
Full citation: Licorish, S.A., & MacDonell, S.G. (2013) The true role of active communicators: an 
empirical study of Jazz core developers, in Proceedings of the 17th International Conference on 
Evaluation and Assessment in Software Engineering (EASE2013). Porto de Galinhas, Brazil, ACM 
Press, pp.228-239.  
doi:10.1145/2460999.2461034 

The True Role of Active Communicators:  
An Empirical Study of Jazz Core Developers 

Sherlock A. Licorish and Stephen G. MacDonell 
SERL, AUT University 

Auckland, 1142, New Zealand 
slicoris@aut.ac.nz, smacdone@aut.ac.nz 

   
ABSTRACT 
Context: Interest in software engineering (SE) methodologies and 
tools has been complemented in recent years by research efforts 
oriented towards understanding the human processes involved in 
software development. This shift has been imperative given reports 
of inadequately performing teams and the consequent growing 
emphasis on individuals and team relations in contemporary SE 
methods. Objective: While software repositories have frequently 
been studied with a view to explaining such human processes, 
research has tended to use primarily quantitative analysis 
approaches. There is concern, however, that such approaches can 
provide only a partial picture of the software process. Given the 
way human behavior is nuanced within psychological and social 
contexts, it has been asserted that a full understanding may only be 
achieved through deeper contextual enquiries. Method: We have 
followed such an approach and have applied data mining, SNA, 
psycholinguistic analysis and directed content analysis (CA) to 
study the way core developers at IBM Rational Jazz contribute 
their social and intellectual capital, and have compared the 
attitudes, interactions and activities of these members to those of 
their less active counterparts. Results: Among our results, we 
uncovered that Jazz’s core developers worked across multiple 
roles, and were crucial to their teams’ organizational, intra-
personal and inter-personal processes. Additionally, although these 
individuals were highly task- and achievement-focused, they were 
also largely responsible for maintaining positive team atmosphere. 
Further, we uncovered that, as a group, Jazz developers spent a 
large amount of time providing context awareness in support of 
their colleagues. Conclusion: Our results suggest that high-
performing distributed agile teams rely on both individual and 
collective efforts, as well as organizational environments that 
promote informal and organic work structures. 

Categories and Subject Descriptors  
D.2.9 [Software Engineering]: Management – Productivity, 
Programming Teams. 

General Terms Human Factors, Management. 

Keywords Software Development, Core Developers, Roles, 
Psycholinguistics, Content Analysis, Behaviors, Jazz. 

1. INTRODUCTION  
Concerns over software systems’ adequacy, project success 
rates and the adoption of appropriate software process 
models have been ubiquitous and longstanding [1-2]. 
Despite many recommendations in relation to adopting 
various software methodologies and tools [3-4], there remain 
questions over the outcomes of software development 
projects [5-6]. Previous evidence suggests that people 
factors manifest in communication and behavioral issues, 
and these underscore the causes of inadequately performing 
software teams [7-9]. Thus, studying these issues should 
provide fruitful avenues for researchers to better understand 
the software process and to offer recommendations for 
process improvements. 

This position is supported by the considerable body of 
research dedicated to studying human issues [10-11] and, 
particularly in recent years, there has been growing emphasis 
on studying the communication and coordination practices of 
software engineering teams [12-15]. These works have 
examined software artifacts to inform our understanding of 
the way different software teams co-exist in order to provide 
software solutions. Software repositories have also received 
noteworthy attention in this regard [16-17]; however, these 
studies have tended to employ primarily quantitative, 
mathematically-based analysis techniques (e.g. SNA). While 
these techniques do enable the detection of certain patterns, 
and so provide a partial understanding of software teams’ 
behavioral processes, there are limitations on the 
effectiveness of these approaches in informing our 
understanding of the deeper psychosocial nature of team 
dynamics [18]. 

Given the way contemporary software development is 
driven, with particular emphasis on individuals and 
relationships as compared to processes and tools [19], it 
seems pertinent to supplement such mathematical analyses 
with more contextual examinations if we are to more fully 
comprehend the nature of agile teams. For example, previous 

http://dx.doi.org/10.1145/2460999.2461034�


work has uncovered that just a few individuals dominate 
project communications [11]. However, questions related to 
how and why this phenomenon exists, why core group 
members become ‘knowledge hubs’, the reasons for these 
members’ extraordinary presence, and understanding the 
actual roles (both formal and informal) that core developers 
occupy in their teams, have not been answered. Such 
explorations could provide explanations for the peculiarities 
of agile group dynamics, may inform appropriate team 
configurations, and may enable the early identification of 
‘software gems’ – exceptional practitioners in terms of both 
task and team performance.  

To this end we have followed a systematic analysis approach 
using software repository data to study the way core 
developers enact various roles and behaviors during their 
projects. We have examined practitioners’ messages and 
logs of change histories while these individuals were 
working on various forms of software tasks. Our analysis 
was conducted in two main phases. In the first phase the 
IBM Rational Jazz repository was mined and multiple 
project areas were explored using SNA and standard 
statistical techniques. This phase allowed us to select our 
specific project cases and to detect patterns around core 
developers. This informed the design of the second phase, 
which involved the use of deeper linguistic analysis 
techniques and directed CA.  The findings from these 
investigations are reported here. 

In the next section (Section 2) we present our theoretical 
background and survey related works. This leads to our 
specific research questions outlined in Section 3. We then 
describe our research methods and measures in Section 4, 
introducing our techniques and procedures in this section. In 
Section 5 we present our results and analysis. Section 6 then 
discusses our findings and outlines the implications of our 
results, and in Section 7 we consider our study’s limitations. 
Finally, in Section 8 we draw conclusions and outline further 
research directions. 

2. RELATED WORK 
It is widely recognized that software artifacts and software 
history data are useful sources of interaction evidence [20]. 
Findings from works examining such data are especially 
valid if the artifacts under investigation constitute the 
primary means of interaction and evidence of team processes 
during software development. Thus, previous researchers 
have exploited process artifacts such as electronic messages, 
change requests histories, bug logs and blogs to provide 
unique perspectives on activities occurring during the 
software development process [12, 21]. 

Open source software (OSS) repositories and archives 
recording software developers’ textual communication 
activities have particularly supported enquiries aimed at 
understanding software practitioners’ social behaviors [22-
23]. For instance, Abreu and Premraj [17] observed the 
ECLIPSE mailing list and found that increases in 

communication coincided with a high number of bug-
introducing changes, and developers communicated most 
frequently at release and integration time. Additionally, these 
authors discovered that the number of messages increased 
after software check-ins, and communication levels of the 
entire project team (rather than individual developers) are 
indicative of the number of bug-introducing changes. 

Bird et al. [24] employed clustering algorithms to study CVS 
and mailing lists to unearth coordination and communication 
activities of Apache developers. Evidence confirmed that the 
more software development an individual does the more 
coordination and controlling activities they must undertake, 
and the volume of messages an individual sends is no 
indication of an individual’s position in the group. These 
findings are in contrast to those of Cataldo et al. [12], whose 
SNA studies found that frequent communicators contributed 
the most during software development. The findings of Bird 
et al. [24] may be used to assess periods of team productivity 
and for identifying the most active developers. That said, the 
contention in their study that the regular communicators are 
not the ‘main team members’ is quite revealing, and signals 
the need for further research. In fact, Cataldo et al. [12]’s 
findings have been supported by other similar studies. Using 
the GTK and Evolution OSS projects Shihab et al. [25] also 
established that only a small number of developers 
participated in internet relay chat (IRC) meetings. Similarly 
Shihab et al. [11] found communication activity to be 
correlated with software development activity when studying 
the OSS GNOME project, where what was communicated 
was reflected in source code changes. Shihab et al. [11] 
observed that the most productive developers contributed 
60% of the project communication and their interaction 
levels remained stable over the project duration when 
compared to lesser contributing participants. 

In commercial settings (or closed source software (CSS)) the 
IBM Rational Jazz repository has been used in the study of 
software practitioners’ interactions and communications 
largely from a SNA perspective [16, 26-27], offering 
contradictory findings to those drawn from the OSS-based 
body of work. Contrary to the findings reported by Shihab et 
al. [11, 25], Nguyen et al. [16] uncovered that about 75% of 
Jazz’s core team members actively participated in the 
project’s communication network.  Additionally, these 
authors found Jazz project teams to have very inter-
connected social networks, requiring few brokers to bridge 
communication gaps. These findings may be reflective of 
software practitioners’ disposition in commercial settings, 
where team members’ motivation to contribute their 
knowledge is likely to be driven by greater rewards when 
compared to those received in OSS environments. 

