurtosis x, y, z, mag x, y, z, mag x, y, z, mag 

Frequency 
amplitude  x, y, z, mag x, y, z, mag x, y, z, mag Frequency 

amplitude  x, y, z, mag x, y, z, mag x, y, z, mag 

Frequency x, y, z, mag x, y, z, mag x, y, z, mag Frequency x, y, z, mag x, y, z, mag x, y, z, mag 

Energy x, y, z, mag x, y, z, mag x, y, z, mag Energy x, y, z, mag x, y, z, mag x, y, z, mag 

Position of the 
maximum x, y, z, mag x, y, z, mag x, y, z, mag Position of the 

maximum x, y, z, mag x, y, z, mag x, y, z, mag 

Position of the 
minimum x, y, z, mag x, y, z, mag x, y, z, mag Position of the 

minimum x, y, z, mag x, y, z, mag x, y, z, mag 

Correlation xy, xz, yz xy, xz, yz xy, xz, yz Correlation xy, xz, yz xy, xz, yz xy, xz, yz 

Table 5-5: Pairwise contrast results for each model for bowling volume (BV), ball release speed (BRS), 

and the predicted perceived intensity zone (PIZ).   

SSD AWD SSND AWND SSD & SSND 

Contrast Est CI (95%) Adj. 
p.value Est CI (95%) Adj. 

p.value Est CI (95%) Adj. 
p.value Est CI (95%) Adj. 

p.value Est CI (95%) Adj. 
p.value 

BV 

RF - LSVM -2.55 -6.85, 1.75 0.341 1.83 -2.47, 6.13 1.000 4.43 0.13, 8.74 0.013 -3.04 -7.34, 1.26 0.143 -2.71 -7.01, 1.6 0.193 

RF - PSVM -5.13 -9.43, -0.82 0.008 1.63 -2.68, 5.93 1.000 9.70 5.39, 14 <0.001 -3.23 -7.53, 1.08 0.143 8.35 4.05, 12.65 <0.001 

RF - XGB -6.33 -10.63, -2.03 0.001 1.70 -2.6, 6.01 1.000 -1.39 -5.69, 2.92 0.394 -9.61 -13.91, -5.31 <0.001 -4.08 -8.38, 0.23 0.037 

LSVM - PSVM -2.57 -6.88, 1.73 0.341 -0.20 -4.51, 4.1 1.000 5.26 0.96, 9.57 0.004 -0.19 -4.49, 4.12 0.909 11.05 6.75, 15.36 <0.001 

LSVM - XGB -3.78 -8.08, 0.53 0.082 -0.12 -4.43, 4.18 1.000 -5.82 -10.12, -1.52 0.001 -6.57 -10.87, -2.27 <0.001 -1.37 -5.67, 2.93 0.399 

PSVM - XGB -1.20 -5.51, 3.1 0.460 0.08 -4.22, 4.38 1.000 -11.08 -15.38, -6.78 <0.001 -6.38 -10.69, -2.08 <0.001 -12.43 -16.73, -8.12 <0.001 

BRS 

RF - LSVM -0.62 -2.35, 1.1 1.000 -1.41 -3.13, 0.32 0.124 -1.89 -3.62, -0.17 0.011 -1.41 -3.13, 0.32 0.094 -2.20 -3.93, -0.48 0.004 

RF - PSVM -0.62 -2.34, 1.1 1.000 -1.35 -3.08, 0.37 0.124 -2.16 -3.88, -0.43 0.005 -1.48 -3.2, 0.25 0.094 -1.75 -3.47, -0.02 0.022 

RF - XGB 0.32 -1.4, 2.04 1.000 0.17 -1.55, 1.89 1.000 0.18 -1.54, 1.91 1.000 0.30 -1.42, 2.02 1.000 0.39 -1.33, 2.11 0.971 

LSVM - PSVM 0.00 -1.72, 1.73 1.000 0.06 -1.67, 1.78 1.000 -0.26 -1.99, 1.46 1.000 -0.07 -1.8, 1.65 1.000 0.45 -1.27, 2.18 0.971 

LSVM - XGB 0.94 -0.78, 2.67 0.886 1.58 -0.15, 3.3 0.095 2.08 0.35, 3.8 0.006 1.70 -0.02, 3.43 0.045 2.59 0.87, 4.31 <0.001 

PSVM - XGB 0.94 -0.78, 2.66 0.886 1.52 -0.2, 3.24 0.099 2.34 0.62, 4.06 0.002 1.78 0.05, 3.5 0.039 2.14 0.41, 3.86 0.004 

PIZ 

RF - LSVM 10.47 6.52, 14.41 <0.001 10.16 6.21, 14.11 <0.001 13.26 9.31, 17.21 <0.001 8.85 4.9, 12.79 <0.001 14.65 10.7, 18.6 <0.001 

RF - PSVM 10.98 7.04, 14.93 <0.001 2.08 -1.86, 6.03 0.326 14.30 10.36, 18.25 <0.001 13.74 9.8, 17.69 <0.001 13.11 9.16, 17.06 <0.001 

RF - XGB 0.65 -3.3, 4.59 1.000 -0.38 -4.33, 3.56 0.797 2.81 -1.14, 6.76 0.120 0.15 -3.8, 4.09 0.922 1.61 -2.34, 5.55 0.564 

LSVM - PSVM 0.52 -3.43, 4.46 1.000 -8.08 -12.03, -4.13 <0.001 1.05 -2.9, 4.99 0.484 4.90 0.95, 8.84 0.002 -1.54 -5.49, 2.41 0.564 

LSVM - XGB -9.82 -13.77, -5.87 <0.001 -10.54 -14.49, -6.6 <0.001 -10.45 -14.4, -6.5 <0.001 -8.70 -12.65, -4.75 <0.001 -13.04 -16.99, -9.1 <0.001 

PSVM - XGB -10.34 -14.28, -6.39 <0.001 -2.47 -6.41, 1.48 0.296 -11.50 -15.44, -7.55 <0.001 -13.60 -17.54, -9.65 <0.001 -11.51 -15.45, -7.56 <0.001 

Key: Adj = Adjusted; CI = Confidence intervals; Est = Estimate; LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = Random forest; SF = Sample 
frequency; XGB = Gradient boosting. Bold text indicates a significant difference (p < 0.05). 
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Table 5-6: Pairwise contrast results for each inertial measurement unit for bowling volume (BV), ball 

release speed (BRS), and the predicted perceived intensity zone (PIZ). 

 SSD vs. AWD SSD vs. SSND  SSD vs. SSD & SSD  AWD vs. AWND SSND vs. AWND 

 Contrast Est CI (95%) Adj. 
p.value Est CI (95%) Adj. 

p.value Est CI (95%) Adj. 
p.value Est CI (95%) Adj. 

p.value Est CI (95%) Adj. 
p.value 

BV 

RF -6.92 -11.69, -2.15 0.001 -2.80 -7.57, 1.96 0.257 -2.81 -7.58, 1.96 0.257 11.95 7.18, 16.72 <0.001 7.83 3.06, 12.6 <0.001 

LSVM -2.54 -7.31, 2.23 0.338 4.18 -0.59, 8.95 0.095 -2.96 -7.73, 1.81 0.326 7.08 2.31, 11.85 0.001 0.36 -4.41, 5.13 0.846 

PSVM -0.17 -4.94, 4.6 0.926 12.02 7.25, 16.79 <0.001 10.66 5.9, 15.43 <0.001 7.10 2.33, 11.87 <0.001 -5.09 -9.86, -0.32 0.012 

XGB 1.11 -3.66, 5.88 1.000 2.14 -2.63, 6.91 1.000 -0.56 -5.33, 4.21 1.000 0.63 -4.13, 5.4 1.000 -0.39 -5.16, 4.38 1.000 

BRS 

RF -0.41 -2.11, 1.29 1 -1.20 -2.9, 0.5 0.347 -0.19 -1.89, 1.52 1.000 -0.72 -2.43, 0.98 1.000 0.07 -1.64, 1.77 1.000 

LSVM -1.19 -2.9, 0.51 0.211 -2.47 -4.17, -0.77 0.001 -1.77 -3.47, -0.06 0.030 -0.72 -2.43, 0.98 0.547 0.55 -1.15, 2.26 0.547 

PSVM -1.14 -2.85, 0.56 0.251 -2.74 -4.44, -1.03 <0.001 -1.31 -3.02, 0.39 0.186 -0.85 -2.55, 0.85 0.395 0.75 -0.96, 2.45 0.395 

XGB -0.56 -2.26, 1.14 1 -1.34 -3.04, 0.37 0.214 -0.12 -1.82, 1.58 1.000 -0.59 -2.3, 1.11 1.000 0.18 -1.52, 1.89 1.000 

PIZ 

RF 1.95 -3.21, 7.11 0.657 6.70 1.54, 11.87 0.003 -0.93 -6.09, 4.23 0.657 7.37 2.2, 12.53 0.001 2.61 -2.55, 7.77 0.573 

LSVM 1.65 -3.51, 6.81 0.733 9.50 4.34, 14.66 <0.001 3.26 -1.9, 8.42 0.310 6.05 0.89, 11.21 0.010 -1.80 -6.96, 3.36 0.733 

PSVM -6.95 -12.11, -1.79 0.002 10.03 4.87, 15.19 <0.001 1.20 -3.96, 6.36 0.609 19.03 13.86, 24.19 <0.001 2.05 -3.11, 7.21 0.609 

XGB 0.92 -4.24, 6.08 1.000 8.87 3.71, 14.03 <0.001 0.03 -5.13, 5.19 1.000 7.89 2.73, 13.06 <0.001 -0.05 -5.21, 5.11 1.000 
Key: Adj. = Adjusted using the Holm correction; CI = Confidence intervals; Est = Estimate; LSVM = Linear support vector machine; PSVM = Polynomial SVM; RF = 
Random forest; SF = Sample frequency; XGB = Gradient boosting. Bold text indicates a significant difference (p < 0.05). 
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Chapter 6 - The relationship between bowling intensity and ground 

reaction forces in cricket fast bowling. 

