
© IEEE – 2004 Version 8–1

CHAPTER 8
SOFTWARE ENGINEERING MANAGEMENT

ACRONYM

PMBOK Guide to the Project
Management Body of
Knowledge

SQA Software Quality Assurance

INTRODUCTION

Software Engineering Management can be defined as
the application of management activities—planning,
coordinating, measuring, monitoring, controlling, and
reporting—to ensure that the development and maintenance
of software is systematic, disciplined, and quantified
(IEEE610.12-90).
The Software Engineering Management KA therefore
addresses the management and measurement of software
engineering. While measurement is an important aspect of
all KAs, it is here that the topic of measurement programs
is presented.
While it is true to say that in one sense it should be possible
to manage software engineering in the same way as any
other (complex) process, there are aspects specific to
software products and the software life cycle processes
which complicate effective management—just a few of
which are as follows:

The perception of clients is such that there is often a
lack of appreciation for the complexity inherent in
software engineering, particularly in relation to the
impact of changing requirements.
It is almost inevitable that the software engineering
processes themselves will generate the need for new or
changed client requirements.
As a result, software is often built in an iterative process
rather than a sequence of closed tasks.
Software engineering necessarily incorporates aspects
of creativity and discipline—maintaining an appropriate
balance between the two is often difficult.
The degree of novelty and complexity of software is
often extremely high.
There is a rapid rate of change in the underlying
technology.

With respect to software engineering, management
activities occur at three levels: organizational and
infrastructure management, project management, and
measurement program planning and control. The last two
are covered in detail in this KA description. However, this

is not to diminish the importance of organizational
management issues.
Since the link to the related disciplines—obviously
management—is important, it will be described in more
detail than in the other KA descriptions. Aspects of
organizational management are important in terms of their
impact on software engineering—on policy management,
for instance: organizational policies and standards provide
the framework in which software engineering is
undertaken. These policies may need to be influenced by
the requirements of effective software development and
maintenance, and a number of software engineering-
specific policies may need to be established for effective
management of software engineering at an organizational
level. For example, policies are usually necessary to
establish specific organization-wide processes or
procedures for such software engineering tasks as
designing, implementing, estimating, tracking, and
reporting. Such policies are essential to effective long-term
software engineering management, by establishing a
consistent basis on which to analyze past performance and
implement improvements, for example.
Another important aspect of management is personnel
management: policies and procedures for hiring, training,
and motivating personnel and mentoring for career
development are important not only at the project level but
also to the longer-term success of an organization. Software
engineering personnel may present unique training or
personnel management challenges (for example,
maintaining currency in a context where the underlying
technology undergoes continuous and rapid change).
Communication management is also often mentioned as an
overlooked but major aspect of the performance of
individuals in a field where precise understanding of user
needs and of complex requirements and designs is
necessary. Finally, portfolio management, which is
the capacity to have an overall vision not only of the
set of software under development but also of the
software already in use in an organization, is necessary.
Furthermore, software reuse is a key factor in maintaining
and improving productivity and competitiveness. Effective
reuse requires a strategic vision that reflects the unique
power and requirements of this technique.
In addition to understanding the aspects of management
that are uniquely influenced by software, software
engineers must have some knowledge of the more general
aspects, even in the first four years after graduation that is
targeted in the Guide.

 8–2 © IEEE – 2004 Version

Organizational culture and behavior, and functional
enterprise management in terms of procurement, supply
chain management, marketing, sales, and distribution, all
have an influence, albeit indirectly, on an organization’s
software engineering process.
Relevant to this KA is the notion of project management, as
“the construction of useful software artifacts” is normally
managed in the form of (perhaps programs of) individual
projects. In this regard, we find extensive support in the
Guide to the Project Management Body of Knowledge
(PMBOK) (PMI00), which itself includes the following
project management KAs: project integration management,
project scope management, project time management,
project cost management, project quality management,
project human resource management, and project
communications management. Clearly, all these topics have
direct relevance to the Software Engineering Management
KA. To attempt to duplicate the content of the Guide to the
PMBOK here would be both impossible and inappropriate.
Instead, we suggest that the reader interested in project
management beyond what is specific to software
engineering projects consult the PMBOK itself. Project
management is also found in the Related Disciplines of
Software Engineering chapter.
The Software Engineering Management KA consists of
both the software project management process, in its first
five subareas, and software engineering measurement in the
last subarea. While these two subjects are often regarded as
being separate, and indeed they do possess many unique
aspects, their close relationship has led to their combined
treatment in this KA. Unfortunately, a common perception
of the software industry is that it delivers products late,
over budget, and of poor quality and uncertain
functionality. Measurement-informed management — an
assumed principle of any true engineering discipline — can
help to turn this perception around. In essence,
management without measurement, qualitative and
quantitative, suggests a lack of rigor, and measurement
without management suggests a lack of purpose or context.
In the same way, however, management and measurement
without expert knowledge is equally ineffectual, so we
must be careful to avoid over-emphasizing the quantitative
aspects of Software Engineering Management (SEM).
Effective management requires a combination of both
numbers and experience.
The following working definitions are adopted here:

Management process refers to the activities that are
undertaken in order to ensure that the software
engineering processes are performed in a manner
consistent with the organization’s policies, goals, and
standards.
Measurement refers to the assignment of values and
labels to aspects of software engineering (products,
processes, and resources as defined by [Fen98]) and the
models that are derived from them, whether these

models are developed using statistical, expert
knowledge or other techniques.