Moreover, previous research has cautioned about the 
inferences and generalizations drawn based on analyses of 
the regularly extracted OSS repositories that are often used 
to study process issues [24, 28]. Particular challenges that 
arise when using OSS repositories relate to the reliability 
and validity of the data available. Research evidence has 



reported poor data quality in some repositories of OSS 
projects [24, 28]. For instance, in their study of the Apache 
mailing list, Bird et al. [24] found it difficult to uniquely 
identify developers’ records due to the volume of email 
addresses and aliases these individuals used. Further issues 
may also be encountered when studying OSS repositories 
because anyone is able to post messages and report bugs to 
such mailing lists, whether or not those individuals are 
contributing to the project [29]. 

On the other hand, commercial software organizations 
seldom make their code history or project data publicly 
available. Additionally, previous work examining 
repositories such as those comprising IBM Rational Jazz 
[16] and Microsoft [30] datasets have tended to employ 
mathematically-based analysis techniques. While these 
approaches have provided much needed understandings 
related to the way software practitioners work, there still 
remain questions over how practitioners co-exist during agile 
projects, and especially during distributed agile 
developments. We believe that it is timely to examine the 
contextual interactions and engagements of agile 
practitioners if we are to more fully comprehend the nature 
of agile teams. This is particularly necessary given the agile 
stance of favoring individuals and interaction, against an 
emphasis that focuses on software variations and changes in 
artifacts such as requirements documents and code [2]. 

3. RESEARCH QUESTIONS 
Several of the studies introduced in Section 2 uncovered that 
only a small number of team members tend to contribute to a 
project’s knowledge base [11, 25], and that software 
developers’ communication and coordination activities are 
directly related to their involvement in software tasks [24]. 
As noted above, questions related to how and why core 
group members become ‘knowledge hubs’, the reasons for 
these members’ extraordinary presence, and understanding 
the actual roles (both formal and informal) that core 
developers occupy in their teams, have not been answered. 
Such answers could provide explanations for the nature (and 
peculiarities) of agile group dynamics. Knowledge and 
awareness of the way the most active agile practitioners 
contribute their social and intellectual capital could help 
project leaders to identify exceptional software practitioners, 
and inform the process of assembling high performing and 
cohesive teams. Such findings could also inform the use of 
specific organizational arrangements and team 
configurations in support of high performers. Furthermore, 
the output of these explorations may lead to new 
requirements for collaboration and process support tools. 
We therefore examine a CSS repository using exploratory, 
linguistic and contextual analysis techniques in order to 
answer the following questions: 

Q1. What are the core developers’ enacted roles in their 
teams, and how are these roles occupied? 

Q2. How do core developers’ behaviors and attitudes 
differ from those of other software practitioners? 

4. METHOD AND MEASURES 
During a large-scale project utilizing a multiple case study 
design to investigate team evolution and dynamics within the 
IBM Rational Jazz repository we observed that a few 
individuals dominated project interactions (see [31] where 
we examine the effect of project environment (project type, 
people involved) on team behaviors). These variations were 
detected while examining sociograms we created from 
practitioners’ messages during initial SNA explorations (see 
Figure 1 for an illustration). In this present work we employ 
an embedded multi-case design [32] to systematically 
examine core developers’ enacted roles and behaviors when 
undertaking software development tasks. Our goal is to 
understand how they contribute to team dynamics. An 
embedded case study approach is appropriate for 
understanding complex human processes by relating them to 
their context [32], as is the focus of the work under 
consideration here. During our study, mining methods were 
used for data collection (see subsection 4.2) and the 
extracted data were then analyzed using statistical 
techniques, linguistic analysis tools (see subsection 4.3) and 
directed CA (see subsection 4.4). Below we first provide a 
description of the repository that was used as the data source 
in our study (subsection 4.1) and then we elaborate on the 
techniques and procedures utilized during our research. 

4.1 Study Repository 
The repository examined in this work is a specific release of 
IBM Rational Jazz (based on the IBMR RationalR Team 
ConcertTM (RTC)1

IBM permitted us to study an instance of the Jazz repository 
comprising a large amount of process data from 

). Jazz, created by IBM, is a fully 
functional environment for developing software and 
managing the entire software development process, 
including project management, project communication and 
coding [33]. The software includes features for work 
planning and traceability, software builds, code analysis, bug 
tracking and version control in one system [34]. Changes to 
source code in the Jazz environment are only allowed as a 
consequence of tasks created beforehand, such as a bug 
report, a new feature request or a request to enhance an 
existing feature. Features and artifacts are tracked using 
work items (WIs), and a WI represents a single task which is 
one of the three task types just mentioned. Team member 
communication and interaction around WIs are captured by 
Jazz’s comment or message functionality. In fact, during 
development at IBM, project communication (the content 
explored in this study) was and is actually enforced through 
the use of Jazz itself [16]. 

                                                           
1 IBM, the IBM logo, ibm.com, and Rational are trademarks or registered 

trademarks of International Business Machines Corporation in the United 
States, other countries, or both. 



development and management activities across the USA, 
Canada and Europe. This instance (release 1.0.1) included 
numerous projects, many of which have since been released 
and are commercially available (e.g., RTC), with specific 
teams responsible for each project (although team members 
also work across projects). Each team has multiple 
individual roles, with a project leader responsible for the 
management and coordination of the activities undertaken by 
the team. Project leaders report progress to a project 
management committee, which formulates and oversees 
project goals. Jazz teams use the Eclipse-way methodology 
for guiding the software development process [33]. This 
methodology outlines iteration cycles that are six weeks in 
duration, comprising planning, development and stabilizing 
phases. Builds are executed after project iterations; also 
called project milestones. All information for the software 
process (project management, tracking and planning, project 
coordination and communication, and software 
building/coding) is stored in a server repository, which is 
accessible through a web-based or Eclipse-based (RTC) 
client interface [26]. 

 
Figure 1.  Directed network graph for a sample Jazz project 

showing highly dense network segments for practitioners 
‘12065’ and ‘13664’ 

4.2 Data Pre-processing and Metrics 
Definition 

4.2.1 Data Extraction 
We created a Java program to leverage the IBM Rational 
Jazz Client API to extract team information and 
development and communication artifacts from the Jazz 
repository. These included: 

• Work Item (or Software Task) history logs – in Jazz 
each software task is represented as a WI (see 
subsection 4.1), and a history log is maintained for 
each WI.  

• Project Workspace or Project Area – each Jazz team is 
assigned a workspace. The workspace, also called 
the project or team area, contains all the artifacts 
belonging to that team. 

• Contributors and Teams – a contributor is a practitioner 
contributing to one or more software features, 
multiple contributors form teams.  

• Comments or Messages – communication around WIs 
is captured by Jazz’s comment functionality. 
Messages ranged from as short as one word (such 
as ‘thanks’), to up to 1055 words representing 
multiple pages of communication. These are 
arranged by date sequentially for each WI, similar 
to messages on a bulletin board.  

We extracted 36,672 resolved WIs and their associated 
history logs (from the various project areas in the repository) 
created between June 2005 and June 2008.  These work 
items belonged to 94 Project Workspaces that each 
comprised more than 25 WIs. We were therefore confident 
that we had access to a sufficient volume of data to support 
the planned investigations. The project workspaces consisted 
of 474 active contributors belonging to eight different roles. 
For the 94 project areas, comments (or messages) – our 
primary data source – were also extracted, totaling 116,020. 
The data extracted from Jazz were imported into a relational 
database management system to facilitate efficient data 
management. 

In line with the multi-case study design used in our overall 
work (mentioned above), purposive sampling was then 
applied in the case selection process [32]. The goal was to 
select a range of cases that represented the scope and breadth 
of the various project areas in the repository, for example: 
documentation, user experience, development or coding, and 
project management-based activities. We therefore selected 
all tasks undertaken by ten of the 94 project teams (shown in 
Table 3). The project areas selected represented both 
information-rich and information-rare cases in terms of 
messages. These cases also represented projects that were 
long, medium and short in duration. As the data were 
analyzed, it became clear that the cases selected were indeed 
representative of those in the repository for team members’ 
messages and contribution to task changes, as we reached 
data saturation [35] after analyzing the third of the ten 
project cases. 

4.2.2 Procedure and Metrics 
In SNA, mathematically defined concepts such as cohesion, 
equivalence, power and brokerage are used to explain the 
characteristics of the network and its actors [36]. One of the 
most important characteristic for SNA is cohesion, measured 
by ‘density’ and ‘centrality’. Density provides an overall 
measurement of the connectedness of a network [36] and 
was used here in order to select Jazz’s ‘core developers’. 
Density varies between 0 and 1, so that a contributor who 
communicated on all tasks would have a density of 1, while 



one with no interaction would have a density of 0. 
Individuals involved in highly dense communication 
network segments have been shown to dominate 
coordination and collective action [37], and are seen as most 
important to their teams [38]. We created a baseline using a 
similar approach to that used by Crowston et al. [39], and 
selected all practitioners whose density measure was ≥ 0.33 
(i.e., they communicated on a third or more of their teams’ 
project tasks), and labeled them as top contributors or ‘core 
developers’. 

