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Abstract: Skin cancer classification is a complex and time-consuming task. Existing approaches
use segmentation to improve accuracy and efficiency, but due to different sizes and shapes of
lesions, segmentation is not a suitable approach. In this research study, we proposed an improved
automated system based on hybrid and optimal feature selections. Firstly, we balanced our dataset
by applying three different transformation techniques, which include brightness, sharpening, and
contrast enhancement. Secondly, we retrained two CNNs, Darknet53 and Inception V3, using transfer
learning. Thirdly, the retrained models were used to extract deep features from the dataset. Lastly,
optimal features were selected using moth flame optimization (MFO) to overcome the curse of
dimensionality. This helped us in improving accuracy and efficiency of our model. We achieved
95.9%, 95.0%, and 95.8% on cubic SVM, quadratic SVM, and ensemble subspace discriminants,
respectively. We compared our technique with state-of-the-art approach.

Keywords: skin cancer; augmentation; deep learning; moth flame optimization; SVM; feature
optimization; transfer learning; deep features

1. Introduction

Skin cancer is one of the worst types of cancer. The two most common types of
cancer are non-melanoma and melanoma. Melanoma lesions have a higher mortality rate.
However, if the condition is diagnosed early enough, doctors can cure 90% of people.
The manual classification of skin lesions is difficult and imprecise due to the considerable
similarities between different types of lesions, which leads to incorrect detection. As a result,
the automatic classification and detection of lesions utilising image-processing techniques,
deep learning, and artificial intelligence can aid in accurately detecting the type of lesion [1].

In 2017, there were 3590 fatalities from 95,360 cases in the United States. Melanoma
accounted for 87,110 of these cases. In 2018, there were 13,460 recorded fatalities out of
a total of 99,550 cases. In 2018, there were 91,270 melanoma cases. In the United States
alone, 104,350 instances of skin cancer were documented in 2019. Men were found to have
62,320 instances while women had 42,030. Melanoma accounted for 96,480 of all skin cancer
cases recorded in 2019 (57,220 in males and 39,260 in women). Melanoma claimed the lives
of 7320 people in 2019. Every year, more than 15,000 people in the United States die as a
result of skin cancer lesions [2,3]. The death rate from melanoma infections may continue
to rise in the future.

Skin cancer detection is challenging due to variances in skin textures and injuries.
As a result, dermatologists use dermoscopy, a noninvasive procedure, to detect skin abnor-
malities at an early stage [4]. The gel is applied to the diseased region as the initial step
of dermoscopy. The image is then amplified using a magnifying tool [5]. This enlarged
picture allows a better analysis of the structure of the lesion region. The detection accuracy
is determined by the dermatologist’s experience. According to one study, a dermatologist’s
detection accuracy might range between 75% and 84% [6]. A manual diagnosis of skin
lesions via dermoscopy, on the other hand, is a time-consuming operation that, even for
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skilled dermatologists, has a substantial chance of error. As a result, researchers developed
a variety of computer-aided diagnostic (CAD) procedures based on machine learning and
deep CNN features [7].

Dermatologists can employ CAD systems to rapidly and accurately diagnose skin
lesions [8]. The primary phases in a CAD system are the collection of skin image datasets,
feature extraction and selection, and classification [9]. When compared to traditional feature
extraction approaches, deep feature extraction for skin lesion detection and classification has
proven to be extremely important in recent years. Deep features are derived from the fully
linked layers of a CNN model, which is then used for classification [10]. Unlike traditional
approaches, such as texture, colour, and shape, deep features encompass both local and
global information about a picture. The convolutional layer extracts local information from
an image, whereas the 1D layers gather global information (global average pooling and
fully connected) [11]. Traditional approaches extract shape information, such as HOG,
colour, and texture (LBP) independently.

Traditional clinical procedures for diagnosing melanoma are ineffective. Even a skilled
dermatologist might make a mistake in accurately diagnosing melanoma. As a result, there
is a need for computerised diagnostic systems such as computer-aided detection (CAD)
systems or digital dermoscopy. Dermoscopy is the practise of assessing and examining
pigmented lesions. It was discovered that dermoscopy can boost the detection rate by 10%
to 27%. It is a non-invasive technology for evaluating high-resolution dermoscopic pictures
captured by a colour video camera attached to a computer [12]. Based on established
algorithms, image processing is used in CAD diagnostic systems that extract features.
Following that, the system employs these features to determine whether or not a person
has cancer.