The software engineering project management subareas
make extensive use of the software engineering
measurement subarea.
Not unexpectedly, this KA is closely related to others in the
Guide to the SWEBOK, and reading the following KA
descriptions in conjunction with this one would be
particularly useful.

Software Requirements, where some of the activities to
be performed during the Initiation and Scope definition
phase of the project are described
Software Configuration Management, as this deals with
the identification, control, status accounting, and audit
of the software configuration along with software
release management and delivery
Software Engineering Process, because processes and
projects are closely related (this KA also describes
process and product measurement)
Software Quality, as quality is constantly a goal of
management and is an aim of many activities that must
be managed

BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING MANAGEMENT

As the Software Engineering Management KA is viewed
here as an organizational process which incorporates the
notion of process and project management, we have created
a breakdown that is both topic-based and life cycle-based.
However, the primary basis for the top-level breakdown is
the process of managing a software engineering project.
There are six major subareas. The first five subareas largely
follow the IEEE/EIA 12207 Management Process. The six
subareas are:

Initiation and scope definition, which deals with the
decision to initiate a software engineering project
Software project planning, which addresses the
activities undertaken to prepare for successful software
engineering from a management perspective
Software project enactment, which deals with generally
accepted software engineering management activities
that occur during software engineering
Review and evaluation, which deal with assurance that
the software is satisfactory
Closure, which addresses the post-completion activities
of a software engineering project
Software engineering measurement, which deals with
the effective development and implementation of
measurement programs in software engineering
organizations (IEEE12207.0-96)

The breakdown of topics for the Software Engineering
Management KA is shown in Figure 1.

© IEEE – 2004 Version 8–3

1. Initiation and Scope Definition

The focus of this set of activities is on the effective
determination of software requirements via various
elicitation methods and the assessment of the project’s
feasibility from a variety of standpoints. Once feasibility
has been established, the remaining task within this process
is the specification of requirements validation and change
procedures (see also the Software Requirements KA).
1.1. Determination and Negotiation of Requirements
 [Dor02: v2c4; Pfl01: c4; Pre04: c7; Som05: c5]

Software requirement methods for requirements elicitation
(for example, observation), analysis (for example, data
modeling, use-case modeling), specification, and validation
(for example, prototyping) must be selected and applied,
taking into account the various stakeholder perspectives.
This leads to the determination of project scope, objectives,
and constraints. This is always an important activity, as it
sets the visible boundaries for the set of tasks being
undertaken, and is particularly so where the novelty of the
undertaking is high. Additional information can be found in
the Software Requirements KA.

 8–4 © IEEE – 2004 Version

1.2. Feasibility Analysis (Technical, Operational,
Financial, Social/Political)

 [Pre04: c6; Som05: c6]
Software engineers must be assured that adequate
capability and resources are available in the form of people,
expertise, facilities, infrastructure, and support (either
internally or externally) to ensure that the project can be
successfully completed in a timely and cost-effective
manner (using, for example, a requirement-capability
matrix). This often requires some “ballpark” estimation of
effort and cost based on appropriate methods (for example,
expert-informed analogy techniques).
1.3. Process for the Review and Revision of Requirements
Given the inevitability of change, it is vital that agreement
among stakeholders is reached at this early point as to the
means by which scope and requirements are to be reviewed
and revised (for example, via agreed change management
procedures). This clearly implies that scope and
requirements will not be “set in stone” but can and should
be revisited at predetermined points as the process unfolds
(for example, at design reviews, management reviews). If
changes are accepted, then some form of traceability
analysis and risk analysis (see topic 2.5 Risk Management)
should be used to ascertain the impact of those changes. A
managed-change approach should also be useful when it
comes time to review the outcome of the project, as the
scope and requirements should form the basis for the
evaluation of success. [Som05: c6] See also the software
configuration control subarea of the Software
Configuration Management KA.

2. Software Project Planning

The iterative planning process is informed by the scope and
requirements and by the establishment of feasibility. At this
point, software life cycle processes are evaluated and the
most appropriate (given the nature of the project, its degree
of novelty, its functional and technical complexity, its
quality requirements, and so on) is selected. Where
relevant, the project itself is then planned in the form of a
hierarchical decomposition of tasks, the associated
deliverables of each task are specified and characterized in
terms of quality and other attributes in line with stated
requirements, and detailed effort, schedule, and cost
estimation is undertaken. Resources are then allocated to
tasks so as to optimize personnel productivity (at
individual, team, and organizational levels), equipment and
materials utilization, and adherence to schedule. Detailed
risk management is undertaken and the “risk profile” of the
project is discussed among, and accepted by, all relevant
stakeholders. Comprehensive software quality management
processes are determined as part of the planning process in
the form of procedures and responsibilities for software
quality assurance, verification and validation, reviews, and
audits (see the Software Quality KA). As an iterative
process, it is vital that the processes and responsibilities for