Preface 

Chapters 4 and 5 demonstrated that it was possible to predict several measures of bowling intensity, 

namely ball release speed and perceived intensity. However, these measures do not measure any 

forces the body is subjected to. Exposure to repeated high magnitude ground reaction forces (GRF) 

may be a significant cause of injury to fast bowlers. However, the expensive laboratory equipment 

required to measure this precluded research in this area. Although past studies in other sports have 

found that it is possible to predict GRF through an IMU and machine learning, it first needed to be 

established if GRF was a measure of bowling intensity. Therefore, this study examined whether GRF, 

measured by a force plate, was associated with bowling intensity measured through ball release speed 

and perceived bowling intensity. If GRF varied with different bowling efforts, it could influence bowling 

strategy. Chapters 6 and 7 were collaborative studies in conjunction with Loughborough University. 

The facilities at Loughborough University allowed the measurement of GRF during the delivery phase 

through a force plate embedded into the bowling crease. 

This paper has been accepted in the Journal of Sports Sciences and is currently in press (as of May 

2022). 
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Abstract 

This study examined the relationship between perceived bowling intensity, ball release speed, and 

ground reaction force (measured by peak force, impulse, and loading rate) in male pace bowlers. 

Twenty participants each bowled 36 deliveries, split evenly across three perceived intensity zones: low 

= 70% of maximum perceived bowling effort, medium = 85%, and high = 100%. Peak force and loading 

rate were significantly different across the three perceived intensity zones in the horizontal and 

vertical directions (Cohen’s d range = 0.14–0.45, p < 0.01).  When ball release speed increased, peak 

force and loading rate also increased in the horizontal and vertical directions (ηp
2 = 0.04–0.18, p < 

0.01). Lastly, bowling at submaximal intensities (i.e., low – medium) was associated with larger 

decreases in peak horizontal force (7.9–12.3% decrease), impulse (15.8–21.4%) and loading rate (7.4–

12.7%) compared to decreases in ball release speed (5.4–8.3%). This may have implications for 

bowling strategies implemented during training and matches, particularly for preserving energy and 

reducing injury risk. 
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Introduction 

A pace bowler has the highest injury prevalence compared to any other playing position in cricket.1 

Genetic susceptibility, technique, and bowling volume are the three main components linked to 

increased injury risk.5 Bowling volume – the number of deliveries bowled in a session – has been used 

to track a player’s bowling workload over time (e.g., match, week, season) to understand injury risk.5,20 

A bowling volume that is too high or too low over a week, month, or year has been linked to an 

increase in injury.1,4,8,9,11-16,114 However, to gain a proper understanding of bowling workload, a metric 

needs to consider the intensity of each delivery, something that bowling volume does not. This is 

because not all deliveries are bowled at the same intensity; therefore, the stress exerted on the body 

is never constant.5,99,111  

A potential method of measuring the intensity of a delivery is by recording the ground reaction forces 

(GRF) generated by the bowler during the delivery phase – usually from the front foot.115 Typical GRF 

measurements include peak force, impulse, and loading rates in the vertical and horizontal (braking) 

axis. In contrast to recording bowling volume, measuring GRF in cricket involves a laboratory setting 

with a force plate embedded within a bowling crease. This specialised setup has caused a lack of 

longitudinal data to be collected, meaning that researchers have yet to confirm a link between GRF 

and injury. However, pace bowlers can generate large GRFs of up to nine times body weight during 

the delivery phase.116 Therefore, it has been proposed that exposure to these repeated high 

magnitude ground impacts, combined with the spinal rotation observed during a delivery, may be a 

significant cause of injury, especially in the lower body.116-118 

Only one study has investigated intra-athlete changes in GRF during a bowling spell.30 Their results 

showed that different bowling lengths (i.e., short ball, length ball, or full ball) did not change GRF. 

However, as bowling intensity remained constant, no studies have investigated how a change in 

delivery intensity (particularly submaximal deliveries) affects GRF. This information could be valuable 

as previous research has shown that decreasing perceived intensity from 100% to 85% only slightly 

reduced ball release speed.20,63,111,119,120 A potential reason ball release speed does not change to the 

same extent as perceived effort could be that slightly lower perceived effort improves timing and 

technique, therefore dampening the effects. This could explain why some bowlers, on occasion, would 

bowl a faster delivery at lower perceived intensities as opposed to 100%.120 In addition, bowling at 

maximum speeds may not be a typical match bowl for some bowlers, which could compromise 

technique and timing and affect ball release speed. If GRF decreases similarly to perceived effort, it 

might cause pace bowlers to rethink their level of bowling effort during training and a match to 

potentially reduce the risk of injury without too much change in performance.28,121 

The aims of this study were (1) to examine how vertical and horizontal GRF changes across different 

zones of perceived effort, (2) to determine the relationship between GRF and ball release speed, and 
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(3) to explore the relative decreases in GRF and ball release speed across different zones of perceived 

effort. 

 

Methods 

Participants 

Twenty male pace bowlers from the Loughborough University cricket academy were recruited. 

Participants were 18 years or older and healthy at the time of testing. The mean age was 19.4 years 

(SD = 1.23), and playing ability ranged from sub-elite (19 players) to elite (1 player, having played first-

class cricket). Eighteen players were right-handed bowlers. Ethics was granted by Loughborough 

University’s Ethics Committee (reference 2020-2274-1855). 

Using the PASS 15 software and a repeated measures analysis, we estimated that 15 subjects would 

allow us to detect a difference in GRF of 1.5 bodyweights (BW) among three perceived intensity zones, 

with 90% power and a type I error rate of 0.05. This was based on an F test with a single three-level 

within-subject factor (with estimated means for the three perceived intensity zones: low = 4.5 BW, 

medium = 5.25 BW, high = 6 BW), a between-subject standard deviation of 1.5 BW, a conservative 

autocorrelation among the repeated measurements of 0.5, with a compound symmetry structure. We 

obtained our estimated means from a previous systematic review, showing the mean peak vertical 

GRF in cricket was 5.8 BW, with a between-subject SD of 1.3 BW.122 The sample size was increased to 

20 participants to mitigate potential data loss. 

Design 

This study used a cross-sectional design with data collected from a single testing session. All data were 

collected on an indoor artificial pitch at the National Centre for Sport and Exercise Medicine (NCSEM) 

biomechanics laboratory at Loughborough University. 

Testing session: 

Each participant firstly had their height and body mass measured. After performing their regular 

warm-up, participants were instructed to bowl four practice deliveries at a low (70% of maximum) and 

medium (85%) perceived intensity zone. The instructions given to each player for the 70% perceived 

intensity zone was to bowl a “nice and easy delivery at 7 out of 10 intensity.” For the 85% perceived 

intensity zone, instructions were given to keep the intensity in the middle of the low zone and high 

(100%) zone. A total of 36 deliveries split evenly between three perceived intensity zones were bowled 

by each participant. The recovery time between overs was three minutes. The three perceived 

intensity zones were bowled in random order, and participants were allowed to choose the line and 

length for each delivery.30 Force plates were positioned at the popping crease to record the GRF of 
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the front foot during the delivery phase. In total, 639 deliveries were recorded for analysis, with 81 

deliveries omitted due to equipment failure (22 deliveries) or participants not landing with their front 

foot on the force place (59 deliveries). 

Equipment 

Ball release speed was calculated using an 18-camera retro-reflective motion analysis system (Vicon, 

MX13, OMG Plc, Oxford, UK) sampling at 300 Hz. Two reflective markers were placed on the ball. The 

velocity was calculated using the change in displacement from the first two frames after ball release, 

divided by the change in the time between frames.123 GRF were measured using two Kistler force 

platforms (located next to each other to increase the area for a valid front foot contact) sampling at 

1000 Hz (Type 9287B, Kistler AG, Switzerland). 

Data processing 

To determine the start and end of a delivery, the magnitude was first calculated by taking the square 

root of the sum of the x, y, and z-axis squares. The peak force of the magnitude was identified as the 

maximum value recorded during the front foot contact. A dynamic window for each delivery was 

created to determine the start and end of front foot contact. The window started at the first sample 

>= 35 N retrospectively from the peak magnitude and ended when it returned to <=35 N post peak 

magnitude. 35 N was chosen by visual inspection of the force plate data. Specifically, to avoid 

triggering false positives from the natural fluctuation in the force plate readings. The data from each 

delivery were then visualised to identify and remove errored trials (i.e., partial foot contacts). Raw 

data from the y-axis (horizontal) and z-axis (vertical) within each window were used to calculate peak 

force, impulse, and loading rates using custom code created in MATLAB R2021a. The impulse was 

calculated for the horizontal and vertical axis using trapezoidal numerical integration to determine the 

area under the curve. The loading rate was calculated by dividing the peak force by the time from 

initial foot contact to the time of the peak force.116 Each measure of GRF was then normalised to each 

participant’s body weight and expressed in bodyweights.122 

Statistical analysis 

A series of linear mixed-effects models were used to examine the relationship between measures of 

GRF and the perceived intensity zone (Aim 1) and ball release speed (Aim 2). Each measure of GRF 

(peak force, impulse, and loading rate) for each axis (horizontal and vertical) were treated as the 

dependent variables (separately). The perceived intensity zone (low – high) and ball release speed 

(km·h-1) were specified as fixed effects (separately), while the subject was added as a random intercept 

to account for the repeated measurements (~36 deliveries) for each participant.  
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To explore the relative decreases in GRF and ball release speed across different zones of perceived 

effort (Aim 3), the same model specification was used, except ball release speed and GRF measures 

were treated as the dependant variables (separately), while the perceived intensity zone was added 

as a fixed effect. For these models, the GRF and ball release speed measures were normalised relative 

to each participant’s best delivery as a percentage of their maximum. This was done so the relative 

decrease of each variable from high to medium and medium to low could be compared. 

