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Abstract-- One of the key techniques towards energy efficiency and 

conservation is Non-Intrusive Load Monitoring (NILM) which lies 

in the domain of energy monitoring. Event detection is a core 

component of event-based NILM systems. This paper proposes 

two new low-complexity and computationally fast algorithms that 

detect the variations of load data and return the time occurrences 

of the corresponding events. The proposed algorithms are based 

on the phenomenon of a sliding window that tracks the statistical 

features of the acquired aggregated load data. The performance of 

the proposed algorithms is evaluated using real-world data and a 

comparative analysis has been carried out with one of the recently 

proposed event detection algorithms.  Based on the simulations 

and sensitivity analysis it is shown that the proposed algorithm can 

provide the results of up to 93% and 88% in terms of recall and 

precision respectively.  

 

Index Terms—Energy Monitoring, Event Detection, Non-Intrusive 

Load Monitoring, Smart Grids. 

I.  INTRODUCTION 

NERGY efficiency and conservation are the key drivers 

towards the concept of the future smart grid (SG). The 

consumers who are expected to play a key role in this 

regard [1] not only can effectively participate towards the 

sustainable SG system but also can have direct feedback of 

meaningful real-time appliance level consumption information 

[2, 3]. Due to the worldwide deployment of smart meters, 

energy monitoring becomes more viable today. Numerous 

applications based on smart meter data have already been 

reviewed [4] for the application of SG in achieving load 

diversity and efficiency [5].  

Energy disaggregation, also known as load or power 

disaggregation [6], contributes to the development of effective 

energy monitoring systems. This refers to a method aiming at 

an estimation of individual appliances’ power consumption 

from the aggregated household electricity consumption. 

Numerous methods are available to perform load 

disaggregation. They can be broadly distinguished as hardware 

and software-based methods [3, 7] as shown in Fig. 1. 

Intrusive Load Monitoring (ILM) and smart appliances are 

the techniques that lie within the domain of hardware methods 

whilst Non-Intrusive Load Monitoring (NILM) lies in the 

domain of software methods. ILM refers to a technique in 

which appliance level power consumption profiles are obtained 
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using sub-metering sensors that are attached to individual 

appliances [8]. This technique is relatively simple but factors 

like multiple numbers of sensors, reliability, and cost can be 

some of the main deterrent concerns [7, 9]. Smart appliances 

are the appliances that have integrated capabilities to monitor 

and report their power consumption [10] but these appliances 

are not widely in use due to their high market prices and 

interoperability issues [11]. Alternatively, software methods 

provide attractive solutions to load disaggregation. A widely 

used technique is commonly referred as NILM or Non-intrusive 

Appliance Load Monitoring (NALM) or Non-Intrusive 

Appliance Load Monitoring (NIALM) [12-14]. The concept 

was first introduced by Hart [15] in 1984. Later, numerous 

techniques have been proposed that improve the early concept 

of NILM. A comprehensive review and outlook of the proposed 

NILM algorithms are presented in [3, 16-18]. 

 

 

 

 

 

 

 

 

Fig. 1.  Load Disaggregation Hierarchy 

A.  Non-Intrusive Load Monitoring 

NILM is a widely used technique that disaggregates the load 

data acquired from a single entry point and identifies power 

consumption profiles of the individual appliances. Let consider 

a time-series power load curve monitored at a metering point. 

It can be represented as an algebraic sum of n number of 

appliances’ load, as shown in Eq. (1). 

𝑃𝑎𝑔𝑔(𝑡) = ∑ 𝑃𝑖(𝑡)𝑛
𝑖=1                             (1) 

The task of NILM is to identify the state of individual 

appliance loads P1(t), P2(t), … from the given information of 

aggregated load Pagg(t). A traditional NILM system consists of 

three main components, namely: data acquisition, feature 

extraction, and classification as shown in Fig. 2. Additional 
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details can be found in [3]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Traditional NILM System Framework 

Acquisition of the aggregated load data is a pre-requisite for 

any of the NILM systems. The aggregated load data can be 

composed of different variables (power, current, voltage, power 

factor etc.), and sampling rates.  Feature extraction is a process 

to extract unique features (also referred to as signatures) from 

the acquired data. It can be broadly divided into two classes 

namely steady state and transient features. Both steady state and 

transient features are intended to identify the state changes in 

the operation of an appliance but differ in what data they are 

focusing on. The last component of the NILM system is 

classification and refers to the process of analyzing the features 

extracted from the acquired aggregated load data to identify 

specific appliances.  

