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Abstract 
This research examines an audio surveillance application, one of the many 

applications of sound event recognition (SER), and aims to improve the sound 

recognition rate in the presence of environmental noise using time-frequency image 

analysis of the sound signal and deep learning methods. The sound database 

contains ten sound classes, each sound class having multiple subclasses with 

interclass similarity and intraclass diversity. Three different noise environments are 

added to the sound signals and the proposed and baseline methods are tested under 

clean conditions and at four different signal-to-noise ratios (SNRs) in the range of 

0–20dB. 

A number of baseline features are considered in this work which are mel-frequency 

cepstral coefficients (MFCCs), gammatone cepstral coefficients (GTCCs), and the 

spectrogram image feature (SIF), where the sound signal spectrogram images are 

divided in blocks, central moments are computed in each block and concatenated to 

form the final feature vector. Next, several methods are proposed to improve the 

classification performance in the presence of noise.  

Firstly, a variation of the SIF with reduced feature dimensions is proposed, referred 

as the reduced spectrogram image feature (RSIF). The RSIF utilizes the mean and 

standard deviation of the central moment values along the rows and columns of the 

blocks resulting in a 2.25 times lower feature dimension than the SIF. Despite the 

reduction in feature dimension, the RSIF was seen to outperform the SIF in 

classification performance due to its higher immunity to inconsistencies in sound 

signal segmentation. 

Secondly, a feature based on the image texture analysis technique of gray-level co-

occurrence matrix (GLCM) is proposed, which captures the spatial relationship of 

pixels in an image. The GLCM texture analysis technique is applied in subbands to 

the spectrogram image and the matrix values from each subband are concatenated to 

form the final feature vector which is referred as the spectrogram image texture 
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feature (SITF).  The SITF was seen to be significantly more noise robust than all the 

baseline features and the RSIF, but with a higher feature dimension. 

Thirdly, the time-frequency image representation called cochleagram is proposed 

over the conventional spectrogram images. The cochleagram image is a variation of 

the spectrogram image utilizing a gammatone filter, as used for GTCCs. The 

gammatone filter offers more frequency components in the lower frequency range 

with narrow bandwidth and less frequency components in the higher frequency 

range with wider bandwidth which better reveals the spectral information for the 

sound signals considered in this work. With cochleagram feature extraction, the 

spectrogram features SIF, RSIF, and SITF are referred as CIF, RCIF, and CITF, 

respectively. The use of cochleagram feature extraction was seen to improve the 

classification performance under all noise conditions with the most improved results 

at low SNRs. 

Fourthly, feature vector combination has been seen to improve the classification 

performance in a number of literature and this work proposes a combination of 

linear GTCCs and cochleagram image features. This feature combination was seen 

to improve the classification performance of CIF, RCIF, and CITF and, once again, 

the most improved results were at low SNRs. 

Finally, while support vector machines (SVMs) seem to be the preferred classifier in 

most SER applications, deep neural networks (DNNs) are proposed in this work. 

SVMs are used as a baseline classifier but in each case the results are compared with 

DNNs. SVM being a binary classifier, four common multiclass classification 

methods, one-against-all (OAA), one-against-one (OAO), decision directed acyclic 

graph (DDAG), and adaptive directed acyclic graph (ADAG), are considered. The 

classification performance of all the classification methods is compared with 

individual and combined features and the training and evaluation times are also 

compared. For the multiclass SVM classification methods, the OAA method was 

generally seen to be the most noise robust and gave a better overall classification 

performance. However, the noise robustness of the DNN classifier was determined 

to be the best together with the best overall classification performance with both 

individual and combined features. DNNs also offered the fastest evaluation time but 

the training time was determined to be the slowest.  
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  Chapter 1

Introduction 

1.1 Overview of a Sound Event Recognition System 

Any given environment generally contains a number of different sounds. In early 

literature, these sounds were often divided into speech and non-speech. The task of 

non-speech sound classification is now more commonly known as sound event 

recognition (SER). It is also referred as automatic sound recognition and acoustic 

event detection in some contexts. While research in automatic speech recognition 

(ASR) has received significant attention over the past few decades, research in SER 

only seems to have intensified over the past two decades or so. 

A SER system aims to recognize sounds automatically using signal processing and 

machine learning techniques. It is essentially a pattern recognition problem and 

being a relatively new area of research, most of the techniques involved are inspired 

from other pattern recognition problems, ASR in particular. This is especially true 

when it comes to the selection of features and classifiers. While traditional methods 

can yield decent performance in clean or noise free conditions, it is always a 

challenge to achieve robust SER, that is, obtaining better recognition rate in the 

presence of noise. For the purpose of this work, noise is defined as any unwanted 

continuous signal such as people chattering in the background or TV playing. 

The techniques for robust SER could be classified into three categories: 

• pre-process the noisy sound signal to obtain a better estimation of the clean 

sound signal, 

• robust feature representation of the sound signal, and 
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• adapt acoustic model parameters to match the noisy sound signal. 

While the above techniques have merits in their own rights and a combination of 

these approaches is also a possibility, the interests in this research mainly lies in 

finding noise robust features to achieve better classification performance in SER in 

the presence of noise. The general technique in the many applications of SER are 

same and this work uses an audio surveillance application to test the developed 

statistical pattern recognition techniques. 

An overview of a statistical pattern classifier adopted in most SER systems is given 

in Figure 1.1. The three key steps in implementing an automatic SER system are 

signal preprocessing, feature extraction, and classification. Signal preprocessing 

aims to prepare the sound signal for feature extraction. Due to limitations in digital 

signal processing hardware, a signal is often divided into smaller frames, typically in 

the range of 10-30 ms, and a window function is applied to smooth the signal for 

further analysis. While ASR systems typically use a sampling frequency of 8000 Hz 

or lower, SER systems generally employ a sampling frequency of 8000 Hz or 

higher, common values are 16000 Hz, 22050 Hz, and 44100 Hz, largely depending 

on the frequency bands of the sound signals in the database. Depending on the 

sampling frequency of the signal, a frame size of 256, 512, or 1024 samples are 

normally chosen with some degree of overlap between adjacent frames, such as  

25% or 50%, to prevent loss of information around the edges of the window.  

 

 

Figure 1.1: Model of a typical statistical pattern classifier employed in SER systems 
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Inherent features are then extracted from the signals and the input signal is 

represented by a feature vector in a much simpler and condensed form, which is 

referred as feature extraction. The time-domain signal is often transformed to 

frequency-domain or time-frequency domain for this purpose. Based on a set of 

training data containing observations whose classes are known, the task of the 

classifier is then to assign unknown observations to one of the classes. Sometimes 

noise is also added to the otherwise clean test signals to determine the robustness of 

the features and classifiers employed for the task. In addition, multi-conditional 

training can be employed to improve the classification performance in the presence 

of noise whereby noise manipulated signals are included in the training samples. 

However, this process can significantly increase the training time, depending on 

how many noise environments and noise levels are included during multi-

conditional training. Multi-conditional training also makes the classifier noise 

dependent which means it has to be retrained for every new noise environment. As 

such, most work instead choose to focus on finding noise robust features and 

classification methods to achieve a noise independent SER system. 

Features and classifiers from ASR systems are often employed in SER systems. 

While most of the traditional features continue to be used today, they are often 

complemented with new features for improved performance. A thorough review of 

features for audio classification is provided in [1] where the features are 

distinguished based on its domain which can be summarized as: 

• Temporal domain – based on the aspect of the signal the feature represents such 

as amplitude, power, and zero-crossing. 

• Frequency domain – which can be further divided into perceptual features, 

which have a semantic meaning to the human listener, and physical features, 

which give description in terms of mathematical, statistical, and physical 

properties of the audio signal. 

• Cepstral features – approximate the spectral envelope. 

• Modulation frequency features – provide information on long-term amplitude or 

frequency variation of the signal. 

• Eigen domain features – representing long-term information contained in sound 

segments with duration of several seconds. 
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• Phase space features – capture information orthogonal to features originating 

from linear models. 

Time domain, frequency domain, and cepstral features are by far the most 

commonly used features in SER systems. 

In addition, the commonly used classifiers are k-nearest neighbor (kNN), Gaussian 

mixture model (GMM), hidden Markov model (HMM), artificial neural networks 

(ANN), and support vector machines (SVMs), which have been well defined in 

many literature. While all of these continue to be used today, modifications and 

hybrid classification algorithms have been proposed over the years. Also, deep 

learning methods, such as deep neural networks (DNN), have gained significant 

attention in various pattern recognition problems in recent years. 

The classification performance of a SER system is mostly reported using 

classification accuracy which can be given in percentage as number of correctly 

classified test samples divided by the total number of test samples. The error rate 

(ER) can also be used for this purpose which can be stated as the number of 

misclassified test samples divided by the total number of test samples. 

1.2 Motivation 

Cepstral features, mel-frequency cepstral coefficients (MFCCs), in particular, have 

been the traditional feature choice in the many applications of SER. MFCCs have 

been shown to be effective in structured environments but its classification 

performance has been shown to be poor in the presence of noise [2]. However, 

features extracted from the time-frequency image, or spectrogram image, of speech 

or sound signals have proved effective in the presence of noise [2, 3]. In [3], spectral 

subband centroids (SSCs) are used as supplementary features to achieve 

improvement in classification accuracy in the presence of noise in ASR. In another 

ASR application, the dominant frequency information is captured using subband 

spectral centroid histograms (SSCHs) and the proposed feature was seen to be more 

robust than MFCCs in the presence of additive background noise [4]. For robust 

SER in [2], the spectrogram image is divided into multiple blocks and central 
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moments are computed in each block which forms the feature vector, referred as the 

spectrogram image feature (SIF).  

Every sound signal produces a unique texture which can be visualized using a 

spectrogram image. The intensity values in the spectrogram image represent two-

dimensional time-frequency information, that is, reveal the dominant frequency 

components against time. Features which capture this information can improve the 

recognition rate in the presence of background noise provided the noise spectrum 

does not contain strong spectral peaks to significantly corrupt the dominant sound 

signal components. Such texture classification tasks are common in image 

processing applications. This provides the motivation to develop novel techniques 

for SER which analyze the texture in the time-frequency image of the sound signal 

to potentially achieve robust performance in the presence of background noise in the 

sound signal. 

1.3 Contributions 

The aim of this research is to improve the sound recognition rate in the presence of 

environmental noise using time-frequency image analysis of the sound signal and 

deep learning methods. With the availability of a suitable database, an audio 

surveillance application is considered in this work. However, since the general 

approach to most SER applications is same, the techniques proposed in this work 

could be adapted to other applications.  

In addition, for the problem of audio surveillance considered in this work, the choice 

of sound and noise databases is similar to [5], which is one of the most 

comprehensive piece of work in this area. A total of 10 classes are selected in this 

work to show the robustness of the proposed techniques. This is more than most 

other work in the area of audio surveillance such as seven classes in [6-8], and nine 

classes in [5]. It can generally be said that the classification accuracy decreases with 

an increase in the number of classes as summarized in [9] in relation to the problem 

of environmental sound recognition. Also, similar to [5], each sound class has 

multiple subclasses with interclass similarity and intraclass diversity, increasing the 

complexity of the problem. 
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The focus in this work is on two groups of features: cepstral features and time-

frequency image features. Two cepstral features are considered in this work: MFCCs 

and gammatone cepstral coefficients (GTCCs). These two features form the 

reference features, referred as baseline features. Unlike [10], a similar work, this 

study also evaluates the performance of the cepstral features in the presence of 

noise. In addition, there are various parameters which can have an effect of the 

performance of the cepstral features. In trying to determine the optimal classification 

accuracy, various experiments are performed such as with the inclusion of the 

derivatives of the cepstral coefficients, different filter bank bandwidths, and 

different number of filters. Also, three different filter models are considered for 

GTCCs.  

Furthermore, in various literature on ASR [11-13] and SER [2], the performance of 

cepstral features, MFCCs have been covered in particular, have been shown to be 

poor in the presence of noise. One reason for this is the log spectrum compression 

used in conventional cepstral analysis which is sensitive to noise [12]. Root 

cepstrum, which essentially means raising the filter bank energy values to power in 

the range 0 to 1 before computing the cepstral coefficients, has been proposed in 

[13] to improve the robustness of MFCCs in ASR. In this work, the concept of root 

compression is applied to MFCCs but in an application of SER and its applicability 

to GTCCs is also explored. 

The third and final baseline feature is the SIF, derived from the spectrogram image 

of the sound signal. In addition, two baseline classifiers are considered in this work, 

kNN and SVM. 

Research in SER has formed part of a number of PhD research around the world, as 

seen in [2, 5, 9], and the major contributions from this research are discussed below. 

Applications and Advancements in Sound Event Recognition 
[14] 

Research in ASR has been going on for many years now and there are many 

literature review papers which document the progress in ASR systems. However, the 

same is not true for SER. As such, this study provides a comprehensive review on 

the applications and advancements in SER, mainly over the last two decades. 
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Reduced Spectrogram Image Feature [15, 16] 

In [2], the SIF was determined to be more noise robust than MFCCs but at the 

expense of a higher feature dimension. This work proposes a method to reduce the 

SIF dimension using the mean and standard deviation values of the extracted 

features without compromising the classification performance. This is referred as the 

reduced spectrogram image feature (RSIF). With the RSIF, a feature dimension 

same as the cepstral features was achieved, which was 2.25 times smaller than the 

SIF. In addition the classification performance was determined to be better than the 

SIF. 

Spectrogram Image Texture Feature [17, 18] 

Here, a new feature is proposed which is based on the image texture analysis 

technique of gray-level co-occurrence matrix (GLCM), also known as gray-tone 

spatial dependence matrix [19]. However, the GLCM technique of texture analysis 

is applied to sound signal spectrogram images for classification of sounds in an 

audio surveillance application. Also, instead of extracting textural descriptors from 

the GLCM, as is the norm, it is proposed to concatenate the columns of the matrix to 

form the feature vector for a sound signal. This is referred as the spectrogram image 

texture feature (SITF). Unlike in [20, 21], performance evaluation of this analysis 

technique is also carried under noisy conditions. In addition, texture analysis is 

performed in subbands, similar to the zoning technique utilized in [21]. This 

essentially divides the spectrogram image into horizontal sections of different 

frequency bands. GLCM analysis is performed independently in each frequency 

band and the final feature vector is a concatenation of the feature vectors from each 

subband. In terms of noise robustness, the SITF was seen to outperform all the 

baseline features considered in this work together with the RSIF and also produced 

the highest overall classification performance. 

Cochleagram Feature Extraction [18, 22] 

This work also proposes the use of cochleagram image of sound signals for feature 

extraction over the conventional spectrogram image. A cochleagram [23] is a 

variation of the spectrogram utilizing a gammatone filter, which models the human 

cochlea. The same features as with the spectrogram image are considered here. In 
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the case of cochleagram feature extraction, the spectrogram-derived features SIF, 

RSIF, and SITF are referred as CIF, RCIF, and CITF, respectively. For all three 

features, feature extraction using cochleagram was shown to give improvement in 

classification performance under all noise conditions with the most improved results 

at low signal-to-noise ratios (SNRs). 

Linear GTCC + Cochleagram Image Features [18] 

Feature vector combination has been shown to improve the classification 

performance in a number of literature. A combination of cepstral features and SSCs 

improved the robustness in ASR in [3]. Various feature combinations were 

experimented with in a similar work in [5]. Cepstral features have been shown to 

perform well in a noise-free environment while the strength of time-frequency 

image-derived features lies in noise robust performance [2]. In this work, the best 

performing cepstral feature was determined to be linear GTCCs and cochleagram 

image derived features the best time-frequency image features. Therefore, a 

combination of linear GTCCs and cochleagram image derived features is proposed 

in trying to achieve further improvement in classification performance when 

compared to the individual features on their own. This feature combination was 

shown to give further improvement in classification performance and, once again, 

the most improved results were at low SNRs. 

Performance Evaluation of SVM and DNN Classifiers Under 
Noisy Conditions [16, 24] 

This work also performs a comprehensive study on the performance of SVM and 

DNN classifiers. SVM is a binary classifier and a number of multiclass SVM 

classification methods have been proposed over the years. While there are a number 

of literature where the performance has been compared under clean conditions, this 

work analyzes the performance of four commonly used multiclass classification 

methods in the presence of noise. In addition, the performance is also compared 

against DNN, which, to the best of my knowledge, hasn’t been used in an audio 

surveillance application before. The performance of the classifiers is evaluated using 

the classification accuracy and the training time and evaluation time with both 

individual and combined features. The study shows that DNN gives the best 
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classification performance with both individual and combined features. DNN was 

also shown to have the fastest evaluation time but offers the slowest training time. 

Summary of Publications from Contributions 

The literature review paper on the applications and advancements of SER has been 

published in Neurocomputing journal [14]. The work on RSIF and performance 

evaluation of multiclass SVM classification methods were presented at the DSP 

2014 conference [15, 24] and also published in Neurocomputing journal [16]. The 

work on SITF and cochleagram image feature extraction were presented at the 

ICASSP 2015 [17] and DSP 2015 [22] conferences, respectively, and also published 

in IEEE Transaction on Information Forensics and Security [18]. The work on 

cepstral and time-frequency image feature combination has been published in [16, 

18] while the results using DNNs are currently under review.  