All models were fitted using the lme4 R package. Using the performance R package, each model's 

approximate residual normality and heteroscedasticity were confirmed by visualising the Q-Q and 

other residual plots. Model-estimated means and 95% confidence intervals were calculated using the 

emmeans R package. Pairwise contrasts among the three perceived intensity zones were adjusted 

using the Holm correction. The Cohen’s d effect size for these contrasts was approximated using the t 

statistic (d = 2t/√dferror). The partial eta squared (ηp
2) effect size was also approximated from the t 

statistic in models where ball release speed (a continuous measure) was specified as a fixed effect. 

The level of significance for all analyses was set at p < 0.05.  

Results 

The characteristics of the participants are summarised in Table 6-1. As expected, there was an increase 

in mean ball release speed with a corresponding increase in the perceived intensity zone. Standard 

deviations for mean ball release speed were also similar across all the perceived intensity zones. 

 

Table 6-1: Participants’ physical characteristics and ball release speeds. 

Variable Zone Mean SD 

Height (cm) 
 

183.5 7.3 

Body mass (kg) 78.5 10.5 

Ball release speed (km·h-1) 
 

Low 103.7 7.4 

Medium 107 6.7 

High 112.8 6.4 

Ball release speed 
(% of maximum speed) 

Low 89.2 5.0 

Medium 91.9 4.2 

High 97.3 1.8 

 

The estimated means for peak force, impulse, and loading rate across the three perceived intensity 

zones and their relationship with ball release speed can be seen in Figure 6-1. The GRF on the vertical 

axis was greater than the horizontal axis by 60–63% for peak force, 144–153% for impulse, and 60–

62% for loading rate. For all three GRF measures, there was a clear positive association with ball 
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release speed, apart from impulse in the vertical direction. The numerical estimated means and 

confidence intervals for these figures can be found in the Appendix (Table 6-4).  

The pairwise contrasts between each zone are presented in Table 6-2. Peak force and loading rate (for 

the vertical and horizontal axis) increased across all three zones (all p < 0.01, d range = 0.14–0.34). No 

significant difference was found for impulse in the vertical axis. In general, larger differences and effect 

sizes were observed between medium and high than low and medium (d range = 0.11–0.16 vs 0.19–

0.29). 
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Figure 6-1: The relationship between bowling intensity (perceived bowling intensity and ball release 

speed) and GRF. 

 

The relationship between (A) peak force and the perceived intensity zone, (B) peak force and ball release speed, (C) impulse and the 

perceived intensity zone, (D) impulse and ball release speed, (E) loading rate and the perceived intensity zone, and (F) loading rate and ball 

release speed. Values and error bars represent model-estimated means and 95% confidence intervals. The colour palette in this figure was 

produced using the Manu R package (www.g-thomson.github.io/manu) and is inspired by the New Zealand Kākāriki. 

 

  

http://www.g-thomson.github.io/manu
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Table 6-2: Differences in GRF across the three perceived intensity zones. 

 

The relationship between GRF and ball release speed can be observed in Table 6-3. Apart from impulse 

in the vertical axis, every GRF measure significantly increased as ball release speed increased (all p < 

0.01, ηp
2 range = 0.10–0.18). On the horizontal axis, for every 1 km·h-1 increase in ball release speed, 

peak force increased by 3.76 BW100, impulse by 0.13 BW100·s, and loading rate by 44.45 BW100·s−1. On 

the vertical axis, for every 1 km·h-1 increase in ball release speed, there was a significant increase in 

peak force by 5.34 BW100 and loading rate by 68.9 BW100·s−1. These relationships can be visualised in 

Figure 6-1. 

 

Table 6-3: The relationship between GRF and ball release speed. 

 

The relative decreases in GRF (in both the horizontal and vertical axis) and ball release speed across 

different zones of perceived effort are depicted in Figure 6-2. Bowling at submaximal intensities (i.e., 

low – medium) was associated with larger decreases in peak horizontal force (7.9–12.3% decrease), 

impulse (15.8–21.4%) and loading rate (7.4–12.7%) compared to decreases in ball release speed (5.4–

8.3%). This trend was less apparent in the vertical direction. 

 Horizontal  Vertical 

 Contrast Diff 95% CI p d Diff 95% CI p d 

Peak force 
(BW) 

Low – Med -0.16 -0.24, -0.08 < .001 0.16 -0.23 -0.36, -0.10 < .001 0.14 

Low – High -0.46 -0.54, -0.38 < .001 0.45 -0.67 -0.80, -0.54 < .001 0.41 

Med – High  -0.30 -0.38, -0.22 < .001 0.29 -0.44 -0.57, -0.31 < .001 0.27 

Impulse  
(BW·s) 

Low – Med -0.01 -0.01, 0.00 0.006 0.11 0.00 -0.01, 0.02 0.955 0.03 

Low – High -0.02 -0.02, -0.01 < .001 0.34 0.01 -0.01, 0.02 0.925 0.04 

Med – High  -0.01 -0.02, -0.01 < .001 0.23 0.00 -0.01, 0.02 0.955 0.01 

Loading rate  
(BW·s−1) 

Low – Med -2.04 -3.15, -0.93 < .001 0.15 -3.44 -5.26, -1.61 < .001 0.15 

Low – High -5.02 -6.13, -3.90 < .001 0.36 -7.92 -9.76, -6.08 < .001 0.35 

Med – High  -2.98 -4.10, -1.85 < .001 0.21 -4.48 -6.34, -2.63 < .001 0.19 

Key: CI = Confidence interval; d = Cohen’s d; Diff = Difference; p = p-value. The degrees of freedom for all contrasts were all 600. 

 Horizontal  Vertical 

GRF Coefficient 95% CI p ηp2 Coefficient 95% CI p ηp2 

Peak force (BW100) 3.76 3.12, 4.40 < .001 0.18 5.34 4.31, 6.37 < .001 0.15 

Impulse (BW100·s) 0.13 0.10, 0.17 < .001 0.10 0.01 -0.10, 0.11 0.866 0.00 

Loading rate (BW100·s−1) 44.45 35.83, 53.07 < .001 0.15 68.9 54.5, 83.29 < .001 0.13 
Key: CI = Confidence interval; GRF = Ground reaction force; ηp2 = partial eta squared effect size 
Note: The GRF measures have been multiplied by 100 (denoted BW100). 
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Figure 6-2: Percentage decrease in GRF and ball release speed relative to maximum perceived effort. 

Note: The relative percentage decrease in ball release speed and (A) horizontal GRF measures, and (B) vertical GRF measures. Values 

represent model-estimated means, expressed as a percentage difference from zone high estimated mean. The colour palette in this figure 

was produced using Manu R package (www.g-thomson.github.io/manu) and is inspired by the New Zealand Takahē.  

Discussion 

This study examined the relationship between bowling intensity and GRF in cricket pace bowlers. Both 

peak force and loading rate were significantly different among all three perceived intensity zones in 

the horizontal and vertical directions (Aim 1). All GRF measures in the horizontal axis increased 

significantly across low, medium and high. However, a larger difference was observed between 

medium and high compared to low and medium. An increase in ball release speed is associated with 

increases in peak GRF and loading rate (Aim 2) on both the horizontal and vertical axis. Lastly, moving 

from high to medium, or medium to low, was associated with a larger relative decrease in GRF on the 

horizontal axis compared to the relative decrease in ball release speed (Aim 3). 

As the authors have not come across a similar study looking at GRFs across submaximal intensities, 

the results can only be compared to studies that have analysed GRFs between bowlers at maximum 

speeds. These studies have shown that horizontal peak force6,31,124 or horizontal impulse22 is most 

strongly associated with bowling speed. Our results also show that horizontal GRF explains a greater 

proportion of the variance in ball release speed compared to vertical GRF. This could be due to 

http://www.g-thomson.github.io/manu
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increased run-up speed at higher zones, leading to higher linear momentum about the front foot 

during the planting action prior to ball release.123 More horizontal braking force is needed to slow the 

centre of mass and to stop the front foot. An increase in angular momentum results as the body 

rotates around the front leg faster, increasing the hand’s linear velocity.22,123,124 Interestingly, King et 

al. (2016)22 also found a negative correlation between ball released speed and average vertical and 

horizontal loading rates (r = -0.452 and -0.484, respectively), which contradicts the finding of this 

study. A potential reason for the conflicting results between studies could be the difference in ability 

and technique between bowlers. For example, if a higher percentage of bowlers land on their heel, 

this could reduce loading rates as forces are spread over an extended period before reaching a peak 

– usually just before the forefoot contacts the ground.22,123 There was also a difference in playing 

ability between the two studies, with King et al. (2016)22 participants being all elite versus just one 

elite bowler in the current study.  

This is the first study to show that GRF decreases more than ball release speed when going from a high 

to low perceived bowling intensity. It is hard to determine the exact causes; however, the relationships 

between GRFs and ball release speed might not be equal at submaximal intensities. A possible reason 

for this is to do with run-up speed. At low and medium perceived intensity, run-up speed might 

decrease – therefore decreasing horizontal GRF.22 However, this might not affect the angular velocity 

of the bowling arm, and therefore ball release speed,43 to the same proportion.  