Research Contributions

This paper provides the following contributions:

• Feature extraction: feature extracted via transfer learning using two different models
Darknet53 and Inception V3;

• Improving accuracy: improving classification accuracies using hybrid features ex-
tracted from the above two models;

• Improving efficiency: improving efficiency via feature reduction using the moth
flame optimization algorithm;

• Performance evaluation: performance evaluated based on accuracy and efficiency.

The flow of this article is as follows: Section 1 introduces the problem domain. In
Section 2, we present past research relevant to our work. The steps involved in experimen-
tation are outlined in Section 3, from dataset balancing to classification. In Section 4, results
of experiments are presented, and in Section 5, we discuss the findings; finally, Section 6
summarises the conclusion of our work.

2. Related Work

There are many approaches for segmenting and classifying skin lesions in the liter-
ature, which use either conventional or deep methodologies. Khan et al. [13] presented
a unique approach for skin lesion identification and classification based on probabilistic
distribution and feature selection. To partition the lesion region, normal and uniform
distributions are used. The features are then taken from the segmented pictures, which are
then merged using a parallel fusion approach. The entropy-based method is integrated
with the Bhattacharyya distance and variance formulation for feature selection. Publicly
available datasets, including ISBI 2016, 2017, ISIC 2018, and PH2, are used to evaluate the
suggested method. It achieves accuracy rates of 93.2%, 97.75%, and 97.55%.

Manual skin cancer diagnoses are time-consuming and costly; hence, developing
automated diagnostic techniques capable of accurately identifying multiclass skin illnesses
is crucial. Khan et al. [14] suggested an automated multiclass skin lesion segmentation and
classification method based on deep characteristics. An initial color-controlled histogram
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intensification of the input images is used (LCcHIV). Then, saliency is determined using a
ten-layer proprietary CNN. The resulting heat map is transformed into a binary image. It is
then utilized for feature extraction from the segmented colour lesion images. To circumvent
the dimensionality curse, an improved moth flame optimization (IMFO) method was
developed. The obtained features are merged with an MMCA classifier and KELM is used
for classification. Using the ISBI 2016 and 2017, ISIC 2018, and PH2 datasets, the proposed
technique achieves 95.38%, 95.79%, 92.69%, and 98.70% accuracy, respectively. The accuracy
achieved on the HAM10000 dataset (HAM1000 contains pigmented lesions images for
seven different types of lesions) was 90.67%.

Recent work in AI for radiology and radiotherapy relied on algorithms based on
deep learning. The performance of the deep learning models may be much superior to
conventional machine learning techniques, but for that purpose, larger training datasets
are required. In order to overcome this problem, data augmentation has become a common
way of increasing training datasets, especially in sectors where large datasets are normally
unavailable. Data augmentation seeks to produce new data that are utilised to retrain the
model, which shows an increase in performance when tested on different datatsets [15].
To assist in understanding the types of data augmentation approaches used in state-of-the-
art deep learning models, a systematic analysis of the literature where data augmentation
was performed was used to train a deep learning model using medical images (restricted to
CT and MRI). Articles were classified as fundamental, deformable, deep learning, or other
data enhancement approaches. In this particular study, the authors aims to provide insight
into these methodologies as well as confidence in the models’ validity.

The prediction of skin lesions is difficult even for experienced dermatologists because
of the contrast between lesions and surrounding skin. In 2020, an automated computer-
aided system was proposed that can help clinicians in detecting different types of lesions in
the early stage. Deep learning dilated CNNs are known to increase accuracy with the same
computational complexities compared to CNN. To implement this, Ratul et al. [16] chose
VGG16, VGG19, MobileNet, and InceptionV3 on the HAM10000 dataset. InceptionV3
showed higher overall accuracy per class; this indicates that inceptionV3 can help in
increasing the accuracy for the correct classification of different type of lesions.

