
AN AUTHENTICATED KEY

AGREEMENT SCHEME FOR

SENSOR NETWORKS

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Mee Loong Yang

School of Engineering

October 2014

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the library, Auckland University of Technology. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not

be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Auckland University of Technology, subject to any prior agreement

to the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions of

any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Librarian.

c© Copyright 2014. Mee Loong Yang

ii

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

iii

Acknowledgements

I would like to express my deep and sincere gratitude to my primary supervisor, Profes-

sor Adnan Al-Anbuky of the School of Engineering, AUT University, for his guidance

throughout. My thanks and appreciation also to my second supervisor Dr William Liu

of the School of Computer and Mathematical Science, AUT University for his great

support and helpful criticisms.

I am grateful to Professor Ajit Narayanan, who as Head of School of Computer and

Mathematical Sciences, encouraged and provided me with every resource and support

to undertake this study. My thanks also to the Research committee of the School

of Computer and Mathematical Sciences for support in funding for publications and

conference presentations.

I am deeply grateful to my lovely my wife for her encouragement, support and under-

standing while I am away, leaving her to hold the fort. Last, but not least, I cannot

thank my parents enough because it was their vision and sacrifice that allowed me an

education in the first place.

iv

Abstract

In wireless sensor networks, the messages between pairs of communicating nodes

are open to eavesdropping, tampering, and forgeries. These messages can easily be

protected using cryptographic means but the nodes need to share a common secret

pairwise key. This thesis proposes a new scheme, the Blom-Yang key agreement (BYka)

scheme, that enables pairs of sensor nodes in large networks to compute their pairwise

keys quickly and efficiently. Prior to deployment, the Trusted Authority (TA), assigns

each node their public IDs, and using its master keys, computes and stores in the

nodes their private key-sets. When a pair of nodes need to obtain their pairwise keys,

they exchange their public key identifier IDs which are just 16-bit integers. Using the

counterpart’s ID with its own set of private keys, the nodes are able to compute a large

common pairwise key, but only if they have obtained their keying material from the

same TA. Hence, the scheme is also mutually authenticating. The computations use

simple arithmetic operations which are fast and efficient, easily undertaken by sensor

devices which have limited computational, memory, and energy resources. For example,

it is able to compute keys of 128 bits in 279 milliseconds in the MICAz mote, requiring

1170 bytes of memory to store the private keying material. Similar key agreement

schemes, already widely used in computer networks, use public key cryptographic

algorithms which require computationally expensive mathematical operations, taking

much longer time, and requiring much more resources.

The security of the BYka scheme is based on the difficulty of obtaining information

v

about the private-public-master-key associations (PPMka). The private keys in each

node are computed by the TA using all the permutations of its multiple master keys

and the node’s public keys operating over a small prime field, and then stored in a

random order in the node. If these are captured, the private keys cannot be used directly

as the adversary would first have to discover the PPMka. The analysis showed that,

with suitable keying parameters, even if sufficient number of private keys are stolen,

an adversary with powerful computing resources would need to expend an infeasibly

large amount of time and resources to try all the possible PPMka to break the scheme.

The adversary may try to discover the PPMka by using pairs of captured nodes to

compute their pairwise keys, but this would require the capture of tens of thousands of

nodes. Alternatively, even when using the most efficient method, the adversary needs

to try a large number of possibilities equivalent to security strengths of 80 to 192 bits.

Overall, the adversary has only a small probabilistic chance of breaking the scheme.

These analytical results were verified using computer simulated attacks and are used to

provide some guidelines and tables for the selection of the keying parameters to meet

implementation and performance requirements including computation times, memory

availability, network sizes, and pairwise key sizes.

The proposed key agreement scheme is in effect a non-interactive identity-based

scheme which uses the node’s identity (ID) as its public key. This allows a node to

encrypt messages to a target node once its ID is known. It can be used by nodes in

dynamic, mobile and ad hoc situations to opportunistically send authenticated messages

to each other when they are in range. A single message authenticated protocol (SMAP)

using the BYka scheme as the cryptographic primitive is proposed. The speed, efficiency,

and resilience of the BYka scheme would make it useful as the cryptographic primitive

in other applications such as email and voice communications.

vi

Contents

Copyright ii

Declaration iii

Acknowledgements iv

Abstract v

Glossary and Notations xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4

1.2.1 The Proposed Scheme . 5
1.3 Security Model . 6

1.3.1 System Model . 6
1.3.2 Adversary Model . 8
1.3.3 Security Outcomes . 8

1.4 Terminology . 9
1.5 Structure of Thesis . 11
1.6 Publications . 11
1.7 Summary . 12

2 Literature Review 14
2.1 Introduction . 14
2.2 Key Transport Schemes . 15

2.2.1 Pre-distribution Schemes . 16
2.2.2 Key Distribution Centers . 20

2.3 Key Agreement Schemes . 21
2.3.1 Public Key Cryptographic Schemes 21
2.3.2 Identity-Based Cryptography 27
2.3.3 Symmetric-key Key Agreement Schemes 29

2.4 Summary . 34

vii

3 The BYKa Scheme 37
3.1 Introduction . 37
3.2 The Blom’s Key Agreement Scheme 37

3.2.1 Features of the Blom’s Scheme 39
3.2.2 Weaknesses of the Blom’s Scheme 41

3.3 The BYka Scheme . 42
3.3.1 Base Station and Setup . 42
3.3.2 Bootstrapping . 46
3.3.3 Pairwise Key Derivation . 46

3.4 Features of the BYka Scheme . 49
3.4.1 Implicit Mutual Authentication 49
3.4.2 Low Communication Overhead 50
3.4.3 Compact Code . 50
3.4.4 Memory Requirements . 50
3.4.5 Scalability . 51
3.4.6 Pairwise Keyspace Size . 52

3.5 Summary . 54

4 Security Analysis 56
4.1 Introduction . 56
4.2 Vulnerability of Keys . 57

4.2.1 Resistance Against Brute Force Attacks 57
4.2.2 Public Keys . 58
4.2.3 Private Keys . 58
4.2.4 Pairwise Keys . 59

4.3 Security of the Blom’s Scheme . 60
4.3.1 Masquerade Attacks – Sybil Attacks 60
4.3.2 Requirements of Public Keys: 62
4.3.3 Attacking the Master Key 64
4.3.4 Effort Required to Break the Scheme 67
4.3.5 Limitations of the Blom’s Scheme 68

4.4 Security of the BYka Scheme . 69
4.4.1 Capture Threshold . 69
4.4.2 Private-Public-Master-Key Association (PPMka) 69
4.4.3 Indiscernibility of the Private-Public-Master-Key Association 69
4.4.4 Resilience Against Sybil Attacks 71
4.4.5 Resilience Against Attacks on the Master Keys 73

4.5 Other Security Issues . 74
4.5.1 Immunity to MITM Attacks 74
4.5.2 Key Escrow . 74
4.5.3 DoS Attacks . 74
4.5.4 Compromised-key Impersonation Attacks 75
4.5.5 Forward Secrecy . 76
4.5.6 Key Revocation . 76

viii

4.6 Summary . 76

5 Cryptanalysis of the PPMka 79
5.1 Introduction . 79
5.2 Pairwise Key-set Attack . 80

5.2.1 Without Ambiguities . 80
5.2.2 With Ambiguities . 81
5.2.3 Pairing Attacks . 83

5.3 Pairing Attack with Unlimited Capture 87
5.3.1 The Traitor Node . 87
5.3.2 Finding a Traitor Node . 89
5.3.3 Traitor Node Permutations 91
5.3.4 Probability of Finding a Traitor Node 97
5.3.5 Node Capture to Find a Traitor Node 99
5.3.6 Use of the Traitor Node . 100

5.4 Pairing Attack with Limited Capture 102
5.4.1 Binomial Distribution Approximation 103

5.5 Security Strength of the BYka Scheme 105
5.6 Summary . 105

6 Evaluation and Performance 109
6.1 Introduction . 109
6.2 Experiment – Attacks to Obtain the PPMka 109

6.2.1 Simulation of Attacks . 110
6.2.2 Experimental Results . 112

6.3 Hardware Implementation . 117
6.3.1 Hardware and Software Platforms 118
6.3.2 Experimental Procedure . 118
6.3.3 Performance Measures . 118

6.4 Summary . 123

7 Implementation and Application 124
7.1 Introduction . 124
7.2 System Implementation . 125

7.2.1 Design Equations . 125
7.2.2 Selection of Parameters . 127
7.2.3 Key Generation and Distribution 129

7.3 Applications . 129
7.3.1 The Single Message Authentication Protocol (SMAP) 129
7.3.2 Corporate Email . 137

7.4 Comparison with other Schemes . 137
7.5 Summary . 138

ix

8 Conclusion 141
8.1 Introduction . 141
8.2 Key Agreement Schemes . 141
8.3 Research Objective . 142
8.4 The BYka Scheme . 143
8.5 Future Work . 146

8.5.1 Identity Theft . 146
8.5.2 Forward Secrecy . 146
8.5.3 Non Linearly Independent Public Keys 146
8.5.4 SMAP . 147

8.6 Summary . 147

References 149

A Design and Performance Tables 154

B SOURCE CODES 161
B.1 Simulate Probability of Finding a Traitor Node 161
B.2 Simulate Capture to Find a Traitor Node 162
B.3 Estimating Traitor Node Capture Size and Φ 167
B.4 TinyOS Code for the MICAz mote 170

x

List of Tables

1.1 Security Strength and Computation Times. nc is the Traitor Capture
Size, Φ is Number of Possible Solutions 6

2.1 NIST Recommended Key Sizes in bits 23

3.1 Keyspace in bits . 53

4.1 Number of Solutions Master Keys 73

5.1 Probabilities of Finding a Traitor Node 98
5.2 Comparing Pt with Simulation Results 99
5.3 Capture Sizes to find a Traitor Node 101
5.4 Probable Number of Master Key Solutions Assuming Nc = µ, in log(Φ)106

6.1 Comparison Between Analytical and eExperimental Results for m =
24, p = 31, †600 Runs only as it took too long 115

6.2 Comparison Between Analytical and Experimental Results for Φ using
m = 24, p = 31 . 116

6.3 Comparison Between Calculated and Experimental Security Strength.
Φ is Number of Trials Required . 117

6.4 BYka Key Computation Times (ms) and Private Key ROM storage
(bytes) for Various Parameters of m, N , and η 121

7.1 Optimal Parameter Based on Related Security Strength, Tcomp, and
Traitor Capture Size nc. Φ is the Number of Possible Trials Required. 128

7.2 Number of Years to Break the BYka Scheme Assuming one flop per Trial128
7.3 Comparison of Authenticated Key Agreement Schemes for Sensor

nodes, † 8-bit µC @ 8 MHz, ‡16-bit µC @ 8 MHz. 139

A.1 Performance – RAM, ROM, and Computation Times 155
A.2 Security, Resilience, and Performance Table. Traitor node capture nc,

Number of Master Key Solutions Φ in 10x 156
A.3 Security and Performance Features using m = 16. Traitor Node Cap-

ture nc and Number of Master Key Solutions Φ are 10x 157
A.4 Security and Performance Features Using m = 16. Traitor Node

Capture nc and Number of Master Key Solutions Φ are 10x 158

xi

A.5 Security and Performance Features using m = 16. Traitor Node Cap-
ture nc and Number of Master Key Solutions Φ are 10x 159

A.6 Security and Performance Features using m = 16. Traitor Node Cap-
ture nc and Number of Master Key Solutions Φ are 10x 160

xii

List of Figures

2.1 Classification of Authenticated Key Establishment Schemes 15

3.1 Blom’s Key Agreement Scheme . 39
3.2 The BYka Process . 47
3.3 Partitioning 8 Items into 4 Groups 52

4.1 Steps Required to Obtain the Correct Master Keys 68

5.1 Key-set Attack Without Ambiguities, for Case N = 2, η = 2 82
5.2 Key-set Attack with Collisions, for N = 2, η = 2 83
5.3 Pairing Attack Operation . 84
5.4 Couplers and Couplings . 85
5.5 Pairing Attack with Collisions . 86
5.6 Pairing Attack without Collision . 87
5.7 Traitor Node Can Be Used to Attack the PPMka 88
5.8 Traitor Node Cannot be Used to Attack the PPMka 88
5.9 Finding the Traitor Node . 90
5.10 Pairing Attack for Case with N = 2, η = 3 102
5.11 Distribution of the Number of Couplings for p = 31, N = 6, η = 6 . . 104

6.1 Attack on PPMka . 111
6.2 Result of Pairing Attacks on the BYka Scheme Using m = 24, p =

31, η = 4, N = 5 . 114
6.3 Graph of Pairwise Key Computation Times Using the MICAz mote . 122

7.1 Message Format from Node A to Node B 130
7.2 SMAP-2 . 133
7.3 SMAP-2 with Incomplete Runs . 136

xiii

Glossary and Notations

BYka scheme The Blom-Yang key agreement scheme

Capture threshold Number of compromised nodes required to break Blom’s

scheme

HMAC Hashed message authentication code

IBC Identity Based Cryptography

Keyspace The maximum number of possible keys

Master key A secret (m×m) symmetric matrix known only to the TA

PKC Public Key Cryptography

Public key A (m×1) vector unique to a node and is publicly known

Public key-set The set of public keys assigned to a node

Public key ID An integer representing the node’s public key-set

Private key A (1×m) row vector, unique and secret to the node

Private key-set S A set of private keys, unique and secret to the node

Pairwise key, KAB The shared secret key between nodes A and B

Pairwise key-set, R A set of integers for forming the pairwise key KAB

Pairwise session key A short term secret key shared between a pair of nodes

PPMka Private-Public-Master-key association

TA Trusted Authority

Traitor node A node in which the PPMka is known

xiv

Notations

ID – identity of a node, an integer unique to the node

K – private key, a (1×m) row vector

M – master key, a secret symmetric (m×m) matrix belonging to the TA

N – the number of master keys

Qo – the size of the private key-set in bytes

R – the set of integers for forming the pairwise key KAB

S – the private key-set, the set of Nη private keys

V – public key, an (m×1) column vector

Φ – Number of possible master key solutions

m – the size of the master key matrix

nc – the number of captured nodes required to find a traitor node

η – number of public keys assigned to each node

p – prime modulus for key operations

q – prime modulus for public key operations only

s – public key seed value

xv

Chapter 1

Introduction

Wireless sensor devices have the potential to play an important part in all kinds of

monitoring applications due to their small physical size, low cost, and wireless commu-

nications. However their widespread acceptance, especially in sensitive applications,

will not be fully realised unless users are confident of its security. This is especially

important for sensitive applications such as intruder detection, production plant process

monitoring, military applications, and patient health monitoring. A basic requirement

is that an adversary cannot read, modify, or forge the messages between the nodes.

This requires pairs of nodes to share a common secret pairwise key for use with es-

tablished cryptographic tools. For large ad hoc sensor networks, a key establishment

scheme which enables pairs of nodes to compute their own pairwise keys would be

most suitable.

Schemes based on asymmetric keys are often called public key cryptographic (PKC)

schemes such as DH (Diffie & Hellman, 1976) and RSA (Rivest, Shamir, & Adleman,

1978). They are used in computer networks and have been studied for application in low

resourced sensor devices (Ugus, Westhoff, Laue, Shoufan, & Huss, 2007),(Grosschadl,

Szekely, & Tillich, 2007),(Lederer et al., 2009). In these schemes, the nodes generate

their own keying material. These PKC schemes use expensive mathematical operations.

1

CHAPTER 1. INTRODUCTION 2

The computation times are long (M. Liu, Wei, & Liu, 2009), and require additional

mechanisms for entity authentication. Identity-based schemes using bilinear pairing

cryptographic methods, which also use PKC algorithms, have also been proposed for

sensor networks (Szczechowiak & Collier, 2009) (L. B. Oliveira et al., 2011). There

is no need for a separate mechanism for authenticating the public keys as the Trusted

Authority (TA) provides all the keying material.

Symmetric key establishment schemes do not use expensive mathematical opera-

tions. Here, the TA is responsible for providing all the pairwise keys. However, instead

of computing and distributing them, it delegates the pairwise key computations to the

nodes by providing them with the key computation algorithm and a unique share of

the keying material. Pairs of nodes are able to compute their pairwise key using their

keying material. Various symmetric key schemes have been proposed such as those

requiring the help of intermediary nodes (Chan & Perrig, 2005) (Eschenauer & Gligor,

2002), using a shared key with the base station (Zhu, Setia, & Jajodia, 2006), using

a public database to obtain pairwise keys (Leighton & Micali, 1994), the polynomial

based scheme in (Blundo et al., 1995), and the Blom’s scheme (Blom, 1984). Of these,

the most suitable for mobile ad hoc network are the schemes due to Blundo and Blom.

The Blundo’s two party scheme is equivalent to the Blom’s scheme.

1.1 Motivation

The Blom’s scheme uses simple mathematical operations allowing it to be used in low

resourced devices, for example in the cryptographic scheme used for High Definition

Content Protection (HDCP) (Crosby, Goldberg, Johnson, Song, & Wagner, 2001). The

Blom’s scheme has three main useful security features.

Firstly, it is mutually authenticating as both nodes must obtain their keying material

from the same TA in order to obtain a common pairwise key. If a node receives

CHAPTER 1. INTRODUCTION 3

a message encrypted with their common pairwise key, the receiver can trust the

authenticity of the sender. Secondly, it is a non-interactive scheme and there is no

opportunity for an active adversary to participate and manipulate the scheme. The nodes

only need to obtain some publicly available information about their counterparts and

the TA is not required. Finally, it is unconditionally secure in the information theoretic

sense in that, if no more than a certain number of nodes, λ (“capture threshold”) are

compromised, the scheme cannot be broken by an adversary with unlimited resources

(Stinson, 2006) pp. 406. However, once the capture threshold is reached, the scheme

can be completely broken very quickly. This was demonstrated in the cryptanalysis

attack of the HDCP scheme (Crosby et al., 2001). To increase the capture threshold,

the size of the keying material increases proportionally. Symmetric key establishment

protocols do not scale well to large networks (Paar & Pelzl, 2010) p. 352, and this is

true of Blom’s.

One limitation in the Blom’s scheme is that the pairwise key size is the same size

as the data size used. The recommended key sizes by the US National Institute of

Standards and Technology (NIST) (Barker, Barker, Burr, Polk, & Smid, 2012) p. 67,

for the US Federal Government unclassified applications require key sizes of 112 bits

or larger for protection to year 2030 and beyond. Large pairwise keys require more

memory for storing the keying material.

The Blom’s scheme would be useful for use in wireless sensor networks if it can

be suitably modified. Various attempts have been made to modify the Blom’s scheme

to overcome its limitations. Some approaches use probabilistic ideas where nodes

are given keying material from multiple keyspaces (S.-J. Wang, Tsai, & Chan, 2007).

Another approach is to add some random perturbations to the keying material making it

more difficult for the adversary to break the scheme (W. Zhang, Zhu, & Cao, 2007),(Yu,

Lu, & Kuo, 2010). The question then, “Is it possible to modify the Blom’s scheme using

permutations of multiple keys such that it has security strengths of 128 bits or more,

CHAPTER 1. INTRODUCTION 4

given that any number of nodes can be compromised, and that the storage requirement

for the keying material does not increase proportionally as the network size?”

1.2 Contributions

This thesis shows that it is possible to modify a symmetric scheme like the Blom’s

scheme so that it has adequate security strength, does not require large storage for the

private keys, and is resilient against the compromise of tens of thousands of nodes.

The main idea is to have multiple keys and using them together in a single keyspace

over the a small prime field Fp. The TA has N master keys and assigns each node a set

of η “public keys”. These are used in permutations to obtain a set of Nη “private keys”

which are stored in a random order at the node. This has the effect of breaking the links

between the private keys with the public keys and the master keys used to compute

them. These links are called the private-public-master-key associations (PPMka).

If the adversary obtains the private keys, he must first discover the PPMka for each

key before it can be used to attack the scheme. The PPMka information is unknown

and ambiguous. By selecting suitable sizes of m,N , p, and η, the number of possible

PPMka is so numerous that it requires an infeasibly large number of iterations, for

example 2128 or more.

A pair of nodes would compute their pairwise “key-set” consisting of Nη2 integers

using all permutations of the counterpart’s public keys with its own private keys.

The large number of integers computed enables large pairwise keys of 128 or more

bits to be obtained. However, the key-set can become an avenue for an adversary to

discover the PPMka. To prevent this, the prime modulus p is chosen to be small, for

example, p = 31, so that the key-set has numerous identical integers, making it difficult

to discover the PPMka. The adversary would have to capture tens of thousands of

nodes to find a “traitor node”, which when paired with another node, would expose

CHAPTER 1. INTRODUCTION 5

its PPMka. If a traitor node is found, the PPMka has a slightly better chance of being

exposed in other nodes. The security of the scheme, and possible attacks, are analysed

using mathematical tools including linear algebra, combinatorics, and probabilities. The

analytical results are tested against computer simulated attacks to break the scheme.

1.2.1 The Proposed Scheme

The symmetric key establishment scheme proposed in this thesis, called the Blom-

Yang key agreement (BYka) scheme, is able to achieve a security strength of 128 bits

requiring 1170 bytes of memory for storing the private keys when implemented in the

MICAz mote. The adversary cannot break the scheme even if tens of thousands of

nodes are compromised. The implementation in the MICAz (Memsic Corp., n.d.) mote

which has an ATmega128L processor running at 8 Mhz, is able to compute the pairwise

keys in about 280 milliseconds. For a security strength of 80 bits, the computation

time is only 104 milliseconds requiring 612 bytes of memory. For comparison, the

scheme in (W. Zhang et al., 2007) using random perturbations based on the Blundo’s

bivariate symmetric key scheme (Blundo et al., 1995), was able to compute 80 bits

keys in a time of 130 milliseconds. Public key cryptographic methods require much

longer computation times. The fastest scheme using the identity-based scheme based

on bilinear pairings in (L. B. Oliveira et al., 2011) was able to compute the pairings in

1.9 seconds, with 80 bits security.

Table (1.1) gives the shortest computation times for various security strengths using

the proposed scheme implemented in the MICAz mote using the TinyOS code in

Appendix B.4. The number nc is the expected number of nodes required to find a traitor

node, and Φ gives the probable number of iterations required to solve the N (m×m)

system of equations to find the correct master keys. The number of bytes Qo required

for storing the private keys increases with security strength to about 1824 bytes for 192

CHAPTER 1. INTRODUCTION 6

Security Strength nc Φ Qo(B) Tcomp(ms) p m η N

192 6.63×104 2193 1824 342 61 38 4 12

128 1.38×107 2132 1170 279 31 26 5 9

112 4.55×105 2114 920 185 31 23 4 11

96 2.30×104 297 720 118 31 20 3 12

80 2.30×104 283 612 104 31 17 3 12

64 1.02×106 264 468 85 17 13 3 12

Table 1.1: Security Strength and Computation Times. nc is the Traitor Capture Size, Φ
is Number of Possible Solutions

bits security. The memory required for the computation algorithm is about 7000 bytes.

1.3 Security Model

The following defines the security model under which the proposed scheme operates

and is evaluated. The security model comprises the system, the adversary, and the

definition of system breakdown.

1.3.1 System Model

The system comprises three main components: the Trusted Authority, the sensor network

comprising the nodes, and the operating environment.

Trusted Authority

All the nodes in the network belong to one administrative unit under the Trusted

Authority (TA). The TA is responsible for generating and providing all the keying

material. The TA can comprise one, or several entities. They can act jointly as a

committee of TAs, or in a hierarchy with some acting as subsidiary TAs. We will

refer to them collectively as TA. The TA is a secure entity and it is assumed that all

CHAPTER 1. INTRODUCTION 7

its secret information is protected against theft and leakage. The TA has access to a

cryptographically secure random number generator to generate its keys.

Before a node is deployed, the TA would physically identify a node to verify its

hardware and software, and then transmits the keying material to the node using a

secure channel such as a direct cable connection. In this way, possession of valid keying

material by a node proves that it is authentic. After the initial contact between the

nodes and the TA, the TA is no longer required and plays no further part in the key

establishment process.

Sensor Nodes

The sensor nodes have limited computing power, memory, and battery life, for example

the MICAz mote has an 8-bit ATmega 8 MHz processor, 4 KB RAM, 4 KB EEPROM,

and 128 KB Flash memory. They have access to secure cryptographic tools including

the Advanced Encryption System (AES) algorithm, hash algorithms, and a pseudo

random number generator (PRNG). The nodes are not provided with tamper proof

hardware. It is assumed that if an adversary is able to physically take control of a

node, all its data including secret keys in RAM and ROM can be extracted from the

node either in the field or in the laboratory. The ease with which this can be done was

demonstrated in (Hartung, Balasalle, & Han, 2005).

Deployment Space

The nodes may be installed in fixed physical locations, or are mobile and free to move

about anywhere in the deployment space. The network may be ad hoc and the nodes

are deployed as and when they are required. The number of nodes is large, up to

tens of thousands belonging to the same TA. They communicate with their immediate

neighbours using open radio protocols such as the IEEE 802.15.4 (IEEE, 2006) protocol.

Their radio ranges are limited and the intermediate nodes along the way help to relay

CHAPTER 1. INTRODUCTION 8

messages to distant nodes.

1.3.2 Adversary Model

For schemes which require exchanges of multiple messages, adversary models such

as that in (Dolev & Yao, 1983) would be useful. However, in our case, there is no

interaction, except for obtaining the public ID of the target node. Our adversary model

is thus simpler. In our model, the adversary is able to move freely anywhere in the

deployment space to initiate conversations with any node, read unencrypted messages,

replay, forge, block, and insert messages into the network. Overall, the adversary is a

very powerful agent and, except for stealing the master keys from the TA, it is able to;

• capture and physically take control of any node,

• extract all data from the node’s RAM and ROM memory,

• have access to powerful computing resources, and

• introduce new nodes into the target network space.

1.3.3 Security Outcomes

Definition 1 (Compromised node) A node is compromised if an adversary is able to

obtain all its keying material, for example, by physically taking control of the node and

extracting the keys from ROM and RAM memory.

Definition 2 (System Breakdown) The system is considered broken, or compromised,

if the adversary, by monitoring the transmissions and/or using keying material from

compromised nodes, is able to:

1. compute the pairwise keys of any pair of uncompromised nodes, or

2. fabricate new valid keys for use in new nodes, or

3. compute the master keys of the Trusted Authority.

CHAPTER 1. INTRODUCTION 9

Definition 3 (Security Strength) This is a number associated with the amount of

work (that is, the number of operations) that is required to break a cryptographic algo-

rithm or system, specified in bits and is a specific value from the set {80, 112, 128, 192, 256}

(Barker et al., 2012), p. 27.

Exclusion – Identity Theft

If an adversary is able to steal the keying material from a node, it is able to use the

information to create a new node (clone) with the same keys. Countermeasures against

such identity thefts are not within the scope of this thesis.

1.4 Terminology

The following terms are in line with common usage as far as possible. Some terms have

been defined loosely in the literature. While the exact definitions have varied as the

subject developed, they do not affect the main concepts involved.

Key Establishment “Key establishment is a process or protocol whereby a shared

secret becomes available to two or more parties, for subsequent cryptographic use.”

(A. J. Menezes, Oorschot, & Vanston, 2001) p.490.

In (Paar & Pelzl, 2010), key establishment schemes are classified into key transport

and key agreement schemes.

Key Agreement Scheme “Key agreement scheme is a key establishment technique

in which a shared secret is derived by two (or more) parties as a function of information

contributed by, or associated with, each of these, (ideally) such that no party can

predetermine the resulting value.” (A. J. Menezes et al., 2001), p. 490.

CHAPTER 1. INTRODUCTION 10

Authenticated Key Establishment Scheme This “is a key establishment protocol in

which one party is assured that no other party aside from a specifically identified second

party (and possibly additional identified trusted parties) may gain access to a particular

secret key.” Adapted from (A. J. Menezes et al., 2001) p. 492.

Non-interactive Scheme “If two users only need to exchange their public keying

material such as their ID’s and/or certificates, and this information is regarded as fixed,

public information, it is regarded as a non-interactive scheme.” (Stinson, 2006), p. 398.

Capture Threshold, λ This is the number of nodes that, if compromised, would

break the Blom’s scheme.

Unconditional Security “A cryptosystem is unconditionally or information-theoretically

secure if it cannot be broken even with infinite computational resources.” (Paar & Pelzl,

2010) p. 36.

Blom’s Unconditional Security The Blom scheme is unconditionally secure against

an adversary whose goal is to determine the secret pairwise key of a pair of uncompro-

mised nodes, and can obtain at most (λ− 1) compromised nodes. (Stinson, 2006) p.

399.

Secure Channel This is a physical (wireless) link for conveying messages between a

pair of nodes, such that the messages are protected using cryptographic techniques so

that an adversary cannot read the messages, the source of the messages can be assured,

and the content can be proven to be intact. (A. J. Menezes et al., 2001), adapted.

Keying Material This it the set of data provided by the TA to each node for use in

the key establishment process. It comprises the private keys, public keys, and the global

CHAPTER 1. INTRODUCTION 11

parameters.

Public Key This is a set of keying material unique to the node, provided by the TA,

and is available to anyone in plain text.

Private Key This is a set of keying material, secret and unique to the node, provided

by the TA and is never transmitted outside the node.

1.5 Structure of Thesis

The following Chapter 2 is a review of other work in sensor network key establishment.

Chapter 3 presents the main concepts of the proposed scheme in this thesis. The security

of the scheme is analysed in Chapter 4, showing that the weakness of the original

Blom’s scheme no longer applies by making the PPMka information unobtainable.

Chapter 5 analyses how the PPMka may be discovered by analysing the probabilities

of successfully obtaining the PPMka. Chapter 6 describes the experiments to verify the

analytical results using a computer programme to implement the scheme, and simulating

node capture to discover the PPMka. In addition, the scheme was also implemented in

the MICAz mote to obtain some data on the computation times and resources required.

Chapter 7 discusses how the practitioner may use the results to implement the scheme

to achieve the desired security strengths and key computation times. The utility of the

BYka scheme is demonstrated in the proposed single message authenticated protocol

(SMAP). Chapter 8 gives conclusions including the strengths and weaknesses of the

scheme and possible future work.

1.6 Publications

The following publications have been the result of this study:

CHAPTER 1. INTRODUCTION 12

Yang, M.L., Al-Anbuky, A., & Liu, W. (2012), A Fast and Efficient Key Agreement
Scheme for Wireless Sensor Networks, International Conference on Wireless and
Mobile Communications, Venice. 24-29 June 2012, pp. 231–237.

Yang, M.L., Al-Anbuky, A., & Liu, W. (2013), The Multiple-Key Blom’s Scheme for
Key Establishment in Mobile Ad Hoc Sensor Networks, The 19th Asia-Pacific
Conference on Communications, Bali, Indonesia, 29-31 Aug 2013. pp. 422-427.

Yang, M.L., Al-Anbuky, A., & Liu, W. (2014), An Identity-Based Authentication Pro-
tocol for Sensor Networks, IEEE Ninth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore. 21-
24 April 2014

Yang, M.L., Al-Anbuky, A., & Liu, W. (2014), Security of the Multiple-Key Blom’s
Key Agreement Scheme for Sensor Networks, IFIP Advances in Information
and Communication Technology, ICT Systems Security and Privacy Protection,
Springer-Verlag GmBH, Berlin, Heideberg, pp. 66–79, June, 2014

Yang, M.L., Al-Anbuky, A., & Liu, W. (2014, June), An Authenticated Key Agreement
Scheme for Wireless Sensor Networks, Journal of Sensors and Actuator Networks,
2014, 3(3), pp. 181-206; doi:10.3390/jsan3030181

1.7 Summary

Key establishment schemes are useful for nodes in large ad hoc mobile networks to

compute their pairwise keys when needed. Symmetric key methods are most suitable

for low resourced sensor devices but they tend to be of limited scalability. This thesis

sets out to investigate whether such a scheme, the Blom’s scheme, can be modified so

that it can be secure for use in large networks and is resilient against node compromise.

This is shown to be possible by using a new idea using multiple keys in permutations,

random storage order, and operations over a small finite field, to render the private keys

stolen from captured nodes unusable for breaking the scheme. This idea used in the

CHAPTER 1. INTRODUCTION 13

proposed key establishment scheme can attain a security strength of 128 bits and more,

without the need for large memory, and is scalable for large networks.

Chapter 2

Literature Review

2.1 Introduction

Early works in wireless sensor network security focussed on developing efficient

encryption schemes such as SNEP (Perrig, Szewczyk, Wen, Culler, & Tygar, 2002),

TinySec (Karlof, Sastry, & Wagner, 2004), and MiniSec (Luk, Mezzour, Perrig, &

Gilgor, 2007). Protocols were also developed for authenticating broadcast messages

including TESLA (Perrig, Canetti, Tygar, & Song, 2002), µTESLA (Fan, Chen, &

Eltoweissy, 2005), and (J. Zhang, Yu, & Liu, 2009). These used global network

keys which are undesirable as, if stolen, the whole network would be compromised.

Later works began to address the need for pairwise keys, initially using symmetric

keys, first using pre-distribution, and later using key agreement methods. At the

same time, with the growing use of Public Key Cryptographic (PKC) algorithms for

securing communications in computer networks, these PKC algorithms began to be

investigated for use in low resourced devices as well. As PKC techniques require

additional mechanisms for authenticating the public keys, more recent works started to

use Identity-Based Cryptographic (IBC) schemes. This chapter focusses on work in

authenticated pairwise key establishment schemes for sensor networks.

14

CHAPTER 2. LITERATURE REVIEW 15

Figure 2.1: Classification of Authenticated Key Establishment Schemes

Key establishment schemes enable pairs of nodes to share a common pairwise key

when they need to send encrypted messages to each other. Several ways to classify key

establishment schemes have been observed in the literature as the subject has developed.

Some are based on the type of cryptographic algorithms used, whether the participation

of a third party is required, etc. The classification used in (Paar & Pelzl, 2010) p. 331,

divides them into two main methods: key transport methods and key agreement methods.

In key transport methods, one party, the TA, generates and distributes all the secret keys

to the nodes. On the other hand, in key agreement methods, the parties jointly generate

their secret pairwise key. For authentication, the TA is required to provide certificates,

signed public keys, authentication keys, or the keying material for the nodes to compute

their secret pairwise keys. The cryptographic system may be based on symmetric key or

public key cryptosystems. The classification used in this thesis is shown in Fig. (2.1).

2.2 Key Transport Schemes

Most of the symmetric key establishment schemes are key transport schemes. The

computations can involve hash functions to protect the keys or to derive keys from

CHAPTER 2. LITERATURE REVIEW 16

keying material provided by the TA. The TA can also provide all the pairwise keys

that are needed. The nodes obtain their pairwise keys using one of three methods:

pre-distribution, probabilistic, or key distribution centres.