Practical applications and future study 

The larger relative decrease in GRF compared to ball release speed when moving from maximal (high) 

to submaximal intensities (medium and low) could interest players and coaches. If a player’s high 

delivery speed is 113 km/h (the average in this study), a decrease to the average medium speed (107 

km/h) only results in a 5% decrease in speed, but a 7–17 % decrease in GRF on the horizontal axis. 

Previous studies have also shown this small decrease in speed from a reduced perceived 

intensity.63,99,111,119 In particular, Perrett et al. (2021)119 found a 0.25% drop in normalised release 

speed for every 1% decrease in prescribed intensity. More research is needed to explain the possible 

biomechanical reasons for this observation. If stronger links are made between higher GRFs and injury, 

this may influence bowlers’ strategies during periods of high workloads, such as in a training session, 

to minimise fatigue and potentially reduce the chances of injury without the corresponding decrease 

in performance. It could also lead coaches to develop an individualised approach to bowling technique 

for players, emphasising reducing GRFs without decreasing ball release speed.124 

As this study found a significant relationship between GRF and intensity, future studies could look at 

more user-friendly, cost-effective ways of measuring GRF so bowlers can obtain a more precise 

estimate of intensity. A potential solution could be to use an inertial measurement unit (IMU) in 
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combination with machine learning. IMUs are installed in most smart devices (phones and watches); 

therefore, they are accessible to most cricketing populations.97 IMUs and machine learning have been 

successfully used in cricket to predict ball release speed and the perceived intensity zone.62,98,111,125 

Limitations 

There are several limitations readers need to be aware of. Firstly, all testing was conducted on an 

artificial pitch, and therefore results may not be an accurate representation of all cricket pitches.122 

Currently, no studies have investigated how surface properties affect front-foot impact during pace 

bowling. This is due to the complexities involved with installing a force plate under a grass cricket 

pitch. Secondly, although this study generalised perceived effort as a combination of approach 

intensity (running speed) and arm rotation intensity, further insight could be gained by measuring run-

up speed. A faster run-up speed has been associated with higher vertical and horizontal GRF22 and 

may have been a key reason why GRF forces were lower at submaximal intensities. Future studies 

could look at submaximal run-up speeds with maximum bowling effort during the delivery phase and 

the relationship between GRF and bowling speed. Thirdly, this study did not test a wide variety of skill 

levels. Therefore, these results may not generalise to elite players. Lastly, the lack of familiarity with 

bowling at submaximal intensities may explain the smaller differences in GRFs between low and 

medium compared to medium and high perceived intensity zones. Although there was only a minor 

difference in standard deviation for each zone, participants may have found it hard to differentiate 

between 70% of maximum effort (low) and 85% of maximum effort (medium) compared to 100% 

maximum effort (high), which is a familiar intensity for bowlers. 

Conclusion 

A decrease in ball release speed and the perceived intensity zone was correlated with a reduction in 

peak force, impulse, and loading rate on the horizontal axis, and peak force and loading rate on the 

vertical axis. Lowering the perceived bowling intensity was associated with larger relative decreases 

in GRF on the horizontal axis compared to the relative decrease in ball release speed. This may have 

implications for players and coaches as a bowler can achieve a considerable decrease in GRF with only 

small changes in ball speed. If researchers can find consensus on how GRF affects injury, this finding 

could influence how players approach a bowling spell to decrease the chance of injury and maximise 

performance by reducing fatigue. When interpreting these results, caution should be made as all 

testing was done on an artificial pitch and may not be generalisable to a grass pitch. 
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Appendix 

Table 6-4: Estimated means and 95% confidence intervals of GRF across the three perceived 

intensity zones. 

 Horizontal  Vertical 

GRF Zone Estimated 
Mean LCL UCL Estimated 

Mean LCI UCL 

Peak force (BW) 

Low 2.46 2.10 2.82 4.73 4.07 5.39 

Med 2.62 2.25 2.98 4.95 4.29 5.62 

High 2.92 2.56 3.28 5.40 4.74 6.06 

Impulse (BW · s) 

Low 0.05 0.03 0.06 0.38 0.35 0.41 

Med 0.05 0.03 0.07 0.37 0.34 0.41 

High 0.06 0.05 0.08 0.37 0.34 0.41 

Loading rate 
(BW · s−1) 

Low 23.54 19.26 27.82 44.86 37.12 52.60 

Med 25.58 21.30 29.86 48.30 40.55 56.04 

High 28.56 24.28 32.84 52.78 45.04 60.53 
Key: GRF = Ground reaction force; LCI = Lower confidence limits; UCL = Upper confidence limits. 

  



99 

Chapter 7 - Can an inertial measurement unit, combined with 

machine learning, accurately measure ground reaction forces in 

cricket fast bowling. 

Preface 

Chapter 6 found that ground reaction forces (GRF) were positively associated with ball release speed 

and the perceived intensity zone. Therefore, GRFs can be used as a measure of bowling intensity. This 

study used machine learning to predict GRF from inertial measurement units located on the upper 

back and bowling wrist. If successful, this could initiate widespread monitoring of GRFs, which is 

currently only available in specialised laboratories. It could also allow researchers to understand better 

the relationships between GRF, injury and performance. 

This paper has been submitted to the journal Sports Biomechanics and is currently under review (as 

of December 2022). 
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Abstract 

This study examined whether an inertial measurement unit (IMU) could measure ground reaction 

force (GRF) during a cricket fast bowling delivery. Eighteen male fast bowlers had IMUs attached to 

their upper back and bowling wrist. Each participant bowled 36 deliveries, split into three different 

intensity zones: low = 70% of maximum perceived bowling effort, medium = 85%, and high = 100%. A 

force plate was embedded into the bowling crease to measure the ground truth GRF. Three machine 

learning models were used to estimate GRF from the IMU data. The best results from all models 

showed a mean absolute percentage error of 22.1% body weights (BW) for vertical and horizontal 

peak force, 24.1% for vertical impulse, 32.6% and 33.6% for vertical and horizontal loading rates, 

respectively. The linear support vector machine model had the most consistent results. Although 

results were similar to other papers that have estimated GRF, the error would likely prevent its use in 

individual monitoring. However, due to the large differences in raw GRFs between participants, 

researchers may be able to help identify links among GRF, injury, and performance by categorising 

values into levels (i.e., low and high).  
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Introduction 

Cricket fast bowlers have more injuries than any other playing position.1 It is commonly accepted that 

genetic susceptibility, technique, and bowling workload determine whether fast bowlers get injured.5 

However, the definition of bowling workload has come under debate recently.5,19,20,111 Previous injury 

prevalence studies have used this term to describe bowling volume – the number of deliveries 

performed in a session. Although research has linked a high and low weekly, monthly and yearly 

bowling volume to injury,126 it does not acknowledge that deliveries are bowled at different intensities, 

which may exert different levels of stress on the body.  

Reasons for the omission of intensity data in research stem from the fact that there are no accepted 

measures of bowling intensity.5 Potential measures include a rating of perceived intensity, ball release 

speed, and ground reaction forces (GRF), with the latter two requiring considerable outlay due to the 

specialist equipment required. A possible solution to overcome this barrier could be to use a wearable 

inertial measurement unit (IMU). An IMU typically consists of an accelerometer and gyroscope, which 

measure linear acceleration (measured in g-force) and angular velocity (degrees per second), 

respectively. Researchers have used IMU data to accurately predict bowling volume62,63,98 and 

measures of bowling intensity – bowling velocity and perceived intensity.111  

Although bowling speed and perceived intensity provide a more rounded measure of bowling 

workload, they do not provide information regarding the GRFs endured during the delivery phase. In 

fast bowlers, front foot GRFs are, on average, 6.7 times body weight (BW) for vertical GRF and 4.5 BW 

for horizontal GRF.22,123 In cricket, GRF is measured in a specialised lab using a force plate embedded 

in the bowling crease. Typical measurements include peak force, impulse and loading rate during front 

foot contact, as these are related to performance in cricket.22 The need for specialised equipment has 

meant that insufficient GRF data has been collected to investigate the long-term link with injury. It has 

been hypothesised that exposure to repeated high magnitude ground impacts combined with high 

spinal rotation may be a significant cause of acute and chronic injuries.21,116-118 Therefore, an IMU-

based estimate of GRF might provide a practical solution for monitoring GRF over time. 

There has been a recent emergence of studies trying to predict GRF from IMU data in sports and 

physical activities. Callaghan et al. (2020)24 compared GRFs derived from a force plate against IMU 

force signatures in cricket fast bowlers. Although there was mixed reliability (CV = 4.23–18.17%) 

between the two measures, it might be possible to model force plate-derived GRF from IMU data 

using more advanced modelling techniques, such as machine learning. Recently, machine learning has 

been used with IMU data to estimate GRF in sidestepping36 (mean absolute percentage error (MAPE) 

= 19.7% BW), running36 (MAPE = 29.7%), and ballet jumps35 (unilateral landings, root-mean-square 
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error (RMSE) = 0.42 BW; bilateral landings, RMSE = 0.39). To the authors’ knowledge, no studies have 

used the IMU’s gyroscope and the accelerometer to estimate GRF, which may improve results.35 

Given the potential benefits of monitoring GRF in cricket fast bowlers and recent evidence of using 

IMU data to estimate GRF in other sports, this study aims to: (1) determine whether an IMU combined 

with machine learning can predict GRFs in fast bowlers; and (2) to determine if results improve with 

the addition of gyroscope data. Based on the existing literature, it was hypothesised that an IMU and 

machine learning would be able to measure GRF with similar accuracy to other studies. Furthermore, 

it was hypothesised that the addition of gyroscope data would improve all GRF measures. 

 

Methods 

Participants 

Eighteen male pace bowlers from the (removed for anonymity) cricket academy were recruited. All 

participants were 18 years or older (mean age 19.4 ± 1.2 years), and 16 bowlers were right-handed 

bowlers. The mean height was 183 cm (SD = 7.3 cm), and the mean mass was 78.5 kg (SD = 10.5 kg). 