Apart from the above, another feature developed as part of the wider research 

utilized the subband spectral intensity distribution, extracted from the spectrogram 

image of sound signals. It was referred as the spectral histogram feature (SHF). In 

addition, the classification performance of the SHF was improved by utilizing a mel-

spectrogram, which utilizes a mel-filter, for feature extraction instead of the 

spectrogram image and was consequently referred as the mel-spectral histogram 

feature (MSHF). This work was also presented at the DSP 2015 conference [25]. 

However, it has been excluded from this thesis to avoid confusion by presenting too 

many similar methods and also because the SHF was found to be less superior to the 

SITF and mel-spectrogram feature extraction was found to be less effective than 

cochleagram feature extraction. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. 

Chapter 2 provides an overview of the advancements in SER as seen through some 

common applications of SER. Some of the less commonly known applications of 

SER are then discussed. 

In Chapter 3, feature extraction for currently used features, which includes time and 

frequency domain features, cepstral features, and the SIF, is provided. Next, the 
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proposed features, RSIF and SITF, and the proposed time-frequency representation, 

cochleagram image, are presented together with their motivation. 

Chapter 4 gives an overview on kNN and SVM classifiers and the common 

multiclass classification methods for SVM are also discussed. An overview of 

DNNs is also provided. 

Experimental evaluation is provided in chapter 5. It includes information on the 

sound and noise databases used in this work and the experimental setup. Results are 

then presented using the baseline and proposed methods. Next, further analysis is 

carried out on the various features and classification methods. 

Finally, conclusions and recommendations are provided in chapter 6. 
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  Chapter 2

Literature Review 

Initial interests in SER were mostly centered around content-based audio 

classification and retrieval as seen in [26-28]. The specific application of most of 

these early works were unclear but were eventually streamlined into applications 

such as music genre classification [29], musical instrument sound classification [30], 

and speech and non-speech recognition [31, 32].  

However, applications have diversified since then with interests in areas such as 

audio surveillance [5] and environmental sound recognition [9]. Applications of 

audio surveillance systems include security monitoring in a room [33], public 

transport [34], and elevator [35], intruder detection in wildlife areas [36], and 

monitoring of elderly people, also referred as medical telemonitoring [37]. 

Environmental sound recognition can pose a greater challenge when compared to 

most other SER applications. This is because an environmental sound can comprise 

a number of different sound events within the environment which can be present in 

different combinations at any given time. 

While this research looks at an audio surveillance application, a wider perspective is 

taken with the literature review process whereby various SER applications are 

considered to gauge the advancements in features and classifiers. The review is 

provided in the following sections and then some of the lesser known applications of 

SER are discussed. 
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2.1 Time and Frequency Domain Features 

One of the early works in content-based audio classification and retrieval is by Wold 

et al. [26] which also found commercial success and was called Muscle Fish 

(www.musclefish.com). It utilized some low-level acoustical features, such as 

loudness, pitch, brightness or spectral centroid (SC), and bandwidth (BW), with a 

nearest neighbor (NN) classifier based on normalized Euclidean distance. The sound 

database had 409 sounds files belonging to 16 classes: alto trombone, animals, bells, 

cello bowed, crowds, female, laughter, machines, male, oboe, percussion, telephone, 

tubular bells, violin bowed, violin pizz, and water. Content-based audio retrieval has 

been the main application of this work with Virage Inc., BBC, and Kodak amongst 

its licensees [38].  

Some other commonly used time and frequency domain features as seen in various 

literature [5, 28, 39] include zero-crossing rate (ZCR), short-time energy (STE), 

subband energy (SBE), spectral flux (SF), and spectral roll-off (SR). While time and 

frequency domain features continue to be used in SER systems, such as in audio 

surveillance applications [5], they are often only used as supplementary features.  

2.2 Cepstral Features 

Another group of features, inspired from ASR, are cepstral coefficients. A cepstrum 

can be defined as the inverse Fourier transform of the logarithm of the magnitude 

spectrum of a signal and has been widely used in the analysis of speech signals. It 

gives information about how the frequencies change in the spectrum and is 

sometimes referred as the spectrum of the spectrum. 

Linear prediction cepstral coefficients (LPCCs) [40] are probably the earliest of the 

cepstral features. LPCCs are derived from linear prediction coefficients (LPCs) 

which is a technique for estimating simple speech parameters such as pitch, 

formants, spectra, and vocal tract. Linear prediction analysis is based on the idea that 

a speech sample can be approximated using a linear combination of past speech 

samples [41]. 
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However, LPCCs have largely been replaced by MFCCs [42] which represent the 

short time power spectrum of a sound signal in a condensed form. Humans are better 

at differentiating small changes in pitch at low frequencies than at high frequencies. 

The mel-filter used in MFCCs equally spaces the frequency bands on the mel-scale 

[43] which more closely resembles how humans perceive sound when compared to 

linearly spaced cepstrums. In addition, ΔMFCCs and ΔΔMFCCs [44], also known as 

differential and acceleration, respectively, which provide trajectories of MFCCs 

over time, are often appended to MFCCs to improve the classification performance. 

MFCCs have either been used as a feature on its own, as in [36], or combined with 

other features for improved performance as in [9, 45]. Li [27], from Microsoft 

Research China, extended the research of Wold et al. [26] by using MFCCs in 

combination with perceptual features such as total spectrum power, subband powers, 

brightness, bandwidth, and pitch. The audio is first classified as silent and non-silent 

where silent is defined as one which has the sum of the signal magnitude below a 

certain threshold. The mean and standard deviation of the features extracted from 

the non-silent frames are then concatenated to form the feature vector with 

normalized values. Using the same audio database as Muscle Fish, the leave-one-out 

test is carried out first where each of the 409 sound files are used as query but the 

query sound is not used as a prototype. The combination of perceptual and cepstral 

features gives a better classification performance than the individual features with 

the lowest ER of 9.78%, much better than the ER of 18.34% for the Muscle Fish 

system [26]. In the second test, evaluation is done using separate training and test 

sets, 211 files and 198 files, respectively, with the lowest ER of 9.60% using the 

combined features.  

While MFCCs are still probably the most common feature in both ASR and SER 

applications, it has been shown to perform poorly in noisy conditions [2, 46]. Even 

with the inclusion of different features, the performance at low SNRs has generally 

been poor unless using multi-conditional training which requires large datasets to 

capture the variations in environmental conditions. In [47], power normalized 

cepstral coefficients (PNCCs) [48] were shown to outperform MFCCs and LPCCs 

under various noise conditions and noise levels. Independent component analysis 

(ICA) MFCCs, using FastICA algorithm to find the ICA transformation bases [49], 
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are proposed in [50] for recognizing home environment sounds under air-conditioner 

noise for home automation.  

Furthermore, GTCCs are a more recent addition to the family of cepstral features. 

GTCCs employ a gammatone filter, a linear filter which models the frequency 

selectivity property of the human cochlea. The most commonly used cochlea model 

is that proposed by Patterson et. al. [51] which is a series of bandpass filters with the 

bandwidth given by equivalent rectangular bandwidth (ERB). An efficient 

implementation of the gammatone filter bank has been provided by Slaney [52] 

which has been closely followed in ASR [11] and SER [10] applications. In [11], 

performance of a number of front-end features, including LPCCs, MFCCs, and 

GTCCs, are compared under clean conditions and in the presence of white Gaussian 

noise at various SNRs. The results using GTCCs were seen to be better than the 

conventional methods. Also, a detailed analysis on MFCCs and GTCCs is 

performed in [10] with GTCCs determined to be more effective than MFCCs in 

representing the spectral characteristics of non-speech audio signals, especially at 

low frequencies. However, the performance wasn’t evaluated in the presence of 

noise.  

2.3 Sparse Decomposition 

Sparse decomposition aims to decompose a given input signal as a linear 

combination of a defined number of elementary signals from a large linearly 

dependent collection. While there are a few algorithms for this, such as basic pursuit 

(BP) [53], matching pursuit (MP) seems to be the most often used in SER 

applications. Chu et al. [9] consider MP for environmental sound recognition. Their 

sound database consists of fourteen environment types, taken from BBC sound 

effects library [54] and the Freesound project [55], which are as follows: inside 

restaurants, playground, street with traffic and pedestrians, train passing, inside 

moving vehicles, inside casinos, street with police car siren, street with ambulance 

siren, nature-daytime, nature-nighttime, ocean waves, running water/stream/river, 

raining/shower, and thundering.  

In simple terms, MP, originally proposed by Mallat and Zhang [56], allows 

extraction of time-frequency features through the sparse linear expansion of a 
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waveform. This is done by decomposing signals using an overcomplete dictionary of 

functions, such as Gabor dictionary [56] as used in [9]. Some other available 

dictionaries include wavelets [57], wavelet packets [58], multiscale Gabor 

dictionaries [59], and chirplets [60]. An overcomplete dictionary ensures that the 

signal converges to a solution with zero residual energy and, therefore, results in the 

best set of functions to approximate the original representation. In [9], frequency and 

scale parameters are extracted from each atom as features together with the mean 

and standard deviation for each parameter, with five determined as the optimal 

number of atoms. A combination of MFCCs and MP features produced the highest 

classification accuracy at 83.9% using GMM classification. 

Interestingly, a listening test was also given to 18 individuals with an overall 

accuracy of 77%, 82%, and 85% for an audio clip of duration 2, 4, and 6 seconds, 

respectively. The confidence level of the individuals were also measured with each 

answer which showed direct correlation with the accuracy. Potential short falls in 

the listening test, such as short duration of clips, were discussed against the results in 

[61] where listening tests produced better results than the automatic SER system. 

Some other applications of MP include note detection in musical recordings [62], 

music genre recognition [63], and in automatic classification of time-varying 

warning signals from an acoustic monitoring system to indicate potential 

catastrophic structural failures of reinforced concrete structures [64].  

Unlike [9], which uses overcomplete dictionaries, MP for signal approximation with 

sparse optimization method [65] is used for drum sound classification in [66]. Data 

samples from ENST database [67] and RWC Music Database: Musical Instrument 

database [68] are used and the following features are considered: MP features using 

a sparse coding dictionary (SC-MP), MP features using a gammatone dictionary 

(GT-MP), and timbre descriptors (TD). Apart from the three individual feature sets, 

the combination of TD with SC-MP and GT-MP is also considered. Results are 

compared under clean conditions and at -10dB, 0dB, 10dB, and 20dB SNR with the 

addition of white Gaussian noise. When trained with clean samples only, the overall 

performance of the MP features was much better than TD features. While all the 

features gave comparable results under clean conditions, MP features performed 

much better under noisy conditions, except at -10dB and 0dB SNR where all 

features gave poor results. The addition of MP features to TD and multi-conditional 
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training for TD improved its classification accuracy but the overall performance of 

the individual MP features was still better. 

2.4 Time-Frequency Image Features 

There are also some literature which use the unique approach of extracting features 

from the time-frequency image of the sound signal. Spectrogram images of a sound 

signal were used for feature extraction in a hearing aid application by Abe et al. 

[69]. While more than thirty features were extracted, eleven features were chosen 

through correlation analysis for classifying four classes: speech, speech in noise, 

noise, and classical music. The original image is in grayscale but binary images are 

also created for feature extraction. Five features are firstly used to classify between 

classical music and the others. The others is then classified as speech, speech in 

noise, and noise using the remaining six features. 

In addition, Dennis et al. [2] extract central moments as features from the 

spectrogram image of sound signals, referred as the SIF, for sound event recognition 

which was shown to produce relatively good results in noisy environments. For 

experimentation, 60 sound categories, taken from the Real World Computing 

Partnership (RWCP) Sound Scene database in Real Acoustic Environment [70], are 

used to give a selection of collision, action, and characteristics sounds. Each class 

has 80 files of which 50 files are randomly selected for training and 30 files are used 

for testing. Four noise types, speech babble, destroyer room control, factory floor 1, 

and jet cockpit 1, from NOISEX-92 database [71] are added at 20dB, 10dB, and 0dB 

SNRs to test the robustness of the system. While MFCCs were seen to produce 

better results under clean conditions, the results using the SIF were much better at 

low SNRs. The best results at 0dB SNR were between 74-77% for the four noise 

types using the SIF with HMM classification, implemented using the HTK toolkit 

[72].  

Furthermore, in some literature, the GLCM, an image processing based texture 

analysis technique, has been extended to texture analysis of sound signal time-

frequency images. GLCM gives the spatial relationship of pixels in an image and 

Costa et al. [21] used it for texture classification of spectrogram images for music 

genre recognition. Their audio database consists of 900 music pieces from 10 music 
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genres taken from the Latin music database [73]. The audio signal is first converted 

to a spectrogram using time decomposition [73] and the GLCM texture descriptors 

are extracted as features using a zoning technique, that is, the spectrogram image is 

divided into horizontal sections, with a total of 10 zones, and analysis is carried out 

in each zone. Due to the non-uniform nature of the sound signal spectrograms, this 

local feature extraction technique was shown to give higher results than global 

features. The following seven features are extracted from the GLCM from the 

fourteen textural descriptors proposed in [19]: entropy, correlation, homogeneity, 

third order momentum, maximum likelihood, contrast, and energy. 

The results are compared against those in [74] which takes an instance-based 

approach with feature vectors represented by short-term, low-level characteristics of 

the music audio signal. Only a marginal increase is seen in the average classification 

accuracy, increasing from 59.6% to 60.1%, but results showed an improvement of 

about 7% with a combination of the two methods.  

The GLCM method of image texture analysis using the fourteen textural descriptors 

of [19], a subset of these features, or with other textural descriptors has been 

employed in various other applications. These include insect recognition [75], fabric 

surface roughness evaluation [76], and urban and agricultural land classification 

[77]. It has also been applied for diagnosis of abdominal tumors using texture 

classification of ultrasound images [78] and mammogram texture classification for 

breast cancer detection [79]. In a face recognition problem [20], however, instead of 

extracting features from the GLCM, the matrix values itself are used to form the 

feature vector. This approach was generally shown to give significantly better results 

than using the combined fourteen textural descriptors as features.  

Moreover, while the spectrogram image is the most commonly used representation 

in time-frequency analysis of sound signals, it may not be the best choice depending 

on the application. Short-time Fourier transform (STFT) is a commonly used method 

for spectrogram image formation where the signal is divided into short duration 

frames and discrete Fourier transform (DFT) is applied to the windowed frames. The 

spectrum values from each frame are stacked side-by-side to form the spectrogram 

image. The spectrogram image gives dominant frequency information against time 

and the frequency components are equally spaced along the vertical with constant 

bandwidth. However, most sound signals hold greater frequency components in the 
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lower frequency range and, therefore, the information in these frequency bands are 

not fully revealed in this time-frequency representation. 

Wavelet transform [80] also provides a time-frequency representation of a signal 

and has advantage over Fourier transform in that it provides better time and 

frequency localization. Nilufar et al. [81] use wavelet packet decomposition [82], an 

extension of wavelet transform that includes more signal filters, for robust speech 

and music discrimination. This technique is applied to the spectrogram to transform 

it into different subbands containing texture information. Multiple kernel learning 

(MKL) [83] is used to select the optimal subbands for discriminating the two 

classes.  

A cochleagram is another variation of the spectrogram which uses a gammatone 

filter, as used for computing GTCCs, and is sometimes referred as a gammatone-

spectrogram. A gammatone filter offers more frequency components in the lower 

frequency range with narrow bandwidths and fewer frequency components in the 

higher frequency range with wide bandwidths. This makes the corresponding time-

frequency representation more suitable for feature extraction. Time-frequency 

analysis and feature extraction using cochleagram images have a number of 

applications in areas of signal processing and pattern recognition. For example, 

features were extracted from cochleagram images in [84] in trying to improve the 

robustness in ASR. In [85], cochleagram image features outperform a combination 

of common acoustic features in voice activity detection. Similar approach is also 

taken in [86] for audio separation purposes. 

2.5 Support Vector Machines 

2.5.1 Binary Support Vector Machines 

SVM is a statistical learning classifier developed for binary classification. The initial 

SVM was a linear classifier proposed by Vapnik and Lerner in 1963 [87]. This was 

extended to nonlinear datasets by Boser, Guyon, and Vapnik in 1992 [88] and has 

gained widespread attention since the late '90s, around the same time research in 

SER was generating interests. Being a binary classifier, a number of techniques have 

been proposed for multiclass classification. The most common technique is to 
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reduce the multiclass classification problem into multiple binary classification 

problems. Four commonly used methods based on this technique are one-against-all 

(OAA) [89], one-against-one (OAO) [90], decision directed acyclic graph (DDAG) 

[91], and adaptive directed acyclic graph (ADAG) [92]. 

Guo and Li [28] used the Muscle Fish database and similar features as in [27], that 

is, cepstral and perceptual features. However, a new metric called distance-from-

boundary (DFB) is proposed for audio retrieval using SVMs to learn the boundaries. 