Mirjalili [17] developed a unique nature-inspired optimization paradigm termed the
Moth-Flame Optimization (MFO) method, which we have also used in our approach for
reducing features. The major source of inspiration for this optimizer is the transverse
orientation navigation approach used by moths in nature. Moths fly at night by keeping a
steady angle with respect to the moon, which is a highly efficient method for travelling large
distances in a straight line. These beautiful insects, however, are locked in a useless/deadly
spiral journey around artificial lights. This study mathematically models this behaviour
and optimises it. On 29 benchmark and seven actual engineering issues, the MFO method is
compared against other well- known nature-inspired algorithms. The statistical findings on
the benchmark functions demonstrate that this method may provide extremely promising
and competitive out- comes. Furthermore, the outcomes of real-world issues indicate the
algorithm’s utility in tackling difficult problems with confined and unknown search areas.
The research also explores the suggested algorithm’s application in the area of maritime
propeller design in order to further evaluate its usefulness in practise.

As a result of our literature review, we realise that a variety of approaches have been
discussed in the past with the intention of improving classification accuracies. These ap-
proaches include the following: feature extraction, hybrid features, ensembles, and feature
optimization. We observed that techniques that were based on the augmentation of data
and the extraction of features resulted in a higher accuracy of classification when compared
to other methods that were proposed. In light of these revelations, we proposed a strategy
that is centred on the augmentation of data and the extraction of features from two CNN
models, both of which will be retrained via transfer learning. Another objective of our
research is efficiency. So, we will also implement moth flame optimization in order to
reduce the number of features and improve our efficiency.
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3. Proposed Architecture

The architecture diagram in Figure 1 presents our methodology, dataset HAM10000 is
highly imbalanced, so the first step is to balance the dataset using augmentation techniques.
After the dataset is balanced, the augmented dataset is passed on to two different CNN
models: Darknet53 and Inception V3. Both of these models are retrained via transfer
learning. In the third step, training and test features are extracted from the dataset by
applying activations to the deeper layers of both models. Furthermore, extracted features
are reduced by implementing the moth flame optimization algorithm. In the last step,
test features are used for classification using cubic SVM; quadratic SVM; linear SVM;
linear discriminant; fine, medium, and coarse KNN; ensemble subspace discriminant; and
subspace KNN.

Figure 1. Architecture Diagram.

3.1. Dataset

For the purposes of both training and testing, we used the publicly available dataset
known as HAM10000 in our study, which has a total of 10,015 images of dermoscopic
pictures that were captured and archived using several modalities. These images include a
variety of demographics. The completed dataset includes 10,015 dermatoscopic pictures
that are suitable for use as a training set for academic machine learning applications.
Cases include a representative collection of all important diagnostic categories in the realm
of pigmented lesions, akiec, bcc, bkl, df, mel, nv, and vasc, and the distribution before
augmentation was 327, 514, 1099, 115, 1113, 6705, and 142, respectively. After augmentation,
the distribution of classes was 981, 1028, 1099, 920, 1113, 6705, and 1136, respectively, which
totaled 12,981. The size of original dataset is 2.9 Gigabytes, and it is publicly available. We
used raw images shown in Figure 2; it was very difficult to segment areas from images
because the shape and size of the effect area varied, and there was a high chance that it may
have resulted in cropping important regions.
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Figure 2. Augmented Dataset.

3.2. Data Augmentation

Data augmentation refers to the procedures used to expand the total quantity of data
by adding significantly changed copies of previously collected data or freshly produced
synthetic data based on previously collected data. When training a machine learning
model, it helps prevent overfitting by acting as a regularizer and reducing overfitting.
In our approach, we used three different types of augmentation techniques, i.e., contrast
enhancement, brightness, and sharpness. We applied these transformations to balance
classes that have less images.

1. First, we used contrast enhancement on the dataset. Improvements in contrast increase
the visibility of lesions in images by increasing the contrast between objects and their
backgrounds.

2. In the second step of augmentation, we increased and decreased the brightness of
image to help the model train on images with bright and dark tones.

3. The last augmentation technique we used was to enhance images by increasing and
decreasing the sharpness of images.

3.3. Transfer Learning

Inception-v3 and Darknet53 are CNNs. We utilised these pretrained networks in our
research. These models are pre-trained on the ImageNet dataset. The pretrained network
is able to divide photographed objects into one thousand distinct categories. As a direct
consequence of this, the network acquired the ability to learn rich feature representations
for a diverse set of picture types. The maximum size of a picture that may be uploaded to
the network is 299 by 299 pixels in InceptionV3, whereas in darknet53, the maximum size
of a picture that may be uploaded to the network is 256 by 256 pixels. We retrained both of
these networks on the HAM10000 dataset using transfer learning in order to obtain more
relevant features.

