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Abstract 

Active or real-time data warehousing is becoming very popular in business intelligence 

domain. In order to build a real-time or active data warehouse an online processing of stream 

of end users’ transaction with disk-based master data is required. This is also called processing 

of semi-stream data. Fundamentally, this semi-stream processing is a process of joining an 

incoming stream data (transactional data) with the disk-based slow retrieving master data by 

using an effective join operator. Typically this join operator works with a limited amount of 

main memory which cannot hold the entire disk-based master data. Recently a number of semi-

stream join algorithms have been proposed in the literature. Most of these algorithms have been 

tested using synthetic dataset while only a few using real-life dataset. It is always interesting 

to see how these algorithms behave in real environment. As each semi-stream join performs 

differently under the different characteristics of the stream data, it is important to select 

appropriate semi-stream join based on the characteristics of the stream data. Also these join 

algorithms use different strategies to access the disk-based master data e.g. index (clustered 

index or non-clustered index) or no index. 

Based on an intensive literature review, in this thesis we select a well-known semi-stream join 

CACHEJOIN (Cache Join) and implement it in MITRE 10 NZ, one of the leading home 

improvement and hardware retail store. We study the behavior of the algorithm under two 

different datasets (synthetic dataset and MITRE 10 NZ dataset). We study the performance of 

the algorithm under both datasets. Our performance study shows that under MITRE 10 NZ 

dataset CACHEJOIN performs very closer to that of synthetic dataset. 

As an extension of our work we find that MITRE 10 NZ incoming stream data (transactional 

data) needs to join with two tables in disk-based master data. First join is performed with 

product table (sc) using stock_code as a join attribute. While second join is performed with 

customer table (cs_person) using account_code as a join attribute. This gives us an opportunity 

to extend our existing CACHEJOIN for two-stage join. The stream tuples move to the second 

stage as soon as they complete the first stage. The performance of two-stage join is studied 

against normal CACHEJOIN using MITRE 10 NZ dataset. After analyzing the performance 

we are confident that extended CACHEJOIN performs reasonably well for MITRE 10 NZ real 

environment. 
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As a future work,  we have a plan to explore more in two-stage join by trying different semi-

stream joins and find out the best join combinations, and also explore more on parallelization 

of running 2 parallel nodes to handle the future growth of MITRE 10 NZ transactional data. 



Chapter 1 

1 Introduction 

1.1 Real-time data warehousing 

Near real-time or active data warehousing is becoming more and more emerging area of 

research due to demand of real-time business organizations. These real-time data warehouses 

are now required to fulfill the business organizations needs by providing them most up-to-date 

information about their businesses, e.g. their sales, their stock status, etc. This requires the end 

user’s data being updated immediately in a data warehouse as it is received in operational data 

sources. Providing the latest information to business users will help business leaders in making 

the right decisions at the right time. Once active data warehouses are built, business intelligence 

tools then use these active data warehouses to provide real-time reporting in order to support 

businesses. Business intelligence software’s are basically a collection of a number of decision 

support technologies that are aimed at providing information to senior managers, members of 

the board, managers, analysts, etc. (Surajit, Umeshwar & Vivek, 2011).  

 

Traditional data warehouses do not have continuous update capability and normally these type 

of data warehouses are only updated once a day when there is little processing happening in 

the background. In this type of traditional data warehouses, tuples are buffered and joined based 

on the availability of resources (Annita & Peter, 1990), (Leonard & Shapiro, 1986). The 

downside of traditional data warehouses is that they are not up-to-date due to the lack of 

continuous update to the data warehouse. 

 

To solve this, the concept of a real-time data warehouse has introduced (Burleson, 2004), 

(Alexandros, Panos & Evaggelia, 2005), (White Paper Oracle Corp., 2003). In order to build 

real-time data warehouses, semi-stream join algorithms are required. Basically semi-stream 

join algorithms are used to join the fast incoming stream data with the slowly changing master 

data which is normally to be found in relational databases. Such a join can be applied in real-

time data warehousing (Asif, Gillian & Gerald, 2008). Extensive study has been undertaken on 

join algorithms since the initial days of database development. Initial works have hosted 



12 
 

competent techniques for finite disk-based relational cases (Goetz, 1993). Of the many semi-

stream join algorithms proposed, a few are selected, studied and explained in detail here.  

 

The staging concept is used in many stream-based join algorithms to amortize expensive disk 

input/output costs over fast incoming stream data (Asif, Gerald, Gillian & Christof, 2013), 

(Abhirup & Ajit, 2009), (Asif, Gillian & Gerald, 2012), (Asif, Gillian & Gerald, 2011), 

(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), (Muhammad, Gillian & Gerald, 2011), 

(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2007). 

 

1.2 Motivation for the research 

There have been many semi-stream join algorithms proposed in the real-time data warehousing 

domain. Few algorithms to name are the MESHJOIN algorithm, the R-MESHJOIN algorithm, 

CMESHJOIN algorithm, the HYBRIDJOIN algorithm, the CACHEJOIN algorithm, etc. which 

most of the algorithms have been explained in detail with data structural diagrams and with 

experimental results. Algorithms have been experimented on with synthetic datasets taken from 

authorized or well-known sources such as TCP-H datasets. However it is perhaps even more 

interesting to know that which semi-stream join would be suitable to a specific industry. Every 

industry will have different types of user/customer data. For example, the retail industry would 

have long-tailed distribution patterns in incoming stream data, whereas a weather forecasting 

dataset perhaps would have different characteristics. This provided the motivation to select an 

industry and an appropriate semi-stream join suited to that industry’s dataset. Therefore there 

is a need to study these semi-stream join algorithms and to observe their performance using 

synthetic and real-life datasets. There is also an opportunity to extend the most suitable semi-

stream join by considering the nature of processing of incoming stream data with disk-based 

master data in real environment. To accomplish our research, we select MITRE 10 NZ. MITRE 

10 NZ is a local owner-operated chain consisting of nearly 150 hardware and home 

improvement stores in New Zealand. 
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1.3 Research Questions 

The aim of this thesis is to address the following two research questions. 

 

a) How does an appropriate semi-stream join perform differently on a real-life dataset when 

compared to a synthetic dataset? 

There are many semi-stream joins proposed with cost models and empirical studies. In most 

cases, semi-stream joins are tested using synthetic datasets while only a few using real-life 

datasets. It is always interesting to do a performance comparison study with both a synthetic 

dataset and a real-life dataset. Every company will have different incoming stream data patterns 

for example, retail industry stream data pattern would be different to a supply chain data 

pattern. This research had the opportunity to implement and test a well-known semi-stream 

join algorithm CACHEJOIN using a dataset produced by MITRE 10 NZ which is one of the 

leading home improvement and hardware retail companies in New Zealand. We conduct a wide 

literature review to identify a suitable semi-stream join for the given organization. We compare 

the performance of the algorithm under both synthetic dataset and the MITRE 10 NZ dataset 

and analyze how the join behaves with the different datasets. We expect to see a different 

performance behavior for the both datasets due to their different characteristics. 

 

b) In MITRE 10 NZ the incoming transactional stream data need to join with two different 

master data tables, the question is how we can extend the normal CACHEJOIN 

algorithm to implement this two-stage join scenario?. 

Currently MITRE 10 NZ transactional data needs to join with two different master data tables 

product table and customer table. The research question here is how we can extend 

CACHEJOIN algorithm to implement this two-stage join scenario? In this thesis we extend the 

existing CACHEJOIN algorithm for the second stage join. Also we compare the performance 

of our extended two-stage join with the normal CACHEJOIN using MITRE 10 NZ 

transactional data. 
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1.4 Approach 

A wide literature review is done in the semi-stream joins that uses different methodologies for 

joining the steam data with the master data. By understanding the workings, advantages and 

disadvantages of the semi-stream join algorithms an appropriate semi-stream join that suites to 

MITRE 10 NZ was chosen, as found in Section 2.2. The characteristics of the MITRE 10 NZ 

transactional data is studied and considered before selecting the algorithm for this 

implementation. The selected semi-stream join was implemented on synthetic and real-life 

datasets, and a performance study on service rate was done with both result sets. Next, an 

extension to the CACHEJOIN algorithm to handle a two-stage join was explored using the 

MITRE 10 NZ transactional tuples. In this extension, the first stage is normal CACHEJOIN 

algorithm which joins stock_code with product master table and the second stage joins 

account_code with customer master table which is in cache. Once this extension was coded, a 

performance evaluation was carried out on the semi-stream join and the two-stage semi-stream 

join using MITRE 10 NZ datasets. And the cost comparison on calculated analytical cost and 

empirical cost is done as a validation of our cost model. 

 

1.5 Structure of the thesis 

The thesis is structured as follows: 

Chapter 1, gives the brief introduction about the near real-time data warehousing particularly 

the stream processing in the near real-time data warehousing. An introduction to the semi-

stream joins and join algorithms are explained with listing few semi-stream join algorithms. It 

explains the reason and benefits for business to build an active or near real-time data 

warehouse. A small scenario explained why and how a real-time data warehouse helps a 

business attain good customer service. The motivation for this thesis, research questions and 

approach were also explained. 

 

Chapter 2, provides a detailed literature review on semi-stream join algorithms. We consider a 

few well-known semi-stream joins and explain their working, advantages, and disadvantages. 

We also present their data structures and architectural design. 
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Chapter 3 presents the reasons for selecting the CACHEJOIN algorithm to implement on the 

MITRE 10 NZ transactional dataset. The chapter also presents CACHEJOIN in detail including 

its pseudo-code and data structure. Following the detailed explanation of the CACHEJOIN 

algorithm, the chapter presents an experimental setup including both synthetic and real-life 

datasets. Finally, the chapter describes the experimental results produced by the CACHEJOIN 

algorithm under the both datasets. 

 

Chapter 4 presents our extension of the CACHEJOIN which is two-stage join. It includes the 

motivation behind this extension. The chapter presents the implementation and the pseudo-

code for our two-stage. Finally, the performance of our two-stage join is compared with the 

normal CACHEJOIN algorithm. 

 

Chapter 5 presents conclusions of this research and describes some future directions. 



Chapter 2 

2 Literature review 

2.1 Introduction 

To have a real-time data warehouse we need to have an effective semi-stream join operator 

which joins the fast coming stream tuple with the master data using limited resource in an 

efficient way. We did an extensive literature review on different semi-stream algorithms for 

this research work. Semi-stream join algorithms that uses different methodologies like the non-

indexing method, the indexing method and the caching method for joining the stream tuples 

with slow moving relational master data are selected. These semi-stream join algorithms are 

studied in detail to understand their working, advantages and disadvantages and given below. 

 

2.2 Existing Semi-Stream Joins 

Figure. 2.1 shows different semi-stream joins studied in this thesis. For the simplicity we 

classify them into three types, non-index-based joins, index-based joins and cache-based joins. 

 

Figure 2.1 Classification of Semi-Stream Join algorithms. 
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2.2.1 Non-Index based Semi-Stream Joins 

2.2.1.1 MESHJOIN 

MESHJOIN was introduced to join a fast stream of data, S, of source updates, with a large 

disk-based relational master data, R. It was specifically designed to join a continuous stream 

data S with a slow moving disk-based master data R as in the scenario in an active or near real-

time data warehouse (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2007). It performs a non-

paused execution of the hash table which is built to load stream data more progressively.  

 

(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008) proposed the algorithm, which relies on two 

basic techniques to increase the efficiency of the necessary disk accesses. Firstly, it accesses 

the master data R solely through fast sequential scans and, secondly, it amortizes the cost of 

disk I/O operations over a large number of stream tuples. Figure. 2.2 shows a graphical 

depiction of this technique and illustrates the main data structures used in this algorithm. The 

mechanics of this diagram is, two inputs are accessed continuously and meshed together to 

generate the output of joining stream data S and disk-based relational master data from data 

warehouse R (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008). To be more specific, this 

performs a cyclic scan of relational data R and joins its tuple over the stream data S. The main 

idea is that the stream tuple enters the window when it arrives and it is expired from the window 

once it is probed with every tuple in master data R. As is shown in Figure. 2.2 it performs a 

continuous scan of relational data R with an input buffer of b pages. On other hand stream data 

S is accessed in batches of ω tuples that are inserted into the contents of the sliding window. 

When any tuple is inserted it causes the removal of the ‘oldest’ ω tuples from the window. To 

find the matching stream tuples more efficiently on each R-tuple, this algorithm synchronously 

maintains a hash table H in memory for the stream tuple based on their join key. Lastly the 

queue Q contains pointers to the tuples in hash table H and basically records the arrival order 

of the batches in the current window. This is used to remove the oldest ω tuples from the hash 

table H once they are expired from the window.  

 

This algorithm is proposed making no assumptions about the physical characteristics of the 

stored relational disk-based master data R such as the existence of index or clustering 

properties, except that it is too large to fit in the main memory. Hence the developed solution 
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(MESHJOIN) is applicable in a wide range of settings. This opens an interesting venue for 

future work as it also opens the possibility of designing more effective join operators that takes 

those particular physical characteristics of disk-based relational master data R into account. 

