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Talk Abstract
A boundary integral equation (BIE) method is pre-

sented for the calculation of the motion of an elastic plate
in a two-dimensional setting. A wave maker is placed
next to the plate and the model is therefore representa-
tive of recent wave tank experiments. The model includes
the plate’s draught and surge motion, the latter of which
is restrained by a spring and damping system. However,
the corners created by the non-zero draught produce first-
order singularities in the normal derivative of the Green’s
function, in addition to the logarithmic singularities in the
Green’s function itself. Both of these singularities are
separated using Kummer transforms, and the associated
boundary integrals are evaluated analytically. The numer-
ical computation of the modified BIEs explicitly decom-
poses the plate’s displacement into its heave, pitch and
flexural motions.

Introduction
The model outlined in this paper is motivated by a

series of wave-tank experiments that were recently con-
ducted at Laboratoire de Méchanique des Fluides,École
Centrale de Nantes, and which are described in [1]. In
these unique experiments the wave induced motions of a
floating elastic plate were recorded under controlled con-
ditions. The experiments highlighted the presence of ap-
preciable surge motion, which is not included in most
theoretical models. The reason for such omission is that
surge is only possible when a non-zero draught is accom-
modated, and this is often ignored to simplify the solution
procedure.

Surge motion needs to be taken into account when the
size of the plate is comparable to the wavelength. This
is also the case for most off-shore structures, such as
pontoon-type very large floating structures.

This paper considers a two-dimensional model of a
wave tank, containing a floating elastic plate. Motion of
the plate is forced by a wave maker, which is located at a
vertical boundary. The model can also accommodate an
incident wave from the far field or a forced motion of the
plate. Spring and damping constraints on the surge mo-
tion, which could result from a vertical rod or a mooring

system, are included.
A system of boundary integral equations (BIEs) are

constructed for this problem using a Green’s function and
Green’s theorem. The integrals are posed on the wetted
surface of the plate, which has corners. In this situation
the the normal derivative of the Green’s function is not
bounded when the source and field points approach the
same corner from different limits. Our innovation is to
derive numerically stable BIEs. To achieve this, the sin-
gularities are separated using the Kummer transform, and
the boundary integrals containing those singular parts are
evaluated analytically. Consequently the numerical com-
putation involves only bounded functions.

The modified BIEs are solved using the Galerkin tech-
nique, using trial and test functions based on the eigen-
functions of an elastic beam and the orthogonal set of
Gegenbauer polynomials. The leading terms of the dis-
placement capture the heave and pitch of the plate and
the remaining terms are the flexure.

The following sections provide a brief derivation of the
BIEs and the series expansions over orthogonal polyno-
mials. Some preliminary numerical results are given in
the final section. A more complete set of simulations will
be shown during the conference presentation.

Governing Equations
The two-dimensional geometry is defined by the hori-

zontal and vertical Cartesian coordinatesx andz respec-
tively. In the absence of the plate, the fluid occupies the
domainΩ = {x, z : x > 0,−h < z < 0}, so that
z = 0 defines the equilibrium position of the fluid sur-
face,z = −h is the floor of the tank andx = 0 is the
location of the wave maker. A schematic of the geometry
is shown in figure 1.

Under the regular assumptions of linear motions, the
fluid’s velocity field is sought as the gradient of a veloc-
ity potential, denotedΦ = Φ(x, z, t). Imposing time-
harmonic conditions, the velocity potential may be writ-
ten asΦ(x, z, t) = ℜe{(g/iω)φ(x, z)e−iωt}, whereg ≈
9.81 m s−2 is acceleration due to gravity,ω is a prescribed
angular momentum andφ is a complex-valued (reduced)
potential that must be calculated.
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Figure 1: A schematic of the geometry.

The potentialφ satisfies Laplace’s equation through-
out the fluid domain, that is∇2φ = 0 for (x, z) ∈ Ω.
On the floor of the tank,z = −h, the no-flow condi-
tion ∂zφ = 0 is imposed. At the linearized free-surface,
z = 0, the condition∂zφ = σφ holds, whereσ = ω2/g
is a frequency parameter. Waves are generated through a
prescribed horizontal velocity at the linearized positionof
the wave maker,x = 0. In this study, forcing is provided
by an incident plane wave, so that∂xφ = ∂xφI atx = 0,
where the incident wave is

φI(x, z) = eik0x cosh{k0(z + h)}/ cosh(k0h),

with k0 the propagating wavenumber (to be defined
shortly). The potential must also describe outgoing waves
in the far fieldx → ∞.

A thin-elastic plate occupies the intervala < x < b,
where0 < a < b andb − a ≡ l is the length of the plate.
In equilibrium the lower surface of the plate is located at
z = −d = −ρpD/ρw, whereD is the thickness of the
plate,ρp = is its density, andρw = is the fluid density.
The linearized fluid domain in the presence of the plate is
thereforeΩw ≡ Ω\{x, z : a < x < b,−d < z < 0}.

