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Abstract

Active or real-time data warehousing is becoming very popular in business intelligence
domain. In order to build a real-time or active data warehouse an online processing of stream
of end users’ transaction with disk-based master data is required. This is also called processing
of semi-stream data. Fundamentally, this semi-stream processing is a process of joining an
incoming stream data (transactional data) with the disk-based slow retrieving master data by
using an effective join operator. Typically this join operator works with a limited amount of
main memory which cannot hold the entire disk-based master data. Recently a number of semi-
stream join algorithms have been proposed in the literature. Most of these algorithms have been
tested using synthetic dataset while only a few using real-life dataset. It is always interesting
to see how these algorithms behave in real environment. As each semi-stream join performs
differently under the different characteristics of the stream data, it is important to select
appropriate semi-stream join based on the characteristics of the stream data. Also these join
algorithms use different strategies to access the disk-based master data e.g. index (clustered

index or non-clustered index) or no index.

Based on an intensive literature review, in this thesis we select a well-known semi-stream join
CACHEJOIN (Cache Join) and implement it in MITRE 10 NZ, one of the leading home
improvement and hardware retail store. We study the behavior of the algorithm under two
different datasets (synthetic dataset and MITRE 10 NZ dataset). We study the performance of
the algorithm under both datasets. Our performance study shows that under MITRE 10 NZ
dataset CACHEJOIN performs very closer to that of synthetic dataset.

As an extension of our work we find that MITRE 10 NZ incoming stream data (transactional
data) needs to join with two tables in disk-based master data. First join is performed with
product table (sc) using stock code as a join attribute. While second join is performed with
customer table (cs_person) using account_code as a join attribute. This gives us an opportunity
to extend our existing CACHEJOIN for two-stage join. The stream tuples move to the second
stage as soon as they complete the first stage. The performance of two-stage join is studied
against normal CACHEJOIN using MITRE 10 NZ dataset. After analyzing the performance
we are confident that extended CACHEJOIN performs reasonably well for MITRE 10 NZ real

environment.



As a future work, we have a plan to explore more in two-stage join by trying different semi-
stream joins and find out the best join combinations, and also explore more on parallelization

of running 2 parallel nodes to handle the future growth of MITRE 10 NZ transactional data.
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Chapter 1

1 Introduction

1.1 Real-time data warehousing

Near real-time or active data warehousing is becoming more and more emerging area of
research due to demand of real-time business organizations. These real-time data warehouses
are now required to fulfill the business organizations needs by providing them most up-to-date
information about their businesses, e.g. their sales, their stock status, etc. This requires the end
user’s data being updated immediately in a data warehouse as it is received in operational data
sources. Providing the latest information to business users will help business leaders in making
the right decisions at the right time. Once active data warehouses are built, business intelligence
tools then use these active data warehouses to provide real-time reporting in order to support
businesses. Business intelligence software’s are basically a collection of a number of decision
support technologies that are aimed at providing information to senior managers, members of

the board, managers, analysts, etc. (Surajit, Umeshwar & Vivek, 2011).

Traditional data warehouses do not have continuous update capability and normally these type
of data warehouses are only updated once a day when there is little processing happening in
the background. In this type of traditional data warehouses, tuples are buffered and joined based
on the availability of resources (Annita & Peter, 1990), (Leonard & Shapiro, 1986). The
downside of traditional data warehouses is that they are not up-to-date due to the lack of

continuous update to the data warehouse.

To solve this, the concept of a real-time data warehouse has introduced (Burleson, 2004),
(Alexandros, Panos & Evaggelia, 2005), (White Paper Oracle Corp., 2003). In order to build
real-time data warehouses, semi-stream join algorithms are required. Basically semi-stream
join algorithms are used to join the fast incoming stream data with the slowly changing master
data which is normally to be found in relational databases. Such a join can be applied in real-
time data warehousing (Asif, Gillian & Gerald, 2008). Extensive study has been undertaken on

join algorithms since the initial days of database development. Initial works have hosted



competent techniques for finite disk-based relational cases (Goetz, 1993). Of the many semi-

stream join algorithms proposed, a few are selected, studied and explained in detail here.

The staging concept is used in many stream-based join algorithms to amortize expensive disk
input/output costs over fast incoming stream data (Asif, Gerald, Gillian & Christof, 2013),
(Abhirup & Ajit, 2009), (Asif, Gillian & Gerald, 2012), (Asif, Gillian & Gerald, 2011),
(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), (Muhammad, Gillian & Gerald, 2011),
(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2007).

1.2 Motivation for the research

There have been many semi-stream join algorithms proposed in the real-time data warehousing
domain. Few algorithms to name are the MESHJOIN algorithm, the R-MESHJOIN algorithm,
CMESHJOIN algorithm, the HYBRIDJOIN algorithm, the CACHEJOIN algorithm, etc. which
most of the algorithms have been explained in detail with data structural diagrams and with
experimental results. Algorithms have been experimented on with synthetic datasets taken from
authorized or well-known sources such as TCP-H datasets. However it is perhaps even more
interesting to know that which semi-stream join would be suitable to a specific industry. Every
industry will have different types of user/customer data. For example, the retail industry would
have long-tailed distribution patterns in incoming stream data, whereas a weather forecasting
dataset perhaps would have different characteristics. This provided the motivation to select an
industry and an appropriate semi-stream join suited to that industry’s dataset. Therefore there
is a need to study these semi-stream join algorithms and to observe their performance using
synthetic and real-life datasets. There is also an opportunity to extend the most suitable semi-
stream join by considering the nature of processing of incoming stream data with disk-based
master data in real environment. To accomplish our research, we select MITRE 10 NZ. MITRE
10 NZ is a local owner-operated chain consisting of nearly 150 hardware and home

improvement stores in New Zealand.
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1.3 Research Questions

The aim of this thesis is to address the following two research questions.

a) How does an appropriate semi-stream join perform differently on a real-life dataset when
compared to a synthetic dataset?

There are many semi-stream joins proposed with cost models and empirical studies. In most
cases, semi-stream joins are tested using synthetic datasets while only a few using real-life
datasets. It is always interesting to do a performance comparison study with both a synthetic
dataset and a real-life dataset. Every company will have different incoming stream data patterns
for example, retail industry stream data pattern would be different to a supply chain data
pattern. This research had the opportunity to implement and test a well-known semi-stream
join algorithm CACHEJOIN using a dataset produced by MITRE 10 NZ which is one of the
leading home improvement and hardware retail companies in New Zealand. We conduct a wide
literature review to identify a suitable semi-stream join for the given organization. We compare
the performance of the algorithm under both synthetic dataset and the MITRE 10 NZ dataset
and analyze how the join behaves with the different datasets. We expect to see a different

performance behavior for the both datasets due to their different characteristics.

b) In MITRE 10 NZ the incoming transactional stream data need to join with two different
master data tables, the question is how we can extend the normal CACHEJOIN

algorithm to implement this two-stage join scenario?.

Currently MITRE 10 NZ transactional data needs to join with two different master data tables
product table and customer table. The research question here is how we can extend
CACHEJOIN algorithm to implement this two-stage join scenario? In this thesis we extend the
existing CACHEJOIN algorithm for the second stage join. Also we compare the performance
of our extended two-stage join with the normal CACHEJOIN using MITRE 10 NZ

transactional data.

13



1.4 Approach

A wide literature review is done in the semi-stream joins that uses different methodologies for
joining the steam data with the master data. By understanding the workings, advantages and
disadvantages of the semi-stream join algorithms an appropriate semi-stream join that suites to
MITRE 10 NZ was chosen, as found in Section 2.2. The characteristics of the MITRE 10 NZ
transactional data is studied and considered before selecting the algorithm for this
implementation. The selected semi-stream join was implemented on synthetic and real-life
datasets, and a performance study on service rate was done with both result sets. Next, an
extension to the CACHEJOIN algorithm to handle a two-stage join was explored using the
MITRE 10 NZ transactional tuples. In this extension, the first stage is normal CACHEJOIN
algorithm which joins stock code with product master table and the second stage joins
account_code with customer master table which is in cache. Once this extension was coded, a
performance evaluation was carried out on the semi-stream join and the two-stage semi-stream
join using MITRE 10 NZ datasets. And the cost comparison on calculated analytical cost and

empirical cost is done as a validation of our cost model.

1.5 Structure of the thesis

The thesis is structured as follows:

Chapter 1, gives the brief introduction about the near real-time data warehousing particularly
the stream processing in the near real-time data warehousing. An introduction to the semi-
stream joins and join algorithms are explained with listing few semi-stream join algorithms. It
explains the reason and benefits for business to build an active or near real-time data
warehouse. A small scenario explained why and how a real-time data warehouse helps a
business attain good customer service. The motivation for this thesis, research questions and

approach were also explained.

Chapter 2, provides a detailed literature review on semi-stream join algorithms. We consider a
few well-known semi-stream joins and explain their working, advantages, and disadvantages.

We also present their data structures and architectural design.

14



Chapter 3 presents the reasons for selecting the CACHEJOIN algorithm to implement on the
MITRE 10 NZ transactional dataset. The chapter also presents CACHEJOIN in detail including
its pseudo-code and data structure. Following the detailed explanation of the CACHEJOIN
algorithm, the chapter presents an experimental setup including both synthetic and real-life
datasets. Finally, the chapter describes the experimental results produced by the CACHEJOIN

algorithm under the both datasets.

Chapter 4 presents our extension of the CACHEJOIN which is two-stage join. It includes the
motivation behind this extension. The chapter presents the implementation and the pseudo-
code for our two-stage. Finally, the performance of our two-stage join is compared with the
normal CACHEJOIN algorithm.

Chapter 5 presents conclusions of this research and describes some future directions.

15



Chapter 2

2 Literature review

2.1 Introduction

To have a real-time data warehouse we need to have an effective semi-stream join operator
which joins the fast coming stream tuple with the master data using limited resource in an
efficient way. We did an extensive literature review on different semi-stream algorithms for
this research work. Semi-stream join algorithms that uses different methodologies like the non-
indexing method, the indexing method and the caching method for joining the stream tuples
with slow moving relational master data are selected. These semi-stream join algorithms are

studied in detail to understand their working, advantages and disadvantages and given below.

2.2 Existing Semi-Stream Joins

Figure. 2.1 shows different semi-stream joins studied in this thesis. For the simplicity we
classify them into three types, non-index-based joins, index-based joins and cache-based joins.

MESHJOIN HYBRIDJOIN
algorithm algorithm
——

7

| R-MESHJOIN | X-HYBRIDJOIN
algorithm algorithm
~ SEMI-

PARTITION: STREAMING

—— BASED JOIN ~ INDEX JOIN

algorithm :

algorithm

| CMESHJOIN .| CACHEJOIN
algorithm algorithm

Caching method

Figure 2.1 Classification of Semi-Stream Join algorithms.



2.2.1 Non-Index based Semi-Stream Joins
2.2.1.1 MESHJOIN

MESHJOIN was introduced to join a fast stream of data, S, of source updates, with a large
disk-based relational master data, R. It was specifically designed to join a continuous stream
data S with a slow moving disk-based master data R as in the scenario in an active or near real-
time data warehouse (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2007). It performs a non-

paused execution of the hash table which is built to load stream data more progressively.

(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008) proposed the algorithm, which relies on two
basic techniques to increase the efficiency of the necessary disk accesses. Firstly, it accesses
the master data R solely through fast sequential scans and, secondly, it amortizes the cost of
disk 1/0 operations over a large number of stream tuples. Figure. 2.2 shows a graphical
depiction of this technique and illustrates the main data structures used in this algorithm. The
mechanics of this diagram is, two inputs are accessed continuously and meshed together to
generate the output of joining stream data S and disk-based relational master data from data
warehouse R (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008). To be more specific, this
performs a cyclic scan of relational data R and joins its tuple over the stream data S. The main
idea is that the stream tuple enters the window when it arrives and it is expired from the window
once it is probed with every tuple in master data R. As is shown in Figure. 2.2 it performs a
continuous scan of relational data R with an input buffer of b pages. On other hand stream data
S is accessed in batches of o tuples that are inserted into the contents of the sliding window.
When any tuple is inserted it causes the removal of the ‘oldest’ w tuples from the window. To
find the matching stream tuples more efficiently on each R-tuple, this algorithm synchronously
maintains a hash table H in memory for the stream tuple based on their join key. Lastly the
queue Q contains pointers to the tuples in hash table H and basically records the arrival order
of the batches in the current window. This is used to remove the oldest o tuples from the hash

table H once they are expired from the window.

This algorithm is proposed making no assumptions about the physical characteristics of the
stored relational disk-based master data R such as the existence of index or clustering

properties, except that it is too large to fit in the main memory. Hence the developed solution

17



(MESHJOIN) is applicable in a wide range of settings. This opens an interesting venue for
future work as it also opens the possibility of designing more effective join operators that takes
those particular physical characteristics of disk-based relational master data R into account.
(Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008) gives the detailed experimental results of
this algorithm which is a novel join operator that works under minimal assumptions about the
stream data S and the relational master slow changing data R. Experiments were done with a
real-life weather sensor data dataset which measures different parts of the globe (Carole,
Stephen & Julius, 1996). This algorithm authors reported that it performs worse with skewed
data. The performance of MESHJOIN algorithm is inversely proportional to the size of the

disk-based relational master data R.

w W
Queue O pointers | " | pointers | Hash H
Stream "
. tupples
of §
Buffer
Output
. , Stream
Relation
- pages
of R
Buffer

Figure 2.2 Data structure and architecture of MESHJOIN algorithm (Neoklis, Spiros, Panos, Alkis & Nils-Erik,
2008)

2.2.1.2 R- MESHJOIN

(Asif, Gillian, Gerald & Shafig, 2010) proposed a new improved version of the MESHJOIN
algorithm called Reduced MESHJOIN (R-MESHJOIN). The MESHJOIN algorithm has a
dependency between the partition size in an internal queue for incoming stream data, and the
required iterations to bring the disk-based relational master data into the memory. This
dependency hampers optimal memory distribution within the join components. The newly

proposed, improved version of the MESHJOIN algorithm removes this dependency which

18



enables it to distribute the available memory optimally within the join components. In R-
MESHJOIN, the size of disk-buffer is not affected if the size of the disk-based relation is
changed. An experimental study was conducted and the argument was validated (Asif, Gillian,
Gerald & Shafiq, 2010). The study proved that R-MESHJOIN does slightly improve
MESHJOIN and moreover helped to analyze the MESHJOIN algorithm theoretically and
experimentally. The architecture of the R-MESHJOIN algorithm is shown in Figure. 2.3.

Num berofbgiralpariions n dsk-bufier=1

S e ofeach bgralpardon (h pages)= b,

Ske ofdsk-bufer (nhpages)=b

Temtons mquisd to Padwhoke R Nnibmemoxy=k

Figure 2.3 Data structure and architecture of R-MESHJOIN algorithm (Asif, Gillian, Gerald & Shafig, 2010)

2.2.1.3 Partition Based Join

(Abhirup & Ajit, 2009) proposed a new algorithm called the partition-based semi-stream join
algorithm which minimizes disk overhead, processing overhead and delays in output tuples.
The previous sections outlined a novel state-of-art semi-stream join algorithm called
MESHJOIN (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), (Neoklis, Spiros, Panos, Alkis
& Nils-Erik, 2007) which is the pioneer join in semi-stream join operators. Though
MESHJOIN works better in a few scenarios, it has some limitations. The algorithm performs
less well with a skewed data arrival pattern and the performance is inversely proportional to
the size of the disk-based master data. Based on MESHJOIN performance and limitations

authors (Abhirup & Ajit, 2009) proposed a new partition-based semi-stream join to join fast-
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paced incoming stream with determined relational data. This partition-based algorithm
identifies the fast incoming stream tuple locality by joining often repeated incoming stream
tuples inside the memory partitions. This is the difference between MESHJOIN and this newly
proposed partition-join algorithm.