SVM, with a bottom-up binary tree structure, similar to ADAG method, is proposed 

to reduce the number of comparison during testing. Exponential RBF is used as the 

kernel function which was found to give better results than polynomial, Gaussian 

RBF, and multilayer perception. Using the same feature vector formation technique 

as [27], SVM performed better than NN, kNN, and NC (nearest center) classifiers. 

The lowest error rate is 11.00% for the leave-one-out test but 8.08% with separate 

training and test sets.  

In another similar work, Lu et al. [39] consider five audio classes: silence, music, 

background sound, pure speech, and non-pure speech. SVM, with a Gaussian radial 

basis function (RBF) kernel, is used for classification with a bottom-up binary tree 

for multiclass SVM classification, similar to [28]. For experimentation, a database 

with 2600 audio clips is created with a total duration of about 4 hours obtained from 

TV programs, internet, audio, and music CDs. When tested under different testing 

units (durations), in general, kNN classifier gave higher results than GMM while the 

SVM classifier always outperformed kNN and GMM classifiers.  

In some other applications of SVMs in SER systems, in [66], OAO-SVM with RBF 

kernel, implemented using LIBSVM [93], is used for drum sound classification. In 

[94], multi-layer perceptron (MLP) neural network, trained using the Levenberg-

Marquardt (LM) [95] back-propagation algorithm, and SVM, only the polynomial 

kernel was considered, are experimented for classification for automatic ontology 

generation for musical instruments. The average classification accuracy for the MLP 

classifier were 76.0% and 46.7% for solo music and isolated notes, respectively, 

which increased to 83.0% and 86.3% with SVM classification. 

In addition, there are various other pattern recognition problems where the 

multiclass SVM classification methods have been compared. Hsu and Lin [96] 
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compare the performance of OAA, OAO, DDAG and two altogether methods, an 

approach for multiclass problems by solving a single optimization problem, on large 

classification problems. They conclude OAO and DDAG as being more suitable for 

practical use. A similar comparison is done by Seo [97] using OAA, OAO, DDAG 

together with the approach given by Weston and Watkins [98] and Crammer and 

Singer [99] for a face recognition application. While OAO was found to give 

marginally better results than DDAG, DDAG is suggested due to its low 

computational cost.  

2.5.2 One-Class Support Vector Machines 

One-Class Support Vector Machines (1-SVMs), proposed by Schölkopf et al. [100], 

is a modification of binary SVMs to solve one-class classification problem. Here, 

the feature is transformed by the kernel and the origin is treated as the second class. 

1-SVM essentially separates the feature data points from the origin and maximizes 

the distance from the hyperplane to the origin. 

1-SVM is more suited with high dimensional feature vectors. As such, unlike most 

other work where mean and standard deviation values of the extracted features 

across all frames are concatenated to form the feature vector, a slightly different 

approach to feature data representation is taken by Rabaoui et al. [5], which is also 

one of the most comprehensive piece of work in an audio surveillance application. 

The overall feature data for the sound signal is divided into three portions: 30%, 

40%, and 30% of the total number of frames. Mean value of the data across each 

dimension from each portion are concatenated to form the feature vector which 

results in a feature dimension which is 1.5 times longer than the conventional 

technique.  

Various features were considered in this work on a database that consists of 1015 

sounds files belonging to 9 classes taken from the RWCP Sound Scene database 

[70] and [101]: human screams, gunshots, glass breaking, explosions, door slams, 

dog barks, phone rings, children voices, and machines. Noise signals were added 

from the NOISEX-92 database [71] and some hand recorded signals were also used. 

The choice of the sound database has some similarity to other audio surveillance 

applications such as [7, 8, 35, 102, 103]. The classification accuracy of 1-SVM was 

generally higher than HMM, OAA-SVM, and OAO-SVM classification methods 
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when tested at various SNRs with a number of individual and combined features. A 

maximum classification accuracy of 96.89% was achieved under clean conditions 

and 93.33%, 89.22%, 82.80%, and 72.89% with the addition of noise at 20dB, 10dB, 

5dB, and 0dB SNRs, respectively, with the best performing feature set with 70% of 

clean data used for training and the remaining for testing. 

One drawback of the approach in [5] is that different combination of features were 

shown to produce best results under different conditions. For example, MFCCs are 

used to form the final feature vector under clean conditions but MFCCs are not used 

under noisy conditions. The implementation of such a system in real-time can be 

complex since it requires prior knowledge on whether there is noise present in the 

sound signal before selecting the best set of features or else sacrificing the 

classification performance using a feature set that gives the best overall 

performance.  

2.6 Deep Neural Networks 

While SVMs have seen an increased usage in SER systems, a new machine learning 

algorithm called deep learning is generating a lot of interest in ASR. Deep learning 

aims to learn high-level representations of data through a hierarchy of intermediate 

representations, such as deep neural networks (DNN) [104]. It has been used for 

acoustic modeling by research groups at University of Toronto, Microsoft Research, 

Google, and IBM Research, amongst others, and shown to outperform a number of 

classification methods [105].  

McLoughlin et al. [106] compare the classification performance of DNNs against 

SVMs for sound event recognition. Classification performance was evaluated on 

three feature sets, MFCCs, SAI [107], and SIF. DNNs generally gave significantly 

higher overall classification accuracy with the best overall performance achieved 

using the SIF. With multi-conditional training, for example, the average 

classification accuracy using SVMs is 88.55% but 92.58% with DNNs. Similar 

conclusions were also drawn with MFCCs and SAI features. 
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2.7 Summary of Advancements and Proposed 
Methods 

Table 2.1 summarizes some key works in SER and highlights the advancements in 

features and classifiers using the work by Wold et al. [26] as basis. 

MFCCs have evolved as a baseline feature in many SER systems. However, it is 

often supplemented with other features such as perceptual features [27, 28] and MP-

based features [108] for improved classification performance. The performance of 

MFCCs has been shown to be poor in the presence of noise and various 

modifications have been proposed for a more noise robust performance. GTCCs are 

one of the recent of the cepstral coefficients and shown to be more noise robust than 

MFCCs in ASR [11]. 

However, the strength of the cepstral features lies in classifying noise-free signals 

and even with the various proposed improvements, the performance at low SNRs 

has been poor. The use of time-frequency image derived features has been shown to 

be effective in the presence on noise in ASR and two such features are SSCs [3] and 

SSCHs [4]. Similarly, the SIF was proposed for SER in [2]. In [2, 4], the time-

frequency image features were seen to be more noise robust than MFCCs. Also, in 

[109], the SIF was shown to be significantly more noise robust than the feature 

combination of MFCCs and MP proposed in [9]. 

This work utilizes MFCCs, GTCCs, and the SIF as baseline features. Next, a 

technique is proposed to reduce the feature dimension of the SIF without sacrificing 

the classification performance, which is referred as the RSIF. Also, a new 

spectrogram derived feature is proposed which performs subband texture analysis 

using the image texture analysis technique of GLCM and is referred as the SITF. In 

addition, feature extraction using cochleagram image, a variation of the spectrogram 

image utilizing a gammatone filter, is proposed, a technique which has been seen to 

be effective in ASR applications [84-86]. Finally, feature combination has been seen 

to improve the classification performance in a number of literature in ASR [3] and 

SER [5, 9, 27] and this work proposes a combination of cepstral and time-frequency 

image features. 
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Table 2.1: A summary of some key works in sound event recognition 

Reference Year Application Sound (Noise) 
Database(s) 

No. of Classes 
(Total Files) % Training data Best feature(s) Classifier Classification Accuracy 

(or Error Rate) 
Wold et al. 
[26] 1996 Content-based 

audio classification Muscle Fish 16 (409) – Perceptual features NN 19.07% (ER)1 

Li [27] 2000 Content-based 
audio classification Muscle Fish 16 (409) 

Leave-one-out test MFCC + 
perceptual features NFL 

9.78% (ER) 
51.59% (211/409) 9.60% (ER) 

Guo and Li 
[28] 2003 Content-based 

audio classification Muscle Fish 16 (409) 
Leave-one-out test MFCC + perceptual 

features SVM 
11.00% (ER) 

51.59% (211/409) 8.08% (ER) 

Rabaoui et 
al. [5] 2008 Audio surveillance

RWCP Sound Scene, 
Leonardo Software, 
hand recorded 
(NOISEX-92, hand 
recorded) 

9 (1015) 70% (Multiple features2) 1-SVM 

Clean – 96.89% 
20dB – 93.33% 
10dB – 89.22% 
5dB – 82.80% 
0dB – 72.89% 

Chu et al. 
[9] 2009 Environmental 

sound recognition 
BBC Sound Effects, 
Freesound 14 75% MFCC + MP GMM 83.9% 

Dennis et al. 
[2] 2011 Sound event 

recognition 
RWCP Sound Scene 
(NOISEX-92) 60 (4800) 62.5% SIF HMM 

3Clean – 87.9% 
320dB – 88.0% 
310dB – 87.5% 
30dB – 75.5% 

McLoughlin 
et al. [106] 2015 Sound event 

recognition 
RWCP Sound Scene 
(NOISEX-92) 50 (4000) 62.5% SIF DNN 

Clean – 96.20% 
20dB – 95.80% 
10dB – 94.13% 
0dB – 85.47% 

1ER as reported in [27, 28]. 
2Different combination of features were experimented with under clean and noisy conditions.  
3Average classification accuracy value is given for the classification accuracy values reported for the four noise types. 
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Furthermore, SVM has been the classifier of choice in a number of SER applications 

and various multiclass classification methods have been experimented with. The 

difference in the classification accuracy between the multiclass SVM classification 

methods in most cases is minimal and, as such, the preference of one technique over 

the others is largely based on faster training and evaluation times. However, most 

such analysis is limited to clean conditions and it is unclear which approach is more 

suitable for classification under noisy conditions. In this work, the performance of 

the OAA, OAO, DDAG, and ADAG multiclass SVM classification methods are 

compared under different noise environments and SNRs. The performance of each 

method is evaluated using its classification accuracy and the training and evaluation 

times are also compared. 

While SVMs have been the preferred classifier in most SER applications, DNNs 

have gained popularity in recent years with its superior classification performance, 

as demonstrated in a number of pattern recognition problems. As such, similar to 

[106], DNNs are also considered in this work and the performance is evaluated 

against SVMs with a number of individual features. In addition, the performance is 

compared with feature combination and the training and evaluation times are also 

compared. 

2.8 Other Applications of Sound Event Recognition 

The applications of SER are not limited to content-based audio retrieval, such as 

music genre and musical instrument sound classification, audio surveillance, and 

environmental sound recognition which have been the focus so far. Some less 

conventional applications of SER are discussed in the following subsections and a 

summary provided in Table 2.2. 

2.8.1 Biometrics Identification 

Similar to automatic finger print recognition, face recognition, and, more recently, 

vein pattern recognition systems, heart sound recognition has the potential for 

human identification. The use of such physiological characteristics for human 

identification is referred as biometrics identification. An example of such a system is 

given by Beritelli [110] where a database of digital heart sound recordings from 50 
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different people are used. MFCCs are used as features together with a feature called 

first-to-second ratio (FSR), power ratio of the first and second heart sounds. An 

equal error rate (EER) of 8.70% was achieved where EER is defined as the point 

where the false accept rate is equal to the false reject rate. 

2.8.2 Biomedical Engineering 

Automatic heart and lung sound recognition can also be used for diagnosis of 

disorders associated with the heart and lung, respectively. This process is often 

carried out manually by medical practitioners and can be subject to human error. As 

such, an automatic recognition system could be utilized for verification purposes. 

Kwak and Kwon [111] used heart sound signals for classification of cardiac 

disorder. MFCCs are first extracted from the heart sound signals and then the input 

signal is partitioned using a HMM. HMM state likelihood and murmur likelihood 

are then computed and combined for classification using SVM.  

Furthermore, Chang and Cheng [112] study the effect of noise on lung sound 

recognition. Three types of lung sounds, normal, wheeze, and crackle, taken from 

the Stethographics website [113], and three noise types, Gaussian white, babble, and 

car noises, from NOISEX-92 database [71], are used to form the sound and noise 

databases, respectively. Three feature representations: autoregressive (AR) 

coefficients [114], MFCCs, and bispectrum diagonal slices (BDS) [115] are 

considered with dynamic time warping (DTW) [116] for classification. Such 

techniques have also been applied for breath sound classification [45] and snore 

sound detection [117]. 

In some other works, cough sound recognition has been applied to animals such as 

for identification of respiratory infections in pigs [118] and dairy calves [119]. Such 

technology can act as an early warning system which could help contain contagious 

viruses before it becomes widespread with some viruses from animals, such as 

swine flu, known to affect humans as well. In addition, diagnosis of disorders using 

SER technology extends beyond heart and lung sound recognition. An example of 

gastrointestinal motility monitoring system using bowel sounds, captured through 

abdominal surface vibrations, can be found in [120]. 
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2.8.3 Animal Sound Recognition 

Animal species recognition through analysis of their call sound is another 

application of SER. The benefits of such as a system are twofold. Firstly, it can be 

used to carry out automatic animal species recognition and monitoring replacing the 

laborious manual recognition and monitoring process. Secondly, it can be used for 

environmental monitoring since the abundance of wildlife would generally indicate 

a healthy environment. 

For example, researchers in Brisbane, Australia, established a sensor network in the 

city’s suburbs and forest park to study the impact of urbanization of neighboring 

suburbs on the ecological system, with the focus on recognition of bird species using 

acoustic signal analysis with MFCCs as features [121]. Frog species identification is 

another such application as presented in [122] where STE and ZCR are used for 

segmentation, MFCCs as features, and kNN with Euclidean distance measure for 

classification.  

Marine mammal sound classification is another example as given in [123] for 

classification of 75 calls of northern resident killer whales into seven call types 

using cepstral features, features extracted using VOICEBOX [124]. A classification 

accuracy of 92% was achieved using GMM but HMM produced better results, over 

95% in some cases. In addition, an illustration of classification of insect sounds 

using MFCCs and probabilistic neural network (PNN) can be found in [125].  

SER can also be used for monitoring animal activities. In [126], automatic 

recognition of ingestive sounds (bites, chews, and chewbites) of cattle, recorded 

using two wireless microphones placed on the forehead of the animal, is presented 

for monitoring grazing behavior. Experimentation was carried out on two different 

pastures, alfalfa and fescue, with two heights, tall (24.5 ± 3.8 cm) or short (11.6 ± 

1.9 cm), using spectral features and HMM classification, implemented using the 

HTK toolkit. An average recognition rate of 79.5% was achieved. An example of 

automatic measurement of feed intake of broiler chickens by detecting pecking 

sounds can be found in [127]. Another similar work but to estimate the feed 

consumption of giant tiger prawns by using SER for classifying feed events can be 

found in [128]. 
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2.8.4 Audio-Visual Systems 

While the focus so far has been on standalone applications of SER, audio and video 

recognition systems could also be integrated for a more holistic approach in 

addressing problems such as in the development of surveillance systems. Video 

surveillance systems have been around for many years but have limitations such as 

relatively expensive computation and data storage and limited field of view. A SER 

system could be used to complement a video-based surveillance system such as in 

public transports [129] and banks [6]. Audio and video recognition systems could 

also be combined for recognition of complex events in movies [130].  

Robotics 

Vision systems are also common in robotics such as for navigation purposes. Robots 

are often aimed at mimicking human behavior and similar to humans, acoustical 

information could be utilized to make a more complete description of the scene as in 

[131]. There is also scope for mobile robots mounted with audio and visual sensors 

for surveillance applications as in [132, 133]. Robotics based rescue operation is 

another example such as in the aftermath of an earthquake where the injured could 

be behind collapsed structures and audio information such as screaming or crying 

could be used to reach them [134].  

Context Awareness 

Context awareness is a computing term associated with mobile devices and aims to 

determine the user environment which could in turn be used to control certain 

internal processes. The applications for context awareness can be expanded though 

and an example of a social activity recognition and recommendation system using 

audio data gathered from mobile phone is given in [135]. However, context 

awareness using acoustic signal only can have limitations if the environment needs 

to be further classified such as indoor/outdoor or whether it is dark/bright. With a 

rise in handheld electronic devices equipped with audio and video sensors, such as 

smart phones and tablet computers, context awareness using audio and visual data is 

yet another application. An example of such a system is given by Choi et al. [136] 

with view of adding more intelligence to smart devices, with focus on smart phones. 

Their proposed context awareness system recognizes 10 acoustic signals: babble, 

car, bag, music, noisy, office, one-talk, public, subway, and water; and 4 visual 
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signals: low lighting detection, face detection, indoor/outdoor detection, and moving 

detection. The acoustic module of the system has MFCCs as features and GMM 

classification. The visual module consists of three detectors and a classifier, refer to 

[136] for details. The overall classification accuracy reported are: 98.73% for 

acoustic recognition, 99.27% for low intensity detection, 98.55% for face detection, 

94.86% for moving detection, and 93.14% for indoor/outdoor detection. Such a 

system can be useful in a situation where the user cannot answer the phone, such as 

when driving or in a meeting, and an automatic notification could be sent to the 

caller and/or the ringtone muted depending on the detected activity. 