2.2.1 Pre-distribution Schemes

The key pre-distribution method is one of the simplest methods of distributing pairwise

keys if the number of nodes is small. The TA generates all the pairwise keys that are

needed. If the number of nodes is n, there are n(n−1)
2

pairwise keys. Each node is

provided with (n− 1) keys so that it is able to share a common key with every other

node. The scheme is very easy to implement requiring just lookup operations. However,

the memory requirement increases proportionally with the network size. Also, new

nodes cannot be added since the nodes already deployed do not have the new keys.

LEAP In the Local Encryption and Authentication Protocol (LEAP) (Zhu, Setia, &

Jajodia, 2003) the nodes are provided with the global key for authentication. As nodes

are not provided with tamper proof mechanisms to keep the cost low, the nodes delete

the global authentication key within a time window after deployment, assuming that

it cannot be stolen by an adversary during this period. The nodes use the global key

called the “initial key”, KI to derive their own secret “master key”. For example, a node

with ID u derives its master key Ku = fKI (u), where f is a pseudo random number

generator. After deployment, it broadcasts u, its ID. The neighbour node responds with

its ID v, and an acknowledgement encrypted with its own master key Kv. Node u has

KI and can compute the neighbour’s master key Kv = fKI (v) which it uses to decrypt

the message containing the ID’s u, v. If successful, node u authenticates node v and

obtains the pairwise key Kuv = fKv(u). Node v computes Kuv in the same way. The

nodes u and v are now “secured” using their pairwise key.

While node u has the key KI , it can compute the master key of any node i using

CHAPTER 2. LITERATURE REVIEW 17

Ki = fKI (i) and their pairwise key Kui = fKi(i). Node i trusts that only a node

which has KI can compute its master and hence their pairwise key. After obtaining

the pairwise keys with its neighbours, the master keys are deleted. If the global key KI

is stolen, the entire network is compromised. To minimise this risk, the global initial

key is deleted within a certain time after deployment. To further minimise this risk, the

LEAP+ protocol broadcast the IDs of new nodes after the time window, for example

using µTESLA (Perrig, Canetti, et al., 2002) authenticated broadcast protocol, so that

nodes with these IDs are no longer valid.

The LEAP protocol is suitable for fixed topologies where a new node uses the

global authentication key to authenticate other nodes which are already authenticated

and secured on the network. After authenticating the secured nodes, it becomes a

secured node, joins the network and deletes the initial key. After this, it can only be

authenticated by a newly deployed node, but not by nodes which are already secured in

the network since it no longer has the initial key KI if it moves to another part of the

network space. It is not suitable for ad hoc mobile topologies.

Probabilistic Schemes For a fixed topology, it is not necessary for a node to store all

the possible pairwise keys since it has only a few immediate neighbours. Therefore,

prior to deployment, a node can be deployed with a small number of keys which

hopefully, would have a common key with the neighbour’s pool. This was pioneered

in the scheme by (Eschenauer & Gligor, 2002) where nodes are given subsets of keys

from the global key pool. After deployment, pairs of nodes run a protocol to discover

their shared keys to establish secure links. If a pair of nodes does not have a shared

key, they may still be able to establish a secure link using secured mutual intermediary

nodes. If one node becomes compromised and its keys stolen, only part of the network

is affected.

To improve on the probability of pairs of nodes sharing keys in their key pool, the

CHAPTER 2. LITERATURE REVIEW 18

scheme in (Camtepe, Seyit Ahmet and Yener, Bülent, 2007) used combinatorial block

design theory to build the key distribution scheme. It is deterministic and also includes

probabilistic extensions. Each sensor node has a key-chain of keys selected from a

pool. The nodes use this to discover their common keys, and if there are no shared keys,

intermediary nodes are used to help establish secure links.

Leighton-Macali’s Scheme

In this scheme (Leighton & Micali, 1994), the TA provides all the nodes with a secret key.

It computes the hash of all the pairs of secret keys, and stores them in a database. This

database can be public and if the hash algorithm is strong, an adversary cannot obtain

the keys. A node is able to compute a shared key with another node by using its secret

key with the appropriate entry in the database. In this way a node only needs to store its

secret key if it has access to the database. In the scheme the TA uses two secret master

keys, K and K ′, to create two private keys for each node by hashing its master key with

the node’s ID. For example for node i, its keys are Ki = h(K, i), and the authentication

key K ′i = h(K ′, i). It also publishes two databases matrix, Pi,j = h(Ki, j)⊕ h(Kj, i),

andAi,j = h(K ′i, h(Kj, i)). A node i can derive a pairwise secret with node j by looking

up the database and computing Ki,j = Pi,j ⊕ h(Ki, j) = h(Kj, i). Node j can also

compute Ki,j = h(Kj, i).

For authentication, node i checks that h(K ′i, Ki,j) = Ai,j and verifies the authenticity

of the key Ki,j . Thus a node can derive an authentic pairwise secret with another node

by accessing the public databases, Pi,j and Ai,j . Alternatively, each node i stores the ith

row of these matrices which has n− 1 entries. This would require a large amount of

memory if there is a large number of nodes. This scheme is, in effect, a method of

distributing all the possible pairwise keys using a publicly available database.

The security of the scheme depends on the strength of the one-way hash functions.

It is very efficient and requires simple computations. It is also very scalable and to add

CHAPTER 2. LITERATURE REVIEW 19

new nodes, only the databases need to be updated. The main drawback is that the public

databases must be accessible for full connectivity which is difficult for ad hoc networks.

This may be mitigated by installing the databases in trusted key-server nodes distributed

throughout the network. Alternatively, each node can store its own copy of the public

key database but this would need a large memory and cannot accommodate new nodes.

The probabilistic idea from Eschenauer and Gilgor was also used in (M. Liu et al.,

2009) where the nodes were preloaded with some of the public key databases. In

addition, key-server nodes were distributed throughout the network to provide the keys

if they were not in the node’s memory.

PIKE

In the peer intermediaries for key establishment scheme (PIKE) (Chan & Perrig, 2005) ,

the basic idea is that the sensor nodes are placed in a virtual square grid. Each node at

(x, y) has pairwise keys with the other nodes in the same row and column. Nodes then

need to store a total of only 2(
√
n− 1) keys. If a node needs to obtain a pairwise key

with some other node that does not lie on the same row or column, it needs to find an

intermediary node which lies on the intersection of their coordinates. If this intermediary

is contactable by both nodes, i.e. also located in their physical vicinity, it can be used to

authenticate and establish their pairwise keys. If not, another intermediary needs to be

found. This may not be possible in mobile ad hoc networks. Key establishment would

also involve additional communications through the intermediary nodes. The scheme

can be extended to three or more dimensions to reduce the amount of communications

needed to find a shared intermediary.

CHAPTER 2. LITERATURE REVIEW 20

2.2.2 Key Distribution Centers

In this method, a central entity called the Key Distribution Center (KDC) is responsible

for providing the pairwise keys to the nodes. When a node wishes to communicate with

another node, it contacts the KDC which, after authenticating the node, will generate

and provide the required pairwise key. To authenticate itself to the KDC, each node is

provided with a secret key shared with the KDC. In this way, a node needs to store only

one key and still be able to communicate with any other node using its KDC provided

pairwise key. This approach is used in the Kerberos protocol (Steiner, Neuman, &

Schiller, 1988) widely used in computer networks.

Key Distribution Centres (KDC) is of limited use to ad hoc mobile WSN as the

KDC has to be reachable at all times and there is a concentration of traffic in the

intermediate nodes close to the KDC. In the Zigbee protocol (ZigBee, 2005) there is

provision for the Trust Centre (TC) to act like the KDC for the nodes in the cluster.

There is hardly any other literature on KDC in WSN, except in a comparison between

using a lightweight version of Kerberos against the ECDH/ECMQV (Grosschadl et al.,

2007) key agreement method. Here, while the energy used in the Kerberos protocol

is comparatively very low if the KDC is an immediate neighbour, using only about

47.6 mJ compared to the ECMQV’s 84.6 kJ, most of the energy is spent in the radio

communications. If the number of intermediary nodes is more than 2 as would be the

case of large networks, then ECMQV is more efficient. In ad hoc mobile networks, this

scheme is of limited use due to the requirement for the trusted centre to be online and

reachable at all times.

CHAPTER 2. LITERATURE REVIEW 21

2.3 Key Agreement Schemes

These schemes enable a pair of nodes to compute their pairwise keys after obtaining

some public information about their counterparts. Key agreement schemes are most

useful for mobile ad hoc networks. Here, pairs of nodes compute a common secret key

without the participation of a third party. In schemes with authentication, the Trusted

Authority is only needed to compute and pre-install the keying material in each node

prior to deployment. The keying material is unique to each node and if a node is

compromised, the impact on the network is limited. The key agreement process begins

with the nodes exchanging some keying material (called “public key”) over the insecure

channel. Any other node is able to intercept and read the public key. Each node then

uses the counterpart’s public key with its own secret keying material (called “private

key”) to derive a common secret key. An adversary, having monitored the exchanges,

must not be able to compute the common secret key.

Two classes of key agreement schemes are available: one is based on asymmetric

key cryptographic, or commonly known as Public Key Cryptography (PKC), and the

other is based on symmetric key cryptographic methods.

2.3.1 Public Key Cryptographic Schemes

Key agreement schemes using Public Key Cryptography (PKC) primitives such as the

Diffie-Hellman (Diffie & Hellman, 1976) and Shamir & Adleman (RSA)(Rivest et al.,

1978) algorithms are already widely used in computer networks. The security of these

schemes is based on the intractability of known mathematical problems such as the

factorisation of large integers and the Discrete Logarithm Problem (DLP) (Paar & Pelzl,

2010) p. 217. Consequently, to attain the required security strength, they need to use

large integers of 1024 bits or larger for operations over the prime field. With Elliptic

Curve Cryptography (ECC), 160 bits or more are required (Barker et al., 2012). There

CHAPTER 2. LITERATURE REVIEW 22

has been much interest in adapting PKC schemes for sensor networks. The main

challenges are the cost of the complex computations, memory, and energy resources

required when implemented in low resourced sensor devices.

Diffle-Hellman Algorithm In the Diffie-Hellman algorithm, a pair of nodes A and

B are able to compute a secret key after obtaining each other’s public key. To do this,

they use known public parameters; the generator g and the cyclic group of prime order

p, Z∗p. For example, node A selects a random secret number a ∈ Z∗q , computes its public

key ga (mod p) and sends it to node B over the insecure channel. Similarly B selects a

random b ∈ Z∗q , computes gb (mod p) and sends it toA. NodeA computesKAB = (ga)b

(mod p), and node B computes KBA = (gb)a(mod p) = KAB . It is assumed that there

is no efficient algorithm for an eavesdropping adversary, knowing ga and gb to compute

gab (the Computational Diffie-Hellman (CDH) problem). In addition, it is assumed that

given ga and gb, for a, b, c ∈ Z∗q there is no efficient algorithm to distinguish between

the triplets 〈ga, gb, gab〉 and 〈ga, gb, gc〉 (Boneh, 1998).

The basic scheme is vulnerable to the man-in-the-middle (MITM) attack. Any node

is able to generate its own public-private key pair. An adversary E can interpose itself

between A and B. It can impersonate B and forward its own public key KE to A. If

A accepts that public key KE belongs to B and proceeds to compute the pairwise

key, it will obtain the pairwise key KAE with E instead of B. The adversary similarly

impersonates A by sending its public key KE which B will use to compute the

pairwise key KBE. The adversary can intercept and decrypt messages between A and

B and forward them without their knowledge. To mitigate this MITM attack, some

other mechanism must be used so that the nodes can authenticate each other’s public

keys.

CHAPTER 2. LITERATURE REVIEW 23

Symmetric Key RSA and DH Elliptic Curve
80 1024 160

112 2048 224
128 3072 256

Table 2.1: NIST Recommended Key Sizes in bits

El Gamal Algorithm The El Gamal algorithm (Elgamal, 1985) is based on the DH

method, but allows users to encrypt messages using their public keys. The node A

chooses a large prime pA, an integer αA modulo pA, and a random private key x. It

computes βA = αxA (mod pA), and publishes the public key 〈pA, αA, βA〉. Another node

B can encrypt a message M to A as follows:

Node B chooses a random secret k, computes r ≡ αkA (mod pA), and t = βkAM

(mod pA) and discards k. B sends 〈r, t〉 to A who decrypts, tr−x ≡ βkAM(αkA)−x ≡

(αxA)kM(αkA)−x ≡M (mod pA).

As in the DH scheme since any node can generate its own public and private keys,

it is open to the MITM attack and another mechanism is required to authenticate the

public keys.

ECDH For WSN, algorithms based on Elliptic Curve Cryptographic (ECC) are

attractive due to it having less demand on resources compared to other PKC methods.

It is considered that ECC using 160 bits is comparable in security to RSA and DH

using 1024 bits according to (National Security Agency, 2009), see Table 2.1. Most

later work on PKC in WSN uses ECC algorithms as it is more efficient for the same

security strength. Many researches including (H. Wang & Li, 2006),(Ugus et al.,

2007),(Grosschadl et al., 2007) and (Lederer et al., 2009) are aimed at making the ECC

computations more efficient using various optimization techniques.

CHAPTER 2. LITERATURE REVIEW 24

RSA Methods The Rivest, Shamir & Adleman (RSA) (Rivest et al., 1978) algorithm

can be used to transport a secret key to another node over an insecure channel. The

security strength is based on the difficulty of factoring a large number into two large

primes. It works as follows: The node A chooses two distinct primes p and q, computes

n = pq and then computes the totient function φ(n) = (p − 1)(q − 1). The primes

p and q are then deleted. It then selects a private key e and a public key d such that

d · e ≡ 1 (mod φ(n)) and e and φ(n) are relatively prime, i.e. gcd(e, φ(n)) = 1. The

public key 〈e, n〉 is published.

Euler’s totient function φ is the number of integers in the ring Zm, i.e. the set of

integers {0, 1, . . . ,m− 1}, that is relatively prime to m.

Another node is able to encrypt a message containing a secret key M to A by

computing and sending the cipher text C = M e (mod n). Node A is able to decrypt the

message by computing Cd (mod n) ≡ (M e)d ≡ Mkφ(n)+1 (mod n), where k is some

integer. Using the identity due to Euler and Fermat, Mφ(n) ≡ 1 (mod n), Cd ≡M and

node B obtains the secret key in the message.

The scheme is also vulnerable to the MITM attack as any node can generate its

own private and public keys. An additional mechanism to authenticate the public key

is required, such as having the public key “signed” by the Trusted Authority. In this

case, the TA has a private key dT , and installs the node with the public key 〈eT , pT 〉.

It obtains A’s public key 〈e, n〉 and encrypts e in message M = edT . When node B

wishes to encrypt a secret key to A, it first obtains M and computes M eT to obtain the

public key e. Then using this public key authenticated by the TA, node B uses e to

encrypt a secret key to A.

Challenges for Sensor Nodes

The PKC algorithms involve complex mathematical operations including exponentia-

tions of integers 1024 bits or larger over the finite field, or point operations involving

CHAPTER 2. LITERATURE REVIEW 25

160 bits or larger on elliptic curves. The main challenges for sensor networks are the

limited resources available in the sensor nodes. The low computational power often

means the computations take a considerable amount of time and energy, not only for

encryption and decryption but also for verification of the counterpart’s public keys.

For instance, in (Gura, Patel, Wander, Eberle, & Shantz, 2004) the RSA-1024 imple-

mentation in an 8 MHz ATmega128 processor took 0.43 seconds for the public key

operations (signature verification) while the slower private key operations took 10.99

seconds. The work also compared between RSA and ECC algorithms using 160 bits for

ECC equivalent to RSA-1024. They showed that for ECC-160, private-key operations

(signature generation) took 0.81 seconds which is about 10 times faster than RSA-1024.

For public-key operations, ECC-160 took 0.81 seconds, about two times slower than

RSA-1024. The code sizes were also substantially larger for RSA-1024 requiring 1,073

bytes (public key), 6,292 bytes (private key) compared to ECC-160 requiring 3,682

bytes.

Implementation Using RSA, TinyPK In the key agreement scheme using RSA-

1024, TinyPK (Watro et al., 2004), nodes used the RSA techniques to authenticate each

other and derive their session key. The memory requirements were reported to be 12.4

KB ROM and 1.167 KB RAM in the MICA2 platform. The public key operation took

14.5 seconds. There was no reported execution time for the private-key operations but

they reported that it was extrapolated to be tens of minutes.

TinyECC A suite of code, TinyECC (A. Liu & Ning, 2008) (M. Liu et al., 2009) was

developed for use with TinyOS (Levis et al., 2005), the operating system developed

for sensor devices. The key agreement was done using elliptic curve Diffie-Hellman

(ECDH) and public key authentication using the Elliptic Curve Digital Signature Al-

gorithm (ECDSA). The TinyECC library can be configured for optimisations for large

CHAPTER 2. LITERATURE REVIEW 26

integer operations, and optimizations for ECC point operations. Their results on the

MICAz mote with all optimisations turned on, showed that the whole process including

signature verification and ECDH key agreement can take a total of 6.2 seconds exclud-

ing initialisation times of about 5.2 seconds. The RAM required was in the order of

1.5 KB. With all optimizations turned off, it took more than 120 seconds for signing,

verification and key establishment using ECDH.

Public Key Authentication A fundamental problem for PKC is that the public keys

must be authenticated using a common trusted entity. This can be done by having the

TA provide a certificate with the signed public key.

Transmission of the signatures or certificates involves a large number of bits con-

suming a substantial amount of energy. For example in the ECHD-ECDSA protocol

implemented in (de Meulenaer, Gosset, Standaert, & Pereira, 2008) 2,208 bits were

communicated in the process and the radio communications energy made up 17% of

the total 236 mJ of energy used in the whole key agreement process.

Preloaded Public Keys To side-step this verification process, the public key of the

counterpart node may be preloaded. This approach is taken in the elliptic curve Menezes

Qu Vanstone (ECMQV) algorithm (Law, Menezes, Qu, Solinas, & Vanstone, 2003)

where nodes have been pre-installed with the neighbour’s static public key signed by

the TA. This is used to authenticate itself to the neighbour and to compute a secret key

after exchanging an ephemeral public key. However, this method is not practical for

mobile ad hoc networks as the topology is not known prior.

Merkle Tree for Public Key Authentication If the node is preloaded by the TA with

the public keys of other nodes, then there is no need to separately authenticate them.

Alternatively, to save on storing all the public keys, in (Du, Wang, & Ning, 2005),

CHAPTER 2. LITERATURE REVIEW 27

the nodes use a hash tree, called a Merkle tree to authenticate the neighbour’s public

key. Prior to deployment, a node is placed on the Merkle tree and is given an ID, its

public key, and “proofs” which are hash values of its sibling nodes, its parent’s siblings,

grandparent’s siblings, etc., up to, but not including the root. It also has the root’s hash.

For a node A to authenticate its public key to node B, it sends to B its ID, its public

key and proofs of the nodes along the path to the root. Node B would compute the

hash of IDA and the public key, and all the proofs along the way. Finally it will obtain

the root hash and if this compares correctly to its stored root hash, the public key is

accepted. In this way each node only needs to store a number of hashes equal to the

number of levels of the tree, the root hash, and its own ID and public key. If there are

n nodes, the number of levels is log2(n). In (Du et al., 2005), the amount of storage

and communications was further reduced by using pre-deployment knowledge of the

network topology to trim the Merkle tree into many smaller trees.

2.3.2 Identity-Based Cryptography

The major hurdle of public key authentication in PKC techniques can be circumvented

by using Identity-Based Cryptography (IBC). The idea was first conceptualised by

Shamir (Shamir, 1985) in which node A is able to encrypt a message to node B whose

public key is formed from its ID such as its email address, node name, etc. The sender

node A, using the TA’s “public parameters” (similar to public key) and B’s ID would

compute B’s public key and use it to encrypt messages to B. Only B can decrypt

the message using its own matching private key provided by the TA. The TA does

not participate in the exchange after providing the private keys and its own public

parameters to the nodes. This is an ideal mechanism for ad hoc mobile networks,

also argued for in (L. B. Oliveira et al., 2007), and most works using PKC for sensor

networks are actively pursuing this approach. Interestingly, in (A. J. Menezes et al.,

CHAPTER 2. LITERATURE REVIEW 28

2001), p. 538, it was pointed out that “Blom was apparently the first to propose an

identity-based (or more accurately, index-based) key establishment protocol”. However,

identity-based cryptosystems currently refer to those using PKC algorithms.

Boneh and Franklin Schemes

A concrete implementation of such a scheme was proposed by Boneh and Franklin

(Boneh & Franklin, 2001) using bilinear mapping based on the Weil Pairing. An

implementation was done by Cheng et al. (Cheng, Yang, Wang, & Huang, 2006).

TinyPBC The implementation called TinyTate (L. B. Oliveira et al., 2007) and later

developed into TinyPBC used the Tate Pairing (L. Oliveira, Scott, Lopez, & Dahab,

2008) over supersingular binary curves. This implementation was able to compute the

pairing, the most expensive operation in PBC, in only 5.5 seconds using the ATmega128

processor requiring 47.9 KB ROM, and 368 bytes of RAM of which 2.867 KB was in

the stack.

This was followed by the work in (Szczechowiak & Collier, 2009), also based on the

Tate pairing implemented on 8-bit sensor devices like the MICA2 using the ATMega128

processor. In this work, the pairing took 2.66 second. The required ROM was 47.41

KB, and RAM was 3.17 KB, using up almost all the mote’s RAM, although most were

in stack memory and can be reclaimed after the computation completes.

A later work (L. B. Oliveira et al., 2011) implemented in the ATmega128L processor

improved the pairing time to just 1.9 seconds. The memory required was 37.9 KB ROM,

and 3.6 KB RAM of which 3.1 KB were in the stack. The security strength was only 80

bits which is now considered too small according to NIST (Barker et al., 2012).

ID-Based DH The method in (Fiore & Gennaro, 2010) is an authenticated protocol

that does not require bilinear maps but uses the Diffle-Hellman protocol in a manner

CHAPTER 2. LITERATURE REVIEW 29

inspired by the Menezes-Qu-Vanstone (MQV) (Law et al., 2003). For authentication,

it uses the Schnorr’s signature (Schnorr, n.d.) created by the TA from the ID. The

operations are over elliptic curves with equivalent 128 bit security strength. To initiate

the key agreement process, only 512 bits need to be exchanged.

Security of IBC Schemes

The security of the bilinear pairing schemes depends on the hardness of the Discrete

Logarithm Problem (DLP) in Fqk and k must be large enough, at least 1024 bits, to

achieve 80-bit security strength. For 128 bit security, 1536 bits would be required. In

(Szczechowiak & Collier, 2009), it is believed that the security was roughly the same

as that of the DLP over F2m where m ≈ 1084. Pairing based IBC schemes work with

1024 bit numbers for 80-bit security level (equivalent to RSA-1024).

To date, pairing based cryptography of 923 bits was reportedly broken in 148.2 days

using 21 servers (252 cores) (Hayashi, Shimoyama, Shinohara, & Takagi, 2012) even

though researchers have expressed that such cryptographic systems greater than 900 bit

will take thousands of years to crack. As more research into efficient procedures and

better, faster and more computing resources are available, these PKC methods would

require a larger number of bits to remain secure.

2.3.3 Symmetric-key Key Agreement Schemes

Another type of key agreement schemes, usually referred to as symmetric-key schemes,

requires pairs of nodes to obtain some public information from their counterparts to

compute a pairwise key. The public information is often referred to as their “public keys”

even though a more accurate term may be “public keying material”. These are often

just an integer which serves as the node’s ID. It is tempting to call them identity-based

schemes but as these do not use PKC techniques, this is not usually done in the literature.

CHAPTER 2. LITERATURE REVIEW 30

These symmetric schemes use simple modulo arithmetic operations without the need

for large integers and exponentiations. Consequently, they are computationally less

intensive and are fast and efficient. However, the main limitation is the size of the

keying material which increases as the network size. Only two main schemes were

reported: Blom’s scheme and Blundo’s polynomial scheme. In all these schemes, the

TA generates all the keys for the nodes. Each set of keys consists of two parts, one

part is secret and unique (private), and the other can be exchanged with another node

publicly over the insecure channel. The nodes use their own private keys with the

counterpart’s public keys to compute their common pairwise keys.

Blom’s Scheme

The earliest scheme was by Blom (Blom, 1983), (Blom, 1984) though its limitation for

practical application was also quickly pointed out. The Blom’s scheme uses a master

key which is a symmetric (m×m) matrix. It is unconditionally secure if less than m

nodes are captured (Stinson, 2006) pp. 406. Assuming that nodes are not tamper proof,

the size of the network is then limited in that a large m requires proportionally large

memory for storing the private keys. One method to overcome this in (Du, Han, Deng,

& Varshney, 2003) used multiple small size key spaces. Using the probabilistic idea

similar to Eschenauer-Gilgor’s, the scheme enables pairs of nodes sharing common key

spaces to form pairwise links using one of the common key spaces. In this scheme, the

aim is to achieve full connectivity, but not necessarily complete connectivity like a full

mesh.

An implementation using this scheme was the multi-party conference key agreement

protocol in (H.-S. Lee, Lee, & Lee, 2003). This modification to the scheme allows

multiple nodes to derive a common secret key. In another, the modified Blom’s scheme

in (J. Lee & Stinson, 2005) used multiple key spaces in the network graph for better

resiliency against node capture. It improves the resilience as there is a smaller probability

CHAPTER 2. LITERATURE REVIEW 31

of capturing all the required nodes from the same key space.

The number of nodes in a fully secure network can be increased by using multiple

key spaces. In (Du et al., 2003), ω key spaces are generated and each node is given

a sub-set of τ randomly chosen keys from ω. After deployment, nodes discover their

common keys and use the Blom’s scheme to form pairwise keys. With more key spaces,

more storage is required. Each node would need m× τ × b bits storage for the private

vectors. The scheme uses a similar idea to the probabilistic scheme of Eschenaeur-

Gligor (Eschenauer & Gligor, 2002) where nodes are given a random set of keys from

a global key space. In these schemes the aim is to achieve full connectivity, but not

necessarily complete connectivity like a full mesh. A similar approach also uses Blom’s

scheme with multiple key spaces to improve resistance to the Sybil attack (S.-J. Wang

et al., 2007).

In (Chen, Yao, & Wen, 2008), a scheme for a clustered topology was proposed.

Here, the cluster-heads implement the Blom’s scheme to derive pairwise keys among

themselves. Non cluster-head nodes do not implement the Blom’s scheme. Prior to

deployment, the base station computes the pairwise keys of this node with a certain

number of associated cluster-heads. These are then combined into a secret key Ki

and stored in the node, together with the identities (IDs) of the associated cluster-

heads. When a node needs to establish a secure link with a physical cluster-head, it

sends its own ID and the IDs of its associated cluster-heads. The physical cluster-head

forwards the node’s ID to the associated cluster-heads to compute the pairwise keys

using Blom’s scheme and thereby derives the secret key. In this way, non-cluster head

nodes store minimum keying material and do not need to perform any key computation.

Instead, these are delegated to the cluster heads which carry the additional load of

communicating with other cluster heads to derive the key with a non cluster-head node.

The network size would still be limited to the (m − 1) cluster head nodes for a fully

secure network. Since cluster-heads establish pairwise keys among themselves using

CHAPTER 2. LITERATURE REVIEW 32

the basic Blom’s scheme, the key size and memory requirements, and the number of

cluster heads would still be limited by the original scheme.

A scheme in which the private vectors of the nodes can be updated was proposed in

(Zhou & He, 2009). In this scheme, the modified Blom’s scheme used hashed values

of the prime seeds and the nodes have private vectors which are hashes of the original

private vectors. The implementation used a protocol for nodes to update their private

vectors and pairwise keys.

In (Chien, Chen, & Shen, 2008), a mixture of the Blom’s scheme with the KDC

scheme is used. The Blom’s scheme is protected by deleting the private keys once

the pairwise keys are established with the neighbours. To cater for a new node i

joining the network, in addition to the public and private keys for the Blom’s scheme,

it is provided with a global secret random number Rs (effectively a global secret key)

and another secret key shared with the base station only, KBS,i. If node A wishes

to establish a pairwise key with node B, it uses Rs to encrypt a random number Ra

and sends it to node B, and vice versa. After obtaining the pairwise key Ka,b using

the Blom’s scheme, the random numbers are used with it to obtain their session key

EKa,b = H(KAB ·Ra ·Rb). Once this is completed, all the keying material except for

the pairwise key EKa,b and the secret key shared with the base station, for example

KBS,a in node A, are erased. If the node is captured, the private keys are unavailable

and the Blom’s scheme cannot be attacked. New nodes added to the network do not

implement Blom’s scheme to establish pairwise keys with existing nodes. Instead, a

new node u is deployed with two secret keys Ku and KBS,u which the neighbour node

uses to authenticate node u with the base station, and then establishes their pairwise key.

The key sizes obtained are not reported and it would require large integer operations to

obtain large keys.

The implementation of Blom’s scheme in (Yu et al., 2010), also uses random

perturbations. Here, small constrained random perturbations are added to the private

CHAPTER 2. LITERATURE REVIEW 33

keys to break the direct connection to the master key, making it more difficult to

break. The pairwise keys computed are identical after the effect of the small random

perturbations are removed. To obtain large pairwise keys, multiple separate instances ξ

of the Blom’s scheme are run to obtain ξ pairwise keys and concatenated together to

obtain a large pairwise key of 128 bits.

Blundo’s Polynomial Scheme

The Blundo’s scheme (Blundo et al., 1995), inspired by the Blom’s scheme, enables

a group of nodes to derive a common “conference” key. The Blom’s scheme is a

special case where the the group size is 2. In this scheme, the TA generates a symmetric

polynomial in t-variables of degree k. Each user with ID i is given a share of the

polynomial evaluated at i. If a group of users with IDs (i1, i2, .., it) want to form a

conference key, each user evaluates the polynomial using the counterparts’ IDs and

obtains a common key. This scheme is unconditionally secure if less than k users

collude. The Blundo’s scheme for two parties uses symmetric bi-variate polynomials

and is equivalent to the Blom’s scheme.

(D. Liu, Ning, & Li, 2003) implemented the Blundo’s scheme using a bi-variate

polynomial combined with a probabilistic method inspired by the approaches used in

(Eschenauer & Gligor, 2002) and (Chan, Perrig, & Song, 2003). The TA generates a

pool of bi-variate polynomials and assigns each node a subset from the pool. Since

the possibility of pairs of nodes not sharing any common set can occur, the scheme

has an additional step of using other mutual intermediary nodes to form pairwise keys.

The key size is still limited to the word size of the system in this case using 64 bits in

MICAz motes.

A similar implementation of the Blundo scheme was done in (Zheng & Dai, 2008),

combined with a probabilistic approach similar to the q-composite scheme in (Chan

& Perrig, 2005) with each node having a pool of polynomials in order to increase the

CHAPTER 2. LITERATURE REVIEW 34

resilience. This scheme can achieve almost 100% connectivity with reduced storage

requirement.

A different approach in (W. Zhang et al., 2007), added random perturbations to

the share of the bivariate polynomial evaluated using the node’s ID. This makes it

harder to break the symmetric polynomials if these shares are captured. To obtain large

pairwise keys, they use multiple separate instances of symmetric polynomials with

the node’s ID to obtain segments of pairwise keys which are combined to form large

pairwise keys. This scheme was able to obtain 80 bits keys efficiently in a time of about

130 milliseconds, requiring about 15 KB ROM, and 0.33 KB RAM in MICA2 with

ATmega128L processor, 128 KB flash memory.

2.4 Summary

Pairwise key establishment can be achieved by either the key transport or key agreement

methods. The key transport methods are not suitable for mobile hoc networks as they

would need a large memory to store all the keys. Alternatively, using key servers or key

databases requires connectivity which may not be available. It is also possible to use

secured intermediary nodes to help with key establishment but full connectivity is not

assured. Key agreement methods are most suitable for ad hoc mobile networks which

have no pre-determined network topology, and there is no need for a third party to take

part in the pairwise key derivation process.

Many key agreement schemes based on public key cryptographic algorithms are

already widely used for computer networks. These schemes can be used for very

large networks without the nodes requiring more storage. The algorithms use complex

mathematical operations on large integers. A lot of work has been done to adapt

them for use in sensor devices but the computations require substantial computing,

memory, energy resources, and take considerable time often measured in minutes. The

CHAPTER 2. LITERATURE REVIEW 35

public keys need to be authenticated requiring an exchange of a substantial number of

bits, consuming energy for radio transmission. Another approach, the identity-based

schemes based on bilinear pairing have also been studied for sensor networks as they

have implicit authentication. It is also based on public key cryptographic algorithms.

Currently the best identity-based scheme using bilinear pairing takes 1.9 seconds,

achieving 80-bit security strength. The security of these PKC schemes are based on

complex operations on large integers and their suitability for low resourced devices

would be a continual challenge since the underlying security basis; the hardness of the

DLP and the factorisation of large numbers, will continually be challenged with better

and faster algorithms and hardware. Operations using larger and larger integer sizes

will be required to remain secure.

Key agreement schemes using symmetric key cryptography are often not considered

identity-based even though they are “index-based”. These include the schemes by

Blom and Blundo. They use simple mathematical modulo multiplication and addition

operations. However they are not easily scalable for large networks. If a certain number

of nodes, the capture threshold, is compromised, the entire scheme is broken. To

increase the capture threshold, the size of the private keys also increases proportionally.

The Blom’s method including Blundo’s scheme (which is in fact identical to the Blom’s

scheme for the two-party case), is useful for sensor networks if the limitation due to the

capture threshold can be overcome. Some attempts have been made in this direction

using multiple key-spaces and random perturbations to make it more difficult for the

adversary to use the captured private keys to derive the master keys. Some schemes also

use multiple instances of the Blom’s method to obtain a large pairwise key size. What

has not been studied is the possibility of using multiple keys, not separately, but in a

single instance with permutations over a small prime field, so that the connections of

the private keys to the master keys and public keys are broken and cannot be recovered

easily. This will render the captured keys unusable for attacking the scheme, allowing

CHAPTER 2. LITERATURE REVIEW 36

it to break free of the capture threshold without the proportional increase of storage

requirements in the nodes.

Chapter 3

The BYKa Scheme

3.1 Introduction

The Blom’s scheme has many valuable features which are useful for low resourced

sensor devices. However it has severe limitations which makes it impractical for large

scale use. This chapter describes the original scheme pointing out its strengths and

weaknesses and the modification to the scheme to overcome these limitations by using

multiple keys in permutations with operations over a small finite field.