Unlike the MESHJOIN algorithm, the majority of incoming stream tuples are joined in a single
disk read by which average processing time will be less. Disk access frequency is decreased by
maintaining a wait-buffer which has all incoming stream tuples related to the partitions made
on the disk. Once the wait-buffer is full, it invokes disk probing. When the pending tuples count
corresponding to the specified partition is exceeds the invocation threshold (which is basically
a user-defined limit), the disk probe is invoked. This means that the new approach does one
disk read only to join the incoming stream tuple. In this partition-based join the disk-based
relational table can be updated while join operations happen.

Figure. 2. 4 shows the join framework of this partition-based join. In this partition-based join,
space a partitioning technique (hash-based or range-based) is applied to the disk relation in
order to divide it into several segments which divides the series of joining attributes into various
numbers of partitions. A cost-based caching method is applied to maintain the subset of
segments in the memory which increase the in-memory service rate of incoming stream tuples.
The incoming stream tuple is mapped to the respective partition in attribute space. Based on
the availability of the respective disk segment in memory, the incoming stream tuple is joined
with a disk segment or the stream tuple will be stored in the wait-buffer. Disk probing is
invoked once the above mentioned conditions are met. Partitions are selected by the disk probe
based on the order of sizes of tuples buffered in the wait-buffer and retrieves the disk segment
and the buffered stream tuples are joined with the disk segment. Experimental results with cost
calculation are given in (Abhirup & Ajit, 2009) and the performance appears better than the
pioneer semi-stream join MESHJOIN.

20
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Figure 2.4 The Join Framework of the Partition-based Join (Abhirup & Ajit, 2009)

2.2.2 Index based Semi-Stream Joins

2.2.2.1 SEMI-STREAMING INDEX JOIN

The Extraction-Transformation-Loading (ETL) process plays a vital role in building efficient
data warehouses. Traditionally this process is done during the business’s quiet time, normally
at night in batches, due to the time and resources involved. One of the most important steps in
the ETL process is surrogate key replacement. This process is basically joining the tuples from
each source with the metadata table which relates to the surrogate key and its related key. This
process is called as conforming (Ralph & Joe, 2004). The traditional method of updating data
warehouses in this off-line fashion, as illustrated in research and studies, is used as it enables
efficient bulk loading techniques (Tom, Robert, Jim & Prakash, 1994), (Nick, Yannis & Mema,
1997) and the ETL process does not interfere with the query workload. However, in emerging
applications, such as supply-chain monitoring, network monitoring, etc., we need to have

efficient joins to perform the ETL process in an on-line fashion to build active data warehouses.
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(Mihaela, Antonios, Yannis, Vasilis & Athens, 2011) proposed a novel algorithm called the
Semi-Streaming Index Join (SS1J) which maximizes the output of join by making use of
effective index and caching frequently used pages into the memory. The main ideas of this
algorithm are, the fast joining of stream tuples with matching the disk-based relational blocks,
batch stream tuple processing which is batching the relational tuple required by stream tuples,
batch index lookups, reading specific areas of the relational disk which are requested, more
frequently requested pages are maintained in the memory so that they can easily be accessed,
and adjusting the memory of the data structures dynamically. There are five components
involved in the SSIJ algorithm and they are, index, cached relational blocks, input buffer,
stream buffer and inverted index. Figure. 2.5 gives an overview of the Semi-Streaming Index

Join.

This algorithm consists of three phases and they are the Pending phase, Online phase and Join
phase. In the first phase (Pending phase) the algorithm waits for the minimum number of stream
tuples in the input buffer to accommodate enough tuples to form a batch. The algorithm is
moved to the next phase only when the number of required tuples is obtained in the input buffer
component. This is mainly to take advantage of common access patterns and thus help in
amortizing index and lookup costs. Once the tuples are filled in input buffer then the second

phase kicks off.

The second phase is the online phase. In this phase the tuples are sorted based on used index
characteristics. This sorting allows the algorithm to share the scans of index and of cached disk-
based relational pages among several tuples. The join result is outputted immediately on all
matching disk-based relational tuples that are in the cache. Any stream tuples that are not joined
in this online phase needs to wait for the next phase, the join phase. This is the last phase and
stream tuples will be matched in this phase when their matching disk-based relational tuple is
located on the disk. Once the join phase is complete, the algorithm moves back into the first
phase that is the pending phase. This Semi-Streaming Index Join is a state-of-the-art algorithm
in index-based joining algorithms. The experimental results of this algorithm show that this

algorithm supports very fast stream inputs and optimally exploits available memory.
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Figure 2.5 SSIJ Overview (Mihaela, Antonios, Yannis, Vasilis & Athens, 2011)

2.2.2.2 HYBRIDJOIN

In the section 2.2.1.1, we discussed the non-indexed semi-stream MESHJOIN. It reads the disk-
based relational slowly-moving master data sequentially in partitions and then performs
joining. The architecture and explanation of how it works is given in that section. This
MESHJOIN algorithm successfully amortizes the fast arrival rate of the incoming stream data
S, by executing the disk partition join with a large number of incoming stream tuples. However
there are few issues found in this algorithm. Firstly, this algorithm reads unused or less used
partitions of disk-based relational master data R by accessing it from the table sequentially,
which increases the processing time of each stream tuple that is in the queue due to extra disk
I/0. Secondly this algorithm cannot deal with burst incoming stream data effectively. If the
stream input size is greater than or equal to the number of tuples in the stream buffer then disk
invocation occurs. If the stream input data size has a lower arrival rate, then the existing tuples
in the queue need to wait longer due to the delay in disk invocation. This waiting time also
affects performance negatively. To overcome/handle these two issues, (Asif, Gillian & Gerald,
2011) proposed a new semi-stream join called the HYBRIDJOIN. Figure. 2. 6 shows the data
structure and architecture of the HYBRIDJOIN algorithm. The components of HYBRIDJOIN
algorithm are same as those of the MESHJOIN algorithm, which are; disk buffer, hash table,

stream buffer and queue. In HYBRIDJOIN algorithm, it is assumed that relational master data
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R contains sorted, unique and indexed values of join attribute. The disk buffer is used to store
a portion of disk R data. The value of the join attribute is stored in the queue which also stores
the address of its one-step neighbor nodes. There is a new feature of random deletion
implemented in the HYBRIDJOIN algorithm queue which uses a doubly-linked-list. An
important component in this algorithm is the hash table which stores the input stream tuples
and the node addresses of the queue corresponding to the tuples. The benefit of this is the
algorithm can start matching with all matching stream tuples from the queue once the disk
partition is loaded into the memory using the join attribute value from the queue. This method
helps to reduce the disk 1/0 cost of a fast arrival stream. Whenever a match is found, the
algorithm generates an output of that tuple and then removes that node from queue and also the
corresponding tuple from the hash table. Unmatched tuples are dealt with in a similar way to
the MESHJOIN algorithm. Every disk input is bound to the stream input in the MESHJOIN
algorithm whereas in the HYBRIDJOIN algorithm this constraint is removed by making
independencies between each disk invocation from the stream input data. The cost model of
this semi-stream join is explained in (Asif, Gillian & Gerald, 2011) along with a comparison
analysis with the MESHJOIN algorithm and experimental results based on the Zipfian’s
distribution (Chris, 2006) pattern synthetic dataset. The theoretical results shows that this
HYBRIDJOIN algorithm is significantly better than the MESHJOIN algorithm.
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Figure 2.6 Data structure and architecture of HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2011)
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2.2.2.3 X-HYBRIDJOIN

The HYBRIDJOIN algorithm join process described in section 2.2.2.2 uses an index. The
MESHJOIN algorithm (section 2.2.1.1) does not take stream tuple frequency into account and
does not need master data tuples to be indexed. In some circumstances this can be useful, but
in many other cases in order to gain maximum performance, one obviously wants to have
indexing. (Muhammad, Gillian & Gerald, 2011) proposed a new algorithm called the Extended
HYBRIDJOIN algorithm (X-HYBRIDJOIN). The key feature of this algorithm is that it stores
the most used portion of the master data R, which is disk-based relational data, which most
often matches received items from stream data S in the memory. This reduces the disk 1/0 cost

considerably and improves the performances of the join algorithm.

There are two major changes in the X-HYBRIDJOIN algorithm, when compared with the
MESHJOIN algorithm. The first is that, hash join component is modified in the X-
HYBRIDJOIN algorithm to make use of an index. The second is that the X-HYBRIDJOIN
algorithm caches most frequently used relational disk-based master data R. In the

HYBRIDJOIN algorithm only the first change was implemented.

Figure. 2.7 shows the working overview of X-HYBRIDJOIN. The difference between the
HYBRIDJOIN and the X-HYBRIDJOIN algorithm is that the disk buffer component is divided
into two parts. One is to store the most used pages of master data R permanently in memory
called Non-Swappable in the diagram, and the other is to store the partitions of the remainder
of the master data in the memory as is done in the HYBRIDJOIN algorithm. The algorithm
becomes ready to be executed once available memory is distributed within the join
components. The algorithm reads a particular portion of the master data R and loads it into the
non-swappable part of the disk buffer before it starts the actual join execution. When the
algorithm starts the hash table H slots are empty as incoming stream data S is to be assigned to
it. Basically, the algorithm has two loops, an outer loop and an inner loop. The outer loop is an
endless loop, its key role being to build the stream in the hash table. Within this loop there are
two inner loops run by the algorithm. One of the inner loop performs the probing module in
the non-swappable portion of the disk buffer and the other inner loop performs the probing
module in the swappable portion of the disk buffer. When the outer loop is started, the
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algorithm observes the stream buffer status. If there is any stream found, it loads it into the
hash table and also enqueue its attribute values in the queue. Now the algorithm executes the
first inner loop. First inner loop reads every tuple from the non-swappable part one-by-one and
performs lookup in the hash table. If there is any match found it generates an output and also
deletes it from the hash table and the corresponding node in the queue. Then the algorithm
increments the available vacated slots in the hash table. This is the end of the first inner loop.
Before starting the second inner loop, the algorithm reads the oldest value from the queue and
the swappable part of the disk buffer is loaded using the join attribute value as an index. Once
this action is performed, a similar probing procedure to the first inner loop is performed here.
If the first inner loop is switched-off, technically it becomes a HYBRIDJOIN algorithm. After
various experiments, results shows that the X-HYBRIDJOIN algorithm performs better than
other algorithms when relational master data R increases. Though the authors proposed a new
algorithm by adding another component (the non-swappable portion of disk buffer) to the
HYBRIDJOIN algorithm, they plan to improve this algorithm by tuning the X-HYBRIDJOIN
algorithm to utilize the available memory resources optimally.
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Figure 2.7 Data structure and architecture of X-HYBRIDJOIN algorithm (Muhammad, Gillian & Gerald, 2011)
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The authors continued the work of improving the performance of the X-HYBRIDJOIN
algorithm by better tuning the available memory resources (Muhammad, Gillian & Gerald,
2011). The existing cost model of the X-HYBRIDJOIN algorithm was revised and the join
component was also tuned based on that cost model. As an outcome of this tuning, the available
memory is distributed within all components properly and it has improved performance of the
algorithm significantly. This new algorithm was presented by (Muhammad, Gillian, Gerald &
Imran, 2012) with the name “Tuned X-HYBRIDJOIN Algorithm” with new cost model
calculation and experimental results. The size of both the non-swappable and the swappable
parts of the disk buffer are tuned to have memory distributed optimally to give better
performance of the algorithm. The experimental outcome of Tuned X-HYBRIDJOIN
algorithm was compared with the X-HYBRIDJOIN and proved that the revised cost model
tuned algorithm performance is significantly better than that of the X-HYBRIDJOIN

algorithm.

Optimized X-HYBRIDJOIN

The researchers (Muhammad, Gillian & Gerald, 2011), (Muhammad, Gillian, Gerald & Imran,
2012) investigated whether the performance of the X-HYBRIDJOIN algorithm could be further
improved by handling frequently accessed data in a different way. They proposed a new join
algorithm called “Optimized X-HYBRIDJOIN Algorithm” (Asif, Gillian & Gerald, 2012).
This algorithm has two phases, one called the stream-probing phase and the other the disk-
probing phase. The stream-probing phase deals with disk-based relational master data tuples R
that are accessed frequently, and the disk-probing phase deals with the other parts of the
relational disk-based master data R. Experimental outcomes for this Optimized X-
HYBRIDJOIN algorithm are significantly better when compared with the performance of X-
HYBRIDJOIN. The motivation for this Optimized X-HYBRIDJOIN algorithm was to

minimize the bottleneck in the stream of updates.

Figure. 2.8 shows the memory architecture for the Optimized X-HYBRIDJOIN algorithm. This
new optimized join algorithm decomposes it into two hash join phases called the disk probing
phase and the steam-probing phase which can be executed separately. With respect to memory
size, the largest component of this algorithm are two hash tables, one used to store steam tuples
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which is denoted as Hg and other to store tuples from disk-based relational master data R, which
is denoted as Hg. The disk buffer, stream buffer and queue are the other main components of
the algorithm.

The optimized X-HYBRIDJOIN algorithm alternates between the disk-probing phase and the
stream-probing phase, parts of the update stream that are not matched in Hy are stored in hash
table Hs. If the stream buffer is empty, or the hash table Hs is full, the stream-probing phase
ends and the disk-probing phase becomes active. In this disk-probing phase, the loading
partition of R is determined by the oldest tuple found in the queue for the single probing step.
When an adequate number of stream tuples are removed from the hash table Hs, often after one
probe iteration, the algorithm switches back to the other probing phase. One stream-probing
phase with a subsequent disk-probing phase establish one outer iteration of the Optimized X-
HYBRIDJOIN algorithm. The disk-probing phase is not dependent on the stream-probing
phase and so it can work on its own. The stream-probing phase boosts performance by quickly

matching the more often used relational master data tuples R.
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Figure 2.8 Memory architecture of Optimised X-HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2012)
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2.2.3 Cache based Semi-Stream Joins

2.2.3.1 CMESHJOIN

The MESHJOIN algorithm is a novel semi-stream join algorithm that works under minimal
assumptions about the stream data S and disk-based relational slow moving master data R, but
does not perform well with skewed data distribution (Neoklis, Spiros, Panos, Alkis & Nils-
Erik, 2008). Hence a new algorithm called Cached MESHJOIN (CMESHJOIN) algorithm was
proposed to improve the service rate by exploiting the skewed distributions of the stream data.
(Asif, Gerald, Gillian & Christof, 2013) proposed a generic component called a cache which
can be used as a front-stage for an arbitrary semi-stream join algorithm. Here the authors only
considered one-to-many equijoins. This join occurs between a referenced primary key and
foreign key. This join is an important class that occurs logically in online auction systems
(Arvind, Shivnath & Jennifer, 2002), supply chain management (Eugene, Yanlei & Shariq,
2006) and in data warehousing (Lukasz, Theodore, Spencer & Vladislav, 2009). This algorithm
is based on the MESHJOIN algorithm and it is extended with another phase called the Cache
Front-stage to exploit skewed distributions.

By adding a front-stage to the MESHJOIN algorithm, a new algorithm called C-MESHJOIN
algorithm as presented. Figure. 2.9 shows the execution architecture of this algorithm. In this
algorithm both the MESHJOIN and the front stage are hash joins, hence this algorithm can be
seen overall as holding two complementary hash join phases. In one phase, the MESHJOIN
uses relational master data R stored in the tertiary memory. In the second join phase, the front-
stage uses the incoming stream tuple S as the probing input and deals only with a small part of
relational master data R. For each incoming stream S input, CMESHJOIN first uses the front-
stage to find the join on frequent requests. If there is no join or match found in the front-stage,
the stream tuple S is sent to the next phase called the MESHJOIN phase. This algorithm uses
the original MESHJOIN architecture though there are alternative architectures such as using

an order-preserving hash table data structure rather than a queue.