Participants had no reported injuries at testing, and written informed consent was obtained from each 

participant. Seventeen bowlers were sub-elite, playing at a premier club level, and one bowler was 

elite, having played first-class cricket. Ethics was granted by Loughborough University’s Ethics 

Committee (reference 2020-2274-1855).  

Design 

This study used a cross-sectional design with data collected from a single testing session. All data were 

collected on an indoor artificial pitch at the National Centre for Sport and Exercise Medicine (NCSEM) 

biomechanics laboratory at Loughborough University, with sufficient space for a full run-up. 

Testing session 

Participants had their height and body mass measured and performed their regular warm-up. They 

were then instructed to bowl 36 deliveries at a chosen line and length, split evenly between three 

perceived intensity zones – Low = 70% of maximum perceived bowling effort, Medium = 85%, and 

High= 100% – in random order. These intensities were chosen as it they cover the most likely range 

that a bowler would perform at during training and a competitive match. The force plates were 

positioned at the popping crease to record the GRF of the front foot during the delivery phase. A total 

of 554 deliveries were recorded for analysis, with 94 deliveries omitted from nine participants due to 

the failure of an IMU to record (14 deliveries) or participants not landing with their front foot on the 

force plate (80 deliveries). 
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Equipment 

Two Blue Trident IMUs (IMeasureU, Auckland, New Zealand) were attached to the upper back (around 

T1) and the bowling wrist (where a regular watch would be positioned). These locations were chosen 

due to their practicality, i.e., ease of application and should not get in the way when fielding. Each 

IMU consisted of a low measurement accelerometer (1122 Hz, ±16 g), a high measurement 

accelerometer (1600 Hz, ±250 g), and a gyroscope (1125 Hz, ±2000°/s). GRFs were measured using 

two Kistler force platforms sampling at 1000 Hz (Type 9287B, Kistler AG, Switzerland). Ball release 

speed was calculated using an 18-camera retro-reflective motion analysis system (Vicon, MX13, OMG 

Plc, Oxford, UK) sampling at 300 Hz. Two reflective markers were placed on the ball. The velocity was 

calculated using the change in displacement from the first two frames after ball release divided by the 

change in the time between the frames. 

Data pre-processing and feature computation 

Force plate: To determine the start and end of front foot contact on the force plate, the magnitude 

was first calculated by taking the square root of the sum of the x, y, and z-axis squares. A dynamic 

window for each delivery was created to determine the start and end of front foot contact. The 

window started at the first sample >= 35 N retrospectively from the peak magnitude and ended when 

it returned to <=35 N post peak magnitude. The 35 N threshold was chosen after observing the force 

plate data. If the force plate threshold was set to a more conventional 20 N, artefact caused by the 

steps prior to front foot contact would trigger the force plate in some bowlers. The data from each 

delivery were then visualised to identify and remove errored trials (i.e., partial foot contacts). Raw 

data from the y-axis (horizontal) and z-axis (vertical) were used to calculate peak force, impulse, and 

loading rates using a custom algorithm created in MATLAB R2021a. Specifically, for the horizontal and 

vertical axis, the impulse was calculated by determining the area under the curve using trapezoidal 

numerical integration, and the loading rate was calculated by dividing the peak force by the time from 

initial foot contact to the time of the peak force 116 GRFs were then normalised to each participant’s 

body weight and expressed in bodyweights.122 

IMUs: For both IMUs, a fourth-order 1 Hz Butterworth low pass filter was used for baseline 

removal.58,68 Event detection of bowls was performed by calculating the magnitude of the gyroscope’s 

x, y and z-axis and identifying peaks > 500°/s.63,111 An event detection window of 3 seconds was used 

to isolate each event. The window was broken into pre-delivery (starting and ending 1.5 and 0.5 

seconds before the gyroscope peak, respectively), delivery (0.5 seconds before and after the 

gyroscope peak), and post-delivery (starting and ending 0.5 and 1.5 seconds after the gyroscope peak, 

respectively). An example of the IMU and force plate traces from a single delivery can be seen in Figure 

7-1. 



104 

Features were then extracted within each of the three phases from the time and frequency domains 

using MATLAB (release 2021b, The MathWorks, Inc., MA, USA). A total of 282 features were computed 

from the individual axes and the magnitude of the accelerometer and gyroscope channels. The 

features were similar to Kautz et al. (2017)68 and included the mean, standard deviation, maximum, 

minimum, skewness, kurtosis, amplitude, frequency, energy, the position of the maximum, the 

position of the minimum, as well correlations between x, y and z axes. 

Figure 7-1: Inertial measurement unit and force plate traces from a single delivery. 

Model training and testing 

Three machine learning models – random forest (RF), linear support vector machine (LSVM), and 

gradient boosting (XGB) – were used to predict GRF for each IMU separately. These were chosen 

because they have been previously effective at classifying bowling volume, ball release speed, and 

perceived intensity zone with IMUs located on the thoracic back, lumbar back, and wrist.63,98,111 

All machine learning models were trained and tuned in R (R Core Team, Austria) using the caret 

package. As a pre-processing step, all features with zero variance and those that were highly 

correlated with other features (r > 0.90) were removed. Optimal model hyperparameters were 

determined using 10-fold cross-validation. The optimal values were chosen based on optimising root 

mean square error. Leave-one-participant-out cross-validation was used to evaluate the final models. 

Statistical analysis 

The accuracy of each model was expressed as the mean absolute error (MAE) and mean absolute 

percentage error (MAPE). The results from each cross-validation iteration were used within a two-way 

repeated-measures ANOVA to compare the MAE across the three models and two IMU positions. 

Model assumptions (i.e., no significant outliers, dependant variable normality, sphericity) were 

checked before fitting each model using the ‘afex’ R package. Both models violated the sphericity 
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assumption and were adjusted using the Greenhouse-Geisser sphericity correction. Estimated means 

and pairwise contrasts (between models and between the two IMUs) were estimated using the 

‘emmeans’ package, with multiple comparisons adjusted using the Holm method. An a priori alpha of 

0.05 was used for all analyses. 

 

Results 

Table 7-1 shows the mean, standard deviation, and range for ball release speed and GRF across 

intensity zones for all participants. There was an increase in mean ball release speed, peak force in the 

horizontal and vertical axes, and loading rate in the horizontal and vertical axes with a corresponding 

increase in the perceived intensity zone. There was also a large range between participants for the 

average minimum and average maximum values across all GRFs. 

 

Table 7-1: The mean, standard deviation, and range for ball release speed and ground reaction 

forces across intensity zones for all participants. 

 Low Medium High 
Variable Mean SD Range Mean SD Range Mean SD Range 

Ball release speed (km·h-1) 104.46 5.96 31.79 107.53 5.56 31.79 112.8 6.32 30.04 

Peak_y (BW) 2.6 0.71 4.31 2.73 0.73 4.31 3.08 0.87 4.93 

Peak_ z (BW) 5.05 1.19 6.75 5.24 1.28 6.75 5.76 1.63 7.89 

Impulse_y (BW·s) 0.05 0.04 0.22 0.05 0.04 0.22 0.06 0.04 0.23 

Impulse_z (BW·s) 0.4 0.08 0.71 0.39 0.08 0.71 0.39 0.08 0.45 

Loading rate_y (BW·s−1) 24.66 9.12 51.09 26.63 9.26 51.09 29.91 10.95 57.36 

Loading rate_z (BW·s−1) 47.45 16.2 99.92 50.95 16.11 99.92 55.83 19.89 97.18 

Average contact time (s) 0.37  0.09 0.6 0.36  0.07 0.47 0.35 0.08 0.39 

 

Table 7-2 shows the model accuracy for predicting peak force from the upper back IMU and the wrist 

IMU. The results for accelerometer data and combined accelerometer and gyroscope data are shown. 

Although there were no significant differences between the models, LSVM generally performed better 

for predicting vertical (MAPE = 22.1%) and horizontal GRF (MAPE = 24.1%) using the upper back IMU, 

and vertical GRF (MAPE = 22.1%) using the wrist IMU. The upper back IMU tended to produce slightly 

less error (although non-significant) than the wrist. Similarly, the combined accelerometer and the 

gyroscope data tended to have slightly better results than the accelerometer data alone, although 

these differences were not significant.  
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Table 7-2: Predicted peak force values. 

 MAPE RMSE (BW) 
 Upper back Wrist Upper back Wrist 

Model Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) 

Accelerometer only 

RF 24.9 27.5* 26.8 25.7 1.36 0.78 1.47 0.77 

XGB 25.2 28.9 28.9 25.2 1.49 0.84 1.68 0.79 

LSVM 22.1 25.2 22.1 26.7 1.30 0.75 1.27 0.79 
Accelerometer and gyroscope 

RF 23.6 24.8 25.5 26.1 1.29 0.71 1.41 0.78 

XGB  23.7 25.8 27.0 27.5 1.38 0.76 1.52 0.83 

LSVM 22.4 24.1 23.1 27.4 1.31 0.73 1.34 0.82 
Key: LSVM = Linear support vector machine; MAPE = Mean absolute percentage error; RF = Random 
forest; RMSE = Root mean square error; XGB = Gradient boosting. * = Significantly different from the 
corresponding model and axes in the accelerometer and gyroscope dataset. 

 

Table 7-3 shows the model accuracy for predicted impulse values. For the vertical axis, the best results 

were seen with the upper back IMU and the LSVM model when using accelerometer and gyroscope 

data (vertical axis, MAPE = 16.2%). This model was also significantly better than the XGB model (p = 

0.003) and the corresponding model for the wrist IMU (p = 0.006). Both the RF and XGB models 

produced better results using the wrist IMU, but the LSVM model tended to provide better results 

when using data from the upper back IMU. Regarding the horizontal axis, the variability among 

participants led to large MAPE scores when estimated from leave-one-subject-out cross-validation. 