(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008) gives the detailed experimental results of 

this algorithm which is a novel join operator that works under minimal assumptions about the 

stream data S and the relational master slow changing data R. Experiments were done with a 

real-life weather sensor data dataset which measures different parts of the globe (Carole, 

Stephen & Julius, 1996). This algorithm authors reported that it performs worse with skewed 

data. The performance of MESHJOIN algorithm is inversely proportional to the size of the 

disk-based relational master data R. 

 

Figure 2.2 Data structure and architecture of MESHJOIN algorithm (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 

2008) 

 

2.2.1.2 R- MESHJOIN  

(Asif, Gillian, Gerald & Shafiq, 2010) proposed a new improved version of the MESHJOIN 

algorithm called Reduced MESHJOIN (R-MESHJOIN). The MESHJOIN algorithm has a 

dependency between the partition size in an internal queue for incoming stream data, and the 

required iterations to bring the disk-based relational master data into the memory. This 

dependency hampers optimal memory distribution within the join components. The newly 

proposed, improved version of the MESHJOIN algorithm removes this dependency which 
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enables it to distribute the available memory optimally within the join components. In R-

MESHJOIN, the size of disk-buffer is not affected if the size of the disk-based relation is 

changed. An experimental study was conducted and the argument was validated (Asif, Gillian, 

Gerald & Shafiq, 2010). The study proved that R-MESHJOIN does slightly improve 

MESHJOIN and moreover helped to analyze the MESHJOIN algorithm theoretically and 

experimentally. The architecture of the R-MESHJOIN algorithm is shown in Figure. 2.3. 

 

Figure 2.3 Data structure and architecture of R-MESHJOIN algorithm (Asif, Gillian, Gerald & Shafiq, 2010) 

 

2.2.1.3 Partition Based Join  

(Abhirup & Ajit, 2009) proposed a new algorithm called the partition-based semi-stream join 

algorithm which minimizes disk overhead, processing overhead and delays in output tuples. 

The previous sections outlined a novel state-of-art semi-stream join algorithm called 

MESHJOIN (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), (Neoklis, Spiros, Panos, Alkis 

& Nils-Erik, 2007) which is the pioneer join in semi-stream join operators. Though 

MESHJOIN works better in a few scenarios, it has some limitations. The algorithm performs 

less well with a skewed data arrival pattern and the performance is inversely proportional to 

the size of the disk-based master data. Based on MESHJOIN performance and limitations 

authors (Abhirup & Ajit, 2009) proposed a new partition-based semi-stream join to join fast-
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paced incoming stream with determined relational data. This partition-based algorithm 

identifies the fast incoming stream tuple locality by joining often repeated incoming stream 

tuples inside the memory partitions. This is the difference between MESHJOIN and this newly 

proposed partition-join algorithm.  

 

Unlike the MESHJOIN algorithm, the majority of incoming stream tuples are joined in a single 

disk read by which average processing time will be less. Disk access frequency is decreased by 

maintaining a wait-buffer which has all incoming stream tuples related to the partitions made 

on the disk. Once the wait-buffer is full, it invokes disk probing. When the pending tuples count 

corresponding to the specified partition is exceeds the invocation threshold (which is basically 

a user-defined limit), the disk probe is invoked. This means that the new approach does one 

disk read only to join the incoming stream tuple. In this partition-based join the disk-based 

relational table can be updated while join operations happen. 

 

Figure. 2. 4 shows the join framework of this partition-based join. In this partition-based join, 

space a partitioning technique (hash-based or range-based) is applied to the disk relation in 

order to divide it into several segments which divides the series of joining attributes into various 

numbers of partitions. A cost-based caching method is applied to maintain the subset of 

segments in the memory which increase the in-memory service rate of incoming stream tuples. 

The incoming stream tuple is mapped to the respective partition in attribute space. Based on 

the availability of the respective disk segment in memory, the incoming stream tuple is joined 

with a disk segment or the stream tuple will be stored in the wait-buffer. Disk probing is 

invoked once the above mentioned conditions are met. Partitions are selected by the disk probe 

based on the order of sizes of tuples buffered in the wait-buffer and retrieves the disk segment 

and the buffered stream tuples are joined with the disk segment. Experimental results with cost 

calculation are given in (Abhirup & Ajit, 2009) and the performance appears better than the 

pioneer semi-stream join MESHJOIN. 



21 
 

 

Figure 2.4 The Join Framework of the Partition-based Join (Abhirup & Ajit, 2009) 

 

2.2.2 Index based Semi-Stream Joins 

2.2.2.1 SEMI-STREAMING INDEX JOIN 

The Extraction-Transformation-Loading (ETL) process plays a vital role in building efficient 

data warehouses. Traditionally this process is done during the business’s quiet time, normally 

at night in batches, due to the time and resources involved. One of the most important steps in 

the ETL process is surrogate key replacement. This process is basically joining the tuples from 

each source with the metadata table which relates to the surrogate key and its related key. This 

process is called as conforming (Ralph & Joe, 2004). The traditional method of updating data 

warehouses in this off-line fashion, as illustrated in research and studies, is used as it enables 

efficient bulk loading techniques (Tom, Robert, Jim & Prakash, 1994), (Nick, Yannis & Mema, 

1997) and the ETL process does not interfere with the query workload. However, in emerging 

applications, such as supply-chain monitoring, network monitoring, etc., we need to have 

efficient joins to perform the ETL process in an on-line fashion to build active data warehouses. 
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(Mihaela, Antonios, Yannis, Vasilis & Athens, 2011) proposed a novel algorithm called the 

Semi-Streaming Index Join (SSIJ) which maximizes the output of join by making use of 

effective index and caching frequently used pages into the memory. The main ideas of this 

algorithm are, the fast joining of stream tuples with matching the disk-based relational blocks, 

batch stream tuple processing which is batching the relational tuple required by stream tuples, 

batch index lookups, reading specific areas of the relational disk which are requested, more 

frequently requested pages are maintained in the memory so that they can easily be accessed, 

and adjusting the memory of the data structures dynamically. There are five components 

involved in the SSIJ algorithm and they are, index, cached relational blocks, input buffer, 

stream buffer and inverted index. Figure. 2.5 gives an overview of the Semi-Streaming Index 

Join. 

 

This algorithm consists of three phases and they are the Pending phase, Online phase and Join 

phase. In the first phase (Pending phase) the algorithm waits for the minimum number of stream 

tuples in the input buffer to accommodate enough tuples to form a batch. The algorithm is 

moved to the next phase only when the number of required tuples is obtained in the input buffer 

component. This is mainly to take advantage of common access patterns and thus help in 

amortizing index and lookup costs. Once the tuples are filled in input buffer then the second 

phase kicks off.  

 

The second phase is the online phase. In this phase the tuples are sorted based on used index 

characteristics. This sorting allows the algorithm to share the scans of index and of cached disk-

based relational pages among several tuples. The join result is outputted immediately on all 

matching disk-based relational tuples that are in the cache. Any stream tuples that are not joined 

in this online phase needs to wait for the next phase, the join phase. This is the last phase and 

stream tuples will be matched in this phase when their matching disk-based relational tuple is 

located on the disk. Once the join phase is complete, the algorithm moves back into the first 

phase that is the pending phase. This Semi-Streaming Index Join is a state-of-the-art algorithm 

in index-based joining algorithms. The experimental results of this algorithm show that this 

algorithm supports very fast stream inputs and optimally exploits available memory. 
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Figure 2.5 SSIJ Overview (Mihaela, Antonios, Yannis, Vasilis & Athens, 2011) 

 

2.2.2.2 HYBRIDJOIN 

In the section 2.2.1.1, we discussed the non-indexed semi-stream MESHJOIN. It reads the disk-

based relational slowly-moving master data sequentially in partitions and then performs 

joining. The architecture and explanation of how it works is given in that section. This 

MESHJOIN algorithm successfully amortizes the fast arrival rate of the incoming stream data 

S, by executing the disk partition join with a large number of incoming stream tuples. However 

there are few issues found in this algorithm. Firstly, this algorithm reads unused or less used 

partitions of disk-based relational master data R by accessing it from the table sequentially, 

which increases the processing time of each stream tuple that is in the queue due to extra disk 

I/O. Secondly this algorithm cannot deal with burst incoming stream data effectively. If the 

stream input size is greater than or equal to the number of tuples in the stream buffer then disk 

invocation occurs. If the stream input data size has a lower arrival rate, then the existing tuples 

in the queue need to wait longer due to the delay in disk invocation. This waiting time also 

affects performance negatively. To overcome/handle these two issues, (Asif, Gillian & Gerald, 

2011) proposed a new semi-stream join called the HYBRIDJOIN. Figure. 2. 6 shows the data 

structure and architecture of the HYBRIDJOIN algorithm. The components of HYBRIDJOIN 

algorithm are same as those of the MESHJOIN algorithm, which are; disk buffer, hash table, 

stream buffer and queue. In HYBRIDJOIN algorithm, it is assumed that relational master data 
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R contains sorted, unique and indexed values of join attribute. The disk buffer is used to store 

a portion of disk R data. The value of the join attribute is stored in the queue which also stores 

the address of its one-step neighbor nodes. There is a new feature of random deletion 

implemented in the HYBRIDJOIN algorithm queue which uses a doubly-linked-list. An 

important component in this algorithm is the hash table which stores the input stream tuples 

and the node addresses of the queue corresponding to the tuples. The benefit of this is the 

algorithm can start matching with all matching stream tuples from the queue once the disk 

partition is loaded into the memory using the join attribute value from the queue. This method 

helps to reduce the disk I/O cost of a fast arrival stream. Whenever a match is found, the 

algorithm generates an output of that tuple and then removes that node from queue and also the 

corresponding tuple from the hash table. Unmatched tuples are dealt with in a similar way to 

the MESHJOIN algorithm. Every disk input is bound to the stream input in the MESHJOIN 

algorithm whereas in the HYBRIDJOIN algorithm this constraint is removed by making 

independencies between each disk invocation from the stream input data. The cost model of 

this semi-stream join is explained in (Asif, Gillian & Gerald, 2011) along with a comparison 

analysis with the MESHJOIN algorithm and experimental results based on the Zipfian’s 

distribution (Chris, 2006) pattern synthetic dataset. The theoretical results shows that this 

HYBRIDJOIN algorithm is significantly better than the MESHJOIN algorithm. 

 

Figure 2.6 Data structure and architecture of HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2011) 
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2.2.2.3 X-HYBRIDJOIN 

The HYBRIDJOIN algorithm join process described in section 2.2.2.2 uses an index. The 

MESHJOIN algorithm (section 2.2.1.1) does not take stream tuple frequency into account and 

does not need master data tuples to be indexed. In some circumstances this can be useful, but 

in many other cases in order to gain maximum performance, one obviously wants to have 

indexing. (Muhammad, Gillian & Gerald, 2011) proposed a new algorithm called the Extended 

HYBRIDJOIN algorithm (X-HYBRIDJOIN). The key feature of this algorithm is that it stores 

the most used portion of the master data R, which is disk-based relational data, which most 

often matches received items from stream data S in the memory. This reduces the disk I/O cost 

considerably and improves the performances of the join algorithm.  

 

There are two major changes in the X-HYBRIDJOIN algorithm, when compared with the 

MESHJOIN algorithm. The first is that, hash join component is modified in the X-

HYBRIDJOIN algorithm to make use of an index. The second is that the X-HYBRIDJOIN 

algorithm caches most frequently used relational disk-based master data R. In the 

HYBRIDJOIN algorithm only the first change was implemented.  

 

Figure. 2.7 shows the working overview of X-HYBRIDJOIN. The difference between the 

HYBRIDJOIN and the X-HYBRIDJOIN algorithm is that the disk buffer component is divided 

into two parts. One is to store the most used pages of master data R permanently in memory 

called Non-Swappable in the diagram, and the other is to store the partitions of the remainder 

of the master data in the memory as is done in the HYBRIDJOIN algorithm. The algorithm 

becomes ready to be executed once available memory is distributed within the join 

components. The algorithm reads a particular portion of the master data R and loads it into the 

non-swappable part of the disk buffer before it starts the actual join execution. When the 

algorithm starts the hash table H slots are empty as incoming stream data S is to be assigned to 

it. Basically, the algorithm has two loops, an outer loop and an inner loop. The outer loop is an 

endless loop, its key role being to build the stream in the hash table. Within this loop there are 

two inner loops run by the algorithm. One of the inner loop performs the probing module in 

the non-swappable portion of the disk buffer and the other inner loop performs the probing 

module in the swappable portion of the disk buffer. When the outer loop is started, the 
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algorithm observes the stream buffer status. If there is any stream found, it loads it into the 

hash table and also enqueue its attribute values in the queue. Now the algorithm executes the 

first inner loop. First inner loop reads every tuple from the non-swappable part one-by-one and 

performs lookup in the hash table. If there is any match found it generates an output and also 

deletes it from the hash table and the corresponding node in the queue. Then the algorithm 

increments the available vacated slots in the hash table. This is the end of the first inner loop. 