There are two main components in CMESHJOIN with respect to memory size and they are
hash tables. One hash table is to store stream tuples, denoted as Hs and other hash table is to

store the tuples from the disk based relational master table, denoted as Hy. This is relational
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master table hash Hy is the cache that stores most frequently accessed tuples from relational
master data table R. Other main components are the disk buffer, frequency recorder, queue and
stream buffer. The disk buffer is used to load parts of relational data R into memory using
equally sized partitions. The frequency recorder is used to record the number of time tuples
stored in Hy are accessed. The queue stores the pointers to the stream tuples that are saved in
stream hash table Hs by keeping track of the tuples’ order and enabling the removal of
completely processed tuples. The stream buffer is a small buffer which holds part of stream for

a while if necessary.

CMESHJOIN alternates between the front-stage phase and the MESHJOIN phase. Streams that
do not match hash table Hy are stored in hash table Hg. The first front-stage phase will end if
hash table Hg is completely full or the stream buffer becomes empty. Once the front-stage has
ended, the second phase, MESHJOIN, becomes active. In every iteration of MESHJOIN, the
algorithm loads a set of master data R tuples into memory to amortize the cost of disk access.
Once disk pages are loaded into the disk buffer, the algorithm starts its probing and each tuple
in the disk buffer in Hg is probed. Output is generated once the match is found. After each
iteration the oldest chunk of stream data is removed from Hg. As the algorithm reads master
data R sequentially, an index is not required on R. Here the front-stage phase is used to improve
performance by quickly matching the most frequently accessed master data R. An experimental
study was performed and discussed with a cost model (Asif, Gerald, Gillian & Christof, 2013),
on one-to-many joins and provided better performance than the MESHJOIN algorithm.
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Figure 2.9 Data structure and architecture of CMESHJOIN algorithm (Asif, Gerald, Gillian & Christof, 2013)

2.2.3.2 CACHEJOIN

CACHEJOIN is another semi-stream join algorithm which is based on the caching method.
This algorithm was proposed to give better performance in long-tailed skewed distribution
patterns in incoming stream data (transactional data). Functionally, this semi-stream join is
similar to HYBRIDJOIN which was explained in section 2.2.2.2. In CACHEJOIN a new logic
is introduced which caches frequently-accessed relational database master data tuples in the
static memory and this is called phase one in the CACHEJOIN algorithm (Figure 3.1). The
second phase is basically a HYBRIDJOIN phase. So this CACHEJOIN has two phases, firstly
the algorithm try to find the match from cached frequently accessed relational database master
table tuple and if there is no match is found then it moves on to the second phase. There is a
threshold factor involved to identify the frequently-accessed tuples. This threshold level is
defined by the user at the beginning of this algorithm. At this stage there is no automatic tuning
process done by the algorithm while it is running, but the authors (Asif, Gillian & Gerald, 2012)
will develop future work in this area. As the algorithm does the joining with the most frequently
cached tuples first, this boosts performance. As this was the algorithm chosen to implement
with the MITRE 10 NZ dataset, it is explained in more detail with a cost model and architecture

in the following.
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Chapter 3

3 Implementation of CACHEJOIN in MITRE 10 NZ

3.1 MITRE 10 NZ current setup

Currently MITRE 10 doesn’t have an active or real-time data warehouse. They have a
traditional data warehouse which always has one day old data. Normally a data backup of the
live system to the data warehouse cannot be performed during business hours due to data
integrity issues and because to do so has an effect on the live system giving rise to system
slowness. When entering data into the data warehouse, a few processes such as data mapping
are necessary. Normally, copying data from the live database to the data warehouse is done at
night time. At MITRE 10 NZ, the live, point-of-sale system is connected to a UNIX server
database called Powerflex. Added to this, the backup strategy is not optimal as there cannot be
any JDBC installed in the system, so there is no way to easily establish a connection to the
database from Java IDE. Instead all tables from the Powerflex database are copied across to
the MySQL data warehouse at night and from there reports are created and published to users.
This means users will only have a day-old data. If they want to know any current stock
inventory position for an item then they need to log in to the AS400 system and run a report
for that item to know the status. This cannot be undertaken on all items at one time and
performing it on every item individually is also not feasible due to the range of products they
have. Though there are many tables available in the data warehouse only three tables’ data is
of interest here. They are; transactional stream input data, product master data and customer
master data. These attributes and data types are explained in Tables 3.1, 3.2 and 4.2

respectively.

3.2 Suitability of CACHEJOIN to MITRE 10 NZ

In this work we implemented CACHEJOIN algorithm in MITRE 10 NZ, one of the largest
companies in New Zealand, and tested using both synthetic and live MITRE 10 NZ
transactional datasets. Performance of this algorithm on both datasets is observed and studied.
MITRE 10 NZ has master data of nearly three hundred thousand unique product items indexed
by product key. As this master data is uniquely indexed MESHJOIN, R-MESHJOIN and



CMESHJOIN algorithms were not considered for this implementation as these algorithms do
not implement indexing. On the other hand HYBRIDJOIN, X-HYBRIDJOIN and
CACHEJOIN algorithms use indexes to boost performance and work well with unique, indexed
master data whereas the MITRE 10 NZ master data is also unique. Moreover, we analyzed
MITRE 10 NZ and identified that it has a long-tail skew in it. In this case, around 15% of the
master data being more frequently used and the other product items are rarely being purchased
by customers hence not often used. This distribution pattern suits HYBRIDJOIN, X-
HYBRIDJOIN and CACHEJOIN algorithms well (Asif, Gillian & Gerald, 2011), (Asif, Gillian
& Gerald, 2012), (Muhammad, Gillian & Gerald, 2011), (Asif, Gillian, Gerald & Christof,
2012), (Asif, 2014).

Now the question was, which algorithm from the above list is optimal for MITRE 10 NZ? The
HYBRIDJOIN algorithm does not use caching method whereas the CACHEJOIN algorithm
use caching method in the first phase before it moves into the second phase which is technically
a HYBRIDJOIN. Because the CACHEJOIN algorithm has advantage of caching method
adding to the HYBRIDJOIN, the HYBRIDJOIN algorithm were not considered for this
implementation. The X-HYBRIDJOIN algorithm uses caching method but the limitation for
this algorithm was the need of sorting master table. This make a difference from the
CACHEJOIN algorithm whereas there was no sorting needed. Also before making the
selection the size of MITRE 10 NZ master data was studied. The size of the product master
data was around only three hundred thousand. Because of the X-HYBRIDJOIN algorithm
limitation we see that the CACHEJOIN algorithm was more suitable as it could cache almost
every frequently used product items into the hash memory. As most of the frequently-used
product items are cached in the hash memory, performance would be better than that of the
HYBRIDJOIN algorithm. Most of the incoming stream tuples would be joined in the first phase
of the CACHEJOIN algorithm itself before it moved into the second phase of join which is
typically HYBRIDJOIN phase. In this way advantage is derived from cached memory. These
observations motivate us to implement the CACHEJOIN algorithm to process MITRE 10 NZ

transactional data.
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3.2.1.1 Components of CACHEJOIN

Following are the key components involve in CACHEJOIN algorithm:

Disk Buffer: This is the component that loads the disk pages from the disk-based master data
table (product) into the memory. The number of tuples to be retrieved from the master table to
the disk pages can be controlled by the user and this needs to be set before executing this

program.

Stream Buffer: The stream buffer is used to hold the fast, incoming stream if required. For
example, if the rate of incoming stream tuples is faster than the service rate of the algorithm,
then the stream tuples will overflow. In this case, this overflow part of the input stream can be

stored in the stream buffer temporarily.

Hash Tables: There are two hash tables used in the CACHEJOIN algorithm unlike other
algorithms such as MESHJOIN, R-MESHJOIN, and HYBRIDJOIN. They are called the Hg
and H tables. Hy stores most frequently-used disk tuples from the product master data table.
H; stores the incoming stream tuples. As mentioned above, the Java hash table does not support
the storing of multiple tuples containing the same key value at the same time. Therefore
MultiHashMap provided by Apache is used to implement the algorithm. The fudge factor value
that was considered in this implementation is 8.

Queue: The queue is used to store the pointer addresses of tuples in the hash table in order to
keep a record of expired tuples. Each node in the queue is based on a double-linked list which

contains the attribute value and the addresses of one-step neighbor nodes.

Frequency Recorder: This component is used to record the frequency of matching the master
data tuples with stream tuples. This component is an important as this is the gate for the master
data tuples to enter into the cache memory where frequent master data tuples are stored and

used to process input stream tuples. There is a threshold value to decide the switching of master
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data tuple into the cache. This threshold is a flexible barrier and its value is controlled

automatically by the algorithm.

Following are the two inputs that algorithm take in each of its iteration:

Relation R: This is the disk-based relational master data R that is stored in a MySQL database.

Stream S: This is the incoming stream data which is basically transactional data from the point
of sale system in any retail store. Each stream tuple typically includes keys and a few attributes
at the point of sale time such as quantities, time and date of sale, promotional offers, etc.

3.3 CACHEJOIN execution architecture

The CACHEJOIN (Cache Join) is a well-known algorithm (Asif, Gillian & Gerald, 2012) and
was particularly designed to process skewed stream data with disk-based master data
efficiently. In this algorithm, performance is not affected when a large number of unused or

rarely used data is added to the disk-based relational master data R.

Figure. 3.1 shows the data structure and architecture of the CACHEJOIN algorithm. The
pseudocode of the algorithm is given in Algorithm 3.1. An index is required for the
CACHEJOIN algorithm to access the master data R selectively. This algorithm has two
complementary hash join phases. One is disk-probing phase in which R is used as a probing
input with the largest part stored in the tertiary memory. The other is called stream-probing
phase in which the stream data is used as the probing input. This phase deals only with a small
set of R. For every incoming stream tuple, CACHEJOIN algorithm first uses the stream-
probing phase to quickly find matches on frequently-requested tuples from the master data R
in cache. If there is no match found, the incoming stream tuple is forwarded into the next
probing phase called the disk-probing phase. In this algorithm two hash tables Hg and Hy are
the largest components with respect to the memory size. Hg is used to store stream tuples
whereas Hy is used to store master data tuples. The other main memory components are the

disk buffer, the stream buffer and the queue. The disk buffer loads the disk pages from the disk-
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based master data table (product) into the memory, the stream buffer is used to hold the fast
incoming stream if required and the queue is used to store the pointer addresses of tuples in the
hash table in order to keep a record of expired tuples. The CACHEJOIN algorithm alternates

between the stream-based probing phase, and the disk-based probing phase.

Once the stream buffer is empty or the hash table Hg is completely full, the stream-probing
phase ends and the disk-probing phase becomes active. In the disk-probing phase, the oldest
tuple found in the queue is used to decide the master-data partition which is loaded for a single
disk-probing phase into the disk buffer. This ensures that in every probe step process, the
CACHEJOIN algorithm matches at least one tuple. After this probe step, and an adequate
number of stream tuples are matched in hash table Hs, these are removed using the queue which
supports this process of removing processed tuples from Hg. Once the disk-probing phase is
complete, the algorithm is switched back to the stream-probing phase and this constitutes one
outer iteration of the CACHEJOIN.
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Figure 3.1 Data structure and architecture of CACHEJOIN algorithm (Asif, Gillian & Gerald, 2012)
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As with the HYBRIDJOIN algorithm (Asif, Gillian & Gerald, 2011) the disk-probing phase
can work independently from the stream-probing phase. The authors (Asif, Gillian & Gerald,
2012), (Asif, Gillian & Gerald & Chistof, 2013), (Asif, 2014) give a cost model of this
algorithm and experimental study of the CACHEJOIN algorithm performance compared to the
MESHJOIN algorithm (Neoklis, Spiros, Panos, Alkis & Nils-Erik, 2008), the R-MESHJOIN
algorithm (Asif, Gillian, Gerald & Shafiq, 2010) and the HYBRIDJOIN algorithm (Asif,
Gillian & Gerald, 2011).

Input: A disk based relation R and a stream of updates S.
Output: R= S

Parameters: w tuples of S and b number of tuples of R.
Method:

1. while (true) do

2. READ w stream tuples from the stream buffer

3 for each tuple t in w do

4. if t € Hg then

5: OUTPUT ¢

6 else

7 ADD stream tuple t into H; and also place its pointer value
into Q

8. end if

9. end for

10.  READ b number of tuples of R into the disk buffer

11.  for each tuple rin b do

12. if r € Hg then

13 OUTPUT r

14. f «— number of matching tuples found in Hg

15. if (f = threshold Value) then

16. SWITCH the tuple rinto hash table Hg

17. end if

18. end if

19.  end for

20. DELETE the oldest w tuples from Hg along with their corresponding
pointers from Q

21.end while

Algorithm 3.1 Pseudo-code for CACHEJOIN algorithm (Asif, 2014)
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3.4 Experimental Set up

This section explains the system used for this implementation and the characteristics of the

datasets.

3.4.1 System Setup

We implement the algorithm in Java language using Eclipse IDE version 4.4.0. We run our
experiments on Intel Core i5 processor with 8GB main memory (RAM) and 700GB disk
memory under the Windows 7 Professional Edition 64-Bit Operation System. The master data
is stored on disk using MySQL database. To measure the memory cost of the algorithm we use
external library “Sizeofag.Jar”. To measure the processing cost we use “System.NanoTime ()”
method, provided by Java API. As Java hash tables do not support the storing of multiple tuples
corresponding to the same key value, MultiHashMap provided by Apache Common
Collections is used to store multiple tuples corresponding to the same key value at the same
time. This is necessary as in this experiment this algorithm runs on a retail industry dataset
where many customers can buy the same product within the same time period. For example,

Customer A and Customer B can buy a cleaning towel at the same time.

3.4.2 Datasets
3.4.2.1 Synthetic dataset

The stream dataset used in this algorithm is based on a Zipfian’s distribution which is found in
a wide range of applications (Chris, 2006). There are 42 attributes in each tuple with size of
168 bytes. We consider each stream tuple equal in size to the MITRE 10 NZ transactional
stream tuple. And the size of each master data tuple is also consider equal to the size of MITRE
10 NZ master data tuple. In our experiment the size of master data is three hundred thousand
unique indexed tuples with each tuple having 86 attributes. Basically, we keep the structure of
the synthetic dataset same as MITRE 10 NZ’s dataset, so that performance is compared fairly
against the real-life dataset.
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3.4.2.2 Real-life dataset

We use the real-life transactional dataset from MITRE 10 NZ. The incoming stream tuples
have 42 attributes with different data types and they are explained below in Table. 3.1. The
keys in this transactional data are stock_code and account_code (both are foreign key). In the
CACHEJOIN algorithm we implement the join of only one attribute stock_code. Stock code
is the foreign key that joins with the primary key in master table called sc. This sc table has 86
attributes for every item/product as presented in Table. 3.2.

TRANSACTION TABLE - gltx
‘branch’ char(2) default NULL,
‘dept’ char(4) default NULL,
‘drawer’ char(2) default NULL,
‘code’ int(11) default NULL,
‘amount’ decimal(10,2) default NULL,
‘cost’ decimal(10,2) default NULL,
‘date_" date default NULL,
*account’ char(15) default NULL,
‘remarks’ char(25) default NULL,
‘reference’ char(15) default NULL,
‘type_" char(5) default NULL,

‘tax” decimal(10,2) default NULL,
‘operator’ char(4) default NULL,
‘qty’ decimal(10,4) default NULL,
*stock’ char(15) default NULL,
‘docket_no’ int(11) default NULL,
‘posted’ date default NULL,

‘promo’ char(1) default NULL,
‘sub_code’ int(11) default NULL,
‘gst’ decimal(10,2) default NULL,
‘promo_num’ char(10) default NULL,

Table 3.1 Data specifications of MITRE 10 NZ transactional stream dataset.