We first extracted these practitioners’ formal team role and 
responsibility information as recorded in the repository, and 
task change history data were analyzed to assess the 
involvement of these core developers in software tasks. We 
then discerned the enacted roles (roles that are actually acted 
out during the project) of these members by studying the 
nature of their interactions through the messages they 
communicated (e.g., whether these members instructed 
others, provided coordination expertise, and so on). The 
behaviors of these and other members were studied using 
linguistic analysis (see subsection 4.3) and were triangulated 
with deeper contextual analysis (see subsection 4.4). 

4.3 Linguistic Analysis Techniques 
Previous research has identified that individual linguistic 
style is quite stable over time and that text analysis programs 
are able to accurately link language characteristics to 
behavioral traits (see [40], for example). We employed the 
Linguistic Inquiry and Word Count (LIWC) software tool in 
our analysis. The LIWC is a software tool created after four 
decades of research using data collected across the USA, 
Canada and New Zealand [41]. Data collected in creating the 
LIWC tool included all forms of writing and normal 
conversations. This tool captures over 86% of the words 
used during communication (around 4500 words). Words are 
counted and grouped against specific types, such as negative 
emotion, social words, and so on (see Table 1). Written text 
is submitted as input to the tool in a file that is then 
processed and summarized based on the LIWC tool’s 
dictionary. Each word in the file is searched for in the 
dictionary, and specific type counts are incremented based 
on the associated word category if found. The tool’s output 
data include the percentage of words captured by the 
dictionary, standard linguistic dimensions (which include 
pronouns and auxiliary verbs), psychological categories and 
function words (e.g., cognitive, social) and personal 
dimensions (e.g., work, achieve, leisure and others). These 
different dimensions are said to capture the psychology of 
individuals by assessing the words they use [40] [41]. 

For example, consider the following sample comments: 

1. “I dislike the way the customer service team works, 
especially the delay they cause me. This delay will 
no doubt affect my overall performance-appraisal 
when I am assessed towards the end of the year.” 

2. “We are aiming to have all the patches ready by the 
end of this release; this will provide us some space 
for the next one. Also, we are extremely confident 
that similar bug-issues will not appear in the 
future.” 

In the first comment the author is expressing dissatisfaction 
at the treatment received from another department, and is 
worried about the potential negative consequences this 
treatment will cause. Here the words “I”, “my” and “me” are 
indicators of self-focus, “dislike” is associated with negative 
feelings, and “end” denotes some form of temporal 
reference. Words such as “performance-appraisal” are not 
captured by the LIWC dictionary, and as such the summary 
output for the text above would be the same whether the 
author was referring to achievement at sports or working on 
a software feature. Although these omissions may be seen as 
presenting a limitation, we know that the context is software 
development; and what is of interest here, and is being 
captured by the tool, is evidence of behavior.  

In the second comment the author is expressing optimism 
that the team will succeed, and in the process finish ahead of 
time and with acceptable quality standards. In this quotation, 
the words “we” and “us” are indicators of team or collective 
focus, “all”, “extremely” and “confident” are associated with 
certainty, while the words “some” and “appear” are 
indicators of tentative processes. As in the use of the word 
“performance-appraisal” in the first comment, words such as 
“bug-issues” and “patches” are not included in the LIWC 
dictionary and would not affect the context of its use – 
whether it was to indicate a fault in software code or a 
problem with one’s immunity to, and treatment for, a 
disease. Thus, in the context of its use here to discern 
behaviors and attitudes, the LIWC tool’s output is not 
adversely affected by the localized or specialized nature of 
software developers’ vocabulary or the specific meaning 
with which such words are used. In addition, we also 
triangulated our linguistic analysis with more contextual 
directed CA to further support our conclusions. 

In the context of software development, Rigby and Hassan 
[42] provide confirmation of the utility of the LIWC tool via 
their inspection of the Apache OSS developers’ mailing list 
exchanges. These authors uncovered that once the top two 
developers signaled their intention to leave the project their 
communications became more negative and instructive, and 
they spoke mostly in the future tense and communicated with 
less positive emotions, when compared to their earlier 
communications. This study also found variations in 
communication behavior after releases. In studying two 
releases Rigby and Hassan [42] found that developers’ 
communication was optimistic after the first release, but the 
opposite was evident after the second release. We also used 
the LIWC tool in a preliminary study of three different 
project areas from the Jazz repository to reveal cues for the 
way different teams work. In that study we found variances 
in behaviors among those solving different forms of software 
tasks [31], which led us to conjecture that the project 



environment may have contributed to these differences in 
behaviors. While we systematically examined three different 
project areas, probing team behaviors over different phases 
of their projects, and looked closely at specific team 
members [31], this initial study was largely exploratory and 
we only examined a small sample of artifacts which limited 
our level of inferences. 

In the present work we examine core developers’ behaviors 
along multiple linguistic dimensions. We provide a summary 
of the LIWC linguistic categories that were considered, 
along with brief theoretical justification for their inclusion, 
in Table 1. We consider our supplementary directed CA 
approach next. 

4.4 Directed Content Analysis (CA) 
The LIWC tool is applied in a top-down fashion, as its 
categories of language codes have been pre-determined. We 
anticipated that a more exploratory, bottom-up approach 
focused on phrases might provide different insights into core 
developers’ interactions, behaviors and enacted roles. Such 
data-driven examinations have led to enhanced 
understanding of many issues in the software engineering 
and information systems domains [49]. Thus, we studied all 
the messages contributed in the first of the ten projects (460 
messages from P1 – see Table 3) using directed CA. We 
employed a hybrid classification scheme adapted from 
related prior work [47, 50] to explore the issues 
underpinning our research questions. Use of a directed CA 
approach is appropriate when there is scope to extend or 
complement existing theories around a phenomenon [51], 
and so suited the exploration of core developers’ enacted 
roles and possible triangulation of the findings uncovered by 
our linguistic analysis. The directed content analyst 
approaches the data analysis process using existing theories 
to identify key concepts and definitions as initial coding 
categories. In our case, we used theories examining 
knowledge and behaviors expressed during textual 
interaction [47, 50] to inform our initial categories (scales 1-
8 in Table 2).  

Should existing theories prove insufficient to capture all 
relevant insights during preliminary CA data analysis, new 
categories and subcategories should be created [51]. In our 
study, both authors of this work and two other trained coders 
randomly categorized 5% of the project’s communications in 
a preliminary coding phase, and found that some aspects of 
Jazz team members’ utterances were not captured by the first 
version of our CA protocol (e.g., Instructions and 
expressions of Gratitude were not captured). During the pilot 
coding exercise we also found that practitioners in Jazz 
communicated multiple ideas in their messages. Thus, we 
segmented the communication using the sentence as the unit 
of analysis. We extended the initial protocol by deriving new 
scales directly from the pilot Jazz data (contributing scales 9 
to 13 in Table 2 – codes emerged in the order that they are 
shown in the Table), after which the first author and the two 
trained coders recoded all the messages. Duplicate codes 

were assigned to utterances that demonstrated multiple forms 
of collaboration, and all coding differences were discussed 
and resolved by consensus. We noted an 81% inter-rater 
agreement between the three coders using Holsti’s [52] 
coefficient of reliability measurement (C.R). This represents 
excellent agreement among the coders. 