Early NILM research was focused on the disaggregation of 

high consumption loads [19-21]. Recently many of the 

algorithms are mainly focusing on high sampling rates [22] 

giving the opportunity to incorporate more appliance’s 

electrical features [23]. This leads to accurately classify a 

greater number of appliances [2]. High and low sampling rates 

lead to the extraction of transient and steady-state features 

respectively. Armel et al. [2] presented a comprehensive 

analysis of the sampling rate (at which the aggregate data are 

acquired) and the corresponding number of appliances to be 

classified.  

The working principle of the available NILM systems can be 

classified to be either event-based or non-event based [24] 

working principle of the method. The event-based NILM relies 

on event detection by using different edge detection algorithms 

on the acquired aggregated load data. Later-on features are 

captured from the extracted events and classified by a different 

set of rules using machine-learning algorithms. Figueiredo et al. 

[25] successfully detected steady state step changes, and 

features were classified by means of machine learning 

algorithms. On the other hand, the non-event based NILM does 

not rely on edge detection algorithms before the classification 

stage. Rather, all the samples of the acquired aggregated load 

data are considered for inference using statistical models such 

as Hidden Markov Model (HMM) [26-28]. A comparison 

between event-based and non-event based NILM is presented 

in Table I [7].    

B.  Event-Based NILM 

An event is a fragment of a signal that deviates from the 

previous steady state and lasts until the next steady state has 

TABLE I. COMPARISON OF EVENT-BASED AND NON-EVENT 

BASED NILM 

been reached [32]. Here it is worth mentioning that the turning 

ON and turning OFF of an appliance are considered as distinct 

events having their own starting and ending time respectively, 

as shown in Fig. 3. 

Fig. 3.  Graphical Representation of an Event 

The purpose of the event detection algorithm is to identify 

all turning ON and OFF edges of appliances within the acquired 

aggregated load data. A traditional event-based NILM system 

consists of data acquisition, data pre-processing, edge 

detection, feature extraction, and appliance classification [14]. 

After the aggregated load data are acquired, data pre-processing 

can be carried out to tackle power (load) measurement 

uncertainties.  Data pre-processing can be performed either in 

the form of power normalization, thresholding, or filtering. The 

former aims at preventing uncertainties arising from data 

fluctuation that could cause misleading appliances’ events. 

Thresholding aims at eliminating small power loads and the 

base-load from appliances that are running permanently and 

would both appear as noise. Lastly filtering is used for data 

smoothing and eliminating sudden peaks [13]. Later, edge 

detection is carried out to identify the events of appliances’ 

turning ON and OFF. This is followed by the features extraction 

stage and finally, classification is done based on the extracted 

features. 

To date, numerous event detection algorithms have been 

proposed and developed with diversity in terms of variables, 

data granularity, and techniques. Most of the existing work is 

based on appliance consumed power as an input variable with 

some exceptions, e.g., current harmonics used as an input 

feature to detect the events [32, 33]. De Baets et al. [29] 

performed event detection in the frequency domain by taking 

active power as input feature at a sampling rate of 60 Hz. 

Girmay et al. [34] proposed a time-frequency based event 

detection using a goodness-of-fit Chi-squared test.  

This paper proposes two low complexity and 

computationally fast event detection algorithms based on two 
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different statistical features, namely variance and mean 

absolute deviation. The remaining of this paper is structured as 

follows: Section II presents the detailed phenomenon and 

working principle of the proposed algorithms; Section III 

presents the simulation studies and the corresponding results 

along with the performance evaluation. Sections IV and V 

present sensitivity and comparative analysis of the proposed 

algorithms respectively. Conclusions are drawn in Section VI. 

II.  PROPOSED ALGORITHMS  

This section presents the proposed algorithms with details of 

their basic working principles and implementation. The basic 

principle of both algorithms relies on a sliding window that runs 

over the acquired aggregated load data to extract distinct events. 

This is graphically presented in Fig. 4. 