2.8.5 Others 

Some other applications of SER include tile wall inspection through analysis of 

impact sound [137], aircraft takeoff noise classification [138], helicopter type 

identification using rotor sound [139], identification of sound for pass-by noise test 

in vehicles [140], acoustic hazard detection in the form of approaching vehicles for 

pedestrians [141], and classification of cooking stages such as different stages of 

boiling water using audio and vibration signals [142]. 

2.8.6 Summary of Some Lesser Known Applications of SER 

A summary of some these lesser known applications of SER is given in Table 2.2. 
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Table 2.2: A summary of some lesser known applications of sound event recognition 

Reference Application Description Sound Database(s)1 Feature(s) Classifier(s) 
Beritelli and 
Spadaccini [110] Biometrics Heart sound recognition for human 

identification – MFCC + FSR Euclidean 
distance measure 

Kwak and Kwon 
[111] 

Biomedical 

Heart sound classification for diagnosis 
of cardiac disorder 

Heart Sounds and 
Murmurs [143] MFCC HMM, SVM 

Lei et al. [45] Breath sound classification for diagnosis 
of disorders associated with breathing – MFCC + perceptual 

features SVM, ANN 

Exadaktylos et al. 
[118] Cough sound recognition in pigs – Power spectral density 

(PSD) 
Euclidean 

distance measure 

Dimoulas et al. [120] 
Gastrointestinal motility monitoring 
using bowel sounds, captured through 
abdominal surface vibrations 

– 
Time and frequency 

domain features, 
wavelet analysis 

ANN 

Cai et al. [121]  

Animal species 
recognition; 
sound 
classification; 
monitoring 

Bird species recognition using bird calls

Backyards [144], 
Australian bird calls: 
subtropical east [145] and 
voices of subtropical 
rainforests [146], and 
recorded data 

MFCC ANN 

Jaafar and 
Ramli [122] Frog species recognition – MFCC kNN 

Brown and 
Smaragdis [123] 

Northern resident killer whale sound 
classification – MFCC HMM 

Le-Qing [125] Insect sound classification United States department 
of agriculture [147] MFCC PNN [148] 
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Table 2.2: A summary of some lesser known applications of sound event recognition (continued) 

Reference Application Description Sound Database(s) 1 Feature(s) Classifier(s) 

Milone et al. [126] Animal species 
recognition; 
sound 
classification; 
monitoring 
(contd.) 

Monitoring grazing behavior of cattle 
using ingestive sound classification  – Spectral features HMM 

Aydin et al. [127] 
Automatic measurement of feed intake 
of broiler chickens by detecting pecking 
sounds 

– PSD (Adaptive 
threshold) 

Yao et al. [135] Context 
awareness 

Context awareness for social activity 
recognition and recommendation using 
audio data gathered from mobile phone 

– MFCC, ZCR, SF, SC, 
BW DTW 

Tong et al. [137] Tile Inspection Inspection of tile wall exfoliation 
through analysis of impact sound – PSD ANN 

Márquez-Molina et al. 
[138] Aircraft 

classification 

Aircraft classification using aircraft 
take-off noise – MFCC, Octave 

analysis [149, 150] ANN 

Montazer et al. [139] Helicopter type identification using 
rotor sound – Energy RBFNN 

Redel-Macías et al. 
[140] 

Vehicle pass-by 
noise test 

Identification of sound for pass-by noise 
test in vehicles – Spectral features ANN 

Tabacchi et al. [142] Classification of 
cooking stages 

Classification of cooking stages of 
boiling water using audio and vibration 
signals 

– MFCC Parzen [151] 

1Sound database provided only where known. Hand recorded signals were mostly used otherwise. 
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  Chapter 3

Feature Extraction 

The extraction of various features is described in this chapter. These are divided into 

two sections: current methods and proposed methods. The current methods include 

various time and frequency domain features, which are considered for feature 

combination, and the baseline features, cepstral coefficients and the SIF. The 

proposed features are described next which include the RSIF, reduced version of 

SIF, and the SITF, based on the GLCM method of image texture analysis. This is 

followed by an overview of cochleagram feature extraction and the motivation for 

the proposed methods. 

For frequency domain analysis, the signal needs to be firstly transformed to 

frequency domain. For this purpose, the signal is divided into frames and DFT is 

applied to the windowed frames as 

( ) ( ) ( )
21

0
, ,  0,1,..., 1

iknN
N

n
X k t x n w n e k N

π−−

=
= = −∑  (3.1) 

where N is the length of the window, ݔ(݊) is the time-domain signal, ݓ(݊) is the 

window function, and ܺ(݇, (݇)݂ is the ݇௧௛ harmonic corresponding to the frequency (ݐ = ௦ܨ݇ ܰ⁄  for the ݐ௧௛ frame, ܨ௦ is the sampling frequency. 

A Hamming window function is used in this work, similar to [2, 5], with a 50% 

overlap between frames to ensure that information on the edges of the window 

function are not lost. The Hamming window function can be given as 
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the time and frequency response of which are given in Figure 3.1. 

 

 

 

Figure 3.1: Time and frequency response of a Hamming window 

 

All features are extracted from the sound signal under clean conditions and in the 

presence of noise at various SNRs. The SNR is the average power ratio between a 

signal ݔ(݊) and the background noise ߟ(݊) given as 
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where ݔ௥௠௦ and ߟ௥௠௦ are the root mean square (rms) value of the sound signal and 

noise signal, respectively. 

It can also be expressed on the logarithmic decibel scale as 

10 1010log 20logx rms

rms

P xSNR
Pη η

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (3.4) 

which is the definition used from now on in this work. 

Given a signal ݔ(݊) and background noise ߟ(݊) of same length ܼ, if a SNR of ܺ dB 

is desired, the required noise magnitude is determined as 

0.0510
rms

rms X
xψ =  (3.5) 

using which the scaled noise signal can be determined as 

( ) ( ).rms
x

rms
n nψη η

η
= ×  (3.6) 

Finally, the noise manipulated sound signal is obtained as 

( ) ( ) ( ).xx n x n nη η= +  (3.7) 

3.1 Current Methods 

3.1.1 Time and Frequency Domain Features 

Zero-Crossing Rate (ZCR) 

Zero-crossing rate is the number of time-domain zero-crossings within a frame and 

is a simple measure of the frequency content of a signal given as 

( ) ( ) ( )
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−

=
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where sgnሾ∙ሿ is a sign function: sgnሾݔ(݊)ሿ = 1, (݊)ݔ ≥ 0, and  sgnሾݔ(݊)ሿ = −1, (݊)ݔ < 0. 
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Short-Time Energy (STE) 

Short-time energy is the total spectrum power of a frame given as 

( )
0 2

0
log

f

f
STE X f

=
= ∑  (3.9) 

where ܺ(݂) denotes the DFT coefficients, |ܺ(݂)|ଶ is the power at frequency ݂, and ଴݂ is the half sampling frequency or Nyquist frequency. 

Subband Energy (SBE) 

Subband energy is the ratio between subband power and the total power in a frame 

given as 
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where ௦݂௟ and ௦݂௛ are the lower and upper bound of a subband, respectively, with the 

frequency spectrum divided into four subbands: ቂ0, ଴݂ 8ൗ ቃ , ቂ ଴݂ 8ൗ , ଴݂ 4ൗ ቃ , ቂ ଴݂ 4ൗ , ଴݂ 2ൗ ቃ , ቂ ଴݂ 2ൗ , ଴݂ቃ. 
Spectral Centroid (SC) 

Spectral centroid, also called brightness, is the frequency centroid of the spectrum or 

the balancing point of the spectral power distribution and is given as 

( )

( )

0

0

0

0

.

f

f
sc f

f

fX f

SC f
X f

=

=

= =
∑

∑
 (3.11) 

Bandwidth (BW) 

Bandwidth is the square root of the power-weighted average of the squared 

difference between the spectral components and frequency centroid given as 
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Spectral Roll-Off (SR) 

Spectral roll-off is the frequency below which a certain amount of power spectrum 

lies and can be determined as 

( ) ( )
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0 0
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f f
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= =
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∑ ∑  (3.13) 

where ߝ is an empirical constant ranged between 0 and 1 (commonly used value is 

0.95) and normally half the size of the DFT is used. 

3.1.2 Mel-Frequency Cepstral Coefficients 

This subsection outlines the procedure for extracting MFCCs, and the following 

subsection for GTCCs, with reference to Figure 3.2. 

 

  

Figure 3.2: Steps in computing MFCCs and GTCCs 

 

A key feature of MFCCs is the use of mel-filter banks or triangular bandpass filters. 

The filters are equally spaced on the mel-scale, a nonlinear frequency scale which 

more closely resembles how humans perceive sound. The conversion from 

frequency in Hz, ு݂௭, to frequency in mel, ெ݂௘௟, can be given as [152] 

1127log 1
700

Hz
Mel

ff ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.14) 

and the relationship is plotted in Figure 3.3 which is approximately linear below 1 

kHz and logarithmic above 1 kHz. 
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Figure 3.3: Mel scale 

 

The center frequency for the ݉௧௛ filter can be computed as 
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where all the frequency values are given in mel, ௟݂ and ௛݂ are the minimum and 

maximum cut-off frequencies, respectively, and ܯଵ is the total number of mel-

filters. 

The adjacent filters overlap such that the lower and upper end of a filter are located 

at the center frequency of the previous and next filter, respectively, while the peak of 

the filter is at its center frequency. The normalized frequency response can be 

determined as 

( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

, 1
1

2
, , 1 2

2 1

0,

x
x x

x x

x
x x

x x

f k f m
f m f k f m

f m f m

f m f k
V m k f m f k f m

f m f m

Otherwise

⎧ −
≤ ≤ +⎪ + −⎪

⎪ + −⎪= + ≤ ≤ +⎨ + − +⎪
⎪
⎪
⎪⎩

 (3.16) 

where ݇ = 0,1, … ,ܰ 2⁄ − 1, ௫݂ are the ܯଵ + 2 cut-off frequencies, and evaluated for ݉ = 1,2,…  .ଵ. An example of a 10 channel mel filter bank is shown in Figure 3.4ܯ,
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Figure 3.4: Example of a 10 channel mel filter bank 

 

For the ݐ௧௛ frame, the output of the ݉௧௛ filter, referred as filter bank energies, can 

then be determined as 
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In some literature, the spectrum values are not squared in computing the filter banks 

energies but after experimenting with both techniques, squaring the filter bank 

energies was shown to give better results. The results without squaring the filter 

bank energies are given in [16]. 

The MFCCs are then obtained as the discrete cosine transform (DCT) of the log 

compressed filter bank energies given as 

( ) ( )( ) ( )
1

1 11

2, log , cos 0.5 , 1,2,..., .
M

m

ic i t E m t m i l
M M

π

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑  (3.18) 

where ݈ is the order of the cepstrum. 
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3.1.3 Gammatone Cepstral Coefficients 

Extraction of GTCCs follows the same procedure as MFCCs except that gammatone 

filters are used instead of mel-filters. Gammatone filter banks are a series of 

bandpass filters the impulse response for which can be given as [51] 

( ) ( )1 2 cos 2j Wr
cg r Ar e f rπ π φ− −= +  (3.19) 

where ܣ is the amplitude, ݆ is the order of the filter, ܹ is the bandwidth of the filter, ௖݂ is the center frequency of the filter, ߶ is the phase, and ݎ is the time. 

The ERB is used to describe the bandwidth of each cochlea filter in [51]. ERB is a 

psychoacoustic measure of the auditory filter width at each point along the cochlea 

and can be given as 

( )
1

,
,

p p
pc Hz

c ERB min
ear

f
f W

Q

⎡ ⎤⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (3.20) 

where ܳ௘௔௥ is the asymptotic filter quality at high frequencies and ௠ܹ௜௡ is the 

minimum bandwidth for low frequency channels. The bandwidth of a filter can then 

be approximated as ܹ = 1.019 × ௖݂,ாோ஻. The three commonly used ERB filter 

models are given by Glasberg and Moore [153] (ܳ௘௔௥ = 9.26, ௠ܹ௜௡ = 24.7, and ݌ = 1), Lyon’s cochlea model as given in [154] (ܳ௘௔௥ = 8, ௠ܹ௜௡ = 125, and ݌ =2), and Greenwood [155] (ܳ௘௔௥ = 7.23, ௠ܹ௜௡ = 22.85, and ݌ = 1). 

The human cochlea has thousands of hair cells which resonate at their characteristic 

frequency and at a certain bandwidth. In [52], the mapping between center 

frequency and cochlea position is determined by integrating the reciprocal of (3.20) 

with a step factor parameter to indicate the overlap between filters. This can then be 

inverted to find the mapping between filter index and center frequency which can be 

given as 

( ) ear
ms

Q
cm ear min h ear minf Q W f Q W e

−
= − + +  (3.21) 

where ݉ = 1,2, …  ଶ is the number of gammatone filters, ௛݂ is the maximumܯ ,ଶܯ,

frequency in the filter bank, and ݏ is the step factor parameter given as 
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2
logear h ear min

l ear min

Q f Q Ws
M f Q W

⎛ ⎞+= ⎜ ⎟+⎝ ⎠
 (3.22) 

where ௟݂ is the minimum frequency in the filter bank. 

A 4th order gammatone filter with four filter stages and each stage a 2nd order digital 

filter was used in this work as given in [52]. The gammatone filter was implemented 

using the Auditory Toolbox for Matlab [156]. After determining the frequency 

response of the gammatone filter, the steps in computing GTCCs are same as for 

MFCCs. An example of a 10 channel gammatone filter bank is shown in Figure 3.5. 

The frequency response of a gammatone filter, using Lyon’s cochlear model, with a 

center frequency of approximately 1 kHz is shown in Figure 3.6 along with the 

frequency response of a mel-filter. 

Delta and Delta-Delta Coefficients 

The cepstral coefficients, or static coefficients, are often appended with their first 

and second derivatives, commonly known as delta and delta-delta coefficients, 

respectively. The delta coefficients can be computed as [44] 

( )
( ) ( )

1

2

1

, ,
,

2

D

d
D

d

d c i d t c i d t
c i t

d

=
Δ

=

+ − −⎡ ⎤⎣ ⎦
=
∑

∑
 (3.23) 

where ܿ∆(݅,  is often ܦ ௧௛ frame and the value ofݐ is the ݅௧௛ delta coefficient in the (ݐ

set to 2. The same formula can be applied to the delta coefficients to compute the 

delta-delta coefficients, ܿ∆ି∆(݅,  .(ݐ
Root Compression 

Root compressed cepstral coefficients are computed similar to the conventional 

method but root compression is applied to the filter bank energies instead of log 

compression. Root compressed cepstral coefficients can be determined as [13] 

( ) ( ) ( )
1

2, , cos 0.5 , 1,2,...,
M

m

ic i t E m t m i l
M M

γ π

=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

∑  (3.24) 

where ߛ is the root value used to compress the filter bank energies, 0 < ߛ ≤ 1, and ܯ is the number of filters. 
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Figure 3.5: Example of a 10 channel gammatone filter bank 

 

 

Figure 3.6: Frequency response of mel and gammatone filters at a center frequency 

of approximately 1 kHz 

 

Cepstral Scaling 

The feature vector for each sound file is generally represented by the mean and 

standard deviation along each feature dimension. However, to reduce the effect of 

different environmental conditions, the coefficients are often normalized before 
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feature vector formation. The data was normalized by scaling it in the range ሾ0	1ሿ, 
referred as cepstral scaling (CS), which can be given as 

( ) ( ) ( )( )
( )( ) ( )( )

, min
ˆ ,

max min
c i t c i

c i t
c i c i

−
=

−
 (3.25) 

where ݉ܽݔ൫ܿ(݅)൯ and ݉݅݊൫ܿ(݅)൯ are the maximum and minimum data values along 

the ݅௧௛ feature dimension, respectively. The same formula also applies to delta and 

delta-delta coefficients.  

Cepstral mean and variance normalization (CMVN) was also considered but the 

results using CS were generally found to be better. 

3.1.4 Spectrogram Image Feature 

The procedure for time-frequency image generation and feature extraction is 

explained with reference to Figure 3.7. 

 

 

 

Figure 3.7: Steps in time-frequency image generation and feature extraction 

(proposed methods are enclosed in dashed lines). 
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For the baseline time-frequency image feature, that is, the SIF, central moments are 

extracted as features from the spectrogram images. Linear and log spectrogram 

images are considered in this work. To obtain the spectrogram images, the linear and 

log spectrum values are firstly obtained from the DFT values as 

( ) ( ), ,linearS k t X k t=  (3.26) 

and 

( ) ( ), log , ,logS k t X k t=  (3.27) 

respectively. 

These values are then normalized in the range ሾ0,1ሿ which gives the grayscale 

spectrogram image intensity values. The normalization is given as 

( ) ( ) ( )
( ) ( )
, min

, .
max min
S k t S

I k t
S S

−
=

−
 (3.28) 

Illustrations of linear and log spectrogram images under clean conditions and with 

the addition of noise at 0dB SNR can be found in Figure 3.8 for a sample sound 

signal from construction sound class. Color representations are shown for the 

grayscale values for better visualization. 