Table 1. Summary linguistic measures 

L
in

gu
is

tic
 

C
at

eg
or

y 

A
bb

re
vi

at
io

n 

E
xa

m
pl

es
 

R
ea

so
n 

fo
r 

In
cl

us
io

n 

 
Pronouns  

I I, me, mine, my, 
I’ll, I’ve, myself, 
I’m 

Elevated use of first person 
plural pronouns (we) is 
evident during shared 
situations, whereas, relatively 
high use of self references (I) 
has been linked to 
individualistic attitudes [43]. 
Use of the second person 
pronoun (you) may signal the 
degree to which members 
rely on (or delegate to) other 
team members or their 
general awareness [44] of 
others and their activities. 

we we, us, our, we’ve, 
lets, we’d, we’re, 
we’ll 

you you, your, you’ll, 
you’ve, y’all, 
you’d, yours,  
you’re 

Cognitive 
language 

insight think, consider, 
determined, idea 

Software teams were 
previously found to be most 
successful when many group 
members were highly 
cognitive and were natural 
solution providers [45]. 
These traits also previously 
correlated with effective task 
analysis and brainstorming 
capabilities.  

discrep should, prefer, 
needed, regardless,  

tentat maybe, perhaps, 
chance, hopeful 

certain definitely, always, 
extremely, certain  

Work and 
Achievement 
related 
language 

work feedback, goal, 
boss, overtime, 
program, delegate, 
duty, meeting 

Individuals most concerned 
with task completion and 
achievement are said to 
reflect these traits during 
their communication. Such 
individuals are most 
concerned with task success, 
contributing and initiating 
ideas and knowledge towards 
task completion [46].  

achieve accomplish, attain, 
closure, resolve, 
obtain, finalize, 
fulfill,  overcome, 
solve 

Leisure, 
social and 
positive 
language 

leisure club, movie, 
entertain, gym, 
party, jog, film 

Individuals that are personal 
and social in nature are said 
to communicate positive 
emotion and social words 
and this trait is said to 
contribute towards an 
optimistic group climate [46-
47]. Leisure related language 
may also be an indicator of a 
team friendly atmosphere. 

social  give, buddy, love, 
explain, friend, 

posemo beautiful, relax, 
perfect, glad, 
proud 

Negative 
language 

negemo afraid, bitch, hate, 
suck, dislike, 
shock, sorry, 
stupid, terrified 

Negative emotion may affect 
team cohesiveness and group 
climate. This form of 
language shows discontent 
and resentment [48].  

5. RESULTS AND ANALYSIS 
Table 3 shows the ten project areas (out of 94) that were 
selected for analysis. As noted in Section 4.2.1, the project 
areas selected represented both information-rich and 
information-rare cases in terms of the volume of messages 
contributed. Projects ranged from short (59 days) to long 



duration (1014 days), with varying levels of communication 
density. The selected project artifacts amounted to 1201 
software development tasks with histories, worked on by 394 
contributors with profiles and responsibility information 
(from 474 total contributors), and 5563 messages exchanged 
around the 1201 tasks.  

Table 2. Coding categories for measuring interaction 

Scale Category Characteristics and Example 

1 Type I 
Question 

Ask for information or requesting an answer – 
“Where should I start looking for the bug?”  

2 Type II 
Question 

Inquire, start a dialogue - “Shall we integrate the 
new feature into the current iteration, given the 
conflicts that were reported when we attempted 
same last week?” 

3 Answer Provide answer for information seeking questions - 
“The bug was noticed after integrating code change 
305, you should start debugging here.” 

4 Information 
sharing 

Share information – “Just for your information, we 
successfully integrated change 305 last evening.” 

5 Discussion Elaborate, exchange, and express ideas or thoughts 
– “What was most intriguing about solving this bug 
is not how bugs may exist within code that went 
through rigorous testing... but how refactoring 
reveals bugs even though no functional changes are 
made.” 

6 Comment Judgemental – “I disagree that refactoring may be 
considered the ultimate test of code quality.” 

7 Reflection Evaluation, self-appraisal of experience – “I found 
solving the problems in change 305 to be 
exhausting, but I learnt a few techniques that 
should be useful in the future.” 

8 Scaffolding Provide guidance and suggestions to others – “Let’s 
document the procedures that were involved in 
solving this problem 305, it may be quite useful for 
new members joining the team in the future.” 

9 Instruction/ 
Command 

Directive – “Solve task 234 in this iteration, there 
is quite a bit planned for the next.” 

10 Gratitude/ 
Praise 

Thankful or offering commendation – “Thanks for 
your suggestions, your advice actually worked.”  

11 Off task  Communication not related to solving the task 
under consideration – “How was your weekend?” 

12 Apology Expressing regret or remorse – “I am very sorry for 
the oversight, and I am quite unhappy with the 
failure this has caused.” 

13 Not Coded Communication that does not fit codes 1 to 12. 

5.1 Core Developers - Formal Roles and Task 
Involvement 
Table 4 shows that only fourteen contributors across the ten 
projects met the initial density-based selection criterion for 
core developers (shown as bold font contributor numbers – 
notice that none of the members from P8 were selected 
initially). Thus, we followed the precedent set by Rigby and 
Hassan [42] and selected the top two contributors to each 
project, which increased the total number of core developers 
by six (the non-bold font contributor numbers), bringing the 
core developers cluster to 20. Note also from Table 4 that a 
few of the core developers were dominant across multiple 
projects (e.g., see contributors 4661 and 2419 in P1 and P2); 
thus, in total there were 15 distinct core developers. 

We examined the recorded role information for these 
practitioners and found that a slight majority of the core 
developers were programmers (eight out of the 15 distinct 

cluster members), along with five team leaders and two 
project managers. We provide results from the mined change 
history data to examine core developers’ involvement in 
software task changes in Table 5. We found an association 
between the level of communication and contributors’ 
involvement in software tasks; however, this was not 
statistically significant (r = 0.130, n = 40, P = 0.424). 

Table 3. Summary statistics for the selected Jazz project areas 

Pr
oj

ec
t I

D
 

W
I C

ou
nt

 

Pr
oj

ec
t A

re
a 

T
ot

al
 

C
on

tr
ib

ut
or

s 

T
ot

al
 

M
es

sa
ge

s 

Pe
ri

od
 (d

ay
s)

 

P1 54 User Experience – tasks related 
to UI development 33 460 304 

P2 112 User Experience – tasks related 
to UI development 47 975 630 

P3 30 Documentation – tasks related to 
Web portal documentation 29 158 59 

P4 214 
Code (Functionality) – tasks 
related to application 
development 

39 883 539 

P5 122 
Code (Functionality) – tasks 
related to application 
development 

48 539 1014 

P6 111 
Code (Functionality) – tasks 
related to development of 
application middleware 

25 553 224 

P7 91 
Code (Functionality) – tasks 
related to development of 
application middleware 

16 489 360 

P8 210 
Project Management – tasks 
under the project managers’ 
control 

90 612 660 

P9 50 
Code (Functionality) – tasks 
related to application 
development 

19 254 390 

P10 207 
Code (Functionality) – tasks 
related to development of 
application middleware 

48 640 520 

∑ 1201 - 394 5563 - 

 
Table 4. Core developers 

Project Contributor Density 

P1 
4661 0.85 
2419 0.48 

P2 
4661 0.74 
2419 0.29 

P3 
13722 0.50 
4674 0.23 

P4 
13740 0.40 
11643 0.33 

P5 
4749 0.45 
4674 0.32 

P6 
12065 0.74 
13664 0.55 

P7 
12972 0.80 
13664 0.63 

P8 
12702 0.28 
2102 0.16 

P9 
6572 0.58 
12889 0.44 

P10 
6262 0.61 
13722 0.17 

 



In Table 5 it is shown that on average more than 41% of all 
software tasks were initiated by the 15 core developers. 
These practitioners also made more than 69% of the changes 
to these tasks and resolved nearly 75% of all software tasks 
undertaken by their teams. In fact, core developers created as 
many as 69% of all software tasks in P6 and made 94% of 
changes on P9. These scores were exceeded in project P9, 
where core developers resolved 98% of their team’s tasks. 
These figures are in contrast to what would be a ‘typical’ 
contribution if WIs were distributed evenly across all 
contributors to a project – taking this approach team 
members would typically have contributed to between 1.1% 
(for P8) and 6.3% (for P7) of their teams’ WIs. 

Table 5. Activities performed by core developers 

Project ID % Created % Modifications % Resolved 

P1 44.4 66.7 79.6 
P2 49.1 58.0 67.0 
P3 26.7 66.7 20.0 
P4 36.0 49.1 60.7 
P5 16.4 62.3 73.0 
P6 65.8 78.4 97.3 
P7 44.0 63.7 91.2 
P8 28.6 73.3 64.3 
P9 60.0 94.0 98.0 
P10 39.6 85.0 93.7 
mean 41.1 69.7 74.5 

5.2 Linguistic Analysis – Behavior Patterns 
In Section 4 we introduced our procedure for selecting the 
core developers. We then presented a summary from our 
results for practitioners’ communication and their 
involvement in task changes in Tables 4 and 5, which shows 
that core developers communicated the most and were also 
integral to their teams’ actual software development 
portfolio. Thus, active communicators were not merely team 
coordinators. We also uncovered that core developers were 
not restricted by their formal roles, as quite often 
programmers leading their teams’ communication worked 
under formal leaders. Here we extend our analysis to 
examine the behaviors of these core developers and compare 
the traits of these practitioners against those of their 
counterparts. We do this using an analysis of the content of 
the messages contributed by core developers and other 
practitioners using the predefined linguistic dimensions in 
Table 1. 