Fluid motion causes the plate to oscillate, and the po-
sition of its lower surface at timet is denotedz = −d +
ℜe{ξ(x)e−iωt}. The displacement functionξ is related to
the potentialφ through the linearized equations

φ = Fξ′′′′ + (1 − σd)ξ, ∂zφ = σξ, (1a)

whereF = F0/(ρwg), andF0 ∝ D3 is the flexural rigid-
ity of the plate.

The plate is also permitted to surge to and fro, although
these motions are restrained by a mooring system. The
horizontal position of the plate,ℜe{ue−iωt} say, whereu
is a constant (complex-valued) amplitude, is coupled to

the potentialφ by the linearized equation of motion

(S −σM − iA)u = ρw

∫ 0

−d
{φ(b, z)−φ(a, z)} dz, (1b)

whereM = ρpDl is the mass of the plate,S in the spring
constant, andA = ωA0/g, in which A0 is the damping
constant. The amplitudeu and the potentialφ are also
coupled by the kinematic conditions

∂xφ(a, z) = ∂xφ(b, z) = σu (−d < z < 0). (1c)

Solution Method
Consider the Green’s functionG = G(x0, z0|x, z), sat-

isfying

∇2G = δ(x − x0)δ(z − z0) (x, z) ∈ Ω,

∂zG = 0 on z = −h, ∂zG = σG on z = 0, ∂xG = 0 on
x = 0, andG represents outgoing waves asx → ∞. The
function may be represented in a series form as

G =
1

2i

∞∑

n=0

eikn(x+x0) + eikn|x−x0|

kncn
wn(z)wn(z0),

wherekn (n ∈ N) are the rootsk of the dispersion re-
lation k tanh(kh) = σ, the vertical functionswn(z) =
cosh{kn(z + h)}, and the constantscn = ||wn||2.

Applying Green’s theorem in the plane toφ andG over
Ωw produces the integral expression

ǫφ = φI −
∫

Γ
{(∂n0G)φ0 − G(∂n0φ0)} ds0, (2)

where a subscript0 indicates that a function is evaluated
at the source point(x0, z0) rather than at the field point
(x, z). The integral is around the wetted surface of the
plate,Γ say, with tangential coordinates and (outward)
normaln. The quantityǫ is defined aŝǫ/2π, whereǫ̂ is
the angle around the point(x, z) in Ωw.

A system of BIEs are formed from (2) by allowing the
field point (x, z) to tend to the three continuous com-
ponents ofΓ. For what follows, these components will
be denotedΓa = {x, z : x = a,−d < z < 0},
Γb = {x, z : x = b,−d < z < 0} andΓd = {x, z :
a < x < b, z = −d}.

Singularities and Corners
A Green’s function in a two-dimensional plane con-

tains a logarithmic singularity at the point at which the
field and source points coincide, i.e.(x, z) = (x0, z0). In
the above definition ofG, the singularity is manifest as the

WAVES 2011



non-convergence of the series at this point. The presence
of the singularity will impede the numerical evaluation of
the integrals in equation (2).

A standard method for dealing with this issue is to ap-
ply a Kummer transformation. This involves a manipula-
tion of the logarithmic singularity into a more convenient
form. The Green’s function may then be expressed as

G = G̃ +
1

2π

(
log(R−) + log(R+)

)
,

whereG̃ is a bounded function and

(x0 − x) + i(z0 ± z) = R±eiΘ± .

The singularity is in the termlog(R−), and the term
log(R+) is also separated due to its near-singular be-
haviour for small values of the draughtd.

The method for dealing with integrals involvingG is
demonstrated with the following example. Consider

∫ b

a
G(∂n0φ0) dx0 =

∫ b

a
G̃(∂n0φ0) dx0

+
1

2π

∑

i=±

∫ b

a
log(Ri)(∂n0φ0) dx0.

The integrals involving the logarithmic functions are then
written
∫ b

a
log(R±)(∂n0φ0) dx0 = ∂nφ

∫ b

a
log(R±) dx0

+

∫ b

a
log(R±)(∂n0φ0 − ∂nφ) dx0.

The first integral on the right hand side of the above equa-
tion involves only a known function and can be calculated
explicitly. The function beneath the second integral tends
to zero asx → x0 and can be evaluated numerically at a
low cost.

In the present case, the normal derivative of the Green’s
function is not bounded due to the corners inΓ. Specif-
ically, a first-order singularity occurs when the field and
source points tend to the same corner from opposing lim-
its. An approach is described here for circumventing this
issue.

The approach is demonstrated through another exam-
ple. Consider

∫ b

a
(∂n0G)φ0 dx0 =

∫ b

a
(∂n0G̃)φ0 dx0

+
1

2π

∑

i=±

∫ b

a

(
∂n0 log(Ri)

)
φ0 dx0.