ongoing plan management, review, and revision are also
clearly stated and agreed.
2.1. Process Planning
Selection of the appropriate software life cycle model (for
example, spiral, evolutionary prototyping) and the
adaptation and deployment of appropriate software life
cycle processes are undertaken in light of the particular
scope and requirements of the project. Relevant methods
and tools are also selected. [Dor02: v1c6,v2c8; Pfl01: c2;
Pre04: c2; Rei02: c1,c3,c5; Som05: c3; Tha97: c3] At the
project level, appropriate methods and tools are used to
decompose the project into tasks, with associated inputs,
outputs, and completion conditions (for example, work
breakdown structure). [Dor02: v2c7; Pfl01: c3; Pre04: c21;
Rei02: c4,c5; Som05: c4; Tha97: c4,c6] This in turn
influences decisions on the project’s high-level schedule
and organization structure.
2.2. Determine Deliverables
The product(s) of each task (for example, architectural
design, inspection report) are specified and characterized.
[Pfl01: c3; Pre04: c24; Tha97: c4] Opportunities to reuse
software components from previous developments or to
utilize off-the-shelf software products are evaluated. Use of
third parties and procured software are planned and
suppliers are selected.
2.3. Effort, Schedule, and Cost Estimation
Based on the breakdown of tasks, inputs, and outputs, the
expected effort range required for each task is determined
using a calibrated estimation model based on historical
size-effort data where available and relevant, or other
methods like expert judgment. Task dependencies are
established and potential bottlenecks are identified using
suitable methods (for example, critical path analysis).
Bottlenecks are resolved where possible, and the expected
schedule of tasks with projected start times, durations, and
end times is produced (for example, PERT chart). Resource
requirements (people, tools) are translated into cost
estimates. [Dor02: v2c7; Fen98: c12; Pfl01: c3; Pre04: c23,
c24; Rei02: c5,c6; Som05: c4,c23; Tha97: c5] This is a
highly iterative activity which must be negotiated and
revised until consensus is reached among affected
stakeholders (primarily engineering and management).
2.4. Resource Allocation
 [Pfl01: c3; Pre04: c24; Rei02: c8,c9; Som05: c4;
 Tha97: c6,c7]
Equipment, facilities, and people are associated with the
scheduled tasks, including the allocation of responsibilities
for completion (using, for example, a Gantt chart). This
activity is informed and constrained by the availability of
resources and their optimal use under these circumstances,
as well as by issues relating to personnel (for example,
productivity of individuals/teams, team dynamics,
organizational and team structures).

© IEEE – 2004 Version 8–5

2.5. Risk Management
Risk identification and analysis (what can go wrong, how
and why, and what are the likely consequences), critical
risk assessment (which are the most significant risks in
terms of exposure, which can we do something about in
terms of leverage), risk mitigation and contingency
planning (formulating a strategy to deal with risks and to
manage the risk profile) are all undertaken. Risk
assessment methods (for example, decision trees and
process simulations) should be used in order to highlight
and evaluate risks. Project abandonment policies should
also be determined at this point in discussion with all other
stakeholders. [Dor02: v2c7; Pfl01: c3; Pre04: c25; Rei02:
c11; Som05: c4; Tha97: c4] Software-unique aspects of
risk, such as software engineers’ tendency to add unwanted
features or the risks attendant in software’s intangible
nature, must influence the project’s risk management.
2.6. Quality Management
 [Dor02: v1c8,v2c3-c5; Pre04: c26; Rei02: c10;
 Som05: c24,c25; Tha97: c9,c10]
Quality is defined in terms of pertinent attributes of the
specific project and any associated product(s), perhaps in
both quantitative and qualitative terms. These quality
characteristics will have been determined in the
specification of detailed software requirements. See also
the Software Requirements KA.
Thresholds for adherence to quality are set for each
indicator as appropriate to stakeholder expectations for the
software at hand. Procedures relating to ongoing SQA
throughout the process and for product (deliverable)
verification and validation are also specified at this stage
(for example, technical reviews and inspections) (see also
the Software Quality KA).
2.7. Plan Management
 [Som05: c4; Tha97: c4]
How the project will be managed and how the plan will be
managed must also be planned. Reporting, monitoring, and
control of the project must fit the selected software
engineering process and the realities of the project, and
must be reflected in the various artifacts that will be used
for managing it. But, in an environment where change is an
expectation rather than a shock, it is vital that plans are
themselves managed. This requires that adherence to plans
be systematically directed, monitored, reviewed, reported,
and, where appropriate, revised. Plans associated with other
management-oriented support processes (for example,
documentation, software configuration management, and
problem resolution) also need to be managed in the same
manner.

3. Software Project Enactment

The plans are then implemented, and the processes
embodied in the plans are enacted. Throughout, there is a
focus on adherence to the plans, with an overriding

expectation that such adherence will lead to the successful
satisfaction of stakeholder requirements and achievement
of the project objectives. Fundamental to enactment are the
ongoing management activities of measuring, monitoring,
controlling, and reporting.
3.1. Implementation of Plans
 [Pfl01: c3; Som05: c4]
The project is initiated and the project activities are
undertaken according to the schedule. In the process,
resources are utilized (for example, personnel effort,
funding) and deliverables are produced (for example,
architectural design documents, test cases).
3.2. Supplier Contract Management
 [Som05:c4]
Prepare and execute agreements with suppliers, monitor
supplier performance, and accept supplier products,
incorporating them as appropriate.
3.3. Implementation of measurement process

[Fen98: c13,c14; Pre04: c22; Rei02: c10,c12;
Tha97: c3,c10]