 

Table 7-3: Predicted impulse values. 

 MAPE RMSE (BW·s) 
 Upper back Wrist Upper back Wrist 

Model Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) 

Accelerometer only 

RF 18.5 280 16.6* 288 0.07 0.04 0.06 0.04 

XGB 19.6 280 18.1 233 0.08 0.04 0.07 0.04 

LSVM 17.1^ 296 20.2 221 0.07 0.05 0.08 0.04 
Accelerometer and gyroscope 

RF 17.1~ 255 16.4 249 0.07 0.04 0.06 0.04 

XGB  21.6^ 220 18.0 286 0.09 0.04 0.08 0.04 

LSVM 16.2^~ 228 19.3 215 0.06 0.04 0.07 0.04 
Key: LSVM = Linear support vector machine; MAPE = Mean absolute percentage error; RF = Random 
forest; RMSE = Root mean square error; XGB = Gradient boosting. ^ = Significantly different from the 
corresponding model and axes when using the wrist IMU. ~ = Significantly different from XGB using 
the same IMU and dataset. * = Significantly different from LSVM using the same IMU and dataset. 

 

Table 7-4 shows the model accuracy for predicting the loading rate. The LSVM model had the best 

vertical GRF estimate (MAPE = 32.6%), and the RF model had the best horizontal GRF estimate (MAPE 
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= 33.6%). In general, less error was observed when predicting vertical axis GRF and using the combined 

accelerometer and gyroscope datasets.  

 

Table 7-4: Predicted loading rate values. 

 MAPE RMSE (BW·s−1) 
 Upper back Wrist Upper back Wrist 

Model Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) Vertical (Z) Horizontal (Y) 

Accelerometer only 

RF 35.1^ 37.3 39.9* 38.5 17.1 9.51 19.7 9.92 

XGB 37.5 40.9 38.7 41.6 19.2 10.95 20.9 11.32 

LSVM 36.3 42.0* 33.3 39.2 18.9 10.86 17.3 10.35 
Accelerometer and gyroscope 

RF 33.6^ 33.6^~ 39.2 39.5 16.7 8.88 19.7 10.14 

XGB  35.2 38.2^ 37.9 43.9 18.8 10.18 19.2 11.42 

LSVM 32.6 36.9 36 40.8 16.8 9.7 18.1 10.57 
Key: LSVM = Linear support vector machine; MAPE = Mean absolute percentage error; RF = Random 
forest; RMSE = Root mean square error; XGB = Gradient boosting. * = Significantly different from the 
corresponding model and axes in the accelerometer and gyroscope dataset. ^ = Significantly different 
from the corresponding model and axes when using the wrist IMU. ~ = Significantly different from 
XGB using the same IMU and dataset. * = Significantly different from LSVM using the same IMU and 
dataset. 

 

Discussion 

This study examined whether an IMU located either on the upper back or bowling arm could estimate 

GRFs with the assistance of machine learning. In all but two cases, the IMU located on the upper back 

had the best results for measuring peak force (MAPE = 22.1%, 24.1%), impulse (MAPE = 16.2%, RMSE 

= 0.04 BW·s) and loading rate (MAPE = 32.6%, 33.6%) in both the vertical and horizontal axis, 

respectively. This is not surprising as attenuation would occur as the force travels up through the lower 

limbs and into the trunk before progressing to the upper limbs. However, only a few cases showed a 

significant difference between IMU locations, which means the wrist can also be an effective IMU 

placement site. This may be partly explained by GRF being correlated with ball release speed127 and 

the wrist being the most accurate location to measure ball release speed.111,125 

The LSVM was the most consistent model, with the best result in 13 out of the 24 outcomes examined. 

RF, however, was the most consistent at measuring horizontal loading rate using both the upper back 

and the wrist IMUs. This was different from two previous studies that found XGB provided the best 

results when estimating ball release speed and perceived intensity zone.111,125 It is difficult to unravel 

why XGB performed poorly compared to the other models on this dataset. However, this is consistent 

with what has been termed the “no-free lunch theorem,” where machine learning models will not 

perform equally well on all problems.85  
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To the authors’ knowledge, this is the only study to use accelerometer and gyroscope data to predict 

GRFs. In seven of the 12 comparisons, the addition of gyroscope data improved the overall accuracy 

of results, although these differences were statistically non-significant. The gyroscope provides the 

models with more orientation and angular velocity information, which may have helped estimate 

overall force.35 Furthermore, the accelerometer only data had the best overall results for peak force 

in the vertical axis. This goes against our hypothesis that gyroscope data would improve all GRF 

measures due to GRF being correlated with ball release speed, and the gyroscope being the most 

important sensor when predicting ball release speed.111,127 Future researchers and developers should 

consider the modest benefits in accuracy against the increased data volume, processing, and sensor 

requirements when incorporating a gyroscope.  

It is hard to compare the results from the current study to Callaghan et al.(2020).24 This is because the 

authors only compared overall force signatures to a force plate and did not predict GRFs from 

individual deliveries. It is also challenging to compare results against studies that have used IMUs and 

machine learning to predict GRF in other sports. This is because most studies display results in either 

MAE or RMSE,35,38 which are generally proportional to the magnitude of GRF observed. Cricket has a 

relatively high average GRF and possibly greater inter-individual differences compared to other sports, 

likely resulting in higher MAE and RMSE scores. However, the results obtained were comparable to 

similar studies that displayed MAPE to estimate peak GRF in running and sidestepping drills (19.1–

29.7% for vertical peak GRF, 21.8% for horizontal peak GRF).36,37 Interestingly, these studies all used 

deep learning instead of the more conventional machine learning models used in the current study. 

Therefore, it is debatable whether more advanced machine learning techniques are warranted for 

estimating GRF using IMUs. 

It is unclear why error rates are higher than other bowling workload metrics in cricket (i.e., ball release 

speed).125 Cricket is a complex movement where the trunk experiences all three planes of motion 

during front foot contact. The high angular rotation has been associated with errors in acceleration 

data due to the crosstalk between sensing axes.24,128 Furthermore, the IMUs are unlikely to be at the 

centre of mass during front foot contact, which was seen as a major limitation for achieving accurate 

GRF estimates.39,40 

Practical applications 

Although results were similar to other studies that have predicted GRF in running and sidestepping, it 

is unlikely that a measurement system with a MAPE of 22.1% for vertical and horizontal peak force 

would be useful for individual monitoring. Specifically, a previous study by McGrath et al. (2022)127 

showed that the difference in peak force between the high and low intensity deliveries was 0.67 and 

0.46 BW in the vertical and horizontal directions, respectively. The corresponding RMSE of the 22.1% 
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error observed in this study is 1.29 and 0.71 BW, respectively. This means that such a system could 

not accurately differentiate GRFs across different zones of perceived bowling intensity. However, as 

there was a large range between participants for all GRFs, researchers may benefit from categorising 

values into levels (i.e., low and high). If a large amount of data is collected, this may help identify links 

among GRFs, injury and performance. 

Limitations and future directions 

There are several limitations that the reader needs to be aware of when interpreting these results. 

Firstly, although the sample size is considered large compared to similar studies, the generalisability 

of the models could be questionable. A model that has a high degree of generalisability means that it 

will work well on a range of cricketing populations. The study sample may not be representative of 

the wider fast bowling community. There is likely a larger variation in GRFs between academy fast 

bowlers compared to elite bowlers. Future studies should include a broader range of participants, such 

as juniors, females, and bowlers of varying abilities. This is important as these playing groups have 

similar injury rates to elite players.93,94 Secondly, due to a technical issue with recording, approximately 

half the run-up was not captured from all bowlers. As bowling run-up velocity is linked with GRF,43 

more data relating to the run-up might improve model accuracy.   

Although not a study limitation, researchers may consider using various other techniques to improve 

model performance. One option could be to train individualised models on each athlete or each type 

of bowling style (e.g., side-on, front-on, or mixed action). Individualised models may also help mitigate 

the inter-player variability evident when examining the horizontal impulse data. However, this method 

would require more individuals to get tested on a force plate which is one of the limitations this study 

was trying to eliminate. Lastly, researchers could look at other IMU locations (i.e., the front leg) or 

combine information from multiple IMUs. However, Hendry et al. (2020)35 found that a single IMU on 

the sacrum was more accurate than IMUs located on five other sites (including the front leg and upper 

back) or a combination of data from all six IMUs. The locations in the current study were chosen due 

to useability. For example, an IMU positioned on the lower back may not be suitable in cricket due to 

players diving. Furthermore, as McGrath et al.(2021)111 found, the current positions can accurately 

measure a range of bowling load parameters, so it would potentially be a barrier for use if athletes 

had to wear two or more IMUs. 

Conclusion  

This study determined whether an IMU can predict GRF in cricket fast bowling. Results showed a MAPE 

of 22.1% for vertical and horizontal peak force, 24.1% for vertical impulse, and 32.6% and 33.6% for 

vertical and horizontal loading rates, respectively. The LSVM model had the most consistent overall 

results. However, there was variability in model performance, with RF having the best results for 
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measuring horizontal loading rate. Compared to just using accelerometer data alone, the results 

tended to show a small benefit when combining data from the accelerometer and gyroscope. 