Fig. 4.  Working Principle of the Proposed Algorithms  

The sliding window of each algorithm tracks different statistical 

measures namely variance ‘𝜎2’ and mean absolute deviation 

‘MAD’. These measures are described in (2) and (3) 

respectively, 

𝜎2 =
1

𝑛
∑ |𝒙𝑖 − 𝜇𝑥|2𝑛

𝑖=1                                                                (2) 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝒙𝑖 − 𝜇𝑥|𝑛

𝑖=1                                                                (3) 

where 𝜇𝑥 is the mean of x as shown below in (4) 

𝜇 =
1

𝑛
∑ 𝒙𝑖

𝑛
𝑖=1                                                                               (4) 

The proposed algorithms are based on variance and mean 

absolute deviation and are then called hereafter Variance 

Sliding Window (VSW) and Mean Absolute Deviation Sliding 

Window (MAD-SW) algorithms respectively. The output of 

both proposed algorithms is in the form of starting and ending 

time indices of the detected events from the acquired 

aggregated load data. The descriptions of the proposed 

algorithms are as follows: 

Algorithm 

Input: Aggregated Load Data 

Output: Start and End Time Indices of Detected Events 

 

1. Acquire aggregated load data and process the data 

using median filtering technique 

2. Select the sliding window width ‘ω’ 

3. Initialize the filter with the corresponding statistical 

feature, i.e., 𝝈𝟐 or MAD (depending on the applied 

algorithm) 

4. Using sliding window technique, compute iteratively 

the corresponding statistical features, i.e., 𝝈𝟐 or MAD 

(depending on the applied algorithm) 

5. Select a threshold value ‘ẟ’ and compute the threshold 

signal representing the steady states and transient 

states 

6. Use the derivation function to compute the 

corresponding edges and extract the starting and 

ending time instances of the detected events 

7. Post-processing, i.e., event approval and delay 

correction due to window width 

 

Detailed steps of the proposed algorithms are represented 

graphically in form of a flowchart as shown in Fig. 5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Flow Chart of the Proposed Algorithms  

III.  SIMULATION AND RESULTS 

For a realistic testing of the proposed algorithms, simulation 

studies have been carried out based on a comprehensive real-

world dataset: Dataport [35]. Dataport is the largest load 

disaggregation data source, operated and owned by Pecan Street 

Inc., a non-profit research institute founded in 2009. Dataport 

is comprised of electricity consumption profiles for 722 houses 

[36] in the United States of America at a low sampling rate of 

1 minute. Every house consists of aggregated average power 

consumption data as well as power consumption profiles of 

more than ten different appliances including but not limited to, 
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air condition, microwave, dishwasher, oven, furnace, 

refrigerator etc. Furthermore, the ground-truth1 power signals 

of the said appliances are also available in Dataport. 

A.  Simulation Parameters 

Simulations have been carried out on a total of 360 hours (15 

days) of aggregated load data acquired from Dataport. 

MATLAB has been used as the primary computational tool. As 

the simulations are run on real-world data, (aggregated) power 

measurement uncertainties need to be taken care of before 

applying the event detection algorithm. In this paper, power 

measurement uncertainties in form of noise/data spikes are 

considered. In order to remove these spikes, for avoiding any 

interference with event detection, median filtering is used as a 

data pre-processing technique [37]. The threshold value ‘ẟ’ has 

been selected to 250W. This value leads to the reduction of 

errors due to minor fluctuations in the acquired aggregated load 

data. It is also more viable for the events detection of high 

consumption appliances such as Electric Vehicle (EV) charging 

and Air Conditioning (AC).  

To define the needed accuracy of the proposed algorithm to 

perform well, a parameter named as a delay tolerance ‘Δt’ is 

introduced. A detected event will be considered as a true 

positive if and only if |𝑡𝑔 − 𝑡𝑑| ≤  ∆𝑡, where tg is the starting 

time of ground-truth event and td is the starting time of the 

detected event by the proposed algorithm. Sensitivity analysis 

on delay tolerance has not been carried out in the present 

simulations and ∆𝑡 has been set equal to zero. Similarly, for the 

presented simulations and corresponding results, the window 

width has been kept constant to 5 samples. A comprehensive 

sensitivity analysis in terms of window width will be discussed 

in Section IV. Table II presents various parameters regarding 

Dataport and the proposed algorithms used for the simulation 

studies and results. 