We aggregated all the communication from the two groups. 
Those 15 practitioners classified as core developers (from 
the total of 394 practitioners across the ten project areas) 
contributed 2567 messages out of the total 5563 messages 
shown in Table 3. Given our sample size (both groups 
contributing > 2500 messages) we first evaluated the form of 
the data distributions by analyzing the messages in the two 
groups along the 13 linguistic dimensions using the 
Kolmogorov-Smirnov test of normality. Our data showed 
violations of the normality assumption, thus, we checked the 
paired (core and others) individual linguistic dimensions for 
significant differences using the non-parametric Mann-
Whitney U test. We provide our results in Table 6. 

Table 6 shows that core developers were less self focused, in 
that they used less individualistic language (e.g., I, me, my) 
than the other contributors, but they tended to delegate more 
(e.g., you, your, you’re). Our Mann-Whitney U test 
comparing these language dimensions for the two groups 
confirmed that these differences were statistically significant 
(p = 0.000 and p = 0.012, respectively). The other team 
members used significantly more individualistic language, 
and this group also used significantly more collective 
language (e.g., we, our, us) (p = 0.039). The other team 
members also used significantly more insightful (e.g., think, 
believe, consider) (p = 0.000), tentative (e.g., maybe, 
perhaps, apparently) (p = 0.000) and certainty (e.g., 
definitely, extremely, always) (p = 0.007) type utterances. 
This pattern was the opposite for work (e.g., feedback, goal, 
delegate) and achievement (e.g., accomplish, attain, resolve) 
related language use – Table 6 shows that the core 
developers tended to use more work and achievement type 
language than the other practitioners. These findings were 
also statistically significant for work (p = 0.013), but not so 
for achievement language (p = 0.063). Of the other linguistic 
dimensions (leisure, social, posemo and negemo), only the 
leisure (e.g., club, movie, party) category produced a 
statistically significant finding (p = 0.003) in favor of the 
other practitioners. 

We checked the ten individual projects (P1 - 10) for 
differences in the behavioral processes of the two groups of 
practitioners to ascertain if the particular project 
environments and/or the specific practitioners involved 
could have mediated the above results. We found a similar 
pattern of results for individualistic and delegation language 
across the projects; however, results for collective language 
were slightly different, tending to be even across the two 
groups. While core developers were more collective on some 
projects (e.g., P1 – P3, P6, P7, P9 and P10), other members 
were more collective on the others (e.g., P4, P5 and P8). Our 
Mann-Whitney U test for the individual projects (P1 - P10) 
for cognitive dimensions also produced a similar pattern of 
results as noted for the complete data set. Apart from those 
working on P1, the core developers for all other projects 
used consistently higher levels of work and achievement 
language (p = 0.007 is statistically significant for the achieve 
dimension in favor of the other practitioners on P1). 
Findings for the leisure and social dimensions were also 
similar to those reported for the entire data set; however, we 
only observed significant differences (p = 0.017 and p = 
0.001) in the use of leisure utterances on P3 and P8.   On the 
other hand, the other members involved in projects P2, P6 
and P8 expressed significantly higher amounts of negative 
emotion (p = 0.002, p = 0.002 and p = 0.025 respectively). 

We then checked the way the core developers expressed 
behaviors when they were working on more than one project. 
Our distributions for the selected linguistic dimensions for 
each of these five core developers in Table 7 were close to 
normal (only slightly positively skewed), so we checked for 
differences across three linguistic dimensions using t-tests.  
Table 7 shows that the core developers involved in multiple 



projects in our sample exhibited similar traits across those 
projects. Use of first-person pronouns (e.g., I, me, my) was 
almost identical, while there was also relative consistency in 
the use of social words (e.g., give, buddy, love) and 
discrepancy words (e.g., should, would, could). 

Table 6. Results for linguistics analysis 

Linguistic 
Category Abbrev. Core (Mean 

Rank) 

Others 
(Mean 
Rank) 

Mann-Whitney 
Test (p-value) 

Pronouns  
I 2711.47 2853.31 0.000 
we 2752.66 2818.16 0.039 
you 2829.86 2752.27 0.012 

Cognitive  

insight 2716.7 2848.85 0.000 
discrep 2779.08 2795.61 0.663 
tentat 2706.05 2857.94 0.000 
certain 2742.24 2827.05 0.007 

Work and 
Achievement  

work 2841.84 2742.06 0.013 
achieve 2828.21 2753.68 0.063 

Leisure, social 
and positive  

leisure 2738.62 2830.14 0.003 
social  2772.75 2801.01 0.490 
posemo 2748.06 2822.09 0.073 

Negative  negemo 2773.92 2800.01 0.410 
 

Table 7. Results comparing differences in selected language 
usage for core developers involved in multiple projects 

Contributor Projects 

t-Test: Two Sample Assuming Unequal 
Variance (p-value) 

First-
person 

pronouns 

Social 
process 
words 

Discrepancy 
words 

4661 P1, P2 0.878 0.920 0.888 
2419 P1, P2 0.902 0.742 0.685 
13722 P3, P10 0.949 0.250 0.089 
4674 P3, P5 0.990 0.814 0.244 
13664 P6, P7 0.905 0.349 0.603 

5.3 Directed CA - Interaction Patterns 
We now take a more contextual look at the communication 
contributed by core and other developers when they were 
working on project P1. We use a directed CA approach and 
coded the 460 messages contributed by those involved in 
this project. From these messages, we recorded 1165 
utterances.  Figure 2 provides a summary (counts) of the 
interaction behavior of the core developers and those of the 
other contributors. In Figure 2 it is observed that core 
developers asked more Type I and II Questions (20 and 37 
against 14 and 20 for other practitioners, respectively) and 
provided more Information and Instructions than the other 
practitioners (273 and 76 against 198 and 12, respectively). 
The core developers comprise only two of the 33 team 
members of P1 (one programmer and one team lead), 
however, in Figure 2 it is shown that they contributed more 
or similar amounts of Discussions (66 versus 63), 
Scaffolding (51 versus 52) and Gratitude (26 versus 25).  
Quite revealing was the much lower level of debate 
contributed by core developers when compared to the other 
participants (39 against 63). We performed a Chi-square test 
which confirmed that these differences were statistically 
significant (x2 = 60.813, df = 12, p = 0.000). We also 
examined the distribution of formal roles among the 33 

members of project P1 to see overall how project members 
contributed in their roles, and found that P1 comprised 2 
‘Project Managers’, 11 ‘Team Leads’ and 20 
‘Programmers’. Programmers, Team Leads and Project 
Managers contributed 47.1%, 50.5%, and 2.4% of their 
team’s utterances, respectively. 

6. DISCUSSION AND IMPLICATIONS 

6.1 Discussion 
Q1. What are the core developers’ enacted roles in their 
teams, and how are these roles occupied? Our results show 
that the Jazz software practitioners that communicated the 
most also made the highest numbers of task changes, and 
were integral to their team’s knowledge processes. These 
findings are somewhat in line with those of Cataldo et al. 
[12]. However, there is slight divergence between our 
research outcomes and those of Bird et al. [24], who found 
that communication increased with the need to coordinate 
and control, but the volume of messages an individual sent 
bore no relationship to the position they held in their social 
network. These differences may be as a result of the 
difficulty inherent in uniquely identifying practitioners’ 
records in OSS repositories due to the volume of email 
addresses and aliases these individuals use, a problem noted 
by Bird et al. [24]. In Jazz however, these problems do not 
exist. These differences in outcomes may also reflect the 
challenge of studying and interpreting developers’ 
communication processes through solely mathematical 
means [18]. Our findings suggest that core communicators 
occupied central positions in their teams, and these 
individuals were essential to their projects’ actual 
development portfolio. Additionally, our findings here show 
that, in Jazz, core developers were not restricted by their 
formal role, and often times these individuals were willing to 
enact other roles outside of their formally assigned roles.  
These findings are interesting given that Jazz teams are led 
by a formal project manager. In Jazz a person occupying the 
formal ‘Programmer’ (contributor) role is defined as a 
contributor to architecture and code of a component, the 
‘Team Leader’ (component lead) is responsible for planning 
and architectural integrity of the component and the ‘Project 
Manager’ (PMC) is a member of the project management 
committee overseeing the Jazz project. We expected that 
those assigned to leadership roles (and particularly project 
managers) would at least dominate project communication 
networks given their need to coordinate and manage multiple 
project dependencies. However, the evidence provided here 
is to the contrary. 