Before starting the second inner loop, the algorithm reads the oldest value from the queue and 

the swappable part of the disk buffer is loaded using the join attribute value as an index. Once 

this action is performed, a similar probing procedure to the first inner loop is performed here. 

If the first inner loop is switched-off, technically it becomes a HYBRIDJOIN algorithm. After 

various experiments, results shows that the X-HYBRIDJOIN algorithm performs better than 

other algorithms when relational master data R increases. Though the authors proposed a new 

algorithm by adding another component (the non-swappable portion of disk buffer) to the 

HYBRIDJOIN algorithm, they plan to improve this algorithm by tuning the X-HYBRIDJOIN 

algorithm to utilize the available memory resources optimally. 

 

Figure 2.7 Data structure and architecture of X-HYBRIDJOIN algorithm (Muhammad, Gillian & Gerald, 2011) 
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The authors continued the work of improving the performance of the X-HYBRIDJOIN 

algorithm by better tuning the available memory resources (Muhammad, Gillian & Gerald, 

2011). The existing cost model of the X-HYBRIDJOIN algorithm was revised and the join 

component was also tuned based on that cost model. As an outcome of this tuning, the available 

memory is distributed within all components properly and it has improved performance of the 

algorithm significantly. This new algorithm was presented by (Muhammad, Gillian, Gerald & 

Imran, 2012) with the name “Tuned X-HYBRIDJOIN Algorithm” with new cost model 

calculation and experimental results. The size of both the non-swappable and the swappable 

parts of the disk buffer are tuned to have memory distributed optimally to give better 

performance of the algorithm. The experimental outcome of Tuned X-HYBRIDJOIN 

algorithm was compared with the X-HYBRIDJOIN and proved that the revised cost model 

tuned algorithm performance is significantly better than that of the X-HYBRIDJOIN 

algorithm. 

 

Optimized X-HYBRIDJOIN  

The researchers (Muhammad, Gillian & Gerald, 2011), (Muhammad, Gillian, Gerald & Imran, 

2012) investigated whether the performance of the X-HYBRIDJOIN algorithm could be further 

improved by handling frequently accessed data in a different way. They proposed a new join 

algorithm called “Optimized X-HYBRIDJOIN Algorithm” (Asif, Gillian & Gerald, 2012). 

This algorithm has two phases, one called the stream-probing phase and the other the disk-

probing phase. The stream-probing phase deals with disk-based relational master data tuples R 

that are accessed frequently, and the disk-probing phase deals with the other parts of the 

relational disk-based master data R. Experimental outcomes for this Optimized X-

HYBRIDJOIN algorithm are significantly better when compared with the performance of X-

HYBRIDJOIN. The motivation for this Optimized X-HYBRIDJOIN algorithm was to 

minimize the bottleneck in the stream of updates.  

 

Figure. 2.8 shows the memory architecture for the Optimized X-HYBRIDJOIN algorithm. This 

new optimized join algorithm decomposes it into two hash join phases called the disk probing 

phase and the steam-probing phase which can be executed separately. With respect to memory 

size, the largest component of this algorithm are two hash tables, one used to store steam tuples 
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which is denoted as 𝐻𝑆 and other to store tuples from disk-based relational master data R, which 

is denoted as 𝐻𝑅. The disk buffer, stream buffer and queue are the other main components of 

the algorithm.  

 

The optimized X-HYBRIDJOIN algorithm alternates between the disk-probing phase and the 

stream-probing phase, parts of the update stream that are not matched in 𝐻𝑅 are stored in hash 

table 𝐻𝑆. If the stream buffer is empty, or the hash table 𝐻𝑆 is full, the stream-probing phase 

ends and the disk-probing phase becomes active. In this disk-probing phase, the loading 

partition of R is determined by the oldest tuple found in the queue for the single probing step. 

When an adequate number of stream tuples are removed from the hash table 𝐻𝑆, often after one 

probe iteration, the algorithm switches back to the other probing phase. One stream-probing 

phase with a subsequent disk-probing phase establish one outer iteration of the Optimized X-

HYBRIDJOIN algorithm. The disk-probing phase is not dependent on the stream-probing 

phase and so it can work on its own. The stream-probing phase boosts performance by quickly 

matching the more often used relational master data tuples R. 

 

Figure 2.8 Memory architecture of Optimised X-HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2012) 
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2.2.3 Cache based Semi-Stream Joins 

2.2.3.1 CMESHJOIN 

The MESHJOIN algorithm is a novel semi-stream join algorithm that works under minimal 

assumptions about the stream data S and disk-based relational slow moving master data R, but 

does not perform well with skewed data distribution (Neoklis, Spiros, Panos, Alkis & Nils-

Erik, 2008). Hence a new algorithm called Cached MESHJOIN (CMESHJOIN) algorithm was 

proposed to improve the service rate by exploiting the skewed distributions of the stream data. 

(Asif, Gerald, Gillian & Christof, 2013) proposed a generic component called a cache which 

can be used as a front-stage for an arbitrary semi-stream join algorithm. Here the authors only 

considered one-to-many equijoins. This join occurs between a referenced primary key and 

foreign key. This join is an important class that occurs logically in online auction systems 

(Arvind, Shivnath & Jennifer, 2002), supply chain management (Eugene, Yanlei & Shariq, 

2006) and in data warehousing (Lukasz, Theodore, Spencer & Vladislav, 2009). This algorithm 

is based on the MESHJOIN algorithm and it is extended with another phase called the Cache 

Front-stage to exploit skewed distributions.  

 

By adding a front-stage to the MESHJOIN algorithm, a new algorithm called C-MESHJOIN 

algorithm as presented. Figure. 2.9 shows the execution architecture of this algorithm. In this 

algorithm both the MESHJOIN and the front stage are hash joins, hence this algorithm can be 

seen overall as holding two complementary hash join phases. In one phase, the MESHJOIN 

uses relational master data R stored in the tertiary memory. In the second join phase, the front-

stage uses the incoming stream tuple S as the probing input and deals only with a small part of 

relational master data R. For each incoming stream S input, CMESHJOIN first uses the front-

stage to find the join on frequent requests. If there is no join or match found in the front-stage, 

the stream tuple S is sent to the next phase called the MESHJOIN phase. This algorithm uses 

the original MESHJOIN architecture though there are alternative architectures such as using 

an order-preserving hash table data structure rather than a queue.  

 

There are two main components in CMESHJOIN with respect to memory size and they are 

hash tables. One hash table is to store stream tuples, denoted as 𝐻𝑆 and other hash table is to 

store the tuples from the disk based relational master table, denoted as 𝐻𝑅. This is relational 
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master table hash 𝐻𝑅 is the cache that stores most frequently accessed tuples from relational 

master data table R. Other main components are the disk buffer, frequency recorder, queue and 

stream buffer. The disk buffer is used to load parts of relational data R into memory using 

equally sized partitions. The frequency recorder is used to record the number of time tuples 

stored in 𝐻𝑅 are accessed. The queue stores the pointers to the stream tuples that are saved in 

stream hash table 𝐻𝑆 by keeping track of the tuples’ order and enabling the removal of 

completely processed tuples. The stream buffer is a small buffer which holds part of stream for 

a while if necessary.  

 

CMESHJOIN alternates between the front-stage phase and the MESHJOIN phase. Streams that 

do not match hash table 𝐻𝑅 are stored in hash table 𝐻𝑆. The first front-stage phase will end if 

hash table 𝐻𝑆 is completely full or the stream buffer becomes empty. Once the front-stage has 

ended, the second phase, MESHJOIN, becomes active. In every iteration of MESHJOIN, the 

algorithm loads a set of master data R tuples into memory to amortize the cost of disk access. 

Once disk pages are loaded into the disk buffer, the algorithm starts its probing and each tuple 

in the disk buffer in 𝐻𝑆 is probed. Output is generated once the match is found. After each 

iteration the oldest chunk of stream data is removed from 𝐻𝑆. As the algorithm reads master 

data R sequentially, an index is not required on R. Here the front-stage phase is used to improve 

performance by quickly matching the most frequently accessed master data R. An experimental 

study was performed and discussed with a cost model (Asif, Gerald, Gillian & Christof, 2013), 

on one-to-many joins and provided better performance than the MESHJOIN algorithm. 
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Figure 2.9 Data structure and architecture of CMESHJOIN algorithm (Asif, Gerald, Gillian & Christof, 2013) 

 

2.2.3.2 CACHEJOIN 

CACHEJOIN is another semi-stream join algorithm which is based on the caching method. 

This algorithm was proposed to give better performance in long-tailed skewed distribution 

patterns in incoming stream data (transactional data). Functionally, this semi-stream join is 

similar to HYBRIDJOIN which was explained in section 2.2.2.2. In CACHEJOIN a new logic 

is introduced which caches frequently-accessed relational database master data tuples in the 

static memory and this is called phase one in the CACHEJOIN algorithm (Figure 3.1). The 

second phase is basically a HYBRIDJOIN phase. So this CACHEJOIN has two phases, firstly 

the algorithm try to find the match from cached frequently accessed relational database master 

table tuple and if there is no match is found then it moves on to the second phase. There is a 

threshold factor involved to identify the frequently-accessed tuples. This threshold level is 

defined by the user at the beginning of this algorithm. At this stage there is no automatic tuning 

process done by the algorithm while it is running, but the authors (Asif, Gillian & Gerald, 2012) 

will develop future work in this area. As the algorithm does the joining with the most frequently 

cached tuples first, this boosts performance. As this was the algorithm chosen to implement 

with the MITRE 10 NZ dataset, it is explained in more detail with a cost model and architecture 

in the following. 



Chapter 3 

3 Implementation of CACHEJOIN in MITRE 10 NZ 

3.1 MITRE 10 NZ current setup 

Currently MITRE 10 doesn’t have an active or real-time data warehouse. They have a 

traditional data warehouse which always has one day old data. Normally a data backup of the 

live system to the data warehouse cannot be performed during business hours due to data 

integrity issues and because to do so has an effect on the live system giving rise to system 

slowness. When entering data into the data warehouse, a few processes such as data mapping 

are necessary. Normally, copying data from the live database to the data warehouse is done at 

night time. At MITRE 10 NZ, the live, point-of-sale system is connected to a UNIX server 

database called Powerflex. Added to this, the backup strategy is not optimal as there cannot be 

any JDBC installed in the system, so there is no way to easily establish a connection to the 

database from Java IDE. Instead all tables from the Powerflex database are copied across to 

the MySQL data warehouse at night and from there reports are created and published to users. 

This means users will only have a day-old data. If they want to know any current stock 

inventory position for an item then they need to log in to the AS400 system and run a report 

for that item to know the status. This cannot be undertaken on all items at one time and 

performing it on every item individually is also not feasible due to the range of products they 

have. Though there are many tables available in the data warehouse only three tables’ data is 

of interest here. They are; transactional stream input data, product master data and customer 

master data. These attributes and data types are explained in Tables 3.1, 3.2 and 4.2 

respectively. 

 

3.2 Suitability of CACHEJOIN to MITRE 10 NZ 

In this work we implemented CACHEJOIN algorithm in MITRE 10 NZ, one of the largest 

companies in New Zealand, and tested using both synthetic and live MITRE 10 NZ 

transactional datasets. Performance of this algorithm on both datasets is observed and studied. 

MITRE 10 NZ has master data of nearly three hundred thousand unique product items indexed 

by product key. As this master data is uniquely indexed MESHJOIN, R-MESHJOIN and 
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CMESHJOIN algorithms were not considered for this implementation as these algorithms do 

not implement indexing. On the other hand HYBRIDJOIN, X-HYBRIDJOIN and 

CACHEJOIN algorithms use indexes to boost performance and work well with unique, indexed 

master data whereas the MITRE 10 NZ master data is also unique. Moreover, we analyzed 

MITRE 10 NZ and identified that it has a long-tail skew in it. In this case, around 15% of the 

master data being more frequently used and the other product items are rarely being purchased 

by customers hence not often used. This distribution pattern suits HYBRIDJOIN, X-

HYBRIDJOIN and CACHEJOIN algorithms well (Asif, Gillian & Gerald, 2011), (Asif, Gillian 

& Gerald, 2012), (Muhammad, Gillian & Gerald, 2011), (Asif, Gillian, Gerald & Christof, 

2012), (Asif, 2014).  