‘promo_start’ date default NULL,
‘promo_end’ date default NULL,
‘description’ char(40) default NULL,
‘group_" char(4) default NULL,

‘retail’ decimal(10,2) default NULL,
‘sys_price’ decimal(10,2) default NULL,
‘sys_disc’ decimal(10,2) default NULL,
‘set_disc_val' decimal(10,2) default NULL,
‘act_price" decimal(10,2) default NULL,
‘act_disc® decimal(10,2) default NULL,
‘act_disc_val® decimal(10,2) default NULL,
‘line” int(11) default NULL,

‘unit’ char(6) default NULL,

‘length® decimal(10,4) default NULL,

‘till* char(2) default NULL,

‘date2post’ date default NULL,
‘sub_account’ char(15) default NULL,
‘item_type" char(1) default NULL,
‘sub_type® char(1) default NULL,

‘time’ char(5) default NULL,
‘override_operator' char(4) default NULL
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MASTER DATA - sc
“stock_code" char(15) default NULL,
‘description’ char(40) default NULL,
‘department’ char(4) default NULL,
‘product_group char(15) default NULL,
‘unit’ char(6) default NULL,
‘carton_qty' decimal(8,4) default NULL,
‘whole_units’ char(3) default NULL,
‘supplier_1" char(15) default NULL,
‘supplierl_code’ char(15) default NULL,
‘gty_on_hand" decimal(8,2) default NULL,
‘qty_available® decimal(8,2) default NULL,
‘supplier_2" char(15) default NULL,
‘supplier2_code’ char(15) default NULL,
‘qty_backorder' decimal(8,2) default NULL,
‘supplier_3" char(15) default NULL,
‘supplier3_code’ char(15) default NULL,
‘qty_purch_ord" decimal(8,2) default NULL,
‘sold_m_t_d" decimal(8,2) default NULL,
‘'m_t_date_value' decimal(8,2) default NULL,
‘purch_unit’ char(6) default NULL,
‘no_shelf_label’ char(4) default NULL,
‘bar_code_y_n" char(4) default NULL,
‘sold_y_t_d' decimal(8,2) default NULL,
‘y_t_d_value’ decimal(8,2) default NULL,
‘retail_price’ decimal(12,4) default NULL,
‘sold_today" decimal(10,2) default NULL,
*sold_this_week" decimal(10,2) default NULL,
*sold_last_year" decimal(8,2) default NULL,
‘last_year_val' decimal(8,2) default NULL,

‘spare6’ decimal(12,4) default NULL,
‘conversion’ decimal(10,2) default NULL,
‘this_weeks_val' decimal(10,2) default NULL,
‘retail_m_up" decimal(6,4) default NULL,
‘qty_break_1' decimal(10,2) default NULL,
‘qty_break1_perc' decimal(10,2) default NULL,
‘qty_break_2" decimal(10,2) default NULL,
‘spare7" decimal(6,4) default NULL,
‘qty_break2_perc' decimal(10,2) default NULL,
“prod_discount’ decimal(4,2) default NULL,
‘spare2’ decimal(10,4) default NULL,
‘spare3’ decimal(4,2) default NULL,
‘date_last_sale" date default NULL,
‘date_last_purch' date default NULL,
“last_cost_price’ decimal(12,4) default NULL,
‘av_cost_price’ decimal(12,4) default NULL,
‘average_stock' decimal(10,2) default NULL,
‘qty_sold_july' decimal(8,2) default NULL,
‘gty_sold_aug' decimal(8,2) default NULL,
‘qty_sold_sep' decimal(8,2) default NULL,
‘gty_sold_oct’ decimal(8,2) default NULL,
‘gty_sold_nov' decimal(8,2) default NULL,
‘gty_sold_dec’ decimal(8,2) default NULL,
‘gty_sold_jan' decimal(8,2) default NULL,
‘qty_sold_feb" decimal(8,2) default NULL,
‘gty_sold_mar" decimal(8,2) default NULL,
‘qty_sold_apr' decimal(8,2) default NULL,
‘qty_sold_may" decimal(8,2) default NULL,
‘qty_sold_jun" decimal(8,2) default NULL,

‘ly_av_stock’ decimal(8,2) default NULL,
‘sparel’ int(11) default NULL,

‘dropped" char(1) default NULL,

‘spare8’ char(6) default NULL,
‘stocktake' char(6) default NULL,
‘days_lowest_mar" char(6) default NULL,
‘new_item_day" char(6) default NULL,
‘velocity' char(1) default NULL,
‘sale_number’ char(10) default NULL,
‘sale_quantity’ decimal(8,2) default NULL,
‘sale_sale_val' decimal(8,2) default NULL,
‘sale_cost" decimal(8,2) default NULL,
‘sale_finish' date default NULL,
‘sale_start" date default NULL,
‘cost_mtd" decimal(8,2) default NULL,
‘cost_ytd" decimal(8,2) default NULL,
‘cost_ly' decimal(8,2) default NULL,
‘spared’ decimal(8,2) default NULL,
‘spare5’ decimal(8,2) default NULL,
‘week_cost’ decimal(8,2) default NULL,
‘size_" char(15) default NULL,

‘internet’ char(1) default NULL,
‘price_control® char(1) default NULL,
‘warranty_flag’ char(1) default NULL,
‘item_type’" char(1) default NULL,
‘sub_type" char(1) default NULL,
‘item_status' char(1) default NULL,
‘replen_type" char(6) default NULL,

Table 3.2 Data specifications of MITRE 10 NZ product master table dataset.

Characteristics of Real-life transactional dataset

We studied the MITRE 10 NZ transaction (incoming stream) dataset to understand the tuple
arrival pattern. This was necessary so suitable semi-stream joins could be selected according
to the behavior or pattern of MITRE 10 dataset used for implementation. The study confirms
that the incoming stream arrival pattern is identified as a long-tailed skewed pattern and Figure.
3.2 displays the distribution pattern of MITRE 10 NZ incoming stream data. This figure
presents the pattern on two scales, the first graph showing the approach in normal scale whereas
the second graph is based on a logarithmic scale. These graphs shows that the customers are
more frequently buying a few items rather than every item being purchased at the same rate.
This concludes that that there could be many items which are not purchased over a period.
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Figure 3.2 Incoming (transactional) dataset data distribution pattern of MITRE 10 NZ

3.5 Execution of the CACHEJOIN algorithm

To execute CACHEJOIN algorithm on the MITRE 10 setup a few things needed to be done.
The aim of this study is to execute the CACHEJOIN algorithm on both a synthetic dataset and
on the MITRE 10 dataset and carry out a performance comparison study on both data results.
The algorithm was executed with different memory budgets as well. In order to do this
successfully, we need to do some preparation work before running this algorithm. As explained
in Section 3.1, we found few difficulties in implementing CACHEJOIN algorithm in live
MITRE10 point-of-sale system. This is mainly because of current system architecture of
MITRE10 NZ. There cannot be any JDBC installed in the live point-of-sale system. Hence the
point-of-sale system cannot be connected to the master tables which is in MySQL database for
joining streams with master data. To overcome this issue we took a copy of real transaction
data from the point-of-sale system backend UNIX database and created a same replica table in
MySQL database. This allowed us to run the CACHEJOIN algorithm with MITRE10 NZ real
dataset. Also as explained in Section 3.4.1, to handle multiple tuples with the same key value
MultiHashMap Jar files provided by Apache need to be added. Another jar file called
“SizeofJar” is added to measure the processing cost. The System.Nanotime () method is used
to measure processing time. A JDBC MySQL connector is added to the program to establish a
connection between the MySQL master tables. Finally, output costs are written to the text file

by the algorithm, the file name and location being controlled by the user.
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To do a proper comparison study (apples-apples and oranges-oranges), the CACHEJOIN
algorithm is used to run on a synthetic dataset amended to have the same number of attributes
as the MITRE 10 dataset. In this study the size of the product master table does not change
over all experiments. This is based on the MITRE 10 real-life scenario. For incoming
transactional stream data, the entire December 2014 live data received from MITRE 10 NZ
was used. The reason for using an entire month’s volume is to have a larger dataset for
experiment. All experiments are run during a quiet period where no other processes are running
on the system at the same time. Once the execution is completed and the output is written to
the output text file, then the CACHEJOIN cost calculation is applied to derive the service rate.
From the output data, the first and last 15% of the data was not considered in our calculation.
This is to make sure that we are not considering noisy scores in our service rate calculation.
This is also enough time to give to the algorithm a warmup before starting to measure the costs.
This is achieved by adding the FOR loop in execution process and only the last round costs are
captured. In our experiments the algorithm is run for four times and on the fourth run, the costs
are captured. This makes the comparison study more meaningful as the number of attributes
and tuples considered are the same in both synthetic and real-life executions.

Experiments are completed with synthetic and real-life dataset as stated in the above section.
The performance comparison study on service levels is done and explained in the following

section.

3.6 Results

We want to understand the behavior of CACHEJOIN algorithm when it run with different
memory sizes. The same algorithm is run with a synthetic dataset and with the MITRE 10 NZ
dataset without making any changes to any user-defined parameter values as stated at the
beginning of the CACHEJOIN.java file. And the system setup also remains the same when we
run the algorithm with two different datasets. Service rate is calculated using the cost model by
the authors (Asif, Gillian & Gerald, 2012).
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Performance comparisons for different memory budgets: This experiment compares the
performance of CACHEJOIN algorithm using both synthetic and real-life datasets. We run our
experiment for different memory budgets varying from 50MB to 200MB. The size of the
product master table (sc table) is set to a fixed size of 300,000 tuples in all our experiments.
Figure. 3.3 shows the output of this experiment. From the figure we can see that the service
rate (tuples processed in a second) of CACHEJOIN algorithm on MITRE 10 NZ dataset is very
close to that of synthetic dataset. The reason for the slight variance could be due to the skew
variation in real-life dataset. This also confirms that the implementation of CACHEJOIN

algorithm on the MITRE 10 NZ dataset produced an acceptable output.

Service Level (Tuples/Second)
4,500
4,000
3,500

3,000

2,000
1,500
1,000

500

50MB 100MB 150MB 200MB

——f=Synthetic data ==@==Real time data

Figure 3.3 CACHEJOIN algorithm service rate comparison of synthetic and real-life dataset.
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Chapter 4

4 Extension of CACHEJOIN in MITRE 10 NZ

4.1 Motivation

MITRE 10 NZ transactional data includes two key attributes (stock code and the
account_code) which need to be joined with the two different tables in disk-based master data.
Product attributes can be identified by joining the stock code key into product master table
using simple CACHEJOIN algorithm. But to understand the type of transactions (whether retail
customer or trade customer) we need to have two phase CACHEJOIN algorithm which
account_code key from the same transaction is joined with another master table called
cs_person. This second join cannot be done with current simple CACHEJOIN algorithm and
hence there is a need to have two phase join CACHEJOIN algorithm. The stock _code attribute
needs to join with the product table (sc) in master data to get information about each product
item such as product name, product color, product length, product retail price, product cost
price and etc. For example, hammer, Black color, 60cm length, $30, $25, etc. While, the
attribute account_code needs to with the customer table in the master data to get information
about the customer such as customer name, customer address, customer contact number,
customer trading name etc. For example, David George, Auckland, 09-123456, Global Traders,
etc. This joining of a stream tuple with two tables in the master data motivates us to extend
our normal CACHEJOIN algorithm for implementing the join operation with two different
tables in the master data. We call it Two-Stage join. Under the first join stage (which is normal
CACHEJOIN) stream tuple is joined with the product table (sc) in the master data using
stock_code as a join attribute while under the second join stage the stream tuple is joined with
the customer table in the master data using account_code as a join attribute. In this chapter we
implement our Two-Stage join algorithm and analyze its performance with normal
CACHEJOIN using MITRE 10 NZ dataset.

4.2 Two-Stage Join architecture and algorithm

A simple architectural design of Two-Stage join algorithm is shown in Figure 4.1 while its

pseudo-code is presented in Algorithm 4.1.
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Figure 4.1 A simple architectural design for Two-Stage Join

From the figure the first stage implements the normal CACHEJOIN. As normal CACHEJOIN
has further two phases — the stream-probing phase and the disk-probing phase — so on arriving
of each stream tuple the CACHEJOIN algorithm maps it to the right phase for the processing.
In CACHEJOIN the stream tuple is joined with the product table in the master data using
stock_code as a join attribute. Each stream tuple after completing the Ist-stage is directed to the
2nd-stage. In 2nd-stage the stream joins with the customer table of the master data using
account_code as a join attribute. Since the customer table is significantly smaller than the
product table therefore, we load the whole table in the cache. Hence there is no disk-probing
phase in the 2nd-stage of the algorithm. Once a stream tuple has completed these two joins it
then moves to the output. We study the performance of our Two-Stage join algorithm using

both real-time and a synthetic datasets.
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Input: A disk based relation R and a stream of updates S.

Output: R 8

Parameters: w tuples of S and b number of tuples of R.

Method:

1. while (true) do

2. READ w stream tuples from the stream buffer

3 for each tuple t in w do

4. if tis in Hg then

=4 OUTPUT t > H,p

6 else

T ADD stream tuple f into Hg and also place its pointer value
into Q

8. end if

9. end for

10. READ b number of tuples of R into the disk buffer
11. foreach tuple rin b do

12. if ris in Hs then

13. OUTPUT r > H,p

14. f «— number of matching tuples found in Hg
15. if (f = threshold Value) then

16. SWITCH the tuple r into hash table Hy
17, end if

18. end if

19. end for

20. DELETE the oldest w tuples from H; along with their corresponding
pointers from Q
21.end while

Algorithm 4.1 Pseudo-code for Two-Stage join algorithm

4.3 Cost model for Two-Stage join

In this section we present the cost model for our Two-Stage join algorithm. Similar to the
architecture and the algorithm we also extend the normal CACHEJOIN’s cost model (Asif,
Gillian & Gerald, 2012) for our Two-Stage join algorithm. Later we also use our cost model to

calculate the analytical costs for our Two-Stage join algorithm.

Normally, under the cost model we calculate two costs - memory cost and the processing cost.
Equation 4.1 and 4.2 present these costs respectively. Table 4.1 below describes the notations

we used in deriving of our cost model.
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For memory cost, considering the I*\-stage (normal CACHEJOIN) a main portion of the
memory is assigned to the hash table Hg along with the queue. Whereas, a much smaller portion
is assigned to hash table Hp and the disk buffer. Also compare to the 1st-stage relatively a
smaller portion of memory is assigned to the 2nd-stage. We calculate memory for each

component as below.

Memory for disk buffer (bytes) = k.vp

Memory for Hg (bytes) =a [M — (k + 1) vp]

Memory for Hg (bytes) = L.up

Memory for the queue (bytes) = (1 — a) [M — (k + 1) vp]

Memory for 2nd-stage (bytes) m, = k,.vp,

The below equation (4.1) gives the total memory M cost for CACHEJOIN by aggregating the

above calculations.

M=@&k+Dvpta[M—(Gk+D)vp]l+(Q—a)[M-(k+1) op] +m, (4.2)
Note, due to the negligible size of the stream buffer memory, 0.05 MB we do not include this

in our calculation.

In order to make the processing cost calculation simple, the cost for every individual
components is calculated first and then all costs are summed to calculate the processing cost

for one iteration.

Cost to read k pages into the disk buffer = C i/o (k . vp)

Cost to look-up w,, tuples in Hy = w,, . Cy

Cost to look-up w,, tuples in 2nd-stage = w,,. Coy

Cost to look-up wy tuples in 2nd-stage=ws. C,y

Cost to look-up disk buffer tuples in Hg =d . Cy

Cost to compare all tuples frequency in disk buffer with the threshold value =d . Cr
Cost to generate the output for w,, tuples in 2nd-stage = w,, . C,o
Cost to generate the output for wg tuples in 2nd-stage = w; . Cy
Cost to read the w,, tuples from the stream buffer = w,, . Cs

Cost to read the w, tuples from the stream buffer = w, . Cs

Cost to append wy tuples into Hg and the queue = w; . Cy4

Cost to delete w, tuples from Hg and the queue = wg . Cy
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Total cost of the algorithm for one iteration can be calculated by using equation (4.2) by

aggregating the above costs.