3.2 The Blom’s Key Agreement Scheme

The Blom’s scheme (Blom, 1983) (Blom, 1984) is a symmetric key scheme in which the

nodes store an optimal amount of keying information so that it is unconditionally secure

in the information-theoretic sense. An adversary with unlimited computing resources

cannot break the scheme if the amount of captured keying material, corresponding to

the number of compromised nodes, does not exceed a certain amount. There is simply

insufficient information, and the success of breaking it is as good as any random chance.

The attractiveness of the scheme lies in the simplicity of the computations and the

37

CHAPTER 3. THE BYKA SCHEME 38

ability to authenticate each other.

Setup The Trusted Authority is responsible for all the keys. It generates its own secret

master key M which is a random (m×m) symmetric matrix over a finite field Fp. It

assigns to each node one unique public key which is a (m × 1) column vector. For

example, for nodes A and B, the public keys are VA and VB respectively. Using each

node’s public key together with the Trusted Authority’s master key, the private keys for

the nodes are generated as follows:

Node A: KA = VT
A ·M (mod p)

Node B: KB = VT
B ·M (mod p)

Prior to deployment, the TA transfers the private keys to the nodes using a secure

channel such as a direct cable connection. This procedure also allows the TA to

physically identify and authenticate the node.

Pairwise Key Derivation After deployment, if a pair of nodes need to compute their

pairwise key KAB, they first obtain each other’s public keys. These can be transmitted

in plain text over the insecure channel. Using their counterpart’s public keys with their

own private keys, they compute a common pairwise key, KAB . The process is shown as

follows.

CHAPTER 3. THE BYKA SCHEME 39

Figure 3.1: Blom’s Key Agreement Scheme

Node A Node B
VA−−−−−−→

KBA = KB · VA (mod p)
= (VT

B ·M) · VA (mod p)
VB←−−−−−−

KAB = KA · VB (mod p)
= (VT

A ·M) · VB (mod p)

Blom’s Key Agreement Scheme

Correctness Node B computes the quantity (VT
B ·M) · VA (mod p). This is a (1×1)

scalar, and as the master key matrix M is symmetric, after transposing KBA in node B,

the two keys are identical.

Node B: KT
BA = (VT

B ·M · VA)T = VT
A ·MT · VB

= KAB (3.1)

3.2.1 Features of the Blom’s Scheme

The security of the Blom’s scheme is analysed in detail in §4.3. Here, the attractive

features for application in sensor networks are highlighted.

CHAPTER 3. THE BYKA SCHEME 40

Implicit Mutual Authentication

The common identical pairwise key KAB requires that both nodes have obtained their

private keys from the TA. While any node, for example a rogue node E can send its

public key VE to node A, from which node A can compute a key KAE , node E cannot

compute KEA without the private key KE = VT
E ·M, since M is unknown. Hence, if

node A can successfully decrypt a message encrypted with KAB, it can trust that the

node claiming to possess the public key VB also possesses the private key, which could

have only been generated by the TA. Of course, the key may have been stolen but

this is a separate issue which is considered later. In effect, all the private keys share a

common heritage which is the master key of the Trusted Authority. The nodes’ private

keys inherit their “genetic” material as a result of the computations using their public

keys with the master key M. There is implicit authentication as both parties contribute

their keying material to compute the pairwise key. This is unlike the DH scheme where

all the keying material is self generated in the nodes, or in the RSA scheme where only

one party’s public key and private key is used.

Immunity to the MITM attack

The Blom’s scheme is a non-interactive scheme in the same sense as in (Paar & Pelzl,

2010) p. 398, wherein the two parties only need to exchange their public keys which

are static and are public information. As there is implicit authentication, the process

completes without further exchange. An adversary has nothing to manipulate except to

send fictitious keys. The man-in-the-middle (MITM) attacker cannot succeed.

In the MITM attack, an adversary node E interposes itself between two nodes A

and B. It poses as A to B, and similarly, as B to A. If this is successful, it acts as an

intermediary between A and B, reading and modifying messages before forwarding

them. In the Blom’s scheme, if the attacker E forwards its own public key VE to node A

CHAPTER 3. THE BYKA SCHEME 41

impersonating node B, node A would compute the pairwise key KAE . Node E cannot

compute KEA as it does not have the private key for VE . If E forwards VB to node A,

and VA to node B, both nodes A and B can compute their pairwise key KAB, but this

cannot be obtained by node E. Messages encrypted between nodes A and B cannot be

read by E. In this way, the Blom’s scheme is immune to MITM attacks as both nodes

must use keying material from the TA to compute their pairwise key.

Simple Computation

The pairwise key computation algorithm uses m modulo multiplications and (m− 1)

additions and does not require large memory resources for RAM or the program code.

Unconditional Security

The system is said to be (m−1) secure, i.e., a coalition of (m−1) or less nodes pooling

their keying material together cannot derive the pairwise key of any other pair of nodes

(A. Menezes, van Oorschot, & Vanstone, 1996). By keeping the number of nodes

deployed to be < m, the system is said to be unconditionally secure in the information

theoretic sense since there is insufficient information to break the system. The scheme

has a capture threshold m.

3.2.2 Weaknesses of the Blom’s Scheme

The size of the pairwise secret key is the same as that of the elements of the master

key matrix, i.e. data size used which is log2(p) bits. It would be necessary to make p

sufficiently large to be of any practical use. The current NIST recommendations for use

with AES is at least 112 bits and the Blom’s scheme would need to implement large

integer operations. Sensor devices are capable of operations using 8,16, 32, and even

64 bits.

CHAPTER 3. THE BYKA SCHEME 42

To implement the scheme for large networks, the capture threshold m must be

sufficiently large. Consequently the private key storage requirement in each node

increases proportionally. The catastrophic failure that results if m or more nodes are

captured caused Blom to remark, “it would be nice to have systems that degrade more

gracefully but more research is needed” (Blom, 1983).

3.3 The BYka Scheme

Our scheme, called the Blom-Yang key agreement (BYka) scheme, uses the Blom’s

scheme (Blom, 1984) as the cryptographic primitive. It is modified by using multiple

master keys in the Trusted Authority. Each node is also assigned multiple public keys ,

and the operations are over a small prime field Fp, for example p = 31. All these keys

are used together in permutations to compute multiple private keys for the node. After

exchanging all their public keys, pairs of nodes compute their pairwise key using all the

permutations of the node’s private keys with the counterpart node’s public keys. Both

nodes would obtain a set of identical integers, not in the same order, which are used to

form the pairwise key of sizes up to hundreds of bits. The BYka scheme is described as

follows.

3.3.1 Base Station and Setup

The Trusted Authority is responsible for generating all the keys used in the network

using the keying parameters; the number of master keys N and size m, the number of

public keys η, the prime modulus for public key operations q, and the prime modulus

for all other key operations p. For example using N = 7, m = 16, η = 6, p = 31 and

q = 65521, it is possible to obtain pairwise keys of 128 bits for use in a network of

about 10,000 nodes. All the nodes have to obtain their keys from the Trusted Authority.

In this way, nodes have to first “touch base” with the Trusted Authority which also

CHAPTER 3. THE BYKA SCHEME 43

ensures that the nodes are authentic before deployment.

Master Keys

The TA first generates its own N secret master keys M1,M2, · · · ,MN , each one being

a random (m ×m) symmetric matrix M over the prime field Fp, where p is a small

prime number, typically p = 13, 17, 19, 23 or 31. It is assumed that the random number

generator is cryptographically secure and the random numbers are uniformly distributed

over [0, p− 1].

Public Key-set and Public Key ID

The TA assigns to each node η unique public keys called the public key-set. Each public

key-set consists of η (m×1) column vectors of the Vandermonde matrix over the field

Fq. To cater for a large number of nodes, q must be much larger than p, for example

q = 65521. As the elements of a column in the Vandermonde matrix are si−1 for

i = 1, · · · ,m, where s is called the “seed”, the node’s public key-set can be represented

by η seeds {s, · · · , s+ η − 1}. The seeds are consecutive and the smallest seed s is a

multiple of η. In this way, all the public key-sets are unique and no two nodes share

a common seed. The node’s public key-set can then be succinctly represented by the

smallest seed s which also serves as its public key ID, e.g. using η = 6, a node A with

public key IDA = 240 has public key seeds {240, 241, · · · , 245}. Given a node’s public

key ID, anyone knowing q can generate its public key-set as follows,

VT
i

=

[
1 s

i
s2
i
· · · sm−1

i

]
(mod q) (3.2)

where s
i

= ID + i− 1, for i = 1, · · · , η

When pairs of nodes exchange their public keys, they only need to transmit their

IDs consisting of a few bits, e.g. 16 bits. This is an important feature saving time and

CHAPTER 3. THE BYKA SCHEME 44

energy for the radio transmissions.

Private Key-set

The TA computes the “private keys” for each node using all the permutations of

their η public keys with the N master keys to obtain the node’s “private key-set”

S = {K11, · · · ,KηN}, where the private key Kij is computed as follows,

K
ij

= VT
i

Mj (mod p) (3.3)

for i = 1, · · · , η and j = 1, · · · , N

PPMka The private key Kij is computed from the ith public key Vi and the jth master

key Mj . We call the relationship of a private key with the public key and the master key

used to compute it, the “private-public-master-key association” (PPMka).

Definition 4 (PPMka) The private-public-master-key association (PPMka) specifies

the particular public key that was used with a particular master key to compute the

private key.

Prior to deployment, the TA transfers the private key-set to the node using a secure

connection and stores them in random order. Alternatively, the private key-set can be

first shuffled before being transferred to the node. If a node is compromised and the

private keys obtained, the adversary cannot tell from the storage location which public

keys and master keys were used to compute them.

Choice of Public Key Seeds

Key Aliasing The number of public key seeds must be large enough to accommodate

the network size. To do this, the public key operations are over a large field Fq, for

example, q = 65521 catering for about 10,000 nodes, but it can be much larger. As

CHAPTER 3. THE BYKA SCHEME 45

the private key operations are over a small field Fp, it is possible for multiple public

keys to map to the same private key, a phenomenon we call “key aliasing” described as

follows. Consider the private key Kk = VT
snMy where sn is the seed for the public key

Vn. Denoting the elements of My as Myij , and using Eqn. (3.2), the xth element of the

row vector Kk is,

Kkx =
m∑
i=1

si−1
n Myix (mod p)

= My1x + s1
nMy2x + · · ·+ sm−1

n Mymx (3.4)

For two nodes, say A and B, if any of their public key seeds are congruent, i.e.

sA ≡ sB (mod p), and for all i = 0, · · · ,m− 1, the elements si−1
A and si−1

B are smaller

than q, (the elements in the public key vectors do not “wrap round” q), then we have

si−1
A ≡ si−1

B (mod p) for all i. As a result, their private keys associated with the same

master key are identical since,

KAx = My1x + s1
AMy2x + · · ·+ sm−1

A Mymx (mod p) (3.5a)

KBx = My1x + s1
BMy2x + · · ·+ sm−1

B Mymx (mod p) = KAx (3.5b)

Master Key Leakage We also note in Eqn. (3.5), if a seed, sA ≡ 0 (mod p) and

rA ≡ si−1
A ≡ 0 (mod p) for all i, then KAu = My1u , i.e. the first row of the master

key My leaks out in the uth element of the private key KA. This can lead to other

vulnerabilities.

CHAPTER 3. THE BYKA SCHEME 46

Proposition 1 A seed sn is chosen such that,

for some w 6 m, sw−1
n > q

i.e. sw−1
n ≡ rn (mod q)

and rn 6≡

 0 (mod p), or

sn (mod p)


(3.6)

3.3.2 Bootstrapping

The Trusted Authority installs into each node the “keying material” comprising the

global keying parameters {m,N, η, p, q}, and the node’s individual public key ID, and

the private key-set. All these are static and can be stored in the ROM or flash memory.

As noted before, the private keys are stored in a random order.

To assist with bootstrapping, the Trusted Authority can distribute subsets of the

keying material to subsidiary key servers to help bootstrap the nodes. This requirement

for nodes to first “touch-base” with the Trusted Authority or the subsidiary key servers

to obtain their keying material ensures that nodes are authentic and can be trusted if

they possess the keying material obtained from authentic sources.

If security demands that one compromised TA cannot comprise the whole system,

a group or “committee” of TAs can be used. Each TA generates one subset of the N

master keys that will be used to compute a subset of the node’s private key-set. In

this way, all the TAs must jointly endorse the node by contributing towards its private

key-set. There is added security as one compromised TA will not break the entire

system.

3.3.3 Pairwise Key Derivation

After deployment, any pair of nodes can compute their pairwise key after obtaining each

other’s IDs. For example, nodes A and B, having obtained each other’s IDs, generate

CHAPTER 3. THE BYKA SCHEME 47

Figure 3.2: The BYka Process

their counterpart’s public keys using Eqn. (3.2). Then, using all the permutations with

its own private key-set, each node computes (mod p) the set R, called the “pairwise

key-set”, as follows,

For i, k = 1, · · · , η, and j = 1, · · · , N

Node A: sBk = IDB + k − 1

VT
Bk

=

[
1 sBk · · · sm−1

Bk

]
RAijk =

{
KAijVBk

}
=
{

(VT
Ai

Mj)VBk

}
(mod p)

Node B: sAk = IDA + k − 1

VT
Ak

=

[
1 sAk · · · sm−1

Ak

]
RBijk =

{
KBijVAk

}
=
{

(VT
Bi

Mj)VAk

}
(mod p)



(3.7)

The process is illustrated in Fig. (3.2).

Correctness of the MKB Scheme

Transposing the elements in Node B’s pairwise key-set RB gives,

RBijk = (VT
Bi

MjVAk)
T = VT

Ak
MT

j VBi (mod p)

The elements in R are (1 × 1) matrices, i.e. scalars, and the matrices M are

symmetric i.e. Mj = MT
j . Since the i, j, k are merely counters, then the numbers in RA

CHAPTER 3. THE BYKA SCHEME 48

and RB are identical, though not arranged in the same order.

Constructing the Pairwise Key

The Nη2 numbers in the key-sets R are used by each node to obtain a common pairwise

key. This is a long term pairwise key. Obtaining an identical key from the key-set may

be done in several ways:

1. multiplying them together, or

2. sort the key-set values to obtain an ordered set, or

3. count the number of occurrences of the integers.

Multiplication: In this method all the elements are incremented by one to make them

all non-zero ∈ [1, p], and are then multiplied together modulo Sk, where Sk is a prime

number of the desired key size, e.g. 128 bits, i.e.,

Kpair =

Nη2∏
i=1

RAi + 1 (mod Sk) (3.8)

Sorting: The key-set elements can be sorted in ascending or descending order. Both

nodes would then obtain an identical key set. This can then be used to obtain a pairwise

key by several means. A simple method is to just take a sufficient number of bits from

the front or back of the list to form the pairwise key. Another method would use the

sorted key-set as input to a hash function to obtain the pairwise key Kpair.

Occurrences: In this method, the number of occurrences of the integers are counted

and used as input to a hash function. For example, if p = 5, N = 3 and η = 2,

and the pairwise-key set contains {2, 1, 3, 2, 3, 2, 0, 0, 4, 3, 1, 2}, the occurrences of the

respective integers {0, 1, 2, 3, 4} gives the string “22431” which is used as input to a

hash function to obtain the pairwise key Kpair.

CHAPTER 3. THE BYKA SCHEME 49

Session Pairwise Key:

After the nodes have obtained their pairwise key Kpair, they use it to encrypt and

exchange a randomly generated session key. After this, the long term pairwise key

Kpair can be deleted for added security. The encryption algorithm uses recommended

methods such as AES with HMAC (Barker et al., 2012). The MICAz mote is equipped

with the CC2420 radio chip which includes a stand-alone AES encryption engine

(“CC2420 Data Sheet”, 2014).

3.4 Features of the BYka Scheme

3.4.1 Implicit Mutual Authentication

Overall, the BYka scheme is a mechanism that enables a pair of nodes to compute a

set of identical numbers using their private keys with their counterpart’s public key-set

ID. It is an identity-based (more accurately, index based) symmetric key scheme and

mutual authentication is a result of both nodes having obtained their keying material

from the same TA.

MITM Attacks

In the man-in-the-middle (MITM) attack, an adversary E interposes between two nodes

A and B, and entices A to believe it is B, and vice versa. It acts as an intermediary

reading and modifying messages before forwarding them. This can succeed only if the

messages are not protected using the endpoint keys KAB, especially during the initial

public key exchange phase.

Key agreement schemes in which a node generates its own public and private keys,

and uses both of them to derive or protect the pairwise key are vulnerable. These include

schemes such as the RSA and DH schemes. To mitigate this, additional measures to

CHAPTER 3. THE BYKA SCHEME 50

authenticate the public keys must be used, such as using a trusted third party to sign the

nodes’ public keys.

The Blom’s scheme is immune to MITM attacks. This is because the public and

private keys are not generated by a node but by the TA. In addition, a node would use

its own private key with the public key of its counterpart to derive their pairwise key.

Both nodes must contribute part of the keying material in the pairwise key computation.

In this way, the scheme is mutually authenticating. An adversary in the middle cannot

form a pairwise key with either node as it does not have the private key associated with

its (fabricated) public key. The attacker can only help to forward messages but not read

them. The MITM attacker can only be an MITM helper.

3.4.2 Low Communication Overhead

The initial exchange of the public keys to begin the process is only the size of one public

key-set ID, i.e. 16 bits for q = 65521, not considering the other overheads required

such as destination ID, MAC addresses, etc. This makes the exchange fast and saves

energy required for the radio transmissions.

3.4.3 Compact Code

The pseudo code is given in Listing (1). As can be seen it is very simple and can be

coded using a few lines.

3.4.4 Memory Requirements

The key computation code is small due to its simplicity requiring a small amount of

program memory ROM. The pairwise key is Nηmb bits in size. In our scheme, b is

less than 8 bits. Using one byte for each element, requires Nηm bytes. Typically larger

values of N, η = 8 and m = 24 require at most 1, 536 bytes for the private keys.

CHAPTER 3. THE BYKA SCHEME 51

Listing 1: BYka Pairwise Key Computation Pseudo Code
Input: Neighbour Node’s public key-set ID
Output: The pairwise BYka key Kpair

Initialise Kpair = 1;
Generate all the neighbour’s public key-seeds;
for each public key seed do

generate public key vector, Vi (mod q)
for each private key, Kj do

R = Kj · Vi (mod p) + 1 ;
Kpair = Kpair ∗R (mod Sk);

end
end

3.4.5 Scalability

The limit on the network size, i.e. the number of nodes can be affected by the following

factors: the private key keyspace, the public key keyspace, and the pairwise key

keyspace. The Blom’s capture threshold does not apply as will be shown in the next

chapter.

Private Key Keyspace A private key has pm possible values. A single node has Nη

private keys. If the keys are all unique, there are pm

Nη
sets. If p = 31, N = 8, η = 8 and

using a small value of m = 12, there are 1.23× 1016 possible sets.

Public Key Keyspace The public key is a Vandermonde mode column vector with

elements si−1
n i = 1, · · · ,m satisfying Eqn. (3.6) to avoid private key aliasing. There

are slightly less than q seeds after omitting some unsuitable seeds such as 0 and 1. Each

node has η seeds, and the total number of public key-sets is then less than ≈ q
η
. If

q = 65521, η = 6, it is possible to have approximately 10, 900 nodes. With 17-bit

prime, q = 131071 we can have about 21000 nodes using η = 6. Using a 32-bit

prime, e.g. q = 4, 294, 967, 291 and η = 6, there are enough public key-sets for about

300× 109 nodes.

CHAPTER 3. THE BYKA SCHEME 52

Figure 3.3: Partitioning 8 Items into 4 Groups

3.4.6 Pairwise Keyspace Size

In the BYka scheme, the pairwise key is formed from the pairwise key-set R consisting

of Nη2 integers, each one ∈ [0, p− 1]. The pairwise key can be up to log2(pNη
2
) bits,

well in excess of 128 bits. However, the effective key length is only as large as the

number of possible combinations of the integers ∈ [0, p−1] in the pairwise key-set. This

effectively limits the number of the pairwise keys. The keyspace size can be obtained

by counting all the possible combinations of the integers 0, 1, · · · , p− 1, such that the

total number of integers in each combination is exactly Nη2. This can be obtained by

considering the following partitioning problem.

Partitioning Problem Given a row of Nη2 items, we wish to partition them into p

groups g0, g1, · · · , gp−1 such that they contain the integers 0, 1, · · · , p− 1 respectively.

The number of items in each group represents the number of the respective integers.

This is illustrated in Fig. (3.3) for the case of partitioning 8 items into 4 groups. To

create the partitions, we first insert (p − 1) items into the row so that there are now

(Nη2 + p − 1) items. If any (p − 1) items are now removed, (p − 1) gaps would be

created separating the remaining items into p groups as desired. The number of ways to

remove (p− 1) items from (Nη2 + p− 1) gives the keyspace size as follows,

Ksp =

(
Nη2 + p− 1

p− 1

)
(3.9)

CHAPTER 3. THE BYKA SCHEME 53

η N
Values of p

13 17 19 23 31

4

3 40 48 52 59 71
4 44 54 59 67 81
5 48 59 64 73 89
6 51 63 68 78 96
7 53 66 72 82 102
8 56 69 75 86 107

5

4 51 64 69 79 97
5 55 68 74 86 106
6 58 72 79 91 113
7 61 76 82 95 119
8 63 79 86 99 124

η N
Values of p

13 17 19 23 31

6
4 57 71 78 90 111
5 61 76 83 96 120
6 64 80 88 102 127
7 67 84 92 106 134
8 69 87 95 111 139

7
6 69 87 95 111 140
7 72 91 99 116 146
8 74 94 103 120 152

8
6 74 93 102 119 151
7 77 97 106 124 157
8 79 100 109 128 163

Legend: Key Sizes 64 bits, 80 bits, 96 bits, 112 bits, 128 bits

Table 3.1: Keyspace in bits

The keyspace size in terms of bits is,

Ksp = log2

[
(Nη2 + p− 1)!

(p− 1)!(Nη2)!

]
(3.10)

Table (3.1) shows the keyspace in bits for various parameters. For example, with p = 31,

and N, η ≥ 6, the number of combinations in the keyspace exceeds 128 bits. The value

of p = 31 is a good choice as it is a Mersenne prime which has some advantages for

modulo operations.

In the original Blom’s scheme, Ksp =
(

1+p−1
p−1

)
= p, i.e. the keyspace in bits is the

same as the number of bits in p.

Example: A row of 8 items is to be placed into 4 groups g1, g2, g3, g4, each corre-

sponding to integers 1, 2, 3, 4. . There are
(

8+4−1
4−1

)
= 165 permutations. Fig.(3.3)shows

one permutation comprising one of 1, two of 2’s, three of 3’s and two of 4’s. If these are

multiplied together to form the pairwise key, the key will be (12×22×33×42) = 1728.

CHAPTER 3. THE BYKA SCHEME 54

3.5 Summary

In the BYka scheme, unlike the original Blom’s scheme, the TA and the nodes have

multiple keys which are used in permutations to obtain multiple private keys which are

stored in a random order in the node. The computations are over a small prime field.

The pairwise key is also computed using all permutations of the counterpart’s public

keys with the private keys to obtain a large number of integers from which to obtain

a large pairwise key. The scheme is mutually authenticating as both nodes must have

obtained their keying material from the same TA to be able to compute their common

pairwise key.

The node’s public keys are a set of column vectors of the Vandermonde matrix

selected such that the seeds are consecutive. This allows the set of public key seeds

to be represented by the smallest seed, called the public key ID. This is only 16 to 32

bits long and sending it is fast, saving on energy for radio transmission. The memory,

computation power, and energy requirements are well within the capabilities of today’s

sensor devices.

The important features of Blom’s scheme including mutual authentication, immunity

to the MITM attack, and simple computations are retained in the BYka scheme. In

addition, computations use small data sizes of 8 bits and are able to obtain pairwise

keys 128 bits and larger.

The number of nodes that can be deployed is limited by the size of the prime

modulus q for the public key seeds. This can be large enough, for example 16 or 17 bits,

to accommodate tens of thousands of nodes. The Blom’s scheme is unconditionally

secure only if there are less than m nodes deployed in the networks. In the BYka

scheme, each node carries Nη private keys bringing the capture threshold down to just

m
η

nodes. However, each private key needs to be correctly associated with the master

key and public key used to compute it, i.e. the PPMka information must be found. The

CHAPTER 3. THE BYKA SCHEME 55

next chapter shows how, without this PPMka information, the capture threshold does

not apply, allowing the BYka scheme to break free of the capture threshold of the

original Blom’s scheme.

Chapter 4

Security Analysis

4.1 Introduction

The original Blom’s scheme is unconditionally secure if the number of nodes is less

than the capture threshold. The BYka scheme appears to have a lower threshold since

each node carries several keys. However, even if a very powerful adversary is able to

capture and extract the keys from a sufficient number of nodes, it will not be able to

break the scheme. This is due to the ambiguities introduced by the numerous private

keys, stored in a random storage, and computed over a small field. These make the

private keys unusable directly, thereby preventing the adversary from mounting attacks

as in the original Blom’s scheme. The security of the BYka scheme is broken down and

analysed in these three areas:

(1). The vulnerabilities of the keys – master keys, private keys, and the pairwise keys;

(2). The vulnerabilities of the Blom’s scheme as applicable in the BYka scheme;

(3). The resilience against system breakdown due to node capture.

This chapter analyses the first two vulnerabilities, and the resilience analysis is left

for the next chapter.

56

CHAPTER 4. SECURITY ANALYSIS 57

4.2 Vulnerability of Keys

It is important that an adversary, having obtained the keying parameters cannot fabricate

any of the keys. For this part, we consider that the adversary can only monitor and read

all encrypted messages. It knows the keying parameters N, η, p and q, but cannot steal

the private keys. The adversary can resort to discovering the keys using brute force

where all the possible keys are fabricated and, by trial-and-error, test each one until

eventually finding the correct one. To defeat this, the keys must be sufficient large and

randomly distributed so that an infeasible amount of resources will be required to try all

the possible keys. As a benchmark, the NIST (Barker et al., 2012), p. 27, recommends

that the number of operations that is required to break a cryptographic algorithm or

system should be in excess of 2128 or 3.4×1038 steps for equivalent security strength of

128 bits.

4.2.1 Resistance Against Brute Force Attacks

The Master keys

It is assumed that the TA has access to a good random number generator for generating

the master key matrices. Hence, the elements of the master keys can be assumed to

be a uniform distribution of random integers ∈ [0, p− 1]. Each master key has m(m+1)
2

unique elements and each element is ∈ [0, p− 1] giving the keyspace of Nk = p
m(m+1)

2 .

For typical values of p = 31, m = 12, N = 6, there are 2.119×10116 possible master

keys. To mount an attack by brute force, the attacker has to choose N master keys from

this keyspace, which assuming there are no repetitions, has about
(
Nk

N

)
possible sets.

Using the above values, there are 1.26×10695 or 22309 sets of master keys, clearly an

infeasible effort using the brute force attack.

CHAPTER 4. SECURITY ANALYSIS 58

4.2.2 Public Keys

The public keys are (m × 1) column vectors of the Vandermonde matrix as given in

Eqn. (3.6). They are public and there is no need to protect them in any way. The public

keys are exchanged by sending the public key ID, a single seed value of 16 or more bits.

This is in plain text. An adversary can learn the public keys of the transmitting node.

Apart from this, no other useful information is obtained.

The adversary may assume any arbitrary ID and entice legitimate nodes to compute

a pairwise key with it. Nothing is gained by the adversary but to cause the legitimate

node to expend some resources. This is the DoS attack. Other mechanisms not covered

in this study are required to mitigate this attack.

4.2.3 Private Keys

The private key is computed from K = VTM where VT = [1 s · · · sm−1]. The

elements of M, generated using a cryptographically secure random number generator,

are uniformly distributed over Fp.

As shown in §3.3.1, the seeds sn are chosen such that

for some w 6 m, sw−1
n > q

i.e. sw−1
n ≡ rn (mod q)

and rn 6≡

 0 (mod p), or

sn (mod p)


(3.6)

Randomness of the Private Keys The xth element of the private key Kkx , asso-

ciated with the seed sn and master key My, from Eqn. (3.4) can be written as,

Kkx =
m∑
i=1

si−1
n (mod q) Myix (mod p)

= My1x + snMy2x + s2
nMy3x + · · ·+ rnMymx (mod p) (4.1)

CHAPTER 4. SECURITY ANALYSIS 59

The terms making up the xth element of Kk in Eqn.(4.1) are not all zeros if the

values of s are chosen in compliance with Eqn. (3.6). As they are the sums of products

of integers with elements of the master key which are uniformly distributed random

integers, the operations being over the prime field Fp, they are also random integers.

Hence, all the elements of the private key Kk are also random integers ∈ [0, p− 1].

Brute force attack In the brute force attack, the adversary would attempt to construct

the private key-set and use it to masquerade a node. Due to the randomness of the

private keys, there are pm possible private keys from which the attacker would choose

Nη keys to form the private key-set. There are
(
pm

Nη

)
possible combinations, assuming

each one is unique. Even with small values of m = 12, p = 13 and N, η = 4, there are
(pm)!

(pm −Nη)!(Nη)!
= 1.22×10147 possibilities. Clearly, the adversary has a very small

chance of fabricating a valid private key-set to use in a rogue node, or to masquerade as

a legitimate node.

4.2.4 Pairwise Keys

Key Lengths The pairwise key is derived from a set of Nη2 numbers ∈ [0, p − 1],

called the “pairwise key-set”, R. For nodes A and B with seeds sA and sB respectively

that comply with Eqn. (3.6), an element in the key-set RAijk is,

RAijk = (VT
Ai

Mj)VBk = KAijVk (mod p)

=
m∑
u=1

KAiju
su−1
Bk

for i, k = 1, · · · , η and j = 1, · · · , N

The elements of the private keys KAij are shown to be random integers in §4.2.3.

Similarly, the elements in the key-set RA are also random integers being the sums and

products of random integers in Fp.

CHAPTER 4. SECURITY ANALYSIS 60

From §3.4.6, the pairwise keyspace can be sufficiently large in excess of 128 bits.

Each one can be up to log2(pNη
2
) bits long. Thus, brute force attacks on the pairwise

keys are not feasible.

4.3 Security of the Blom’s Scheme

The adversary can attempt to break the scheme by capturing enough nodes and extracting

their keys. It is assumed that the adversary has very powerful computing resources and

is able to physically take control of the nodes to extract the keying material from ROM

and RAM. However the adversary cannot steal the master keys. This section analyses

how the Blom’s scheme may be broken so that countermeasures can be found.

If the adversary is able to obtain the private keys from a sufficient number of nodes,

he can attempt to break the scheme in two ways; use the captured keys to construct

completely new valid keys for use in rogue nodes, or to derive the master keys and

hence completely break the system. The identity theft attack where a node is cloned

using captured keys is not in the scope of this study.

4.3.1 Masquerade Attacks – Sybil Attacks

In the masquerade or Sybil attack, the adversary fabricates new valid public and private

keys and uses them for crafting new nodes to masquerade as legitimate nodes in the

network. From the previous section §4.2.1, these keys cannot be feasibly fabricated by

trial and error. However, if enough nodes are compromised and their keys obtained, the

adversary can try to use these keys to construct new valid keys.

Consider that n nodes and their public and private keys,{V1,K1}, · · · , {Vn,Kn}

CHAPTER 4. SECURITY ANALYSIS 61

have been obtained. The attacker can fabricate a new public key VX by linear combina-

tion of the captured keys using suitable coefficients α1, · · · , αn, i.e.,

VX = α1V1 + · · ·+ αnVn (mod p) (4.2)

The corresponding private key KX would be a similar linear combination of the

captured private keys,

KX = VT
XM = (α1VT

1 + · · ·+ αnVT
n)M

= α1VT
1 M + · · ·+ αnVT

nM

= α1K1 + · · ·+ αnKn (mod p)

The attacker will be able to fabricate any public key and the corresponding private

key for use in a rogue node X . This node can obtain a valid pairwise key with a

legitimate node. For example, node X and node A exchanged their public keys. Node

X computes the pairwise key,

KXA = KXVA = [α1K1 + · · ·+ αnKn]VA

= α1K1VA + · · ·+ αnKnVA

= α1VT
1 MVA + · · ·+ αnVT

nMVA (mod p)

CHAPTER 4. SECURITY ANALYSIS 62

Similarly, node A computes,

KAX = KAVX = KA[α1V1 + · · ·+ αnVn]

= α1KAV1 + · · ·+ αnKAVn

= α1VT
AMV1 + · · ·+ αnVT

AMVn (mod p)

After transposing, KT
AX = α1VT

1 MTVA + · · ·+ αnVT
nMTVA (mod p)

= KX1 since M = MT

4.3.2 Requirements of Public Keys:

To defend against this attack, the public keys must meet these three conditions:

1. the public keys have a prescribed format,

2. the public keys must be linearly independent of each other,

3. the number of captured nodes n must be less than m.

Public Key Format

The first condition ensures that a key formed from arbitrary linear combinations of

captured keys would not be accepted. For example, without any prescribed format,

a public key may be V1 =

[
2 4 1

]
. It can be linearly combined with V2 =[

5 6 2

]
, to obtain a new public key Vx = 2V1 + 3V2 =

[
19 26 8

]
. If Vx is

acceptable as a public key, a new node with corresponding private key KX = 2K1 +3K3

can be introduced into the network.

On the other hand, if all the public keys are columns of the Vandermonde matrix,

arbitrary public keys of other formats would simply be invalid and are discarded

In spite of this feature, the adversary may still be able to construct public keys VX

whose elements are of the correct format by solving for α by combining the captured

CHAPTER 4. SECURITY ANALYSIS 63

keys as follows,

VX = α1V1 + · · ·+ αnVn (mod p) (4.3a)

Writing the elements in VT
A as

[
VA1 · · · VAm

]
,

i.e.



VX1

VX2

...

VXm


=



V11 · · · Vn1

V12 · · · Vn2

...

V1m · · · Vnm





α1

α2

...

αn


(mod p) (4.3b)

VX =

[
V1 V2 · · · Vn

]
~α (mod p)

i.e. VX = V~α (mod p)

where

V =



V11 · · · Vn1

V12 · · · Vn2

...

V1m · · · Vnm


and ~α =



α1

α2

...

αn


Linearly Independent Public Key Vectors

If all the public key vectors V1, · · · ,Vn are linearly independent of each other, then if

n < m, by definition VX , cannot be a linear combination of other vectors. The solution

to Eqn. (4.3b) is trivial, i.e. α1, · · · , αn = 0 if the number of captured keys n is less

than the master key matrix size m, and the Sybil attack cannot succeed.