 

Now the question was, which algorithm from the above list is optimal for MITRE 10 NZ? The 

HYBRIDJOIN algorithm does not use caching method whereas the CACHEJOIN algorithm 

use caching method in the first phase before it moves into the second phase which is technically 

a HYBRIDJOIN. Because the CACHEJOIN algorithm has advantage of caching method 

adding to the HYBRIDJOIN, the HYBRIDJOIN algorithm were not considered for this 

implementation. The X-HYBRIDJOIN algorithm uses caching method but the limitation for 

this algorithm was the need of sorting master table. This make a difference from the 

CACHEJOIN algorithm whereas there was no sorting needed.  Also before making the 

selection the size of MITRE 10 NZ master data was studied. The size of the product master 

data was around only three hundred thousand. Because of the X-HYBRIDJOIN algorithm 

limitation we see that the CACHEJOIN algorithm was more suitable as it could cache almost 

every frequently used product items into the hash memory. As most of the frequently-used 

product items are cached in the hash memory, performance would be better than that of the 

HYBRIDJOIN algorithm. Most of the incoming stream tuples would be joined in the first phase 

of the CACHEJOIN algorithm itself before it moved into the second phase of join which is 

typically HYBRIDJOIN phase. In this way advantage is derived from cached memory. These 

observations motivate us to implement the CACHEJOIN algorithm to process MITRE 10 NZ 

transactional data. 
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3.2.1.1 Components of CACHEJOIN 

Following are the key components involve in CACHEJOIN algorithm: 

 

Disk Buffer: This is the component that loads the disk pages from the disk-based master data 

table (product) into the memory. The number of tuples to be retrieved from the master table to 

the disk pages can be controlled by the user and this needs to be set before executing this 

program.  

 

Stream Buffer: The stream buffer is used to hold the fast, incoming stream if required. For 

example, if the rate of incoming stream tuples is faster than the service rate of the algorithm, 

then the stream tuples will overflow. In this case, this overflow part of the input stream can be 

stored in the stream buffer temporarily. 

 

Hash Tables: There are two hash tables used in the CACHEJOIN algorithm unlike other 

algorithms such as MESHJOIN, R-MESHJOIN, and HYBRIDJOIN. They are called the 𝐻𝑅 

and 𝐻𝑆 tables. 𝐻𝑅 stores most frequently-used disk tuples from the product master data table. 

𝐻𝑆 stores the incoming stream tuples. As mentioned above, the Java hash table does not support 

the storing of multiple tuples containing the same key value at the same time. Therefore 

MultiHashMap provided by Apache is used to implement the algorithm. The fudge factor value 

that was considered in this implementation is 8. 

 

Queue: The queue is used to store the pointer addresses of tuples in the hash table in order to 

keep a record of expired tuples. Each node in the queue is based on a double-linked list which 

contains the attribute value and the addresses of one-step neighbor nodes. 

 

Frequency Recorder: This component is used to record the frequency of matching the master 

data tuples with stream tuples. This component is an important as this is the gate for the master 

data tuples to enter into the cache memory where frequent master data tuples are stored and 

used to process input stream tuples. There is a threshold value to decide the switching of master 
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data tuple into the cache. This threshold is a flexible barrier and its value is controlled 

automatically by the algorithm. 

 

Following are the two inputs that algorithm take in each of its iteration: 

Relation R: This is the disk-based relational master data R that is stored in a MySQL database.  

 

Stream S: This is the incoming stream data which is basically transactional data from the point 

of sale system in any retail store. Each stream tuple typically includes keys and a few attributes 

at the point of sale time such as quantities, time and date of sale, promotional offers, etc.  

 

3.3 CACHEJOIN execution architecture 

The CACHEJOIN (Cache Join) is a well-known algorithm (Asif, Gillian & Gerald, 2012) and 

was particularly designed to process skewed stream data with disk-based master data 

efficiently.  In this algorithm, performance is not affected when a large number of unused or 

rarely used data is added to the disk-based relational master data R.  

 

Figure. 3.1 shows the data structure and architecture of the CACHEJOIN algorithm. The 

pseudocode of the algorithm is given in Algorithm 3.1. An index is required for the 

CACHEJOIN algorithm to access the master data R selectively. This algorithm has two 

complementary hash join phases. One is disk-probing phase in which R is used as a probing 

input with the largest part stored in the tertiary memory. The other is called stream-probing 

phase in which the stream data is used as the probing input. This phase deals only with a small 

set of R. For every incoming stream tuple, CACHEJOIN algorithm first uses the stream-

probing phase to quickly find matches on frequently-requested tuples from the master data R 

in cache. If there is no match found, the incoming stream tuple is forwarded into the next 

probing phase called the disk-probing phase. In this algorithm two hash tables 𝐻𝑆 and 𝐻𝑅 are 

the largest components with respect to the memory size. 𝐻𝑆 is used to store stream tuples 

whereas 𝐻𝑅 is used to store master data tuples. The other main memory components are the 

disk buffer, the stream buffer and the queue. The disk buffer loads the disk pages from the disk-
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based master data table (product) into the memory, the stream buffer is used to hold the fast 

incoming stream if required and the queue is used to store the pointer addresses of tuples in the 

hash table in order to keep a record of expired tuples. The CACHEJOIN algorithm alternates 

between the stream-based probing phase, and the disk-based probing phase.  

 

Once the stream buffer is empty or the hash table 𝐻𝑆 is completely full, the stream-probing 

phase ends and the disk-probing phase becomes active. In the disk-probing phase, the oldest 

tuple found in the queue is used to decide the master-data partition which is loaded for a single 

disk-probing phase into the disk buffer. This ensures that in every probe step process, the 

CACHEJOIN algorithm matches at least one tuple. After this probe step, and an adequate 

number of stream tuples are matched in hash table 𝐻𝑆, these are removed using the queue which 

supports this process of removing processed tuples from 𝐻𝑆. Once the disk-probing phase is 

complete, the algorithm is switched back to the stream-probing phase and this constitutes one 

outer iteration of the CACHEJOIN.  

 

 

Figure 3.1 Data structure and architecture of CACHEJOIN algorithm (Asif, Gillian & Gerald, 2012) 
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As with the HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2011)  the disk-probing phase 

can work independently from the stream-probing phase. The authors (Asif, Gillian & Gerald, 

2012),  (Asif, Gillian & Gerald & Chistof, 2013), (Asif, 2014) give a cost model of this 

algorithm and experimental study of the CACHEJOIN algorithm performance compared to the 

MESHJOIN algorithm (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), the R-MESHJOIN 

algorithm (Asif, Gillian, Gerald & Shafiq, 2010) and the HYBRIDJOIN algorithm (Asif, 

Gillian & Gerald, 2011). 

 

 

Algorithm 3.1 Pseudo-code for CACHEJOIN algorithm (Asif, 2014) 
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3.4 Experimental Set up 

This section explains the system used for this implementation and the characteristics of the 

datasets. 

 

3.4.1 System Setup 

We implement the algorithm in Java language using Eclipse IDE version 4.4.0. We run our 

experiments on Intel Core i5 processor with 8GB main memory (RAM) and 700GB disk 

memory under the Windows 7 Professional Edition 64-Bit Operation System. The master data 

is stored on disk using MySQL database. To measure the memory cost of the algorithm we use 

external library “Sizeofag.Jar”. To measure the processing cost we use “System.NanoTime ()” 

method, provided by Java API. As Java hash tables do not support the storing of multiple tuples 

corresponding to the same key value, MultiHashMap provided by Apache Common 

Collections is used to store multiple tuples corresponding to the same key value at the same 

time. This is necessary as in this experiment this algorithm runs on a retail industry dataset 

where many customers can buy the same product within the same time period. For example, 

Customer A and Customer B can buy a cleaning towel at the same time.  

 

3.4.2 Datasets 

3.4.2.1 Synthetic dataset 

The stream dataset used in this algorithm is based on a Zipfian’s distribution which is found in 

a wide range of applications (Chris, 2006). There are 42 attributes in each tuple with size of 

168 bytes. We consider each stream tuple equal in size to the MITRE 10 NZ transactional 

stream tuple. And the size of each master data tuple is also consider equal to the size of MITRE 

10 NZ master data tuple. In our experiment the size of master data is three hundred thousand 

unique indexed tuples with each tuple having 86 attributes. Basically, we keep the structure of 

the synthetic dataset same as MITRE 10 NZ’s dataset, so that performance is compared fairly 

against the real-life dataset. 
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3.4.2.2 Real-life dataset 

We use the real-life transactional dataset from MITRE 10 NZ. The incoming stream tuples 

have 42 attributes with different data types and they are explained below in Table. 3.1. The 

keys in this transactional data are stock_code and account_code (both are foreign key). In the 

CACHEJOIN algorithm we implement the join of only one attribute stock_code. Stock_code 

is the foreign key that joins with the primary key in master table called sc. This sc table has 86 

attributes for every item/product as presented in Table. 3.2.  

 

 

Table 3.1 Data specifications of MITRE 10 NZ transactional stream dataset. 
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Table 3.2 Data specifications of MITRE 10 NZ product master table dataset. 

 

Characteristics of Real-life transactional dataset 

We studied the MITRE 10 NZ transaction (incoming stream) dataset to understand the tuple 

arrival pattern. This was necessary so suitable semi-stream joins could be selected according 

to the behavior or pattern of MITRE 10 dataset used for implementation. The study confirms 

that the incoming stream arrival pattern is identified as a long-tailed skewed pattern and Figure. 

3.2 displays the distribution pattern of MITRE 10 NZ incoming stream data. This figure 

presents the pattern on two scales, the first graph showing the approach in normal scale whereas 

the second graph is based on a logarithmic scale. These graphs shows that the customers are 

more frequently buying a few items rather than every item being purchased at the same rate. 

This concludes that that there could be many items which are not purchased over a period.  
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Figure 3.2 Incoming (transactional) dataset data distribution pattern of MITRE 10 NZ 

 

3.5 Execution of the CACHEJOIN algorithm 

To execute CACHEJOIN algorithm on the MITRE 10 setup a few things needed to be done. 

The aim of this study is to execute the CACHEJOIN algorithm on both a synthetic dataset and 

on the MITRE 10 dataset and carry out a performance comparison study on both data results. 

The algorithm was executed with different memory budgets as well. In order to do this 

successfully, we need to do some preparation work before running this algorithm. As explained 

in Section 3.1, we found few difficulties in implementing CACHEJOIN algorithm in live 

MITRE10 point-of-sale system. This is mainly because of current system architecture of 

MITRE10 NZ. There cannot be any JDBC installed in the live point-of-sale system. Hence the 

point-of-sale system cannot be connected to the master tables which is in MySQL database for 

joining streams with master data. To overcome this issue we took a copy of real transaction 

data from the point-of-sale system backend UNIX database and created a same replica table in 

MySQL database. This allowed us to run the CACHEJOIN algorithm with MITRE10 NZ real 

dataset. Also as explained in Section 3.4.1, to handle multiple tuples with the same key value 

MultiHashMap Jar files provided by Apache need to be added. Another jar file called 

“SizeofJar” is added to measure the processing cost. The System.Nanotime () method is used 

to measure processing time. A JDBC MySQL connector is added to the program to establish a 

connection between the MySQL master tables. Finally, output costs are written to the text file 

by the algorithm, the file name and location being controlled by the user.  
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To do a proper comparison study (apples-apples and oranges-oranges), the CACHEJOIN 

algorithm is used to run on a synthetic dataset amended to have the same number of attributes 

as the MITRE 10 dataset. In this study the size of the product master table does not change 

over all experiments. This is based on the MITRE 10 real-life scenario. For incoming 

transactional stream data, the entire December 2014 live data received from MITRE 10 NZ 

was used. The reason for using an entire month’s volume is to have a larger dataset for 

experiment. All experiments are run during a quiet period where no other processes are running 

on the system at the same time. Once the execution is completed and the output is written to 

the output text file, then the CACHEJOIN cost calculation is applied to derive the service rate. 

From the output data, the first and last 15% of the data was not considered in our calculation. 

This is to make sure that we are not considering noisy scores in our service rate calculation. 

This is also enough time to give to the algorithm a warmup before starting to measure the costs. 

This is achieved by adding the FOR loop in execution process and only the last round costs are 

captured. In our experiments the algorithm is run for four times and on the fourth run, the costs 

are captured. This makes the comparison study more meaningful as the number of attributes 

and tuples considered are the same in both synthetic and real-life executions. 

 

Experiments are completed with synthetic and real-life dataset as stated in the above section. 

The performance comparison study on service levels is done and explained in the following 

section. 

 

3.6 Results 

We want to understand the behavior of CACHEJOIN algorithm when it run with different 

memory sizes. The same algorithm is run with a synthetic dataset and with the MITRE 10 NZ 

dataset without making any changes to any user-defined parameter values as stated at the 

beginning of the CACHEJOIN.java file. And the system setup also remains the same when we 

run the algorithm with two different datasets. Service rate is calculated using the cost model by 

the authors (Asif, Gillian & Gerald, 2012). 
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Performance comparisons for different memory budgets: This experiment compares the 

performance of CACHEJOIN algorithm using both synthetic and real-life datasets. We run our 

experiment for different memory budgets varying from 50MB to 200MB. The size of the 

product master table (sc table) is set to a fixed size of 300,000 tuples in all our experiments. 

Figure. 3.3 shows the output of this experiment. From the figure we can see that the service 

rate (tuples processed in a second) of CACHEJOIN algorithm on MITRE 10 NZ dataset is very 

close to that of synthetic dataset. The reason for the slight variance could be due to the skew 

variation in real-life dataset. This also confirms that the implementation of CACHEJOIN 

algorithm on the MITRE 10 NZ dataset produced an acceptable output. 

