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Abstract—This study employs networks of stochastic spiking
neurons as reservoirs for liquid state machines (LSM). We
experimentally investigate the separation property of these
reservoirs and show their ability to generalize classes of input
signals. Similar to traditional LSM, probabilistic LSM (pLSM)
have the separation property enabling them to distinguish
between different classes of input stimuli. Furthermore, our
results indicate some potential advantages of non-deterministic
LSM by improving upon the separation ability of the liquid.
Three non-deterministic neural models are considered and for
each of them several parameter configurations are explored. We
demonstrate some of the characteristics of pLSM and compare
them to their deterministic counterparts. pLSM offer more
flexibility due to the probabilistic parameters resulting in a
better performance for some values of these parameters.

I. INTRODUCTION

THE desire to better understand the remarkable informa-

tion processing capabilities of the mammalian brain has

recently led to the development of more complex and biolog-

ically plausible connectionist models, namely spiking neural

networks (SNN). See e.g. [1] for a comprehensive standard

text on the material. These models use trains of spikes as

internal information representation rather than continuous

variables. By explicitly including time into the neural model,

especially recurrent networks of spiking neurons are believed

to be suitable methods for processing temporal information.

However, training algorithms for such networks have proved

to be very difficult to develop; see the excellent review on

supervised learning algorithms for SNN by [2].

Liquid State Machines (LSM) [3] represent an elegant

way to exploit the computational capabilities of recurrent

SNN without the need to directly train the network itself.

LSM employ concepts of the reservoir computing (RC)

paradigm [4]; see [5] for a review on recent trends in this

research field. The reservoir approach was shown to be very

suitable to process spatio-temporal data [6], [7].

A LSM consists of two main components, a “liquid”

(also called reservoir) in the form of a recurrent SNN and

a trainable readout function. The liquid is stimulated by

spatio-temporal input signals causing neural activity in the

SNN that is further propagated through the network due to

its recurrent topology. A snapshot of the reservoir contains

information about the current and past inputs to the system.

The function of the liquid is to accumulate the temporal

and spatial information of all input signals into a single

high-dimensional intermediate state in order to enhance the
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separability between network inputs. The readout function

is then trained to transform this intermediate state into a

desired system output. Since the integration of inputs over

time provides the reservoir with a fading memory of previous

input events, the read-out function can be memory-less and

comparatively simple. In fact, a linear learning algorithm

such as linear regression or single layer perceptron have

shown to be sufficient to learn the mapping of the reservoir

response to a desired network output [3].

Earlier studies have investigated the suitability of dif-

ferent neural models in the context of LSM. In particu-

lar, the well-known integrate-and-fire [3] and the Hodgkin-

Huxley [8] model were considered, but also Resonate-and-

Fire, FitzHugh-Nagamo, Morris-Lecar, Hindmarsh-Rose and

Izhikevich neurons have been investigated [9]. Although the

LSM are clearly inspired by the biological micro-circuit

of the brain, all of these neural models are deterministic.

In this study, we address the question whether recurrent

networks of probabilistic neurons are principally suitable to

be employed as reservoirs. More specifically, we focus on the

demonstration of the separation property of a probabilistic

LSM (pLSM), i.e. the distance of two liquid states obtained

after the separate injection of two input stimuli A and B is

roughly proportional to the distance between A and B. A

potential advantage of employing non-deterministic neurons

in a reservoir has been alluded already in some initial exper-

iments [10]. Here a non-deterministic LSM was constructed

using some simple extensions of the Leaky Integrate-and-

Fire (LIF) model. Designed as a small-scale experimental

study, it was concluded that a pLSM may have the potential

to increase the ability of the reservoir to separate between

input classes. In this study, we provide a significantly larger

experimental analysis for demonstrating the characteristics of

pLSM.

II. PROBABILISTIC NEURAL MODELS

In this section, we describe the probabilistic neural models

we have used to replace the deterministic LIF neurons of

a traditional LSM. The probabilistic approach is motivated

by the fact that also biological neurons exhibit significant

stochastic characteristics. Including non-deterministic ele-

ments into the neural model may reveal a benefit for the

resulting brain-like information processing system. Models

of probabilistic neurons have been proposed in many studies,

e.g. in the form of dynamic synapses [11], the stochastic inte-

gration of the post-synaptic potential [1] and stochastic firing

thresholds [12], but also in [13] where the spike propagation

and generation are defined as stochastic processes.
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Fig. 1. Evolution of the post-synaptic potential u(t) and the firing threshold ϑ(t) over time (blue (dark) and yellow (light) curves respectively) recorded
from a single neuron of each neural model. The input stimulus for each neuron is shown at the top of the diagram. The output spikes of each neuron are
shown as thick vertical lines above the corresponding threshold curve.