However, if the number of captured nodes n ≥ m, then using any m of the captured

CHAPTER 4. SECURITY ANALYSIS 64

nodes, Eqn. (4.3b) can be written as,

~α = V−1VX (mod p) (4.4)

Since V is a square (m×m) matrix with linearly independent columns, for example,

the Vandermonde matrix, then V−1 exists, the determinant |V| 6= 0, and the solution for

~α is determinate and non-trivial.

Hence, if the public key vectors are not linearly independent, the Sybil attack can

succeed. In addition, if the public key vectors are linearly independent, the Sybil attack

can only succeed if m or more keys are obtained. Therefore, to prevent the Sybil attack,

the public key vectors must be linearly independent and no more than m nodes can be

captured.

4.3.3 Attacking the Master Key

The attacker can also use the capture keys to compute the master key itself. There are

two possible approaches.

Brute Force Using a Single Captured Node

It is known that a private key is computed as K = VTM (mod p). The attacker having

obtained the keys from a captured node, can construct an arbitrary master key and use it

to compute a trial private key using the node’s public key. If this matches the node’s

private key, then the master key is found. If not, the process is repeated. This will

succeed eventually after trying all the possibilities. However, the number of possible

master keys, p
1
2
m(m+1) is prohibitively large using suitable keying parameters of m and

p. For example, even when using small values of p = 13 and m = 16, the number of

trials possible is 7.72×1086. This is infeasible with current computing resources.

CHAPTER 4. SECURITY ANALYSIS 65

Using a Sufficient Number of Captured Nodes

Consider that m nodes have been captured and all the public keys are linearly indepen-

dent. Let the elements of the master key M be Mij as follows:

M =


M11 · · · M1m

...

Mm1 · · · Mmm


Consider a node n with public key Vn and private key Kn = VT

nM. Since M is

symmetric, after transposing, this can be written as,

MVn = KT
n

All the private keys from the m captured nodes can be combined and written as,

M
[

V1 V2 · · · Vm

]
=

[
KT

1 KT
2 · · · KT

m

]

i.e. MV = K

Where

V =

[
V1 V2 · · · Vm

]
=



V11 V21 · · · Vm1

V12 V22 · · · Vm2

...
...

V1m V2m · · · Vmm



CHAPTER 4. SECURITY ANALYSIS 66

and

K =

[
KT

1 KT
2 · · · KT

m

]
=



K11 K21 · · · Km1

K12 K22 · · · Km2

...
...

K1m K2m · · · Kmm


If the matrix V is invertible, the master key M can be obtained,

M = KV−1 (4.5)

If the number of nodes captured is m, and all the public key vectors are linearly

independent, for example, being columns of the Vandermonde matrix, then the (m×m)

matrix V with linearly independent columns is non singular with non-zero determinant

and the inverse V−1 exists. The master can be then derived and the scheme completely

broken.

A simpler approach without computing the inverse matrix is to construct the system

of linear equations and solve for M. The private key for node n is given as,

Kn = VT
n


M11 · · · M1m

...

Mm1 · · · Mmm

 =

[
Kn1 · · · Knm

]

CHAPTER 4. SECURITY ANALYSIS 67

Using all the m captured nodes, the system of equations can be assembled,



VT
1 0 · · · 0

...
...

0 0 · · · VT
1

VT
2 0 · · · 0

...
...

0 0 · · · VT
m





M11

...

M1m

M22

...

Mmm


=



K11

...

K1m

K21

...

Kmm


(4.6)

and solved using, for example, the Gaussian elimination method.

4.3.4 Effort Required to Break the Scheme

The adversary has to do several tasks to break the scheme, see Fig. (4.1). Consider

that the public and private keys of the captured nodes are already available. First, the

keys must be assembled into the (m×m) system of equations. Then, these are solved

to obtain a possible solution for the master key. This must be tested to see if it is

correct by using it with one of the public keys to compute the private keys. This is

compared against the captured keys. If correct, then one of the master keys is found. If

not, another public key is used. The whole process is repeated until all the master keys

are found.

Gaussian Elimination

The Gaussian elimination method can be used to solve the system of equations. The

number of operations to solve an (m×m) system of linear equations involves (m
3

3
+

m2 + m
3

) multiplications and (m
3

3
+ m2

2
− 5m

3
) additions (Tapia, Lanius, Mac Zeal, &

Parks, 2001). Simplifying this by considering only the multiplications, there are about

m3

3
operations. With m = 16 it requires approximately 1, 365, say 103 operations.

CHAPTER 4. SECURITY ANALYSIS 68

Figure 4.1: Steps Required to Obtain the Correct Master Keys

4.3.5 Limitations of the Blom’s Scheme

As the devices are not provided with tamper proof mechanisms, any number of nodes

can be captured by a determined and powerful adversary and have their keys stolen.

While using linearly independent public keys prevents the adversary from mounting the

Sybil attack, this cannot be prevented if m or more nodes are compromised. The master

key itself can be derived.

The Bloms’s scheme is said to be (m − 1) secure in that if the number of nodes

deployed is < m, even if the entire network is compromised, the master key cannot

be obtained. It is then unconditionally secure in the information theoretic sense with a

“capture threshold” of m. Its practicality is limited, since a large m requires proportion-

ally large memory in each node to store the private key which is a row vector with m

elements.

CHAPTER 4. SECURITY ANALYSIS 69

4.4 Security of the BYka Scheme

4.4.1 Capture Threshold

The BYka scheme uses the Blom’s scheme as the cryptographic primitive and would

appear to inherit its weakness – the capture threshold. In fact the capture threshold is

lower as each node has Nη private keys. In order to capture enough nodes to construct

the N (m×m) systems of linear equations to solve for the master keys or mount the

Sybil attack, the adversary needs to capture only dm
η
e nodes. However, this apparent

lower capture threshold is only effective if each captured private key can be correctly

associated with the public key and the master key used to compute it.

4.4.2 Private-Public-Master-Key Association (PPMka)

In the Blom’s scheme using only a single master key and public key, the association

of the single private key to the public key and master key is obvious. However, in the

BYka scheme, each node has Nη private keys, each computed from one of the TA’s

N master keys and one of the node’s η public keys, and each one is stored in random

order in the node. For each captured node, the adversary is able to obtain the keying

parameters N, η,m, p, q, the Nη private keys, the public key ID and hence the η seeds

forming the public keys. Before any of the private keys can be used, the related public

key and master key must be known.

4.4.3 Indiscernibility of the Private-Public-Master-Key Association

In §4.2.3, it was shown that the elements of the private keys are random integers

∈ [0, p− 1]. For example, let the seed sn satisfying Eqn. (3.6) be used as the public key

seed for node n. The xth element of the private key Kk computed with the master key

CHAPTER 4. SECURITY ANALYSIS 70

My can be written as,

Kkx =
m∑
u=1

su−1
n (mod q) Myux (mod p)

= My1x + snMy2x + s2
nMy3x + · · ·+ rnMymx (mod p)

Each element is a random integer ∈ [0, p− 1], being the sum of products of su−1
n and

rn with the uniformly distributed random integers Myiu , the operations being over the

prime field Fp. The private key Kk is a row vector of random integers ∈ [0, p− 1], i.e.

Kk =

[
Kk1 · · · Kku · · · Kkm

]

As a result, the adversary, by examining Kk, would not find any information about the

public key seed used to compute it. Each of the Nη private keys is indistinguishable

from another.

Destruction of the PPMka

The TA computes and stores the node’sNη private keys in a random order, extinguishing

any possibility of determining the PPMka from the storage order. The PPMka is

unknown, indiscernible, and irretrievable by examining the keys or its storage location.

The relationships between the private keys and the associated public keys and master

keys are ambiguous.

Without the PPMka information, each key can only be associated with the correct

master key and public key with a probability of 1
Nη

, no better than a random chance. To

solve for one of the master keys, the correct PPMka for m private keys must be found.

The overall probability 1
(Nη)m

, can be made extremely small using suitable parameters.

The indiscernibility of the PPMka is an important side-effect that will be exploited to

make the BYka scheme resilient against node capture attacks.

CHAPTER 4. SECURITY ANALYSIS 71

Security Implications Due to the Unknown PPMka

The original Blom’s scheme is unconditionally secure if two conditions are satisfied:

the number of captured private keys is less than m, and the public keys are linearly

independent. In the light of the BYka scheme, a third condition may be stated: each

captured private key must be correctly associated with the master key and public key

used to create it. This is of course trivial in the Blom’s scheme with a single key.

The unknown PPMka enables the BYka scheme to break free from the capture

threshold and remain virtually unconditionally secure for network sizes in excess of

the capture threshold. In addition, the probability of discovering the PPMka can be

made so small that the BYka scheme is secure even if a large number of nodes can be

captured.

4.4.4 Resilience Against Sybil Attacks

Consider how the adversary can mount the Sybil attack after capturing (enough) Nm

private keys. It is also known that the public keys used are VC1 , · · · ,VCm , and each

one is a column vector of the Vandermonde matrix. The adversary would choose

an arbitrary public key IDX with seed sX1 and construct the public key as VT
X1

=[
1 sX1 · · · sm−1

X1

]
such that,

VX1 = α11VC1 + · · ·+ α1mVCm (mod q)

=

[
VC1 · · · VCm

]
~α (4.7)

The above (m×m) system of equations can be solved to obtain ~α since [VC1 · · · VCm
]

is a (m×m) Vandermonde matrix which has a non-zero determinant as all the columns

are linearly independent. The private key associated with M1 and VX1 can then be

CHAPTER 4. SECURITY ANALYSIS 72

constructed as linear combinations of the captured private keys as follows,

KX1M1
= VT

X1
M1

=
(
α11VT

C1
+ · · ·+ α1mVT

Cm

)
M1

= α11KC1M1
+ · · ·+ α1mKCmM1

(4.8)

Here, the private key KC1M1
is associated with the public key VC1 ; KC2M1

with VC2 ;

and so on, and all are associated with the same master key, M1. As shown earlier each

private key is just a row vector of random integers and there is no information about

their PPMka. From the m
η

captured nodes, the number of possible ways of associating

each key with the public keys and the master key M1 is Φ1 as follows.

Φ1 =

[
(Nη)!

(Nη − η)!

]m
η

The other private keys associated with master keys M2, · · · ,MN must be similarly

computed. After the private keys associated with each master key are obtained, they are

removed, leaving fewer keys for the next round. The total number of possible solutions

to fabricate the private keys for KX1 is,

Φ =
N−1∑
i=0

[
(Nη − iη)!

(Nη − iη − η)!

]m
η

(4.9)

The values of Φ are given in Table (4.1) for values of p,N and η which give pairwise

key sizes of 64 bits or more.

To complete the attack, the private keys for the other public keys, VX2 , · · · ,VXη

must also be done. The total number of possible sets of private keys is thus Φη. This

makes the Sybil attack impossible as it is done interactively, one at a time.

CHAPTER 4. SECURITY ANALYSIS 73

η N
Master key size m

12 16 24 32

6

6 2.16×1018 2.84×1027 3.90×1036 7.61×1054

7 1.64×1019 5.67×1028 2.07×1038 2.91×1057

8 9.45×1019 7.46×1028 6.30×1039 4.79×1059

7

6 1.97×1022 2.55×1033 3.43×1044 4.65×1055

7 2.07×1023 8.37×1034 3.55×1046 1.53×1058

8 1.57×1024 1.68×1036 1.90×1048 2.20×1060

8

6 2.41×1026 2.41×1026 3.55×1039 5.37×1052

7 3.52×1027 3.52×1027 1.91×1041 1.08×1055

8 3.54×1028 3.54×1028 5.88×1042 1.03×1057

Table 4.1: Number of Solutions Φ for Pairwise Key Sizes ≥ 64 bits

4.4.5 Resilience Against Attacks on the Master Keys

Similarly, due to the unknown PPMka, the adversary would not be able to compute the

master keys even if a sufficient number of private keys was available. Using the same

consideration as in §4.4.4 above, for each master key say M1, the adversary needs to

assemble (m×m) equations from the private keys, all correctly associated with M1 and

the public keys. From each node there are
(Nη)!

(Nη − η)!
ways to arrange the η private

keys according to M1 and the η public keys. The total number of ways to obtain these

equations from the m
η

nodes is Φ1, similar to Eqn. (4.9). Since all the N master keys

must be obtained and used together, the total number of possible master key solutions

is also given as in Eqn. (4.9). The total number of possible solutions, Φ is also given

in Table (4.1). Once all the master keys are found, the adversary can fabricate all

the necessary keys as desired. By choosing suitable keying parameters, for example

m = 24, N = 7, η = 8, the number of possible solutions is 6.3×1039. If this is the

most efficient attack, the security strength would be 132 bits.

CHAPTER 4. SECURITY ANALYSIS 74

4.5 Other Security Issues

4.5.1 Immunity to MITM Attacks

As shown in §3.2.1, the Blom’s scheme is immune to the MITM attack because it is a

non-interactive scheme and nodes need to only exchange their publicly known public

key IDs, and both nodes use each other’s public keys with their own private keys to

compute the pairwise key. For this to succeed, the keying material must come from

the same TA. The BYka scheme is similar in operation and inherits the Blom’s scheme

immunity to the MITM attacks.

4.5.2 Key Escrow

The TA is a key escrow entity. It holds the master keys which can be used to compute

the pairwise keys of any pair of nodes. All messages between the nodes in the network

can be decrypted by the TA. This may not be a desirable feature in terms of privacy.

However in commercial organisations, this may be desirable since the management

must be able read all messages within the organisation.

The key escrow attribute may be relinquished by the TA deleting all or some of the

master keys after computing all the possible private keys that are anticipated to be used.

However, this is a drastic step and as will be shown later, the master keys cannot be

recovered.

4.5.3 DoS Attacks

The initial public key ID exchange messages are in clear text. An adversary can

eavesdrop and learn the public keys of the nodes but there is no consequence. However,

the adversary can attempt to mount DoS attacks. An attacker can attempt to deplete a

node’s resources by sending it fictitious public key IDs in the DoS attack. The adversary

CHAPTER 4. SECURITY ANALYSIS 75

would monitor messages, and if enough IDs are learnt, determine the number of public

keys used, η. In addition the value of η can be learnt from captured nodes. It is then

easy to fabricate a valid public key-tag ID which is an integer factor of η and send this

to the target node to cause it to compute the pairwise key. This thesis does not address

the mitigations at this stage other than to suggest that the identity of the rogue node can

be disseminated to other nodes and blacklisted.

4.5.4 Compromised-key Impersonation Attacks

If a node is compromised, it can be exploited in two ways. First, the adversary can

impersonate node C to any other node. This is the identity theft attack. Secondly, the

adversary can mount the compromised-key impersonation attack. Here, if an adversary

node E has obtained node C’s keys, the adversary E can impersonate any node to

interact with the compromised node C. This attack can happen as follows:

Assume that node E has the set of private keys KC and public key IDC belonging to

node C. Node E wishes to obtain the pairwise key with node C, impersonating node

G. They exchange their public key IDs:

E → C : IDG (node E claims to be node G)

C → E : IDC

The nodes would normally generate the counterpart’s public keys and compute their

pairwise key. However, while node C uses the received IDG to compute the pairwise

key using its private key-set KC , unknown to node C, node E also uses the same public

key IDG with its stolen private key-set KC .

C : generates VG1,··· ,η , computes KCG = KC1,··· ,NηVG1,··· ,η

E : generates VG1,··· ,η , computes KGC = KC1,··· ,NηVG1,··· ,η

CHAPTER 4. SECURITY ANALYSIS 76

The two pairwise keys are naturally identical and node C has no way of knowing of

node E’s deception. An additional mechanism to detect and retire compromised nodes

needs to be incorporated. Further research would be required.

4.5.5 Forward Secrecy

A cryptographic system is said to have forward secrecy if previously recorded messages

cannot be decrypted should the long term pairwise keys be compromised. For example,

the long term pairwise key between nodes A and B is KAB. It was used to exchange

a session key KsAB for all subsequent messages. If the key KAB is obtained, and all

previous messages were recorded, the adversary would be able to discover the session

key KsAB and decrypt all the messages between nodes A and B. The BYka scheme

does not have forward secrecy.

4.5.6 Key Revocation

Stolen Keys

A node can be captured and its keying material used to create a rogue node and rede-

ployed into the network. This study does not include how to mitigate such impersonation

or identity theft attacks.

However, assuming that a detection system is in place, the detected ID can be

disseminated throughout the network and embargoed. The affected node can either be

discarded or retrieved and provided with new keys.

4.6 Summary

The security of the BYka scheme is analysed in terms of the strengths of the keys used,

the vulnerabilities of the underlying Blom’s scheme, and how it may be attacked by an

CHAPTER 4. SECURITY ANALYSIS 77

adversary who is able to capture any number of nodes and obtain their keying material.

The master keys, private keys, and pairwise keys are random and large, making the

brute force attacks to fabricate these keys infeasible. The number of possible pairwise

keys can be made sufficiently large by selecting suitable keying parameters for N , η,

m and p.

The underlying Blom’s scheme is unconditionally secure if there are less than m

nodes in the network. If the public key vectors are linearly independent, the Sybil

attack cannot succeed. However, if more than m nodes are deployed, assuming that

they can be captured and their keying material obtained, capturing m nodes will enable

the adversary to mount the Sybil attack as well as to derive the master key. This is

because each node has only one private key and it is obviously computed using the

single public and master key. The captured private keys can be used to construct one

system of (m×m) linear equations which can be solved to obtain the master key.

On the other hand, in the BYka scheme, each node has multiple private keys and

each one is indistinguishable from each other. Each private key has a small probability

of being correctly associated with the public key and master key used to compute it.

By using a suitable number of master and public keys, the probability of correctly

associating each of the Nη private keys to each of the η public keys and N master keys

can be made so small that there is an infeasibly large number of possibilities.

If the PPMka cannot be feasibly obtained, the BYka scheme would be virtually

unconditionally secure. No matter how many nodes are compromised, the Sybil and

master key attacks cannot commence. This opens up another possibility of securing the

BYka scheme. Since the adversary cannot use the captured keys directly to mount the

Sybil attack, and linearly independent public keys were required as a countermeasure,

it may be possible to relax this requirement so that public keys are not necessarily

linearly independent. This will also make the master key attack even more difficult

as the adversary will then need to capture even more nodes to find those with linearly

CHAPTER 4. SECURITY ANALYSIS 78

independent vectors in order to solve for the master keys. More research using this idea

may make the scheme even more secure and computationally simpler.

The BYka inherits the immunity of Blom’s scheme against MITM attacks as well

as its weaknesses including the lack of forward secrecy and the vulnerability to the

compromised-key impersonation attack. Other mechanisms must be found to mitigate

these vulnerabilities.

The unknown private-public-master-key-associations (PPMka) becomes the linchpin

for security in the BYka scheme to break free from the bounds of the original Blom’s

scheme. The next chapter examines whether and how the PPMka can be discovered.

Chapter 5

Cryptanalysis of the PPMka

5.1 Introduction

The PPMka indiscernibility is the linchpin to make the BYka scheme secure. It makes

the captured private keys useless for the Sybil and master key attacks since these require

that the public keys and master keys used to compute them are known. In addition, the

PPMka obscurity can be engineered to a desirable security level. The probability of

finding the correct PPMka can be made so small that it requires a huge amount of effort

even if a very large number of nodes can be captured and their keys extracted.

The PPMka cannot be found from examining the information in the nodes. What is

left to do is for the adversary to use pairs of nodes to compute their pairwise key, and by

observing the internal results of the computations, obtain clues about the PPMka. We

first show the scenario where master keys can be obtained successfully. Then we show

how, by selecting suitable parameters, the circumstances can be engineered to make

this extremely difficult. We obtained analytical results to estimate the effort required,

both in the number of compromised nodes required, and the number of possible master

key solutions using the most efficient attack.

79

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 80

5.2 Pairwise Key-set Attack

The attacks to solve for the master keys using brute force with only information captured

from nodes, as shown in §4.4.5, involve an infeasibly large number of iterations if suit-

able keying parameters are used. A better approach is to study the internal interactions

between pairs of nodes as they compute their pairwise keys. As the integers forming

the pairwise keys are identical across the two nodes, these can be identified and used to

infer the public keys and master keys associated with the private keys linked to these

identical integers. This attack is called the “pairwise key-set attack”.

Definition 5 (Pairwise key-set attack) The adversary, given a pair of captured nodes,

e.g. nodes A and B, uses each other’s public keys to compute the key-sets RA and RB.

Then, the matching integers in RA and RB are identified and can be used to link the

related private keys to the public keys and master keys, revealing the PPMka.

5.2.1 Without Ambiguities

If the pairwise key-set has only distinct integers, then the attack will successfully

identify the PPMka of the private keys in the two nodes. The attack proceeds as follows.

The attacker takes a pair of nodes, and using each other’s public keys, computes the

key-sets {RA} and {RB}. This is illustrated in Fig. (5.1) for the simple case with

N = 2, η = 2, assuming all the integers in the key-sets are distinct. Both sets will have

identical integers but in a different order. By linking the identical integers across both

sets, the private keys producing the matching integers are both associated with the same

master key, and each private key must be associated with the public key used in the

computation.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 81

For example in Fig.(5.1), we find for pair 1,

KA1VB1 = KB1VA1

i.e. (VT
A1

Mx)VB1 = (VT
B1

Mx)VA1

∴ KA1 = VT
A1

Mx and KB1 = VT
B1

Mx

In the same way for all the other identical integer pairs, using all the private keys

in nodes A and B, all the PPMka for the private keys in nodes A and B can be found.

By successive pairing with other nodes, and if all the pairwise key-sets have distinct

integers, the PPMKa of a sufficient number of private keys can be obtained and the

master keys derived from the solution to a system of equations formed from these

private keys. The pairwise key computations are over the field Fp. If p is a large prime,

for example p = 65521, then the probability that all the integers in the pairwise key-sets

are distinct is very high, for example 70% with N = 6, η = 6.

5.2.2 With Ambiguities

If the numbers in the pairwise key-set R are not all unique, we say there are

“collisions”. This can arise because each element in R ∈ Fp can only take one of p

values. Fig. (5.2) illustrates the case for N = 2, η = 2 where three numbers in RA and

RB are identical. Collisions give rise to ambiguities for the PPMka. For example, in

Fig. (5.2), multiple associations in nodes A and B are possible but all of them cannot

be correct.

Definition 6 A collision occurs when two or more integers in the pairwise key-set

RX = {KXi · VYj} are identical.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 82

Figure 5.1: Key-set Attack Without Ambiguities, for Case N = 2, η = 2

Probability of Collisions

There are Nη2 elements in R, and each one is ∈ [0, p− 1]. The probability that all the

numbers in R are unique, i.e. no collision, is,

Pu =
p

p

p− 1

p
· · · p−Nη

2 − 1

p
=

p!

(p−Nη2)!
p−Nη

2

This probability can be made very small by choosing suitable keying parameters.

For example using p = 31 with small values of N = 3 and η = 3, we have Pu =

1.9537× 10−8. With typical values of p = 31, N = 7, η = 6, there are 252 numbers in

R and, with only 31 numbers to use, numerous collisions are certain. The key-set attack

using all the public keys to compute the key-set containing Nη2 elements ∈ [0, p− 1]

can result in lots of collisions giving rise to ambiguities. A more efficient attack should

be used.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 83

Figure 5.2: Key-set Attack with Collisions, for N = 2, η = 2

5.2.3 Pairing Attacks

To increase the chance of successfully identifying the PPMka using a pair of nodes,

the number of integers that can collide should be reduced. This means the number of

integers in the pairwise key-set should be made as small a possible. This can be done

by using only one public key each time to compute a partial pairwise key-set Rr in each

node. Now, the “partial key-sets” formed, RrA and RrB, contain only Nη elements

reducing the probability of collisions.

A most Efficient Attack We call this the “pairing attack”. It results in the smallest

meaningful set of integers that can be used. For instance, if the integers are obtained by

using one public key with one or a small selection of the private keys, there are very

few integers, resulting in less chance of collision. However, there is no information on

which of the private keys should be chosen since the PPMKa are ambiguous.

Fig. (5.3) illustrates the pairing attack, showing only one of the key-set numbers for

clarity. Here, node A computes KA1VB2 which is identical to node B’s KB3VA2. This

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 84

Figure 5.3: Pairing Attack Operation

creates a “circuit” linking VA2,KA1,Mx,KB3 and VB2. The circuit reveals the PPMka

for the private keys since ,

KA1VB2 = KB3VA2

i.e. (VT
A2Mx)VB2 = (VT

B2Mx)VA2

then, KA1 = VT
A2Mx and KB3 = VT

B2Mx

Couplers and Couplings

The partial key-sets formed from the pairing attack contain identical integers across

both sets. This set of integers is called the set of couplers, see Fig. (5.4). In the ideal

case there should be exactly N couplers across both sets, one for each of the master

keys, for example using VB1 in A and VA1 in B,

Node A: VT
A1

MiVB1 , · · · ,VT
A1

MNVB1

Node B: VT
B1

MiVA1 , · · · ,VT
B1

MNVA1

However, there may be more, due to the small field Fp.

Definition 7 (Coupler) A coupler is defined as an identical integer that occurs in

both key-sets RrA and RrB. A set of couplers is the set of these integers.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 85

Figure 5.4: Couplers and Couplings

Definition 8 (Coupling) A coupling is defined as the link connecting a coupler to the

identical integers in both key-sets.

A coupler has one or more couplings on each side.

Types of Couplers and Couplings: Due to the computations over a small prime

field Fp, it is possible for many couplers to occur, see Fig. (5.4). The following types of

couplings can be observed:

1. Distinct Couplings There is only one coupling on each side of the coupler.

This may, or may not, correctly link the private keys to the public keys. For the pairing

attack to succeed, there must be exactly N couplers, each with distinct couplings.

2. Ambiguous Couplings There are multiple couplings on either side of the

coupler. This results in many possible links connecting the private keys to the public

key.

Attack Strategies

We see that by taking a pair of nodes and using each other’s public key one at a time to

compute the partial key-sets, the related private keys can be identified with the public

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 86

Figure 5.5: Pairing Attack with Collisions

keys used, if the partial key-sets yield exactly N couplers. Each private key is also

clearly associated with one of the N master keys. This can be repeated using as many

captured nodes as necessary to reveal all the PPMka. On the other hand, if there are too

many collisions and the number of couplers is > N , even though some of them have

distinct couplings, it is not possible to conclusively link the related private key to the

public key used since it might be a false one.

Alternatively, each pairing produces a certain number of couplers, Nc, each one

possibly correctly linking the private key to the public key used. Compared to the

brute force case, the number of possibilities for the correct PPMka is now reduced

since Nc ≤ Nη. By trying all the possible PPMka, the adversary will be able to find

the correct one if the effort is feasible. For this case, the adversary needs to capture

sufficient number of nodes, dm
η
e.

We consider two different strategies covering both ends of the spectrum. First,

the “unlimited capture” where the adversary captures as many nodes as required, and

the second approach, the “limited capture” in which only a relatively few nodes but

sufficient number of nodes are used.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 87

Figure 5.6: Pairing Attack without Collision

5.3 Pairing Attack with Unlimited Capture

If a pairing attack produces a partial key-set which has no ambiguity, the corresponding

N private keys can be correctly associated with the public key used. Each private key is

also associated with one of the master keys. By pairing the exposed node with other

nodes using the previously found private keys, if no collisions occur, all the PPMka’s

will eventually be found. However, due to the small field Fp and a large number of

elements Nη > p in the partial key-sets Rr, collisions are certain.

5.3.1 The Traitor Node

The pairing attack will be successful if each pairing results in non-colliding key-sets.

However, with suitable choice of keying parameters, this probability is very small. The

attack would have a better chance of success if one node can be found such that all the

N private keys associated with one public key, say V1 is known. This set of private

keys can be used to reduce the ambiguities in subsequent pairings. We call this node

the “traitor node”, since it can be used to betray other nodes. For example in Fig. (5.6),

both nodes A and B are possible traitor nodes.

Definition 9 (Traitor Node) A traitor node is one in which the PPMka of allN private

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 88

Figure 5.7: Traitor Node Can Be Used to Attack the PPMka

Figure 5.8: Traitor Node Cannot be Used to Attack the PPMka

keys associated with the N master keys, and all associated with one of the public keys,

are known.

Use of the Traitor Node Using the traitor node, another node say B, is paired with

it, see Fig. (5.7). If the number of couplings in RrB is N , they distinctly link the related

private keys in B to the exposed private keys in T revealing the PPMka, i.e. KB1 and

KB2 must be associated with Mx and My respectively, and both associated with public

key VB2.

This is not so straightforward if the number of couplings or couplers in RrB is 6= N .

The PPMka of the keys related to colliding couplers will be ambiguous, as in Fig. (5.8).

Fig. (5.8a) shows the partial key-set RrB having only 1 coupler. While KB1 and KB2

can both be associated with VB2, their associations with the master keys are ambiguous.

In Fig. (5.8b), RrB has more than N couplings, i.e. 3 instead of 2. Now it is not clear

whether KB2 or KB3 is associated with VB2 and master key My.

Proposition 2 (Existence of a traitor node) The reduced key-sets of a pair of nodes

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 89

A andB are obtained by multiplying one of each other’s public keys with its own private

keys, i.e.

RrA = KA1,··· ,NηVBi

RrB = KB1,··· ,NηVBj

A traitor node is found if and only if, either one of reduced key-sets RrA or RrB has N

couplings with the couplers. The node whose reduced key-set has exactly N couplings

is the traitor node.

In Fig. (5.9a), node A has exactly N couplings so all the private keys are associated

with the same public key, and each one is associated with one of the N master keys.

Node A is a traitor node. However, node B has 4 private keys which can be associated

with the 3 master keys. There are
(

4

3

)
= 4 possible PPMka and B is not a traitor node.

5.3.2 Finding a Traitor Node

To find a traitor node, a pair of nodes is taken, and using one of the counterpart’s public

keys, the partial key-sets RrA and RrB are computed, for example, see Fig. (5.9) for the

case N = 3. There are N = 3 couplers (two are repeated). Set RrA has Nc = N = 3

couplings, and RrB has Nc = 4. Let RC contain the couplers. The reduced key-sets

R′rA and R′rB are formed by excluding the elements belonging to RC . The node A

whose reduced set is disjoint with RC is a candidate as a traitor node.

In general, a traitor node can be found if;

1. Set R′rA is disjoint with (R′rB ∪RC), or

2. Set R′rB is disjoint with (R′rA ∪RC), or

3. Sets R′rA, R′rB, and RC are all disjoint with each other.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 90

Figure 5.9: Finding the Traitor Node

The integers in the key-sets are random and uniformly distributed and, by counting

the number θt of possible arrangements satisfying the above conditions, the probability

of finding a traitor node can be computed as a fraction of the total number of all possible

arrangements. The following counting problem enables the number of arrangements of

traitor nodes to be obtained.

Equivalent Counting Problem

To obtain the probability of finding a traitor node in the pairing attack, the number of

possible arrangements of the following equivalent combinatorial problem is considered.

Permutations of r Integers QNar

Before proceeding to count the occurrences of traitor nodes, the quantity, QNar will be

required. This quantity QNar is the number of permutations of Na integers taken from r

integers such that, in each case, all the r integers are used without any being omitted.

For example, in arranging 4 integers given the 3 integers {1, 2, 3}, permutations like

{1, 1, 2, 3} and {1, 2, 2, 3} will be included, but excludes permutations using only

one or two of the integers such as {1, 1, 1, 1} and {1, 1, 2, 1}, etc. The number of

permutations QNar can be obtained by considering cases where r = 1, r = 2, r = 3,

etc., integers are used in each case, as follows.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 91

Using r = 1: Consider that there is only one integer used to arrange in Na places.

The number of permutations is QNa1 = 1Na1 = 1.

Using r = 2: With 2 integers to use, there are 2Na permutations but these include(
2

1

)
[1Na] permutations which use only one integer. Hence, omitting those with only

one integer,

QNa2 = 2Na −
(

2

1

)[
1Na
]

= 2Na −
(

2

1

)
[QNa1]

Using r = 3: With 3 integers to use, the 3Na permutations include arrangements that

have only 1 and 2 integers as well. Hence, permutations which have all 3 numbers are,

QNa3 = 3Na −
(

3

1

)[
1Na
]
−
(

3

2

)[
2Na −

(
2

1

)
[1Na]

]
= 3Na −

(
3

1

)
QNa1 −

(
3

2

)
QNa2

= 3Na −
2∑
i=1

(
3

i

)
QNai

General Case In general, the number of permutations of Na integers using r integers,

in which repeats are permitted, but all the r integers are used, is,

QNar = rNa −
r−1∑
i=1

(
r

i

)
QNai where QNa1 = 1 (5.1)

5.3.3 Traitor Node Permutations

In Fig. (5.9), let the number of integers in setsR′rA, R′rB beNa andNb respectively. The

number of integers in set RC is Nc = N , and Na = Nb = Nη −N . The traitor nodes

may be found if the two sets R′rA and RBC are disjoint, or RAC and R′B are disjoint,

or all three sets R′rA, R′rB and RC are disjoint. These give the number of traitor node

permutations.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 92

Two Disjoint Sets

Consider the case where RA is disjoint with RBC . The set R′rA has Na, set RBC =

(R′rB ∪RC) has Nη elements. Consider now the various possible cases.