 

 

Figure 3.3 CACHEJOIN algorithm service rate comparison of synthetic and real-life dataset. 



Chapter 4 

4 Extension of CACHEJOIN in MITRE 10 NZ 

4.1 Motivation 

MITRE 10 NZ transactional data includes two key attributes (stock_code and the 

account_code) which need to be joined with the two different tables in disk-based master data. 

Product attributes can be identified by joining the stock_code key into product master table 

using simple CACHEJOIN algorithm. But to understand the type of transactions (whether retail 

customer or trade customer) we need to have two phase CACHEJOIN algorithm which 

account_code key from the same transaction is joined with another master table called 

cs_person. This second join cannot be done with current simple CACHEJOIN algorithm and 

hence there is a need to have two phase join CACHEJOIN algorithm. The stock_code attribute 

needs to join with the product table (sc) in master data to get information about each product 

item such as product name, product color, product length, product retail price, product cost 

price and etc. For example, hammer, Black color, 60cm length, $30, $25, etc. While, the 

attribute account_code needs to with the customer table in the master data to get information 

about the customer such as customer name, customer address, customer contact number, 

customer trading name etc. For example, David George, Auckland, 09-123456, Global Traders, 

etc.   This joining of a stream tuple with two tables in the master data motivates us to extend 

our normal CACHEJOIN algorithm for implementing the join operation with two different 

tables in the master data. We call it Two-Stage join. Under the first join stage (which is normal 

CACHEJOIN) stream tuple is joined with the product table (sc) in the master data  using 

stock_code as a join attribute while under the second join stage the stream tuple is joined with 

the customer table in the master data using account_code as a join attribute. In this chapter we 

implement our Two-Stage join algorithm and analyze its performance with normal 

CACHEJOIN using MITRE 10 NZ dataset. 

 

4.2 Two-Stage Join architecture and algorithm 

A simple architectural design of Two-Stage join algorithm is shown in Figure 4.1 while its 

pseudo-code is presented in Algorithm 4.1.  
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Figure 4.1 A simple architectural design for Two-Stage Join 

 

From the figure the first stage implements the normal CACHEJOIN. As normal CACHEJOIN 

has further two phases – the stream-probing phase and the disk-probing phase – so on arriving 

of each stream tuple the CACHEJOIN algorithm maps it to the right phase for the processing. 

In CACHEJOIN the stream tuple is joined with the product table in the master data using 

stock_code as a join attribute. Each stream tuple after completing the Ist-stage is directed to the 

2nd-stage.  In 2nd-stage the stream joins with the customer table of the master data using 

account_code as a join attribute. Since the customer table is significantly smaller than the 

product table therefore, we load the whole table in the cache. Hence there is no disk-probing 

phase in the 2nd-stage of the algorithm.  Once a stream tuple has completed these two joins it 

then moves to the output. We study the performance of our Two-Stage join algorithm using 

both real-time and a synthetic datasets.  
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Algorithm 4.1 Pseudo-code for Two-Stage join algorithm 

 

4.3 Cost model for Two-Stage join 

In this section we present the cost model for our Two-Stage join algorithm. Similar to the 

architecture and the algorithm we also extend the normal CACHEJOIN’s cost model (Asif, 

Gillian & Gerald, 2012) for our Two-Stage join algorithm. Later we also use our cost model to 

calculate the analytical costs for our Two-Stage join algorithm. 

Normally, under the cost model we calculate two costs - memory cost and the processing cost. 

Equation 4.1 and 4.2 present these costs respectively. Table 4.1 below describes the notations 

we used in deriving of our cost model. 
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For memory cost, considering the Ist-stage (normal CACHEJOIN) a main portion of the 

memory is assigned to the hash table 𝐻𝑆 along with the queue. Whereas, a much smaller portion 

is assigned to hash table 𝐻𝑅 and the disk buffer. Also compare to the 1st-stage relatively a 

smaller portion of memory is assigned to the 2nd-stage. We calculate memory for each 

component as below. 

Memory for disk buffer (bytes) = k.ʋp 

Memory for 𝐻𝑆 (bytes) = α [M – (k + Ɩ) ʋp] 

Memory for 𝐻𝑅 (bytes) = Ɩ.ʋp 

Memory for the queue (bytes) = (1 – α) [M – (k + Ɩ) ʋp] 

Memory for 2nd-stage (bytes) 𝑚2 = 𝑘2.𝑣𝑝2 

The below equation (4.1) gives the total memory M cost for CACHEJOIN by aggregating the 

above calculations. 

M = (k + Ɩ) ʋp + α [M – (k + Ɩ) ʋp] + (1 – α) [M – (k + Ɩ) ʋp] + 𝑚2   (4.1) 

Note, due to the negligible size of the stream buffer memory, 0.05 MB we do not include this 

in our calculation. 

In order to make the processing cost calculation simple, the cost for every individual 

components is calculated first and then all costs are summed to calculate the processing cost 

for one iteration. 

Cost to read k pages into the disk buffer = C i/o (k . ʋp)  

Cost to look-up 𝑤𝑛 tuples in 𝐻𝑅 = 𝑤𝑛 . 𝐶𝐻 

Cost to look-up 𝑤𝑛 tuples in 2nd-stage = 𝑤𝑛. 𝐶2𝐻 

Cost to look-up 𝑤𝑠 tuples in 2nd-stage=𝑤𝑠. 𝐶2𝐻 

Cost to look-up disk buffer tuples in 𝐻𝑆 = d . 𝐶𝐻 

Cost to compare all tuples frequency in disk buffer with the threshold value = d . 𝐶𝐹 

Cost to generate the output for 𝑤𝑛 tuples in 2nd-stage = 𝑤𝑛 . 𝐶2𝑂 

Cost to generate the output for 𝑤𝑠 tuples in 2nd-stage = 𝑤𝑠 . 𝐶2𝑂 

Cost to read the 𝑤𝑛 tuples from the stream buffer = 𝑤𝑛 . 𝐶𝑆 

Cost to read the 𝑤𝑠 tuples from the stream buffer = 𝑤𝑠 . 𝐶𝑆 

Cost to append 𝑤𝑠 tuples into 𝐻𝑆 and the queue = 𝑤𝑠 . 𝐶𝐴 

Cost to delete 𝑤𝑠 tuples from 𝐻𝑆 and the queue = 𝑤𝑠 . 𝐶𝐸 
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Total cost of the algorithm for one iteration can be calculated by using equation (4.2) by 

aggregating the above costs. 

𝐶𝑙𝑜𝑜𝑝 (secs) = 10−9 [C i/o (k . ʋp) + d (CH + CF) + 𝑤𝑠 (𝐶2𝐻+ C2O +  CE + CS + CA)  

+ 𝑤𝑛 (CH + 𝐶2𝐻 + C2O + CS)]      (4.2) 

Since in 𝐶𝑙𝑜𝑜𝑝 seconds the algorithm processes 𝑤𝑠 and 𝑤𝑛 tuples of the stream S, the service 

rate μ can be calculated using the below equation (4.3). 

𝜇 =
𝑤𝑛+ 𝑤𝑠

C loop
     (4.3) 

 

 

Table 4.1 Notations used in cost calculations. 
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4.4 Experimental set-up 

4.4.1 System set-up 

We execute our Two-Stage join algorithm using the same platform specifications as in the 

normal CACHEJOIN algorithm.  

 

In MITRE10 NZ, the customer master table is relatively smaller in size with 15 attributes and 

not more than 100,000 customer accounts. Because this implementation is mainly focused on 

MITRE 10 NZ which has smaller cs_person customer master table, we completely cached this 

table for second joining phase in Extended CACHEJOIN algorithm. 

 

4.4.2 Real-life dataset 

In this section we explain the datasets that we used to test our Two-Stage algorithm. As 

explained above incoming transactional stream data has two join attributes related to two 

different independent tables in the master data. The first table product is same as used in normal 

CACHEJOIN. The second table is called cs_person table. This table has 15 attributes for every 

customer/account from the table. The size of the product master table (sc) is set to 300,000 

tuples and the size of the customer master table (cs_person) is set to 100,000 tuples. The 

customer master table attributes and data types are given in below Table 4.2. This table is used 

in 2nd-stage of our join algorithm 

 

Table 4.2 Data specification of MITRE 10 NZ customer table in master data. 
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4.5 Results 

We run both the algorithms using the real-life dataset with two independent master tables called 

sc table and cs_person table holding the product key (stock_code) and the customer key 

(account_code) as primary keys respectively. We evaluated both the algorithms under different 

memory settings (50MB to 200MB). The algorithms are run without making any changes to 

any user-defined parameter values like disk_relation_size, page_size, threshold_value, etc as 

stated at the beginning of the CACHEJOIN.java file. 

 

Figure 4.2 presents the performance (or service rate) of the both algorithms under all memory 

settings. . From the figure it can be observed that in case of Two-Stage join algorithm the 

service rate is slightly lower than that of normal CACHEJOIN which is plausible as in Two-

Stage join algorithm stream tuples need to go through another join process before expiring 

them. Also from the figure we notice that there is a slight unusual behavior in the performance 

for the memory budget of 150MB. There is no difference on the experimental setup for this 

memory budget when compared to the other memory budgets. Hence it is interesting to see a 

slightly different behavior. This will lead us to investigate for the cause in our future research. 

The performance of our Two-Stage algorithm is still acceptable for the MITRE 10 NZ company 

according to their daily transactional volumes. 

 

Also in Figure 4.2 we given the performance of CACHEJOIN using synthetic dataset. This 

gives us a visibility of how the attribute characteristics makes difference in the algorithm 

performance though size of the attributes are same as the real life dataset. Synthetic dataset is 

created using auto generated numeric values which are stored as a string whereas real life 

master table has a data with special characters and string with different sizes. This confirms 

that the performance of algorithm will vary in real life testing though the attribute sizes are 

made same in both synthetic and real life environment. 
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Figure 4.2 MITRE 10 NZ dataset service rate comparison between CACHEJOIN and two-stage CACHEJOIN 

semi-stream join. 

 

4.6 Cost model validation 

To add more value in the implementation, we carried out an experiment to validate our 

analytical cost with the empirical costs. Figure 4.3 presents the comparisons of both costs for 

each memory bucket of the algorithm. This graph is in a millisecond scale and shows that the 

calculated analytical cost is closely resembled with the empirical cost which validates our cost 

model. From the figure it is also observed that the total processing cost slightly increases by 

increasing the total allocated memory. The reason why there is a slight increase in the 

processing cost is because in all memory settings the I/O cost, which is the most dominant 

among all costs, doesn’t change due to the fixed size disk partitions. 
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Figure 4.3 Cost comparison chart. 



Chapter 5 

5 Conclusions and Future work 

5.1 Conclusions 

In this thesis we implemented and evaluated a well-known semi-stream join algorithm called 

CACHEJOIN using a real-life transactional dataset by MITRE 10 NZ.  An extensive literature 

review was done on a wide variety of semi-stream join algorithms to understand the 

characteristics of semi-stream join algorithms. And the MITRE 10 NZ transactional data 

distribution pattern is studied before choosing an appropriate algorithm for this research. The 

reason of choosing the CACHEJOIN algorithm was the long-tailed skew characteristics in 

MITRE 10 NZ transactional data. The thesis made following contributions. 

 

Implementing of CACHEJOIN using MITRE 10 NZ dataset: CACHEJOIN was implemented 

and tested using MITRE 10 NZ dataset. The algorithm used stock_code as a join attribute in 

the both stream data and master data. CACHEJOIN consists of two phases: the stream-probing 

phase and the disk-probing-phase. A key feature in CACHEJOIN is a caching component. In 

stream-probing phase the algorithm uses a cache component to deal with this skew in stream 

data. Furthermore, the most frequently accessed master tuples were cached and were joined 

with the incoming stream data. In disk-probing phase the algorithm implements HYBRIDJOIN 

algorithm and deals with the rest of the master data on disk. 

 

Extension of CACHEJOIN: Based on the nature of MITRE 10 NZ dataset we extended 

CACHEJOIN as a two-stage join. The stream data joined with two independent tables in the 

master data. The first table sc contains product information with stock_code as a primary key 

while the second table cs_person contains customers’ accounts details with account_code as a 

primary key. In our two-stage join the first stage was normal CACHEJOIN while in second 

stage the algorithm only implements the stream-probing phase of the normal CACHEJOIN.   

According to our experimental evaluation the two-stage join worked well with the MITRE 10 

NZ dataset. This provides a proof of concept to MITRE 10 NZ for their future implementation 

of the CACHEJOIN algorithm. In current state master data is well fitted into the memory but 
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there can also be a possibility that master data never fits into the memory. However, we believe 

that our algorithm can handle this similar to a simple CACHEJOIN. 

 

Deriving of cost model: We calculated analytical cost for our extended CACHEJOIN and 

validated this with our empirical cost. We observed that the empirical cost closely resembled 

the analytical cost which is the validation of our cost model. 