Each time-frequency image is divided into blocks and the ݒ௧௛ central moment for 

any given block of image is then determined as 

( )
1

1 K v
v i

i
I

K
μ μ

=
= −∑  (3.29) 

where ܭ is the sample size or the number of pixels in the block, ܫ௜ is the intensity 

value of the ݅௧௛ sample in the block, and ߤ is the mean intensity value of the block. 

3.2 Proposed Methods 

This section presents the proposed features, RSIF and SITF, and the proposed time-

frequency image representation, cochleagram. The steps in the proposed feature 

extraction and time-frequency image generation are given in Figure 3.7. 
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(a) (b) 

 

(c) (d) 

Figure 3.8: Linear and log spectrogram images of a sound signal from construction 

sound class. (a) Linear spectrogram image under clean conditions, (b) linear 

spectrogram image at 0dB SNR with factory noise, (c) log spectrogram image under 

clean conditions, and (d) log spectrogram image at 0dB SNR with factory noise. 

 

3.2.1 Reduced Spectrogram Image Feature 

The feature vector representation for the SIF has a drawback. The final feature 

vector is a concatenation of the central moment values computed in each block. 

However, if the sound signal segmentation is not similar, which will be especially 

true for non-stationary signals, the location of the same block in the spectrogram 

image of two sound signals of the same class may refer to different spectral regions, 

making the classification task difficult. 
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In addition, if the number of blocks along the rows and columns of the spectrogram 

image are same and is given as ܤ, the dimension of the final feature vector using this 

approach is ܤଶ. While this gives a reasonable size feature dimension for small 

values of ܤ, the feature vector dimension can become extremely large as the number 

of blocks increases. In [2], the spectrogram images are divided into 9 × 9 blocks. 

The final feature dimension with two features, second and third central moments, 

computed in each block is 9 × 9 × 2 = 162.  

This study proposes an alternative feature data representation technique that to some 

extent negates the effect of inconsistent segmentation and also significantly reduces 

the feature vector dimension, therefore, referred as the reduced SIF (RSIF). The 

procedure is same as the SIF but the mean and standard deviation of the central 

moment values along the rows and columns of the image blocks are concatenated to 

form the feature vector as depicted in Figure 3.9. As such, the central moment 

values in each block will be same as the SIF but using statistical representation of 

feature data means inconsistencies in segmentation will be evened out. Also, the 

RSIF gives a feature vector dimension of ܤ × 4. While the feature dimension is 

higher than the SIF for ܤ < 4, it gives a lower feature dimension for ܤ > 4. Using 

the case of 9 × 9 blocks once again, the final feature dimension is 9 × 4 × 2 = 72 

which is 2.25 times smaller than the SIF. However, the preference of one feature 

data representation method over another is largely dependent on the classification 

performance which is compared in Chapter 5. 

3.2.2 Spectrogram Image Texture Feature 

The intensity values in a spectrogram image are determined by the spectral energy in 

the sound signal at any given time and frequency. The dominant frequency 

components in the sound signal are mostly unaffected by the noise as long as the 

noise signal does not contain strong spectral peaks, as shown in the linear 

spectrogram image in Figure 3.8(b) with factory noise. As such, the proposed SITF 

aims to capture the patterns of the subband spectral energy in trying to achieve noise 

robust classification performance. 
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Figure 3.9: RSIF data representation. Note that ܫ(ܾ, ܾ) is a matrix of image intensity 

values for the block in the ܾ௧௛ row and ܾ௧௛ column, ߤ௩(ܾ, ܾ) is the ݒ௧௛ central 

moment for the block in the ܾ௧௛ row and ܾ௧௛ column, and ߤோ௕, ,஼௕ߤ  ோ௕ andߪ  ஼௕ areߪ

the mean and standard deviation of the extracted feature for the blocks in the ܾ௧௛ 

row and ܾ௧௛ column, respectively, ܾ = 1, 2, … ,  .ܤ

 
 

The SITF uses the GLCM method of texture analysis which is a matrix of 

frequencies where each element (݅, ݆) is the number of times intensity value ݆ is 

located at a certain distance and angle, given by the displacement vector ሾ݀௞	݀௧ሿ, 
where ݀௞ is the offset in the ݕ direction and ݀௧ is the offset in the ݔ direction, from 

intensity value ݅ in an ௧ܰ × ௞ܰ image ܫ. Mathematically, this can be given as 
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( ) ( ) ( )
1 1

1,  if ,  & ,
,

0,  otherwise

k tN N
k t

k t

I k t i I k d t d j
P i j

= =

⎧ = + + =
= ⎨

⎩
∑∑  (3.30) 

where the size of the output matrix is ௚ܰ × ௚ܰ, ௚ܰ is the number of quantized gray 

levels. The typical angles for computing the GLCM are 0°, 45°, 90°, and	135° 
corresponding to the displacement vector ሾ0	݀ሿ, ሾ−݀	݀ሿ, ሾ−݀	0ሿ, and ሾ−݀	 − ݀ሿ, 
respectively, as depicted in Figure 3.10. The feature vector for SITF is then formed 

by concatenating the GLCM values into a column vector. 

 

 

Figure 3.10: Directionality used in computing GLCM 

 

3.2.3 Cochleagram 

The cochleagram is another form of time-frequency representation and is based on 

the components of the outer and middle ear [23]. In this representation, the signal is 

broken into different frequencies which are naturally selected by the cochlea and 

hair cells. This frequency selectivity can be modeled by a filter bank, such as a 

gammatone filter. 

A representation similar to the conventional spectrogram image can be obtained by 

smoothing the time series associated with each frequency channel of the gammatone 

filter and then adding the energy in the windowed signal for each frequency 

component which can be given as 

( ) ( ) ( )
1

2
0

ˆ, , ,  1,2,...,
N

n
C m t x m n w n m M

−

=
= =∑  (3.31) 
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where ݔො(݊) is the gammatone filtered signal and	ܥ(݉,  is the ݉௧௛ harmonic (ݐ

corresponding to the center frequency ௖݂௠ for the ݐ௧௛ frame. 

These values are then normalized using (3.28) to get the grayscale cochleagram 

image intensity values. Illustrations of linear cochleagram images under clean 

conditions and with the addition of noise at 0dB SNR are given in Figure 3.11(a) 

and (b), respectively, using the same sound signal as the spectrogram images of 

Figure 3.8.  

 

(a) (b) 

Figure 3.11: Linear cochleagram images for a sample sound signal from 

construction sound class. (a) Linear cochleagram image under clean conditions and 

(b) linear cochleagram image at 0dB SNR with factory noise. 

 

3.2.4 Motivation 

The GLCM essentially captures the frequency of repeating patterns or intensity 

value combinations in the time-frequency image. This work uses only two intensity 

levels, ௚ܰ = 2, as determined to give the best results in [17]. This means that the 

grayscale time-frequency image is essentially treated as a binary image for feature 

extraction, therefore, revealing only the dominant frequency components. This also 

means that small linear transformations caused by the noise to the intensity values of 

the sound signal in the time-frequency image would not affect its transformation to 

binary format as long as the threshold for binary conversion is not crossed. In 

addition, as shown in the linear time-frequency image in Figure 3.8(b) and Figure 
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3.11(b), the noise significantly affects only certain frequency bands and the use of 

subband feature extraction, with the optimal number of subbands determined as 64 

in [17], ensures that feature data in subbands not seriously affected by noise largely 

remain unchanged.  

This is better illustrated in Figure 3.12(a) and (b) where the normalized spectral 

energy distributions of a sound signal for the spectrogram and cochleagram images 

are shown, respectively. The spectral energy, in this context measured as the number 

of white pixels in the binary transformed image, is given in each of the 64 subbands 

without noise and with noise at 0dB SNR. The noise mostly affects subbands 13, 18, 

and 19 in the spectrogram image and subbands 40, 45, and 46 in the cochleagram 

image. Otherwise, there is generally a good degree of correlation between the energy 

distributions of the clean and noisy signals in both representations. As such, except 

in these bands, the repeating patterns captured by the GLCM will largely remain 

unchanged from clean to 0dB SNR conditions, explaining the usefulness of the 

proposed feature extraction technique. 

In addition, while the spectrogram and cochleagram images of Figure 3.8 and Figure 

3.11, respectively, use the same frequency range, ቂ0, ௦ܨ 2ൗ ቃ, the cochleagram offers a 

number of advantages [23]. Firstly, with the ERB spacing of the filter center 

frequencies, the cochleagram offers an expanded representation at low frequencies, 

where most of the spectral information lies for the sound signals used in this work. 

Secondly, depending on the type of sound signal, formants in the lower frequencies 

can be resolved into harmonics in the cochleagram since they have a narrower 

bandwidth. Therefore, a cochleagram offers more frequency components in the 

lower frequency range with narrower bandwidth and fewer frequency components in 

the higher frequency range with wider bandwidth, showing more spectral 

information than a spectrogram, as a result. The cochleagram also emphasizes 

acoustic onsets which can be effective for audio separation [86]. 

The difference in the spread of spectral energy for the two representations is also 

illustrated in Figure 3.12. For example, for the spectrogram image, the spectral 

energy is mainly distributed between subbands 2 to 20 and subbands 26 to 59 for the 

cochleagram image, that is, over 18 subbands for the spectrogram image and 33 

subbands for the cochleagram image. As such, the cochleagram image clearly 



49 
 

reveals more spectral information which makes it a more effective time-frequency 

representation for feature extraction.  

 

 

 

Figure 3.12: Subband spectral energy distribution of a sound signal from 

construction sound class with and without noise for (a) spectrogram and (b) 

cochleagram. 
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  Chapter 4

Classification Methods 

4.1 Baseline Methods 

Various classification methods have been proposed for the various pattern 

recognition problems over past decades. In this work, two such methods are chosen 

as baseline methods which are kNN and SVM. kNN is one the earliest and the 

simplest of all machine learning algorithms while SVM is a relatively new classifier 

which has been shown to be on par, and in some cases better than, the more 

traditional classification methods such as HMM and GMM. 

4.1.1 k-Nearest Neighbor 

In kNN classification, the unknown test sample is classified to the majority vote of 

its neighbors from all the training samples. The Euclidean distance, the most 

commonly used distance measure and which has been used in this work, between 

two feature vectors ܘ and ܙ is the length of the line segment connecting them and 

can be given as 

( ) ( ) ( ) ( )2 22 2
1 1 2 2

1
...

d

d d i i
i

q p q p q p p q
=

= − + − + + − = −∑pq  (4.1) 

where ܘ = ,ଵ݌) ,ଶ݌ … , ܙ ,(ௗ݌ = ,ଵݍ) ,ଶݍ … ,  ௗ), and ݀ is the feature vectorݍ

dimension. 
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4.1.2 Support Vector Machines 

SVM - Basic Theory 

SVM has been well described in many literature, such as in [88, 89, 157], and is 

summarized here. SVM determines the optimal hyperplane to maximize the distance 

between any two given classes. Starting with a case of linearly separable dataset, 

consider a set of ݈ training samples belonging to two classes, a positive class and a 

negative class, given as ሼ(ܠଵ, …,(ଵݕ , ,௟ܠ) ௜ܠ ௟)ሽ, whereݕ ∈ ܴௗ is a ݀-dimensional 

feature vector representing the ݅௧௛ training sample, and ݕ௜ ∈ ሼ−1,+1ሽ is the class 

label of ܠ௜. There can be many possible hyperplanes but the two classes can be said 

to be optimally separated by the hyperplane if the separation distance, or margin, 

between the closest vector, known as support vectors, to the hyperplane is maximal, 

as shown for the two-dimensional linearly separable problem in Figure 4.1. 

 

Optimal
Margin

Optimal
Hyperplane

2 

w·x 
+ b

 = 
0

 ||w||

 

Figure 4.1: An example of a two-class linearly separable problem with the largest 

margin given by the lines passing through the support vectors (shaded in gray). 

 

Any hyperplane in the feature space can be described by the equation 

0b⋅ + =w x  (4.2) 

where ܟ ∈ ܴௗ is a normal vector to the hyperplane and ܾ is a constant. Selecting 

two hyperplanes,   

1b⋅ + = +w x  (4.3) 



52 
 

and 

1b⋅ + = −w x  (4.4) 

such that the data points are separated with no data between them in the margin 

region, the aim then is to maximize the distance between them. The distance 

between these two hyperplanes is given as ૛ ൗ‖ܟ‖ , therefore, ‖ܟ‖ has to be 

minimized. To prevent the data points from falling into the margin, the following 

constraints are added: 

1 for 1i ib y⋅ + ≥ + = +w x  (4.5) 

1 for 1.i ib y⋅ + ≤ − = −w x  (4.6) 

This can be rewritten in the equivalent form as 

( ) 1,  1,..., .i iy b i l⋅ + ≥ =w x  (4.7) 

The optimization problem can then be stated as  

( )
( )

,
arg min

bw
w  (4.8) 

( )subject to: 1,  1,..., .i iy b i l⋅ + ≥ =w x  (4.9) 

For mathematical convenience, and without altering the solution, ‖ܟ‖ is substituted 

with ½‖ܟ‖ଶ and this quadratic programming problem can now be given as 

( )
2

,

1arg min
2b

⎛ ⎞
⎜ ⎟
⎝ ⎠w

w  (4.10) 

( )subject to: 1,  1,..., .i iy b i l⋅ + ≥ =w x  (4.11) 

The optimization problem can be solved under the given constraints by the saddle 

point of the Lagrange functional 

( ) ( )
( )( )2

, 1

1arg min max 1
2

l

i i i
b i

y b
α

α
=

⎛ ⎞
− ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

w
w w x  (4.12) 

with the Lagrange multipliers ߙ௜ ≥ 0. For ease of computation, this primal problem 

is transformed to a dual problem using classical Lagrangian duality which reduces to 

the following optimization problem 
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( )
( )

1 , 1

1arg max
2

l l

i i j i j i j
i i j

y y
α

α α α
= =

⎛ ⎞
⎜ ⎟− ⋅
⎜ ⎟
⎝ ⎠
∑ ∑ x x  (4.13) 

1
subject to: 0,  1,...,  and 0.

l
i i i

i
i l yα α

=
≥ = =∑  (4.14) 

This gives the solution 

1
.

l
i i i

i
yα

=
=∑w x  (4.15) 

The ܠ௜ for which ߙ௜ > 0 are called the supported vectors which lie exactly on the 

margin satisfying ݕ௜(ܟ ∙ ௜ܠ + ܾ) = 1. The remaining data samples are irrelevant 

since their multipliers satisfy ߙ௜ = 0. 

The offset can then be determined as 

i ib y= − ⋅w x  (4.16) 

using any support vector or averaged over all support vectors. 

However, there is no such hyperplane for linearly nonseparable problems to classify 

every training sample correctly. In such a case, the optimization can be generalized 

by introducing the concept of soft margin implying a hyperplane separating most but 

not all the points. Introducing non-negative slack variables ߦ௜ which measure the 

degree of misclassification of data ܠ௜ and a penalty function ∑ ௜௜ߦ , the optimization 

is a trade-off between a large margin and a small error penalty and can be given as 

( )
2

, , 1

1arg min
2

l
i

b i
T

ξ
ξ

=

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑

w
w  (4.17) 

( )subject to: 1 ,  1,...,  and 0i i i iy b i lξ ξ⋅ + ≥ − = ≥w x  (4.18) 

where ܶ is a penalty or tuning parameter to balance the margin and training error. 

This optimization problem can be solved under the given constraints by the saddle 

point of the Lagrangian given as 
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with Lagrange multipliers ߙ௜ ≥ 0 and ߚ௜ ≥ 0. As before, the primal problem is 

transformed to a dual problem using classical Lagrangian duality as 

( )
( )

1 , 1

1arg max
2

l l

i i j i j i j
i i j

y y
α

α α α
= =

⎛ ⎞
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T i l yα α

=
≤ ≤ = =∑  (4.21) 

Due to the linear penalty function, the slack variables do not appear in the dual 

formulation of the problem and the solution is same as the separable case except for 

a modification to the Lagrange multipliers: 0 ≤ ௜ߙ ≤ ܶ, ݅ = 1,… , ݈. 
In applications where linear SVM does not give satisfactory results, nonlinear SVM 

is suggested which aims to map the input vector ܠ to a higher dimensional space ܢ 

through some nonlinear mapping ߶(ܠ) chosen a priori to construct an optimal 

hyperplane. The kernel trick [88] is applied to create the nonlinear classifier where 

the dot product is replaced by a nonlinear kernel function ܭ൫ܠ௜,  ௝൯ which computesܠ

the inner product of the vectors ߶(ܠ௜) and ߶൫ܠ௝൯. 
The typical kernel functions are:  

• polynomial, ܭ൫ܠ௜, ௝൯ܠ = ൫ܠ௜ ∙ ௝ܠ + 1൯௥ where r is the degree of the 

polynomial;  

• Gaussian RBF, ܭ൫ܠ௜, ௝൯ܠ = exp ቀ−ฮܠ௜ − ߪ ଶቁ, whereߪ௝ฮଶ/2ܠ > 0 is the 

width of the Gaussian function; and  

• multilayer perception, ܭ൫ܠ௜, ௝൯ܠ = tanh൫ܽଵ൫ܠ௜ ∙ ௝൯ܠ − ܽଶ൯, where ܽଵ and ܽଶ 

are two given parameters known as scale and offset respectively. 