TABLE II.  SIMULATION PARAMETERS REGARDING DATAPORT 

AND ALGORITHMS 

Dataport Data ID 26 

Data Timeframe June 18 - July 2, 2014 

Sampling Rate 1/60 Hz (1 minute) 

No. of Data Samples 21600 

Window Width ‘ω’ 5 samples 

Pre-processing Technique Filtering (Median Filter) 

Threshold Value ‘ẟ’ 250 W 

Delay Tolerance ‘Δt’ Zero 

B.  Results and Evaluation 

For results and evaluation purposes, the starting time indices2 

of the detected events are considered because they initiate the 

events regardless whether that event is related to appliance 

turning ON or turning OFF. Furthermore, this paper is 

considering two specific appliances for evaluation purposes: 

EV and AC. These appliances are selected due to their high-

energy consumption and their corresponding future impacts on 

the energy market. Hence, these high consumption loads can be 

a potential flexibility control and consumption/bills reduction 

                                                           
1 Ground-truth refers to the time indices representing when the events actually occur. 
2 Starting time indices of detected events presented in Tables III and IV, and that on the abscissas of Figs. 6-9 are same. 

lever from the grid and consumer point of view, respectively. 

Moreover, high consumption appliances are more viable to 

accurately disaggregate while acquiring the aggregated load 

data at low sampling rate. The EV energy consumption profile 

is also of interest as it has been less studied in the available 

literature in terms of NILM. For example, Clements-Nyns et al. 

[38] analyzed the impact of EV charging and found it as a 

significant load element specifically for smart grid system 

analysis.  

Table III presents the results of the VSW algorithm in form 

of starting time indices of the detected events along with the 

corresponding sequence number.  

TABLE III. VSW ALGORITHM RESULTS 

Detected 

Events' 

Sequence  

Starting Time Indices of the Events 

VSW 

Algorithm’s 

Detection 

Ground Truth Data 

AC EV 

1 16 16 - 

2 54 54 - 

3 96 95 - 

14 1101 1101 - 

15 1135 1135 - 

16 1185 - 1185 

17 1238 1238 - 

18 1272 1272 - 

19 1281 - 1281 

20 1298 - 1298 

21 1318 1317 - 

Not Detected 3715 - 

Not Detected 4153 - 

97 6210 6210 - 

98 6234 - 6234 

99 6247 - 6246 

100 6502 - 6502 

101 6615 - 6614 

102 6643 6643 - 

103 6686 6686 - 

Not Detected 9780 - 

147 9837 - 9836 

148 9879 9878 - 

149 9923 9922 - 

150 9949 - 9949 

Not Detected - 10020 

207 13968 13968 - 

208 14030 14030 - 

209 14083 14083 - 

261 16945 No Actual Event Occurred 

262 16970 No Actual Event Occurred 

321 21058 - 21058 

322 21083 - 21083 

323 21103 21103 - 

324 21160 - 21159 

For comparison purposes, the ground-truth starting time 

indices of the events related to the appliances, i.e., AC and EV, 

are also presented in Table III. It can be observed that most of 

the events are precisely detected by the VSW algorithm albeit 

with some misdetection. For example, AC and EV trigger 

events at time indices 3,715 and 10,020 respectively but the 
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VSW algorithm does not detect these events at all, leading to 

false negative detections. Whilst the VSW algorithm detected 

events at time indices 16,945 and 16,970 but no actual ground-

truth events are present at these instances; this leads to false 

positive detections. Similarly, due to zero delay tolerance, 

events detected at sequence number 3, 21, 99… are not 

considered as true positive detections. 

The results for the MAD-SW algorithm are presented in the 

same way. Table IV presents the starting time indices and the 

corresponding sequence number of the detected events by 

MAD-SW algorithm along with the ground-truth starting time 

indices of the events of the two said appliances. It is noteworthy 

that the ground-truth data of appliances shown in Tables III and 

IV are acquired for the same data identification (ID) and 

timeframe as presented in Table II. It can be observed from the 

results presented in Table IV, that most of the events are 

precisely detected by the MAD-SW algorithm albeit with some 

misdetection. 