 

Experimental study: We carried out the experimentations for our both CACHEJOIN and 

Extended CACHEJOIN algorithms and evaluated the performance using both synthetic and the 

real-life datasets. The experiments are performed using different memory budgets. Under all 

memory settings the CACHEJOIN algorithm and Extension of CACHEJOIN algorithm 

performed well. Hence we conclude that CACHEJOIN algorithm can handle the volume of 

MITRE10 NZ dataset with adequate performance. 

 

5.2 Future work 

The extension work in semi-stream CACHEJOIN which is a two-stage CACHEJOIN 

algorithm opens more interesting ideas for the future work in this area. In this work an index 

joining method for a second stage join implemented in CACHEJOIN was advanced.  Taking 

this as a basis, using different semi-stream joins such as HYBRIDJOIN, CACHEJOIN, 

MESHJOIN, etc. could be trialed to perform a second stage join and monitored to see how 

these behave in regard to the performance of service rates. The size of the second master table 

could produce a difference in performance.  

 

MITRE 10 NZ is a leading retail store in New Zealand and the amount of transactions occurring 

in a day is expected to grow in future. To handle the growing amount of transactions (incoming 

stream data) trying parallelization running two nodes, could be attempted to see how it reduces 

queue. It could be expected that with a higher number of incoming streams joining in the same 

time period, the same service rate as CACHEJOIN could be achieved as it will eventually 

perform two joins simultaneously (one on each node). 
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Appendix A - CACHEJOIN Semi-Stream algorithm Java codes 

In this implementation a few java classes are created to support running the algorithm 

successfully. Below are the java class files which are most important in this implementation. 

 

CACHEJOIN.java code 

 

package cacheJoinSource; 

import java.text.SimpleDateFormat; 

import java.util.ArrayList; 

import java.util.Calendar; 

import java.util.Date; 

import java.util.HashSet; 

import java.util.Random; 

import java.util.concurrent.ArrayBlockingQueue; 

import java.util.concurrent.LinkedBlockingQueue; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.sql.Connection; 

import java.sql.Statement; 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.sql.DriverManager; 

import org.apache.commons.collections15.MultiMap; 

import org.apache.commons.collections15.multimap.MultiHashMap; 

import sizeof.agent.SizeOfAgent; 

 

public class CACHEJOIN { 

 public static final int HASH_SIZE=35131; 

 public static final int QUEUE_SIZE=HASH_SIZE; 

 public static final int STREAM_SIZE=5000; 

 public static final int DISK_RELATION_SIZE=300000; 

 public static final int SWAP_DB=1000; 

 public static final int MIN_KEY=1; 

 public static final int MAX_KEY=DISK_RELATION_SIZE; 

 public static final int THRESHOLD=3; 

 public static int cs_person_match=0; 

 public static final int MEASUREMENT_START=1; 

 public static final int MEASUREMENT_STOP=DISK_RELATION_SIZE; 

 

 static MultiMap<String,HybridJoinObject> mhm=new 

MultiHashMap<String,HybridJoinObject>(); 

 static ArrayList <HybridJoinObject> list=new 

ArrayList<HybridJoinObject>(); 

 static HashSet<String> accountCodeSet = new HashSet<String>(100000); 

 static LinkedBlockingQueue<HybridJoinObject> streamBuffer=new 

LinkedBlockingQueue<HybridJoinObject>(); 

 static String diskBuffervolatile[][]=new String[SWAP_DB][86]; 

 static int frequencyDetector[]=new int[SWAP_DB]; 

 

 Random myRandom=new Random(); 

 static Statement stmt=null; 

 static ResultSet rs=null; 

 Queue head,currentNode,deleteNodeAddress; 

 static DiskHashTableManipulation dhtm=null; 
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 String streamRandomValue; 

 int requiredTuplesCount=0,non_vola=0,vola=0; 

 static int tuplesMatchedIntoDiskHash=0; 

 static long CE[]= new long[DISK_RELATION_SIZE/100]; 

 static long CS[]= new long[DISK_RELATION_SIZE/100]; 

 static long CA[]= new long[DISK_RELATION_SIZE/100]; 

 static long CIO[]= new long[DISK_RELATION_SIZE/100]; 

 static long CH[]= new long[DISK_RELATION_SIZE/100]; 

 static long C2H[]= new long[DISK_RELATION_SIZE/100]; 

 static long CF[]= new long[DISK_RELATION_SIZE/100]; 

 static int streamInputSize[]=new int[DISK_RELATION_SIZE/100]; 

 static int StreamSizeMatchedInDiskHash[]=new 

int[DISK_RELATION_SIZE/100]; 

 static int 

accesed_page,CE_index=0,CS_index=0,CA_index=0,CIO_index=0,C2H_index=0,CH_in

dex=0,pt_index=0,input_index=0,queue_index=0,rt_index=0,bl_index=0,WT_index

=0,CF_index=0; 

 float oneNodeSize=0,memoryForFiftyTuples=0; 

 boolean measurementStart=false; 

 double sumOfFrequency,random,rawFK,minimumLimit; 

 

 int ir=52124,increment=12458,prime=2000003; 

  

 String fileName = "Account_"+new 

SimpleDateFormat("yyyyMMddhhmmss'.txt'").format(new Date()); 

 File accountFile = new File(fileName); 

 FileWriter accountFileWriter; 

 

 CACHEJOIN()throws java.io.IOException{ 

  for(int i=0; i<frequencyDetector.length; i++){ 

   frequencyDetector[i]=0; 

  } 

 } 

 

 public Connection connectDB(){ 

  Connection conn=null; 

  try{ 

 

   String userName = "root"; 

   String password = "root"; 

   String url = "jdbc:mysql://localhost/masterdata"; 

   Class.forName ("com.mysql.jdbc.Driver"); 

   conn = DriverManager.getConnection (url, userName, 

password); 

   System.out.println("Connected to Database"); 

  } 

  catch (Exception e) 

  { 

   System.err.println (e); 

  } 

  return conn; 

 } 

 

 public void closeConnection(Connection conn){ 

  try{ 

   if(conn!=null){ 

    conn.close(); 

    System.out.println("Database connection closed"); 

   } 

  }catch (SQLException e) 

  { 
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   System.err.println (e); 

  } 

 } 

 

 public static double integral(double limit){ 

  return (Math.log(limit));  //Exponent x^1 

 } 

 

 public static double inverseIntegral(double x){ 

  return Math.exp(x);   //Inverse integral of exponent 1 

 } 

 

 

 public void fillHashTable(){ 

 

  int tuples=0; 

  ArrayBlockingQueue<TransactionDAO> transactionList = 

Transaction.fetchTransactionRecords(); 

  if(transactionList.isEmpty()){ 

   transactionList = Transaction.fetchTransactionRecords(); 

  } 

  TransactionDAO tDAO = transactionList.poll(); 

  streamRandomValue = tDAO.getStock(); 

  head=new Queue(streamRandomValue); 

  currentNode=head; 

  mhm.put(streamRandomValue,new 

HybridJoinObject(tDAO.getBranch(),tDAO.getDept(),tDAO.getDrawer(),tDAO.getC

ode(),tDAO.getAmount(),tDAO.getCost(),tDAO.getDate_(),tDAO.getAccount(),tDA

O.getRemarks(),tDAO.getReference(), 

   

 tDAO.getType_(),tDAO.getTax(),tDAO.getOperator(),tDAO.getQty(),tDAO.g

etStock(),tDAO.getDocket_no(),tDAO.getPosted(),tDAO.getPromo(),tDAO.getSub_

code(),tDAO.getGst(), 

   

 tDAO.getPromo_num(),tDAO.getPromo_start(),tDAO.getPromo_end(),tDAO.ge

tDescription(),tDAO.getGroup_(),tDAO.getRetail(),tDAO.getSys_price(),tDAO.g

etSys_disc(),tDAO.getSet_disc_val(),tDAO.getAct_price(), 

   

 tDAO.getAct_disc(),tDAO.getAct_disc_val(),tDAO.getLine(),tDAO.getUnit

(),tDAO.getLength(),tDAO.getTill(),tDAO.getDate2post(),tDAO.getSub_account(

),tDAO.getItem_type(),tDAO.getSub_type(), 

            

  tDAO.getTime(),tDAO.getOverride_operator(),currentNode)); 

  oneNodeSize=SizeOfAgent.fullSizeOf(head); 

  while(tuples<HASH_SIZE){ 

   if(transactionList.isEmpty()){ 

    transactionList = 

Transaction.fetchTransactionRecords(); 

   } 

    tDAO = transactionList.poll(); 

    streamRandomValue = tDAO.getStock(); 

    System.out.println(" Tuples Value " + tuples); 

    currentNode=currentNode.addNode(streamRandomValue); 

    mhm.put(streamRandomValue,new 

HybridJoinObject(tDAO.getBranch(),tDAO.getDept(),tDAO.getDrawer(),tDAO.getC

ode(),tDAO.getAmount(),tDAO.getCost(),tDAO.getDate_(),tDAO.getAccount(),tDA

O.getRemarks(),tDAO.getReference(), 

     

 tDAO.getType_(),tDAO.getTax(),tDAO.getOperator(),tDAO.getQty(),tDAO.g

etStock(),tDAO.getDocket_no(),tDAO.getPosted(),tDAO.getPromo(),tDAO.getSub_

code(),tDAO.getGst(), 
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 tDAO.getPromo_num(),tDAO.getPromo_start(),tDAO.getPromo_end(),tDAO.ge

tDescription(),tDAO.getGroup_(),tDAO.getRetail(),tDAO.getSys_price(),tDAO.g

etSys_disc(),tDAO.getSet_disc_val(),tDAO.getAct_price(), 

     

 tDAO.getAct_disc(),tDAO.getAct_disc_val(),tDAO.getLine(),tDAO.getUnit

(),tDAO.getLength(),tDAO.getTill(),tDAO.getDate2post(),tDAO.getSub_account(

),tDAO.getItem_type(),tDAO.getSub_type(), 

            

   

 tDAO.getTime(),tDAO.getOverride_operator(),currentNode)); 

    tuples++; 

    if(tuples==49){ 

    

 memoryForFiftyTuples=SizeOfAgent.fullSizeOf(mhm); 

 

    } 

  } 

 

 } 

 

 public boolean probIntoHash(){ 

 

  long start=0,stop=0, 

joinStart=0,joinStop=0,CH_per_Iteration=0,C2H_per_Iteration=0,CEH_per_Itera

tion=0,CEQ_per_Iteration=0,CF_per_iteration=0; 

  boolean firstNode=false,lastNode=false,tupleInMD=true; 

  int 

processedTuplesCount=0,hashProbCount=0,detectedTupleCount=0; 

  int index=new Double(head.popNode()).intValue(); 

  tupleInMD=readDBvolatilePage(index); 

 

  if(tupleInMD){ 

   //Probing of disk buffer 

   for(int row=0; row<SWAP_DB; row++){ 

    if(mhm.containsKey(diskBuffervolatile[row][0])){ 

     start=System.nanoTime(); 

      

    

 list=(ArrayList<HybridJoinObject>)mhm.get(diskBuffervolatile[row][0])

; 

     joinStart=System.nanoTime(); 

     for(HybridJoinObject hjo : list){ 

      String account_code = hjo.attr8; 

     

 if(!accountCodeSet.contains(account_code)){ 

       System.out.println(" Account Code 

" + account_code + " Not Found"); 

      } 

     } 

     joinStop=System.nanoTime(); 

      

     stop=System.nanoTime(); 

      

     hashProbCount++; 

     if(measurementStart){ 

      C2H_per_Iteration+=joinStop-joinStart; 

      CH_per_Iteration+=stop-start; 

     } 

     start=System.nanoTime(); 

     mhm.remove(diskBuffervolatile[row][0]); 
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     stop=System.nanoTime(); 

     if(measurementStart){ 

      CEH_per_Iteration+=stop-start; 

     } 

     for(int listItem=0; listItem<list.size(); 

listItem++){ 

      firstNode=false; 

      lastNode=false; 

     

 deleteNodeAddress=list.get(listItem).nodeAddress; 

      if(deleteNodeAddress==head){ 

       head=deleteNodeAddress.getNext(); 

       firstNode=true; 

      } 

      if(deleteNodeAddress==currentNode){ 

      

 currentNode=deleteNodeAddress.getPrecede(); 

       lastNode=true; 

      } 

      start=System.nanoTime(); 

     

 deleteNodeAddress.deleteNode(firstNode,lastNode); 

      stop=System.nanoTime(); 

      if(measurementStart){ 

       CEQ_per_Iteration+=stop-start; 

       vola++; 

      } 

      frequencyDetector[row]++; 

      requiredTuplesCount++; 

     } 

 

     if(measurementStart){ 

     

 CEH_per_Iteration+=CEQ_per_Iteration/list.size(); 

      CEQ_per_Iteration=0; 

     } 

     processedTuplesCount++; 

    }  

   } 

   start=System.nanoTime(); 

   for(int row=0; row<SWAP_DB; row++){ 

    if(frequencyDetector[row]>=THRESHOLD && 

DiskHashTableManipulation.dmhm.size()<DiskHashTableManipulation.NON_SWAP_DB

){ 

      

    