To extract features from the model, we first had to retrain the models using the
augmented dataset. For finetuning we first removed the last three layers of both models
and added a new layer for number of classes. Transfer learning was used for retraining (TL).
Transfer learning (TL) is a method that involves a pre-trained model that is used again
for a different classification task [18]. TL has been known to perform well on a variety of
classification tasks [19–22]. Transfer learning updates the weights of the target models,
which in our case are InceptionV3 and darknet53, and the dataset used was HAM10000.
After reusing both models, two new models for the categorization of multiclass skin lesions
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were created. During the TL phase, we chose 50% of the photos for training the model and
the other 50% for testing. Transfer learning involves the following steps:

• From among the available models, a pre-trained source model is selected for use.
Many research institutes publish models based on large datasets. These models could
be added to the pool of candidate models from which to choose one.

• After the model has been pre-trained, it may be utilised as the basis for another model
that will perform the second job of interest. Depending on the modelling approach
that was used, this might require using the entire model or only a portion of it.

• There is also a chance that the model will need to be changed or made better based on
the easily accessible input–output data for the activity of interest.

3.4. Feature Extraction Using CNN’s

After retraining, the next step was to extract features from both models. Features
are extracted from the dataset by applying activations to the deep layers of both models.
In CNN models, when we apply activations on the first convolution layer, we obtain
features such as colour and edges. In order to extract deep features, we apply activations to
deeper layers of models. The deeper layer contains features built up from previous layers.

After retraining the models, we extracted the features by applying activations to
“Global Average Pooling”, as it contains features from all previous layers and helps us in
extracting the more complex and deep features. We extracted 1024 features for each image
in the test and training set using darknet53. We extracted 2048 features for each image in
the test and training set using Inception V3.

To make a fair comparison with the existing approach, we performed an additional
experiment in which we used the nasnet-large model proposed in the state-of-the-art
architecture, retrained it on our dataset using transfer learning, and then extracted statistical
features from images using the retrained model. We utilised the characteristics extracted
by activating the “Average Global Pooling Layer” to perform classification. To compare
the outcomes with our technique, we also decreased the features of Nasnet-large, utilising
moth flame optimization.

3.5. Moth-Flame Optimization

Moth flame is a population-based algorithm. It was proposed in 2016. In MFO, we
assume that the flames are candidate solutions and moths are the problem variables in
the space. Moths fly in one, two, or hyper-dimensional space, changing their position
vectors. We used MFO in our research to reduce the number of features by selecting the
best optimum features from the feature set. Table 1 shows the number of features reduced
after using moth flame optimization.

Table 1. MFO Results of Reduced Features.

Model Original Features Reduced Features

Inception V3 2048 1031

Darknet53 1024 535

cost = alpha · error + beta · (num f eat/max f eat) (1)

Equation (1) shows the cost function for the cost calculation of moth flame. The cost
function is used to find the optimal value by calculating the global minima. In Equation (1),
“alpha” and “beta” are hyper-parameters. “num f eat” and “max f eat” are the total number of
features selected by the algorithm and the total number of features passed to the MFO.
The error can be calculated using Equation (2).

error = 1 − Acc (2)

Acc = sum(pred == yvalid)/length(yvalid) (3)
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4. Experiments and Results
4.1. Experimental Setup

In this part, we present the procedures and parameters used to compute the findings.
During the testing procedure, we trained the model using 50% of the photos, which were
ground truth photos made publicly accessible for research reasons. During the classification
phase, we used 50% images for training and the other 50% for testing. The testing results are
computed based on K-fold cross validations where the value of K is 10. Several classifiers
were used throughout the validation phase. We used a learning rate of 0.001 and a mini-
batch size of 8 for the learning procedure. All simulations of the proposed framework were
carried out on a desktop computer equipped with 16 GB of RAM and a 256 GB SSD. As a
simulation tool, MATLAB R2020a was employed. The desktop computer used was core i5
with 8 cores, and due to the lack of a GPU, it took 15 days to completely train both models
for feature extraction.