The singular terms are then extricated by writing

∫ b

a
(∂n0 log(R±))φ0 dx0 = φ

∫ b

a
(∂n0 log(R±)) dx0

+

∫ b

a
(∂n0 log(R±))(φ0 − φ) dx0.

The function beneath the final integral is bounded as
x → x0 and can therefore be evaluated numerically. The
integrals of the normal derivative of the logarithmic func-
tion alone can be treated analytically by noting the fol-
lowing identity

∂n0 log(R±) = ∂s0Θ±,

(see [2]). Accounting for the jump inΘ− at the point
x = x0, it can be shown that

∫ b

a

(
∂n0 log(R−)

)
dx0 = 0,

whereasΘ+ is continuous along the interval and therefore

∫ b

a

(
∂n0 log(R+)

)
dx0 = −

[
Θ+

]b

x0=a
(z = z0 = −d).

Expansions
The system of BIEs can now be solved using a form of

the Galerkin technique, in which the unknown functions
are approximated as a linear combination of a finite set
of chosen trial functions. Inner-products of the BIEs are
then taken in turn with the members of a corresponding
set of test functions.

First though, the number of unknowns present in the
BIEs is reduced by implementing the boundary condi-
tions (1a,c). This leaves the system of BIEs to be solved
for the constantu and the functionsφi = φi(z) ≡ φ(i, z)
(−d < z < 0) for i = a, b, andξ = ξ(x).

Let the displacement function be approximated by

ξ(x) ≈ 2

l

M∑

m=0

ξmXm(x̂); x̂ =
2

l
(x − a) − 1,

for some chosen constantM . The orthonormal set{Xm}
are the eigenfunctions of the spectral problem

X ′′′′
m − α4

mXm = 0 (−1 < x̂ < 1),

with boundary conditionsX ′′ = 0 and = X ′′′ = 0 at
x̂ = ±1, and corresponding eigenvaluesαm. Note that
the boundary conditions are the natural conditions for
a plate with free ends. The above expansion is conve-
nient for analysis of the motion of the plate because the
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first mode,X0, supports its heave motion and the sec-
ond mode,X1, supports its pitch motion. The subsequent
modesXm (m ≥ 2) describe the flexural motion of the
plate.

The potential functions at the ends of the plate are sim-
ilarly approximated, with

φi(z) ≈ 2

d
ci +

2

d

N∑

n=0

φi,nC2n(ẑ); ẑ =
z

d
, (3)

for i = a, b and for some chosen constantN . The func-
tions C2n are a set of weighted even Gegenbauer poly-
nomials. The weighting is chosen so that the expected
singular behaviour of the fluid velocity at the submerged
corners of the plate are captured in the approximation (see
[3]).

Inner-products of the integral equations on the ends of
the plateΓa andΓb are taken with the set of unweighted
even Gegenbauer polynomials, and the set{Xm} is used
as the test functions for the integral equation posed on
Γd. Extra equations must also be added in order to close
the system. Firstly, the condition (1b) is applied in con-
junction with the approximations (3). Continuity of the
potential is also ensured at the submerged corners of the
plate, which sets the values of the constantsci (i = a, b).

Preliminary Numerical Results
A set of preliminary results is given in figure 2 for

parameters resembling the wave-tank experiments. The
plate is of lengthl = 2 m and thicknessD = 10 mm
and is placed on the interval(a, b) = (5, 7) m. The rel-
ative plate and fluid densities mean that the draught is
d = 5 mm.

Figure 2 shows the decomposed motions of the plate,
as functions of wavelength2π/k0. The top panel contains
the moduli of the amplitude of heave motion,ξ̃0 =

√
2 ξ0

(black curve), and the scaled coefficient of the pitch mo-
tion, ξ̃1 =

√
2/3 ξ1/k0 (grey). The middle panel con-

tains the moduli of the coefficients of the primary sym-
metric (black) and antisymmetric (grey) terms,ξ2 andξ3,
respectively. The bottom panel contains the modulus of
the surge amplitude,u, and in this case no restraints are
placed on the surge motion.

Each of the motions here displays fine structure when
the wavelength is smaller than the length of the plate. As
the wavelength increases to approximately the length of
the plate and beyond, the rigid body motions generally
grow, whereas the flexural motions decay. Throughout
the range of wavelengths considered, the symmetric com-
ponent of the plate’s flexure is consistently greater than
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Figure 2: Results for a plate of lengthl = 2 m and
thicknessD = 10 mm, as described in the text.

the antisymmetric component. Note that for these particu-
lar parameters the moduli of the heave and surge motions
are almost identical, and that they vanish at a wavelength
slightly shorter than the length of the plate.

Further results will be presented at the conference.
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