The measurement process is enacted alongside the software
project, ensuring that relevant and useful data are collected
(see also topics 6.2 Plan the Measurement Process and 6.3
Perform the Measurement Process).
3.4. Monitor Process
 [Dor02: v1c8, v2c2-c5,c7; Rei02: c10;
 Som05: c25; Tha97: c3;c9]
Adherence to the various plans is assessed continually and
at predetermined intervals. Outputs and completion
conditions for each task are analyzed. Deliverables are
evaluated in terms of their required characteristics (for
example, via reviews and audits). Effort expenditure,
schedule adherence, and costs to date are investigated, and
resource usage is examined. The project risk profile is
revisited, and adherence to quality requirements is
evaluated.
Measurement data are modeled and analyzed. Variance
analysis based on the deviation of actual from expected
outcomes and values is undertaken. This may be in the
form of cost overruns, schedule slippage, and the like.
Outlier identification and analysis of quality and other
measurement data are performed (for example, defect
density analysis). Risk exposure and leverage are
recalculated, and decisions trees, simulations, and so on are
rerun in the light of new data. These activities enable
problem detection and exception identification based on
exceeded thresholds. Outcomes are reported as needed and
certainly where acceptable thresholds are surpassed.
3.5. Control Process
 [Dor02: v2c7; Rei02: c10; Tha97: c3,c9]
The outcomes of the process monitoring activities provide
the basis on which action decisions are taken. Where

 8–6 © IEEE – 2004 Version

appropriate, and where the impact and associated risks are
modeled and managed, changes can be made to the project.
This may take the form of corrective action (for example,
retesting certain components), it may involve the
incorporation of contingencies so that similar occurrences
are avoided (for example, the decision to use prototyping to
assist in software requirements validation), and/or it may
entail the revision of the various plans and other project
documents (for example, requirements specification) to
accommodate the unexpected outcomes and their
implications.
In some instances, it may lead to abandonment of the
project. In all cases, change control and software
configuration management procedures are adhered to (see
also the Software Configuration Management KA),
decisions are documented and communicated to all relevant
parties, plans are revisited and revised where necessary,
and relevant data is recorded in the central database (see
also topic 6.3 Perform the Measurement Process).
3.6. Reporting
 [Rei02: c10; Tha97: c3,c10]
At specified and agreed periods, adherence to the plans is
reported, both within the organization (for example to the
project portfolio steering committee) and to external
stakeholders (for example, clients, users). Reports of this
nature should focus on overall adherence as opposed to the
detailed reporting required frequently within the project
team.

4. Review and Evaluation

At critical points in the project, overall progress towards
achievement of the stated objectives and satisfaction
of stakeholder requirements are evaluated. Similarly,
assessments of the effectiveness of the overall process to
date, the personnel involved, and the tools and methods
employed are also undertaken at particular milestones.
4.1. Determining Satisfaction of Requirements
 [Rei02: c10; Tha97: c3,c10]
Since attaining stakeholder (user and customer) satisfaction
is one of our principal aims, it is important that progress
towards this aim be formally and periodically assessed.
This occurs on achievement of major project milestones
(for example, confirmation of software design architecture,
software integration technical review). Variances from
expectations are identified and appropriate action is taken.
As in the control process activity above (see topic 3.5
Control Process), in all cases change control and software
configuration management procedures are adhered to (see
the Software Configuration Management KA), decisions
are documented and communicated to all relevant parties,
plans are revisited and revised where necessary, and
relevant data are recorded in the central database (see also
topic 6.3 Perform the Measurement Process). More
information can also be found in the Software Testing KA,

in topic 2.2 Objectives of Testing and in the Software
Quality KA, in topic 2.3 Reviews and Audits.
4.2. Reviewing and Evaluating Performance
 [Dor02: v1c8,v2c3,c5; Pfl01: c8,c9; Rei02: c10;
 Tha97: c3,c10]
Periodic performance reviews for project personnel provide
insights as to the likelihood of adherence to plans as well as
possible areas of difficulty (for example, team member
conflicts). The various methods, tools, and techniques
employed are evaluated for their effectiveness and
appropriateness, and the process itself is systematically and
periodically assessed for its relevance, utility, and efficacy
in the project context. Where appropriate, changes are
made and managed.

5. Closure

The project reaches closure when all the plans and
embodied processes have been enacted and completed. At
this stage, the criteria for project success are revisited.
Once closure is established, archival, post mortem, and
process improvement activities are performed.
5.1. Determining Closure
 [Dor02: v1c8,v2c3,c5; Rei02: c10; Tha97: c3,c10]
The tasks as specified in the plans are complete, and
satisfactory achievement of completion criteria is
confirmed. All planned products have been delivered with
acceptable characteristics. Requirements are checked off
and confirmed as satisfied, and the objectives of the project
have been achieved. These processes generally involve all
stakeholders and result in the documentation of client
acceptance and any remaining known problem reports.
5.2. Closure Activities
 [Pfl01: c12; Som05: c4]
After closure has been confirmed, archival of project
materials takes place in line with stakeholder-agreed
methods, location, and duration. The organization’s
measurement database is updated with final project data
and post-project analyses are undertaken. A project post
mortem is undertaken so that issues, problems, and
opportunities encountered during the process (particularly
via review and evaluation, see subarea 4 Review and
evaluation) are analyzed, and lessons are drawn from the
process and fed into organizational learning and
improvement endeavors (see also the Software Engineering
Process KA).

6. Software Engineering Measurement

 [ISO 15939-02]
The importance of measurement and its role in better
management practices is widely acknowledged, and so its
importance can only increase in the coming years. Effective
measurement has become one of the cornerstones of
organizational maturity.