Croop (S€CS) = 1079 [Cilo (k. vp) +d (Cy + Cg) + ws (Cop+ Cyo + Cg + Cg + Cp)

+ wy, (Cy + Cop + Cyp + Cg)]

(4.2)

Since in Cy,,, seconds the algorithm processes wg and w;, tuples of the stream S, the service

rate 1 can be calculated using the below equation (4.3).

_ wptwg
- Cloop

Parameter name

(4.3)

Symbol

Number of stream tuples processed in each iteration through Hp
Number of stream tuples processed in each iteration through Hg
Memory for second phase master table (bytes)

Size of one customer master table tuple (bytes)

Number of tuples in customer master table

Stream tuple size (bytes)

Disk page size (byvtes)

Size of disk tuple (bytes)

Disk buffer size (pages)

Disk buffer size (tuples)

Size of Hy (pages)

Size of Hy (tuples)

Size of Hy (tuples)

Disk relation size (tuples)

Memory weight for the hash table

Memory weight for the queue

Cost to read k disk pages into the disk buffer (nano secs)

Cost to look-up one tuple to the second master table (nano secs)
Cost to look-up one tuple in the hash table (nano secs)

Cost to generate the output for one tuple (nano secs)

Cost to generate the output for one tuple in 224 stage join (hano secs)
Cost to remove one tuple from the hash table and the queue (narno secs)
Cost to read one stream tuple into the stream buffer (nano secs)

Cost to append one tuple in the hash table and the queue (nano secs)
Cost to compare the frequency of one disk tuple with the

specified threshold value (nano secs)

Total cost for one loop iteration (secs)

Table 4.1 Notations used in cost calculations.

l-a

Cilo(kvp)
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4.4 Experimental set-up

4.4.1 System set-up

We execute our Two-Stage join algorithm using the same platform specifications as in the
normal CACHEJOIN algorithm.

In MITRE10 NZ, the customer master table is relatively smaller in size with 15 attributes and
not more than 100,000 customer accounts. Because this implementation is mainly focused on
MITRE 10 NZ which has smaller cs_person customer master table, we completely cached this

table for second joining phase in Extended CACHEJOIN algorithm.

4.4.2 Real-life dataset

In this section we explain the datasets that we used to test our Two-Stage algorithm. As
explained above incoming transactional stream data has two join attributes related to two
different independent tables in the master data. The first table product is same as used in normal
CACHEJOIN. The second table is called cs_person table. This table has 15 attributes for every
customer/account from the table. The size of the product master table (sc) is set to 300,000
tuples and the size of the customer master table (cs_person) is set to 100,000 tuples. The
customer master table attributes and data types are given in below Table 4.2. This table is used
in 2nd-stage of our join algorithm

CUSTOMER TABLE - cs_person
‘person_id" int(11) default NULL,
“account_code’ char(15) default NULL,
*first_name’ char(30) default NULL,
‘surname’ char(30) default NULL,
‘date_of_birth® date default NULL,
‘address_1" char(30) default NULL,
‘address_2" char(30) default NULL,
‘city’ char(30) default NULL,
‘post_code’ char(4) default NULL,
‘phone_no" char(16) default NULL,
‘mobile_no" char(16) default NULL,
‘email_address’ char(60) default NULL,
‘create_date” date default NULL,
‘primary_" char(1) default NULL

Table 4.2 Data specification of MITRE 10 NZ customer table in master data.
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45 Results

We run both the algorithms using the real-life dataset with two independent master tables called
sc table and cs_person table holding the product key (stock code) and the customer key
(account_code) as primary keys respectively. We evaluated both the algorithms under different
memory settings (50MB to 200MB). The algorithms are run without making any changes to
any user-defined parameter values like disk_relation_size, page_size, threshold_value, etc as
stated at the beginning of the CACHEJOIN.java file.

Figure 4.2 presents the performance (or service rate) of the both algorithms under all memory
settings. . From the figure it can be observed that in case of Two-Stage join algorithm the
service rate is slightly lower than that of normal CACHEJOIN which is plausible as in Two-
Stage join algorithm stream tuples need to go through another join process before expiring
them. Also from the figure we notice that there is a slight unusual behavior in the performance
for the memory budget of 150MB. There is no difference on the experimental setup for this
memory budget when compared to the other memory budgets. Hence it is interesting to see a
slightly different behavior. This will lead us to investigate for the cause in our future research.
The performance of our Two-Stage algorithm is still acceptable for the MITRE 10 NZ company
according to their daily transactional volumes.

Also in Figure 4.2 we given the performance of CACHEJOIN using synthetic dataset. This
gives us a visibility of how the attribute characteristics makes difference in the algorithm
performance though size of the attributes are same as the real life dataset. Synthetic dataset is
created using auto generated numeric values which are stored as a string whereas real life
master table has a data with special characters and string with different sizes. This confirms
that the performance of algorithm will vary in real life testing though the attribute sizes are

made same in both synthetic and real life environment.
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Figure 4.2 MITRE 10 NZ dataset service rate comparison between CACHEJOIN and two-stage CACHEJOIN

semi-stream join.

4.6 Cost model validation

To add more value in the implementation, we carried out an experiment to validate our
analytical cost with the empirical costs. Figure 4.3 presents the comparisons of both costs for
each memory bucket of the algorithm. This graph is in a millisecond scale and shows that the
calculated analytical cost is closely resembled with the empirical cost which validates our cost
model. From the figure it is also observed that the total processing cost slightly increases by
increasing the total allocated memory. The reason why there is a slight increase in the
processing cost is because in all memory settings the 1/0 cost, which is the most dominant
among all costs, doesn’t change due to the fixed size disk partitions.
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Chapter 5

5 Conclusions and Future work

5.1 Conclusions

In this thesis we implemented and evaluated a well-known semi-stream join algorithm called
CACHEJOIN using a real-life transactional dataset by MITRE 10 NZ. An extensive literature
review was done on a wide variety of semi-stream join algorithms to understand the
characteristics of semi-stream join algorithms. And the MITRE 10 NZ transactional data
distribution pattern is studied before choosing an appropriate algorithm for this research. The
reason of choosing the CACHEJOIN algorithm was the long-tailed skew characteristics in

MITRE 10 NZ transactional data. The thesis made following contributions.

Implementing of CACHEJOIN using MITRE 10 NZ dataset: CACHEJOIN was implemented
and tested using MITRE 10 NZ dataset. The algorithm used stock _code as a join attribute in
the both stream data and master data. CACHEJOIN consists of two phases: the stream-probing
phase and the disk-probing-phase. A key feature in CACHEJOIN is a caching component. In
stream-probing phase the algorithm uses a cache component to deal with this skew in stream
data. Furthermore, the most frequently accessed master tuples were cached and were joined
with the incoming stream data. In disk-probing phase the algorithm implements HYBRIDJOIN

algorithm and deals with the rest of the master data on disk.

Extension of CACHEJOIN: Based on the nature of MITRE 10 NZ dataset we extended
CACHEJOIN as a two-stage join. The stream data joined with two independent tables in the
master data. The first table sc contains product information with stock_code as a primary key
while the second table cs_person contains customers’ accounts details with account_code as a
primary key. In our two-stage join the first stage was normal CACHEJOIN while in second
stage the algorithm only implements the stream-probing phase of the normal CACHEJOIN.
According to our experimental evaluation the two-stage join worked well with the MITRE 10
NZ dataset. This provides a proof of concept to MITRE 10 NZ for their future implementation
of the CACHEJOIN algorithm. In current state master data is well fitted into the memory but



there can also be a possibility that master data never fits into the memory. However, we believe

that our algorithm can handle this similar to a simple CACHEJOIN.

Deriving of cost model: We calculated analytical cost for our extended CACHEJOIN and
validated this with our empirical cost. We observed that the empirical cost closely resembled

the analytical cost which is the validation of our cost model.

Experimental study: We carried out the experimentations for our both CACHEJOIN and
Extended CACHEJOIN algorithms and evaluated the performance using both synthetic and the
real-life datasets. The experiments are performed using different memory budgets. Under all
memory settings the CACHEJOIN algorithm and Extension of CACHEJOIN algorithm
performed well. Hence we conclude that CACHEJOIN algorithm can handle the volume of
MITRE10 NZ dataset with adequate performance.

5.2 Future work

The extension work in semi-stream CACHEJOIN which is a two-stage CACHEJOIN
algorithm opens more interesting ideas for the future work in this area. In this work an index
joining method for a second stage join implemented in CACHEJOIN was advanced. Taking
this as a basis, using different semi-stream joins such as HYBRIDJOIN, CACHEJOIN,
MESHJOIN, etc. could be trialed to perform a second stage join and monitored to see how
these behave in regard to the performance of service rates. The size of the second master table

could produce a difference in performance.

MITRE 10 NZ is a leading retail store in New Zealand and the amount of transactions occurring
in a day is expected to grow in future. To handle the growing amount of transactions (incoming
stream data) trying parallelization running two nodes, could be attempted to see how it reduces
queue. It could be expected that with a higher number of incoming streams joining in the same
time period, the same service rate as CACHEJOIN could be achieved as it will eventually

perform two joins simultaneously (one on each node).
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Appendix A - CACHEJOIN Semi-Stream algorithm Java codes

In this implementation a few java classes are created to support running the algorithm

successfully. Below are the java class files which are most important in this implementation.

CACHEJOIN. java code

package cacheJoinSource;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.Date;

import java.util.HashSet;

import java.util.Random;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.ResultSet;

import java.sqgl.SQLException;

import java.sqgl.DriverManager;

import org.apache.commons.collectionsl5.MultiMap;
import org.apache.commons.collectionsl5.multimap.MultiHashMap;
import sizeof.agent.SizeOfAgent;

public class CACHEJOIN ({
public static final int HASH SIZE-=35131;
public static final int QUEUE SIZE-HASH SIZE;
public static final int STREAM SIZE=5000;
public static final int DISK RELATION SIZE=300000;
public static final int SWAP_DB=1000;
public static final int MIN KEY=1;
public static final int MAX KEY=DISK RELATION SIZE;
public static final int THRESHOLD=3;
public static int cs person match=0;
public static final int MEASUREMENT START-=1;
public static final int MEASUREMENT STOP=DISK RELATION SIZE;

static MultiMap<String,HybridJoinObject> mhm=new
MultiHashMap<String, HybridJoinObject> () ;

static ArraylList <HybridJoinObject> Ilist=new
ArrayList<HybridJoinObject> () ;

static HashSet<String> accountCodeSet = new HashSet<String>(100000) ;

static LinkedBlockingQueue<HybridJdoinObject> streamBuffer=new
LinkedBlockingQueue<HybridJoinObject> () ;

static String diskBuffervolatile[][]=new String[SWAP_DB] [86];

static int frequencyDetector|[]=new int[SWAP_DB];

Random myRandom=new Randomf() ;

static Statement stmt=null;

static ResultSet rs=null;

Queue head, currentNode, deleteNodeAddress;
static DiskHashTableManipulation dhtm=null;



String streamRandomValue;
int requiredTuplesCount=0,non_vola=0,vola=0;
int tuplesMatchedIntoDiskHash=0;

static
static
static
static
static
static
static
static
static
static

long
long
long
long
long
long
long

int streamInputSize[]=new int[DISK_RELATIOM_SIZE/lOO];

CE[]= new long[DISK;RELATIOM_SIZE/lOO],
CS[]= new long[DISK RELATION SIZE/100];
CA[]= new long[DISK RELATION SIZE/100];
CIO[]= new long[DISK_RELATIOM_SIZE/lOO];
CH[]= new long[DISK;RELATIOM_SIZE/IOO];
C2H[]= new long[DISK;RELATIOM_SIZE/IOO];
CF[]= new long[DISK RELATION SIZE/100];

int StreamSizeMatchedInDiskHash[]=new
int[DISK;RELATIOM_SIZE/IOO];
static int
accesed page,CE index=0,CS index=0,CA index=0,CIO index=0,C2H index=0,CH in
dex=0,pt index=0, input index=0,queue index=0,rt index=0,bl index=0,WT index
=0, CF _index=0;
float oneNodeSize=0,memoryForFiftyTuples=0;
boolean measurementStart=false;
double sumOfFrequency, random, rawFK,minimumLimit;

int 1ir=52124,increment=12458,prime=2000003;

String fileName = "Account "+new
SimpleDateFormat ("yyyyMMddhhmmss'.txt'") .format (new Date());
File accountFile = new File(fileName) ;

FileWriter accountFileWriter;

CACHEJOIN () throws Jjava.io.IOException({
for (int i1=0; i<frequencyDetector.length; i++) {

}

}

frequencyDetector[1]=0;

public Connection connectDB() {
Connection conn=null;
try({

password) ;

}

}

catch

{

}

String userName = "root";
String password = "root";
String url = "jdbc:mysgl://localhost/masterdata";

Class.forName ("com.mysgl.jdbc.Driver");

conn = DriverManager.getConnection (url, userName,

System.out.println ("Connected to Database");

(Exception e)

System.err.println (e);

return conn;

public void closeConnection (Connection conn) {
try{

}catch

{

if (conn!=null) {
conn.close();

System.out.println ("Database connection closed");

}
(SQLException e)
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System.err.println (e);

}

public static double integral (double limit) {
return (Math.log(limit)); //Exponent x"1
}

public static double inverselntegral (double x) {
return Math.exp(x); //Inverse integral of exponent 1

}

public void fillHashTable () {

int tuples=0;

ArrayBlockingQueue<TransactionDAO> transactionList =
Transaction.fetchTransactionRecords () ;

if (transactionList.isEmpty()) {

transactionlList = Transaction.fetchTransactionRecords () ;

}

TransactionDAO tDAO = transactionList.poll();

streamRandomValue = tDAO.getStock();

head=new Queue (streamRandomValue) ;

currentNode=head;

mhm.put (streamRandomValue, new
HybridJoinObject (tDAO.getBranch (), tDAO.getDept (), tDAO.getDrawer (), tDAO.getC
ode () , tDAO.getAmount () , tDAO.getCost (), tDAO.getDate (), tDAO.getAccount (), tDA
O.getRemarks (), tDAO.getReference (),

tDAO.getType (), tDAO.getTax(),tDAO.getOperator (), tDAO.getQty(),tDAO.g
etStock (), tDAO.getDocket no (), tDAO.getPosted(), tDAO.getPromo (), tDAO.getSub
code () , tDAO.getGst (),

tDAO.getPromo num(), tDAO.getPromo start (), tDAO.getPromo_end(), tDAO.ge
tDescription (), tDAO.getGroup_ (), tDAO.getRetail(),tDAO.getSys price(),tDAO.g
etSys disc(),tDAO.getSet disc wval(),tDAO.getAct price(),

tDAO.getAct disc(),tDAO.getAct disc val(),tDAO.getLine (), tDAO.getUnit
(), tDAO.getLength (), tDAO.getTill (), tDAO.getDateZpost (), tDAO.getSub account (
) , tDAO.getItem type (), tDAO.getSub type(),

tDAO.getTime () , tDAO.getOverride operator (), currentNode)) ;
oneNodeSize=SizeOfAgent. fullSizeOf (head) ;
while (tuples<HASH SIZE) {
if (transactionList.isEmpty()) {
transactionList =
Transaction. fetchTransactionRecords () ;
}
tDAO = transactionlList.poll();
streamRandomValue = tDAO.getStock();
System.out.println (" Tuples Value " + tuples);
currentNode=currentNode.addNode (streamRandomValue) ;
mhm.put (streamRandomValue, new
HybridJoinObject (tDAO.getBranch (), tDAO.getDept (), tDAO.getDrawer (), tDAO.getC
ode () , tDAO.getAmount () , tDAO.getCost (), tDAO.getDate (), tDAO.getAccount (), tDA
O.getRemarks (), tDAO.getReference(),

tDAO.getType (), tDAO.getTax(),tDAO.getOperator (), tDAO.getQty(),tDAO.g

etStock (), tDAO.getDocket no (), tDAO.getPosted(), tDAO.getPromo (), tDAO.getSub
code () ,tDAO.getGst (),
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tDAO.getPromo num(), tDAO.getPromo_ start (), tDAO.getPromo_end(), tDAO.ge
tDescription (), tDAO.getGroup (), tDAO.getRetail (), tDAO.getSys price (), tDAO.g
etSys disc(),tDAO.getSet disc val(),tDAO.getAct price(),

tDAO.getAct disc(),tDAO.getAct disc val(),tDAO.getLine(),tDAO.getUnit
(), tDAO.getLength (), tDAO.getTill (), tDAO.getDateZpost (), tDAO.getSub account (
), tDAO.getItem type (), tDAO.getSub type(),

tDAO.getTime (), tDAO.getOverride operator (), currentNode)) ;
tuples++;
if (tuples==49) {
memoryForFiftyTuples=SizeOfAgent. fullSizeOf (mhm) ;