In this study, we employ some very simple probabilistic

extensions of the LIF model. These stochastic models are

well-known and are comprehensively described in [1]. Based

on a brief summary of the LIF neural model, we explain the

probabilistic extensions in the next paragraphs.

The LIF neuron is arguably the best known model for

simulating spiking networks. It is based on the idea of

an electrical circuit containing a capacitor with capacitance

C and a resistor with resistance R, where both C and R

are assumed to be constant. The model dynamics are then

described by the following differential equation:

τm

du

dt
= −u(t) + R I(t) (1)

The constant τm is called the membrane time constant of

the neuron. Whenever the membrane potential u crosses a

threshold ϑ from below, the neuron fires a spike and its

potential is reset to a resting potential ur. It is noteworthy that

the shape of the spike itself is not explicitly described in the

traditional LIF model. Only the firing times are considered

to be relevant.

We define a stochastic reset (SR) model that replaces the

deterministic reset of the potential after spike generation with

a stochastic one. Let t(f) : u(t(f)) = ϑ be the firing time of

a LIF neuron, then

lim
t→t(f),t>t(f)

u(t) = N (ur, σSR) (2)

defines the reset of the post-synaptic potential. N (µ, σ) is

a Gaussian distributed random variable with mean µ and

standard deviation σ. Variable σSR represents a parameter

of the model.

We define two stochastic threshold models that replace the

constant firing threshold ϑ of the LIF model with a stochastic

one. Once more, let t(f) be the firing time of a LIF neuron. In

the step-wise stochastic threshold (ST) model, the dynamics

of the threshold update are defined as

lim
t→t(f),t>t(f)

ϑ(t) = N (ϑ0, σST ) (3)

Variable σST represents the standard deviation of the Gaus-

sian distribution N and is a parameter of the model. Accord-

ing to Eq. 3, the threshold is the outcome of a ϑ0-centered

Gaussian random variable which is sampled whenever the

neuron fires. We note that this model does not allow sponta-

neous spike activity. More specifically, the neuron can only

spike at time t(f) when also receiving a pre-synaptic input

spike at t(f). Without such a stimulus a spike output is not

possible.

The continuous stochastic threshold (CT) model updates

the threshold ϑ(t) continuously over time. Consequently, this

model allows spontaneous spike activity, i.e. a neuron may

spike at time t(f) even in the absence of a pre-synaptic

input spike at t(f). The threshold is defined as an Ornstein-

Uhlenbeck process [14]:

τϑ

dϑ

dt
= ϑ0 − ϑ(t) + σCT

√
2τϑξ(t) (4)

where the noise term ξ corresponds to Gaussian white noise

with zero mean and unit standard deviation. Variable σCT

represents the standard deviation of the fluctuations of ϑ(t)
and is a parameter of the model. We note that ϑ(t) has

an overall drift to a mean value ϑ0, i.e. ϑ(t) reverts to ϑ0

exponentially with rate τϑ, the magnitude being in direct

proportion to the distance ϑ0 − ϑ(t).
The dynamics of the four models are presented in Figure 1.

For each model a single neuron is shown that is stimulated

by a random spike train generated by a Poisson process with



mean rate 150Hz. Both the evolution of the post-synaptic

potential u(t) and the evolution of the firing threshold ϑ(t)
are recorded and shown in the figure. We note the step-wise

and the continuous update of the two threshold models and

the stochastic reset of the reset model. Due to the stochastic

dynamics each probabilistic model displays a different spike

output pattern compared to the deterministic LIF neuron.

III. EXPERIMENTS

The experimental setup of the presented study is illus-

trated in Figure 2. Four recurrent SNN are generated each

employing one of the neural models described above. All

networks have the same network topology and the same

connection weight matrix. A detailed description of the

network generation and parametrisation is given in the next

section. The networks are stimulated by two input spike

trains A and B. In our experiments we leave A constant, but

choose spike trains B of varying similarity to A. The exact

definition of the synthetic data is explained in detail in the

next section. For different pairs {A,B}, the response of the

reservoir, i.e. the liquid state, to the inputs is recorded. We

are interested in the separation capability of the constructed

LSM (using different stochastic neural models) regarding the

two presented input spike trains. For suitable liquids, the

similarity of the obtained liquid states should be roughly

proportional to the similarity of A and B.