(a). R′rA has 1 Distinct Integer If set R′rA uses only 1 distinct integer, with all 1s’,

2s’, etc., the number of permutations using p integers ofR′rA is
(
p

1

)
1Na . The remaining

integers are used in RBC in (p − 1)Nη possible ways. The number of arrangements

possible is then,

θu1 =

(
p

1

)
× 1Na(p− 1)Nη

=

(
p

1

)
×QNa1 × (p− 1)Nη

where QNa1 = 1Na

(b). R′rA has 2 Distinct Integers If R′rA uses only 2 distinct integers taken from p

integers, the number of permutations of R′rA is
(
p

2

)[
2Na −

(
2

1

)
QNa1

]
, excluding

those with only 1 integer such as {1, 1, · · · , 1}, {2, 2, · · · , 2}, etc. The number of

permutations using 2 integers in R′rA disjoint with RBC is then,

θu2 =

(
p

2

)[
2Na −

(
2

1

)
1Na
]

(p− 2)Nη

=

(
p

2

)[
2Na −

(
2

1

)
QNa1

]
(p− 2)Nη

=

(
p

2

)
QNa2(p− 2)Nη

where QNa2 =

[
2Na −

(
2

1

)
QNa1

]

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 93

(c). R′rA has 3 Distinct Integers If R′rA has 3 distinct integers, there are
(
p

1

)
repeats

of single integers,
(
p

2

)
repeats of two integers which in turn has

(
2

1

)
repeats of single

integers which must be removed. Then, the number of possible arrangements is,

θu3 =

(
p

3

){
3Na −

[(
3

1

)
× 1Na

]
−
[(

3

2

)
×
(

2Na −
(

2

1

)
× 1Na

)]}
(p− 3)Nη

=

(
p

3

){
3Na −

[(
3

1

)
×QNa1

]
−
[(

3

2

)
×QNa2

]}
(p− 3)Nη

=

(
p

3

)
QNa3(p− 3)Nη

where QNa3 = 3Na −
3−1∑
i=1

(
3

i

)
QNai

(d). R′rA has r Distinct Integers In general, if R′rA has r distinct integers, the total

number of unique permutations excluding those with less than r distinct integers is,

θur =

(
p

r

){
rNa −

[(
r

1

)
QNa1 +

(
r

2

)
QNa2 + · · ·+

(
r

r − 1

)
QNar−1

]}
(p− r)Nη

=

(
p

r

)
QNar(p− r)Nη, where QNar = rNa −

r−1∑
i=1

(
r

i

)
QNai (5.2)

Overall, the permutations where set R′rA is disjoint with RBC is θu, given below,

θu =
Na∑
r=1

θur

i.e.,

θu =
Na∑
r=1

(
p

r

)
QNar(p− r)Nη

where QNar = rNa −
r−1∑
i=1

(
r

i

)
QNai, and QNa1 = 1

 (5.3)

This is the number of permutations in which there are ≤ N couplers between one

of the sets, e.g. R′rA and RC . This condition will reveal exactly N private keys in RrA

associated with the N master keys, i.e. identifying node A as a traitor node.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 94

Three Disjoint Sets

A traitor node is also found if all the sets R′rA, R′rB and RC are disjoint. The number of

permutations of these occurrences can be similarly found as follows.

(A). RC has 1 Distinct Integer Consider that RC uses one distinct integer, and the

remaining integers are used in the other sets. The number of permutations is,

θc1 =

(
p

1

)
[1]Nc =

(
p

1

)
QNc1

where QNc1 = [1]Nc

(a). R′rA has 1 Distinct Integer The remaining (p − 1) integers can be used in

set R′rA. First consider that R′rA uses only 1 distinct integer, while set R′rB uses the

remaining (p− 1− 1) integers. The number of permutations is,

θx11 =

(
p− 1

1

)
[1]Na (p− 1− 1)Nb =

(
p− 1

1

)
QNa1(p− 1− 1)Nb

where QNa1 = [1]Na

(b). R′rA has 2 Distinct Integers If set R′rA uses 2 distinct integers, the number

of permutations for R′rA and R′rB is,

θx12 =

(
p− 1

2

)[
2Na −

(
2

1

)
1Na
]

(p− 1− 2)Na =

(
p− 1

2

)
QNa2(p− 3)Nb

where

QNa2 =

[
2Na −

(
2

1

)
1Na
]

=

[
2Na −

(
2

1

)
QNa1

]

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 95

(c). R′rA has 3 Distinct Integers Permutations if Set R′rA uses 3 distinct numbers:

θx13 =

(
p− 1

3

)[
3Na −

(
3

1

)
1Na −

(
3

2

){
2Na −

(
2

1

)
1Na
}]

(p− 1− 3)Nb

=

(
p− 1

3

)[
3Na −

(
3

1

)
QNa1 −

(
3

2

)
QNa2

]
(p− 1− 3)Nb

=

(
p− 1

3

)
QNa3(p− 4)Nb

where QNa3 =

[
3Na −

2∑
i=1

(
3

i

)
QNai

]

(d). R′rA has Na Distinct Integers If set R′rA has Na (all) distinct numbers, the

number of permutations for R′rA and R′rB is,

θx1Na
=

(
p− 1

Na

)[
Na

Na −
(
Na

1

)
1Na − · · ·

]
(p− 1−Na)

Nb

=

(
p− 1

Na

)
QNaNa(p− 1−Na)

Nb

where QNaNa =

[
Na

Na −
(
Na

1

)
1Na −

(
Na

2

){
2y −

(
Na

1

)
1Na
}
− · · ·

]
= Na

Na −
Na−1∑
i=1

(
Na

i

)
QNai

Then for the case where RC has only one distinct integer, the permutations possible

are,

θd1 =

(
p

1

)
Qc1 ×

Na∑
i=1

(
p− 1

i

)
QNai(p− 1− i)Nb

(B). Two Distinct Couplers IfRC has two distinct numbers, the number of permutations

is,

θc2 =

(
p

2

)[
2Nc −

(
2

1

)
QNc1

]
=

(
p

2

)
QNc2

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 96

R′rA can use 1, 2, · · · , Na distinct numbers giving permutations:

θb21 =

(
p− 2

1

)
[1]Na (p− 2− 1)Nb =

(
p− 2

1

)
QNa1(p− 2− 1)Nb

θb22 =

(
p− 2

2

)[
2Na −

(
2

1

)
1Na
]

(p− 2− 2)Nb

=

(
p− 2

2

)
QNa2(p− 2− 2)Nb

...

θb2Na =

(
p− 2

Na

)
QNaNa(p− 2−Na)

Nb

where QNaNa = Na
Na −

Na−1∑
i=1

(
Nai

Q

)
Nai

Overall, the permutations for the case where there are 2 distinct integers in RC are,

θd2 =

(
p

2

)
QNc2 ×

Na∑
i=1

(
p− 2

i

)
QNai(p− 2− i)Nb

In general, if there are r integers in RC , the number of permutations is,

θdr =

(
p

r

)
QNcr ×

Na∑
i=1

(
p− r
i

)
QNai(p− r − i)Nb

Overall, the number of permutations for the case where there are 1, 2, · · · , N distinct

integers in RC , where in each case there are 1, 2, · · · , Na distinct numbers in R′rA, and

R′rB having the remaining unused integers is,

θd =
Nc∑
r=1

[(
p

r

)
QNcr ×

Na∑
k=1

(
p− r
k

)
QNak(p− r − k)Nb

]
where QNcr = rNc −

r−1∑
i=1

(
r

i

)
QNci

and QNak = kNa −
k−1∑
i=1

(
k

i

)
QNai


(5.4)

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 97

5.3.4 Probability of Finding a Traitor Node

Number of Traitor Node Permutations

The number of permutations where R′rA is disjoint with RBC is θu. Similarly, for the

cases where R′rB are disjoint with RAC , there are also θu permutations. However, 2× θu

would double count the cases where R′rA, R′rB and RC are all disjoint with each other.

Hence the overall number of arrangements for; R′rA disjoint with (R′rB ∪Rc) or, R′rB

disjoint with (R′rA ∪Rc) or, R′rA disjoint with R′rB disjoint with Rc is,

θt = 2θu − θd (5.5)

The total number of possible arrangements of p integers in sets R′rA, R′rB and RC is(
pNη−N ·pNη−N ·pN

)
= p2Nη−N . Hence the probability of finding a traitor node is Pt

given by,

Pt =
2θu − θd
p2Nη−N

where,

θu =
Na∑
r=1

(
p

r

)
QNar(p− r)Nη

θd =
Nc∑
r=1

[(
p

r

)
QNcr ×

Na∑
k=1

(
p− r
k

)
QNak(p− r − k)Nb

]
QNar = rNa −

r−1∑
i=1

(
r

i

)
QNai and QNcr = rNc −

r−1∑
i=1

(
r

i

)
QNci


(5.6)

The probabilities Pt for keying parameters are given in Table. (5.1).

Simulation of Probabilities

To check the correctness of Eqns. (5.3), (5.4), and (5.6), a MATLAB programme was

written and used to simulate probabilities for different cases. This is given in Appendix

B.1. First, set RC is filled with N random integers ∈ [0, p − 1]. Then sets R′rA and

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 98

η N
Probability of finding a Traitor Node

p = 13 p = 17 p = 19 p = 23 p = 31

6

6 1.07×10−16 1.68×10−15 6.25×10−15 7.41×10−14 5.60×10−12

7 5.23×10−20 8.71×10−190 3.39×10−18 4.59×10−17 5.04×10−15

8 2.54×10−23 4.37×10−22 1.75×10−21 2.58×10−20 3.72×10−18

7

6 2.42×10−20 4.05×10−19 1.59×10−18 2.17×10−17 2.47×10−15

7 2.89×10−24 5.04×10−23 2.03×10−22 3.05×10−21 4.68×10−19

8 3.47×10−28 6.12×10−27 2.51×10−26 4.00×10−25 7.54×10−23

8

6 5.46×10−24 9.49×10−23 3.82×10−22 5.74×10−21 8.68×10−19

7 1.62×10−28 2.86×10−27 1.18×10−26 1.88×10−25 3.61×10−23

8 4.81×10−33 8.59×10−32 3.57×10−31 5.92×10−30 1.32×10−27

Key sizes 64 bits, 80 bits, 96 bits, 112 bits, 128 bits

Table 5.1: Probabilities of Finding a Traitor Node

R′rB are filled with (Na = Nη − N) random integers. Sets RBC = (R′rB ∪ RC) and

RAC = (R′rA ∪ RC) are formed. Then set R′rA is compared with (RBC) and R′rB is

compared with (RAC) and are counted if they intersect for each run. By dividing the

total number of counts when they intersect with the total number of runs, the probability

of finding Pt can be found. Some runs take an extremely long time. The results for

reasonable number runs up to 1012 compare very well with the Eqn. (5.6), as shown in

Table (5.2).

The recursive expressions for QNar and QNcr in Eqn. (5.6) can be efficiently

computed if they are pre-calculated and then used to compute θd and θu. The Linux

Genius Mathematical Tool code to compute Pt as in Eqn. (5.6) is given in Appendix

B.1.

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 99

N η
p = 7 p = 13 p = 1023

Pt Simulation Pt Simulation Pt Simulation

2
2 0.47016 0.4702 0.6951 0.6948 0.9961 0.9961

3 0.06995 0.0699 0.2450 0.2451 0.9844 0.9845

3
2 0.14496 0.1450 3.8865× 10−1 3.887× 10−1 0.9912 0.9912

3 3.606× 10−3 3.600× 10−3 3.5108× 10−2 3.510× 10−2 0.96521 0.9653

4 6.008× 10−5 6.160× 10−5 1.3587× 10−3 1.400× 10−3 0.9234 0.9237

4
3 1.374× 10−4 1.304× 10−4 2.7208× 10−3 2.700× 10−3 0.93865 0.9385

4 4.934× 10−7 5.3182× 10−7 1.9545× 10−5 1.9539× 10−5 0.8673 0.8679

Table 5.2: Comparing Pt with Simulation Results

5.3.5 Node Capture to Find a Traitor Node

If the adversary is able to capture any number of nodes and repeatedly carry out the

pairing attacks, eventually a traitor node will be found. This attack should be done

recursively to minimise the number of nodes required. As a new node is captured, it is

paired with each of the previously captured nodes to find a traitor node.

The number of nodes that need to be captured can be estimated. For given keying

parameters of N, η and p, the probability of finding a traitor node Pt can be computed

from Eqn. (5.6). The expected number of attempts to find one occurrence is then

1
Pt

. Each node has η public keys, so each pairing allows η2 attempts. The number of

expected pairs of nodes required is then reduced to 1
Pt
× 1
η2

= 1
Ptη2

. If the number of

nodes required to be captured is nc then, the number of pairs that are required to be

formed is
(
nc
2

)
, i.e.

nc!

2!(nc − 2)!
>

1

η2Pt

i.e.
nc(nc − 1)

2
>

1

η2Pt

giving nc >
1

2

(
1 +

√
1 +

8

η2Pt

)
(5.7)

The number of nodes required to be captured are shown in Table (5.3) for some

parameters with p = 13 ∼ 31 and N, η = 6, 7, 8. It can be seen that with suitable

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 100

values, the probabilities are extremely small and thousands of nodes need to be captured.

Effort Required

As each node is captured and paired with all the previous nodes to find the traitor node,

the number of pairings increase as an arithmetic progression. Using nc captured nodes,

if the attempt is successful only at the last pairing, the total number of pairing operations

is then,

Θp =
nc−1∑
u=1

u =
1

2
nc(nc − 1) (5.8)

Each pairing involves Nη2 multiplication of Nη (m×1) row vectors with η (1×m)

column vectors in each node, and comparing the results each time. Just counting the

multiplication operations, there are 2×mNη2 operations. The number of multiplication

operations to find a traitor node is then,

Θm = nc(nc − 1)mNη2 (5.9)

If the capture size is nc = 10, 000, N = 12, η = 4, m = 16, then Θm = 3.07×1013.

While this number is large, it is feasible using a very powerful computer.

5.3.6 Use of the Traitor Node

Finding a traitor node does not break the scheme but only improves the chances of

finding the PPMka in subsequent pairings. As shown in Fig. (5.8), a node B paired with

the traitor node must have exactly N couplers in order to distinctly reveal its PPMka.

The probability of finding this in node B is the same as finding the traitor node itself.

It can be seen that to discover the PPMka by finding a pair of nodes in which one of

them would expose their PPMka requires a large number of nodes if suitable keying

parameters are used. This is due to the operations over a small field Fp. The small

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 101

η N
Values of prime, p

13 17 19 23 31

4

4 8.05×101 3.27×101 2.27×101 1.25×101 5.6

5 7.72×102 2.64×102 1.66×102 7.49×101 2.32×101

6 7.98×103 2.43×103 1.43×103 5.57×102 1.29×102

7 8.55×104 2.41×104 1.35×104 4.70×103 8.45×102

8 9.34×105 2.49×105 1.34×105 4.31×104 6.32×103

5

4 9.07×102 3.03×103 1.88×102 8.27×101 2.45×101

5 1.89×104 5.51×103 3.16×103 1.16×103 2.38×102

6 4.12×105 1.11×105 6.02×104 1.96×104 3.01×103

7 9.16×106 2.35×106 1.23×106 3.67×105 4.51×104

8 2.05×108 5.10×107 2.61×107 7.31×106 7.58×105

6

4 1.16×104 3.42×103 1.97×103 7.37×102 1.56×102

5 5.07×105 1.35×105 7.30×104 2.34×104 3.49×103

6 2.28×107 5.74×106 2.98×106 8.66×105 9.96×104

7 1.03×109 2.53×108 1.28×108 3.48×107 3.32×106

8 4.68×1010 2.85×1010 1.42×1010 3.66×109 2.95×108

7

4 1.16×104 3.42×103 1.97×103 7.37×102 1.56×102

5 5.07×105 1.35×105 7.30×104 2.34×104 3.49×103

6 2.28×107 5.74×106 2.98×106 8.66×105 9.96×104

7 1.03×109 2.53×108 1.28×108 3.48×107 3.32×106

8 4.68×1010 2.85×1010 1.42×1010 3.66×109 2.95×108

8 1.09×1013 2.58×1012 1.27×1012 3.20×1011 2.33×1010

8

4 2.24×106 5.79×105 3.06×105 9.32×104 1.22×104

5 4.11×108 1.01×108 5.12×107 1.40×107 1.37×106

6 7.57×1010 1.82×1010 9.04×109 2.33×109 1.90×108

7 1.39×1013 3.30×1012 1.63×1012 4.07×1011 2.94×1010

8 2.55×1015 6.03×1014 2.96×1014 7.26×1013 4.86×1012

Key Sizes 64 bits, 80 bits, 96 bits, 112 bits, 128 bits

Table 5.3: Capture Sizes to find a Traitor Node

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 102

Figure 5.10: Pairing Attack for Case with N = 2, η = 3

p also means that each of the key-set integers is small. However, due to the use of

multiple keys in permutations, there are Nη2 integers making it possible to construct

large pairwise keys of 64, 80, 112, 128 and even 192 bits. On the other hand, if p is

large, for example 16 bits, the probability of collisions is small and the pairing attack

will quickly expose the PPMka of the private keys.

5.4 Pairing Attack with Limited Capture

In the pairing attack, using one of the η public keys say VA1 with node B, we obtain

the partial key-sets RrA and RrB, each with Nη elements in [0, p− 1], see Fig. (5.10).

Let node A have Nci couplings, each one possibly linking the related private key say

KAx to one of the master keys, say M1, and the public key say, VA1 that is used. These

linkages can be used to form the equation KAx = VT
A1

M1. Since each one is as likely to

be correct, there are Nci ways to do this. This is smaller than the brute force method

where there are Nη possibilities. Next, using another public key say VA2, Nc2 couplings

are obtained, giving Nc2 possible equations, and so on. By using all the η public keys

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 103

for the pairing, the total number of equations to solve for M1 is,

Φ1u =

η∏
u=1

Ncu (5.10)

This process is repeated for m
η

nodes to obtain (m×m) equations for solving M1 and

the total number of possible solutions is,

Φ1 =

m
η∏

v=1

(
η∏

u=1

Ncuv

)
(5.11)

The number of couplings obtained in each pairing is Nci varies for each run, but for

simplicity, if the mean value is Nc, then Eqn. (5.11) can be simplified to,

Φ1 = [Nc]
m
η
η = [Nc]

m (5.12)

After solving for M1, the associated private keys can be removed and the remaining

keys used to solve for M2, · · · ,MN . The total number of possible solutions is then

Φ =
m∑
i=0

[Nc − i]m (5.13)

5.4.1 Binomial Distribution Approximation

Fig. (5.11) shows the distribution of the number of couplings using a simulation of the

pairing attacks for the case p = 31, N = 6, η = 6. It suggests that the distribution can

be approximated by the binomial distribution,

P (X = x) =

(
Nη

x

)
pxr (1− pr)(Nη−x) (5.14)

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 104

Figure 5.11: Distribution of the Number of Couplings for p = 31, N = 6, η = 6

The probability pr can be found by using P (X = N) = Pt from Eqn. (5.6), i.e.,

Pt =

(
Nη

N

)
pNr (1− pr)(Nη−N) (5.15)

The mean of the binomial distribution is given by,

µ = Nηpr (5.16)

If we let the expected number of couplings in a pairing be Nc = µ, then the number of

iterations required is,

Φ =
N−1∑
i=0

[Nc − i]m =
N−1∑
i=0

[µ− i]m (5.17)

Table (5.4) gives the probable number of master keys solutions in log10(Φ), for

various keying parameters. The quantity Φ represents the number of iterations required

to solve for the master keys and, with suitable parameters, can be made as large as

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 105

desired. For example with m = 24, p = 31, N = 8, η = 8, Φ = 1040.57 = 2134.

5.5 Security Strength of the BYka Scheme

In the above section §5.3.4, to find a traitor node, the effort and number of steps to

capture, extract, compute and compare, can be very large, and it would require nc nodes

to be captured. A traitor node, if available, does not break the scheme but makes it

easier to find the PPMk of other nodes. If the number of nodes in the network is

less than nc, then the most efficient way to break the scheme is the limited capture

pairing attack described above in §5.4. It results in the least amount of ambiguities to

associate the private key with the master key and public key used. The total number of

trials required to derive the master keys is Φ. Each trial consists of solving the system

of equations, testing the master key, as detailed in §4.3.4 which includes at least 103

multiplication operations for m ≥ 16. In NIST (Barker et al., 2012), the definition of

security strength is the number of operations required to break a scheme, see §1.3.3. To

be very conservative, consider that each trial is just one operation. Then the security

strength of the BYka scheme is given by Φ. By selecting appropriate keying parameters,

it can be 64, 80, 112, 128 or 192 bits.

Definition 10 (BYka Scheme Security Strength) If the network size is less than the

traitor node capture size, then the security strength of the BYka scheme is given by Φ,

the number of trials of solutions of the system of equations to derive the master keys,

given by Eqn. (5.17).

5.6 Summary

The private-public-master-key-association (PPMka) information is crucial for breaking

the underlying Blom’s scheme. The PPMka cannot be found by examining the node and

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 106

Values of logΦ, Probable number of master key solutions Φ
η N p = 13 p = 17 p = 31
m 12 16 24 12 16 24 12 16 24

3
3 8.39 11.18 16.78 8.39 11.18 16.78 7.22 9.63 14.45
4 10.84 14.45 21.67 10.84 14.45 21.67 9.34 12.45 18.68
5 12.50 16.66 24.99 12.50 16.66 24.99 11.45 15.27 22.90
6 13.75 18.34 27.51 13.75 18.34 27.51 12.95 17.27 25.90
7 14.77 19.69 29.53 14.45 19.27 28.90 13.75 18.34 27.51
8 15.61 20.82 31.23 15.35 20.46 30.69 14.77 19.69 29.53

4
3 10.84 14.45 21.67 10.14 13.52 20.28 9.34 12.45 18.68
4 12.95 17.27 25.90 12.50 16.66 24.99 11.45 15.27 22.90
5 14.11 18.82 28.23 14.11 18.82 28.23 13.37 17.82 26.74
6 15.35 20.46 30.69 15.06 20.08 30.13 14.45 19.27 28.90
7 16.34 21.79 32.68 16.11 21.48 32.22 15.61 20.82 31.23
8 16.98 22.64 33.96 16.98 22.64 33.96 16.56 22.08 33.13

5
3 12.00 16.00 24.00 12.00 16.00 24.00 10.84 14.45 21.67
4 14.11 18.82 28.23 13.75 18.34 27.51 12.95 17.27 25.90
5 15.35 20.46 30.69 15.35 20.46 30.69 14.45 19.27 28.90
6 16.56 22.08 33.13 16.34 21.79 32.68 15.87 21.16 31.73
7 17.37 23.16 34.73 17.37 23.16 34.73 16.78 22.37 33.55
8 18.22 24.30 36.44 18.06 24.08 36.12 17.73 23.63 35.45

6
3 13.37 17.82 26.74 12.95 17.27 25.90 12.00 16.00 24.00
4 15.06 20.08 30.13 14.77 19.69 29.53 14.11 18.82 28.23
5 16.34 21.79 32.68 16.34 21.79 32.68 15.61 20.82 31.23
6 17.55 23.40 35.10 17.37 23.16 34.73 16.98 22.64 33.96
7 18.38 24.50 36.76 18.22 24.30 36.44 17.90 23.86 35.79
8 19.09 25.46 38.19 19.09 25.46 38.19 18.68 24.90 37.35

7
3 14.11 18.82 28.23 13.75 18.34 27.51 12.95 17.27 25.90
4 15.87 21.16 31.73 15.87 21.16 31.73 15.06 20.08 30.13
5 17.18 22.90 34.35 17.18 22.90 34.35 16.56 22.08 33.13
6 18.22 24.30 36.44 18.22 24.30 36.44 17.73 23.63 35.45
7 19.09 25.46 38.19 19.09 25.46 38.19 18.68 24.90 37.35
8 19.95 26.60 39.91 19.84 26.45 39.68 19.48 25.97 38.96

8
3 14.77 19.69 29.53 14.77 19.69 29.53 13.75 18.34 27.51
4 16.56 22.08 33.13 16.56 22.08 33.13 15.87 21.16 31.73
5 17.90 23.86 35.79 17.90 23.86 35.79 17.37 23.16 34.73
6 18.96 25.28 37.92 18.82 25.09 37.64 18.53 24.71 37.06
7 19.84 26.45 39.68 19.72 26.30 39.44 19.48 25.97 38.96
8 20.59 27.46 41.18 20.49 27.32 40.98 20.28 27.04 40.57

Key sizes 64 bits, 80 bits, 96 bits, 112 bits, 128 bits

Table 5.4: Probable Number of Master Key Solutions Assuming Nc = µ, in log(Φ)

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 107

its keys, and the brute force attempt would require an infeasible amount of resources and

time. However, if a pair of nodes are taken, and using each other’s public keys with their

private keys to compute their pairwise key-sets R results in exactly N unique identical

integers across both sets, then the PPMka of the related private keys are exposed. This

is not possible in the BYka scheme where the key computations are over a very small

e are exactly N unique identical integers shared in both sets, then the PPMka of the

related privafield Fp and p is a prime ≤ 31. Most likely, there are more than N unique

identical integers shared across the two sets, making the PPMka ambiguous.

An efficient approach is to use the pairing attack where only one of the nodes’

public keys is used to compute the partial key-sets in each node. Now, there are only

Nη integers in these key-sets, increasing the chance of having only unique integers.

However, due to the small number of integers available, there will be ambiguities. To

make headway, a traitor node, where all the private keys related to one of the master

keys are known, is required. If this node is found, it does not break the scheme, but

subsequent pairings will be slightly easier. The analytical results were obtained to

estimate the probability of finding a traitor node and the number of nodes to capture

to find one. This showed that using suitable keying parameters, this probability can be

made so small that it would require tens of thousands of nodes to be captured. If the

network size is smaller than this, then the PPMka cannot be exposed using this attack.

Alternatively, without finding a traitor node, the pairing attack produces the smallest

number of elements in the partial key-sets. This results in the smallest number of

solutions Φ possible, and is much smaller than the brute force method. Using suitable

parameters, the analytical results showed that Φ can be made extremely large requiring

264 up to 2192 solutions. This means the BYka scheme is able to achieve security

strengths of 64, 80, 112, 128, and 192 bits using suitable keying parameters.

The analysis showed that due to the lack of the PPMka information, the BYka

scheme can be used in networks of any desired size up to millions of nodes. The BYka

CHAPTER 5. CRYPTANALYSIS OF THE PPMKA 108

scheme is secure in terms of the strengths of all the keys used, the underlying Blom’s

scheme cannot be broken even if the entire network of nodes was captured, and the

effort required to break it can be designed to meet adequate security strengths in the

NIST recommendations.

Chapter 6

Evaluation and Performance

6.1 Introduction

The previous chapters showed that the Blom’s scheme can be modified so that it is

secure against a large number of nodes being compromised. The analytical results

obtained enable predictions of the number of nodes that need to be captured in order to

discover the PPMka, and the number of trials Φ required to find the master keys. These

results are now verified by conducting some experiments.

The second section shows how the BYka scheme developed in this thesis can be

implemented in real sensor nodes. This is done using the MICAz mote to demonstrate

its practicality and to obtain some information on the computation times for comparison

with other schemes.

6.2 Experiment – Attacks to Obtain the PPMka

The aim of the experiment is to mount the pairing attacks on the implementations of the

BYka scheme to find traitor nodes and the number of possible master key solutions Φ

for various keying parameters. These will be compared with theoretical values obtained

109

CHAPTER 6. EVALUATION AND PERFORMANCE 110

in the previous chapter.

The BYka scheme was implemented using a computer program running MATLAB.

The computer hardware used was an i5-2500 - 3.3 GHz dual core server with 16 GB

RAM. The software used was MATLAB R2012b running in Windows Server 2008 R2

Datacenter. Using the given keying parameters, N, η,m, p, and q and its built-in random

number generator, the program acting as TA, generates its master keys. It creates a

node by generating a new unique random ID s ∈ [0, q − 1] satisfying Eqn. (3.6), and

computes the private keys using Eqn. (3.3). The keying parameters, IDs and private

keys can be transferred to the sensor device using a cable and then deployed in a real

implementation.

6.2.1 Simulation of Attacks

In these experiments, the capturing of nodes and extracting their keying material are

simulated in the computer program by simply storing the nodes into a “pool” of captured

nodes. This greatly speeds up the experiment without any loss of realism. Real life

attacks involving physically removing the nodes and extracting their keys would take

much longer and while being more realistic, would not contribute to any better result.

Computer Program

The main steps for the program are shown in Fig. (6.1), and the code written using

MATLAB is given in Appendix (B.2). The programme, using the given keying parame-

ters N, η,m, p, and q, first generates the N master keys over the prime field Fp. Then it

creates a node by selecting a random IDA complying with Eqn(3.6) and computes the

public keys and the corresponding private keys. This node is then put into the capture

pool of nodes collectively called “nodes A”. Next, it generates a new node B such that

its ID is new and not in the pool. Then, taking one node A from the pool, and for each

CHAPTER 6. EVALUATION AND PERFORMANCE 111

Figure 6.1: Attack on PPMka

public key in node B and A, the partial key-sets are computed and compared to identify

the couplers (identical integers across the two key-sets). The numbers of couplers in

each key-set are counted and if either set has ≤ N couplers, a traitor node is found. If

not, node B is added to the capture pool of nodes A. A new node B is created and the

pairing attack repeated. At the same time, the number of couplings in nodes A and B

are accumulated for the first m
η

nodes. This simulates capturing just sufficient of nodes

to obtain the required sets of equations to solve for the master keys.

When a traitor node is found, a new set of master keys is generated and the process

repeated to obtain 1000 values of traitor capture sizes using the same keying parameters

of N, η, p and q. The experiments were repeated for various keying parameters. As

some runs can take an extremely long time, measured in months and years using the

available computing resources, the parameters are chosen so that results can be obtained

within reasonable times.

CHAPTER 6. EVALUATION AND PERFORMANCE 112

6.2.2 Experimental Results

Execution Times

Each pairing attack requires computations of the partial key-set involving multiplica-

tions of one (1×m) row vector and Nη (m×1) column vectors. Just considering the

multiplication operations, there are mNη operations. For one pair of nodes, there are η

keys to use with each other, giving a total of mNη×η×η = mNη3 multiplications. As

a new node is “captured”, it is paired with the each of the previous nodes recursively

until the traitor node is found. If nc nodes are captured and the traitor node is found

at the last possible pairing,
nc∑
i=1

(i− 1) comparisons need to be made. The computation

time for one run is approximately,

Ta ∝
nc∑
i=1

(i− 1)mNη3 =
1

2
nc(nc − 1)mNη3

As an indication, for the case m = 24, p = 31, η = 4, N = 5 with 1000 runs the

MATLAB script took 32, 899 seconds capturing an average of 21.48 nodes. Using this

result to obtain the proportional constant, the computation time per run is approximately,

Tnc ≈ 1.623× 10−5(nc − 1)ncmNη
3 seconds

Some parameters, for example with p = 31, m = 24, N = 6 and η = 6, the ex-

pected traitor capture size is > 99, 000 and to find a traitor node can take approximately

over 150 years using our system.

CHAPTER 6. EVALUATION AND PERFORMANCE 113

Confidence Interval for the Means

The confidence intervals for the number of solutions of master keys Φ were computed

as this is an important quantity related to the security strength. In our experiments, the

samples sizes (runs) are ≥ 100. It is assumed that the runs are independent and the

distribution of errors in the runs can be approximated as a normal distribution. For 95%

confidence interval, the critical value z = 1.96 was used, and the confidence interval is

given by, x̄± 1.96 s√
n

.

Traitor Capture Sizes

Table (6.1) shows the traitor node capture sizes nc for various keying parameters which

are able to yield results within a reasonable time.

Comparison with Theory Fig. (6.2) shows the typical distribution of the results of

pairing attacks over 1000 runs for the simple case m = 24, p = 31, η = 4, N = 5. In

Fig (6.2(a)), the mean was 21.48 captured nodes. The estimated capture size from Eqn.

(5.6) and Table (6.1) is 23 nodes which is larger. The capture sizes in the experiments are

consistently smaller than the theoretical values. This may be explained by differences

between the way a node is created in the theoretical and experimental cases.

Rejected Nodes The theoretical estimated capture size assumes that the node

IDs are uniformly distributed over Fq and as it simply counts the number of attempts

required, it also allows for a newly captured node to have the same ID as those previously

captured. In addition, it allows for nodes with malformed IDs, i.e. those not complying

with Eqn. (3.6). On the other hand, in the experiments, all nodes have unique IDs to

reflect real systems, and there are no malformed IDs. As a node is created if it has a

malformed ID, or is identical to any node in the pool, it is “rejected” and not added

to the pool. This does not happen in the theoretical case. As the number of captured

CHAPTER 6. EVALUATION AND PERFORMANCE 114

(a) Traitor Capture Sizes (b) Number of Solution Sets

Figure 6.2: Result of Pairing Attacks on the BYka Scheme Using m = 24, p = 31, η =
4, N = 5

nodes in the experiment increases, the number of rejected nodes increases. As a result

the number of nodes captured in the experiment would be always less than the number

given by Eqn. (5.7).

Estimate of Rejected Nodes An ID is malformed if sm−1 < q. For m = 24, q =

65521, an ID can take all values except for 0 and 1. Another condition is that sm−1 ≡ r

(mod p), and r 6= 0 or r 6= s. This condition is easily met and the number of malformed

ID are ignored for this estimate.

In the experiments, if the current captured pool size is nc, then the probability

of getting another node with the same ID as any one in the pool is nc(1
q
). The

total probability that a node has the same ID as one in the pool when the sizes were

{1, 2, 3, · · · , nc}, is
nc∑
i=1

i
q

= nc(nc+1)
2q

.

If the total number of nodes that would have been captured without any rejection is

nt, then ,

nt = nc +
nc(nc + 1)

2q
×nc

CHAPTER 6. EVALUATION AND PERFORMANCE 115

Line η N
Traitor Capture size nc Include rejects

% Diff
Estimated Expt. nr Expt.+ nr of estimated

1 4 4 5.59 5.23 0.001 5.231 6.9

2 6 3 10.76 9.62 0.008 9.628 11.2

3 4 5 23.23 21.48 0.079 21.559 8.1

4 5 4 24.45 21.37 0.078 21.448 14.0

5 7 3 37.57 33.04 0.284 33.324 12.7

6 4 6 128.05 113.53 11.264 124.795 2.6

7 6 4 155.91 135.88 19.281 155.166 0.5

8 5 5 237.99 209.22† 70.221 279.441 −14.8†

Table 6.1: Comparison Between Analytical and eExperimental Results form = 24, p =
31, †600 Runs only as it took too long

Let the number of rejected nodes be nr, i.e. nt = nc + nr. Then

nc + nr = nc +
nc(nc + 1)

2q
×nc

nr =
n2
c(nc + 1)

2q
(6.1)

The expected rejected nodes nr are added to the experimental capture sizes for

comparison. This is shown in Table (6.1), arranged in ascending order of nc for clarity.

For small values of nc, lines 1 to 5, the percentage difference between the theoretical

and experimental nc is quite large, up to about 14%. Since nc is small, less than about

33 nodes, the estimates of the rejected nodes may be quite inaccurate. However, for

cases where nc are larger between 100 to 140 nodes in lines 6 and 7, the % differences

are less than 2.6% of the theoretical value. Line 8 is an anomaly with an error that is

about 14.8%. This may be due to the capture size being obtained for 600 runs only

because of the long execution time, instead of 1000 in other cases.