Given the higher volume of messages conveyed by core 
developers we anticipated that these individuals would 
dominate knowledge sharing in their teams, and the results 
support this position. However, our directed CA results 
confirm that these individuals were integrally involved with 
team organization and task assignment (e.g., see measures 
for Answers and Instruction). It was previously established 



that individuals involved in such forms of (vertical) 
communications are seen as capable, and such individuals 
are often perceived by their peers as knowledge hubs, and 
pillars of the knowledge construction process [47, 50]. 
Discourses of an assertive nature (e.g., Type II Questions 
and Instructions) are also communicated due to a perception 
that little authoritative feedback is forthcoming [47], and 
may generally be linked to those in power. In fact, such 
responsibilities (and behaviors) are often associated with 
formal software project leadership or individuals occupying 
more coordination and planning related roles [45]. Core 
developers provided context awareness for the other team 
members and acted as their team’s main information 
resource (e.g., see measures for Information sharing, 
Discussion and Scaffolding). Such competencies are 
typically associated with highly skilled roles; or those that 
are extremely creative, imaginative and insightful [53]. Core 
developers were also their teams’ main implementers (see 
Table 5), and were team players (e.g., see their lower 
measures for Comment and judgmental language). Lower 
incidence of judgmental discourse is often required for 
maintaining team spirit and overcoming tension, which is 
critical to a positive team atmosphere [53]. While there was 
convergence between task changes and the volume of ideas 
and suggestions provided by core developers, the much 
lower level of judgmental attitudes expressed by these core 
developers suggests that these individuals also exhibited 
higher levels of intra-personal and inter-personal skills [54]. 
Our evidence suggests that the formal project managers 
acted as facilitators, and were happy to let their teams self-
organize. Such a hands-off approach to project governance 
may only be feasible if team members are achievement 
motivated and informal leaders are present – the core 
developers.  

 
Figure 2. Summary of project interaction for the core 

developers and others (for P1) 

The behaviors demonstrated by Jazz core developers may 
not be default behaviors, however. Such high performing 
members often need to possess intrinsic motivation and keen 
willingness to self-organize [55]. A facilitating organization 

and work structure are also likely to be prerequisites for 
encouraging high performers to work across roles as the 
need arises. On the basis of our results we would contend 
that IBM Rational is one such organization that encourages 
team members’ performance based on their natural abilities, 
and that promotes non-hierarchical and informal work 
structures. Such configurations have long been shown to 
encourage tacit knowledge sharing and cross-fertilization 
among team members, by allowing team members to adapt 
and execute their tasks based on work demands [56], as was 
evident among Jazz practitioners. We believe this and 
similar environments are well suited for agile teams 
(particularly those working in distributed settings), and 
should be encouraged in order to facilitate team success. 

Q2. How do core developers’ behaviors and attitudes differ 
from the other software practitioners? Our linguistic 
findings show that, when compared to the other software 
practitioners, core developers were less self-focused and, 
although these individuals were most actively involved in 
task changes, they delegated more. Core developers were 
highly task and achievement focused, and these individuals 
rarely communicated off-task. These findings are 
triangulated by our contextual CA results. Core developers 
were willing to ask questions and they also provided support 
for others. In contrast, although our linguistic analysis shows 
that the other contributors tended to used more collective 
language, and higher amounts of cognitive language, our 
deeper analysis uncovered that the contributions of 
information, ideas and suggestions, and guidance were 
higher among the core developers. In fact, the other 
members also tended to use more judgmental language, 
excesses of which may lead to disharmony among teams 
[57]. The lower levels of this form of expression 
communicated by the core developers, however, may 
counter these higher measures for the other practitioners. 
Additionally, from our findings, it is clear that the core 
developers were the most influential in their teams. 

As a group, the Jazz developers used significant amounts of 
positive and social language; this may have led in part to a 
friendly work environment, lower staff turnover and overall 
Jazz teams’ success (over 30,000 companies are using IBM 
Rational Jazz tools – see jazz.net). In fact, although the Jazz 
teams studied here were highly social and positive, overall, it 
is clearly evident that these teams were also achievement 
focused and used significant levels of work-related language. 
Our more contextual analysis confirmed that Jazz teams 
were highly task-focused (as evidenced by the low measures 
for the Off-task category). Role theories have previously 
shown that both social and task-related behaviors are 
necessary to maintain team balance and team performance 
[46]. Social roles are said to contribute towards positive 
group climate, promoting harmonizing and compromising 
traits, while task roles are concerned with task success, 
contributing and initiating ideas and knowledge towards task 
completion. Jazz’s core developers were more task focused, 
but these individuals were also team players. On the other 
hand, while the other members tended to be more 



individualistic and judgmental, these individuals also 
contributed social and positive attitudes to group climate. 

6.2 Implications 
We found that the Jazz members that communicated 
extensively were most integral to their teams. These 
individuals occupied various informal roles in their teams 
and were central to their teams’ actual development 
portfolio. The other members complemented these 
individuals, and expressed behaviors that may be responsible 
for maintaining team balance. We believe that these findings 
have implications for software engineering research and 
practice. 

Understanding what motivates core developers would help 
us to coordinate efforts aimed at detecting and molding 
‘software gems’. Staffing software teams with a larger ratio 
of these individuals – presuming they are available – may 
then contribute towards the reduction of incidents and 
project failures. However, given core developers’ attitudes, 
their growth and performance will depend on a flexible 
organization culture. This is particularly necessary for 
distributed developments, were fluid organization roles are 
essential to mitigate the elevated levels of cultural and 
personality challenges that are likely to be introduced by 
distance. Organizations (and project managers) employing 
more rigid project governance approaches may hinder such 
core developers’ performance, and in the process, erode the 
advantages associated with these members’ presence. In fact, 
core developers such as those studied in this work may find 
it difficult to work under tight project controls given their 
naturally fluid inclination.  

These findings may also have implications for tool design. 
Our contextual analysis shows that one half of Jazz 
practitioners’ communications were directed at information 
sharing. This form of utterance, although useful for 
providing context awareness (i.e., explanations and 
information about software features, e.g., details about the 
outcomes of software builds), may not be as critical to the 
teams’ development portfolios as the provision of questions, 
answers, suggestions and ideas. These latter, more critical 
types of communication may become ‘lost’ underneath the 
less significant messages (e.g., those expressing gratitude or 
praise). This issue was previously experienced by those 
involved in global software development, resulting in 
negative performance issues [15]. We believe that including 
a message tagging feature in Jazz or any similar tool (as is 
done for tagging software tasks) could help developers to 
manage this wealth of communication. During time-
constrained work periods, comment tags should help 
practitioners to identify and consider the most critical issues 
first. For instance, if comment tags were labeled to express 
similar meanings to the categories and related scales in 
Table 2, a programmer coming in to work would likely 
review and action messages with Scales 9 (Instructions) and 
1 (Questions) first, before going through the other messages 
in his or her order of preference. 

7. LIMITATIONS 
Although these findings are novel we acknowledge that there 
are shortcomings to this study that may present threats to the 
work’s generalizability. 

Measurement Validity: The LIWC language constructs used 
to measure team behavior have been used previously to 
study this subject, and were assessed for validity and 
reliability [40]. However, although the LIWC dictionary was 
able to capture around 66% of the overall words used by 
Jazz practitioners, the adequacy of these constructs in the 
specific context of software development warrants further 
investigation. To that end, we checked a small sample of the 
messages to see what might account for the remaining words 
being ignored by the LIWC tool and found that there were 
large amounts of cross referencing to other WIs in the 
messages, along with large amounts of highly specialized 
software related language (e.g., J2EE, LDAP, JACC, API, 
XML, TAME, JASS, Jazz, URI, REST, HTTP, Servlet, 
WIKI, UseCase, HTML, CVS, Dump, Config, 
SourceControl) evident in Jazz practitioners’ exchanges. 
Moreover, what was of interest, and was captured by the 
LIWC tool, was evidence of attitude, demeanor and 
behavior.  

Additionally, our contextual directed content analysis 
involving interpretation of textual data is subjective, and so 
questions naturally arise regarding the validity and reliability 
of the outcomes. In this work we employed multiple 
techniques to deal with these issues. First, our protocol was 
adapted from those previously employed and tested in the 
study of interaction and knowledge sharing [47, 50], and so 
there is a strong theoretical basis for its use. Second, we 
piloted the protocol and extended our instrument by deriving 
additional codes directly from the Jazz data, and we tested 
this extended protocol for accuracy, precision and 
objectivity, receiving an inter-rater measure indicative of 
excellent agreement [51]. 

Internal and External Validity: Although we achieved data 
saturation after analyzing the third project case, the tasks, 
history logs and messages from the ten project areas (out of 
94) may not necessarily represent all the teams’ processes in 
the repository. Additionally, work processes and work 
culture at IBM are also specific to that organization and may 
not be representative of organization dynamics elsewhere. 