For comparing the separation properties of different ran-

domly generated reservoirs, we adopt an interesting metric

that was recently introduced in [15]. For this procedure the

responses of a reservoir to input stimuli are recorded. Each

input stimulus is labelled and belongs to one of n classes.

The recorded liquid states O are divided into subsets Ol, one

subset for each class. The idea of the separation metric is to

determine the ratio between the inter-class distance cd and

the intra-class variance cv . The inter-class distance is defined

as:

cd =

n∑

l=1

n∑

m=1

‖µ(Ol) − µ(Om)‖2

n2
(5)

where µ(Ol) is the center of mass for each class l:

µ(Ol) =

∑
o∈Ol

o

|Ol|
(6)

The notation | · | is used for set cardinality and ‖ · ‖k

corresponds to the Lk-norm.

The intra-class variance is defined as the mean variance

of a set of state vectors Ol:

cv =
1

n

n∑

l=1

ρ(Ol) (7)

where

ρ(Ol) =

∑
o∈Ol

‖µ(Ol) − o‖2

n
(8)

The separation of a liquid Ψ that produces the response

O = {Ol|l = 1, . . . , n} is then defined as

SepΨ(O) =
cd

cv + 1
(9)

We refer to [15] for a more detailed discussion of the

separation metric.

A. Synthetic data

For our investigations we have created a synthetic data

set which was inspired by the study presented in [16]. The

data resembles a binary classification problem in which the

clusters represented by the two classes may overlap. By

controlling the extent of the overlapping, we investigate

how well a LSM can differentiate between the two classes.

For suitable reservoirs, the extent of overlap should be

proportional to the separation capabilities of the reservoir.

We created the data in the following manner. First, a large

set of random spike trains was generated by a Poisson process

with a mean rate of 150Hz. From this set, we randomly

selected two spike trains A and B having the same number

m of spikes in their sequence. Consequently, A and B differ

only regarding their spike times. Using these two sequences,

some additional inputs were derived by generating copies of

A and shifting these copies by a step s towards B. Formally,

we computed the difference d between the spike times of A

and B and divided it by the number k of additional spike

trains to be generated.

d(a, b) =
b − a

k
(10)

Here a, b ∈ R
m refer to vectors of ordered spike times

observed in the spike trains A and B respectively. Now

a copy a′ of the spike times a that is shifted by a step

s ∈ {1, . . . , k} towards b can be obtained:

a′(s) = a + s × d (11)

Using this procedure, we generated k = 9 shifted and jittered

copies of A.

For the spike trains A, B and all generated copies A′,

50 jittered samples are created by subjecting the individual

spike times of each train to a Gaussian noise having a

standard deviation of 1ms. The created data set is shown

in Figure 3. Each row of spike trains represents samples

belonging to the same class. In the experiments, we created

binary classification problems by selecting a set of two

classes {a, a′(i)}∀1 ≤ i ≤ k from the data and passing

them to the reservoir for investigating its separability.

B. Setup

We construct a reservoir having a small-world inter-

connectivity pattern as described in [3]. A recurrent SNN is

generated by aligning 1000 neurons in a three-dimensional

grid of size 10 × 10 × 10. In this grid, two neurons A and

B are connected with a connection probability

P (A,B) = C × e
−d(A,B)

λ2 (12)

where d(A,B) denotes the Euclidean distance between two

neurons and λ corresponds to the density of connections

which was set to λ = 2 in all simulations. Parameter C

depends on the type of the neurons. We discriminate into

excitatory (ex) and inhibitory (inh) neural types resulting in



Fig. 2. Experimental setup of the study.
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Fig. 3. Synthetic data used in the experiments. Samples of spike trains
are generated by successively shifting the spike times a towards the spike
times b and applying a Gaussian jitter.

the following parameters for C: Cex−ex = 0.3, Cex−inh =
0.2, Cinh−ex = 0.4 and Cinh−inh = 0.1. The network

contained 80% excitatory and 20% inhibitory neurons. All

parameter values are directly adopted from [9]. The mem-

brane potential of the neurons is randomly initialized in the

interval [0mV, 4mV ].