 DiskHashTableManipulation.dmhm.put(diskBuffervolatile[row][0], new 

HybridJoinDiskObject(diskBuffervolatile[row][0],diskBuffervolatile[row][1], 

      

 diskBuffervolatile[row][2],diskBuffervolatile[row][3],diskBuffervolat

ile[row][4],diskBuffervolatile[row][5],diskBuffervolatile[row][6], 

      

 diskBuffervolatile[row][7],diskBuffervolatile[row][8],diskBuffervolat

ile[row][9],diskBuffervolatile[row][10],diskBuffervolatile[row][11], 

      

 diskBuffervolatile[row][12],diskBuffervolatile[row][13],diskBuffervol

atile[row][14],diskBuffervolatile[row][15],diskBuffervolatile[row][16], 

      

 diskBuffervolatile[row][17],diskBuffervolatile[row][18],diskBuffervol

atile[row][19],diskBuffervolatile[row][20],diskBuffervolatile[row][21], 
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 diskBuffervolatile[row][22],diskBuffervolatile[row][23],diskBuffervol

atile[row][24],diskBuffervolatile[row][25],diskBuffervolatile[row][26], 

      

 diskBuffervolatile[row][27],diskBuffervolatile[row][28],diskBuffervol

atile[row][29],diskBuffervolatile[row][30],diskBuffervolatile[row][31], 

      

 diskBuffervolatile[row][32],diskBuffervolatile[row][33],diskBuffervol

atile[row][34],diskBuffervolatile[row][35],diskBuffervolatile[row][36], 

      

 diskBuffervolatile[row][37],diskBuffervolatile[row][38],diskBuffervol

atile[row][39],diskBuffervolatile[row][40],diskBuffervolatile[row][41], 

      

 diskBuffervolatile[row][42],diskBuffervolatile[row][43],diskBuffervol

atile[row][44],diskBuffervolatile[row][45],diskBuffervolatile[row][46], 

      

 diskBuffervolatile[row][47],diskBuffervolatile[row][48],diskBuffervol

atile[row][49],diskBuffervolatile[row][50],diskBuffervolatile[row][51], 

      

 diskBuffervolatile[row][52],diskBuffervolatile[row][53],diskBuffervol

atile[row][54],diskBuffervolatile[row][55],diskBuffervolatile[row][56], 

      

 diskBuffervolatile[row][57],diskBuffervolatile[row][58],diskBuffervol

atile[row][59],diskBuffervolatile[row][60],diskBuffervolatile[row][61], 

      

 diskBuffervolatile[row][62],diskBuffervolatile[row][63],diskBuffervol

atile[row][64],diskBuffervolatile[row][65],diskBuffervolatile[row][66], 

      

 diskBuffervolatile[row][67],diskBuffervolatile[row][68],diskBuffervol

atile[row][69],diskBuffervolatile[row][70],diskBuffervolatile[row][71], 

      

 diskBuffervolatile[row][72],diskBuffervolatile[row][73],diskBuffervol

atile[row][74],diskBuffervolatile[row][75],diskBuffervolatile[row][76], 

      

 diskBuffervolatile[row][77],diskBuffervolatile[row][78],diskBuffervol

atile[row][79],diskBuffervolatile[row][80],diskBuffervolatile[row][81], 

      

 diskBuffervolatile[row][82],diskBuffervolatile[row][83],diskBuffervol

atile[row][84],diskBuffervolatile[row][85])); 

     detectedTupleCount++; 

    } 

    frequencyDetector[row]=0; 

   } 

   stop=System.nanoTime(); 

 

   if(measurementStart){ 

    CF[CF_index++]=stop-start; 

    CH[CH_index++]=CH_per_Iteration/hashProbCount; 

   

 CE[CE_index++]=CEH_per_Iteration/processedTuplesCount; 

    C2H[C2H_index++]=C2H_per_Iteration/hashProbCount; 

   } 

  } 

  return tupleInMD; 

 } 

 

 public static void cacheAccountCode() { 

   

   try{ 

      rs = stmt.executeQuery("select 

account_code from cs_person"); 
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      while(rs.next()){ 

      

 accountCodeSet.add(rs.getString("account_code")); 

      } 

   } 

   catch(Exception e){ 

    e.printStackTrace(); 

   } 

   } 

    

 

 public boolean readDBvolatilePage(int index){ 

  int row=0,PageStart; 

  long start=0,stop=0; 

  boolean firstNode=false,lastNode=false,tupleInMD=true; 

  //Loading of disk buffer 

  try{ 

   start=System.nanoTime(); 

   rs=stmt.executeQuery("Select stock_code FROM sc WHERE 

stock_code='"+index+"'"); 

    

   if(!rs.next()){ 

    list=(ArrayList<HybridJoinObject>)mhm.get(index); 

    mhm.remove(index); 

    for(int listItem=0; listItem<list.size(); 

listItem++){ 

     firstNode=false; 

     lastNode=false; 

    

 deleteNodeAddress=list.get(listItem).nodeAddress; 

     if(deleteNodeAddress==head){ 

      head=deleteNodeAddress.getNext(); 

      firstNode=true; 

     } 

     if(deleteNodeAddress==currentNode){ 

     

 currentNode=deleteNodeAddress.getPrecede(); 

      lastNode=true; 

     } 

    

 deleteNodeAddress.deleteNode(firstNode,lastNode); 

    } 

    tupleInMD=false; 

   } 

   else{ 

     

    PageStart=rs.getInt(1); 

    rs=stmt.executeQuery("SELECT * from sc where 

stock_code >='" + PageStart +"' LIMIT " + SWAP_DB); 

    stop=System.nanoTime(); 

    if(measurementStart){ 

     CIO[CIO_index++]=stop-start; 

    } 

    while(rs.next()){ 

     for(int col=1; col<=86; col++){ 

      diskBuffervolatile[row][col-

1]=rs.getString(col); 

     } 

     row++; 

    } 

   } 
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  }catch(SQLException e){System.out.print(e);} 

  return tupleInMD; 

 } 

 

 public void appendHash(){ 

  long start=0,stop=0,CA_per_Iteration=0; 

  int eachInputSize=0; 

  while(streamBuffer.size()<requiredTuplesCount*3); 

  tuplesMatchedIntoDiskHash=0; 

  while (requiredTuplesCount>0){ 

   try { 

   if(dhtm.matchedIntoDiskHash(streamBuffer.peek().attr15)){ 

    streamBuffer.poll(); 

    tuplesMatchedIntoDiskHash++; 

   } 

   else{ 

    start=System.nanoTime(); 

   

 currentNode=currentNode.addNode(streamBuffer.peek().attr15); 

    mhm.put(streamBuffer.peek().attr15,new 

HybridJoinObject(streamBuffer.peek().attr1,streamBuffer.peek().attr2,stream

Buffer.peek().attr3,streamBuffer.peek().attr4,streamBuffer.peek().attr5,str

eamBuffer.peek().attr6,streamBuffer.peek().attr7,streamBuffer.peek().attr8,

streamBuffer.peek().attr9,streamBuffer.peek().attr10, 

     

 streamBuffer.peek().attr11,streamBuffer.peek().attr12,streamBuffer.pe

ek().attr13,streamBuffer.peek().attr14,streamBuffer.peek().attr15,streamBuf

fer.peek().attr16,streamBuffer.peek().attr17,streamBuffer.peek().attr18,str

eamBuffer.peek().attr19,streamBuffer.peek().attr20, 

     

 streamBuffer.peek().attr21,streamBuffer.peek().attr22,streamBuffer.pe

ek().attr23,streamBuffer.peek().attr24,streamBuffer.peek().attr25,streamBuf

fer.peek().attr26,streamBuffer.peek().attr27,streamBuffer.peek().attr28,str

eamBuffer.peek().attr29,streamBuffer.peek().attr30, 

     

 streamBuffer.peek().attr31,streamBuffer.peek().attr32,streamBuffer.pe

ek().attr33,streamBuffer.peek().attr34,streamBuffer.peek().attr35,streamBuf

fer.peek().attr36,streamBuffer.peek().attr37,streamBuffer.peek().attr38,str

eamBuffer.peek().attr39,streamBuffer.peek().attr40, 

     

 streamBuffer.peek().attr41,streamBuffer.peek().attr42,currentNode)); 

    streamBuffer.poll(); 

    stop=System.nanoTime(); 

    if(measurementStart){ 

     CA_per_Iteration+=stop-start; 

    } 

    requiredTuplesCount--; 

    eachInputSize++; 

   } 

   } 

   catch(Exception e){ 

    continue; 

   } 

  } 

 

  if(measurementStart){ 

   CA[CA_index++]=CA_per_Iteration/eachInputSize; 

   streamInputSize[input_index]=eachInputSize; 

  

 StreamSizeMatchedInDiskHash[input_index++]=tuplesMatchedIntoDiskHash; 

  } 
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 } 

 

 public static void main(String args[])throws java.io.IOException, 

InterruptedException{ 

   

  CACHEJOIN hj=new CACHEJOIN(); 

  StartUpdatesStream stream=new StartUpdatesStream(); 

  dhtm=new DiskHashTableManipulation(); 

  boolean tupleInMD=true; 

  System.out.println("Hybrid Join in execution mode..."); 

  Connection conn=hj.connectDB(); 

  hj.accountFile.createNewFile(); 

  hj.accountFileWriter = new FileWriter(hj.accountFile); 

  try{ 

   CACHEJOIN.stmt=conn.createStatement(); 

   CACHEJOIN.stmt.setFetchSize(SWAP_DB); 

   System.out.println("Fetch Size: 

"+CACHEJOIN.stmt.getFetchSize()); 

   CACHEJOIN.cacheAccountCode(); 

  }catch(SQLException e){System.out.print(e);} 

 

  hj.fillHashTable(); 

  stream.start(); 

  Thread.sleep(2000); 

  for(int round=1; round<=4; round++){ 

   if(round==1){ 

    System.out.println("ROUND 1 Started..."); 

    System.out.println("Disk hash tuple: 

"+DiskHashTableManipulation.dmhm.size()); 

    //Thread.sleep(700); 

   } 

   if(round==4){ 

    System.out.println("ROUND 2 Started..."); 

    System.out.println("Disk hash tuple: 

"+DiskHashTableManipulation.dmhm.size()); 

    //Thread.sleep(700); 

   } 

   for(int tuple=1; tuple<=DISK_RELATION_SIZE; 

tuple+=SWAP_DB){ 

    SimpleDateFormat smd=new SimpleDateFormat("dd-MM-

yyyy hh:mm:ss "); 

    Date currentDate=new Date(); 

    System.out.println(" Iteration count " + tuple + " 

out of " + DISK_RELATION_SIZE+"  Date "+smd.format(currentDate)+" Time 

"+currentDate.getTime()); 

    hj.measurementStart=false; 

    if((round==4)){ 

     hj.measurementStart=true; 

    } 

    tupleInMD=hj.probIntoHash(); 

    if(tupleInMD){ 

     hj.appendHash(); 

    } 

   } 

  } 

  stream.stop(); 

  hj.accountFileWriter.close(); 

  System.out.println("Hash tuples: "+mhm.size()); 

  System.out.println("Disk hash tuple: 

"+DiskHashTableManipulation.dmhm.size()); 

  System.out.println("\nMEMORY COST"); 
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  float Hash=(HASH_SIZE*(hj.memoryForFiftyTuples/50))/1048576f; 

  float Queue=(hj.oneNodeSize*QUEUE_SIZE)/1048576f; 

  float bufferW=SizeOfAgent.fullSizeOf(streamBuffer)/1048576f; 

  float 

bufferb=SizeOfAgent.fullSizeOf(diskBuffervolatile)/1048576f; 

  float total=Hash+Queue+bufferW+bufferb; 

 

  System.out.println(" Total Account Id Matches " + 

cs_person_match); 

  System.out.println("Memory used by Hash Table:  "+Hash+"  MB"); 

  System.out.println("Memory used by Queue:  "+Queue+" MB"); 

  System.out.println("Memory used by Stream buffer:  "+bufferW+" 

MB"); 

  System.out.println("Memory used by buffer b :  "+bufferb+"  

MB"); 

  System.out.println("Total Memory: "+total+" MB"); 

  System.out.println("pt_index"+hj.pt_index+" C2H_index: 

"+hj.C2H_index+" CH_index: "+hj.CH_index+" CS_Index: "+hj.CS_index+" 

CA_index: "+hj.CA_index+" CE_index: "+hj.CE_index+" CIO_index: 

"+hj.CIO_index+"CF_index+ "+hj.CF_index); 

  hj.closeConnection(conn); 

 

  System.out.println("Queue status:"+hj.head.countNodes()); 

  System.out.println("Non Volatile: "+hj.non_vola); 

  System.out.println("Volatile: "+hj.vola); 

  long today = Calendar.getInstance().getTimeInMillis(); 

  BufferedWriter bw=new BufferedWriter(new 

FileWriter("C://Users//Daniel//Desktop//vinod_cachejoin//Semi-Stream-

Joins"+today+".txt"));   