}

}

public boolean probIntoHash () {

long start=0,stop=0,
joinStart=0,joinStop=0,CH per Iteration=0,C2H per Iteration=0,CEH per Itera
tion=0,CEQ per Iteration=0,CF per iteration=0;

boolean firstNode=false, lastNode=false, tupleInMD=true;

int
processedTuplesCount=0, hashProbCount=0,detectedTupleCount=0;
int index=new Double (head.popNode ()) .intValue();

tupleInMD=readDBvolatilePage (index) ;

if (tupleInMD) {
//Probing of disk buffer
for (int row=0; row<SWAP_DB; row++) {
if (mhm.containsKey (diskBuffervolatile[row] [0])) {
start=System.nanoTime() ;

list=(ArrayList<HybridJoinObject>)mhm.get (diskBuffervolatile[row] [0])

joinStart=System.nanoTime () ;
for (HybridJdoinObject hjo : 1ist) {
String account code = hjo.attr8;

if (!accountCodeSet.contains (account code)) {
System.out.println (" Account Code

" + account code + " Not Found");
}
}

joinStop=System.nanoTime () ;
stop=System.nanoTime() ;

hashProbCount++;

if (measurementStart) {
C2H per Iterationt+=joinStop-joinStart;
CH per Iterationt+=stop-start;

}

start=System.nanoTime () ;

mhm.remove (diskBuffervolatile[row] [0]);
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stop=System.nanoTime () ;
if (measurementStart) {
CEH per Iterationt+=stop-start;
}
for(int listItem=0; listItem<list.sizel();
listItem++) {
firstNode=false;
lastNode=false;

deleteNodeAddress=1ist.get (listItem) .nodeAddress;
if (deleteNodeAddress==head) {
head=deleteNodeAddress.getNext () ;
firstNode=true;
}
if (deleteNodeAddress==currentNode) {

currentNode=deleteNodeAddress.getPrecede () ;
lastNode=true;

}

start=System.nanoTime() ;

deleteNodeAddress.deleteNode (firstNode, lastNode) ;
stop=System.nanoTime () ;
if (measurementStart) {
CEQ per Iteration+=stop-start;
vola++;
}
frequencyDetector[row]++;
requiredTuplesCount++;

}

if (measurementStart) {

CEH per Iteration+=CEQ per Iteration/list.size();
CEQ per Iteration=0;
}
processedTuplesCount++;
}
}
start=System.nanoTime() ;
for (int row=0; row<SWAP_DB; row++) {
if (frequencyDetector|[row]>=THRESHOLD &&
DiskHashTableManipulation.dmhm.size () <DiskHashTableManipulation.NON_SWAP DB
) {

DiskHashTableManipulation.dmhm.put (diskBuffervolatile[row] [0], new
HybridJoinDiskObject (diskBuffervolatile[row] [0],diskBuffervolatile[row] [1],

diskBuffervolatile[row] [2],diskBuffervolatile[row] [3],diskBuffervolat
ile[row] [4],diskBuffervolatile[row] [5],diskBuffervolatile[row] [6],

diskBuffervolatile[row] [7],diskBuffervolatile[row] [8],diskBuffervolat
ile[row] [9],diskBuffervolatile[row] [10],diskBuffervolatile[row] [11],

diskBuffervolatile[row] [12],diskBuffervolatile[row] [13],diskBuffervol
atile[row] [14],diskBuffervolatile[row] [15],diskBuffervolatile[row] [16],

diskBuffervolatilel[row] [17],diskBuffervolatilel[row] [18],diskBuffervol
atile[row] [19],diskBuffervolatile[row] [20],diskBuffervolatile[row] [21],
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diskBuffervolatilel[row] [22],diskBuffervolatilel[row] [23],diskBuffervol
atile[row] [24],diskBuffervolatile[row] [25],diskBuffervolatile[row] [26],

diskBuffervolatilel[row] [27],diskBuffervolatilel[row] [28],diskBuffervol
atile[row] [29],diskBuffervolatile[row] [30],diskBuffervolatile[row] [31],

diskBuffervolatile[row] [32],diskBuffervolatile([row] [33],diskBuffervol
atile[row] [34],diskBuffervolatile[row] [35],diskBuffervolatile[row] [36],

diskBuffervolatilel[row] [37],diskBuffervolatilel[row] [38],diskBuffervol
atile[row] [39],diskBuffervolatile[row] [40],diskBuffervolatile[row] [41],

diskBuffervolatile[row] [42],diskBuffervolatile([row] [43],diskBuffervol
atile[row] [44],diskBuffervolatile[row] [45],diskBuffervolatile[row] [46],

diskBuffervolatilel[row] [47],diskBuffervolatilel[row] [48],diskBuffervol
atile[row] [49],diskBuffervolatile[row] [50],diskBuffervolatile[row] [51],

diskBuffervolatilel[row] [52],diskBuffervolatilel[row] [53],diskBuffervol
atile[row] [54],diskBuffervolatile[row] [55],diskBuffervolatile[row] [56],

diskBuffervolatile[row] [57],diskBuffervolatile([row] [58],diskBuffervol
atile[row] [59],diskBuffervolatile[row] [60],diskBuffervolatile[row] [61l],

diskBuffervolatilel[row] [62],diskBuffervolatilel[row] [63],diskBuffervol
atile[row] [64],diskBuffervolatile[row] [65],diskBuffervolatile[row] [66],

diskBuffervolatile[row] [67],diskBuffervolatile[row] [68],diskBuffervol
atile[row] [69],diskBuffervolatile[row] [70],diskBuffervolatile[row] [71],

diskBuffervolatilel[row] [72],diskBuffervolatilel[row] [73],diskBuffervol
atile[row] [74],diskBuffervolatile[row] [75],diskBuffervolatile[row] [76],

diskBuffervolatilel[row] [77],diskBuffervolatilel[row] [78],diskBuffervol
atile[row] [79],diskBuffervolatile[row] [80],diskBuffervolatile[row] [81],

diskBuffervolatile[row] [82],diskBuffervolatile([row] [83],diskBuffervol
atile[row] [84],diskBuffervolatile[row] [85]));
detectedTupleCount++;
}
frequencyDetector[row]=0;

}

stop=System.nanoTime () ;

if (measurementStart) {
CF[CF _index++]=stop-start;
CH[CH index++]=CH per Iteration/hashProbCount;

CE[CE index++]=CEH per Iteration/processedTuplesCount;
C2H[C2H index++]=C2H per Iteration/hashProbCount;
}
}

return tuplelInMD;

}

public static void cacheAccountCode () {
try({

rs = stmt.executeQuery("select
account code from cs person");
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while (rs.next ()) {

accountCodeSet.add (rs.getString ("account code"));
}
}

catch (Exception e) {
e.printStackTrace () ;

}

}

public boolean readDBvolatilePage (int index) {
int row=0, PageStart;
long start=0,stop=0;
boolean firstNode=false, lastNode=false, tupleInMD=true;
//Loading of disk buffer

try{
start=System.nanoTime () ;
rs=stmt.executeQuery ("Select stock code FROM sc WHERE
stock code='"+index+"'");

if(!rs.next()) {

list=(ArrayList<HybridJoinObject>)mhm.get (index) ;

mhm.remove (index) ;
for(int listItem=0; listItem<list.sizel();
listItem++) {
firstNode=false;
lastNode=false;

deleteNodeAddress=1ist.get (listItem) .nodeAddress;
if (deleteNodeAddress==head) {
head=deleteNodeAddress.getNext () ;
firstNode=true;
}
if (deleteNodeAddress==currentNode) {

currentNode=deleteNodeAddress.getPrecede () ;
lastNode=true;

}

deleteNodeAddress.deleteNode (firstNode, lastNode) ;

}
tupleInMD=false;

else(

PageStart=rs.getInt (1) ;
rs=stmt.executeQuery ("SELECT * from sc where
stock code >='" + PageStart +"' LIMIT " + SWAP_DB);
stop=System.nanoTime () ;
if (measurementStart) {
CIO[CIO indext++]=stop-start;
}
while (rs.next ()) {
for (int col=1; col<=86; col++) {
diskBuffervolatile[row] [col-
l]=rs.getString(col);

row++;
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}catch (SQLException e) {System.out.print (e);}
return tupleInMD;

}

public void appendHash () {
long start=0,stop=0,CA per Iteration=0;
int eachInputSize=0;
while (streamBuffer.size ()<requiredTuplesCount*3) ;
tuplesMatchedIntoDiskHash=0;
while (requiredTuplesCount>0) {
try |
if (dhtm.matchedIntoDiskHash (streamBuffer.peek () .attrl5)) {
streamBuffer.poll () ;
tuplesMatchedIntoDiskHash++;
}
else(
start=System.nanoTime () ;

currentNode=currentNode.addNode (streamBuffer.peek () .attrlh);
mhm.put (streamBuffer.peek () .attrl5, new
HybridJoinObject (streamBuffer.peek () .attrl, streamBuffer.peek () .attr2, stream
Buffer.peek () .attr3, streamBuffer.peek () .attr4d, streamBuffer.peek () .attr5, str
eamBuffer.peek () .attr6, streamBuffer.peek () .attr7, streamBuffer.peek () .attr8,
streamBuffer.peek () .attr9, streamBuffer.peek () .attrlO,

streamBuffer.peek () .attrll, streamBuffer.peek () .attrl2, streamBuffer.pe
ek () .attrl3, streamBuffer.peek () .attrld, streamBuffer.peek() .attrl5, streamBuf
fer.peek () .attrl6, streamBuffer.peek () .attrl7, streamBuffer.peek () .attrl8, str
eamBuffer.peek () .attrl9, streamBuffer.peek () .attr20,

streamBuffer.peek () .attr2l, streamBuffer.peek () .attr22, streamBuffer.pe
ek () .attr23, streamBuffer.peek () .attr24, streamBuffer.peek () .attr25, streamBuf
fer.peek () .attr26, streamBuffer.peek () .attr27, streamBuffer.peek () .attr28, str
eamBuffer.peek () .attr29, streamBuffer.peek () .attr30,

streamBuffer.peek () .attr3l, streamBuffer.peek () .attr32, streamBuffer.pe
ek () .attr33, streamBuffer.peek () .attr34, streamBuffer.peek () .attr35, streamBuf
fer.peek () .attr36, streamBuffer.peek () .attr37, streamBuffer.peek () .attr38, str
eamBuffer.peek () .attr39, streamBuffer.peek () .attr40,

streamBuffer.peek () .attrdl, streamBuffer.peek () .attrd4d2, currentNode)) ;
streamBuffer.poll();
stop=System.nanoTime () ;
if (measurementStart) {
CA per Iteration+=stop-start;

}
requiredTuplesCount--;
eachInputSize++;

}

}

catch (Exception e) {
continue;

}

}

if (measurementStart) {
CA[CA indext+]=CA per Iteration/eachInputSize;

streamInputSize[input index]=eachInputSize;

StreamSizeMatchedInDiskHash[input index++]=tuplesMatchedIntoDiskHash;
}
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}

public static void main(String args|[]) throws java.io.IOException,
InterruptedException{

CACHEJOIN hj=new CACHEJOIN() ;
StartUpdatesStream stream=new StartUpdatesStream() ;
dhtm=new DiskHashTableManipulation();
boolean tupleInMD=true;
System.out.println ("Hybrid Join in execution mode...");
Connection conn=hj.connectDB() ;
hj.accountFile.createNewFile () ;
hj.accountFileWriter = new FileWriter (hj.accountFile);
try({
CACHEJOIN. stmt=conn.createStatement () ;
CACHEJOIN. stmt.setFetchSize (SWAP_DB) ;
System.out.println ("Fetch Size:
"+CACHEJOIN. stmt.getFetchSize());
CACHEJOIN.cacheAccountCode () ;
}catch (SQLException e) {System.out.print (e);}

hj.fillHashTable () ;
stream.start () ;
Thread.sleep(2000) ;
for (int round=1; round<=4; round++) {
if (round==1) {
System.out.println ("ROUND 1 Started...");
System.out.println ("Disk hash tuple:
"+DiskHashTableManipulation.dmhm.size ()) ;
//Thread.sleep (700) ;
}
if (round==4) {
System.out.println ("ROUND 2 Started...™);
System.out.println ("Disk hash tuple:
"+DiskHashTableManipulation.dmhm.size());
//Thread.sleep (700) ;
}
for (int tuple=1; tuple<=DISK RELATION SIZE;
tuple+:SWAR_DB){
SimpleDateFormat smd=new SimpleDateFormat ("dd-MM-
yyyy hh:mm:ss ");
Date currentDate=new Date () ;
System.out.println (" Iteration count " + tuple + "
out of " + DISK RELATION SIZE+" Date "+smd.format (currentbDate)+" Time

"+currentDate.getTime ()) ;
hj.measurementStart=false;
if ((round==4)) {

hj.measurementStart=true;
}
tupleInMD=h7j.probIntoHash () ;
if (tupleInMD) {
hj.appendHash () ;
}
}
}

stream.stop () ;
hj.accountFileWriter.close();
System.out.println ("Hash tuples: "+mhm.size());

System.out.println ("Disk hash tuple:
"+DiskHashTableManipulation.dmhm.size ());
System.out.println ("\nMEMORY COST") ;
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float Hash=(HASH SIZE* (hj.memoryForFiftyTuples/50))/1048576f;
float Queue=(hj.oneNodeSize*QUEUE SIZE)/1048576f;
float bufferW=SizeOfAgent. fullSizeOf (streamBuffer)/1048576f;
float

bufferb=SizeOfAgent.fullSizeOf (diskBuffervolatile)/1048576f;
float total=Hash+Queue+bufferW+bufferb;

System.out.println (" Total Account Id Matches " +
cs person match) ;

System.out.println ("Memory used by Hash Table: "+Hash+" MB");

System.out.println ("Memory used by Queue: "+Queue+" MB");

System.out.println ("Memory used by Stream buffer: "+bufferw+"
MB") ;

System.out.println ("Memory used by buffer b : "+bufferb+"
MB") ;

System.out.println ("Total Memory: "+total+" MB");

System.out.println("pt index"+hj.pt index+" C2H index:
"+hj.C2H index+" CH index: "+hj.CH index+" CS Index: "+hj.CS index+"
CA index: "+hj.CA index+" CE index: "+hj.CE index+" CIO index:
"+hj.CIO index+"CF index+ "+hj.CF index);

hj.closeConnection (conn) ;