© IEEE – 2004 Version 8–7

Key terms on software measures and measurement methods
have been defined in [ISO15939-02] on the basis of the
ISO international vocabulary of metrology [ISO93].
Nevertheless, readers will encounter terminology
differences in the literature; for example, the term
“metrics” is sometimes used in place of “measures.”
This topic follows the international standard ISO/IEC
15939, which describes a process which defines the
activities and tasks necessary to implement a software
measurement process and includes, as well, a measurement
information model.
6.1. Establish and Sustain Measurement Commitment

Accept requirements for measurement. Each
measurement endeavor should be guided by
organizational objectives and driven by a set of
measurement requirements established by the
organization and the project. For example, an
organizational objective might be “first-to-market with
new products.” [Fen98: c3,c13; Pre04: c22] This in
turn might engender a requirement that factors
contributing to this objective be measured so that
projects might be managed to meet this objective.
- Define scope of measurement. The organizational

unit to which each measurement requirement is to be
applied must be established. This may consist of a
functional area, a single project, a single site, or
even the whole enterprise. All subsequent
measurement tasks related to this requirement
should be within the defined scope. In addition, the
stakeholders should be identified.

- Commitment of management and staff to
measurement. The commitment must be formally
established, communicated, and supported by
resources (see next item).

Commit resources for measurement. The organization’s
commitment to measurement is an essential factor for
success, as evidenced by assignment of resources for
implementing the measurement process. Assigning
resources includes allocation of responsibility for the
various tasks of the measurement process (such as user,
analyst, and librarian) and providing adequate funding,
training, tools, and support to conduct the process in an
enduring fashion.

6.2. Plan the Measurement Process
Characterize the organizational unit. The organizational
unit provides the context for measurement, so it is
important to make this context explicit and to articulate
the assumptions that it embodies and the constraints that
it imposes. Characterization can be in terms of
organizational processes, application domains,
technology, and organizational interfaces. An
organizational process model is also typically an
element of the organizational unit characterization
[ISO15939-02: 5.2.1].

Identify information needs. Information needs are based
on the goals, constraints, risks, and problems of the
organizational unit. They may be derived from business,
organizational, regulatory, and/or product objectives.
They must be identified and prioritized. Then, a subset
to be addressed must be selected and the results
documented, communicated, and reviewed by
stakeholders [ISO 15939-02: 5.2.2].
Select measures. Candidate measures must be selected,
with clear links to the information needs. Measures
must then be selected based on the priorities of the
information needs and other criteria such as cost of
collection, degree of process disruption during
collection, ease of analysis, ease of obtaining accurate,
consistent data, and so on [ISO15939-02: 5.2.3 and
Appendix C].
Define data collection, analysis, and reporting
procedures. This encompasses collection procedures
and schedules, storage, verification, analysis, reporting,
and configuration management of data [ISO15939-02:
5.2.4].
Define criteria for evaluating the information products.
Criteria for evaluation are influenced by the technical
and business objectives of the organizational unit.
Information products include those associated with the
product being produced, as well as those associated
with the processes being used to manage and measure
the project [ISO15939-02: 5.2.5 and Appendices D, E].
Review, approve, and provide resources for
measurement tasks.
- The measurement plan must be reviewed and

approved by the appropriate stakeholders. This
includes all data collection procedures, storage,
analysis, and reporting procedures; evaluation
criteria; schedules; and responsibilities. Criteria for
reviewing these artifacts should have been
established at the organizational unit level or higher
and should be used as the basis for these reviews.
Such criteria should take into consideration previous
experience, availability of resources, and potential
disruptions to projects when changes from current
practices are proposed. Approval demonstrates
commitment to the measurement process
[ISO15939-02: 5.2.6.1 and Appendix F].

- Resources should be made available for
implementing the planned and approved
measurement tasks. Resource availability may be
staged in cases where changes are to be piloted
before widespread deployment. Consideration
should be paid to the resources necessary for
successful deployment of new procedures or
measures [ISO15939-02: 5.2.6.2].

Acquire and deploy supporting technologies. This
includes evaluation of available supporting
technologies, selection of the most appropriate

 8–8 © IEEE – 2004 Version

technologies, acquisition of those technologies, and
deployment of those technologies [ISO 15939-02:
5.2.7].

6.3. Perform the Measurement Process
Integrate measurement procedures with relevant
processes. The measurement procedures, such as data
collection, must be integrated into the processes they
are measuring. This may involve changing current
processes to accommodate data collection or generation
activities. It may also involve analysis of current
processes to minimize additional effort and evaluation
of the effect on employees to ensure that the
measurement procedures will be accepted. Morale
issues and other human factors need to be considered.
In addition, the measurement procedures must be
communicated to those providing the data, training may
need to be provided, and support must typically be
provided. Data analysis and reporting procedures must
typically be integrated into organizational and/or project
processes in a similar manner [ISO 15939-02: 5.3.1].
Collect data. The data must be collected, verified, and
stored [ISO 15939-02 :5.3.2].
Analyze data and develop information products. Data
may be aggregated, transformed, or recoded as part of
the analysis process, using a degree of rigor appropriate
to the nature of the data and the information needs. The
results of this analysis are typically indicators such as
graphs, numbers, or other indications that must be
interpreted, resulting in initial conclusions to be
presented to stakeholders. The results and conclusions
must be reviewed, using a process defined by the
organization (which may be formal or informal). Data
providers and measurement users should participate in

reviewing the data to ensure that they are meaningful
and accurate, and that they can result in reasonable
actions [ISO 15939-02: 5.3.3 and Appendix G].
Communicate results. Information products must be
documented and communicated to users and
stakeholders [ISO 15939-02: 5.3.4].