8. CONCLUSIONS AND FUTURE WORK 
Given recent interest in understanding the human processes 
involved in contemporary software development, repository 
data has received increasing attention. While studies 
examining software repositories have provided multiple 
insights into the way software teams work, these 
investigations have approached the study of team processes 
using mainly mathematically-based analysis techniques. 
There are reservations regarding the effectiveness of these 
techniques in delivering understanding of the deeper 
psychosocial nature of team dynamics. For instance, while it 



has been previously uncovered that few developers 
dominated project communications and these individuals 
made most task changes during their teams’ software 
projects, the rationale for this phenomenon has not been 
provided. Details around the reasons for these practitioners’ 
distinct presence and performance, and insights into how 
these members contribute to team dynamics, have not been 
uncovered. Additionally, there are reservations over the 
reliability and validity of some of the software repositories 
that are commonly examined. 

In this study we extracted and mined the IBM Rational Jazz 
repository, and applied deeper psycholinguistic and directed 
CA techniques to address these gaps. We found that Jazz’s 
most active developers occupied various informal roles in 
their teams, they were central to their teams’ actual 
development portfolios, and these practitioners exhibited 
behaviors that are integral for maintaining team dynamics. 
Additionally, we observe that as a group, Jazz developers 
spent most time providing context awareness for others. 
Given this finding, we believe a message tagging feature 
could reduce Jazz teams’ overhead related to searching the 
repository of messages for the more critical questions and 
instructions. We believe that Jazz’s core developers’ 
performance is directly related to an organizational 
environment that promotes informal and organic work 
structures. This form of organization configuration may be 
necessary for agile teams, and especially for distributed 
developments. Our next step is to investigate how core 
developers’ behaviors evolve over time, as we suspect that 
there may be some initial team arrangements that cause these 
developers to become hubs in their teams. Knowledge of 
what motivates core developers could be invaluable in 
coordinating efforts aimed at detecting and molding such 
‘software gems’. 

9. ACKNOWLEDGMENTS 
We thank IBM for granting us access to the Jazz repository. 
We would also like to thank the coders for their help during 
our directed content analysis phase. S. Licorish is supported 
by an AUT VC Doctoral Scholarship Award. IBM and Jazz 
are trademarks of IBM Corporation. 

10. REFERENCES 
[1] Siddiqui, M. S. and Hussain, S. J. 2006. Comprehensive 

Software Development Model. In Proceedings of the 
IEEE International Conference on Computer Systems 
and Applications (March 8, 2006). 353 - 360.  

[2] Boehm, B. 2006. A view of 20th and 21st century 
software engineering. In Proceedings of the  28th 
International Conference on Software Engineering 
(Shanghai, China, 2006). ACM Press, 12 - 29.  

[3] Licorish, S., Philpott, A. and MacDonell, S. G. 2009 
Supporting agile team composition: A prototype tool for 
identifying personality (In)compatibilities. In 
Proceedings of the ICSE Workshop on Cooperative and 

Human Aspects on Software Engineering (CHASE '09) 
(Vancouver, Canada, May 17, 2009). IEEE Computer 
Society, 66 - 73.  

[4] Chin, G. 2004. Agile Project Management: How to 
Succeed in the Face of Changing Project Requirements. 
American Management Association, New York.  

[5] El Emam, K. and Koru, A. G.  2008. A Replicated 
Survey of IT Software Project Failures. IEEE Software, 
25, 5, 84-90.  

[6] Standish Group. 2009. CHAOS Summary 2009. The 
Standish Group International Inc, West Yarmouth, MA.  

[7] Abrahamsson, P., Marchesi, M., Succi, G., Sfetsos, P., 
Stamelos, I., Angelis, L. and Deligiannis, I. 2006. 
Investigating the Impact of Personality Types on 
Communication and Collaboration-Viability in Pair 
Programming – An Empirical Study.  In Extreme 
Programming and Agile Processes in Software 
Engineering. Springer Berlin / Heidelberg.  

[8] Rajendran, M.  2005. Analysis of team effectiveness in 
software development teams working on hardware and 
software environments using Belbin Self-Perception 
inventory. Journal of Management Development, 24, 8  
(January, 2005), 738-753.  

[9] Acuna, S., T, Gomez, M. and Juristo, N.  2009. How do 
personality, team processes and task characteristics 
relate to job satisfaction and software quality? Inf. 
Softw. Technol., 51, 3, 627-639. 
10.1016/j.infsof.2008.08.006.  

[10] Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, 
R. E. 2001. An empirical study of global software 
development: distance and speed. In Proceedings of the 
23rd International Conference on Software Engineering 
(Toronto, Ontario, Canada). IEEE Computer Society, 81 
- 90.  

[11] Shihab, E., Bettenburg, N., Adams, B. and Hassan, A. 
2010. On the Central Role of Mailing Lists in Open 
Source Projects: An Exploratory Study.  In New 
Frontiers in Artificial Intelligence. Springer Berlin / 
Heidelberg.  

[12] Cataldo, M., Wagstrom, P., A, Herbsleb, J., D and 
Carley, K., M. 2006. Identification of coordination 
requirements: implications for the Design of 
collaboration and awareness tools. In Proceedings of the 
2006 20th anniversary conference on Computer 
Supported Cooperative Work (Banff, Alberta, Canada). 
ACM, 353-362. 10.1145/1180875.1180929.  

[13] Ocker, R., J and Fjermestad, J.  2008. Communication 
differences in virtual design teams: findings from a 
multi-method analysis of high and low performing 
experimental teams. SIGMIS Database, 39, 1, 51-67. 
10.1145/1341971.1341977.  



[14] Mistrík, I., Grundy, J., Hoek, A., Whitehead, J., 
Damian, D., Kwan, I. and Marczak, S. 2010. 
Requirements-Driven Collaboration: Leveraging the 
Invisible Relationships between Requirements and 
People.  In Collaborative Software Engineering. 
Springer Berlin Heidelberg.  

[15] Damian, D., Izquierdo, L., Singer, J. and Kwan, I. 2007. 
Awareness in the Wild: Why Communication 
Breakdowns Occur. In Proceedings of the International 
Conference on Global Software Engineering. IEEE 
Computer Society, 81-90. 10.1109/icgse.2007.13.  

[16] Nguyen, T., Wolf, T. and Damian, D. 2008. Global 
Software Development and Delay: Does Distance Still 
Matter? In Proceedings of the IEEE International 
Conference on Global Software Engineering, ICGSE 
2008. (17-20 Aug. 2008). IEEE Computer Society, 45-
54.  

[17] Abreu, R. and Premraj, R. 2009. How developer 
communication frequency relates to bug introducing 
changes. In Proceedings of the Joint international and 
annual ERCIM workshops on Principles of software 
evolution (IWPSE) and software evolution (Evol) 
workshops (Amsterdam, The Netherlands). ACM, 153-
158. 10.1145/1595808.1595835.  

[18] Di Penta, M. 2012. Mining developers' communication 
to assess software quality: Promises, challenges, perils. 
In Proceedings of the 3rd International Workshop on 
Emerging Trends in Software Metrics (WETSoM), 2012 
(Zurich, Switzerland, 3-3 June 2012). IEEE Computer 
Society, 1-1. 10.1109/WETSoM.2012.6226987.  

[19] Abrahamsson, P., Warsta, J., Siponen, M. T. and 
Ronkainen, J. 2003. New directions on agile methods: a 
comparative analysis. In Proceedings of the 25th 
International Conference on Software Engineering. 
(Portland, Oregon, May, 2003). IEEE Computer Society 
Washington, DC, USA 244 - 254.  

[20] Aranda, J. and Venolia, G. 2009. The secret life of 
bugs: Going past the errors and omissions in software 
repositories. In Proceedings of the 31st International 
Conference on Software Engineering. IEEE Computer 
Society, 10.1109/icse.2009.5070530.  

[21] Singer, J. 1998. Practices of Software Maintenance. In 
Proceedings of the Proceedings of the International 
Conference on Software Maintenance. IEEE Computer 
Society, 139-145. 

[22] Ducheneaut, N.  2005. Socialization in an Open Source 
Software Community: A Socio-Technical Analysis. 
Comput. Supported Coop. Work, 14, 4, 323-368. 
10.1007/s10606-005-9000-1.  

[23] Mockus, A., Fielding, R. T. and Herbsleb, J. D.  2002. 
Two case studies of open source software development: 
Apache and Mozilla. ACM Trans. Softw. Eng. 
Methodol., 11, 3, 309-346. 10.1145/567793.567795.  

[24] Bird, C., Gourley, A., Devanbu, P., Gertz, M. and 
Swaminathan, A. 2006. Mining email social networks. 
In Proceedings of the 2006 international workshop on 
Mining Software Repositories (Shanghai, China). ACM, 
137-143. 10.1145/1137983.1138016.  

[25] Shihab, E., Zhen Ming, J. and Hassan, A. E. 2009. 
Studying the use of developer IRC meetings in open 
source projects. In Proceedings of the IEEE 
International Conference on Software Maintenance, 
2009. ICSM 2009. (20-26 Sept. 2009). 147-156.  