System.out.println ("Queue status:"+hj.head.countNodes());
System.out.println("Non Volatile: "+hj.non vola);
System.out.println("Volatile: "+hj.vola);
long today = Calendar.getInstance().getTimeInMillis();
BufferedWriter bw=new BufferedWriter (new
FileWriter ("C://Users//Daniel//Desktop//vinod cachejoin//Semi-Stream-
Joins"+today+".txt"));

bw.write ("Geralized CACHEJOIN PROCESSING COST") ;
bw.newLine () ;

bw.write ("Total w\t w processed by disk Hash\t w processed by
disk buffer\t C2H (NSec) \t CH (NSec) \t CS (NSec) \t CA (NSec) \t
CF\t CE (NSec)\t CIO(NSec)");

bw.newLine () ;

for (int i=0; i<CACHEJOIN.CIO index; i++) {

bw.write ( (CACHEJOIN. StreamSizeMatchedInDiskHash[1i]+CACHEJOIN. streamIn
putSize[i])+"\t\t");

bw.write (CACHEJOIN. StreamSizeMatchedInDiskHash[i]+"\t\t")
bw.write (CACHEJOIN. streamInputSizel[i ]+"\t\t")'
bw.write (CACHEJOIN.C2H[1]+"\t\t");

(
bw.write (CACHEJOIN.CH[1]+"\t\t");
bw.write (CACHEJOIN.CS[1i]+"\t\t");
bw.write (CACHEJOIN.CA[1i]+"\t\t");
bw.write (CACHEJOIN.CF[1]+"\t\t");
bw.write (CACHEJOIN.CE[1i]+"\t\t");
bw.write (CACHEJOIN.CIO[1]+"");

bw.newLine () ;

}

bw.close () ;
System.out.println ("\nExecution has been completed");
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TRANSACTION.

java code

package cach
import java.
import java.
import java.
import java.
import java.
import java.

public class
static
static

static

public
fetchTransac

ArrayBlockin

Transaction.

eJoinSource;

sgl.Connection;

sql.DriverManager;

sgl.ResultSet;

sql.SQLException;

sgl.Statement;
util.concurrent.ArrayBlockingQueue;

Transaction {

int lastOffset=0;
int tuppleSize=1000;
int maxRowSize=50000;

static ArrayBlockingQueue<TransactionDAO>

tionRecords () {
ArrayBlockingQueue<TransactionDAO> transactionList = new
gQueue<TransactionDAO> (tuppleSize) ;

Connection conn = connectDB() ;

// make sure autocommit is off

try {

conn.setAutoCommit (false) ;

if (lastOffset==maxRowSize) {
// Resetting Last Offset
lastOffset=0;

Statement st = conn.createStatement () ;
ResultSet rs = st.executeQuery ("SELECT * FROM gltx LIMIT " +
lastOffset + ", "+Transaction.tuppleSize);
while (rs.next ()) {
TransactionDAO tDAO = new TransactionDAO () ;

tDAO.setBranch (rs.getString ("branch"));
tDAO.setDept (rs.getString ("dept"));
tDAO.setDrawer (rs.getString ("drawer")) ;
tDAO.setCode (rs.getString ("code")) ;
tDAO.setAmount (rs.getString ("amount™)) ;
tDAO.setCost (rs.getString ("cost"));
tDAO.setDate (rs.getString("date "));
tDAO.setAccount (rs.getString ("account")) ;
tDAO.setRemarks (rs.getString ("remarks™)) ;
tDAO.setReference (rs.getString ("reference"));
tDAO.setType (rs.getString("type "));
tDAO.setTax (rs.getString ("tax"));
tDAO.setOperator (rs.getString ("operator"));
tDAO.setQty (rs.getString ("gty"));
tDAO.setStock (rs.getString ("stock™));
tDAO.setDocket no(rs.getString("docket no"));
tDAO.setPosted(rs.getString ("posted")) ;
tDAO.setPromo (rs.getString ("promo")) ;
tDAO.setSub code (rs.getString("sub code")) ;
tDAO.setGst (rs.getString ("gst"));
tDAO.setPromo num(rs.getString ("promo num"));
tDAO.setPromo_start (rs.getString ("promo start"));
tDAO.setPromo_end(rs.getString ("promo end"));
tDAO.setDescription(rs.getString("description"));
tDAO.setGroup_ (rs.getString("group "));
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tDAO.setRetail (rs.getString ("retail"));
tDAO.setSys price(rs.getString("sys price"));
tDAO.setSys disc(rs.getString("sys disc"));
tDAO.setSet disc val(rs.getString("set disc val"));
tDAO.setAct price(rs.getString("act price"));
tDAO.setAct disc(rs.getString("act disc"));
tDAO.setAct disc val(rs.getString("act disc val"));
tDAO.setLine(rs.getString("line"));
tDAO.setUnit (rs.getString ("unit"));
tDAO.setlLength(rs.getString ("length")) ;
tDAO.setTill (rs.getString ("till"));
tDAO.setDate2post (rs.getString ("date2post")) ;
tDAO.setSub_account (rs.getString("sub account")) ;
tDAO.setItem type(rs.getString("item type"));
tDAO.setSub_type(rs.getString("sub_type"));
tDAO.setTime (rs.getString ("time")) ;
tDAO.setOverride operator(rs.getString("override operator

"))
transactionList.add (tDAO) ;

}

} catch (SQLException e) {
e.printStackTrace () ;

}finally{
closeConnection (conn) ;

}

lastOffset+=tuppleSize;

return transactionList;

}

public static Connection connectDB () {
Connection conn=null;
try{
String userName = "root";
String password = "root";
String url = "jdbc:mysgl://localhost/masterdata";
Class.forName ("com.mysgl.jdbc.Driver");
conn = DriverManager.getConnection (url, userName,
password) ;
//System.out.println ("Connected to Database");
}
catch (Exception e)
{
System.err.println (e);
}
return conn;

}

public static void closeConnection (Connection conn) {
try({
if (conn!=null) {
conn.close();
//System.out.println ("Database connection closed");
}
}catch (SQLException e)
{
System.err.println (e);

}
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STARTU

PDATESTREAM. java code

packag
import
import
import
import

public
Compar

e cacheJoinSource;
java.util.PriorityQueue;
java.util.Random;
java.util.concurrent.ArrayBlockingQueue;
java.io.IOException;

class StartUpdatesStream extends Thread implements
able<Object>{

public static TimeManager2 time;
public boolean on=false;

public double timeInChosenUnit;
public DistributionClass distribution;
public MyQueue2 ownQueue;

public double bandwidth;

Random myRandom=new Random () ;
StartUpdatesStream() {

}

public int compareTo (Object o) {

StartUpdatesStream y = (StartUpdatesStream) o;
double diff = this.timeInChosenUnit - y.timeInChosenUnit;
if(diff < 0.0) return -1;
if(diff > 0.0) return 1;
return O;

}

public void run () {

double

try{
startStream() ;
}ecatch (InterruptedException ie) {
System.out.println (ie.getMessage());
}catch (IOException io) {
System.out.println(io.getMessage());
}
}

StartUpdatesStream (MyQueue?2 ownQueue, DistributionClass distribution,
bandwidth) {

this.distribution=distribution;

this.ownQueue=ownQueue;

this.bandwidth=bandwidth;

timeInChosenUnit=System.nanoTime () ;

swapStatus () ;
}

public void swapStatus() {

2 .STEP

timeInChosenUnit+=distribution.getNextDistributionValue () *TimeManager
*bandwidth;

if (on) {
ownQueue.totalCurrentBandwidth-=bandwidth;
on=false;

}

else{
ownQueue.totalCurrentBandwidth+=bandwidth;
on=true;
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ownQueue.offer (this) ;

}

public void startStream() throws InterruptedException, IOException{

DistributionClass distribution=new DistributionClass|() ;
DistributionClass generator=new DistributionClass();
TimeManager2 time=new TimeManager2();

MyQueue2 myQueue=new MyQueue?2 () ;

int tuple=0;

int count=0;

long CS per Iteration=0,start=0,stop=0;

for (int i=0; 1<6; i++){
new
StartUpdatesStream (myQueue,distribution,Math.pow(2,1))
}
StartUpdatesStream current=(StartUpdatesStream)myQueue.poll ()
ArrayBlockingQueue<TransactionDAO> transactionlList =
Transaction. fetchTransactionRecords () ;

while (true) {
tuple=0;
time.waitOneStep () ;
while (time.now () >current.timeInChosenUnit) {
current=(StartUpdatesStream)myQueue.poll () ;
current.swapStatus () ;

}
while (tuple<myQueue.totalCurrentBandwidth) {

//tupleValue=Integer.toString (generator.getNextDistributionValue()) ;
if (transactionList.isEmpty()) {
transactionList =

Transaction. fetchTransactionRecords () ;

}

TransactionDAO tDAO = transactionList.poll();

start=System.nanoTime() ;

CACHEJOIN. streamBuffer.put (new
HybridJoinObject (tDAO.getBranch (), tDAO.getDept (), tDAO.getDrawer (), tDAO.getC
ode () , tDAO.getAmount () , tDAO.getCost (), tDAO.getDate (), tDAO.getAccount (), tDA
O.getRemarks (), tDAO.getReference (), tDAO.getType (), tDAO.getTax (), tDAO.getOp
erator (), tDAO.getQty (), tDAO.getStock (), tDAO.getDocket no (), tDAO.getPosted ()
, tDAO.getPromo () , tDAO.getSub_code () , tDAO.getGst () , tDAO.getPromo num (), tDAO.
getPromo_start (), tDAO.getPromo_end (), tDAO.getDescription (), tDAO.getGroup ()
, tDAO.getRetail (), tDAO.getSys price(), tDAO.getSys disc(), tDAO.getSet disc v
al(),tDAO.getAct price(),tDAO.getAct disc(),tDAO.getAct disc val(),tDAO.get
Line (), tDAO.getUnit (), tDAO.getLength (), tDAO.getTill (), tDAO.getDate2post (), t
DAO.getSub_account (), tDAO.getItem type (), tDAO.getSub type (), tDAO.getTime (),
tDAO.getOverride operator(),null));

stop=System.nanoTime () ;

CS per Iteration+=stop-start;

count++;

if (count==1000) {

CACHEJOIN.CS[CACHEJOIN.CS index++]=CS per Iteration/count;
CS per Iteration=0;
count=0;

}
tuple++;
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class TimeManager2{
public final static int STEP=15;
public double now () {
return (System.nanoTime () ) ;
}
public void waitOneStep () {
try{
Thread.sleep (STEP) ;
}catch (InterruptedException ie) {
System.out.println(ie.getMessage()) ;

}

}

class MyQueue?2 extends PriorityQueue<StartUpdatesStream>{
private static final long serialVersionUID = 1L;
public long totalCurrentBandwidth=0;
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Appendix B — Sample cost output file

| A | B | € | D E F G H I
1 |Geralized CACHEJOIN PROCESSING COST
?Total w | wprocessed |w processed by|CH(NSec) [CS(NSec) CA(NSec) |CF CE(NSec) |CIO(NSec)

2 by disk Hash disk buffer

3 : 664 1 663 3744 11166 10827 1689114 1897| 230392607
4 641 1 640 3236 11629 4528 127480 1709| 58737642
5 | 655 1 654 4619 11060 4454 345169 2269| 35212660
6 | 676 1 675 3341 6929 7981 111815 1793 55814238
7 | 384 1 383 4630 6484 7277 136123 2565| 87003704
8 | 673 1 672 4789 6752 3632 210667 2441| 89731568
9 | 753 2 751 4749 7034 3292 232274 2342| 60464568
10 : 709 1 708 5833 877 4151 225251 3089| 66468568
11 : 746 3 743 2903 513 3259 213908 1761 72737791
12 | 754 6 748 3269 513 3792 214989 1877 66307057
13 | 796 =) 791 3194 387 3046 191761 1841| 89436634
14 | 832 8 824 3025 461 3116 230113 1741| 58924541
15 | 64 0 64 2718 398 3232 37272 1827| 99819259
16 : 143 0 143 4686 347 4578 110735 4912 53743762
17 : 859 12 847 6442 459 2909 265224 2946| 72319159
18 | 447 6 441 3229 406 2901 118837 1880 60997717
19 | 110 110 3272 361 3702 63741 2614| 57230566
20 | 533 5 528 2870 389 3687 183658 2036| 62575556
21 | 824 10 814 2368 447 3038 282509 1537| 39393583
22 | 868 13 855 2325 320 2284 270085 1650| 129659919
23 : 843 9 834 2695 377 2272 213367 823| 69602640
24 | 900 10 890 3449 374 2160 258741 1172 112054669
25 | 932 55 877 1971 368 2195 204725 571| 66818599
26 | 297 20 277 1647 417 2230 94530 398| 48651572
27 | 1008 81 927 1746 547 3430 229572 427| 39489193
28 | 695 43 652 1682 380 2209 193921 388| 104934677
29 : 984 64 920 1591 468 2241 252260 358| 52509472

Figure B.1 Sample copy of cost output file for CACHEJOIN algorithm written at the end of the algorithm in

Java Eclipse.
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NN N N NN N N N N |t bt et | et | fd | pd | fd | fed | fed | fd
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A | B [ D E F G H I J
Geralized TWO-STAGE JOIN CACHEJOIN PROCESSING COST
Totalw | wprocessed |w processed by |[C2H(NSec) |CH(NSec) |[CS(NSec) CA(NSec) |CF CE(NSec) |CIO(NSec)
by disk Hash disk buffer
132 15 117 4816 825 11924 5475 97771 1091| 49578505
363 63 300 2065 743 12258 5001 133422 896| 84826815
127 24 103 3879 1269 12698 6288 146386 1608| 67129737
61 6 55 2986 826 10895 2887 61039 832| 57291605
263 34 229 3877 743 3534 3986 103173 840| 101622889
301 50 251 1348 491 951 5109 57259 622| 63184329
34 11 23 4567 1374 1888 6740 110195 1362| 87943602
67 14 53 3961 1160 1714 7277 99392 1309| 73166147
74 14 60 2200 580 2025 3096 75084 556| 43202328
151 27 124 4786 585 1744 3132 74543 1036| 30952332
91 13 78 2080 360 352 2264 40513 463 40820713
99 17 82 1335 518 422 2213 41053 625| 59106579
26 5 21 3241 926 340 3318 68061 1065 28797590
48 7 41 1108 441 365 2345 38352 437 55811537
140 10 130 1183 344 441 2372 38893 409( 44338307
153 21 132 1254 343 536 2238 38353 377| 42219757
101 14 87 2627 368 555 2241 38352 654| 49403489
44 10 34 1526 493 362 2526 38352 414 32452927
564 90 474 1521 477 474 2175 63741 657| 58778695
161 24 137 2723 460 379 3036 55098 646| 117073937
76 74 69 2700 637 345 3068 54017 678| 57482285
190 31 159 2440 530 429 2911 54017 633| 52439790
288 41 247 2821 516 375 3260 81566 553| 32962307
98 8 90 1425 501 333 3265 56718 682| 87256504
195 11 184 3677 690 287 4653 102092 913| 46811209
134 9 125 2544 418 556 2255 39432 529| 36221699
71 3 68 2230 854 589 5290 89128 1013| 90524539

Figure B.2 Sample copy of cost output file for two-stage CACHEJOIN algorithm written at the end of the

algorithm in Java Eclipse.




Appendix C - Sample real-life datasets

Below is the sample dataset of the MITRE 10 NZ product master table sc. This table has 86 attributes which cannot be shown in one screenshot.

To make it more readable, it has been broken into four screenshots as below.