6.4. Evaluate Measurement
Evaluate information products. Evaluate information
products against specified evaluation criteria and
determine strengths and weaknesses of the information
products. This may be performed by an internal process
or an external audit and should include feedback from
measurement users. Record lessons learned in an
appropriate database [ISO 15939-02: 5.4.1 and
Appendix D].
Evaluate the measurement process. Evaluate the
measurement process against specified evaluation
criteria and determine the strengths and weaknesses of
the process. This may be performed by an internal
process or an external audit and should include
feedback from measurement users. Record lessons
learned in an appropriate database [ISO 15939-02: 5.4.1
and Appendix D].
Identify potential improvements. Such improvements
may be changes in the format of indicators, changes in
units measured, or reclassification of categories.
Determine the costs and benefits of potential
improvements and select appropriate improvement
actions. Communicate proposed improvements to the
measurement process owner and stakeholders for
review and approval. Also communicate lack of
potential improvements if the analysis fails to identify
improvements [ISO 15939-02: 5.4.2].

© IEEE – 2004 Version 8–9

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[Dor02] [ISO15939-02] [Fen98] [Pfl01] [Pre04] [Rei02] [Som05] [Tha97]
1. Initiation and scope definition
1.1 Determination and negotiation of
requirements v2c4 c4 c7 c5

1.2 Feasibility analysis c6 c6

1.3 Process for the review and revision of
requirements c6

2. Software Project Planning

2.1 Process planning v1c6,v2c7,
v2c8 c2,c3 c2,c21 c1,c3,c5 c3,c4 c3,c4,c6

2.2 Determine deliverables c3 c24 c4

23 Effort, schedule and cost estimation v2c7 c12 c3 C23,c24 c5,c6 c4,c23 c5

2.4 Resource allocation c3 c24 c8,c9 c4 c6,c7

2.5 Risk management v2c7 c3 c25 c11 c4 c4

2.6 Quality management v1c8,v2c3-
c5 c26 c10 c24,c25 c9,c10

2.7 Plan management c4 c4

3. Software Project Enactment

3.1 Implementation of plans c3 c4

3.2 Supplier contract management c4

3.3 Implementation of measurement
process c13c,14 c22 c10,c12 c3,c10

3.4 Monitor process v1c8,v2c2-
c5,c7 c10 c25 c3,c9

3.5 Control process v2c7 c10 c3,c9

3.6 Reporting c10 c3,c10

4. Review and evaluation

4.1 Determining satisfaction of
requirements c10 c3,c10

4.2 Reviewing and evaluating performance v1c8,v2c3,
c5 c8,c9 c10 c3,c10

5. Closure

5.1 Determining closure v1c8,v2c3,
c5 c10 c3,c10

5.2 Closure activities c12 c4

6. Software Engineering Measurement *

6.1 Establish and sustain measurement
commitment c3,c13 c22

6.2 Plan the measurement process c5,C,D,E,F

6.3 Perform the measurement process c5,G

6.4 Evaluate measurement c5,D

 8–10 © IEEE – 2004 Version

RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING MANAGEMENT

[Dor02] M. Dorfman and R.H. Thayer, eds., Software
Engineering, IEEE Computer Society Press, 2002, Vol. 1,
Chap. 6, 8, Vol. 2, Chap. 3, 4, 5, 7, 8.
[Fen98] N.E. Fenton and S.L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach, second ed., International
Thomson Computer Press, 1998, Chap. 1-14.
[ISO15939-02] ISO/IEC 15939:2002, Software
Engineering — Software Measurement Process, ISO and
IEC, 2002.

[Pfl01] S.L. Pfleeger, Software Engineering: Theory and
Practice, second ed., Prentice Hall, 2001, Chap. 2-4, 8, 9,
12, 13.
[Pre04] R.S. Pressman, Software Engineering: A
Practitioner's Approach, sixth ed., McGraw-Hill, 2004,
Chap. 2, 6, 7, 22-26.
[Rei02] D.J. Reifer, ed., Software Management, IEEE
Computer Society Press, 2002, Chap. 1-6, 7-12, 13.
[Som05] I. Sommerville, Software Engineering, seventh
ed., Addison-Wesley, 2005, Chap. 3-6, 23-25.
[Tha97] R.H. Thayer, ed., Software Engineering Project
Management, IEEE Computer Society Press, 1997, Chap.
1-10.