TABLE IV. MAD-SW ALGORITHM RESULTS 

Detected 

Events' 

Sequence  

Starting Time Indices of the Events 

MAD-SW 

Algorithm’s 

Detection 

Ground Truth Data 

AC EV 

1 16 16 - 

2 54 54 - 

3 95 95 - 

20 1298 - 1298 

21 1317 1317 - 

22 1326 1326 - 

23 1392 1392 - 

24 1432 1432 - 

76 4874 - 4874 

77 4916 - 4916 

78 5117 - 5117 

79 5218 5218 - 

Not Detected 5361 - 

Not Detected 6800 - 

149 9774 - 9774 

150 9780 9780 - 

151 9836 - 9836 

152 9878 9878 - 

216 13968 13968 - 

217 14011 - 14011 

218 14030 14030 - 

219 14083 14083 - 

220 14119 - 14119 

317 19960 - 19960 

318 19989 - 19989 

319 20015 - 20014 

320 20115 No Actual Event Occurred 

321 20170 20171 - 

322 20251 20251 - 

338 21058 - 21058 

339 21083 - 21083 

340 21103 21103 - 

341 21125 No Actual Event Occurred 

342 21159 - 21159 

343 21174 No Actual Event Occurred 

For parameters presented in Table II, the total number of 

detected events by VSW and MAD-SW algorithms are 324 and 

343 respectively. It is worth mentioning here that, due to space 

limitation Tables III and IV present a portion only of the 

detected events by VSW and MAD-SW respectively. Fig. 6 

graphically presents a portion of the detection results by the 

VSW algorithm in terms of pre-processed acquired aggregated 

load data and the final output of the algorithm in form of starting 

time indices of the detected events. 

Fig. 6.  Pre-processed aggregated load data (in dark cyan) and events detected 

by the VSW algorithm (in orange) 

To further elaborate the results, Fig. 7 graphically presents the 

detected events and their comparison with the ground-truth 

signal of the appliances under consideration: AC and EV. 

Fig. 7.  (a) Pre-processed acquired aggregated load data, (b) Ground-truth signal 
of AC and EV appears in dark cyan and orange color respectively along with 

the events detected by VSW algorithm appearing in black 

Likewise, Figs. 8 and 9 depict the event detection results of the 

MAD-SW algorithm and comparison of detected events with 

the ground-truth signal of the appliances respectively.  

Fig. 8.  Pre-processed aggregated load data (in dark cyan) and events detected 

by the MAD-SW algorithm (in orange) 
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Fig. 9.  (a) Pre-processed acquired aggregated data using median filtering, (b) 

Ground-truth signal of AC and EV appears in dark cyan and orange respectively 
along with the events detected by MAD-SW algorithm appearing in black color 

It is evident from Figs. 6 and 8 that most of the high 

consumption peaks in the acquired aggregated load data are 

effectively detected comparatively to the lower variation in the 

aggregated data. This is expected and required because of the 

pre-defined parameters presented in Table II particularly the 

acquired aggregated data granularity and the threshold value 

[39] of 1/60 Hz and 250W respectively. 

For evaluating the performance of the proposed algorithms, 

this paper opted for widely used performance metrics, namely 

precision, and recall [17]. Precision is defined as the ratio 

between truly detected and overall detected events and is given 

in (5), 

Precision =  
True Positive

True Positive+False Positive
                                   (5) 

Recall is a measure of the detection of events occurred in reality 

and is given in (6), 

Recall =  
True Positive

True Positive+False Negative
                                            (6) 

The definitions of true positive, false positive, and false 

negative are given [40] in Table V. 

TABLE V. TERMINOLOGIES DESCRIPTION 

Algorithm 

Prediction 

Actual Event 

Occurred 

Actual Event Didn’t 

Occur 

Detected True Positive  False Positive  

Not Detected False Negative  True Negative 

 

Based on these metrics, the performance of the proposed 

algorithms (as per the simulation parameters presented in Table 

II) are presented in Table VI. 

TABLE VI. PROPOSED ALGORITHM PERFORMANCE 

Performance 

Metric 

VSW Algorithm MAD-SW 

Algorithm 

True Positive 261 300 

False Negative 67 29 

False Positive 63 43 

Precision 80.556 % 87.464 % 

Recall 79.573 % 91.185 % 

It is evident from Table VI that due to a low number of false 

negative and false positive (particularly for input parameters 

presented in Table II), the proposed MAD-SW outperforms 

VSW both in terms of recall and precision.  

IV.  SENSITIVITY STUDIES 

The proposed algorithms are comprised of different input 

parameters that can affect their performance, e.g., sliding 

window width ‘ω’, delay tolerance ‘Δt’, and threshold value ‘ẟ’. 