Although results were similar to other papers that have estimated GRF, the error would likely prevent 

its use in individual monitoring. However, due to the large differences in raw GRFs between 

participants, researchers may be able to identify links between injury and performance by categorising 

values into levels (i.e., low and high).  
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Chapter 8 - General discussion 

Fast bowlers are more than twice as likely to injure themselves during a season than any playing 

position in cricket.1,2 Researchers have shown that certain acute and chronic bowling volumes are 

linked to injury.1,4,8-16 However, players do not commonly record bowling volumes due to the manual, 

repetitive nature of the task.5,17 In addition, as fast bowlers vary bowling intensity through a match 

and training session, bowling volume is not a complete measure of bowling workload.5,95 Researchers 

have omitted bowling intensity from injury prevalence studies due to the lack of bowlers recording an 

intensity metric. This is because most bowling intensity metrics currently require expensive equipment 

or a purpose-built laboratory. 

Inertial measurement units (IMUs) have shown promise in a range of sports for classifying movements 

and measuring variables. In cricket, they offer a new, cost-effective way of measuring bowling 

workload. As IMUs are integrated into most smart devices, they are assessable to a wide range of 

people from different social-economic backgrounds. Being accessible to many cricketers could allow 

researchers to collect data to better understand the link between bowling workload and injury. If 

bowling workload can be displayed in a user-friendly application, this could allow players and coaches 

to monitor loading and fatigue levels during a game, training session or throughout a season. 

The aim of this thesis was to develop a cost-effective method to automatically predict bowling 

workload through bowling volume, ball release speed, perceived intensity, and ground reaction forces 

(GRFs). Although there were no agreed-upon methods of measuring bowling intensity,5,19 the intensity 

metrics were chosen due to their previous use in other research papers,17,24,26 and because they 

measured slightly different constructs.26 

The thesis first explored past research in sports using IMUs to predict upper movement classification 

to learn what has been successful (Chapter 2). The chapter also provided an overview to sports 

scientists on the processes involved in developing these methods. Chapters 3 to 7 presented a 

progression of studies that designed and tested methods to predict bowling workload. 

Research summary 

Chapter 2 was a systematic literature review that explored past research in the classification and 

measurement of upper body movements in court and field-based sports using IMUs. It provided the 

sports science field with a non-technical description of how these systems work and the benefits and 

limitations that need to be considered when using IMUs. The review also informed future chapters by 

identifying equipment and techniques that worked and gaps in the literature. The main findings were 

that a machine learning approach was best for sports involving complex biomechanical movements. 

Since cricket is a complex movement involving the whole body, machine learning was used for the 
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remaining chapters to estimate bowling workload. Also noted was a lack of research detailing the best 

IMU specification, data processing technique, or machine learning algorithm for any given sport. 

Therefore, subsequent studies compared different hardware, pre-processing methods, and machine 

learning models. 

Chapter 3 was the first of five studies to develop a system that could predict bowling workload. A 

standard IMU (accelerometer ±16 g) located on the upper back and five different machine learning 

models were used to estimate bowling volume in a training setting. When using a 250 Hz IMU, utilising 

data from all three phases (pre-delivery, delivery, and post-delivery), the F-score from two models 

were 1.0. The same method was also tested on lower sampling frequencies and data from just the 

delivery phase. While down-sampling did not completely simulate different IMU devices, it did suggest 

that this method could work on a smaller amount of data with sampling rates as low as 25 Hz (F-score 

= 0.97 from two models). No single machine learning model outperformed the others. Although this 

method was not tested in a game, non-delivery activities included the worst possible case where a 

fielding and throwing drill closely resembled a bowl. It was concluded that a standard IMU can 

accurately predict bowling volume. This was an essential step in developing a system to predict 

bowling workload, as an algorithm would not be able to predict any intensity metrics accurately 

without distinguishing a bowl from other random events. 

Chapter 4 quantified intensity through ball release speed and the perceived intensity zone using a 

standard IMU (accelerometer ±16 g) located on the upper back during a training session. To the 

authors’ knowledge, this was the first study to record these metrics using an IMU in cricket. Again, 

data were down-sampled to determine if accuracy was reduced in each of the four models used. 

Gradient boosting (XGB), a type of machine learning model, was the most consistent across all 

sampling frequencies at measuring ball release speed (mean absolute error (MAE) = 3.61 km/h at 25 

Hz) and the perceived intensity zone (F-score = 0.88 at 25 Hz). Its success is thought to be due to its 

scalability in all scenarios like classification and regression problems.109 The first key finding was that 

there was no significant difference between models that were trained from all phases compared to 

the delivery phase. This was surprising as run-up speed is a strong indicator of ball release speed.42 

Furthermore, as arm and wrist speed are good indicators of ball release speed,121 it was also 

unexpected to receive such accurate results from an IMU located on the upper back. Lastly, there was 

no significant difference in results between sampling frequencies for the two most consistent models 

– XGB and random forest (RF). This shows that sampling frequency is not as important as initially 

thought. This may mean that a range of IMUs can predict these parameters, including consumer-grade 

wearables and smart devices that might have fluctuating sampling rates. 
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Chapter 5 was conceived by the prediction that an IMU located on the wrist should improve the 

accuracy of the results obtained in Chapter 4 by providing machine learning models with more 

relevant data pertaining to the bowling wrist. This is because ball release speed is highly correlated to 

arm speed just before ball release.43 It was unknown whether the high g-forces that the bowling wrist 

is subjected to, upwards of 70 g near ball release, would affect the accuracy of the models when using 

a standard IMU (where the accelerometer is capped at ± 32 g). This proposed limitation was tested by 

comparing an IMU with a high threshold accelerometer (SABELSense, ± 100 g) with an Apple Watch (± 

32 g). Both devices were placed on the bowling and non-bowling wrists because some bowlers 

opposed wearing a watch on their bowling wrist. The authors also wanted to test the performance of 

a consumer-grade product as they were not stand-alone IMU devices, meaning they simultaneously 

performed numerous functions. Therefore, less priority may be given to the IMU. The same models 

and outcome variables from the previous study were used with the addition of bowling volume. XGB 

models again had the best results across all measures. There was only a slight improvement compared 

to the previous study (bowling volume: F-score = 1.0; ball release speed: MAE = 2.76 km/h; the 

perceived intensity zone: F-score = 0.92). There was no significant difference between the SABELSense 

and Apple Watch; however, a significant improvement in classifying the perceived intensity zone was 

observed for IMUs located on the dominant wrist. 

Chapters 6 and 7 determined if an IMU and a machine learning approach could predict GRF. Measuring 

GRF in bowling currently requires a laboratory environment, and the associated cost means only a few 

locations in the world offer this capability. This also means that limited longitudinal data has been 

collected to determine a link with injury. However, it has been proposed that exposure to repeated 

high magnitude ground impacts, combined with spinal rotation, may be a significant cause of injury, 

especially in the lower body.116-118   

Chapter 6 firstly investigated the association between GRF, ball release speed, and perceived intensity. 

If this association were not present, the prediction of GRF would be less relevant as it would not be a 

measure of bowling intensity. The study found that all GRF measures in the horizontal axis increased 

significantly across low, medium and high intensity zones. Both peak force and loading rate were 

significantly different among all three perceived intensity zones in the vertical axis. An increase in ball 

release speed was associated with increases in peak GRF and loading rate on both the horizontal and 

vertical axis. Lastly, moving from high to medium intensity, or medium to low intensity, was associated 

with a larger relative decrease in GRF on the horizontal axis compared to the relative reduction in ball 

release speed. For example, a drop from high to medium intensity zones resulted in a 7–17% decrease 

in the horizontal axis compared to a 5% decrease in ball release speed. This could influence bowlers’ 

strategies during an unlimited overs match as they could conserve energy and reduce the load through 

their body with only a small reduction in ball release speed.  
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Chapter 7 was the final study determining whether an IMU combined with machine learning can 

predict GRF. Two IMUs were placed on the upper back and the bowling wrist. As previous similar 

studies have omitted data from the gyroscope,35-38 this study also investigated whether accuracy 

improves with the addition of the gyroscope. Three machine learning models were tested – RF, LSVM 

and XGB. A mean absolute percentage error (MAPE) of 22.1% was recorded for vertical and horizontal 

peak force, 24.1% for vertical impulse, and 32.6% and 33.6% for vertical and horizontal loading rates, 

respectively. The LSVM model had the most consistent overall results. However, there was variability 

in model performance, with RF having the best results for measuring horizontal loading rate. There 

were small trends toward using the upper back IMU and data from the accelerometer and gyroscope. 

Although results were similar to other papers that have estimated GRF, the error would likely prevent 

its use in individual monitoring. However, due to the large differences in raw GRFs between 

participants, researchers may be able to help identify links among GRF, injury, and performance by 

categorising GRFs into levels (i.e., low and high). 

Significance of findings 

This body of work makes several novel contributions to measuring bowling workload using an IMU 

combined with machine learning. Each of these contributions and their implications are discussed 

below. 

The adaptivity of general machine learning techniques 

The machine learning models used in this PhD were general models that have been successfully used 

in a range of situations involving sports. Throughout this thesis, the models were tested under 

different IMU sampling frequencies. In Chapters 3 and 4, the sampling rate was reduced from 250 Hz 

to 25 Hz to simulate other IMU devices. Overall, it will appear that these machine learning models will 

perform well regardless of the sampling frequency. Accuracy was also not affected by the location 

where the IMUs were placed (i.e., the upper back or the wrist of the bowling and non-bowling arm) 

or when data from the run-up or follow-through phases were omitted. This was surprising given that 

run-up speed highly correlates with ball release speed.43 Pre-processing techniques – event detection, 

filtering and windowing – were all common techniques that have been used in similar movement 

classification and metric estimation studies. The features used were similar throughout the studies 

and closely resembled a volleyball study that classified different shots.68 Due to their robust nature, 

sport and data scientists should consider these general techniques and models when classifying 

movement patterns or measuring outputs in similar sports. It also bodes well for similar techniques to 

work on smart devices, greatly increasing accessibility. 
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An automated measure of bowling workload 

Chapter 5 was the first study to use a smart device (Apple Watch) to predict components of bowling 

workload – bowling volume, ball release speed and the perceived intensity zone. The results obtained 

from the Apple watches were similar to the research-grade IMUs. Although there was a greater 

fluctuation in the sampling rate for the Apple Watch due to the processor having to run other 

hardware and software, the algorithms used were robust enough to deal with this.  There were also 

only slight differences between wearing the watch on the bowling or non-bowling wrist. This was a 

novel finding and addressed the issue of certain bowlers not wanting to wear a watch on their bowling 

wrist.  