The classifier for a given kernel function with the optimal separating hyperplane is 

then given as 
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Multiclass Classification 

While many multiclass SVM classification methods have been proposed over the 

years, four commonly used methods, OAA, OAO, DDAG, and ADAG, are 

considered in this work. OAA, which is probably the earliest of the multiclass SVM 

classification techniques [89], distinguishes between one of the class labels against 

the rest. It uses a winner-takes-all strategy in which the classifier that has the highest 

output function assigns the class. The OAO approach distinguishes between every 

pair of classes and classification is done using a max-wins voting strategy [90]. 

Every classifier assigns the instance to one of the two classes with the vote for the 

assigned class increased by one. In the end, the class with the most votes assigns the 

class label. DDAG [91] and ADAG [92] are also based on classification between 

pair of classes but utilize a decision tree structure in the testing phase.  

One-Against-All SVM 

Consider an ܯ-class problem with ݈ training samples: ሼ(ܠଵ, ,(ଵݕ … , ,௟ܠ) ௜ܠ ௟)ሽ, whereݕ ∈ ܴௗ is a ݀-dimensional feature vector representing the ݅௧௛ training sample, and ݕ௜ ∈ ሼ1,2, …  binary SVM ܯ ,௜. In the OAA approachܠ ሽ is the class label ofܯ,

classifiers are constructed and evaluated where each classifier separates one class 

from all the other classes combined. That is, the ݅௧௛ classifier is trained with all the 

training samples from the ݅௧௛ class as positive labels and all the remaining samples 

as negatives labels. 

The ݅௧௛ SVM solves the following optimization problem: 
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( )( )subject to: 1 ,  0i i i i
j j j jy bφ ξ ξ⋅ + ≥ − ≥w x  (4.24) 

where ݕ෤௝ = 1 if ݕ௝ = ݅ and ݕ෤௝ = −1 otherwise. 

During classification, a sample ܠ is classified in the class with the largest value of 

the decision function 

( ) ( )( )
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i M

f bφ
=

= ⋅ +x w x  (4.25) 
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The disadvantage of OAA method is the high mismatch in the training samples 

between the positive and negative classes while some literature [91, 158] also shows 

that the training and evaluation times are relatively high. 

One-Against-One SVM 

For an ܯ-class problem, OAO method constructs and evaluates ܯ)ܯ − 1) 2⁄  

classifiers where each SVM is trained on samples from two classes at a time. For the 

training samples from the ݅௧௛ and ݆௧௛ class, the following binary classification 

problem needs to be solved: 
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( )( )subject to: 1 ,  0ij ijij ij
t t t ty bφ ξ ξ⋅ + ≥ − ≥w x  (4.27) 

where ݕ෤௧ = 1 if ݕ௧ = ݅ and ݕ෤௧ = −1 otherwise. 

During classification, the class label of a test sample can be predicted as 

( ) ( )( )
1,2,..., 1,

arg max sgn .
M

ij ij
i M j j i

f bφ
= = ≠

= ⋅ +∑x w x  (4.28) 

While the OAO method has much more uniform training samples in the positive and 

negative classes when compared to OAA method, its disadvantage is the 

inefficiency of classifying data because the number of SVM classifiers grows super 

linearly with an increase in the number of classes. DDAG and ADAG techniques 

remedy this disadvantage using a decision tree architecture. 

Decision Directed Acyclic Graph SVM 

DAG is a graph where the edges have an orientation and no cycle. The structure of a 

rooted binary DAG by Platt et al. [91] is shown in Figure 4.2. A rooted binary tree 

has nodes arranged in a triangle. The single root node is at the top, two nodes in the 

second layer, and so on with ܯ leaves in the last layer where ܯ is the number of 

classes. The ݅௧௛ node in layer ݆ < ݅) is connected to the ݅௧௛ and ܯ + 1)௧௛ node in 

the (݆ + 1)௧௛ layer.  
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Figure 4.2: DDAG structure for an ܯ-class problem. The root node is at the top of 

the tree and there are ܯ-leaves at the bottom of the tree. Evaluation starts at the root 

node from where each class is removed from the class order list at each node. Only 

one class is left at the leaf node which is the decision function. 

 

The evaluation of a DDAG starts at the root node and, depending of the outcome of 

the binary function, the node is exited through the left edge if the outcome is zero 

and the right edge otherwise. The binary function at the next node is then evaluated 

and this continues until the leaf node is reached, which is the value of the decision 

function. The DDAG operates on a class order list which is initialized at the root 

node. The list is updated at each subsequent node where one class is eliminated from 

the list. The evaluation at each node corresponds to the first and last classes in the 

list. There is only one class left in the list after ܯ − 1 evaluations. At this point, the 

leaf node has been reached and the path taken from the root node to the leaf is called 

the evaluation path. As mentioned in [91], the choice of the class order in the list is 

arbitrary and in their experimentation, a class list in numerical/alphabetical order 

was used since a few different combinations of class order did not show significant 

changes in the accuracy. 
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Similar to the OAO method, the DDAG method creates ܯ)ܯ − 1) 2⁄  nodes during 

training phase but only ܯ − 1 nodes are evaluated during testing. As such, DDAG 

outperforms OAO in terms of computation speed. However, as pointed out by 

Kijsirikul et al. in [92], the node evaluations for the correct class is unnecessarily 

high which creates high cumulative error. On average, the number of times a correct 

class has to be tested against other classes scales linearly with ܯ. In a worst case 

scenario, if the correct class is evaluated at the root node, it will be tested ܯ− 1 

times, that is, tested against all the other classes, before being correctly classified. 

Adaptive Directed Acyclic Graph SVM 

Adaptive DAG is proposed by Kijsirikul et al. in [92] aimed at overcoming the 

shortcomings of DDAG method. Similar to DDAG, for an ܯ-class problem, ܯ)ܯ − 1) 2⁄  binary classifiers are trained and ܯ − 1 evaluations are required 

during testing. However, an ADAG has a reversed triangular structure when 

compared to a DDAG as shown in Figure 4.3 for an ܯ-class problem where ܯ is 

assumed to be an even number for now. 

Similar to DDAG, ADAG is implemented using a class order list, each node 

evaluates two classes, and a class is eliminated at each node. The classification starts 

at the top layer and based on the outcome of the binary function, the outgoing edge 

from the node passes the preferred class information to the next node. The top layer 

has ܯ 2⁄  nodes, the second layer has ܯ 2ଶ⁄  nodes, and so on. In general, the number 

of nodes in each layer is equal to ܯ 2௣⁄  where ݌ = 1, 2, … , ܲ is the layer number 

starting from the top layer. 

The elimination process continues at each node with the number of classes reducing 

by half in each layer until the final node, the output of which is the decision 

function. While the same number of evaluations are required as in DDAG-SVM, the 

number of evaluations that the correct class has to go through is ڿlogଶۀܯ, which is 

also equal to the number of layers, when compared to a maximum of ܯ − 1 

evaluations for the correct class in DDAG method. In the case of odd number of 

classes, the last class in the list is not evaluated at a node until the number of classes 

in the list becomes even. 
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Figure 4.3: ADAG structure for an ܯ-class problem (ܯ assumed to be even) where ܮ௣ is the ݌௧௛ layer, ௣ܰ is the number of nodes in the ݌௧௛ layer, ܮ௣(ݍ) is the output of 

the ݍ௧௛ node in the ݌௧௛ layer,	ݍ = 1, 2, … , ௣ܰ, and ݌ = 1, 2, … , ݌ ;ܲ = 1 is the top 

layer. 

4.2 Deep Neural Networks 

Advancements in machine learning algorithms can significantly improve the 

classification performance in pattern recognition problems. As mentioned in [105], 

one such advancement in ASR was the introduction of expectation maximization 

(EM) algorithm [159] for representing the relationship between the HMM states and 

the acoustic input using GMMs. Such techniques were also employed in SER 

applications as in [2]. While ANNs trained using back propagating error derivatives 

also had the potential to learn more accurate models, limitations in hardware and 

learning algorithms for training neural networks with many hidden layers and large 

amounts of data restricted progress along these lines. However, this changed over 
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the last few years with advancements in computer hardware and machine learning 

algorithms giving rise to a modified machine learning algorithm called DNNs which 

has been shown to outperform GMMs for acoustics modeling in ASR on many 

different datasets by a number of research groups as summarized in [105]. The 

methods for DNNs is now available in a number of literature, such as [105, 106, 

160], and is summarized here. 

A DNN, as defined in [105], is a feed-forward ANN with more than one hidden 

layers of units between the input and output layers. The training data in a DNN can 

be modeled using a two-layer network known as a restricted Boltzmann machine 

(RBM). RBMs were invented by Smolensky in 1986 [161] but only gained attention 

in early 2000s after development of fast learning algorithms by Hinton [162]. A 

RBM is a generative energy based model that consists of a layer of stochastic binary 

visible units with undirected connections to a layer of binary hidden units, as shown 

in Figure 4.4, but no visible-visible or hidden-hidden connections. 

 

 

Figure 4.4: A restricted Boltzmann machine with visible and hidden layer 

connections 

 

The DNN classifier [160] has ܮ-layers with the feature vectors on the input layer and 

the output layer in a one-of-ܯ configuration (ܯ-classes). The DNN is constructed 

using individual pre-trained RBM pairs with each pair comprising ܸ visible and ܪ 

hidden stochastic nodes, ܞ = ሾݒଵ, ,ଶݒ … , ܐ ௏ሿ் andݒ = ሾ݄ଵ, ݄ଶ, … , ݄ுሿ். This work 

uses Bernoulli-Bernoulli RBM (BBRBM) structures for all layers, however, the 
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input layer can also be formed using Gaussian-Bernoulli RBM (GBRBM) structures 

as in [106]. Assuming binary nodes for the BBRBM structure, that is, ܞ௕௕ ∈ ሼ0,1ሽ௏ 

and ܐ௕௕ ∈ ሼ0,1ሽு, the energy function of the state ܧ௕௕(ܞ,  can be given as (ܐ

( )
1 1 1 1

,
V H V H

v h
bb i j ji i i j j

i j i j
E v h w v b h b

= = = =
= − − −∑∑ ∑ ∑v h  (4.29) 

where ݓ௝௜ is the weight between the ݅௧௛ visible unit and the ݆௧௛ hidden unit and ܾ௜௩ 

and ௝ܾ௛ are the real valued biases, respectively. The BBRBM model parameters are ߠ௕௕ = ൛܅, ,ܐ܊ ܅ ൟ where the weight matrix is given asܞ܊ = ൛ݓ௜௝ൟ௏×ு with biases ࢎ܊ = ൣܾଵ௛, ܾଶ௛, … , ܾு௛൧் and ࢜܊ = ሾܾଵ௩, ܾଶ௩, … , ܾ௏௩ሿ். 

The joint probability associated with configuration (ܞ,  can then be given as (ܐ

( ) ( ){ }, ;1, ; Ep e
Y

θθ −= v hv h  (4.30) 

where Y is a partition function given as ܻ = ∑ ∑ ݁ሼିா(ܐ,ܞ;ఏ)ሽ௛௩ . 

During pre-training, the training data is used to estimate the RBM model parameter 

θ with maximum likelihood learning using the contrastive divergence (CD) 

algorithm [104]. CD gives a simple approximation of the gradient of the log 

probability of the training data. A better generative model is learned through a 

limited number of steps of alternating Gibbs sampling by updating the hidden nodes ܐ given the visible nodes ܞ and then using the updated ܐ to update ܞ. The training 

starts at the input layer, which is fed with the feature vectors, and form the visible 

nodes. The hidden units determined after the training process form the visible units 

for training the next RBM visible units. Multiple layers of RBMs are trained by 

repeating this process as many times as desired and, in the end, the RBMs are 

stacked to form a DNN as a single, multilayer generative model. 

In fine-tuning, a softmax output labeling layer of size ܯ is added which aims to 

convert a number of units in the final layer into a multinomial distribution using the 

softmax function 
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where ݉ is an index over all classes, ߠ௅ are the model parameters for the DNN, ߶(݉, (௅ߠ = ݁൛∑ ௪ೖ೔௛೔ା௕೘ಹ೔సభ ൟ, and ܐ|݉)݌;  ௅) is the probability of the input beingߠ

classified into class ݉. 

Back propagation derivatives of a cost function, which measures the discrepancy 

between the target outputs and the actual outputs for each training case [163], can 

then be used to discriminatively train the DNN. With the softmax output function, 

the cross entropy is the natural choice of cost function ܥ between the desired and 

actual distributions given as 

( )
1

log | ; .
M

k L
m

C c p m θ
=

= −∑ h  (4.32) 

More on the setting for the various DNN parameters and the DNN structure for the 

various features considered in this work can be found in section 5.3.  
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  Chapter 5

Experimental Evaluation 

A description of the database of sounds used in this work is given first followed by 

an overview of the noise conditions and the experimental setup. Next, the results 

using the baseline features is presented, which include the two cepstral features, 

MFCCs and GTCCs, and the SIF. This is followed by the results for the proposed 

spectrogram image features, RSIF and SITF, and then the results for the three time-

frequency image features using cochleagram feature extraction. Furthermore, results 

using feature vector combination are presented and the classification performance of 

the different classification methods is compared for all individual and combined 

features. Some further analysis is performed next which includes interclass 

classification performance, performance analysis of the different classification 

methods, and a comparison of the training and evaluation time of the various 

features. 

5.1 Sound Database 

The sound database has a total of 1143 files belonging to 10 classes. The choice of 

the sound classes is similar to other work in the area of audio surveillance such as 

[5, 7, 164]. The sound files are largely obtained from the RWCP Sound Scene 

database in Real Acoustic Environment [70] and the BBC Sound Effects library 

[54]. All signals in the database have 16-bit resolution and a sampling frequency of 

44100 Hz. A summary of the selected sound classes, total number of sound files, 

and total duration is shown in Table 5.1. 
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Table 5.1: Overview of sound classes 

 
Class Number of 

Subclasses 
Total Number 

of Files 
Total Duration 

(s) 

Alarms A 6 180 83.4533 

Children Voices B 6 180 131.9286 

Construction C 3 90 26.2251 

Dog Barking D 3 84 22.3042 

Footsteps E 6 171 24.0566 

Glass Breaking F 2 60 107.3296 

Gunshots G 3 84 8.9500 

Horn H 3 66 27.4115 

Machines I 3 90 56.8423 

Phone Rings J 6 138 119.7996 

Total 1143 608.3008 
 

Alarm sounds in the database include car alarms, electronic alarms, and siren. 

Children voices include children crying and screaming. Construction sounds are 

sawing, metal hammering, and pneumatic drilling. The footstep sounds include those 

from metal and wooden stairs and on pavement. The three types of machine sounds 

are machine hum, motor, and warble. The phone rings class includes cellphone and 

telephone ringtones. 

The database has both harmonic and impulsive sounds and an irregular number of 

sound files which are important in testing out the robustness of the system. It is also 

important to have some degree of intraclass diversity and interclass similarity for 

this purpose and this is demonstrated using k-means clustering [165]. The centroid 

of each of the subclasses was determined and these were grouped into 10 clusters 

using k-means clustering algorithm. The results for these are shown in Table 5.2 

where ܣ஻ and ܣ஺ show the subclasses in class ܣ before and after applying k-means 

clustering, respectively.  

As an example, there are six types of alarm sounds (class ܣ஻) which have been 

labeled as ܣଵ, ,ଶܣ … ,  ଺. However, after applying k-means clustering, the sixܣ

subclasses fall in five different clusters: ܣଵ and ܣଶ in class ܣ஺, ܣହ in class ܤ஺, ܣସ in 

class ܥ஺, ܣଷ in class ܦ஺, and ܣ଺ in class ܪ஺. This means that only ܣଵ and ܣଶ have 

similar signal properties. There are three subclasses in construction, class C, and all 
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fall in different clusters, ܤ஺,  ,஺, unlike the subclasses from dog barkingܩ ஺, andܥ

glass breaking, and horn which all fall in the same cluster, ܦ஺, ܨ஺, and ܪ஺, 

respectively, but have been combined with subclasses from other classes. 

 

Table 5.2: Demonstration of intraclass diversity and interclass similarity using k-

means clustering 

Normal Cluster After K-means Clustering 

Class Subclasses Class Subclasses 

AB A1 A2 A3 A4 A5 A6 AA A1 A2 J2 J3 J4 J6  

BB B1 B2 B3 B4 B5 B6 BA A5 B1 B2 B5 C1 J1  

CB C1 C2 C3 CA A4 C2 I1     

DB D1 D2 D3 DA A3 B3 B4 B6 D1 D2 D3 

EB E1 E2 E3 E4 E5 E6 EA E3 E4 E5 E6    

FB F1 F2 FA F1 F2 G3     

GB G1 G2 G3 GA C3 G1 G2     

HB H1 H2 H3 HA A6 H1 H2 H3 J5   

IB I1 I2 I3 IA I2       

JB J1 J2 J3 J4 J5 J6 JA E1 E2 I3     

5.2 Noise Conditions 

The performance of all features is evaluated under three different noise 

environments taken from the NOISEX-92 database [71]: speech babble, factory 

floor 1, and destroyer control room. As in [5], the signals are resampled at 44100 Hz 

and the performance is evaluated in clean conditions and at 20dB, 10dB, 5dB, and 

0dB SNRs. 