Within the scope of this paper, a sensitivity analysis has been 

carried out to investigate the effects of the sliding window 

width ‘ω’ on the performance of the algorithms where the rest 

of the parameters are kept constant as presented in Table II. 

Fig. 10 presents the corresponding results of the sensitivity 

analysis in terms of precision and recall performance metrics 

for the VSW algorithm. 

 
Fig. 10.  Effect of ‘ω’ on Performance of VSW Algorithm 

The sensitivity analysis in terms of window width leads to the 

conclusion that overall performance (in terms of precision and 

recall) of the VSW algorithm is optimal at ω equals to 3. 

Furthermore, the recall metric shows a continuous drop with 

increasing window width.  This is due to the increase in the false 

negative detection as a function of window width. 

Similarly, Fig. 11 depicts the sensitivity analysis results in 

terms of precision and recall for the MAD-SW algorithm.  

 

Fig. 11.  Effect of ‘ω’ on Performance of MAD-SW Algorithm 

It is observed that the proposed MAD-SW algorithm optimally 

performs at a window width of 5. For ω>5 the overall 

performance in terms of precision and recall shows a 
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continuous drop. The drop is due to the rise of false positive and 

false negative respectively. 

As a result, it is concluded that increasing the window width 

leads to an increase in false positive and false negative 

detections. Consequently, the performance of both algorithms 

degrades. Overall this sensitivity analysis leads to the 

conclusion that the optimal performances of the proposed 

algorithms rely on the selection of an optimal value for the input 

parameter ω which varies according to the algorithm.  

V.  COMPARATIVE ANALYSIS 

In order to validate the proposed algorithms, a comparative 

analysis has been carried out where the VSW and MAD-SW 

algorithms are compared with the existing event detection 

algorithm known as  High Accuracy NILM Detector (HAND) 

[41]. The HAND algorithm tracks the standard deviation of the 

aggregated load data using a moving window. The HAND 

algorithm has been implemented, and simulations have been 

carried out using the same parameters as presented in Table II. 

Fig. 12 graphically compares of the proposed algorithms 

against the HAND in terms of precision performance metrics at 

different window width.  

 
 Fig. 12.  Precision Performance Metric Comparison 

 

Similarly, Fig. 13 depicts comparative results of VSW, MAD-

SW, and HAND algorithms in terms of recall performance 

metric for different values of ω. 

 Fig. 13.  Recall Performance Metric Comparison 
 

It is evident from the comparative analysis presented in Figs. 12 

and 13 that, at ω equal to 2 and 3, the VSW algorithm 

outperforms the other algorithms in terms of overall 

performance, i.e., precision and recall. For ω equals to 5 and 6, 

the MAD-SW algorithm outperforms the other algorithms. The 

HAND algorithm has optimal results for ω ≥ 8 for which the 

proposed algorithms are not performing optimally. 

Furthermore, it is observed that with the increase in window 

width, the false positive and false negative detections by the 

HAND algorithm decrease thereby increasing its overall 

performance. It is concluded that each algorithm performs 

optimally at different window widths ω. 

VI.  CONCLUSION 

This paper proposed two new event detection algorithms 

namely, VSW and MAD-SW algorithms, for event-based 

NILM systems based on statistical features and a sliding 

window. Beside low complexity, the proposed algorithms are 

computationally fast due to their iterative computational 

method.  

Computational simulation studies were carried out on a real-

world load data set and the proposed algorithms were compared 

against an existing event detection algorithm. It is shown that 

the outcome of the proposed algorithms is promising in terms 

of performance metrics. The window width sensitivity analysis 

for the proposed algorithms has shown that there is a tradeoff 

between the selection of an optimal window width and optimal 

performance. It is also observed that both proposed algorithms 

follow a trend of performance degradation with an increase in 

window width beyond the optimal window width value.  

Future work will focus on the validation of the robustness of 

the proposed algorithms by testing them on different data 

sampling rate, particularly low sampling rate. To further 

investigate the effect of window width on the performance of 

the proposed algorithms, an extended sensitivity analysis will 

be carried out by considering different input parameters, 

namely, delay tolerance and threshold value. Finally, power 

measurement uncertainties, which could affect the event 

detection, would need to be investigated.   
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