The algorithms created from this PhD can be used as the framework for a future application on a 

smartwatch that automatically estimates bowling workload throughout a training session, match, 

week, or season. An automated measurement device stops the monotonous tasks of manually 

recording bowling volume, which was a significant barrier to consistent monitoring.5,17 The template 

images below show what a potential application on an Apple Watch may look like using the algorithms 

created in this thesis. 

Figure 8-1: Opening screen. 

The Apple Watch application would have an option to record a live session or view metrics from past 

sessions. 
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Figure 8-2: Real-time summary for a delivery. 

 

 

Figure 8-2 shows a real-time summary of an individual delivery for each metric. It will also 

automatically count the number of deliveries. 

 

Figure 8-3: a) Viewing history main page. b) History option screen.  

a. b.  

Figure 8-4: a) Raw data from a session. b) Session summary. 

a. b.  
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When viewing the history (Figure 8-3-a), users could have the option (Figure 8-3-b) to select raw data 

(seen in Figure 8-4-a) or a summary (seen in Figure 8-4-b) from an individual session or sessions over 

the week, month or year. Users would have the option of selecting what metric they want to view: 

speed, zone, or GRF. 

Figure 8-5: Examples of viewing summaries across a session (a and b), week (c) and year (d). 

a. b. c. d.

Users will also have the option of viewing summaries in a graphical form. Figure 8-5 show examples 

from different metrics across a session, week, and year. 

Potential to assist researchers in determining more accurate links to injury. 

As previously mentioned, due to the cost of the specialised equipment and expertise needed to 

measure bowling workload parameters, researchers have had a lack of intensity data to draw possible 

links with injury. Furthermore, bowling workload data collected previously, mainly bowling volume 

and the rate of perceived exertion rating (RPE), has had its reliability questioned.5,17 This is primarily 

due to bowlers failing to fill out logbooks.17 If this application comes to fruition on a smart device, 

researchers could collect more reliable data5 from many participants. Surveys or follow-up 

appointments could be arranged to ask the participant whether they are injury-free or not. With this 

information, researchers could look at different combinations of parameters to determine what type 

of load correlates with injury. This could be displayed as a risk meter which lets bowlers know whether 

they are at a high, medium or low risk of injury (Figure 8-6-a). An insight could also inform the bowler 

on what to do to move into a lower risk category (Figure 8-6-b). 
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Figure 8-6: Personal insights into workload management. 

a. b.

A more personalised approach to injury prevalence may be achieved if further information is collected 

from participants – i.e., height, weight, age, and bowling style (front on, side on, or mixed action). 

Lastly, the application could gather injury prevalence information from players from developing 

nations. Little is known about injuries rates for fast bowlers in countries like India, Sri Lanka, Pakistan, 

Bangladesh and Afghanistan.  

A coaching tool to improve performance and monitor fatigue. 

An application that predicts multiple metrics of bowling workload could be used to improve 

performance and monitor fatigue levels. For example, ball release speed could be tracked over time 

to see if improvements occur from changing technique or improving physical strength. An individual 

who increases their bowling speed is likely to be more successful due to the reduction in reaction time 

for the batsman.28,121 In addition, if the perceived intensity rate decreases, but the ball release speed 

stays the same, this may indicate an improvement in technique or muscular power.   

If an application can automatically track bowling workload over long periods, players and coaches can 

use this data to assess fatigue levels. In particular, ball release speeds can be monitored for decreases 

despite similar perceived intensity levels. This may indicate fatigue, overreaching, or technique issues 

and can aid a bowler’s or coach’s decision to reduce workload or analyse technique. Strength and 

conditioning coaches could analyse ball release speed over a bowling spell to determine if bowlers 

hold speeds for long periods. If a sudden drop off is seen after a few overs, this may indicate that 

further work is needed to improve fitness and muscular endurance levels. Information from different 

bowling workload components could also aid team selection decisions by letting coaches know which 

bowler is at their peak or bowling faster for more extended periods. 
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Study limitations and future directions 

In addition to the limitations discussed within each research chapter, several broader limitations must 

be noted. These, along with future directions, will be addressed in the themes below.  

Generalisability 

No outputs from the research chapters are generalisable to the whole cricketing population. A device 

for all cricketers would require machine learning models to train on a diverse range of bowlers and 

abilities. Although the authors tried to measure a wide variety of players, the algorithms developed 

might not be useable for females and juniors. Future studies should address these issues as female 

cricket is a rapidly growing sport, and both females and junior fast bowlers are just as prone to overuse 

injuries as male adults.93,94  

As all studies were conducted in a training situation, there may be generalisability issues in a match 

setting. Although the authors tested participants against worst-case scenarios to try and confuse 

machine learning models, it may not accurately mimic a game where there are random events. Further 

studies should investigate this, as two studies have shown conflicting results on whether model 

performance is affected.62,98  

The measurement of GRF 

There was a considerable error when predicting GRFs. Although results were similar to other studies 

that predicted GRF in running and sidestepping, such a system could not accurately differentiate GRFs 

across different zones of perceived bowling intensity. It is unclear why error rates were higher than 

other bowling workload metrics in cricket (i.e., ball release speed). What was evident was the variety 

in accuracy among players, which is probably due to differences in technique. A more stable technique 

– which is often associated with elite players – would likely give more consistent IMU and GRF 

measurements, which would help the performance of the machine learning models. As the cohort 

from Chapter 7 was from a similar playing level – club cricket – future researchers could look at 

whether results improve when models are trained on elite players. Furthermore, researchers could 

look at an individualised approach where models are trained on the individual instead of a large group 

of players. 

Slower deliveries 

There were no slower deliveries analysed in any of the research chapters. Slower deliveries are now 

common in twenty20 and one-day limited-overs cricket. The authors could only find one study that 

included slower deliveries when correlating ball release speed to perceived exertion.26 It concluded 

that ball release speed was related to perceived exertion. However, the number of slower bowls 



120 

 

analysed was small, with only four slower deliveries from 48 deliveries. The different types of slower 

balls (e.g., knuckleball, off-cutter, back-of-the-hand) should be explored in future studies. Although 

accuracy might not be affected when estimating the perceived intensity zone and GRF, it is unlikely 

that an accurate ball release speed calculation could be obtained. This is because slower deliveries can 

be bowled at maximum intensity with the same arm speed.129 The delivery is slower due to the late 

changes applied before ball release, commonly by adding or reducing rotation to the ball.  

Methodology 

Some participants had issues consistently bowling at the required perceived effort in the three 

separate data collection events. Estimating the perceived intensity zone may become compromised 

as models will learn from data that does not accurately represent each submaximal zone. However, 

the authors tried to mitigate the effects of this by including larger sample sizes (above the 

recommended sample size), providing a familiarisation bowl before testing, and using consistent 

verbal instructions. Issues with bowling at submaximal intensities have also been highlighted in a 

recent study,26 with some participants showing differences between the prescribed intensity, 

perceived intensity, and actual intensity (measured as a percentage of maximum ball release speed). 

However, it should be noted that using the percentage of maximum ball release speed as the actual 

intensity metric does not consider small changes in technique and timing, which can alter speed 

without changing the perceived effort score.27 

Smartwatch application 

The models created in this thesis have yet to be implemented in a smart device application. Whether 

the models created using the Apple Watch will work on other smartwatches is unknown. Although the 

authors believe that algorithms could be integrated into an application, there may be reliability issues 

regarding the IMU inside the Apple Watch. The Apple Watch is not a standalone IMU; therefore, 

priority is not given from a system-level to this unit. In this thesis, SensorLog, the Apple Watch 

application used in Chapter 5 to collect raw data from the IMU, had problems recording data after a 

software update. This meant that the Apple Watch could not be used in Chapter 7. Because of this, it 

is unknown whether accuracy decreases when using the Apple Watch to estimate GRFs. If the 

algorithms developed are put into an application, it would require considerable resources to keep the 

application working. Due to international cricket council (ICC) match-fixing regulations, it is also 

unlikely that elite players will be permitted to use a smartwatch in a televised game. This might not 

be an issue, as broadcasters often record bowling volume and ball release speed. 
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Conclusion 

An IMU can predict bowling workload through bowling volume, ball release speed, perceived intensity, 

and GRFs. This thesis represents an original contribution to the current body of knowledge in wearable 

sensors, machine learning in sports, and cricket bowling workload. The results show that general 

machine learning models can predict bowling workload with varying amounts of data using IMUs 

positioned at different locations with a range of sampling frequencies and threshold limits. This offers 

promise for using similar techniques to create an application on a smart device that predicts bowling 

workload in real-time. Such a system may also be accessible to most of the cricketing population. It 

will allow fast bowlers to track bowling workload automatically without manually recording data or 

using expensive equipment, normally out of reach for most players. Measurements can also be used 

to improve and track performance, monitor fatigue levels, and aid coaches in decision making. Lastly, 

it will allow researchers to capture more bowling workload data from several bowling workload 

measures to forge better links with injury and performance. A better understanding of the links 

between injury and workload may stimulate a more individualised approach to bowling workload 

management, hopefully reducing bowling-related injuries. 
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