CHAPTER 6. EVALUATION AND PERFORMANCE 116

η N Calculated
Experimental Φ with 95% confidence

Φ Φmean std, s Φmin Φmax

4

4 2.61×1023 2.08×1024 2.1013×1024 1.95×1024 2.21×1024

5 5.87×1026 2.34×1027 1.8598×1027 2.23×1027 2.46×1027

6 2.20×1029 7.32×1029 5.2156×1029 7.00×1029 7.65×1029

5

4 1.69×1026 1.85×1027 9.7374×1026 1.79×1027 1.91×1027

5 2.67×1029 1.39×1030 8.8243×1029 1.33×1030 1.44×1030

6 7.87×1031 4.55×1032 2.6604×1032 4.39×1032 4.72×1032

6

4 3.06×1028 2.47×1029 1.9004×1029 2.36×1029 2.59×1029

5 3.71×1031 3.41×1032 2.3599×1032 3.26×1032 3.56×1032

6 9.13×1033 1.09×1035 5.3238×1034 1.05×1035 1.12×1035

7

4 2.33×1030 2.78×1031 1.8956×1031 2.67×1031 2.90×1031

5 2.89×1033 3.82×1034 2.0717×1034 3.69×1034 3.95×1034

6 4.29×1036 1.14×1037 5.1243×1036 1.11×1037 1.17×1037

Table 6.2: Comparison Between Analytical and Experimental Results for Φ using
m = 24, p = 31

Number of Solutions Φ

Fig. (6.2(b)) shows the distribution of the number of possible of solutions for pairing

attacks over 1000 runs for the simple case m = 24, p = 31, η = 4, N = 5. The mean

was 8.467× 1026 compared to 5.428× 1026 computed from Eqn. (5.15). Interestingly,

there were 4 cases where the number of possible solutions were below 1020, with one

case with only 187, 000 possibilities. This particular case with 1000 runs took over 9

hours on our system.

Table (6.2) shows the comparison between the theoretical estimated and experi-

mental values of Φ. The estimated values are based on approximating the couplings

as a binomial distribution, Eqn. (5.15), (5.17). The mean µ was calculated by solving

Eqn. (5.15) to obtain the probability pr. The experimental values of Φ, are obtained as

the product of Nc1,··· ,m where Nc are the number of couplings obtained in each pairing.

The values of Φ, which are the number of sets of master key solutions, are consistently

CHAPTER 6. EVALUATION AND PERFORMANCE 117

Security
Calculated Expt Φ 95% confidence Parameters

Strength Φ Φmean Φmin Φmax p m η N

192 1.00×1058 3.03×1058 2.92×1058 3.14×1058 61 38 4 12

128 9.04×1038 1.68×1041 1.64×1041 1.72×1041 31 24 5 11

112 3.72×1035 2.33×1036 2.28×1036 2.38×1036 31 24 4 11

80 8.19×1024 1.84×1025 1.80×1025 1.88×1025 23 24 3 12

64 2.06×1019 8.47×1018 8.36×1019 8.58×1019 31 24 3 12

Table 6.3: Comparison Between Calculated and Experimental Security Strength. Φ is
Number of Trials Required

larger than the calculated values by a factor of about 10. The 95% confidence level

for Φmean was calculated using (Φmean ± 1.96 s√
n

) where s is the standard deviation

and n the sample size (runs). They showed that the theoretical estimated values are

conservative approximations.

Security Strength The security strength is measured as the number of operations to

break the cryptosystem using a most efficient algorithm, see §1.3.3. The pairing attack

using one public key at a time gives the least number of possible solutions Φ. If we

consider each operation as one solution for the master key, testing it, etc., as detailed

in §4.3.4, Φ can be considered (very conservatively) as the security strength for the

BYka scheme. Table (6.3) shows the various security strengths based on the theoretical

estimated values which are more conservative than the experimental ones.

6.3 Hardware Implementation

The BYka scheme was implemented in a commercial sensor device to demonstrate its

practicality as well as to determine the pairwise key computation times for comparison

with other schemes. This thesis is not about implementation and no effort was made to

optimise, calibrate, or to evaluate the operational aspects in real networks.

CHAPTER 6. EVALUATION AND PERFORMANCE 118

6.3.1 Hardware and Software Platforms

The MICAz mote (Memsic Corp., 2012) is chosen as the hardware platform in this study

so that the results can be meaningfully compared to those obtained by other researchers

who often use this device as well. The MICAz sensor mote hardware consists of an

8-bit ATmega 128L µController @ 8 MHz, with 4 KB EEPROM, 128 KB Flash ROM,

and 4 MB RAM. The on-board C2420 chip has an IEEE 802.15.4 radio transceiver and

an AES hardware engine.

The operating system used is TinyOS-2.1.1 (P. Levis, 2006), used in many other

works as well. It is based on the nesC language (Gay et al., 2003), developed for

platform flexibility, and cross-platform networking.

6.3.2 Experimental Procedure

The private keys were installed in the program code. They were not exchanged by

radio but the exchange simulated by storing the public key ID of the neighbour as a

variable. The code was kept to the bare minimum for key computation and switching

on the LEDs at the start and end of 100 computation iterations. The time taken was

measured using a stop watch. The power supply to the node was regulated at 3.1 V and

the average current during computation was measured to be 8.7 mA. This is used for

estimating the energy used. The RAM and ROM requirements were obtained from the

TinyOS compiler outputs.

6.3.3 Performance Measures

ROM Requirements The main storage requirements are for the private key-sets and

the programme code. The private key-set requires a storage of Qo = ηNm × b bits.

This is static and can be stored in flash memory. The number of bits b used is ≤ 5 bits.

To simplify coding, 1 byte is used for each data unit. This results in a wastage of 37.5%

CHAPTER 6. EVALUATION AND PERFORMANCE 119

Listing 2: BYka Pairwise Key Computation
Input: Neighbour Node’s public key-tag sB
Output: The pairwise key Kpair

Initialise RAik = 1 # Initialise and make non-zero
for j = 1 to η do

VBj = (sB + (j − 1))u−1 (mod q)
for i = 1 to η do

for k = 1 to N do
for u = 1 to m do

RAik = RAik +KAiku
VBj (mod p)

end
end

end
end
Kpair = 1
for i = 1 to η do

for k = 1 to N do
Kpair = Kpair×RAik (mod Ks)

end
end

if b = 5 bits and 50% if b = 4 bits. If necessary, to save memory, the code can be

written to splice up the 8 bit memory spaces and fully utilise all the bits for storing the

private keys. This would require additional lines of code and was not investigated in

this study. The storage for the private key-set is then Qo = Nηm bytes.

BYka Key Computation Code Consider that node A has obtained node B’s ID sB.

In our implementation, the uth public key vector element VBju = (sB − j − 1)u−1

(mod q) is generated once and used with all the uth private key elements to obtain

RAiku
=

m∑
u=1

KAiku
·
[
(sB + j − 1)u−1 (mod q)

]
(mod p). This requires only one byte

in RAM instead of generating and storing all the ηm elements in VBju . The computation

pseudo code is given in Listing (2).

RAM Requirements During execution, RAM is required for some counters, the

public vector, the key-set RA of Nη2 integers, and the final pairwise key of log2(Ks)

CHAPTER 6. EVALUATION AND PERFORMANCE 120

bits, where Ks is a prime of the desired key size. While all the mη elements of the

public keys need to be computed, the code is written such that only one element is

computed and used at a time, using only one memory space in RAM.

Overall, the largest amount of RAM required is for the pairwise key-set, QR =

Nη2× b bits. If one byte is used for each b bits element in R, then the RAM required is,

QR = Nη2 -bytes

The requirement for RAM is very small. Even with large values of N = 12, η = 4,

QR = 192 bytes plus 1 byte for each of the counters i, j, k and 2 bytes for the seed sB.

Pairwise Key-set Computation Time The pairwise key-set computation involves

Nη2 rounds of matrix multiplications, each one involving two steps: generating the

public key vector, and multiply it with the pairwise key to obtain a pairwise key-

set element. After these, the final pairwise key is computed from the pairwise-set

integers either by sorting and concatenation, multiplication modulo Ks, or counting the

occurrences and input into a hash function. We used sorting and concatenation in our

case.

The public key generation requires η(m − 2) modulo q multiplications since the

first two terms are obvious. The pairwise key-set involves η×Nη×m modulo p mul-

tiplications and η×Nη×(m − 1) modulo p additions. The sorting into bins involves

Nη2 operations. Overall the computation time can be given by,

Tcomp ∝ [η(m− 2) +Nη2m]mult + [Nη2(m− 1)]add + [Nη2]sort

With data size of b bits, the complexity for multiplication is O(b2), compared to

O(b) for additions and sorting. Since the multiplication operations are considerably

slower than additions or sorting, the latter two are ignored and the computation time

CHAPTER 6. EVALUATION AND PERFORMANCE 121

η N
m = 12 m = 16 m = 24

ROM Time. ROM Time ROM Time

6

7 504 156 672 200 1008 288

8 576 174 768 225 1152 325

7

6 504 178 672 229 1008 332

7 588 203 784 263 1176 383

8 672 228 896 296 1344 433

8

6 576 224 768 292 1152 426

7 672 257 896 335 1344 491

8 768 290 1024 379 1536 557

Table 6.4: BYka Key Computation Times (ms) and Private Key ROM storage (bytes)
for Various Parameters of m, N , and η

can be approximated to,

Tcomp ∝ [mNη2 + (m− 2)η]

The computation times and ROM requirements are given in Table 6.4. The linearised

experimental results for computation times are plotted in Fig. 6.3. From this graph, the

computation time is,

Tcomp = 0.0428[mNη2 + (m− 2)η] + 23.72 milliseconds (6.2)

Energy Consumption The energy consumed in key agreement schemes comprises

those required for initial exchange of credentials, verification of the credentials, and the

actual pairwise key computations. In our scheme, the number of computation operations

is deterministic and we can assume that the energy consumed for key computation is

proportional to the computation time. From the experimental results on the MICAz

mote, it was found that the average current drawn during the computation from the 3.1

CHAPTER 6. EVALUATION AND PERFORMANCE 122

Figure 6.3: Graph of Pairwise Key Computation Times Using the MICAz mote

V regulated power supply was measured to be about 8.7 mA. Using this, the estimated

energy in mJ , used for computation was estimated as (3.1× 0.0087× Tc) mJ .

Communication Overhead for Public Key Exchange In a key agreement protocol,

a pair of nodes must exchange some information such as their public keys to commence

the protocol.

In the BYka scheme, the nodes need to exchange their public key ID which is only

16 bits in length. The scheme does not have a separate credential verification step. It

merely assumes that the provided ID is correct and verification is implicit in the success

of obtaining an identical pairwise key. Since the pairwise key computation is very fast,

this is acceptable. In schemes where the pairwise key computation time is significantly

larger than the verification time, the key verification must first be satisfied.

In the IEEE 802.15.4 wireless protocol commonly used for sensor networks, a single

frame capable of 2 to 127 bytes of payload data (IEEE Computer Society, 2006), would

be sufficient to transmit this public key ID.

CHAPTER 6. EVALUATION AND PERFORMANCE 123

Overall, the resource requirements and computation time is reduced by using smaller

values of the three keying parameters N, η and m.

6.4 Summary

The BYka scheme was implemented on computer and capturing of the nodes was

simulated by storing the nodes into a pool as they were created. As a new node is

“captured”, it is paired with each of the nodes in the pool, and using the pairing attack,

the computed pairwise key-set examined to find a traitor node. This was repeated with

new nodes created and added to the pool until finally a traitor node is found. The

execution times can be very long and suitable keying parameters were chosen to yield

results in a period of days. The number of nodes required to capture in order to find

a traitor node, nc is about 6% ∼ 12% smaller than the estimated values for keying

parameters used. The estimated number of possible master key solutions Φ, which is

considered as the security strength, is consistently smaller than the experimental values.

This may be due to the approximations of the distributions, but overall, shows that the

theoretical estimates are conservative.

The BYka scheme was implemented in the MICAz sensor nodes and the key

computation times for various keying parameters were obtained. This enables the key

computation times in the MICAz motes to be estimated for various configurations of

keying parameters.

Chapter 7

Implementation and Application

7.1 Introduction

The BYka scheme has been shown to be secure and resilient against an adversary

who is able to capture any number of nodes and has powerful computing resources.

This chapter discusses how the keying parameters for the scheme can be selected in

practice. The configuration of the keying parameters can be selected for the desired

security strength, memory availability, or computation times. A set of parameters giving

the indicative fastest key computation times when implemented in the MICAz mote

using the code in Appendix B.4 is suggested. The BYKa scheme can be used as the

cryptographic primitive in a variety of scenarios. As an example, an authenticated

message protocol using the BYka scheme is proposed for use in very dynamic mobile

ad hoc applications.

124

CHAPTER 7. IMPLEMENTATION AND APPLICATION 125

7.2 System Implementation

7.2.1 Design Equations

The equations required to select the appropriate keying parameters are gathered here

for easy reference. They are grouped into three areas: (1) security requirement, (2)

resilience against node capture, and (3) performance.

1. Security Requirement

The pairwise keyspace size is the most stringent security requirement, which if met,

will make the keyspaces for all the other keys sufficiently large to resist brute force

attacks.

The pairwise keyspace, from Eqn.(3.9) is,

Ksp =

(
Nη2 + p− 1

p− 1

)
(3.9)

2. Resilience Against Node Capture

Traitor node If a traitor node can be found, the PPMka of the private keys in the node

are exposed. This does not break the scheme but increases the chance of exposing the

PPMka in other nodes. The probability of finding a traitor node, from Eq. (5.6) is,

Pt =
2θu − θd
p2Nη−N

where,

θu =
Na∑
r=1

(
p

r

)
QNar(p− r)Nη

θd =
Nc∑
r=1

[(
p

r

)
QNcr ×

Na∑
k=1

(
p− r
k

)
QNak(p− r − k)Nb

]
QNar = rNa −

r−1∑
j=1

(
r

j

)
QNaj and QNcr = rNc −

r−1∑
i=1

(
r

i

)
QNci


(5.6)

CHAPTER 7. IMPLEMENTATION AND APPLICATION 126

Traitor Node Capture Size The number of nodes expected to be captured to find a

traitor node from Eqn. (5.7) is,

nc >
1

2

(
1 +

√
1 +

8

η2Pt

)
(5.7)

Security Strength The number of trials Φ required to find the master keys, which is

a measure of the number of steps required to break the scheme, from Eqn. (5.15),(5.16),

and (5.17) is,

Φ =
N−1∑
i=0

[µ− i]m

where µ = PtNη

and Pt =

(
Nη

N

)
pNr (1− pr)(Nη−N)


(5.15), (5.16), (5.17)

3. Performance Requirements

Memory The approximate ROM and RAM required are given by,

Qo = Nηm -bytes (7.2a)

QR = Nη2 -bytes (7.2b)

Computation Time The expression for the pairwise key computation time in the

MICAz mote using the TinyOS code in Appendix B.4, from Eqn. (6.2) is given by,

Tcomp = 0.0428[mNη2 + (m− 2)η] + 23.72 ms (7.2c)

CHAPTER 7. IMPLEMENTATION AND APPLICATION 127

Network Size This is the number of unique IDs available using the prime q, i.e.,

Ω ≈ q

η
(7.2d)

7.2.2 Selection of Parameters

The value of m does not affect the traitor node capture size nc or the pairwise key size.

It does have a strong impact on the number of permutations Φ required to compute the

master keys as given in Eqn. (5.17). However, as we see in Table (5.4), for the values

of N, η used, the values of Φ are all extremely large so that using m = 24 is suitable

for most situations. The computation time is most affected by the master key matrix

size m, the number of keys N , and the number of public keys η. The keying parameters

can be selected based on minimum ROM storage, or computation time for the desired

security strength and node capture size. The Tables given in Appendix A, computed for

various parameters, can be used as a guide to implement the desired design.

Optimum Parameters

An exhaustive search of the configurations to obtain the fastest key computation times

for various security strengths of Φ, while satisfying the minimum traitor node capture

sizes of 10,000 nodes or more is presented in Table (7.1). The values are based on

the MICAz mode using the TinyOS code given in Appendix B.4. They are indicative

only, and there may be further gains by optimising the code for speed and efficiency.

The storage requirements for the private key range from 468 bytes for 64 bits security

strength to 1824 bytes for 192 bits security strength. The computation times are fast. The

64 bits security strength requires about 85 milliseconds, while the longest computation

time was 342 milliseconds for 192 bits security strength.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 128

Security Strength nc Φ Qo(B) Tcomp(ms) p m η N

192 6.63×104 1.00×1058 1824 342 61 38 4 12

128 1.38×107 9.04×1038 1170 279 31 26 5 9

112 4.55×105 2.33×1036 920 185 31 23 4 11

80 2.30×104 1.84×1025 612 104 31 17 3 12

64 1.02×106 8.47×1018 468 85 17 13 3 12

Table 7.1: Optimal Parameter Based on Related Security Strength, Tcomp, and Traitor
Capture Size nc. Φ is the Number of Possible Trials Required.

Number of Years
Processor flops Φ192 Φ128 Φ112 Φ80 Φ64

Sequoia 5.15×1023 1.94×1034 2.68×1014 4.53×1012 3.58×101 0

Table 7.2: Number of Years to Break the BYka Scheme Assuming one flop per Trial

Computing Resources Required to Break the Scheme

The number of trials Φ required to obtain the master keys involves constructing a

(m×m) system of equations and then solving them for the master key, testing it to see

if it can be used to successfully compute the private key, and repeating the process

until all the master keys are found. Each solution is of O(m3). As an indication of

the time required, consider the Sequoia supercomputer which is able to execute 16.32

petaflops (Advanced Simulation and Computing, 2012) or 5.15×1023 flops per year. If

we consider the grossly oversimplified situation where each trial requires a single flop

in the supercomputer, the number of years it will require to break the scheme can be up

to 5.15×1023 years for the 192 bits security strength case, as given in Table (7.2).

CHAPTER 7. IMPLEMENTATION AND APPLICATION 129

7.2.3 Key Generation and Distribution

The BYka scheme requires that all the public and private keys used are obtained from a

central body, the Trusted Authority (TA). The TA can be a single entity for small systems,

or a group of peer entities for large installations. The key distribution operations can

also be done centrally or distributed among subsidiary agents. Interestingly, the TA

can also operate as a “central committee” (CC) with each member being independently

responsible for a subset of the master keys which are used to generate sub-sets of the

nodes’ private key-sets. The public key IDs may be assigned by one of the CC members,

another separate entity, or by each CC member from a subset of IDs, as long as they are

unique. As each node is created, it is passed from one CC member to another to obtain

its contribution of the private key-set.

The overall task of generating and providing each node can thus be distributed

among the CC members but each member must individually play its part in the process.

7.3 Applications

The BYka scheme allows member nodes to obtain pairwise keys with each other very

quickly and efficiently. It is deterministic and there is no need for the participation of a

third party. The initial exchange is the ID which is only a few bits. There is no need

to protect the ID. These features allow the BYka scheme to be used in very dynamic

mobile ad hoc situations. The following describes some applications where the BYka

scheme would be useful as the cryptographic primitive.

7.3.1 The Single Message Authentication Protocol (SMAP)

In a highly dynamic ad hoc mobile environment, for example in surveillance, wildlife

monitoring, or vehicular networks applications, if a mobile node comes into range with

CHAPTER 7. IMPLEMENTATION AND APPLICATION 130

Figure 7.1: Message Format from Node A to Node B

another member node, it may need to send its data quickly before it moves out of range.

The data may be in single or multiple messages but they must be authenticated before

they are processed or relayed. A response may, or may not be required, and there may

also be an exchange of several messages. The environment may be fragile and messages

can be lost, corrupted, or the nodes simply moved out of range.

For this scenario, the Single Message Authenticated Protocol (SMAP) is proposed,

described as follows.

Message Format

All messages between pairs of nodes consist of a plain text and a cipher text part similar

to the format in Fig. (7.1). Both parts include the source and destination IDs. The

cipher text part can also carry a confidential payload as well.

Message Types

The protocol defines two types of messages, type M1 and type M*. A type M1 message

is used when the sender has not established a session key with the receiver, for example

in the first message from the sender to the receiver. It is identified by the tag t1 in the

CHAPTER 7. IMPLEMENTATION AND APPLICATION 131

plain text part. The cipher text part is encrypted using the “BYka key” KAB , computed

using the BYka scheme.

The second type of message M*, identified by the tag t∗ in plain text, is used to

send messages to a node from which it has previously received a message. This type

of message is normally used for multiple exchanges. The cipher text part is encrypted

using the session key, KsAB, a randomly generated key.

Node IDs

Nodes would learn about other nodes in the neighbourhood by monitoring the plain text

part of messages. In addition, a newly deployed node, would broadcast an advertisement

which is just a plain text message of type M1 containing its ID. If a pair of nodes do not

share a session key, the node which has data to send becomes the initiator and the other,

the responder. Here, we typically refer to nodes A and B as initiator and responder

respectively.

SMAP-1 Mode

Communications between pairs of nodes start in this mode – the Single Message

Authentication Protocol-1 (SMAP-1). The main emphasis here is to send a message

securely and quickly.

Initiator Node A Consider that node A has some data to send to node B. It has

obtained IDB by monitoring messages. It computes the BYka key KAB using IDB , and

sends the message to B using message type M1:

(M1) A→ B : 〈IDB, IDA, t1, EKAB(IDB, IDA, KsAB, data)〉

CHAPTER 7. IMPLEMENTATION AND APPLICATION 132

The cipher text part containing the IDs, a randomly generated “proposed session key”

KsAB, and data, is encrypted using the BYka key, KAB. If an acknowledgement is

required, a sequence number is included in the cipher text. The BYka key and proposed

session key are stored for a time Ts in case they are needed again.

At this point, node A believes that only a node with IDB belonging to the same TA

would be able to decrypt and verify the cipher text in the message.

Session Key Acceptance The proposed session keyKsAB has to be “accepted” before

it can be used. The responder node B accepts the key after validating the IDs in the

cipher text in M1 message. On the other hand, the initiator node A will only accept its

own proposed session key after receiving a valid type M* message from the responder,

i.e. after it knows that the proposed key has been received and accepted, see Figs. (7.2)

and (7.3).

Responder Node B When node B receives the message, it recognises the message

as a type M1 message from the plain text tag t1. It obtains IDA, computes the BYka

key, and decrypts the cipher text. If the encrypted IDs and the plain text IDs match, the

sender of the message IDA is authenticated.

At this point, node B believes that it shares the session key KsAB with a node with

identity IDA, and that they both belong to the same TA.

Node B accepts the proposed session key KsAB and, as with the BYka key, it is

stored for time a length of time Ts. If no acknowledgement is required, the protocol

completes.

If required, a response containing an acknowledgement is sent in a message of type

M*, encrypted using the accepted session key KsAB.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 133

Figure 7.2: SMAP-2

SMAP-2 Mode

In situations where there are many messages, a session key would be preferred as it

reduces the exposure of the BYka keys. After node B has received a type M1 message

from node A, it establishes a session key for sending data back to A. Any subsequent

message to node A will be of type M* encrypted using the session key KsAB. This is

the SMAP-2 mode.

If node A receives a response message of type M* from node B, e.g. an acknowl-

edgement, before the timer Ts expires, node A would also accept the proposed session

key KsAB which it had previously stored. The session key becomes established and

a secured link now exists between them. Node A now switches to SMAP-2 mode for

future communications with node B until the timer Ts expires.

An ideal run of the protocol is shown in Fig. (7.2). Here, only the message types

and the encryption keys used are shown for clarity, i.e. M1 encrypted using the BYka

key KAB, and M* encrypted using the session key KsAB.

Overall Operations

The protocol starts in SMAP-1 mode and opportunistically switches to SMAP-2 mode

if a response message is received. Otherwise it continues using the SMAP-1 mode.

The protocol SMAP-2 may look like a two message protocol. However, when node

B receives the first message M1 in run 1 in Fig. (7.2), it can immediately authenticate

node A and start using the session key for future messages to node A. If node A

CHAPTER 7. IMPLEMENTATION AND APPLICATION 134

does not receive the reply in run 2, the next message from node A to node B would

continue using type M1 message encrypted using the BYka key, effectively restarting

the SMAP-1 protocol.

Also, once a node receives a type M* message from its counterpart, it switches to

the mode 2 SMAP-2 protocol. The BYka key can then be deleted for added security.

This happens in node A after it receives a response to its initial type M1 messages, but

only happens in node B after the second or subsequent message from node A.

The SMAP-2 mode can be used in an unreliable or reliable communication method.

If lost messages can be tolerated, the unreliable method would be used. The reliable

mode requires the use of sequence and acknowledgement numbers and a response timer

Tr such that if a message is not acknowledged within this time, it is retransmitted.

Reliable Method

All messages would include a random sequence number and if applicable, an acknowl-

edgement number related to the previous message received. The sequence numbers and

acknowledgement numbers are encrypted in the cipher text part.

The initiator node after sending the first message of type M1, sets a response timer

Tr. If a reply is not received in time, possibly due to the message or the response being

lost or corrupted, the same message is retransmitted, see Fig. (7.3).

After node B receives and validates the message, it constructs a response containing

the acknowledgement ack, a new sequence number seq and any data, encrypts it using

the session key KsAB and sends it as a type M* message.

Unreliable Method

The protocol operates in the same way as the reliable method but no sequence numbers

and acknowledgements are used.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 135

While the reliable method will always switch to SMAP-2 mode, the unreliable

method will opportunistically switch from SMAP-1 to SMAP-2 mode if the initiator

subsequently receives a message of type M* from the responder before the time Ts

expires.

Robustness

Lost Messages Messages can be lost or become corrupted but this does not affect the

protocol. If the initiator’s message is lost, both nodes can fall back to using SMAP-1

mode. Also, the initiator would switch to SMAP-2 if it receives a response, otherwise it

will continue to send messages to the responder using type M1, effectively restarting

the protocol.

Incomplete Runs The session key is only used by a node after it has been accepted.

If a run in the protocol is incomplete, the node which has not accepted the session

key would not be able to use it. Instead it would send any subsequent message using

type M1, effectively falling back to SMAP-1. However the node which has accepted

the session key would be able to use it in subsequent messages of type M*. In this

way incomplete runs due to interference and nodes going out of range do not affect

the protocol as it is able to fall back to SMAP-1 mode. The following considers other

impacts of incomplete runs.

Consider Fig. (7.3). If run 1 from node A to node B is incomplete and an ac-

knowledgement is required, the sender retransmits the same message in run 1a after

the response timer expires. If the response in run 2a is lost, node A would, in run 1b,

retransmit the message after the timer expires. If node A does not receive any response

from node B after retransmitting for a certain number of times, e.g. run 2a and run 2b,

it gives up. Node A has not accepted the session key with node B and the next message

to B would use message type M1. However, if a message, possibly unrelated to earlier

CHAPTER 7. IMPLEMENTATION AND APPLICATION 136

Figure 7.3: SMAP-2 with Incomplete Runs

messages, is received from node B (of type M*) in run x before the time Ts expires,

node A would take the opportunity to accept the session key thus completing the key

establishment.

Attacks

Confidentiality of messages All the sensitive information is encrypted using keys

derived from the endpoint IDs and private keys. An attacker without a valid ID and the

related private keys would not be able to compute the BYka key to read the cipher text.

MITM Attack In the man-in-the-middle (MITM) attack, the attacker is unable to

read the cipher text and cannot establish a secure link with any node as it does not have

the private key-set to compute the pairwise BYka key. The man-in-the-middle (MITM)

attack only results in the attacker helping to forward messages.

Protocol Manipulation The protocol has at most two runs. There is not much that

can be done to manipulate the protocol runs. In the SMAP-1 mode, there is nothing to

manipulate except to send fictitious or replay messages. This can cause the target node

to expend some energy to compute futile BYka keys.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 137

The attacker can send fictitious messages as well as replay messages with modi-

fications but these would be discarded as they would fail to be validated. Fictitious

messages of type M1 will cause the target to expand resources to compute the BYka

keys and decrypt the cipher text. Fictitious messages of type M* will be more benign as

they only require the stored session key for decryption.

The number of bits to exchange for authenticating each other’s IDs and contents is

very small. Apart from payload data, the message of type M1 needs to include 4× 2

bytes IDs, and the 16 bytes session key, a total of 24 bytes.

7.3.2 Corporate Email

It may be desirable for emails between members in corporations to be encrypted, and yet

readable by senior management. Initially on joining, a new staff member is given an ID

and the related private key, possibly installed in the computer provided. The new staff’s

name, email address, and ID may be published in a directory system. A mechanism

can be built into the email client software to automatically look up the recipient’s ID,

compute the pairwise key and encrypt the message before sending it to the mail server.

The receiver’s mail client, using a similar mechanism obtains the sender’s ID from the

message header, computes the pairwise key and decrypts the message. The resource

requirements is minimal and allows it to be used with all kinds of devices including

tablets and phones.

As the pairwise key computation is non-interactive, messages can be sent to potential,

new staff.

7.4 Comparison with other Schemes

A comparison of authenticated establishment schemes is shown in Table (7.3). The

schemes using PKC algorithms are not comparable to symmetric key schemes in terms

CHAPTER 7. IMPLEMENTATION AND APPLICATION 138

of computation times and memory requirements for the same security strength. In fact,

the reported results in the literature are up to only 80 bit security strength. The scheme

based on IBC which, like the BYka scheme, does not need a separate mechanism for

entity authentication is much faster, achieving 80 bit security strength in a time of

about 1.9 seconds. Symmetric key schemes based on Blom or Blundo are much faster.

The computation times should be similar as the number of computations to obtain the

same pairwise key size are the same. While the scheme in (W. Zhang et al., 2007)

can obtain keys of 80 bits in about 130 milliseconds, our BYka scheme can achieve

this in 104 milliseconds. In addition the BYka scheme can compute 128 bit keys in

279 milliseconds, which seems slow compared to 140 milliseconds in (Yu et al., 2010)

which used 16-bit µC compared to our 8-bit device.

7.5 Summary

The BYka scheme can be implemented for various requirements of security strength,

storage memory, and computation time by careful selection of the keying parameters

of m,N, η, p and q, using the equations gathered from the previous chapters. The

parameters based on the fastest computation times of less than 342 milliseconds in the

MICAz mote is given for security strengths of {64, 80, 112, 128, 192} bits. All the keys

including the master keys can be managed by a single entity, or for added security, by a

group of independent entities. This also allows the task of bootstrapping the nodes to

be distributed among several entities.

The application of the BYka scheme as the cryptographic primitive for the single-

message-authentication-protocol (SMAP) demonstrates its utility for use in very dy-

namic mobile ad hoc networks. Even though the BYka scheme is suitable for low

resourced devices, it can also be used in other applications such as protecting the email

communications within an organisation.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 139

PK
C

IB
C

Sy
m

m
et

ri
c

ke
y

Sc
he

m
e

Ti
ny

PK
Ti

ny
E

C
C

Ti
ny

PB
C

Z
ha

ng
’0

7
Y

u’
09

B
Y

ka
Y

ea
r

20
04

20
08

20
11

20
07

20
10

20
14

Pr
oc

es
so

r
†A

T
m

eg
a-

12
8

A
tm

eg
a-

12
8

A
T

m
eg

a-
12

8
A

T
m

eg
a-

12
8

‡M
SP

43
0

A
T

m
eg

a-
12

8
Pr

im
iti

ve
R

SA
-1

02
4

E
C

D
H

-E
C

D
SA

Ta
te

-p
ai

ri
ng

E
C

C
B

lu
nd

o
B

lo
m

B
lo

m

R
O

M
12

.4
K

B
19

.3
K

B
37

.9
K

B
15

K
B

8.
9

K
B

7.
79

K
B

*i
nc

l.
1.

53
6

K
B

pr
v

ke
y

R
A

M
1.

17
K

B
1.

5
K

B
3.

6
K

B
0.

33
K

B
0.

61
K

B
C

om
p.

tim
e

14
.5

s
pu

bl
ic

ke
y

op
er

at
io

n.
*6

.2
s

af
te

r5
.2

s
in

iti
al

is
at

io
n

1.
9

s
13

0
m

s
14

0
m

s
10

4
∼

27
9

m
s

E
xc

ha
ng

e
bi

ts
20

48
,e

st
im

at
ed

22
00

bi
ts

,e
st

.
12

8
bi

ts
16

bi
ts

K
ey

si
ze

(b
its

)
80

80
80

80
12

8
80
∼

12
8

C
om

m
en

ts
Pr

iv
ke

y:
10

’s
of

se
co

nd
s

*A
ll

op
tim

is
a-

tio
n

on
.

12
0

s
w

/o
si

gn
at

ur
es

So
ur

ce
(W

at
ro

et
al

.,
20

04
)

(A
.L

iu
&

N
in

g,
20

08
)

(L
.B

.O
liv

ei
ra

et
al

.,
20

11
)

(W
.Z

ha
ng

et
al

.,
20

07
)

(Y
u

et
al

.,
20

10
)

T
hi

s
T

he
si

s

Ta
bl

e
7.

3:
C

om
pa

ri
so

n
of

A
ut

he
nt

ic
at

ed
K

ey
A

gr
ee

m
en

tS
ch

em
es

fo
rS

en
so

rn
od

es
,†

8-
bi

tµ
C

@
8

M
H

z,
‡1

6-
bi

tµ
C

@
8

M
H

z.

CHAPTER 7. IMPLEMENTATION AND APPLICATION 140

Some comparison with other authenticated key agreement schemes showed that the

computation times in the BYka scheme are more than 10× faster than the fastest IBC

schemes based PKC algorithms, while comparable if not faster than other schemes using

symmetric key algorithms. The number of bits to exchange is extremely small, only the

public key ID of 16 bits. Compared to PKC schemes which have to exchange public

keys of hundreds of bits, (at least 320 bits for ECC algorithms, excluding certificates),

this is a huge saving in energy for communications. The memory requirement for the

BYka scheme does not increase as the network size increases. At a maximum of 1824

bytes for a security strength of 192 bits, it can be used in networks that can allow 66,000

nodes to be captured.

Chapter 8

Conclusion

8.1 Introduction

The full potential for wireless sensor networks can be realised, especially for security

sensitive applications, if the receiver is able to verify that the received messages come

from an authentic source, the contents have not been altered by an adversary, and if

necessary, are encrypted for confidentiality. Cryptographic tools can be used to protect

the messages for confidentiality, integrity, and authenticity, and are already widely

used in computer networks. These require that pairs of communicating nodes share a

common secret pairwise key.

8.2 Key Agreement Schemes

Authenticated key agreement schemes are desirable for providing the pairwise keys in

mobile ad hoc networks as the nodes can compute their own keys when required, with

the assurance that both parties belong to the same organisation. Many such schemes

are already widely used in computer networks. Adapting them for sensor networks

is difficult as these use public key cryptographic algorithms which require substantial

141

CHAPTER 8. CONCLUSION 142

computing power, memory and energy resources. On the other hand, symmetric key

cryptographic methods which do not require much resources are more suitable for the

low resourced sensor nodes.