5.3 Experimental Setup 

For all experiments, signal processing is carried out using a Hamming window of 

512 points (11.61 ms) with 50% overlap. The classification accuracy is given in 

percentage as number of correctly classified test samples divided by the total 

number of test samples. Nonlinear SVM with a Gaussian RBF kernel is used in all 
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cases as it was found to give the best results. The penalty parameter ܶ and ߪ for the 

Gaussian RBF kernel were tuned using cross validation. In tuning the parameters, 

one set of parameters which gave the best average classification accuracy were 

selected rather than determining the optimal parameters for each noise level. For 

DDAG and ADAG, the class order list in alphabetical order was used. The best k 

value for the kNN classifier was determined similarly in each experiment.  

For the DNN classifier, the dimensions and number of hidden layers were 

determined through experimentation in each case, following a similar procedure to 

[106]. That is, a step-wise search of hidden layer widths between 10 and 400 was 

performed. The resolution in each case was set to 10 and the internal layers were 

constrained to equal size. Similar to [106], results are only presented using two 

hidden layers for all the features since the addition of more hidden layers was only 

seen to give a marginal improvement in classification performance but with 

significant increase in computation time. The final DNN structures for all features 

are given in Table 5.3 where the input and output layers are equal to the feature 

dimension and number of classes, respectively. In addition, for all experiments, the 

batch training size was set to 127, one-sixth of the number of training samples, and 

using 1000 training epochs. 

 

Table 5.3: Final DNN structures for all feature vectors 

Feature 
DNN Structure 

Input 
Layer 

Internal 
Layer 1 

Internal 
Layer 2 

Output 
Layer 

MFCCs and GTCCs 72 50 50 10 

SIF and CIF 162 60 60 10 

RSIF and RCIF 72 50 50 10 

SITF and CITF 256 60 60 10 

Linear GTCC + CIF 234 160 160 10 

Linear GTCC + RCIF 144 100 100 10 

Linear GTCC + CITF 328 160 160 10 
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For all experimentations, the classifier is trained with two-third of the clean samples 

with the remaining one-third samples used for testing under clean and noisy 

conditions. The OAA-SVM classification method is used as the baseline classifier 

for all experiments. This means that in trying to determine the optimal parameter 

settings for a feature, results are reported only using OAA-SVM classification 

method. This is because, in general, a good correlation was seen between all the 

classifiers considered in this work and hence, no need was seen to report results 

using all classifiers. However, at the optimal parameter settings for the features, 

classification accuracy using all or best classifiers is reported. 

5.4 Results using Baseline Features 

5.4.1 Log Cepstral Coefficients 

The cepstral features, MFCCs and GTCCs, form the first set of baseline features. In 

computing the cepstral coefficients, log compression is applied to the filter bank 

energies for all experiments in this subsection.  

Static, Delta, and Delta-Delta Coefficients 

In the first experiment, the feature vector is formed using the static coefficients and 

then combined with the delta and delta-delta coefficients. With the static 

coefficients, the feature vector for each frame is 12-dimensional, 12 cepstral 

coefficients with the 0th coefficient excluded. Similarly, for static + delta, each 

frame is 24-dimensional and 36-dimensional for static + delta + delta-delta. After 

data normalization, the final feature vector is represented by concatenating the mean 

and standard deviation for each feature dimension. This gives a 24-dimensional final 

feature vector for static coefficients, 48-dimensional for static + delta, and 72-

dimensional for static + delta + delta-delta. In this initial experiment, for MFCCs 

and GTCCs, a 24-filter bank system is used with a frequency range of 0 to 22050 

Hz, which is the Nyquist frequency. 

The classification accuracy values for MFCCs and GTCCs averaged over clean 

samples and noisy samples, 20dB, 10dB, 5dB, and 0dB SNRs, are given in Table 5.4 

using OAA-SVM classification. The results for GTCCs are given using all three 

ERB models. The inclusion of the first and second derivatives gives significant 
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improvement in the results for both MFCCs and GTCCs. For GTCCs, the average 

classification accuracy with Lyon’s cochlear model is significantly better than the 

other two. It was noted that while all three models gave comparable classification 

accuracy under clean conditions, Lyon’s cochlear model gave much better 

classification accuracy at 20dB, 10dB, 5dB, and 0dB SNRs which results in a better 

overall performance for GTCCs. 

 

Table 5.4: Average classification accuracy values for MFCCs and GTCCs with 

different feature vector dimensions and different ERB models for GTCCs 

 MFCC 
GTCC 

Glasberg & Moore [153] Lyon [154] Greenwood [155] 

Feature Dim. 24-D 48-D 72-D 24-D 48-D 72-D 24-D 48-D 72-D 24-D 48-D 72-D 

Accuracy 60.75 69.68 73.05 57.03 64.90 67.12 62.80 71.67 76.69 56.76 62.94 65.67 

 
 

For the best average classification accuracy for each cepstral feature, the 

classification accuracy values under each noise condition are given in Table 5.5. 

MFCCs and GTCCs give comparable classification accuracy under clean conditions 

and at 20dB SNR, however, the classification performance of GTCCs is seen to be 

significantly better at 10dB, 5dB, and 0dB SNRs. 

 

Table 5.5: Classification accuracy values for the best average classification accuracy 

for MFCCs and GTCCs 

Feature Clean 20dB 10dB 5dB 0dB Ave 

MFCC 98.43 95.98 74.37 57.74 38.76 73.05 

GTCC 98.69 95.10 78.22 63.34 48.12 76.69 

 

 

Filter Bank Bandwidth and Number of Filters 

Next, various filter bank bandwidths and different number of filters are 

experimented with to view its effect on the classification accuracy of MFCCs and 

GTCCs, similar to [10]. For MFCCs, the number of filters is typically in the range of 
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20 to 40. For example, 20 filters are used in [42], 23 filters in [9], 18-24 filters are 

suggested in [13], 20-24 filters in [45], and 40 filters in [166]. Also, various lower 

cut-off frequency values have been used in literature such as 20 Hz in [10] and 

133.33 Hz in [166]. However, the upper cut-off frequency is often chosen as the 

Nyquist frequency.  

For GTCCs, the filter bank bandwidth and number of filters used in various 

literature has been summarized in [10]. In their summary, the filter bank bandwidth 

starts from as low as 20 Hz up to an upper limit 11 kHz and the number of filters 

range from 20 to 128.  

With a sampling frequency of 44100 Hz in this work, the maximum possible upper 

frequency limit is the Nyquist frequency of 22050 Hz. For both mel and gammatone 

filter banks, the limits are set as multiples of the sampling frequency with the lower 

limits as ቂ0, ௦ൗܰܨ , ௦ൗܰܨ2 , ௦ൗܰܨ3 , ௦ൗܰܨ4 ቃ and the upper limits as ቂܨ௦ 8ൗ , ௦ܨ 4ൗ , ௦ܨ3 8ൗ , ௦ܨ 2ൗ ቃ.  
The average classification accuracy value for different filter bank bandwidths are 

given in Table 5.6 and Table 5.7 for MFCCs and GTCCs, respectively. For MFCCs, 

the bandwidth of 258.40 Hz – 16537.5 Hz gives the highest average classification 

accuracy and 172.27 Hz – 16537.5 Hz for GTCCs. The upper bandwidth limit of 

16537.5 Hz is same for both MFCCs and GTCCs and this is because for most of the 

classes, the dominant frequency components lie below this frequency. 

 

Table 5.6: Average classification accuracy value with various filter bank bandwidths 

for MFCCs 

 
௛݂  (ݖܪ)

5512.5 11025 16537.5 22050 

௟݂  (ݖܪ)	
0 66.09 70.57 71.15 73.05 

86.13 66.53 71.64 73.23 71.25 

172.27 67.31 72.20 72.62 71.55 

258.40 64.93 71.29 73.89 73.07 

344.53 66.79 73.79 73.86 73.28 
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Table 5.7: Average classification accuracy value with various filter bank bandwidths 

for GTCCs 

 
௛݂  (ݖܪ)

5512.5 11025 16537.5 22050 

௟݂  (ݖܪ)	
0 71.55 75.36 77.39 76.69 

86.13 73.39 75.54 77.87 77.60 

172.27 74.63 77.41 78.83 76.90 

258.40 75.71 77.43 77.38 76.01 

344.53 76.24 78.53 77.03 75.77 

 

 

In Figure 5.1(a) and (b), comparison is done on the effect of increasing number of 

filters on the average classification accuracy of MFCCs and GTCCs, respectively. 

For MFCCs, experimentation was done with 20 to 40 filters in increments of two 

filters while for GTCCs experimentation was done with 20 to 96 filters in 

increments of four filters. For MFCCs, the highest average classification accuracy is 

at 26 filters and 24 filters for GTCCs. In general, for both features, the overall 

classification performance was seen to decrease as the number of filters increased. 

Fine-Tuned Results with Various Classifiers 

The fined-tuned parameter settings for the two features are as follows: MFCCs: ܯଵ = 26, ௟݂ = 258.4	Hz, and ௛݂ = 16537.5	Hz; GTCCs: ܯଶ = 24, ௟݂ =172.27	Hz, and ௛݂ = 16537.5	Hz. Also, of the three ERB filter models considered 

for GTCCs, Lyon’s filter model was shown to give the best results so results using 

this model only are presented from now on. 

For both the features, the feature vector for each frame is 36-dimensional: 12 

cepstral coefficients plus the first and second derivatives. The overall feature vector 

dimension for a signal is 36 × ௧ܰ, where ௧ܰ is the total number of frames in the 

sound signal, which is different in each case depending on the length of the signal. 

After data normalization, the feature vector is represented by concatenating the 

mean and standard deviation for each dimension. As such, the final feature vector is 

72-dimensional. 
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Figure 5.1: Average classification accuracy with increasing number of (a) mel-filters 

and (b) gammatone filters 

 

The classification accuracy values for MFCCs and GTCCs using log compression 

and using the fine-tuned frequency range and number of filters is given in Table 5.8 

using SVM, kNN, and DNN classifiers. When compared to the results given in 

Table 5.5, the average classification accuracy value for both the cepstral features 
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show some improvement, increasing from 73.05% to 74.19% for MFCCs and 

76.69% to 78.83% for GTCCs with the baseline classifier. The most significant 

improvement for both features is at 5dB and 0dB SNRs. 

 

Table 5.8: Classification accuracy values for log MFCCs and GTCCs with different 

classification methods at fine-tuned parameter settings 

Classification 
Method 

Log MFCC Log GTCC 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 97.11 92.21 73.32 60.54 47.77 74.19 96.33 94.58 77.78 70.43 55.03 78.83 

OAO-SVM 98.16 91.08 75.59 57.74 40.59 72.63 97.64 94.84 80.05 67.80 49.43 77.95 

DDAG-SVM 98.16 91.08 75.50 58.01 40.42 72.63 97.64 94.84 77.17 65.62 48.91 76.83 

ADAG-SVM 98.16 91.08 75.07 59.58 43.57 73.49 97.64 94.66 77.08 64.92 50.48 76.96 

kNN 93.18 86.26 67.19 49.96 36.48 66.61 92.13 90.90 69.55 57.57 46.11 71.25 

DNN 96.85 90.03 81.36 66.05 50.48 76.96 96.85 95.19 81.98 68.24 57.04 79.86 
 

 

In both sets of results, the OAA-SVM classification method gives the best average 

classification accuracy of the four multiclass SVM classification methods. While 

there isn't a significant difference in the classification accuracy using the four 

methods in clean conditions and at high SNRs, the OAA-SVM classification method 

generally gives better performance at low SNRs. Also, all multiclass SVM 

classification methods give significantly better classification accuracy than the kNN 

classifier under all noise conditions. However, the DNN classifier gives the best 

overall classification performance for both the features and is generally more noise 

robust. 

For both the cepstral features, the classification accuracy in clean conditions and at 

20dB SNR are greater than 90% using SVM and DNN classification methods. 

However, the classification accuracy reduces greatly with the addition of noise at 

10dB, 5dB, and 0dB SNRs with classification accuracy values of 81.98%, 68.24%, 

and 57.04%, respectively, with the best overall performing feature, GTCCs, and the 

best overall performing classifier, DNN.  

 



73 
 

5.4.2 Linear Cepstral Coefficients 

Determining the Optimal Root Value 

Next, the effect of root compression on the classification accuracy is examined. The 

average classification accuracy value at different root values are plotted in Figure 

5.2(a) and (b) for MFCCs and GTCCs, respectively, using the baseline classifier. 

For MFCCs, the average classification accuracy is generally increasing as the root 

value increases up to the maximum root value of 1 which has been suggested in 

[13]. As such, experimentation was done beyond this value up to a root value of 3. 

For both features, there is significant improvement in overall classification 

performance when compared to the reference classification accuracy given using log 

compression. 

Results using Linear Cepstral Coefficients 

Since the best results for both MFCCs and GTCCs are achieved around ߛ = 1, the 

classification accuracy at this setting is considered which is referred as linear 

cepstrum implying no compression is applied to the filter bank energies. The 

classification accuracy values for MFCCs and GTCCs using linear compression are 

given in Table 5.9. Similar to the results using log compression given in Table 5.8, 

GTCCs once again give the highest average classification accuracy. Generally, there 

is a marginal decline in classification performance under clean conditions which can 

be expected since log compression gives better emphasis on the low energy 

components. However, there is a significant increase in the classification accuracy at 

10dB, 5dB, and 0dB SNRs with linear compression.  

While the OAA multiclass SVM classification method once again outperforms the 

other three multiclass SVM classification methods with linear MFCCs, the OAO 

method is slightly better the OAA method in the case of linear GTCCs. For both the 

features though, the OAA method gives the best performance of the multiclass SVM 

classification methods at 5dB and 0dB SNRs. However, once again, the DNN 

classification method gives the best overall classification performance, and, 

generally, the most noise robust as well. The classification accuracy peaks at around ߛ = 1 which means all cepstrum magnitudes are given equal importance unlike with 

log compression. The results for the kNN classifier are more improved than SVM 

and DNN classifiers for this reason. 
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Figure 5.2: Average classification accuracy value for (a) MFCCs and (b) GTCCs 

with different root values 
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Table 5.9: Classification accuracy values for linear MFCCs and GTCCs 

Classification 
Method 

Linear MFCC Linear GTCC 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 96.06 93.70 84.25 74.98 60.72 81.94 96.85 93.96 87.75 80.93 61.77 84.25 

OAO-SVM 96.33 91.60 81.98 69.38 52.76 78.41 97.38 97.29 90.99 80.05 59.41 85.02 

DDAG-SVM 96.85 92.04 82.06 68.85 51.88 78.34 97.38 95.98 89.24 78.83 57.66 83.81 

ADAG-SVM 96.33 91.86 81.80 67.98 50.66 77.73 97.38 95.98 89.24 78.92 58.01 83.90 

kNN 94.23 91.78 85.04 76.29 65.09 82.48 95.54 93.96 86.35 80.14 65.53 84.30 

DNN 95.28 95.10 88.19 78.65 65.18 84.48 95.80 95.63 88.80 81.80 66.49 85.70 
 

 

Log vs Linear 

To understand the greater noise robustness of root compression over log 

compression, in Figure 5.3(a) and (b), the mel cepstrum for a frame using log 

compression and root compression, ߛ = 1, are plotted, respectively. The values are 

plotted under clean conditions and with the addition of noise at 0dB SNR. The 

deviation of the noise manipulated root cepstrums from the noise free root cepstrums 

is much smaller than the deviation of the log cepstrums which explains its greater 

immunity to noise. 

5.4.3 Spectrogram Image Feature 

Optimal Number of Blocks 

The last baseline feature is the SIF. For the SIF, the spectrogram image is divided 

into 9 × 9 blocks and second and third central moments are computed in each block. 