[26] Wolf, T., Schroter, A., Damian, D., Panjer, L. D. and 
Nguyen, T. H. D.  2009. Mining Task-Based Social 
Networks to Explore Collaboration in Software Teams. 
Software, IEEE, 26, 1, 58-66.  

[27] Wolf, T., Schroter, A., Damian, D. and Nguyen, T. 
2009. Predicting build failures using social network 
analysis on developer communication. In Proceedings 
of the  31st International Conference on Software 
Engineering. IEEE Computer Society, 1-11. 
10.1109/icse.2009.5070503.  

[28] Aune, E., Bachmann, A., Bernstein, A., Bird, C. and 
Devanbu, P. 2008. Looking back on prediction: A 
retrospective evaluation of bug-prediction techniques. In 
Proceedings of the Student Research Forum at 
SIGSOFT 2008/FSE 16, November 2008.  

[29] Bettenburg, N., Sascha, J., Schroter, A., Weib, C., 
Premraj, R. and Zimmermann, T. 2007. Quality of bug 
reports in Eclipse. In Proceedings of the  2007 OOPSLA 
workshop on eclipse technology eXchange (Montreal, 
Quebec, Canada). ACM, 21-25. 
10.1145/1328279.1328284.  

[30] Nagappan, N., Murphy, B. and Basili, V. 2008. The 
influence of organizational structure on software 
quality: an empirical case study. In Proceedings of the 
30th International Conference on Software Engineering 
(Leipzig, Germany). ACM, 521- 530. 
10.1145/1368088.1368160.  

[31] Licorish, S. A. and MacDonell, S. G. 2012. What 
Affects Team Behavior?: Preliminary Linguistic 
Analysis of Communications in the Jazz Repository. In 
Proceedings of the ICSE Workshop on Cooperative and 
Human Aspects on Software Engineering (CHASE '12') 
(Zurich, Switzerland, June 2, 2012). IEEE Computer 
Society, 83 - 89.  

[32] Yin, R. 2002. Case Study Research: Design and 
Methods, Third Edition, Applied Social Research 
Methods Series, Vol 5. Sage Publications, Inc, 
Thousand Oaks, CA.  

[33] Frost, R.  2007. Jazz and the Eclipse Way of 
Collaboration. IEEE Softw., 24, 6, 114-117. 
10.1109/ms.2007.170.  

[34] Rich, S. 2010. IBM's jazz integration architecture: 
building a tools integration architecture and community 



inspired by the web. In Proceedings of the  19th 
International Conference on World wide web (Raleigh, 
North Carolina, USA). ACM, 1379 -1382. 
10.1145/1772690.1772936.  

[35] Glaser, B. G. and Strauss, A. L. 1967. The Discovery of 
Grounded Theory: Strategies for Qualitative Research. 
Aldine Publishing Company, Chicago.  

[36] Scott, J. 2000. Social Network Analysis: A Handbook. 
Sage Publications, London.  

[37] Reagans, R. and Zuckerman, E. W.  2001. Networks, 
Diversity, and Productivity: The Social Capital of 
Corporate R&D Teams. Organization Science, 12, 4, 
502-517.  

[38] Zhong, X., Huang, Q., Davison, R. M., Yang, X. and 
Chen, H.  2012. Empowering teams through social 
network ties. International Journal of Information 
Management, 32, 3, 209-220. 
10.1016/j.ijinfomgt.2011.11.001.  

[39] Crowston, K., Wei, K., Li, Q. and Howison, J. 2006. 
Core and Periphery in Free/Libre and Open Source 
Software Team Communications. In Proceedings of the  
39th Annual Hawaii International Conference on 
System Sciences - Volume 06. IEEE Computer Society,   
118.111. 10.1109/hicss.2006.101.  

[40] Mairesse, F., Walker, M., Mehl, M. R. and Moore, R. 
K.  2007. Using linguistic cues for the automatic 
recognition of personality in conversation and text. J. 
Artif. Int. Res., 30, 1, 457-500.  

[41] Pennebaker, J. W. and King, L. A.  1999. Linguistic 
Styles: Language Use as an Individual Difference. 
Journal of Personality & Social Psychology, 77, 6, 
1296-1312.  

[42] Rigby, P. and Hassan, A. E. 2007. What Can OSS 
Mailing Lists Tell Us? A Preliminary Psychometric 
Text Analysis of the Apache Developer Mailing List. In 
Proceedings of the Fourth International Workshop on 
Mining Software Repositories. IEEE Computer Society, 
23-32. 10.1109/msr.2007.35.  

[43] Pennebaker, J. W. and Lay, T. C.  2002. Language Use 
and Personality during Crises: Analyses of Mayor 
Rudolph Giuliani's Press Conferences. Journal of 
Research in Personality, 36, 3, 271-282. 
10.1006/jrpe.2002.2349.  

[44] Pennebaker, J. W., Mehl, M. R. and Niederhoffer, K. G.  
2003. Psychological Aspects of Natural Language Use: 
Our Words, Our Selves. Annual Review of Psychology, 
54, 1, 547-577. 
doi:10.1146/annurev.psych.54.101601.145041.  

[45] Andre, M., Baldoquin, M. G. and Acuna, S. T.  2011. 
Formal model for assigning human resources to teams in 

software projects. Information and Software 
Technology, 53, 3, 259-275.  

[46] Benne, K. D. and Sheats, P.  1948. Functional Roles of 
Group Members. Journal of Social Issues, 4, 2, 41-49.  

[47] Zhu, E. 1996. Meaning Negotiation, Knowledge 
Construction, and Mentoring in a Distance Learning 
Course. In Proceedings of the Selected Research and 
Development Presentations at the 1996 National 
Convention of the Association for Educational 
Communications and Technology.  

[48] Goldberg, L. R.  1981. Language and individual 
differences: The search for universals in personality 
lexicons. Review of Personality and Social Psychology, 
2, 1, 141-165.  

[49] Sheetz, S. D., Henderson, D. and Wallace, L.  2009. 
Understanding developer and manager perceptions of 
function points and source lines of code. Journal of 
Systems and Software, 82, 9, 1540-1549.  

[50] Henri, F. and Kaye, A. R. 1992. Computer 
conferencing and content analysis.  In Collaborative 
learning through computer conferencing: The Najaden 
papers. Springer-Verlag, New York.  

[51] Hsieh, H.-F. and Shannon, S. E.  2005. Three 
Approaches to Qualitative Content Analysis. Qualitative 
Health Research, 15, 9  (November 1, 2005), 1277-
1288. 10.1177/1049732305276687.  

[52] Holsti, O. R. 1969. Content Analysis for the Social 
Sciences and Humanities, Reading, MA: Addison 
Wesley.  

[53] Belbin, R. M. 2002. Management teams: why they 
succeed or fail. Butterworth-Heinemann, Woburn, UK.  

[54] Downey, J. 2009. Designing Job Descriptions for 
Software Development.  In Information Systems 
Development: Challenges in Practice, Theory, and 
Education. Springer US, USA.  

[55] Moe, N. B., Dingsoyr, T. and Dyba, T. 2008. 
Understanding Self-Organizing Teams in Agile 
Software Development. In Proceedings of the 19th 
Australian Conference on Software Engineering. IEEE 
Computer Society,  Washington, DC, USA, 76- 85.  

[56] Powell, W. W.  1990. Neither market nor hierarchy: 
network forms of organization. In B. M. Staw and L. L. 
Cummints, eds. Research in Organizational Behavior, 
12, 295-336.  

[57] De Dreu, C. K. W. and Weingart, L. R.  2003. Task 
Versus Relationship Conflict, Team Performance, and 
Team Member Satisfaction: A Meta-Analysis. Journal 
of Applied Psychology, 88, 4, 741-749. 

 


	1. INTRODUCTION
	2. RELATED WORK
	3. RESEARCH QUESTIONS
	4. METHOD AND MEASURES
	4.1 Study Repository
	4.2 Data Pre-processing and Metrics Definition
	4.2.1 Data Extraction
	4.2.2 Procedure and Metrics

	4.3 Linguistic Analysis Techniques
	4.4 Directed Content Analysis (CA)

	5. RESULTS AND ANALYSIS
	5.1 Core Developers - Formal Roles and Task Involvement
	5.2 Linguistic Analysis – Behavior Patterns
	5.3 Directed CA - Interaction Patterns

	6. DISCUSSION AND IMPLICATIONS
	6.1 Discussion
	6.2 Implications

	7. LIMITATIONS
	8. CONCLUSIONS AND FUTURE WORK
	9. ACKNOWLEDGMENTS
	10. REFERENCES