An interesting symmetric key scheme is the Blom’s key agreement scheme which

has useful attributes for sensor networks. It is mutually authenticating as all the

nodes must obtain their keying material from the trusted authority (TA) to successfully

compute their common pairwise keys. However, if an adversary is able to capture a

certain number of nodes, called the capture threshold, the master key can be derived,

breaking the entire scheme. A large capture threshold requires proportionally large

amount of keying material to be stored in the nodes making it impractical for large

scale use. Many attempts have been made to improve its resilience against node

capture without the proportional increase in storage requirements such as by making it

more difficult to obtain the required keying material using multiple key spaces, or by

obfuscating the links between the private keys and the master key by introducing some

random perturbations.

8.3 Research Objective

This study set out to study whether it was possible to modify the Blom’s symmetric key

agreement scheme using permutations of multiple keys so that it is secure and practical

for use in large sensor networks where any number of nodes can be compromised.

This is shown to be possible by developing the Blom-Yang key agreement (BYka)

scheme which can be tailored for different situations. For example, to accommodate

23,000 nodes on a network using the MICAz motes, the implementation using the

TinyOS code given in Appendix B.4 requires a storage of only 1824 bytes for the keying

material, achieving a security strength of 192 bits, with a key computation time of 342

milliseconds.

CHAPTER 8. CONCLUSION 143

8.4 The BYka Scheme

In the proposed BYka scheme, the TA has multiple master keys and each node is

assigned multiple unique public keys. The TA uses them in permutations to compute

multiple private keys for each node and stores them in a random order in the node. Now,

if the node’s private keys are stolen, they cannot be used without knowing which public

key and master key was used to compute the private key. This private-public-master-key

association (PPMka) information is not available anywhere and there is only a very

small chance of getting all the correct PPMka in order to mount attacks on the scheme.

Since the private keys are random integers stored in a random order, the brute force

attacker has to try an infeasibly large number of possibilities to find the correct PPMka.

The attacker can attempt to find the PPMka by getting a pair of captured nodes to

compute their pairwise keys using each other’s public keys. The sets of integers, called

the pairwise key-sets, forming the pairwise key obtained in each node are identical. If

all the integers are unique, the identical numbers across both sets link the related private

keys to the associated public keys and master keys, exposing the PPMka. However, if

the numbers are not all unique, then there are ambiguities. In the BYka scheme, the key

computations are defined over a very small prime field Fp, for example p = 31. This

ensures that the key-set integers are not all unique, thereby preventing the PPMka from

being discovered easily.

Security Strength

The most efficient attack to discover the PPMka is the pairing attack where a pair of

nodes uses only one of each other’s public keys to compute a partial set of the pairwise

key-set. The size of the partial key-set is much smaller, increasing the chance of the

integers being all unique. Even then, by selecting suitable values; the number of master

keys, the number of private keys, the master key size, and the size of the prime modulus,

CHAPTER 8. CONCLUSION 144

the probability of finding a node which exposes its PPMka, called a traitor node, can be

made extremely small. From the detailed study of this attack, analytical results were

obtained to estimate the number of nodes required to be captured to find a traitor node,

nc. With suitable parameters, the value of nc can be in the tens of thousands of nodes.

If the network size is less than nc, then a traitor node virtually cannot be found. The

adversary can also try all the possible solutions of the master keys from the possibilities

available in each pairing attack. The analytical results enable the number of possibilities

to be estimated. This showed that the number of iterations required can be 280, 2112,

2128 or even 2192, making the security strength of the scheme at least 80, 112, 128 or

192 bits, respectively.

The analytical results were verified against those obtained from computer simulated

attacks on some implementations. In addition, implementations of the BYka scheme

were done using the MICAz mote to show its practicality, and to obtain some data on

the key computation times. The outcomes were used to set out the guidelines and tables

for the practitioner to select suitable keying parameters for the desired computation

times, memory requirements, pairwise key sizes, and resilience against node capture.

Performance Features

The scheme is fast, requires only a few lines of code involving modulo multiplications

and additions, and the storage requirement does not grow proportionally with the

network size. For example, to cater for networks of up to 23,000 nodes, the key

computation times range from 85 milliseconds to 342 milliseconds for security strengths

of 64 to 192 bits respectively. The corresponding keying material size is 468 to 1824

bytes. To initiate the pairwise key computation, each node needs to transmit their public

key ID which is a 16 -bit integer. This small amount of exchange saves energy used

for radio transmission. If the ID of the receiver node is already known, the sender is

able to, without any interaction between them, immediately compute their pairwise key

CHAPTER 8. CONCLUSION 145

and use it to encrypt a message for the receiver. This ability would be useful in highly

mobile ad hoc networks. An application using this scheme was proposed, the single

message authenticated protocol (SMAP).

The BYka scheme operates in an exclusive posture in that it only allows nodes

belonging to the same TA to establish pairwise keys with each other. Outsiders are

excluded. All member nodes share a common heritage which is their private key-set

derived from the same set of master keys in the TA. This common heritage enables a

pair of nodes to implicitly authenticate each other if they are able to compute a common

pairwise key. Operationally, it is effectively an identity-based scheme though, unlike

identity-based schemes based on bilinear pairings where the ID can be any string, here

the ID is an integer. It is a non-interactive scheme and the sender, having obtained

the receiver’s ID, is able to compute their pairwise key and encrypt messages for it

even without the receiver being present. This opens up the scheme to other applications

where encrypted messages may be sent to nodes which will be encountered in the future,

such as for email to an employee who is about to join the company.

The TA is a key escrow entity and must be kept secure. It is able to compute the

pairwise keys of all the nodes and with it, decrypt all previously recorded messages.

While this appears to breach privacy concerns, it may actually be a desirable feature in

some situations such as in business corporations. To help with distribution, and possibly

for additional security, the TA’s role may be distributed among a committee of TAs who

must jointly work together. If necessary, the key escrow privileges may be relinquished

by deleting all the master keys after generating all the possible public and private keys

that will ever be needed.

Key agreement schemes are generally vulnerable to the man-in-the-middle (MITM)

attacks, especially where the nodes generate their own public and private keys. Additional

measures are usually required for authenticating the public keys. However, in the BYka

scheme, the public and private keys are not self generated but by the trusted authority

CHAPTER 8. CONCLUSION 146

and it is not possible for the MITM attacker to compute the pairwise key with a legiti-

mate node without the required private keys. This makes the BYka scheme immune to

the MITM attack.

8.5 Future Work

8.5.1 Identity Theft

One of the vulnerabilities of the BYka scheme is the identity theft attack where the

adversary, having obtained the keys of a compromised node, uses them to make rogue

nodes with the same keys. In addition, a rogue node would be able to mount the

compromised-key impersonation attack where it is able to impersonate any node to

the compromised node. Identity theft is a serious threat but is not within the scope of

this study. At this time, it is assumed that a compromised node can be detected and its

ID distributed for excommunication. Further work is required to study how to identify

compromised nodes and to develop suitable countermeasures.

8.5.2 Forward Secrecy

The BYka scheme does not provide forward secrecy. If an adversary obtains a node’s

private keys and has access to all previously recorded messages including those

transporting the randomly generated session keys, then the adversary would be able to

decrypt all the previous messages.

8.5.3 Non Linearly Independent Public Keys

The Blom’s scheme requires the use of linearly independent public keys to prevent the

Sybil attack using keys stolen from the captured nodes. In addition, the master key

CHAPTER 8. CONCLUSION 147

can be derived from any m captured private keys. This limits the number of nodes to

(m− 1) if the system is to be unconditionally secure.

In the BYka scheme, the unknown PPMka of captured private keys leads to an inter-

esting proposition for future study: If the PPMka is unknown, the Sybil attack cannot

be mounted. This would remove the need for the public keys to be linearly independent

and implementations using linearly dependent public keys may be considered. Since

linearly dependent public keys give rise to the associated private keys being linearly

dependent as well, then the system of equations constructed from the m captured private

keys do not have determinate solutions. Consequently, the master keys can never be

found. The question then is how much more resilient the system would be in addition

to the difficulty of discovering the PPMka. There is also the potential to use public key

vectors which are arithmetic progressions making the computations even easier and

faster.

8.5.4 SMAP

The non-interactive nature of the BYka scheme enables a node to encrypt messages

for another node just from knowing the ID of the receiver. This enables nodes to send

protected messages to destination nodes whenever opportunities arises, for example, in

highly mobile networks where nodes are not normally within range of each other. This

is implemented in the SMAP protocol. Further work will be done to test its operations

and performance.

8.6 Summary

This thesis demonstrated that an authenticated key agreement scheme based on a

symmetric key algorithm, the proposed BYka scheme, is secure for highly dynamic,

CHAPTER 8. CONCLUSION 148

mobile and ad hoc wireless sensor networks and does not require increasing storage

for the private keys as the network size increases. Nodes are first authenticated by the

TA and then provided with their keying material. After deployment, pairs of nodes

only need to exchange their IDs consisting of a few bits in order to compute their

common pairwise keys. The BYka scheme is mutually authenticating and immune to

the man-in-the middle attack. It can be configured for the required security strengths of

up to 192 bits against a very powerful adversary who is able to capture tens of thousands

of nodes.

References

Advanced Simulation and Computing. (2012, October). Sustainable stockpile
stewardship. Retrieved from https://asc.llnl.gov/computing\
_resources/sequoia/

Barker, E., Barker, W. B., Burr, W., Polk, W., & Smid, M. (2012, July). Recommenda-
tion for Key Management – Part 1: General (No. Special Publication 800-57).
Gaithersburg, MD 20899-8930.

Blom, R. (1983). Non-Public Key Distribution. Advances in Cryptology, Proceedings
of Crypto ’82, 231–236.

Blom, R. (1984). An Optimal Class of Symmetric Key Generation Systems (Tech. Rep.).
Linkopping University, Linkopping, Sweden.

Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., & Yung, M. (1995,
June). Perfectly-Secure Key Distribution for Dynamic Conferences (Tech. Rep.).
Dipartimento di Informatica ed Applicazioni, Universita di Salerno, 84081 Baro-
nissi, Italy.

Boneh, D. (1998). The decision diffie-hellman problem. In The third algorithmic
number theory symposium (Vol. 1423, pp. 48–63). Springer-Verlag.

Boneh, D., & Franklin, M. (2001). Identity-Based Encryption from the Weil Pairing.
Proceedings of CRYPTO 2001, LNCS 2139, 213–229.

Camtepe, Seyit Ahmet and Yener, Bülent. (2007). Combinatorial design of key
distribution mechanisms for wireless sensor networks. IEEE/ACM Transactions
on Networking, 15(2), 346–358.

CC2420 Data Sheet [Computer software manual]. (2014). Retrieved from http://
focus.ti.com/lit/ds/symlink/cc2420.pdf

Chan, H., & Perrig, A. (2005). Pike: Peer intermediaries for key establishment in
sensor networks. In Proceedings of IEEE Infocom, 524–535.

Chan, H., Perrig, A., & Song, D. (2003). Random key predistribution schemes for sensor
networks. In Proceedings of the 2003 ieee symposium on security and privacy
(pp. 197–). Washington, DC, USA: IEEE Computer Society. Retrieved from
http://portal.acm.org/citation.cfm?id=829515.830566

Chen, N., Yao, J.-b., & Wen, G.-j. (2008, 29-31 July). An Improved Matrix Key
Pre-distribution Scheme for Wireless Sensor Networks. International Conference
on Embedded Software Systems, 40–45.

Cheng, H.-b., Yang, G., Wang, J.-t., & Huang, X. (2006, Jun). An authenticated identity-
based key establishment and encryption scheme for wireless sensor networks.

149

References 150

The Journal of China Universities of Posts adn Telecommunications, 13(2).
Chien, H. Y., Chen, R.-C., & Shen, A. (2008). Efficient key pre-distribution for sensor

nodes with strong connectivity and low storage space. Poceedings of the 22nd
International Conference on Advanced Information Networking and Applications
(AINA’08), IEEE Computer Society, Washington, DC, USA., 327-333.

Crosby, S., Goldberg, I., Johnson, R., Song, D., & Wagner, D. (2001, May). A
Cryptanalysis of the High-bandwidth Digital Content Protection System. ACM-
CCS8 DRM Workshop.

de Meulenaer, G., Gosset, F., Standaert, F.-X., & Pereira, O. (2008, 10). On the
energy cost of communications and cryptography in wireless sensor networks.
IEEE International Conference on Wireless & Mobile Computing, Networking &
Communication, 580–585.

Diffie, W., & Hellman, M. (1976, Nov). New directions in cryptography. IEEE
Transactions on Information Theory, 22(6), 644-654. doi: 10.1109/TIT.1976
.1055638

Dolev, D., & Yao, A. C. (1983). On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29, 198–208.

Du, W., Han, S. Y., Deng, J., & Varshney, P. K. (2003, October). A pairwise key pre-
distribution scheme for wireless sensor networks. Proceedings of the conference
on Computer and communications security.

Du, W., Wang, R., & Ning, P. (2005). An efficient scheme for authenticating public
keys in sensor networks. 6th ACM international symposium on Mobile ad hoc
networking and computing, 58-67.

Elgamal, T. (1985, Jul). A public key cryptosystem and a signature scheme based on
discrete logarithms. Information Theory, IEEE Transactions on, 31(4), 469–472.
doi: 10.1109/TIT.1985.1057074

Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed
sensor networks. In (pp. 41–47). New York, NY, USA: ACM Press.

Fan, Y., Chen, I.-R., & Eltoweissy, M. (2005). On Optimal Key Disclosure Interval for
µTESLA: Analysis of Authentication Delay versus Network Cost. International
Conference on Wireless Networks, Communication and Mobile Computing, 304 -
309.

Fiore, D., & Gennaro, R. (2010). Making the diffie-hellman protocol identity-based.
CT-RSA 2010, LNCS.

Gay, D., Welsh, M., Levis, P., Brewer, E., Behren, R. V., & Culler, D. (2003). The nesc
language: A holistic approach to networked embedded systems. In In Proceedings
of Programming Language Design and Implementation (PLDI) (pp. 1–11).

Grosschadl, J., Szekely, A., & Tillich, S. (2007). The energy cost of cryptographic key
establishment in wireless sensor networks. Proc. The 2nd ACM Symposium on
Information, Compter and Communication Security.

Gura, N., Patel, A., Wander, A., Eberle, H., & Shantz, S. C. (2004, August). Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs. In Proceedings of the 2004
Workshop on Cryptographic Hardware and Embedded Systems.

Hartung, C., Balasalle, J., & Han, R. (2005, January). Node compromise in sensor

References 151

networks: The need for secure systems (Tech. Rep.). Department of Computer
Science, University of Colorado at Boulder.

Hayashi, T., Shimoyama, T., Shinohara, N., & Takagi, T. (2012). Breaking pairing-
based cryptosystems using ηt pairing over gf(397). Cryptology ePrint Archive,
Report 2012/345. (http://eprint.iacr.org/)

IEEE. (2006, September). IEEE Standard 802.15.4 (2006) Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs) (No. 802.15.4). 3 Park Avenue, New York.

IEEE Computer Society. (2006, September). Ieee std 802.15.4-2006.
Karlof, C., Sastry, N., & Wagner, D. (2004, November). Tinysec: A link layer security

architecture for wireless sensor networks. Proc. of the Second ACM Conference
on Embedded Networked Sensor Systems (Sensys 2004). (TinySec)

Law, L. E., Menezes, A. J., Qu, M., Solinas, J. A., & Vanstone, S. A. (2003). An efficient
protocol for authenticated key agreement. Designs, Codes and Cryptography,
28(2), 119–134.

Lederer, C., Mader, R., Koschuch, M., Grosschadl, J., Szekely, A., & Tillich, S. (2009).
Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor
Networks. Springer Verlag, LNCS 5746.

Lee, H.-S., Lee, Y.-R., & Lee, J.-H. (2003). Multiparty Key Agreement Protocol based
on Symmetric Techniques. Commun. Korean Math. Soc., 18(1), 169–179.

Lee, J., & Stinson, D. R. (2005). Deterministic Key Predistribution Schemes for
Distributed Sensor Networks. In H. Handschuh & A. Hasan (Eds.), (Vol. 3357,
pp. 294–307). Springer-Verlag Berlin Heidelberg.

Leighton, F. T., & Micali, S. (1994). Secret-Key Agreement without Public-
Key Cryptography. In Proceedings of the 13th annual international cryptol-
ogy conference on advances in cryptology (pp. 456–479). London, UK, UK:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm
?id=646758.705685

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., . . . others
(2005). Tinyos: An operating system for sensor networks.

Liu, A., & Ning, P. (2008, April). TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks. in Proceedings of the 7th
International Conference on Information Processing in Sensor Networks, 245–
256.

Liu, D., Ning, P., & Li, R. (2003). Establishing Pairwise Keys in Distributed Sensor
Networks. Proceedings of the 10th ACM conference on Computer and communi-
cations security.

Liu, M., Wei, W., & Liu, Z. (2009, May). A secure key pre-distribution scheme for
wireless sensor networks. International Conference on Industrial Electronics and
Applications, ICIEA., 1762 –1768. doi: 10.1109/ICIEA.2009.5138499

Luk, M., Mezzour, G., Perrig, A., & Gilgor, V. (2007, April). Minisec: A secure sensor
network communication architecture. IPSN.

Memsic Corp. (n.d.). Memsic corporation, micaz datasheet [Computer software man-
ual]. Retrieved from http://www.memsic.com/products/wireless

References 152

-sensor-networks/wireless-modules.html,Retrieved:
April12,2012

Memsic Corp. (2012). MICAz Datasheet [Computer software manual]. Re-
trieved from http://www.memsic.com/products/wireless
-sensor-networks/wireless-modules.html,Retrieved:
April12,2012

Menezes, A., van Oorschot, P., & Vanstone, S. (1996). Handbook of applied cryptogra-
phy. CRC Press, Inc.

Menezes, A. J., Oorschot, P. C., & Vanston, S. A. (2001). Handbook of applied
cryptography. CRC Press, Inc.

National Security Agency. (2009, Jan). The Case for Elliptic Curve Cryptog-
raphy. Retrieved from http://www.nsa.gov/business/programs/
elliptic_curve.shtml

Oliveira, L., Scott, M., Lopez, J., & Dahab, R. (2008, June). TinyPBC: Pairings for
authenticated identity-based non-interactive key distribution in sensor networks.
Networked Sensing Systems, 2008. INSS 2008. 5th International Conference on,
173 –180. doi: 10.1109/INSS.2008.4610921

Oliveira, L. B., Aranha, D. F., Gouvêa, C. P. L., Scott, M., Címara, D. F., López, J., &
Dahab, R. (2011, March). TinyPBC: Pairings for authenticated identity-based
non-interactive key distribution in sensor networks. Computer Communications,
34, 485–493. Retrieved from http://dx.doi.org/10.1016/j.comcom
.2010.05.013 doi: http://dx.doi.org/10.1016/j.comcom.2010.05.013

Oliveira, L. B., Aranha, D. F., Morais, E., Daguano, F., López, J., & Dahab, R. (2007).
Tinytate: Identity-based encryption for sensor networks. IACR Cryptology ePrint
Archive, 2007.

P. Levis. (2006). TinyOS programming. Retrieved from http://csl.stanford
.edu/\simpal/pubs/tinyos-programming.pdf.Retrieved:
April12,2012

Paar, C., & Pelzl, J. (2010). Understanding Cryptography. Springer Heidelberg
Dordrecht.

Perrig, A., Canetti, R., Tygar, J. D., & Song, D. (2002, Summer/Fall). The TESLA
Broadcast Authentication Protocol. CryptoBytes, 5(2), 2–13.

Perrig, A., Szewczyk, R., Wen, V., Culler, D., & Tygar, J. D. (2002). SPINS: Security
Protocols for Sensor Networks. Wireless Networks, 8, 521–534.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2),
120–126.

Schnorr, C. (n.d.). Efficient identification and signatures for smart cards. In G. Brassard
(Ed.), Lncs (Vol. 435, p. 239-252). Springer, Heidelberg (1990).

Shamir, A. (1985). Identity-based Cryptography and Signature Schemes. Proceedings
of CRYPTO’84, LNCS 196, 47–53.

Steiner, J. G., Neuman, C., & Schiller, J. I. (1988, February). Kerberos: An authen-
tication service for open network systems. In Proceedings of the Winter 1988
USENIX Conference. USENIX.

References 153

Stinson, D. R. (2006). Cryptography theory and practice (Third ed.; H. R. Kenneth,
Ed.). Chapman & Hall/CRC.

Szczechowiak, P., & Collier, M. (2009, Aug.). Practical identity-based key agreement
for secure communication in sensor networks. , 1–6. doi: 10.1109/ICCCN.2009
.5235277

Tapia, A. R., Lanius, C., Mac Zeal, C. M., & Parks, T. A. (2001). Computational science:
Tools for a changing world. http://ceee.rice.edu/Books/CS/chapter5/cost1.html.

Ugus, O., Westhoff, D., Laue, R., Shoufan, A., & Huss, S. A. (2007, October).
Optimized Implementation of Elliptic Curve Based Additive Homomorphic En-
cryption for Wireless Sensor Networks. 2nd Workshop on Embedded Systems
Security - WESS’2007, Salzburg, Austria..

Wang, H., & Li, Q. (2006). Efficient implementation of public key cryptosystems on
mote sensors (short paper). In In international conference on information and
communication security (icics), lncs 4307 (pp. 519–528).

Wang, S.-J., Tsai, Y.-R., & Chan, J.-W. (2007). A countermeasure against frequent
attacks based on the blom-scheme in ad hoc sensor networks. International
Symposium on Wireless Pervasive Computing.

Watro, R., Kong, D., Cuti, S.-f., Gardiner, C., Lyn, C., & Kruus, P. (2004). TinyPK: Se-
curing Sensor Networks with Public Key Technology. Proc. 2nd ACM Workshop
on Security of ad hoc and sensor networks.

Yu, C.-M., Lu, C.-S., & Kuo, S.-Y. (2010). Noninteractive Pairwise Key Establishment
for Sensor Networks. IEEE Transactions on Information Forensics and Security,
5(3), 556–569.

Zhang, J., Yu, W., & Liu, X. (2009, January). CRTBA: Chinese Remainder Theorem-
Based Broadcast Authentication in Wireless Sensor Network. International
Symposium on Computer Network and Multmedia Technology, 1–4. Retrieved
from http://dx.doi.org/10.1109/CNMT.2009.5374495 (CRT)
doi: 10.1109/CNMT.2009.5374495

Zhang, W., Zhu, S., & Cao, G. (2007, September). A Random Perturbation-Based
Scheme for Pairwise Key Establishment in Sensor Networks. MobiHoc’07.

Zheng, H., & Dai, H. (2008, sept.). A polynomial-based key predistribution scheme
for wireless sensor networks using matrix decomposition. , 1022 –1026. doi:
10.1109/ICCIS.2008.4670785

Zhou, J., & He, M. (2009). An Improved Distributed Key Mangement Scheme in
Wireless Sensor Networks. WISA 2008, LNCS 5379, 305–319.

Zhu, S., Setia, S., & Jajodia, S. (2003). LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks. Proceedings of the 10th ACM conference on
Computer and communications security.

Zhu, S., Setia, S., & Jajodia, S. (2006, November). LEAP+: Efficient Security
Mechanisms for Large-Scale Distributed Sensor Network. ACM Transactions on
Sensor Networks, 2(4), 500–528.

ZigBee, A. (2005). Zigbee specifications [ZigBee Specifications].

Appendix A

Design and Performance Tables

These values are obtained for the MICAz mote running the TinyOS code in Appendix

B.4. No attempt was made to optimise the code for speed and efficiency.

154

APPENDIX A. DESIGN AND PERFORMANCE TABLES 155

η N QR
m = 12 m = 16 m = 24 m = 32

Qo Tcomp Qo Tcomp Qo Tcomp Qo Tcomp

3

3 27 108 38.87 144 44.01 216 54.28 288 64.55
4 36 144 43.49 192 50.17 288 63.52 384 76.88
5 45 180 48.12 240 56.33 360 72.77 480 89.20
6 54 216 52.74 288 62.50 432 82.01 576 101.53
7 63 252 57.36 336 68.66 504 91.26 672 113.86
8 72 288 61.98 384 74.82 576 100.50 768 126.18

4

3 48 144 50.09 192 58.99 288 76.79 384 94.60
4 64 192 58.30 256 69.94 384 93.23 512 116.51
5 80 240 66.52 320 80.90 480 109.66 640 138.42
6 96 288 74.74 384 91.86 576 126.10 768 160.34
7 112 336 82.96 448 102.81 672 142.53 896 182.25
8 128 384 91.17 512 113.77 768 158.97 1024 204.16

5

3 75 180 64.38 240 78.08 360 105.47 480 132.86
4 100 240 77.22 320 95.20 480 131.15 640 167.10
5 125 300 90.06 400 112.32 600 156.83 800 201.34
6 150 360 102.90 480 129.44 720 182.51 960 235.58
7 175 420 115.74 560 146.56 840 208.19 1120 269.82
8 200 480 128.58 640 163.68 960 233.87 1280 304.06

6

4 144 288 100.25 384 125.93 576 177.29 768 228.65
5 180 360 118.74 480 150.58 720 214.27 960 277.95
6 216 432 137.23 576 175.23 864 251.24 1152 327.26
7 252 504 155.72 672 199.88 1008 288.22 1344 376.56
8 288 576 174.20 768 224.54 1152 325.20 1536 425.87

7

3 147 252 102.22 336 128.58 504 181.31 672 234.04
4 196 336 127.38 448 162.14 672 231.64 896 301.15
5 245 420 152.55 560 195.69 840 281.98 1120 368.26
6 294 504 177.71 672 229.25 1008 332.31 1344 435.37
7 343 588 202.88 784 262.80 1176 382.64 1568 502.48
8 392 672 228.05 896 296.36 1344 432.97 1792 569.59

8

3 192 288 125.76 384 160.00 576 228.48 768 296.96
4 256 384 158.63 512 203.82 768 294.22 1024 384.61
5 320 480 191.50 640 247.65 960 359.96 1280 472.26
6 384 576 224.37 768 291.48 1152 425.70 1536 559.92
7 448 672 257.24 896 335.30 1344 491.44 1792 647.57
8 512 768 290.11 1024 379.13 1536 557.18 2048 735.23

Key sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.1: Performance – RAM, ROM, and Computation Times

APPENDIX A. DESIGN AND PERFORMANCE TABLES 156

Prime modulus p = 31

η N

Key Capture m = 12 m = 16 m = 24

size nc Φ Qo Tcomp Φ Qo Tcomp Φ Qo Tcomp

(bits) (nodes) (10x) (Bytes) (ms) (10x) (Bytes) (ms) (10x) (Bytes) (ms)

3

3 54 2 7.22 108 38.87 9.63 144 44.01 14.45 216 54.28

4 62 2 9.34 144 43.49 12.45 192 50.17 18.68 288 63.52

5 69 4 11.45 180 48.12 15.27 240 56.33 22.90 360 72.77

6 76 10 12.95 216 52.74 17.27 288 62.50 25.90 432 82.01

7 81 28 13.75 252 57.36 18.34 336 68.66 27.51 504 91.26

8 86 92 14.77 288 61.98 19.69 384 74.82 29.53 576 100.50

4

3 72 2 9.34 144 50.09 12.45 192 58.99 18.68 288 76.79

4 81 6 11.45 192 58.30 15.27 256 69.94 22.90 384 93.23

5 89 23 13.37 240 66.52 17.82 320 80.90 26.74 480 109.66

6 96 128 14.45 288 74.74 19.27 384 91.86 28.90 576 126.10

7 102 845 15.61 336 82.96 20.82 448 102.81 31.23 672 142.53

8 107 6318 16.56 384 91.17 22.08 512 113.77 33.13 768 158.97

5

3 87 4 10.84 180 64.38 14.45 240 78.08 21.67 360 105.47

4 98 24 12.95 240 77.22 17.27 320 95.20 25.90 480 131.15

5 106 238 14.45 300 90.06 19.27 400 112.32 28.90 600 156.83

6 113 3011 15.87 360 102.90 21.16 480 129.44 31.73 720 182.51

7 119 4.51×104 16.78 420 115.74 22.37 560 146.56 33.55 840 208.19

8 125 7.58×105 17.73 480 128.58 23.63 640 163.68 35.45 960 233.87

6

3 101 11 12.00 216 81.76 16.00 288 101.27 24.00 432 140.31

4 112 156 14.11 288 100.25 18.82 384 125.93 28.23 576 177.29

5 121 3486 15.61 360 118.74 20.82 480 150.58 31.23 720 214.27

6 128 9.96×104 16.98 432 137.23 22.64 576 175.23 33.96 864 251.24

7 134 3.32×106 17.90 504 155.72 23.86 672 199.88 35.79 1008 288.22

8 140 1.22×108 18.68 576 174.20 24.90 768 224.54 37.35 1152 325.20

9 145 4.81×109 19.35 648 192.70 25.80 864 249.20 38.71 1296 362.20

7

3 113 38 12.95 252 102.22 17.27 336 128.58 25.90 504 181.31

4 124 1267 15.06 336 127.38 20.08 448 162.14 30.13 672 231.64

5 133 6.41×104 16.56 420 152.55 22.08 560 195.69 33.13 840 281.98

6 140 4.07×106 17.73 504 177.71 23.63 672 229.25 35.45 1008 332.31

7 147 2.95×108 18.68 588 202.88 24.90 784 262.80 37.35 1176 382.64

8 152 2.32×1010 19.48 672 228.05 25.97 896 296.36 38.96 1344 432.97

8

3 123 158 13.75 288 125.76 18.34 384 160.00 27.51 576 228.48

4 135 1.22×104 15.87 384 158.63 21.16 512 203.82 31.73 768 294.22

5 144 1.37×106 17.37 480 191.50 23.16 640 247.65 34.73 960 359.96

6 152 1.90×108 18.53 576 224.37 24.71 768 291.48 37.06 1152 425.70

7 158 2.94×1010 19.48 672 257.24 25.97 896 335.30 38.96 1344 491.44

8 164 4.86×1012 20.28 768 290.11 27.04 1024 379.13 40.57 1536 557.18

Key sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.2: Security, Resilience, and Performance Table. Traitor node capture nc,
Number of Master Key Solutions Φ in 10x

APPENDIX A. DESIGN AND PERFORMANCE TABLES 157

Prime modulus p = 23

η N

Key Capture m = 12 m = 16 m = 24

size nc Φ Qo Tcomp Φ Qo Tcomp Φ Qo Tcomp

(bits) (nodes) (10x) (Bytes) (ms) (10x) (Bytes) (ms) (10x) (Bytes) (ms)

3

3 45 2 7.22 108 38.87 9.63 144 44.01 14.45 216 54.28

4 52 3 10.14 144 43.49 13.52 192 50.17 20.28 288 63.52

5 58 8 12.00 180 48.12 16.00 240 56.33 24.00 360 72.77

6 63 25 13.37 216 52.74 17.82 288 62.50 26.74 432 82.01

7 67 90 14.45 252 57.36 19.27 336 68.66 28.90 504 91.26

8 70 365 15.06 288 61.98 20.08 384 74.82 30.13 576 100.50

4

3 60 3 9.34 144 50.09 12.45 192 58.99 18.68 288 76.79

4 67 12 12.00 192 58.30 16.00 256 69.94 24.00 384 93.23

5 73 75 13.75 240 66.52 18.34 320 80.90 27.51 480 109.66

6 78 557 14.77 288 74.74 19.69 384 91.86 29.53 576 126.10

7 83 4697 15.87 336 82.96 21.16 448 102.81 31.73 672 142.53

8 87 4.31×104 16.78 384 91.17 22.37 512 113.77 33.55 768 158.97

5

3 72 8 11.45 180 64.38 15.27 240 78.08 22.90 360 105.47

4 80 83 13.37 240 77.22 17.82 320 95.20 26.74 480 131.15

5 86 1164 15.06 300 90.06 20.08 400 112.32 30.13 600 156.83

6 91 1.96×104 16.11 360 102.90 21.48 480 129.44 32.22 720 182.51

7 96 3.67×105 17.18 420 115.74 22.90 560 146.56 34.35 840 208.19

8 100 7.31×106 17.90 480 128.58 23.86 640 163.68 35.79 960 233.87

6

3 82 31 12.50 216 81.76 16.66 288 101.27 24.99 432 140.31

4 90 737 14.45 288 100.25 19.27 384 125.93 28.90 576 177.29

5 97 2.34×104 16.11 360 118.74 21.48 480 150.58 32.22 720 214.27

6 102 8.66×105 17.18 432 137.23 22.90 576 175.23 34.35 864 251.24

7 107 3.48×107 18.06 504 155.72 24.08 672 199.88 36.12 1008 288.22

8 111 1.47×109 18.96 576 174.20 25.28 768 224.54 37.92 1152 325.20

7

3 91 145 13.37 252 102.22 17.82 336 128.58 26.74 504 181.31

4 99 7836 15.35 336 127.38 20.46 448 162.14 30.69 672 231.64

5 106 5.48×105 16.98 420 152.55 22.64 560 195.69 33.96 840 281.98

6 112 4.34×107 18.06 504 177.71 24.08 672 229.25 36.12 1008 332.31

7 116 3.66×109 18.96 588 202.88 25.28 784 262.80 37.92 1176 382.64

8 121 3.19×1011 19.72 672 228.05 26.30 896 296.36 39.44 1344 432.97

8

3 99 773 14.45 288 125.76 19.27 384 160.00 28.90 576 228.48

4 107 9.32×104 16.34 384 158.63 21.79 512 203.82 32.68 768 294.22

5 114 1.40×107 17.55 480 191.50 23.40 640 247.65 35.10 960 359.96

6 120 2.33×109 18.68 576 224.37 24.90 768 291.48 37.35 1152 425.70

7 125 4.07×1011 19.60 672 257.24 26.14 896 335.30 39.20 1344 491.44

8 129 7.26×1013 20.39 768 290.11 27.18 1024 379.13 40.78 1536 557.18

Key sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.3: Security and Performance Features using m = 16. Traitor Node Capture nc
and Number of Master Key Solutions Φ are 10x

APPENDIX A. DESIGN AND PERFORMANCE TABLES 158

Prime modulus p = 19

η N

Key Capture m = 12 m = 16 m = 24

size nc Φ Qo Tcomp Φ Qo Tcomp Φ Qo Tcomp

(bits) (nodes) (10x) (Bytes) (ms) (10x) (Bytes) (ms) (10x) (Bytes) (ms)