We define the 10× 10 neurons located in the first layer of

the grid to be the input neurons. These neurons are stimulated

by the input spike trains of our synthetic dataset. The last

layer of neurons in the grid (consisting 10 × 10 neurons as

well) corresponds to the output layer. The spiking activity

of these neurons occurring in a time window of 10ms is

recorded and referred to as the liquid state of the reservoir at

a given time. More specifically, the liquid state at time t is

a binary vector indicating whether a certain neuron has fired

or not in the time window [t, t + 10ms].

It is noteworthy that the generation of a suitable liquid,

i.e. a liquid that can satisfyingly separate between different

classes of inputs, is not an easy task. Suitable liquids are

commonly identified by generating numerous random net-

works and selecting the one that maximizes the classification

accuracy of the readout function. Some interesting alternative

approaches have suggested to use Hebbian learning strategies

Parameter name Value

Membrane time τm = 30
constant in ms

Resting potential in mV ur = 0
Firing threshold in mV ϑ0 = 5

Refractory period in ms ∆abs = 3
Synaptic delay in ms 5
Standard deviation of σSR ∈ {0.1, 0.5, 1, 1.5, 2}
reset fluctuations in mV

Standard deviation of step-wise σST ∈ {0.01, 0.05, 0.1, 0.5, 1}
firing threshold in mV

Standard deviation of continuous σCT ∈ {0.01, 0.05, 0.1, 0.5, 1}
firing threshold in mV

TABLE I

PARAMETERS OF THE NEURAL MODELS

for improving the characteristics of the liquid [15], [17]. In

this study, we restrict ourselves to explore a single reservoir

only and leave the optimization of the liquid for future

directions. In other words, we keep the topology of the

network along with its connection weight matrix constant

for all the experiments. Consequently, the tested reservoirs

differ only in the employed neural model from each other.

For the deterministic LIF model we chose a “typical”

parameter configuration that is similar to the one described

in [3]. Using this configuration, the recorded liquid states

did not exhibit the undesired behavior of over-stratification

and pathological synchrony – effects that are common for

randomly generated liquids. Pathological synchrony occurs

when the neurons of the liquid are caught in an infinite loop

of maximum activity, while over-stratification describes the

effect of a too low spiking activity in the network. Both

behaviors decrease the separation abilities of the liquid [17].

Two typical liquid states for the LIF neurons is shown

Figure 2. The parameters of the stochastic neural models

were varied and are summarized in Table I. All simulations

were performed using the SNN simulator Brian [18].

C. Impact of stochastic parameters

In order to demonstrate the impact of the stochastic param-

eters on the behavior of the reservoir, we have recorded the

liquid states of a probabilistic reservoir that was stimulated

by the same input spike train in 100 runs. From the recorded

responses, the intra-class variance was computed for each

time window [t, t + 10ms] using Eq. 7. The evolution of the
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Fig. 4. Evolution of the intra-class variance over time for reservoirs employing different classes of neural models (left diagrams). For each neural model,
several configurations are shown demonstrating the impact of these settings on the intra-class variance of the reservoir. The bar charts on the right show
the intra-class variance of the last time window for different configuration of the model. This variance is generally used for determining the separation
ability of the reservoir.

intra-class variance over time is shown in Figure 4 for each

of the stochastic models. On the right hand-side, the variance

occurring in the last time window is shown as a bar for each

configuration. The variance at the end of the simulation is

generally important for the separation of output classes and is

exploited by the readout function of the LSM, as for example

done in [9], [15].

The most obvious impact on the recorded liquid states has

parameter σCT of the continuous stochastic threshold model,

cf. Figure 4b. The intra-class variance clearly increases with

increasing σCT . Interesting to note is the intra-class variance

between time t = 0ms and t = 25ms for σCT = 1. This
behavior is caused by a spontaneous neural activity after

the random initialization of the membrane potential. Due to

its variations, the firing threshold can fall below the current

membrane potential of the neuron triggering a spontaneous

spike. The variations of the other tested values of σCT ≤ 0.5
appear to be too small to activate neurons immediately after

initialization.