© IEEE – 2004 Version 8–11

APPENDIX A. LIST OF FURTHER READINGS

(Adl99) T.R. Adler, J.G. Leonard, and R.K. Nordgren,
“Improving Risk Management: Moving from Risk
Elimination to Risk Avoidance,” Information and Software
Technology, vol. 41, 1999, pp. 29-34.
(Bai98) R. Baines, “Across Disciplines: Risk, Design,
Method, Process, and Tools,” IEEE Software, July/August
1998, pp. 61-64.
(Bin97) R.V. Binder, “Can a Manufacturing Quality Model
Work for Software?” IEEE Software, September/October
1997, pp. 101-102,105.
(Boe97) B.W. Boehm and T. DeMarco, “Software Risk
Management,” IEEE Software, May/June 1997, pp. 17-19.
(Bri96) L.C. Briand, S. Morasca, and V.R. Basili,
“Property-Based Software Engineering Measurement,”
IEEE Transactions on Software Engineering, vol. 22, iss. 1,
1996, pp. 68-86.
(Bri96a) L. Briand, K.E. Emam, and S. Morasca, “On the
Application of Measurement Theory in Software
Engineering,” Empirical Software Engineering, vol. 1,
1996, pp. 61-88.
(Bri97) L.C. Briand, S. Morasca, and V.R. Basili,
“Response to: Comments on ‘Property-based Software
Engineering Measurement: Refining the Addivity
Properties,’” IEEE Transactions on Software Engineering,
vol. 23, iss. 3, 1997, pp. 196-197.
(Bro87) F.P.J. Brooks, “No Silver Bullet: Essence and
Accidents of Software Engineering,” Computer, Apr. 1987,
pp. 10-19.
(Cap96) J. Capers, Applied Software Measurement:
Assuring Productivity and Quality, second ed., McGraw-
Hill, 1996.
(Car97) M.J. Carr, “Risk Management May Not Be For
Everyone,” IEEE Software, May/June 1997, pp. 21-24.
(Cha96) R.N. Charette, “Large-Scale Project Management
Is Risk Management,” IEEE Software, July 1996, pp. 110-
117.
(Cha97) R.N. Charette, K.M. Adams, and M.B. White,
“Managing Risk in Software Maintenance,” IEEE
Software, May/June 1997, pp. 43-50.
(Col96) B. Collier, T. DeMarco,and P. Fearey, “A Defined
Process for Project Postmortem Review,” IEEE Software,
July 1996, pp. 65-72.
(Con97) E.H. Conrow and P.S. Shishido, “Implementing
Risk Management on Software Intensive Projects,” IEEE
Software, May/June 1997, pp. 83-89.
(Dav98) A.M. Davis, “Predictions and Farewells,” IEEE
Software, July/August 1998, pp. 6-9.
(Dem87) T. DeMarco and T. Lister, Peopleware:
Productive Projects and Teams, Dorset House Publishing,
1987.
(Dem96) T. DeMarco and A. Miller, “Managing Large
Software Projects,” IEEE Software, July 1996, pp. 24-27.
(Fav98) J. Favaro and S.L. Pfleeger, “Making Software
Development Investment Decisions,” ACM SIGSoft
Software Engineering Notes, vol. 23, iss. 5, 1998, pp. 69-74.

(Fay96) M.E. Fayad and M. Cline, “Managing Object-
Oriented Software Development,” Computer, September
1996, pp. 26-31.
(Fen98) N.E. Fenton and S.L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach, second ed., International
Thomson Computer Press, 1998.
(Fle99) R. Fleming, “A Fresh Perspective on Old
Problems,” IEEE Software, January/February 1999, pp.
106-113.
(Fug98) A. Fuggetta et al., “Applying GQM in an Industrial
Software Factory,” ACM Transactions on Software
Engineering and Methodology, vol. 7, iss. 4, 1998, pp. 411-
448.
(Gar97) P.R. Garvey, D.J. Phair, and J.A. Wilson, “An
Information Architecture for Risk Assessment and
Management,” IEEE Software, May/June 1997, pp. 25-34.
(Gem97) A. Gemmer, “Risk Management: Moving beyond
Process,” Computer, May 1997, pp. 33-43.
(Gla97) R.L. Glass, “The Ups and Downs of Programmer
Stress,” Communications of the ACM, vol. 40, iss. 4, 1997,
pp. 17-19.
(Gla98) R.L. Glass, “Short-Term and Long-Term Remedies
for Runaway Projects,” Communications of the ACM, vol.
41, iss. 7, 1998, pp. 13-15.
(Gla98a) R.L. Glass, “How Not to Prepare for a Consulting
Assignment, and Other Ugly Consultancy Truths,”
Communications of the ACM, vol. 41, iss. 12, 1998, pp. 11-13.
(Gla99) R.L. Glass, “The Realities of Software Technology
Payoffs,” Communications of the ACM, vol. 42, iss. 2,
1999, pp. 74-79.
(Gra99) R. Grable et al., “Metrics for Small Projects:
Experiences at the SED,” IEEE Software, March/April
1999, pp. 21-29.
(Gra87) R.B. Grady and D.L. Caswell, Software Metrics:
Establishing A Company-Wide Program. Prentice Hall,
1987.
(Hal97) T. Hall and N. Fenton, “Implementing Effective
Software Metrics Programs,” IEEE Software, March/April
1997, pp. 55-64.
(Hen99) S.M. Henry and K.T. Stevens, “Using Belbin’s
Leadership Role to Improve Team Effectiveness: An
Empirical Investigation,” Journal of Systems and Software,
vol. 44, 1999, pp. 241-250.
(Hoh99) L. Hohmann, “Coaching the Rookie Manager,”
IEEE Software, January/February 1999, pp. 16-19.
(Hsi96) P. Hsia, “Making Software Development Visible,”
IEEE Software, March 1996, pp. 23-26.
(Hum97) W.S. Humphrey, Managing Technical People:
Innovation, Teamwork, and the Software Process: Addison-
Wesley, 1997.
(IEEE12207.0-96) IEEE/EIA 12207.0-1996//ISO/
IEC12207:1995, Industry Implementation of Int. Std.
ISO/IEC 12207:95, Standard for Information Technology-
Software Life Cycle Processes, IEEE, 1996.
(Jac98) M. Jackman, “Homeopathic Remedies for Team
Toxicity,” IEEE Software, July/August 1998, pp. 43-45.
(Kan97) K. Kansala, “Integrating Risk Assessment with Cost