    

  bw.write("Geralized CACHEJOIN PROCESSING COST"); 

  bw.newLine(); 

 

  bw.write("Total w\t w processed by disk Hash\t w processed by 

disk buffer\t     C2H(NSec)\t     CH(NSec)\t    CS(NSec)\t    CA(NSec)\t      

CF\t CE(NSec)\t    CIO(NSec)"); 

  bw.newLine(); 

 

  for(int i=0; i<CACHEJOIN.CIO_index; i++){ 

  

 bw.write((CACHEJOIN.StreamSizeMatchedInDiskHash[i]+CACHEJOIN.streamIn

putSize[i])+"\t\t"); 

  

 bw.write(CACHEJOIN.StreamSizeMatchedInDiskHash[i]+"\t\t"); 

   bw.write(CACHEJOIN.streamInputSize[i]+"\t\t"); 

   bw.write(CACHEJOIN.C2H[i]+"\t\t"); 

   bw.write(CACHEJOIN.CH[i]+"\t\t"); 

   bw.write(CACHEJOIN.CS[i]+"\t\t"); 

   bw.write(CACHEJOIN.CA[i]+"\t\t"); 

   bw.write(CACHEJOIN.CF[i]+"\t\t"); 

   bw.write(CACHEJOIN.CE[i]+"\t\t"); 

   bw.write(CACHEJOIN.CIO[i]+""); 

   bw.newLine(); 

  } 

 

  bw.close(); 

  System.out.println("\nExecution has been completed"); 

 } 

}  
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TRANSACTION.java code 

 

package cacheJoinSource; 

import java.sql.Connection; 

import java.sql.DriverManager; 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.sql.Statement; 

import java.util.concurrent.ArrayBlockingQueue; 

 

public class Transaction { 

  

 static int lastOffset=0; 

 static int tuppleSize=1000; 

 static int maxRowSize=50000; 

  

 public static ArrayBlockingQueue<TransactionDAO> 

fetchTransactionRecords() { 

  ArrayBlockingQueue<TransactionDAO> transactionList = new 

ArrayBlockingQueue<TransactionDAO>(tuppleSize); 

  Connection conn = connectDB(); 

  // make sure autocommit is off 

  try { 

   conn.setAutoCommit(false); 

    

   if(lastOffset==maxRowSize){ 

    // Resetting Last Offset  

    lastOffset=0; 

   } 

   

  Statement st = conn.createStatement(); 

  ResultSet rs = st.executeQuery("SELECT * FROM gltx LIMIT " + 

Transaction.lastOffset + ", "+Transaction.tuppleSize); 

  while(rs.next()){ 

   TransactionDAO tDAO = new TransactionDAO(); 

    

   tDAO.setBranch(rs.getString("branch")); 

   tDAO.setDept(rs.getString("dept")); 

   tDAO.setDrawer(rs.getString("drawer")); 

   tDAO.setCode(rs.getString("code")); 

   tDAO.setAmount(rs.getString("amount")); 

   tDAO.setCost(rs.getString("cost")); 

   tDAO.setDate_(rs.getString("date_")); 

   tDAO.setAccount(rs.getString("account")); 

   tDAO.setRemarks(rs.getString("remarks")); 

   tDAO.setReference(rs.getString("reference")); 

   tDAO.setType_(rs.getString("type_")); 

   tDAO.setTax(rs.getString("tax")); 

   tDAO.setOperator(rs.getString("operator")); 

   tDAO.setQty(rs.getString("qty")); 

   tDAO.setStock(rs.getString("stock")); 

   tDAO.setDocket_no(rs.getString("docket_no")); 

   tDAO.setPosted(rs.getString("posted")); 

   tDAO.setPromo(rs.getString("promo")); 

   tDAO.setSub_code(rs.getString("sub_code")); 

   tDAO.setGst(rs.getString("gst")); 

   tDAO.setPromo_num(rs.getString("promo_num")); 

   tDAO.setPromo_start(rs.getString("promo_start")); 

   tDAO.setPromo_end(rs.getString("promo_end")); 

   tDAO.setDescription(rs.getString("description")); 

   tDAO.setGroup_(rs.getString("group_")); 
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   tDAO.setRetail(rs.getString("retail")); 

   tDAO.setSys_price(rs.getString("sys_price")); 

   tDAO.setSys_disc(rs.getString("sys_disc")); 

   tDAO.setSet_disc_val(rs.getString("set_disc_val")); 

   tDAO.setAct_price(rs.getString("act_price")); 

   tDAO.setAct_disc(rs.getString("act_disc")); 

   tDAO.setAct_disc_val(rs.getString("act_disc_val")); 

   tDAO.setLine(rs.getString("line")); 

   tDAO.setUnit(rs.getString("unit")); 

   tDAO.setLength(rs.getString("length")); 

   tDAO.setTill(rs.getString("till")); 

   tDAO.setDate2post(rs.getString("date2post")); 

   tDAO.setSub_account(rs.getString("sub_account")); 

   tDAO.setItem_type(rs.getString("item_type")); 

   tDAO.setSub_type(rs.getString("sub_type")); 

   tDAO.setTime(rs.getString("time")); 

tDAO.setOverride_operator(rs.getString("override_operator

"));    

   transactionList.add(tDAO); 

     } 

  } catch (SQLException e) { 

   e.printStackTrace(); 

  }finally{ 

   closeConnection(conn); 

  } 

  lastOffset+=tuppleSize; 

  return transactionList; 

   

 } 

  

 public static Connection connectDB(){ 

  Connection conn=null; 

  try{ 

   String userName = "root"; 

   String password = "root"; 

   String url = "jdbc:mysql://localhost/masterdata"; 

   Class.forName ("com.mysql.jdbc.Driver"); 

   conn = DriverManager.getConnection (url, userName, 

password); 

   //System.out.println("Connected to Database"); 

  } 

  catch (Exception e) 

  { 

   System.err.println (e); 

  } 

  return conn; 

 } 

 

 public static void closeConnection(Connection conn){ 

  try{ 

   if(conn!=null){ 

    conn.close(); 

    //System.out.println("Database connection closed"); 

   } 

  }catch (SQLException e) 

  { 

   System.err.println (e); 

  } 

 } 

 

} 
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STARTUPDATESTREAM.java code 

 

package cacheJoinSource; 

import java.util.PriorityQueue; 

import java.util.Random; 

import java.util.concurrent.ArrayBlockingQueue; 

import java.io.IOException; 

 

public class StartUpdatesStream extends Thread implements 

Comparable<Object>{ 

 public static TimeManager2 time; 

 public boolean on=false; 

 public double timeInChosenUnit; 

 public DistributionClass distribution; 

 public MyQueue2 ownQueue; 

 public double bandwidth; 

 Random myRandom=new Random(); 

 StartUpdatesStream(){ 

   

 } 

 public int compareTo(Object o) { 

  StartUpdatesStream y = (StartUpdatesStream) o; 

     double diff = this.timeInChosenUnit - y.timeInChosenUnit; 

     if(diff < 0.0) return -1; 

     if(diff > 0.0) return 1; 

     return 0; 

  } 

 public void run(){ 

  try{ 

   startStream(); 

  }catch (InterruptedException ie){ 

         System.out.println(ie.getMessage()); 

      }catch (IOException io){ 

         System.out.println(io.getMessage()); 

      } 

 } 

  

 StartUpdatesStream(MyQueue2 ownQueue, DistributionClass distribution, 

double bandwidth){ 

  this.distribution=distribution; 

  this.ownQueue=ownQueue; 

  this.bandwidth=bandwidth; 

  timeInChosenUnit=System.nanoTime(); 

  swapStatus(); 

 } 

  

 public void swapStatus(){ 

 

 

 timeInChosenUnit+=distribution.getNextDistributionValue()*TimeManager

2.STEP*bandwidth; 

 

  if(on){ 

   ownQueue.totalCurrentBandwidth-=bandwidth; 

   on=false; 

  } 

 

  else{ 

   ownQueue.totalCurrentBandwidth+=bandwidth; 

   on=true; 

  } 



70 
 

  ownQueue.offer(this);  

 } 

 public void startStream()throws InterruptedException,IOException{ 

 

  DistributionClass distribution=new DistributionClass(); 

  DistributionClass generator=new DistributionClass(); 

  TimeManager2 time=new TimeManager2(); 

  MyQueue2 myQueue=new MyQueue2(); 

  int tuple=0; 

  int count=0; 

  long CS_per_Iteration=0,start=0,stop=0; 

 

  for(int i=0; i<6; i++){ 

   new 

StartUpdatesStream(myQueue,distribution,Math.pow(2,i)); 

  } 

  StartUpdatesStream current=(StartUpdatesStream)myQueue.poll(); 

  ArrayBlockingQueue<TransactionDAO> transactionList = 

Transaction.fetchTransactionRecords(); 

   

  while(true){ 

   tuple=0; 

   time.waitOneStep(); 

   while(time.now()>current.timeInChosenUnit){ 

    current=(StartUpdatesStream)myQueue.poll(); 

    current.swapStatus(); 

   } 

   while(tuple<myQueue.totalCurrentBandwidth){ 

   

 //tupleValue=Integer.toString(generator.getNextDistributionValue()); 

    if(transactionList.isEmpty()){ 

     transactionList = 

Transaction.fetchTransactionRecords(); 

    } 

    TransactionDAO tDAO = transactionList.poll(); 

    start=System.nanoTime(); 

    CACHEJOIN.streamBuffer.put(new 

HybridJoinObject(tDAO.getBranch(),tDAO.getDept(),tDAO.getDrawer(),tDAO.getC

ode(),tDAO.getAmount(),tDAO.getCost(),tDAO.getDate_(),tDAO.getAccount(),tDA

O.getRemarks(),tDAO.getReference(),tDAO.getType_(),tDAO.getTax(),tDAO.getOp

erator(),tDAO.getQty(),tDAO.getStock(),tDAO.getDocket_no(),tDAO.getPosted()

,tDAO.getPromo(),tDAO.getSub_code(),tDAO.getGst(),tDAO.getPromo_num(),tDAO.

getPromo_start(),tDAO.getPromo_end(),tDAO.getDescription(),tDAO.getGroup_()

,tDAO.getRetail(),tDAO.getSys_price(),tDAO.getSys_disc(),tDAO.getSet_disc_v

al(),tDAO.getAct_price(),tDAO.getAct_disc(),tDAO.getAct_disc_val(),tDAO.get

Line(),tDAO.getUnit(),tDAO.getLength(),tDAO.getTill(),tDAO.getDate2post(),t

DAO.getSub_account(),tDAO.getItem_type(),tDAO.getSub_type(),tDAO.getTime(),

tDAO.getOverride_operator(),null)); 

    stop=System.nanoTime(); 

    CS_per_Iteration+=stop-start; 

    count++; 

    if(count==1000){ 

    

 CACHEJOIN.CS[CACHEJOIN.CS_index++]=CS_per_Iteration/count; 

     CS_per_Iteration=0; 

     count=0; 

    } 

    tuple++; 

 

   } 

  } 
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 } 

} 

 

 

class TimeManager2{ 

 public final static int STEP=15; 

 public double now(){ 

  return(System.nanoTime()); 

 } 

 public void waitOneStep(){ 

  try{ 

   Thread.sleep(STEP); 

  }catch (InterruptedException ie){ 

   System.out.println(ie.getMessage()); 

  } 

 } 

} 

 

class MyQueue2 extends PriorityQueue<StartUpdatesStream>{ 

 private static final long serialVersionUID = 1L; 

 public long totalCurrentBandwidth=0; 

} 

 



Appendix B – Sample cost output file 

 

 

Figure B.1 Sample copy of cost output file for CACHEJOIN algorithm written at the end of the algorithm in 

Java Eclipse. 



 

 

 

 

Figure B.2 Sample copy of cost output file for two-stage CACHEJOIN algorithm written at the end of the 

algorithm in Java Eclipse. 

 

 



Appendix C - Sample real-life datasets 

Below is the sample dataset of the MITRE 10 NZ product master table sc. This table has 86 attributes which cannot be shown in one screenshot. 

To make it more readable, it has been broken into four screenshots as below. 

 

 

Figure C.1 Sample of MITRE 10 NZ product master table dataset R (sc table) which holds product item attributes (continued on next page) 

 



75 
 

 

Figure C.1 – continued from previous page 

 

(Continued on next page) 
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Figure C.1 – continued from previous page 

 

(Continued on next page) 
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Figure C.1 – continued from previous page 
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Below is the sample dataset of the MITRE 10 NZ transactional table gltx. This table has 42 attributes which cannot be shown in one screenshot. 

To make it more readable, it has been broken into two screenshots as below. 

 

 

Figure C.2 Sample of MITRE 10 NZ transactional dataset (gltx table) which is incoming stream data S (continued on next page) 
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Figure C.2 – continued from previous page 
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Below is the sample dataset of the MITRE 10 NZ customer master table cs_person. This table has 15 attributes. 

 

 

Figure C.3 Sample of MITRE 10 NZ customer master table dataset R (cs_person table) which holds customer account attributes. 