A B ¢ | b JE| ¢ | & | w | a | i K | L M | N | o | P Q | R | s T
1 |stock_code _description department product_grouunit carton_gty whole_units supplier_1 supplierl_cocqty_on_hand qty_available supplier_2 supplier2_code qty_backorde supplier_3 supplier3_cod¢qty_purch_orsold_m_t_d m_t_date_val purch_unit
2 | 100000 XEONIC RECT; 11 1105 EACH 12|Y SYDR SYDR 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
3 | 100001 COASTER LES 14 3137 EACH 6Y JASN JASN 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
4 100002 PLACEMAT LE 14 3137 EACH 4Y JASN JASN 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
5 100003 PI 25 2146 EACH 2|Y PINV PINV 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
6 100004 PLIERS SWITC 2 2532 EACH 6Y LAWC LAWC 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
7 100005 TOASTER 2 SL 9 2882 EACH 4Y RING RING 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
8 100006 RAG PAINT & 14 3137 EACH 1y MIMP MIMP 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
9 100007 ROD FISHING 12 520 EACH 12|Y MIMP MIMP 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
10 100008 FISHING SET J 12 520 EACH 12 Y M10 M10 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
11 100009 FISHING ROD 12 520 EACH 12Y M10 M10 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
12 100010 FISHING ROD 12 520 EACH 12|Y AGEN AGEN 12 12 M10 9:31Ex12 0 NULL NULL 0 0 0 NULL
13 100011 FISHING ROD 12 520 EACH 4Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
14 100012 ROD & REEL C 12 520 EACH 12|Y AGEN AGEN 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
15 | 100013 ROD FISHING 12 520 EACH 1y AAAA AAAA 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
16 100014 ROD FISHING 12 520 EACH 1Y MIMP MIMP 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
17 100015 ROD & REEL C 12 520 EACH 10Y AGEN AGEN 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
18 100016 HAND CASTEF 12 520 EACH 10Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
19 100017 HAND CASTEF 12 520 EACH 10Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
20 100018 HAND CASTEF 12 520 EACH 10Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
21 100019 FISHING ROD 12 520 EACH 6Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
22 100020 FISHING NET 12 520 EACH 12 Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
23 100021 ROD FISHING 12 520 EACH 12 Y NICHE NICHE 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
24 100022 FISHING BOA' 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
251 100023 ROD & REEL B 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
26 100024 FISHING ROD 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
27 100025 FISHING ROD 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
28 100026 FISHING ROD 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
29 100027 FISHINGSET L 12 520 EACH 1]y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
30 100028 FISHING ROD 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
31 100029 FISHING ROD 12 520 EACH 1Y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL
32 100030 FISHING SET ¢ 12 520 EACH 1y ALLD ALLD 12 12 M10 9.31E+12 0 NULL NULL 0 0 0 NULL

Figure C.1 Sample of MITRE 10 NZ product master table dataset R (sc table) which holds product item attributes (continued on next page)



Figure C.1 — continued from previous page

W NGV R W N

AH

Al

Al

AK

AL

AM

AN

AO

0

0

U v W X | Y AF | AG |
.no_shelf_labellbar_codev sold_y y_t_d_value retail_ sold_today sold_this sold_last last_year spare6 conver this_weeks retail_m_up qty_break_1 qty_breakl_perc
1|y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y, 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1|Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 32 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y, 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1|Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 3534 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388
1Y 12 35.34 3.49 1 12 0 0 0 0 35.34 1.9388

(Continued on next page)
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Figure C.1 — continued from previous page
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(Continued on next page)

110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL
110714 NULL

AR | AS AT , AU AV | AW | AX | AY | AZ  BA | BB | BC | BD | BE | BF | BG | BH | Bl | Bl | BK | |
|last_cost_price av_cost_price average_stock gty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_qty_sold_ly av_stock sparel dropped spare8 stocktake days lowest_mar new_item_day velocity
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 ) ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL  NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 ) ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL  NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL  NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL  NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL NULL NULL
1.8 1.8 106.08 0 0 0 0 0 12 0 0 0 0 0 0 0 ON NULL  NULL NULL
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Figure C.1 — continued from previous page

W0 N AW =

BO BP | BQ BR BS BT BU BV BW BX BY BZ | CA
_|sale_number sale_quantity sale_sale_val sale_cost sale_finish sale_start cost_mtd cost_ytd cost_ly spare4 spare5 week_cost size_
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL

NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
- |NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
- |NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
| NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL
|NULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
INULL 0 0 0 NULL NULL 0 216 0 0 0 21.6 NULL
NULL 0 0 0 NULL NULL 0 21.6 0 0 0 21.6 NULL

cB cC cD CE CF CG | CH
internet price_control warranty_flag item_type sub_type item_status replen_type
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL NULL N NULL NULL NULL NULL
NULL  NULL N NULL NULL NULL NULL
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Below is the sample dataset of the MITRE 10 NZ transactional table gltx. This table has 42 attributes which cannot be shown in one screenshot.

To make it more readable, it has been broken into two screenshots as below.

W oo ~NO UV WN =

WINI I I I IND NI N NI TN N | | et | ped | el | fd | pd | e | fed | el | fd
© WO ~NOUAWNREOWO®NOOVMPAWNREO

A B C D E F G H I J K L M N O P Q R S 1L U Vv W
branch dept drawer code amount cost date_ account remarks reference type_ tax operator qty stock docket_no posted promo sub_code gst promo_num promo_start promo_end
B 11 NULL 0 0 0 1/12/2014 824281 NULL  B-458659 ARINV 0 WM 1 175211 1 1/12/2014 NULL 0 1 NULL NULL NULL
B 11 NULL 0 0 0 1/12/2014 871122 NULL  B-458659 ARINV 0 WM 2 164764 1 1/12/2014 NULL 0 2 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 825174 NULL B-458660 ARINV 0 WM 1 148098 2 1/12/2014 NULL 0 3 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 869512 NULL  B-458660 ARINV 0 WM 2 156273 2 1/12/2014 NULL 0 4 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 869143 NULL  B-458661 ARINV 0 WM 1 150312 3 1/12/2014 O 0 5 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 836304 NULL B-458662 ARINV 0 WM 1 147530 4 1/12/2014 NULL 0 6 NULL NULL NULL
B 7 NULL 0 0 0 1/12/2014 869151 NULL  B-458663 ARINV 0 WM 1 179830 5 1/12/2014 NULL 0 7 NULL NULL NULL
B 1 NULL 0 0 0 1/12/2014 853284 NULL  B-458664 ARINV 0 WM 1 161906 6 1/12/2014 NULL 0 8 NULL NULL NULL
B 3 NULL 0 0 0 1/12/2014 846785 NULL B-458664 ARINV 0 WM 1 138721 6 1/12/2014 NULL 0 9 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 858659 NULL  B-458664 ARINV 0 WM 1 145849 6 1/12/2014 NULL 0 10 NULL NULL NULL
B 3 NULL 0 0 0 1/12/2014 828394 NULL  B-458665 ARINV 0 WM 1 160217 7 1/12/2014 NULL 0 11 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 852799 NULL B-458666 ARINV 0 WM 6 153885 8 1/12/2014 NULL 0 12 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 839842 NULL  B-458666 ARINV 0 WM 182.2 176351 8 1/12/2014 NULL 0 13 NULL NULL NULL
B 33 NULL 0 0 0 1/12/2014 820646 NULL  B-458666 ARINV 0 WM 2 160182 8 1/12/2014 NULL 0 14 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 835860 NULL B-458666 ARINV 0 WM 1 156381 8 1/12/2014 NULL 0 15 NULL NULL NULL
B 14 NULL 0 0 0 1/12/2014 853150 NULL  NULL POSTX 0 GM 1 161819 9 1/12/2014 NULL 0 16 NULL NULL NULL
B 32 NULL 0 0 0 1/12/2014 866483 NULL  NULL POSTX 0 GM 1 173832 10 1/12/2014 NULL 0 17 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 835884 NULL B-458667 ARINV 0 WM 4 147798 11 1/12/2014 NULL 0 18 NULL NULL NULL
B 1 NULL 0 0 0 1/12/2014 866323 NULL  B-458668 ARINV 0 WM 8 179354 12 1/12/2014 NULL 0 19 NULL NULL NULL
B 14 NULL 0 0 0 1/12/2014 807405 NULL  NULL POSTX 0 GM 1 145818 13 1/12/2014 NULL 0 20 NULL NULL NULL
B 33 NULL 0 0 0 1/12/2014 822119 NULL B-458669 ARINV 0 WM 1 189354 14 1/12/2014 NULL 0 21 NULL NULL NULL
B 4 NULL 0 0 0 1/12/2014 886218 NULL  B-458670 ARINV 0 WM 2 182466 15 1/12/2014 NULL 0 22 NULL NULL NULL
B 7 NULL 0 0 0 1/12/2014 882823 NULL  NULL POSTX 0 WM 1 141585 16 1/12/2014 NULL 0 23 NULL NULL NULL
B 1 NULL 0 0 0 1/12/2014 845074 NULL NULL POSTX 0 WM 1 149236 16 1/12/2014 NULL 0 24 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 870618 NULL  NULL POSTX 0 WM 2 152887 16 1/12/2014 NULL 0 25 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 884752 NULL  NULL POSTX 0 WM 2 158537 16 1/12/2014 NULL 0 26 NULL NULL NULL
B 17 NULL 0 0 0 1/12/2014 839804 NULL NULL POSTX 0 WM 1 141328 16 1/12/2014 NULL 0 27 NULL NULL NULL
B 7 NULL 0 0 0 1/12/2014 873900 NULL NULL POSTX 0 GM 1 154933 17 1/12/2014 NULL 0 28 NULL NULL NULL
B 6 NULL 0 0 0 1/12/2014 843290 NULL  NULL POSTX 0 GM 1 157897 18 1/12/2014 NULL 0 29 NULL NULL NULL

Figure C.2 Sample of MITRE 10 NZ transactional dataset (gltx table) which is incoming stream data S (continued on next page)
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Figure C.2 — continued from previous page

W oo ~NO U WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

2%
25
26

27
28
29
30

| X Y 7 AA AB AC AD AE AF AG AH Al A AK AL . AM AN | AO AP |
description group_ retail sys_price sys_disc set_disc_val act_price act_disc act_disc_val line unit length till date2post sub_account item_type sub_type time override_operator
CUPBOARD BASE 800W X 900H NOUVEAU 1101 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL c NULL NULL NULL
WARDROBE 800MM 2 DOOR 2 DRAWER GLOSS 1109 0 0 0 0 0 0 0 2 EACH 0 8 NULL NULL € NULL NULL NULL
GIB COVE BOND 45 20KG 4339 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL € NULL NULL NULL
45X20 RAD CAV/BAT MERCH FJ H3.1 5.4M 6467 0 0 0 0 0 0 0 2 EACH 0 8 NULL NULL o NULL NULL NULL
GIB TRADE FINISH MULTI 15L/21KG PAIL 4339 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL & NULL NULL NULL
GIB TRADE FINISH MULTI 15L/21KG PAIL 4339 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL & NULL NULL NULL
| SANDER HAND ALUMINIUM 3679 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL c NULL NULL NULL
BOLT CUP HD ZP M8X50 NUT/WASHER PK4 1950 0 0 0 0 0 0 0/ 2/PK 0 8 NULL NULL & NULL NULL NULL
CIRCULAR SAW 185MM MAKITA 5007MGK 2565 0 0 0 0 0 0 0 3 EACH 0 8 NULL NULL o NULL NULL NULL
TRADE FREE COFFEE BETWEEN 7 AND 9AM 9904 0 0 0 0 0 0 0 4 EACH 0 8 NULL NULL NULL NULL NULL NULL
NAILER CHARGER IMPULSE LI-ION PASLODE 2575 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL X NULL NULL NULL
100X40 RAD DECKING GT PREMIUM H3.2 LM 6472 0 0 0 0 0 0 0 2L™m 0 8 NULL NULL c NULL NULL NULL
100X40 RAD DECKING GT MERCH H3.2 LM 6471 0 0 0 0 0 0 0 3L™m 0 8 NULL NULL c NULL NULL NULL
SCREWDRIVER BIT SET POWER FULLER POZI 2 2596 0 0 0 0 0 0 0 4 EACH 0 8 NULL NULL c NULL NULL NULL
TRADE FREE COFFEE BETWEEN 7 AND 9AM 9904 0 0 0 0 0 0 0 6 EACH 0 8 NULL NULL NULL NULL NULL NULL
STRAINER 21CM SS  KITCHENCRAFT 3010 0 0 0 0 0 0 0 1 EACH 0 1 NULL NULL c NULL NULL NULL
LIGHT BULKHEAD SMALL OVAL BLACK 1171 0 0 0 0 0 0 0 1 EACH 0 1 NULL NULL c NULL NULL NULL
MORTAR INDUSTRY 30KG DRYMIX 4311 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL o NULL NULL NULL
HINGE BUTT 75MM 333 SERIES FIXED PIN FB 2090 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL o NULL NULL NULL
COUNCIL RUBBISH BAGS 10PK PALMERSTON NTH 3320 0 0 0 0 0 0 0 1 EACH 0 1 NULL NULL NULL NULL NULL NULL
AUGER BIT LONG 16MM IRWIN 2594 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL C NULL NULL NULL
MDF EASIPANELS 4.75 X 1200 X 600 4522 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL € NULL NULL NULL
LIQUID NAILS HEAVY DUTY 375 ML 3710 0 0 0 0 0 0 0 1 EACH 0 8 NULL NULL o NULL NULL NULL
DOWEL FLUTED 50PCE 8MM 1959 0 0 0 0 0 0 0 2 EACH 0 8 NULL NULL c NULL NULL NULL
65X19 RAD STD (KNOTTY PINE) D4S UT 2.4 6381 0 0 0 0 0 0 0 3 EACH 0 8 NULL NULL C NULL NULL NULL
42X19 RAD STD (KNOTTY PINE) D4S UT 2.4 6381 0 0 0 0 0 0 0 5 EACH 0 8 NULL NULL c NULL NULL NULL
42X19 RAD STD (KNOTTY PINE) D4S UT 1.8 6381 0 0 0 0 0 0 0 7 EACH 0 8 NULL NULL c NULL NULL NULL
PAINT BRUSH 10PC SET BUYRIGHT 3650 0 0 0 0 0 0 0 1 EACH 0 1 NULL NULL € NULL NULL NULL
BUY RIGHT INT/EXT SEMIGLOSS WHITE 10L 3573 0 0 0 0 0 0 0 1 EACH 0 1 NULL NULL c NULL NULL NULL
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Below is the sample dataset of the MITRE 10 NZ customer master table cs_person. This table has 15 attributes.

A ‘ B & ‘ D E | E | G | H ‘ I ‘ J | K ‘ E ‘ M ‘ N
1 |person_id account_c first_namesurname date_of_birth address_1 address_2 city post_code phone_no mobile_nc email_add create_date primary_
2 1| 1 800000 SHERYL Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
3 | 2 800001 sonia Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
4 | 3 800002 TODD Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
5 i 4 800003 mike Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
6 5 800004 nevel Miles 11/01/1990 33 Lambie Manukau AUCKLANL 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
7 | 6 800005 yogeeta Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
8 | 7 800006 SHINY Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
9 | 8 800007 Dara Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
10" 9 800008 Mahitahi Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
11” 10 800009 Odell Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
12, 11 800010 Floreno  Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
13" 12 800011 Molchand Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
14” 13 800012 JUNIOR Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
15, 14 800013 MARY Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
16" 15 800014 SONJA Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
17” 16 800015 SONJAY Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
18v 17 800016 VANESSA Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
19” 18 800017 Robert Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
20” 19 800018 SONNY Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
21v 20 800019 ROBIN Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
22” 21 800020 Larry Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
23” 22 800021 ERIC Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
24v 23 800022 RICHARD Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
25” 24 800023 lameko  Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
26” 25 800024 Paul Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
27v 26 800025 JEREMY Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
28” 27 800026 System Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
29” 28 800027 maraea Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y
30_ 29 800028 leilina Miles 11/01/1990 33 Lambie Manukau AUCKLANI 2105 95298788 2.1E+09 DOUG@O 1/11/2012 Y

Figure C.3 Sample of MITRE 10 NZ customer master table dataset R (cs_person table) which holds customer account attributes.