 8–12 © IEEE – 2004 Version

Estimation,” IEEE Software, May/June 1997, pp. 61-67.
(Kar97) J. Karlsson and K. Ryan, “A Cost-Value Aproach
for Prioritizing Requirements,” IEEE Software,
September/October 1997, pp. 87-74.
(Kar96) D.W. Karolak, Software Engineering Risk
Management, IEEE Computer Society Press, 1996.
(Kau99) K. Kautz, “Making Sense of Measurement for
Small Organizations,” IEEE Software, March/April 1999,
pp. 14-20.
(Kei98) M. Keil et al., “A Framework for Identifying
Software Project Risks,” Communications of the ACM, vol.
41, iss. 11, 1998, pp. 76-83.
(Ker99) B. Kernighan and R. Pike, “Finding Performance
Improvements,” IEEE Software, March/April 1999, pp. 61-65.
(Kit97) B. Kitchenham and S. Linkman, “Estimates,
Uncertainty, and Risk,” IEEE Software, May/June 1997,
pp. 69-74.
(Lat98) F. v. Latum et al., “Adopting GQM-Based
Measurement in an Industrial Environment,” IEEE
Software, January-February 1998, pp. 78-86.
(Leu96) H.K.N. Leung, “A Risk Index for Software
Producers,” Software Maintenance: Research and Practice,
vol. 8, 1996, pp. 281-294.
(Lis97) T. Lister, “Risk Management Is Project
Management for Adults,” IEEE Software, May/June 1997,
pp. 20-22.
(Mac96) K. Mackey, “Why Bad Things Happen to Good
Projects,” IEEE Software, May 1996, pp. 27-32.
(Mac98) K. Mackey, “Beyond Dilbert: Creating Cultures
that Work,” IEEE Software, January/February 1998, pp. 48-49.
(Mad97) R.J. Madachy, “Heuristic Risk Assessment Using
Cost Factors,” IEEE Software, May/June 1997, pp. 51-59.
(McC96) S.C. McConnell, Rapid Development: Taming
Wild Software Schedules, Microsoft Press, 1996.
(McC97) S.C. McConnell, Software Project Survival
Guide, Microsoft Press, 1997.
(McC99) S.C. McConnell, “Software Engineering
Principles,” IEEE Software, March/April 1999, pp. 6-8.
(Moy97) T. Moynihan, “How Experienced Project
Managers Assess Risk,” IEEE Software, May/June 1997,
pp. 35-41.
(Ncs98) P. Ncsi, “Managing OO Projects Better,” IEEE
Software, July/August 1998, pp. 50-60.
(Nol99) A.J. Nolan, “Learning From Success,” IEEE
Software, January/February 1999, pp. 97-105.
(Off97) R.J. Offen and R. Jeffery, “Establishing Software

Measurement Programs,” IEEE Software, March/April
1997, pp. 45-53.
(Par96) K.V.C. Parris, “Implementing Accountability,”
IEEE Software, July/August 1996, pp. 83-93.
(Pfl97) S.L. Pfleeger, “Assessing Measurement (Guest
Editor’s Introduction),” IEEE Software, March/April 1997,
pp. 25-26.
(Pfl97a) S.L. Pfleeger et al., “Status Report on Software
Measurement,” IEEE Software, March/April 1997, pp. 33-
43.

(Put97) L.H. Putman and W. Myers, Industrial Strength
Software — Effective Management Using Measurement,
IEEE Computer Society Press, 1997.
(Rob99) P.N. Robillard, “The Role of Knowledge in
Software Development,” Communications of the ACM, vol.
42, iss. 1, 1999, pp. 87-92.
(Rod97) A.G. Rodrigues and T.M. Williams, “System
Dynamics in Software Project Management: Towards the
Development of a Formal Integrated Framework,”
European Journal of Information Systems, vol. 6, 1997, pp.
51-66.
(Rop97) J. Ropponen and K. Lyytinen, “Can Software Risk
Management Improve System Development: An
Exploratory Study,” European Journal of Information
Systems, vol. 6, 1997, pp. 41-50.
(Sch99) C. Schmidt et al., “Disincentives for
Communicating Risk: A Risk Paradox,” Information and
Software Technology, vol. 41, 1999, pp. 403-411.
(Sco92) R.L. v. Scoy, “Software Development Risk:
Opportunity, Not Problem,” Software Engineering Institute,
Carnegie Mellon University CMU/SEI-92-TR-30, 1992.
(Sla98) S.A. Slaughter, D.E. Harter, and M.S. Krishnan,
“Evaluating the Cost of Software Quality,”
Communications of the ACM, vol. 41, iss. 8, 1998, pp. 67-73.
(Sol98) R. v. Solingen, R. Berghout, and F. v. Latum,
“Interrupts: Just a Minute Never Is,” IEEE Software,
September/October 1998, pp. 97-103.
(Whi95) N. Whitten, Managing Software Development
Projects: Formulas for Success, Wiley, 1995.
(Wil99) B. Wiley, Essential System Requirements: A
Practical Guide to Event-Driven Methods, Addison-
Wesley, 1999.
(Zel98) M.V. Zelkowitz and D.R. Wallace, “Experimental
Models for Validating Technology,” Computer, vol. 31, iss.
5, 1998, pp. 23-31.

© IEEE – 2004 Version 8–13

APPENDIX B. LIST OF STANDARDS

(IEEE610.12-90) IEEE Std 610.12-1990 (R2002), IEEE
Standard Glossary of Software Engineering Terminology,
IEEE, 1990.
(IEEE12207.0-96) IEEE/EIA 12207.0-1996//ISO/
IEC12207:1995, Industry Implementation of Int. Std.
ISO/IEC 12207:95, Standard for Information Technology-
Software Life Cycle Processes, IEEE, 1996.
(ISO15939-02) ISO/IEC 15939:2002, Software
Engineering-Software Measurement Process, ISO and
IEC, 2002.
(PMI00) Project Management Institute Standards
Committee, A Guide to the Project Management Body of
Knowledge (PMBOK), Project Management Institute,
2000.