4.2. Results

The results for classification were calculated based on the extracted features from the
CNN model that was utilised, and this was performed after feature reduction. The per-
formance of a number of different classifiers was evaluated and compared. These classi-
fiers comprised linear, cubic, and quadratic SVMs; a linear discriminant; fine, medium,
and coarse K-Nearest Neighbor; ensemble subspace discriminant; and ensemble subspace
KNN. To figure out how well it worked, the time it took to classify both the full set of
features and the reduced set was also noted.

Results demonstrated in Table 2 were calculated for three different experiments.

• Classification on the original dataset that had 10,015 images.
• Classification on the augmented dataset that had 12,981 images.
• Lastly, for a fair comparison, we reproduced the results of previously performed work

on our dataset.

Table 2. Classification Results.

Classification
Model Quadratic SVM Cubic SVM Ensemble Subspace Discriminant Linear Discriminant Fine KNN

Before Augmentation Reduced Merged Feature (MFO)

ACC (%) 90.5 90.3 90.4 88.5 77.8

RE (%) 83.51 72.87 78.38 75.09 60.54

PR (%) 87.21 87.15 74.75 82.7 57.65

Time (s) 188.8 214.2 296.5 76.8 92.64

After Augmentation

InceptionV3

ACC (%) 92.7 92.3 90.7 90.4 88.5

RE (%) 90.28 90.62 87.4 87.34 86.51

PR (%) 91.61 92.01 88.27 88.1 85.2

Time (s) 154.14 164.14 491.29 86.14 84.29

Darknet53

ACC (%) 90.4 90.3 90.7 87.9 77.6

RE (%) 73.04 71.25 77.48 74.4 61.74

PR (%) 86.37 86.75 85.21 72.08 59.01

Time (s) 143.37 184.7 339.5 47.4 59.29

Without MFO

ACC (%) 95.9 95.9 95.8 92.0 86.2

RE (%) 94.65 94.57 93.48 91.67 86.48

PR (%) 95.11 95.11 95.1 90.6 82.68

Time (s) 496.02 541.1 1524.0 289.36 412.34

With MFO

ACC (%) 95.8 95.7 95.5 90.4 86.3

RE (%) 91.75 92.05 88.27 88.12 84.47

PR (%) 89.97 90.5 87.42 87.3 86.02

Time (s) 153.96 166.29 667.54 164.59 100.93

Nasnet-Large Reduced Features (MFO)

ACC (%) 85.5 79.34 77.65 74.41 75.9

RE (%) 79.14 85.6 83.3 80.8 80.3

PR (%) 82.04 82.3 788.22 75.5 73.45

Time (s) 370.72 435.02 671.88 107.89 199.6
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4.2.1. Results on Original Dataset

In Table 2, results from before the augmentation are demonstrated after applying
the moth flame optimization. From these experiments, we achieved the highest accuracy
of 90.5% on quadratic SVMs using the merged feature vectors from both CNN models,
inception and darknet53, which compared to previous work was less in both accuracy
and efficiency. The low accuracy was due to a highly imbalanced dataset. The uneven
distribution of images among various classes increased the chance of incorrect classification.
This forced us to come up with a solution that may help in improving the accuracy and
efficiency of our technique. After further study, we found that image augmentation and
balancing the dataset helps in improving the accuracy.

4.2.2. Results on Augmented Data

In order to improve the results, we conducted the second experiment in which we
first balanced the dataset using augmentation. We applied three different types of trans-
formations on the dataset, i.e., brightness, contrast enhancement, and sharpening. Af-
ter augmentation, we had a more balanced dataset with a total of 12,981 images. After that,
the augmented dataset was fed into two CNNs, inceptionV3 and darknet53, for feature
extraction and classification. Table 2 first displays the classification results for individual
optimised feature vectors obtained from CNNs. Secondly, it shows the results for the
merged feature vector without optimization and, third, for the optimized and merged
feature vectors. It can be seen that there is prominent improvement in accuracy and effi-
ciency. The accuracy of inceptionV3 increased from 90% to 92.7% due to increased training
data. Similarly, the same trend is observed for darknet53, i.e., an increase in accuracy and
improved efficiency. We achieved 950.9% accuracy on quadratic SVM by merging both
feature vectors, and to improve the efficiency of merged vectors, we implemented MFO
and again calculated the classification, which resulted in a 0.1% drop in accuracy. So, we
achieve 95.8% accuracy for the optimised feature vector on SVM with time reduced to
1/3. The drop in accuracy is due to MFO as we are selecting optimal features that end
in removing irrelevant features (reducing the number of features) and causing a minor
drop in accuracy. Figure 3 shows the parallel coordinate graph generated for multivariate
data in our case feature set. The solid and dashed lines in the graph show correct and
incorrect classifications for different classes, and solid lines are used to represent correct
classifications, whereas dashed lines are used to represent incorrect classifications.