For the step-wise stochastic threshold model and the

stochastic reset model, the effects of the stochastic param-

eters are less obvious. However, especially at the middle

stages of the simulation (t ≈ 150ms), they follow a pattern

similar to the one observed in continuous stochastic threshold

model, cf. Figure 4a and 4c. The lower variance for σST = 1
in Figure 4a is caused by a decreased overall neural activity

of the reservoir. Since the threshold is only updated when

a neuron fires, the sampling of a too high threshold can

effectively prevent a neuron from firing during a simulation.

The loss of the neural activity of some neurons prevents the

stimulation of connected neighboring neurons which in turn

will further decrease the overall activity of the network. This

chain reaction is more likely to occur for larger σST and the

effect is visible for σST ≥ 0.5 in the diagram.
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Fig. 5. The evolution of the separation of a reservoir over time for the tested neural models. Each diagram shows a reservoir employing a different neural
model. The curves in the diagrams represent the separation of the reservoir regarding the difference between input classes (shifting step s controls the
difference/overlap between the samples of two input classes).

D. Results

Figure 5 shows the evolution of the separation SepΨ as

defined in Eq. 9 over time for the tested neural models.

While each diagram shows the behavior of a particular neural

model, each curve in a diagram reflects the separation of

the reservoir regarding the stimulus A a jittered and shifted

copy A′ for a certain shifting step s. Independent of the

employed neural model, a maximal separation is achieved at

t ≈ 200ms. As expected, all of the reservoirs can separate

A and A′ better if A′ is closer to B. This characteristic is

clearly a desired behavior, since it enables the reservoir to

separate between different input classes.

Furthermore, we observe a general order in the separation

curves. The smaller the shifting step s and thus the smaller

the difference between the input spike trains A and A′,

the smaller the separation of the reservoir. This behavior is

very prominent especially for the stochastic reset model at

t = 200ms. However, a similar order is also observed in the

reservoirs using the other neural models.

After time t = 300, most tested reservoirs suffer a decrease

of separation SepΨ. At the end of the simulation these

reservoirs show a separation capability that is independent

from the difference of the input stimuli. An exception of this

observation is given by the step-wise stochastic model with

σST = 1. Its capability to separate A from some of the more

distant spike trains (e.g. A′(9)) can still be detected until the

end of the simulation. In this respect this reservoir exhibits

a more desirable behavior than the deterministic model.

The shape of the separation curves may appear surprising

at first. However, similar shapes have been reported in [3].

Due to the applied inner-class jitter (and the stochastic effects

occurring in the pLSM), differences in the input stimuli can

rapidly amplify in the liquid over time. The initial differences

between the liquid states around t = 200 are decreasing over



time due to the chaotic effects of the reservoir.

It is noteworthy that the separation for the stochastic

reservoir is generally equal or higher compared to the de-

terministic reservoirs. Since the separability is proportional

to the classification accuracy of the readout neurons [7],

[15], this observation may indicate an important advantage

of probabilistic reservoirs over deterministic ones.

In order to further investigate this finding, we have com-

puted the average separation for all neural models in the time

window [100ms, 300ms]. In this time interval the separation

is maximal for all tested reservoirs. The average separation

regarding the shifting step s is presented in Figure 6. We

have applied a smoothing with a small window length on

the curves in order to improve the clarity of the figure. The

correlation between the difference of the input classes and

the separation capability of the reservoir is clearly demon-

strated. For all stochastic neural models we can identify a

configuration that behaves very similar to the deterministic

LIF model. Some of the reservoirs employing stochastic

models, especially the stochastic reset model, show superior

separation compared to the deterministic reservoir.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this study, we have addressed the question whether non-

deterministic neural models are principally suitable liquids

in the context of reservoir computing. We have experimen-

tally shown that, similar to traditional LSM, also proba-

bilistic LSM have the separation property enabling them

to distinguish between different classes of input stimuli.

Our results have indicated some potential advantages of

non-deterministic LSM, since they may improve upon the

separation ability of the liquid. However, additional analysis

is necessary to support this hypothesis. A future study should

consider the application of Hebbian learning techniques

that allow a significant improvement of the quality of the

liquid. This includes dynamic learning as it can reduce the

variability of the neural response to noisy input stimuli [19]

and have been proposed in the context of LSM in [15],

[17] and in the context of Echo State Machines in [20].

Furthermore, we are interested in the performance of pLSM

when a large number of input classes have to be separated

from each other utilising some principles of the evolving

neural network classification framework [21].
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