3

3 41 2 8.39 108 38.87 11.18 144 44.01 16.78 216 54.28

4 46 4 10.14 144 43.49 13.52 192 50.17 20.28 288 63.52

5 51 13 12.00 180 48.12 16.00 240 56.33 24.00 360 72.77

6 55 48 13.37 216 52.74 17.82 288 62.50 26.74 432 82.01

7 59 198 14.45 252 57.36 19.27 336 68.66 28.90 504 91.26

8 62 891 15.35 288 61.98 20.46 384 74.82 30.69 576 100.50

4

3 53 4 10.14 144 50.09 13.52 192 58.99 20.28 288 76.79

4 59 23 12.50 192 58.30 16.66 256 69.94 24.99 384 93.23

5 64 166 13.75 240 66.52 18.34 320 80.90 27.51 480 109.66

6 68 1428 15.06 288 74.74 20.08 384 91.86 30.13 576 126.10

7 72 1.35×104 16.11 336 82.96 21.48 448 102.81 32.22 672 142.53

8 75 1.35×105 16.98 384 91.17 22.64 512 113.77 33.96 768 158.97

5

3 63 15 11.45 180 64.38 15.27 240 78.08 22.90 360 105.47

4 69 188 13.75 240 77.22 18.34 320 95.20 27.51 480 131.15

5 75 3159 15.06 300 90.06 20.08 400 112.32 30.13 600 156.83

6 79 6.02×104 16.34 360 102.90 21.79 480 129.44 32.68 720 182.51

7 83 1.23×106 17.18 420 115.74 22.90 560 146.56 34.35 840 208.19

8 86 2.61×107 18.06 480 128.58 24.08 640 163.68 36.12 960 233.87

6

3 71 66 12.95 216 81.76 17.27 288 101.27 25.90 432 140.31

4 78 1970 14.77 288 100.25 19.69 384 125.93 29.53 576 177.29

5 84 7.30×104 16.11 360 118.74 21.48 480 150.58 32.22 720 214.27

6 88 2.98×106 17.37 432 137.23 23.16 576 175.23 34.73 864 251.24

7 92 1.28×108 18.22 504 155.72 24.30 672 199.88 36.44 1008 288.22

8 95 5.63×109 18.96 576 174.20 25.28 768 224.54 37.92 1152 325.20

7

3 79 352 13.75 252 102.22 18.34 336 128.58 27.51 504 181.31

4 86 2.36×104 15.61 336 127.38 20.82 448 162.14 31.23 672 231.64

5 91 1.87×106 16.98 420 152.55 22.64 560 195.69 33.96 840 281.98

6 96 1.60×108 18.06 504 177.71 24.08 672 229.25 36.12 1008 332.31

7 100 1.42×1010 18.96 588 202.88 25.28 784 262.80 37.92 1176 382.64

8 103 1.27×1012 19.84 672 228.05 26.45 896 296.36 39.68 1344 432.97

8

3 85 2104 14.45 288 125.76 19.27 384 160.00 28.90 576 228.48

4 92 3.06×105 16.34 384 158.63 21.79 512 203.82 32.68 768 294.22

5 98 5.12×107 17.73 480 191.50 23.63 640 247.65 35.45 960 359.96

6 103 9.04×109 18.82 576 224.37 25.09 768 291.48 37.64 1152 425.70

7 107 1.63×1012 19.72 672 257.24 26.30 896 335.30 39.44 1344 491.44

8 110 2.96×1014 20.49 768 290.11 27.32 1024 379.13 40.98 1536 557.18

Key Sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.4: Security and Performance Features Using m = 16. Traitor Node Capture nc
and Number of Master Key Solutions Φ are 10x

APPENDIX A. DESIGN AND PERFORMANCE TABLES 159

Prime modulus p = 17

η N

Key Capture m = 12 m = 16 m = 24

size nc Φ Qo Tcomp Φ Qo Tcomp Φ Qo Tcomp

(bits) (nodes) (10x) (Bytes) (ms) (10x) (Bytes) (ms) (10x) (Bytes) (ms)

3

3 38 2 8.39 108 38.87 11.18 144 44.01 16.78 216 54.28

4 43 5 10.84 144 43.49 14.45 192 50.17 21.67 288 63.52

5 48 18 12.50 180 48.12 16.66 240 56.33 24.99 360 72.77

6 51 71 13.75 216 52.74 18.34 288 62.50 27.51 432 82.01

7 54 313 14.45 252 57.36 19.27 336 68.66 28.90 504 91.26

8 57 1482 15.35 288 61.98 20.46 384 74.82 30.69 576 100.50

4

3 49 5 10.14 144 50.09 13.52 192 58.99 20.28 288 76.79

4 55 33 12.50 192 58.30 16.66 256 69.94 24.99 384 93.23

5 59 264 14.11 240 66.52 18.82 320 80.90 28.23 480 109.66

6 63 2429 15.06 288 74.74 20.08 384 91.86 30.13 576 126.10

7 66 2.41×104 16.11 336 82.96 21.48 448 102.81 32.22 672 142.53

8 69 2.49×105 16.98 384 91.17 22.64 512 113.77 33.96 768 158.97

5

3 58 21 12.00 180 64.38 16.00 240 78.08 24.00 360 105.47

4 64 303 13.75 240 77.22 18.34 320 95.20 27.51 480 131.15

5 69 5511 15.35 300 90.06 20.46 400 112.32 30.69 600 156.83

6 73 1.11×105 16.34 360 102.90 21.79 480 129.44 32.68 720 182.51

7 76 2.35×106 17.37 420 115.74 23.16 560 146.56 34.73 840 208.19

8 79 5.10×107 18.06 480 128.58 24.08 640 163.68 36.12 960 233.87

6

3 66 102 12.95 216 81.76 17.27 288 101.27 25.90 432 140.31

4 72 3416 14.77 288 100.25 19.69 384 125.93 29.53 576 177.29

5 77 1.35×105 16.34 360 118.74 21.79 480 150.58 32.68 720 214.27

6 81 5.74×106 17.37 432 137.23 23.16 576 175.23 34.73 864 251.24

7 84 2.53×108 18.22 504 155.72 24.30 672 199.88 36.44 1008 288.22

8 87 1.13×1010 19.09 576 174.20 25.46 768 224.54 38.19 1152 325.20

7

3 72 585 13.75 252 102.22 18.34 336 128.58 27.51 504 181.31

4 79 4.31×104 15.87 336 127.38 21.16 448 162.14 31.73 672 231.64

5 84 3.60×106 17.18 420 152.55 22.90 560 195.69 34.35 840 281.98

6 88 3.17×108 18.22 504 177.71 24.30 672 229.25 36.44 1008 332.31

7 91 2.85×1010 19.09 588 202.88 25.46 784 262.80 38.19 1176 382.64

8 94 2.58×1012 19.84 672 228.05 26.45 896 296.36 39.68 1344 432.97

8

3 78 3677 14.77 288 125.76 19.69 384 160.00 29.53 576 228.48

4 85 5.79×105 16.56 384 158.63 22.08 512 203.82 33.13 768 294.22

5 90 1.01×108 17.90 480 191.50 23.86 640 247.65 35.79 960 359.96

6 94 1.82×1010 18.82 576 224.37 25.09 768 291.48 37.64 1152 425.70

7 97 3.30×1012 19.72 672 257.24 26.30 896 335.30 39.44 1344 491.44

8 100 6.03×1014 20.49 768 290.11 27.32 1024 379.13 40.98 1536 557.18

Key sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.5: Security and Performance Features using m = 16. Traitor Node Capture nc
and Number of Master Key Solutions Φ are 10x

APPENDIX A. DESIGN AND PERFORMANCE TABLES 160

Prime modulus p = 13

η N

Key Capture m = 12 m = 16 m = 24

size nc Φ Qo Tcomp Φ Qo Tcomp Φ Qo Tcomp

(bits) (nodes) (10x) (Bytes) (ms) (10x) (Bytes) (ms) (10x) (Bytes) (ms)

3

3 32 3 8.39 108 38.87 11.18 144 44.01 16.78 216 54.28

4 36 10 10.84 144 43.49 14.45 192 50.17 21.67 288 63.52

5 39 39 12.50 180 48.12 16.66 240 56.33 24.99 360 72.77

6 42 182 13.75 216 52.74 18.34 288 62.50 27.51 432 82.01

7 45 907 14.77 252 57.36 19.69 336 68.66 29.53 504 91.26

8 47 4677 15.61 288 61.98 20.82 384 74.82 31.23 576 100.50

4

3 40 10 10.84 144 50.09 14.45 192 58.99 21.67 288 76.79

4 45 80 12.95 192 58.30 17.27 256 69.94 25.90 384 93.23

5 48 772 14.11 240 66.52 18.82 320 80.90 28.23 480 109.66

6 51 7978 15.35 288 74.74 20.46 384 91.86 30.69 576 126.10

7 54 8.55×104 16.34 336 82.96 21.79 448 102.81 32.68 672 142.53

8 56 9.34×105 16.98 384 91.17 22.64 512 113.77 33.96 768 158.97

5

3 47 49 12.00 180 64.38 16.00 240 78.08 24.00 360 105.47

4 52 907 14.11 240 77.22 18.82 320 95.20 28.23 480 131.15

5 56 1.89×104 15.35 300 90.06 20.46 400 112.32 30.69 600 156.83

6 59 4.12×105 16.56 360 102.90 22.08 480 129.44 33.13 720 182.51

7 61 9.16×106 17.37 420 115.74 23.16 560 146.56 34.73 840 208.19

8 63 2.05×108 18.22 480 128.58 24.30 640 163.68 36.44 960 233.87

6

3 53 287 13.37 216 81.76 17.82 288 101.27 26.74 432 140.31

4 58 1.16×104 15.06 288 100.25 20.08 384 125.93 30.13 576 177.29

5 62 5.07×105 16.34 360 118.74 21.79 480 150.58 32.68 720 214.27

6 65 2.28×107 17.55 432 137.23 23.40 576 175.23 35.10 864 251.24

7 67 1.03×109 18.38 504 155.72 24.50 672 199.88 36.76 1008 288.22

8 70 4.68×1010 19.09 576 174.20 25.46 768 224.54 38.19 1152 325.20

7

3 58 1854 14.11 252 102.22 18.82 336 128.58 28.23 504 181.31

4 63 1.58×105 15.87 336 127.38 21.16 448 162.14 31.73 672 231.64

5 67 1.42×107 17.18 420 152.55 22.90 560 195.69 34.35 840 281.98

6 70 1.30×109 18.22 504 177.71 24.30 672 229.25 36.44 1008 332.31

7 73 1.19×1011 19.09 588 202.88 25.46 784 262.80 38.19 1176 382.64

8 75 1.09×1013 19.95 672 228.05 26.60 896 296.36 39.91 1344 432.97

8

3 63 1.27×104 14.77 288 125.76 19.69 384 160.00 29.53 576 228.48

4 68 2.24×106 16.56 384 158.63 22.08 512 203.82 33.13 768 294.22

5 71 4.11×108 17.90 480 191.50 23.86 640 247.65 35.79 960 359.96

6 74 7.57×1010 18.96 576 224.37 25.28 768 291.48 37.92 1152 425.70

7 77 1.39×1013 19.84 672 257.24 26.45 896 335.30 39.68 1344 491.44

8 79 2.55×1015 20.59 768 290.11 27.46 1024 379.13 41.18 1536 557.18

Key sizes 64 bits 80 bits 96 bits 112 bits 128 bits

Table A.6: Security and Performance Features using m = 16. Traitor Node Capture nc
and Number of Master Key Solutions Φ are 10x

Appendix B

SOURCE CODES

B.1 Simulate Probability of Finding a Traitor Node
% ==
% PROBABILITY OF FINDING THE PILOT NODE
%===
% FILL THE n COUPLERS WITH RANDOM NUM
clear;
pr = 7;
N = 4 ;
eta =3;
Na=N*eta-N;
txteta = int2str(eta);
txtN = int2str(N);
txtpr = int2str(pr);
% fName = strcat("./results/findRefNode_probab","_N",txtN,"_e",txteta,"_pr",txtpr);
runs = 1e10;
ctr=0;
foundRef = false;
for r=1:runs

for i=1:N
couplers(i) = 1+floor(rand()*pr);

end
% FILL SUBSET Ra WITH RANDOM NUMBERS

for i=1:(Na)
Ra(i) = 1+floor(rand()*pr);

end
% FILL SUBSET Rb WITH RANDOM NUMBERS

for i=1:(Na)
Rb(i)= 1+floor(rand()*pr);

end
% CHECK IF Ra INTERSECTS (Rb UNION COUPLERS)

RbC = union(Rb,couplers);
RaC = union(Ra,couplers);
tfa = intersect(Ra,RbC);
tfb = intersect(Rb,RaC);
if ((size(tfa,2) == 0) || (size(tfb,2) == 0))

% foundRef = true;
disp(’========= FOUND ======’)
size(tfa,2);
size(tfb,2);

161

APPENDIX B. SOURCE CODES 162

ctr=ctr+1;
% disp("*********");disp(couplers);
% disp("---------");disp(" tfa: ");disp(tfa);disp("Ra:");disp(Ra);disp("RbC");disp(RbC);
% disp("+++++++++");disp(" tfb: ");disp(tfb);disp("Rb:");disp(Rb);disp("RaC");disp(RaC);

else
foundRef= false;

end
% save(fName,’r’,’ctr’,’N’,’eta’,’pr’)

end
disp(’prime ’);disp(pr);
disp(’N ’);disp(N);
disp(’eta’);disp(eta);
disp(’found = ’);disp(ctr);
disp(’Probab = ’);disp(ctr/runs)
% disp("Expected: ");disp(runs/ctr);

B.2 Simulate Capture to Find a Traitor Node
%==
% SIMULATE NODE CAPTURE TO FIND the TRAITOR NODE
% COUNT SUCCESS AND RUNS, PROBAB = SUCCESS/RUNS
% ALSO ACCUMULATE THE NUMBER OF COUPLINGS Ra IN EACH RUN TO GET DIST.
% COMPUTE THE KEY-SET USING ACTUAL MASTER KEYS, PUBLIC KEYS
% file: h:\BYkaThesis_finalCodes\findRefNode_script_recurr_v2.m
%==
%
% KEYING PARAMETERS
%
clear;
tStart = datestr(now);
m = 24;
pr = 31;
eta = 5;
N = 4;
q = 65521;%2^18 -5;% 2^17-1; 2^19-1; 2^20-3; %65521;
Q = N*eta;
%--
% RUN PARMETERS
runs=1000;
txteta = int2str(eta);
txtN = int2str(N);
txtpr = int2str(pr);
txtruns=int2str(runs);
fName = strcat(’results2\findRefNode_script_recurr_v2_results’,

’_p’,txtpr,’_e’,txteta,’_N’,txtN);
% Initialise
foundRefNodesCtr(1)=[0];
capturedTags=[1234];
permCouplings(1)=[0];
for r=1:runs % SHOULD BE MOVED DOWN TO USE SAME SET
% MAKE MASTER KEY MATRICES FOR EACH NEW RUN;

mset = masterKeys(m,N,pr);
% GET A VALID PUBLIC KEY TAG FOR NodeA
% CLEAR PREVIOUS CAPTURES, COUNTS

clear capturedTags;
display(’New tags’);
savedCtr = 0;
couplingsA(1) = 0;
ctrCoup=1;
prodCouplings = 1;
permCtr = 0;

APPENDIX B. SOURCE CODES 163

validKey=false;
while ~validKey
idtagA = floor(rand()*q/eta)*eta;
validKey = isValidPKeyId(m,pr,q,idtagA);

end %while
k=1; % COUNTER
capturedTags(k)=idtagA; % KEEP TRACK OF THE CAPTURED NODES

%==
% LOOP UNTIL FOUND TRAITOR NODE
%--

foundRef = false; % Traitor node
counter = 0;
while ~foundRef

counter=counter+1;
% GET A NEW VALID PUBLIC KEY TAG AND MAKE NODE B

validKey=false;
while ~validKey % FIND A VALID KEY TAG
idtagB = floor(rand()*q/eta)*eta;
tf = ismember(idtagB,capturedTags);
if (~tf & isValidPKeyId(m,pr,q,idtagB))
validKey=true;

end %if %IF ~tf
end % while ~validKey
bIdset{1}=idtagB; % ID SET FOR NODE B
for i=2:eta
bIdset{i}=bIdset{i-1}+1;

end %for i;
nodeB = makeNode(mset,bIdset,pr,q);

%---\
% SAVE SOME NODES FOR CHALLENGE
%---

if savedCtr < 201 % NUMBER OF NODES TO SAVE
savedCtr = savedCtr + 1;
savedNodes{savedCtr} = nodeB;

end;
if savedCtr >200
save(’nodesKeys_N7_e6’,’savedNodes’);
break;

end; %if
%---

k=k+1;
capturedTags(k) = idtagB; %SAVE B’s ID INTO CAPTURED SET

% JUST TO SEE SOMETHING
capNodes = size(capturedTags,2)
disp(’Run no ’);disp(r);
disp(’eta ’);disp(eta);
disp(’N ’);disp(N);
disp(’pr ’);disp(pr);

%==
% NOW TEST NODE B WITH ALL PREVIOUS NODES
%--
% CREATE EACH PREVIOUS TESTED NODE AS NODE A

x = 1;
while ((~foundRef) & (x<=capNodes-1))
x=x+1;
aTag = capturedTags(x);
aIdset{1}=aTag;
for i=2:eta
aIdset{i}=aIdset{i-1}+1;

end% for;
nodeA = makeNode(mset,aIdset,pr,q);
%---
% COMPUTE THE PARTIAL KEY-SET, Ra, Rb
% TEST IF PARTIAL KEY-SET Rb HAS <= N COUPLINGS WITH Ra RECURRSIVELY
i=1;
foundRef = false;

APPENDIX B. SOURCE CODES 164

while ((~foundRef)& (i <= eta)) %FOR EACH PUB KEY IN A
Ra = partialKeySet(nodeA,nodeB.id{i},pr,q);
j=1;
while ((~foundRef) & (j <= eta)) %FOR EACH PUB KEY IN B

Rb = partialKeySet(nodeB,nodeA.id{j},pr,q);
% TEST THE COUPLERS
[couplers,ia,ib] = intersect(Ra,Rb);
% ==
% COUNT # OF COUPLINGS FOR HISTOGRAM
% COMPUTE LIMITED CAPTURE PERMUTATIONS
% --
if ctrCoup <= 20000 %DON’T WANT TOO MANY
countCouplings = countMatrix(Ra,couplers);
couplingsA(ctrCoup) = sum(countCouplings{1});

end % if ctrCoup
if ctrCoup <= m
prodCouplings = prodCouplings*sum(countCouplings{1});

end
ctrCoup = ctrCoup+1;
% ---
if size(couplers,2) > N %TOO MANY, PRESENCE OF FALSE COUPLINGS
% noRefNode;
% disp(’No reference node’);
else %COUNT COUPLINGS IN Ra, AND Rb
couplA = countMatrix(Ra,couplers);
% couplingsA(r) = sum(couplA{1}) % SAVE FOR PLOTTING DISTRIBUTIONS
couplB = countMatrix(Rb,couplers);
if (sum(couplA{1}) <=N)
foundRef = true;
refNode.prKey = nodeA.prKeys([couplA{2}()]); %couplA{2}() for MATLAB
refNode.id = nodeA.id{j};
disp(’found TRAITOR A =============’);
disp(’Ra :’);disp(Ra);
disp(’Rb :’);disp(Rb);
% pause

elseif (sum(couplB{1}) <=N) % EITHER CONDITION IS VALID
disp(’found TRAITOR B ============ ’);
disp(’Ra :’);disp(Ra);
disp(’Rb :’);disp(Rb);
foundRef = true;
refNode.prKey = nodeB.prKeys([couplB{2}()]);
refNode.id = nodeB.id{i};
%pause

end %if sum(couplA)
end %if size(couplers)

j=j+1;
end% while ~ foundRef

i=i+1;
end%while % foundRef

end% while % x<=
end%while % while foundRef
%disp(’found traitor’);
disp(’pr ’);disp(pr);
disp(’eta’);disp(eta);
disp(’N ’);disp(N);
disp(’Total runs ’);disp(runs);
disp(’run no ’);disp(r);
foundRefNodesCtr(r)=counter
permCouplings(r) = prodCouplings
disp(’==’)
%pause

end % for runs
capsize=size(capturedTags,2)
tStart
tEnd=datestr(now)
save(fName,’couplingsA’,’foundRefNodesCtr’,’permCouplings’,’tStart’,’tEnd’,’savedNodes’);

APPENDIX B. SOURCE CODES 165

%==
% COMPUTES THE PARTIAL KEY-SET
% file: partialkeySet.m
%===
function [Ra] = partialKeySet(nodeA,idB,p,q)
% k = keyPairs(nodeA,idB,m,p,q)
% returns a (1 x n2N) row vector of secret numbers

nN=size((nodeA.prKeys),2);
m = size((nodeA.prKeys{1}),2);
pubKey=publicKey(idB,m,p,q);
for j=1:nN
Ra(j)=mod(nodeA.prKeys{j}*pubKey,p);

end
% kpair=sort(sNumb);
end

%===
% file: fullKeySet.m
%===
function [keyRX] = fullKeySet(nodeX,nodeY,p,q)
% k = keyPairs(nodeA,idB,m,p,q)
% returns a (1 x n2N) row vector of secret numbers

nN=size((nodeX.prKeys),2);
m = size((nodeX.prKeys{1}),2);
eta = size((nodeX.id),2);
k=0;
for i=1:eta

idY = nodeY.id{i};
pubKeyY=publicKey(idY,m,p,q);
for j=1:nN
k=k+1;
keyRx(k)=mod(nodeX.prKeys{j}*pubKeyY,p);

end
end %for i
keyRX = sort(keyRx);

% kpair=sort(sNumb);
End

%==
% RETURNS THE PUBLIC COLUMN VECTOR
% publicKey.m
%==
function puKey = publicKey (id, m,p, q)
% Compute the public key,
% Usage puKey = publicKey (seed,size,prime)
% m = rows(ma);

if (isValidPKeyId(m,p,q,id)==1)
i=1;
puKey(i,1)=1;
temp=1;
for i=2:m
temp=temp*id;
while (temp > q) % mod q
temp=temp-q;

% disp("key element after mod ");disp(temp);
end;
puKey(i,1)= mod(temp,q);

end
else

% puKey = 0;
end

end

APPENDIX B. SOURCE CODES 166

%==
% GENERATES N MASTER KEY SYMMETRIC MATRICES
% file: masterKey.m
%==
function mKey_set = masterKeys(m,N,p)
% Generates the set of master keys
% Usage mKey = masterKey(size,N,prime)

for k=1:N
for i = 1:m
for j = 1:m
mKey(i,j) = floor(p*rand());
mKey(j,i) = mKey(i,j);

end
end
mKey_set{k} = mKey;

end
end

%==
% CHECKS IF A PUBLIC KEY SEED IS VALID FOR USE
% file: isValidPKeyId.m
%==
function validPKey = isValidPKeyId(m,pr,q,id)
% check if at least one element is > q, and is not zero congruent pr

validPKey = false;
temp=1; it=1;
for (it=1:m-1) % see if at one element is > q;

temp=temp*id;
larger=false;
while (temp>q)
temp=temp-q;
larger=true;

end;
if ((mod(temp,pr)~= 0) & larger) % check that one is not zero
validPKey=true;

end
it=it+1;

end
% disp(temp);
% endif
end

%==
% CREATE A NODE OBJECT WITH IdS AND PRIVATE KEYS
% file: makeNode.m
%==
function node = makeNode(m_set,id_set,p,q)
% creates a node given master keys, the node’s id set
% Returns an object with node.id, node.prkeys
% Usage node = makeNode(m_set, id_set, p, q)

eta = size(id_set,2);
N = size(m_set,2);
m = size(m_set{1},1);
ids = id_set;
y=0;
for i=1:eta

puKey=publicKey(ids{i},m,p,q);
for j=1:N
y=y+1;
prKey_set{y} = mod(puKey’*m_set{j},p);

end
end
node.id=ids;
node.prKeys=prKey_set;

end

APPENDIX B. SOURCE CODES 167

B.3 Estimating Traitor Node Capture Size and Φ

Genius math script

#==
CALCULATES THE PROBABILITY OF FINDING A TRAITOR NODE
CALCULATES MOST OTHER QUANTITIES
#==
function keySizePilot() =(

mk=[12,16,24,32];
p=[7,13,19, 31,37,41,43,47,53,59, 61, 19,23,31,41,251,1023];

secLevel = 24.08; #28.90; #33.72; #19.2;
keys = [64,80,96,112,128,192];#; #96;# 64;

secLevel = log10(2^keysize);
for ik = 6 to 6 do (

keysize = keys@(1,ik);
secLevel = log10(2^keysize);
bestMem = 2000;
bestTime = 1000;
capmin = 10000;

for im = 2 to 4 do (
for msize = 24 to 24 do (
for ip = 2 to 4 do(
for ei= 2 to 6 do (

for Ni = 2 to 6 do (
msize = mk@(1,im);
pr = p@(1,ip);
Nn = Ni*ei;
Nn2 = Nn*ei; #eta@(1,ie);
Na = Nn-Ni;

#==
KEYSPACES
#==

kspace = (Nn2+pr-1)!/(pr-1)!/(Nn2)!;
display(" keyspace :",kspace);

ksbits = log2(kspace);
display(" ks bits ",ksbits);
#==
EXACT PROBABILITY OF SET Ra or Rb DISJOINT WITH Rc
OR Ra, Rb AND Rc ARE DISJOINT
OR Ra DISJOINT WITH (Rb U Rc) OR VICE VERSA
#==
PRECALCULATES Qa

Qa@(1,1) = 1;
for i=2 to Na do (
sum2 = Qa@(1,1);
sumQ = 0;
for j=1 to i-1 do (
sumQ = sumQ+i!/(i-j)!/j!*Qa@(1,j);

); #endfor
Qa@(1,i) = i^Na-sumQ;

); #endfor
#%---
PRECALCULATES Qrc

Qc@(1,1) = 1;
for i=2 to Ni do (
sum2 = Qc@(1,1);
sumQ = 0;
for j=1 to i-1 do (
sumQ = sumQ+i!/(i-j)!/j!*Qc@(1,j);

); #endfor

APPENDIX B. SOURCE CODES 168

Qc@(1,i) = i^Ni-sumQ;
); #endfor

#%---
#% FOR CASE SET A, B AND C ARE ALLL DISJOINT
#% PROBABILITIES FOR SINGLE, DOUBLE, ... Na INTEGERS IN Ra

tempP = 0;
perm3sets = 0;
for r = 1 to Ni do (
sumP = 0;
for k = 1 to Na do (
if ((pr-k)>=0) then (
myCa = pr-r;
for j=1 to k-1 do (
myCa = myCa*(pr-r-j);

);
myCa = myCa/k!;
sumP = sumP+myCa*Qa@(1,k)*(pr-r-k)^Na; #% only (p-rc-r) left for B

);#endif
); #endfor
myCc = pr; #% COMBINATIONS WITH LARGE NUMBERS
for j=1 to (r-1) do (
myCc=myCc*(pr-j);

);#endfor
myCc = myCc/r!;
tempP = myCc*Qc@(1,r);
perm3sets=perm3sets+tempP*sumP;

); #endfor
#% FOR CASE SET A IS DISJOINT WITH B UNION C

perm2sets = 0;
for r = 1 to Na do (
if ((pr-r) >= 0) then (
myC2 = pr; #% COMBINATION WITH LARGE NUMBERS
for j=1 to r-1 do (
myC2=myC2*(pr-j);

);#endfor
myC2 = myC2/r!;
perm2sets = perm2sets+myC2*Qa@(1,r)*(pr-r)^Nn;

);#endif
);#endfor %r

#%---
#% COLLATE THE RESULTS

probab1 = (2*perm2sets-perm3sets)/(pr^(Nn+Na));
display("====================","");
display("p ",pr);
display("e",ei);
display("N",Ni);

display("Pt",probab1);
===
CAPTURE SIZES
===

cap = 1/2*(1+sqrt(1+8/(ei*ei*probab1)));
===
LIMITED CAPTURE BINOMIAL APPROXIMATION
updated June 27 using binary search
===

Cx = Nn!/(Nn-Ni)!/Ni!;
X = (probab1/Cx);
stP = 0.7;
enP = 0.9;
pbt = stP;
goOn = true;
while goOn do (

pb = pbt;
y=pb^Ni*(1-pb)^(Nn-Ni)-X;
if (abs(y)>1e-20) then (
if (y>0) then (

APPENDIX B. SOURCE CODES 169

delta=(enP-stP)/2;
stP = stP+delta;
pbt = stP;

)
else (

delta=(enP-stP)/2;
stP = stP-delta;
enP = stP+delta;
pbt = stP;

); #endelse
) #endif abs
else (
goOn = false;

);
); # while
display("pb ",pb);
Expect = (Nn*pb);
display("expected ",Expect);
limitedCPermE = (Expect)^msize;
display("Phi", limitedCPermE);

===
ROM, RAM AND TIME
===

tcomp = 0.0428*(msize*Nn2+(msize-2)*ei)+23.72;
prkeysize = Nn*msize;
pairKeysize = Nn2;

bestMem = 1000;
bestTime = 1000;
secLevel = 19.2;
capmin = 10000;
keysize = 64;
if (ksbits >= keysize) then (
if (log10(limitedCPermE)>=secLevel) then (
if (cap >= capmin) then (

if (tcomp<bestTime) then (
if (prkeysize<bestMem) then (

bestTime = tcomp;
bestMem = prkeysize;
bestN = Ni;
besteta = ei;
bestm = msize;
bestpr = pr;
bestNc = cap;
bestSec = log10(limitedCPermE);
bestPrKeySize = prkeysize;
bestKpairsize = ksbits;

); # endif prkeysize
); # endfor N

); #endfor; #e
); # endfor; #p

); #; endfor; #m
display("==========="," new ");
display("Key size ",keysize);
display("Keypair ",bestKpairsize);
display("cap ",bestNc);
display("Sec level ",bestSec);
display("ROM ",bestPrKeySize);
display("Best time ",bestTime);
display("pr ",bestpr);
display("m ",bestm);
display("eta ",besteta);
display("N ",bestN);
); # for keysize;

);

APPENDIX B. SOURCE CODES 170

B.4 TinyOS Code for the MICAz mote

Program File: BYkaP.nc

// ***
// MODULE FOR GENERATING BYka KEY
// USEAGE: genKpair(uint8_t *ptrKey, uint16_t IdB)
// INPUT: IdB PUBLIC KEY ID FOR NEIGHBOUR
// OUTPUT: ptrKey is pointer to uint8_t key[16]
// ***
// * =============== REMOVE FOR SIMULATION ====================================
#include <avr/pgmspace.h> // REMOVE FOR TOSSIM
module BYkaP{

provides interface BYka;
}

implementation{
uint32_t vs, vsTemp; // public key vector seed
uint16_t idx; // index for private key elements, Nnm
uint32_t sNTemp=0; // temp key-set number, largest is 30x30, 10 bits
uint32_t sNumb[Nnn]; // the key-set numbers, largest mx30x30, 24 bits
uint16_t s; // index for sNumb, largest is N*n*n
uint8_t i,j; // counters for N, n
uint8_t k; // counter, largest Nn,
uint32_t pubKeyE; // temp public key element, largest 17 bits
uint8_t prKeyTemp; // temp private key element read from FLASH
uint8_t *tempPtr; // pointer to OUTPUT key array
uint8_t BIN[pr]; // key-set occurrences

// These are in prKey*.h FILE
// N = number of master keys
// n = number of public keys
// m = master key matrix size
// ===
// INITIALISE Key-set WITH 1st elements of PrivateKey[0]
// TO SAVE ON COMPUTATION SINCE PubKey[0] is always 1.
// ===
command void BYka.genKpair(uint8_t* ptrKey, uint16_t IdB){

for (i=0;i<n;i++){
s = i*Nn;
for (k=0;k<N*n;k++){ // k is private key index

idx = k*m; // points to 1st in each Private key
// * ---------------- FOR TOSSIM ONLY -------------------------------
// sNumb[s] = prKey[idx]; // FOR TOSSIM ONLY
// * ---------------- FOR MICAZ ONLY -------------------------------

sNumb[s] = pgm_read_byte(&prKey[idx]); // READ FROM FLASH
// --,

s++;
}

}
// ===
// MAIN BODY OF BYka PROTOCOL -- COMPUTE THE BYka PAIRWISE Key-set
// ===

vsTemp = IdB; // IdB is ID of neighbour
for(i=0;i<n;i++){ // for each public key

pubKeyE = 1; // PubKey[0] is always 1
vsTemp = vsTemp+i; // increment the neighbour’s ID
for (j=1;j<m;j++){ // start at 2nd element of pubKey

pubKeyE = (pubKeyE*vsTemp) % q; // Public key element
for (k=0;k<Nn;k++){ // k is private key index

idx = k*m+j; // points to element in PrivateKey
s = i*Nn+k; // points to Key-set element

// * ------------------FOR TOSSIM ONLY ------------
// sNTemp = (prKey[idx]*pubKeyE); // for TOSSIM only

APPENDIX B. SOURCE CODES 171

// * ------------------FOR MICAZ ------------------
prKeyTemp = pgm_read_byte(&prKey[idx]);
sNTemp = prKeyTemp*pubKeyE; // for MICAz

// ----------------------------------
if (j==m-1){ // only do modulo at last

sNumb[s] = (sNumb[s] + sNTemp) % pr;
}
else {

sNumb[s] = (sNumb[s] + sNTemp);
}

}
}

}
//--
// SORT Key-set INTO BINS
//--
for (i=0;i < pr; i++){ BIN[i] = 0;} // Initialise BIN to zeros
for (s=0;s < Nnn; s++){

BIN[sNumb[s]]=BIN[sNumb[s]]+1;
};

// ================= End of BYka pairwise Key-set computations ================
//
// ========== MAKE THE FINAL BYka KEY ==
// * This method fills and ADD each BYka key with corresponding elements
// * BIN values mod 255,
for (i=0; i<keySize; i++){ // INITIALISE KEY VALUES TO ZERO
ptrKey[i]=0;
}

i = 0;
for (j=0; j<pr; j++){
ptrKey[i]=(ptrKey[i]+BIN[j]) % 255; // keep size < 256
i = (i+1) % (keySize-1);
}

// ===
// FOR TOSSIM SIMULATION ONLY -> SHOW BYka KEY-SET AND BIN
for (s=0;s<Nnn;s++){
dbg("keySet","%u \n",sNumb[s]);
}
for (k=0;k<pr;k++){
dbg("BIN","in BIN at %u is %u \n", k, BIN[k]);
}
}
// ---
} //End command genKPair() ===

Configuration File: BYkaC.nc
configuration BYkaC{
}
implementation {

components MainC,LedsC,BYkaP;
components new TimerMilliC() as uTimer0;
BYkaP.Boot -> MainC.Boot;
BYkaP.Leds -> LedsC;

}

TinyOS Interface File: BYka.nc
interface BYka{

command void genKpair(uint8_t* ptrKey, uint16_t IdB);
}