Figure 3. Parallel Co-ordinates Graph.

ROC curves are used to show the performance of a classifier. The ROC-curves of the
quadratic SVM for each class classified using the feature extracted from the augmented



Sensors 2022, 22, 8311 9 of 12

dataset are shown in Figure 4. It can be seen that all classifers are lying on the top left side
of the curves, which indicates a better performance of the model for the clasification of
multiple classes.

Figure 4. ROC -Curves for each class on SVM.

4.2.3. Results of Existing Approach

Another researcher Khan et al. [14] conducted experiments that involved segmentation
and saliency calculations to improve the results of multi-class classification. They achieved
90.67%, and the results are shown in Table 3. From the table, it can be observed that
our technique outperformed previously existing approaches that use the segmentation of
lesions.

Table 3. Results of existing approaches on the HAM1000 dataset.

Classifier Accuracy (%) Time (s)

Naive Bayes 81.34 153.30

ELM 84.92 138.50

KELM 90.67 133.44

MSVM 85.50 121.52

Fine KNN 82.08 139.38
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4.2.4. Classification Using Nasnet-large

The last experiment that we conducted aimed to compare the existing approach with
our technique. In order to carry that out, we trained the nasnet-large model on our dataset
with the same parameters. Table 2 shows the results obtained using nasnet-large under
the same parameters and on the same dataset that we used. It achieved 85.5% accuracy on
quadratic SVM. Our technique not only outperformed Nasnet-large in terms of accuracy
but also in efficiency.

5. Discussion

After completing the experimentation, we gathered the following insight from
Section 5. Firstly, we can clearly see that augmentation helps in improving the perfor-
mance of a model used for classification as it increases the amount of data for the model
to learn from. In our case, we used augmentation to balance the classes and increase the
accuracy and efficiency. From Table 2, it can be seen that accuracy achieved after using
the features extracted from the augmented dataset is 5% more accurate than that achieved
before augmentation on the original HAM10000 dataset. Secondly, upon comparing the
results of our approach with present research studies that use nasnet large for feature extrac-
tion, when trained on our augmented dataset, those approaches achieved 85.5% accuracy
in 370.72 s, whereas in our approach, we achieved 95.8% in 153.96 s. Thirdly, when we
compare the results of our technique with the results of existing techniques Table 3, we can
see that our approach outperformed it by almost 5% in term of accuracy. From this, it can
be seen that using hybrid features extracted from two different CNNs helps in improving
the accuracy of multi-class classification.

6. Conclusions and Future Work

In this paper, we proposed an automated approach for the classification of multiple
classes of skin lesions based on augmentation as well as CNN feature extraction and feature
reduction. The proposed method was evaluated on the HAM10000 dataset, and after com-
paring it to existing methods, we discovered that it outperformed existing state-of-the-art
approaches in terms of both accuracy and efficiency. In our findings, data augmentation
helped in improving the accuracy of CNN models. In order to perform classification,
the models that were trained on augmented data were used to extract features from In-
ceptionV3 and Darknet53, respectively. The moth flame optimization, which assisted in
lowering the number of features while simultaneously enhancing efficiencies, achieved
95.9%, 95%, and 95.8% on cubic SVM, quadratic SVM, and the ensemble subspace discrimi-
nant, respectively.

In future, we aim to improve the quality of our work by proposing other possible
methods for the segmentation of lesions. In this way, the lesion can be recognised from the
background more easily. This would help get rid of irrelevant features that are recognised
in the images, which would improve the accuracy and efficiency of the classification.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network;
MFO Moth flame optimization;
FS Feature selection;
SVM Support vector machine;
KNN K-nearest neighbour;
CAD Classification and detection;
LCcHIV Local color-controlled histogram intensity values;
HAM10000 Human against machine with 10,000 training images.
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