These values are then concatenated to form the final feature vector which is 162-

dimensional. Experimentation was also carried out with 3 × 3, 5 × 5, and 7 × 7 

blocks but best results were obtained with 9 × 9 blocks, which was also the 

maximum that could be experimented with due to limitations in the length of the 

sound signal and the length of the spectrogram image as a result. The classification 

accuracy values with different number of blocks for linear and log spectrograms are 

given in Table 5.10 using the baseline classifier. In general, the average 

classification performance increases as the number of blocks increases. The chosen 

block size is also consistent with that used in [2]. 
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Figure 5.3: Comparison of the effect of (a) log compression and (b) root 

compression on mel cepstrum with the addition of noise 
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Table 5.10: Classification accuracy values for SIF with different sized blocks 

No. of blocks 
Linear SIF Log SIF 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 3 × 3 82.68 82.59 76.55 66.14 40.68 69.73 93.70 63.95 51.44 45.32 36.83 58.25 5 × 5 90.81 90.20 85.83 65.44 38.06 74.07 95.01 72.53 45.93 38.32 31.41 56.64 7 × 7 89.76 89.76 84.78 67.98 38.58 74.17 94.75 69.73 48.73 39.72 31.93 56.97 9 × 9 91.60 91.34 88.80 67.19 40.51 75.89 93.70 70.60 54.59 44.36 36.22 59.90 
 

 

Results with Various Classifiers 

For both the spectrogram representations, the classification accuracy values using 

the four multiclass SVM classification methods and the kNN and DNN classifiers 

are given in Table 5.11. For the multiclass SVM classification methods, the OAA 

method once again gives the best overall results with both linear and log SIF. While 

the overall classification accuracy using OAA is significantly better than the other 

methods for linear SIF, the classification performance with log SIF is much more 

even. The OAA method is once again the most noise robust, giving the highest 

performance at 10dB, 5dB, and 0dB SNRs. However, the kNN and the DNN 

classifiers give a better overall classification performance than the multiclass SVM 

classification methods for linear SIF and the DNN classifier once again gives the 

best classification performance. Interestingly, the classification performance 

reverses with log SIF with both kNN and DNN classifiers giving lower overall 

classification performance than the SVM methods. As with linear ceptrums, the 

kNN classification method is seen to be more effective with the linear spectrograms. 

When compared to the cepstral features, at 84.27%, the linear SIF gives significantly 

better overall classification performance than conventional or log compressed 

MFCCs and GTCCs which gave a best overall classification accuracy of 76.96% 

and 79.86%, respectively. The classification values using linear SIF are lower under 

clean conditions but significantly better at 10dB, 5dB, and 0dB SNRs, making the 

linear SIF more noise robust. However, the linear SIF gives marginally lower 

average classification performance than linear MFCCs and also linear GTCCs, 

which, with an average classification accuracy of 85.70%, is the best performing 

baseline feature. 
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Table 5.11: Classification accuracy values for SIF with 9 × 9 blocks using different 

classification methods 

Classification 
Method 

Linear SIF Log SIF 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 91.60 91.34 88.80 67.19 40.51 75.89 93.70 70.60 54.59 44.36 36.22 59.90 

OAO-SVM 89.76 78.92 69.12 55.38 37.45 66.12 95.54 72.88 51.27 42.17 31.58 58.69 

DDAG-SVM 87.93 73.58 60.89 51.36 32.63 61.28 95.54 71.30 49.61 41.56 31.58 57.92 

ADAG-SVM 87.93 80.23 69.90 55.21 34.38 65.53 95.28 72.27 49.96 41.29 32.90 58.34 

kNN 86.88 86.00 83.55 79.27 58.27 78.79 90.81 63.08 35.17 27.12 21.26 47.49 

DNN 93.18 92.91 91.51 83.03 60.72 84.27 87.93 65.00 42.78 31.41 24.76 50.38 

 

5.5 Results using Proposed Spectrogram Image 
Features 

In this section, the performance of the proposed spectrogram image features are 

presented. The two proposed spectrogram image features are the RSIF and the SITF.  

5.5.1 Reduced Spectrogram Image Feature 

Optimal Number of Blocks 

For the RSIF, similar to the SIF, the spectrogram image is divided into 9 × 9 blocks 

and second and third central moments are computed in each block. However, the 

feature dimension is reduced using the mean and standard deviation of the central 

moment values along the rows and columns of the blocks, as illustrated in Figure 

3.9. This results in a 72-dimensional final feature vector. Once again, 

experimentation was done with 3 × 3, 5 × 5, and 7 × 7 blocks as well and the 

classification accuracy values for these block sizes for linear and log spectrograms 

are given in Table 5.12 using the baseline classifier. Interestingly, the best overall 

classification accuracy was achieved using 3 × 3 blocks for the log representation, 

however, the linear spectrogram representation once again gives significantly better 

performance and best using 9 × 9 blocks. 
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Table 5.12: Classification accuracy values for RSIF with different sized blocks 

No. of blocks 
Linear RSIF Log RSIF 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 3 × 3 83.73 82.85 76.12 65.09 44.79 70.52 95.54 65.97 51.88 43.83 35.78 58.60 5 × 5 92.91 92.04 88.28 77.52 46.46 79.44 96.06 70.17 45.93 37.88 32.90 56.59 7 × 7 92.13 91.78 88.01 77.17 49.96 79.81 97.38 70.17 48.12 37.97 31.15 56.96 9 × 9 92.13 92.04 89.33 78.57 53.37 81.08 96.06 72.00 50.48 38.93 31.32 57.76 

 

 

Results with Various Classifiers 

The classification accuracy values for linear RSIF and log RSIF with the different 

classification methods are given in Table 5.13. While the average classification 

accuracy using the proposed RSIF is slightly lower for the log representation when 

compared to the SIF, the average classification accuracy with the linear 

representation, which gives the best results, is significantly higher, increasing from 

84.27% with linear SIF to 87.56% with linear RSIF. The RSIF method has the added 

advantage of a feature vector which is 2.25 times smaller in dimension. As such, the 

proposed method can be said to be much more effective for its dimension. 

 

Table 5.13: Classification accuracy values for RSIF with 9 × 9 blocks using 

different classification methods 

Classification 
Method 

Linear RSIF Log RSIF 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 92.13 92.04 89.33 78.57 53.37 81.08 96.06 72.00 50.48 38.93 31.32 57.76 

OAO-SVM 92.13 86.70 82.33 72.79 48.29 76.45 97.11 73.05 50.22 38.93 30.80 58.02 

DDAG-SVM 91.86 87.40 82.50 66.67 44.97 74.68 97.38 72.62 48.91 38.15 30.62 57.53 

ADAG-SVM 90.81 86.70 82.15 71.92 48.29 75.98 97.90 74.45 50.57 39.55 31.50 58.79 

kNN 87.93 87.23 83.90 78.48 56.61 78.83 93.44 64.57 39.28 30.27 24.23 50.36 

DNN 94.23 93.88 93.79 89.76 66.14 87.56 95.01 76.64 51.01 40.07 33.77 59.30 
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When compared to the conventional cepstral features, that is, log-compressed 

cepstrums, the average classification accuracy using RSIF is significantly better than 

MFCCs and GTCCs. While the classification accuracy under clean conditions is 

lower, the RSIF generally gives better classification performance in the presence of 

noise. In addition, unlike the SIF, the RSIF gives a higher overall classification 

performance than both linear MFCCs and linear GTCCs. 

Log vs Linear 

A time-frequency image represents two-dimensional data which makes it more 

useful for feature extraction when compared to the one-dimensional data available in 

time-domain and frequency-domain representation of the signal on its own. The log 

spectrogram approach gives the highest classification accuracy in clean conditions 

which can be expected since taking log power reveals the details in the low power 

frequencies unlike the linear spectrogram approach where only the dominant power 

frequencies are shown. This can be visualized in the linear spectrogram and log 

spectrogram images in Figure 3.8(a) and (c), respectively. However, the 

performance of the two representations reverses with the addition of noise. The 

noise is more diffuse than the sound signal and its power affects most of the 

frequencies in the log grayscale image as shown in Figure 3.8(d). For the linear 

representation, the strong peaks of the sound are larger than the noise and remain 

largely unaffected with the addition of noise as can be seen in Figure 3.8(b).  

5.5.2 Spectrogram Image Texture Feature 

Optimal Parameter Settings 

For obtaining the SITF, the GLCM method of texture analysis is firstly applied to 

the spectrogram images. Since the linear spectrogram representation has shown to be 

more effective for the SIF and RSIF, only this representation is considered from now 

on. The feature vector is then formed by concatenating the columns of the matrix. In 

preliminary experiments, the classification accuracy with increasing values of ௚ܰ 

was compared. The average classification accuracy was seen to decrease as ௚ܰ 

increased, therefore, for all the experiments that follow, ௚ܰ = 2 is used, which gave 

the highest average classification accuracy.  
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Two other experiments are performed the aim of which is to: 

• compare the classification accuracy using feature vectors formed from 

application of GLCM analysis at angles of 0°, 45°, 90°, and	135° and then 

with combined feature vector, and 

• compare the classification accuracy with increasing number of frequency 

bands. 

The results using the baseline classifier for the first set of experiments are given in 

Table 5.14 with ௚ܰ = 2 and ݀ = 1. Comparing the average classification accuracy, 

for the individual feature vectors, the best average classification accuracy is 

achieved with analysis an angle of 45° while the combined feature vector gives 

marginally better classification accuracy. In this experiment, the spectrogram image 

is not divided into subbands before feature extraction. Therefore, the feature vector 

dimension when analyzing at individual angles is ௚ܰଶ = 4 and 4 ௚ܰଶ = 16 when the 

feature vector from the four angles are combined. As such, while the feature vector 

dimension has quadrupled when combined, there isn’t a considerable increase in the 

classification accuracy in comparison to the best performing individual feature 

vector. However, the classification performance at this stage is far below the best 

performing features, linear GTCCs and RSIF, as seen so far.  

 

Table 5.14: Classification accuracy values using the SITF – individual and 

combined feature vectors 

Angle Clean 20dB 10dB 5dB 0dB Ave 

0° 84.78 84.60 77.69 68.24 49.34 72.93 

45° 82.15 81.98 80.23 75.33 56.61 75.26 

90° 76.12 76.12 74.45 70.34 50.39 69.48 

135° 81.36 81.28 78.57 72.00 54.42 73.53 

All Angles 86.09 85.74 81.45 74.89 55.03 76.64 
 

 

The next experiment looks at the effect on the classification accuracy of performing 

GLCM analysis with increasing number of frequency bands. The spectrogram image 

is now divided into blocks of horizontal sections with equal number of frequency 
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bins in each subband. The GLCM is computed in each subband which are then 

concatenated into one matrix. This matrix is then concatenated into a column vector 

which forms the final feature vector. The number of pixels in the spectrogram image 

along the vertical, or frequency axis, is ܰ 2⁄ = 256, therefore, various number of 

frequency bands, ௕ܰ, from 1	to	256 can be experimented with. Experimentation was 

performed with ௕ܰ = 1, 2, 4, 8, 16, 32, 64, and	128 at a time. The results presented 

in Table 5.15 use the baseline classifier with feature vector combined from all four 

angles.  

 

Table 5.15: Classification accuracy values using SITF (combined feature vector) – 

effect of increasing number of subbands 

௕ܰ Clean 20dB 10dB 5dB 0dB Ave 

1 86.09 85.74 81.45 74.89 55.03 76.64 

2 85.04 84.51 81.98 75.42 57.83 76.96 

4 85.04 84.34 82.59 77.17 59.58 77.74 

8 83.99 83.99 82.33 77.34 59.49 77.43 

16 86.09 86.09 84.16 82.15 62.38 80.17 

32 87.93 87.66 86.79 86.00 69.03 83.48 

64 90.29 89.68 89.59 87.75 73.40 86.14 

128 88.71 88.63 88.10 85.83 72.27 84.71 

 

 

While there isn’t a significant change in the classification accuracy with increasing 

values of ௕ܰ at lower values of ௕ܰ, there is notable increase in the classification 

accuracy from ௕ܰ = 16 onwards with the most improved results at 5dB and 0dB 

SNRs. The highest classification accuracy under all noise conditions is at ௕ܰ = 64, 

therefore, giving the best overall classification performance as well. 

However, the disadvantage of the proposed method is its high computational cost. 

The SITF dimension using subband analysis and with the combined feature vector 

from all four angles can be given as 4൫ ௕ܰ × ௚ܰଶ൯. With ௕ܰ = 64, where the highest 

classification accuracy is achieved, the feature vector dimension is 1024, which is 

about 6.32 times more than the SIF and 14.22 times more than MFCCs, GTCCs, 

and the RSIF. The subband analysis technique was also applied to feature vector 
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from each of the four angles. In general, it was observed that as ௕ܰ increased in 

value, the difference in the classification accuracy between individual feature 

vectors and the combined feature vector got minimal. Table 5.16 gives the 

classification accuracy values using feature vectors from each of the four angles 

considered with ௕ܰ = 64. Best results were once again achieved with features 

extracted from analysis at an angle of 45°. While the individual feature vectors give 

slightly lower classification accuracy than the combined feature vector, these can be 

considered more effective since the feature vector dimension is much lower, reduced 

by 4 to 256. As such, from here on, all results are given using GLCM analysis at an 

angle of 45°. 
 

Table 5.16: Classification accuracy values using SITF with individual feature 

vectors at the optimal number of subbands 

Angle Clean 20dB 10dB 5dB 0dB Ave 

0° 88.45 88.45 87.84 84.95 69.29 83.80 

45° 89.76 89.41 89.33 87.66 71.92 85.62 

90° 88.45 88.01 87.93 86.44 70.78 84.32 

135° 88.71 88.71 88.36 86.44 71.13 84.67 

 

 

Experimentation was also done with increasing values of ݀ and it was observed that 

while increasing ݀ from 1 to 2 increases the average classification accuracy for 

lower values of ௕ܰ, the difference between the two sets of results got smaller as the 

value of ௕ܰ increased. Eventually, the average classification accuracy with ݀ = 1 

surpassed those at ݀ = 2, and, at ௕ܰ = 64, the highest classification accuracy was 

still achieved using ݀ = 1. 

Results with Various Classifiers 

The classification accuracy values for the SITF at the optimal parameter settings 

using the different classification methods are given in Table 5.17. Looking at the 

multiclass SVM classification methods, the OAA method once again gives the most 

noise robust and best overall classification performance. The classification 

performance of the kNN classifier is comparable to OAO, DDAG, and ADAG 
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multiclass SVM classification methods but, once again, the DNN classifier is the 

best of the lot, significantly outperforming the other classifiers under each noise 

condition. 

 

Table 5.17: Classification accuracy values for SITF with different classifiers 

Classification 
Method Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 89.76 89.41 89.33 87.66 71.92 85.62 

OAO-SVM 88.98 88.98 88.19 83.46 60.37 81.99 

DDAG-SVM 85.30 85.39 83.64 77.25 54.86 77.29 

ADAG-SVM 87.14 87.40 85.30 83.11 61.07 80.80 

kNN 81.36 81.71 81.36 80.84 74.80 80.02 

DNN 95.28 95.28 94.93 94.31 80.84 92.13 
 

 

When compared to results using log MFCCs and GTCCs, the proposed SITF is not 

able to match the classification accuracy under clean conditions but gives 

significantly better performance in the presence of noise, especially as the SNR 

decreases. With an overall classification accuracy of 92.13%, the SITF also 

outperforms linear GTCCs, the best performing baseline feature, at 85.70%. The 

classification accuracy values are comparable under clean conditions and at 20dB 

SNR but an improvement of 6.74%, 12.51%, and 14.35% is achieved at 10dB, 5dB, 

and 0dB SNRs, respectively. 

The overall classification performance is also higher than the RSIF by 4.57%. The 

classification performance is comparable under clean conditions and at 20dB and 

10dB SNRs but significantly better classification accuracy is achieved at 5dB and 

0dB SNRs, increasing from 89.76% to 94.31% and 66.14% to 80.84%, an increase 

of 4.55% and 14.70%, respectively. Therefore, the key advantage of the SITF over 

the features presented previously is its greater robustness at low SNRs. To ensure 

that this improvement wasn’t simply because of the different method of spectrogram 

image division before feature extraction, the frequency subband analysis method 

was applied to the SIF and RSIF but there wasn’t any significant change in the 

results.  
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5.6 Results using Proposed Cochleagram Image 
Features 

In this section, the classification performance of all the spectrogram image features, 

SIF, RSIF, and SITF, but using cochleagram image for feature extraction, are 

presented. The SIF, RSIF, and SITF are, therefore, referred as CIF, RCIF, and CITF, 

respectively. 

5.6.1 Results for CIF, RCIF, and CITF with All ERB Models 

Cochleagram feature extraction follows the same procedure as the spectrogram 

images but now using a cochleagram image. To get the same image resolution as the 

spectrogram images, the number of gammatone filters, ܯଶ, is set to 256 with the 

same window size, ܰ = 512. The classification accuracy values for CIF, RCIF, and 

CITF are given in Table 5.18, Table 5.19, and Table 5.20, respectively. The results 

in each case are presented using the three ERB filter models using the baseline 

classifier. 

 

Table 5.18: Classification accuracy values for CIF using the three ERB filter models 

ERB Filter Model 
CIF 

Clean 20dB 10dB 5dB 0dB Ave 

Glasberg and Moore [153] 92.13 91.78 90.73 85.74 63.08 84.69 

Lyon [154] 91.60 91.25 90.46 83.38 58.88 83.11 

Greenwood [155] 93.18 93.09 92.21 89.06 63.95 86.30 
 

 
Table 5.19: Classification accuracy values for RCIF using the three ERB filter 

models 

ERB Filter Model 
RCIF 

Clean 20dB 10dB 5dB 0dB Ave 

Glasberg and Moore [153] 94.75 94.58 94.14 89.68 65.44 87.72 

Lyon [154] 95.01 94.40 93.35 89.59 65.44 87.56 

Greenwood [155] 94.75 94.75 94.58 91.69 69.38 89.03 
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The average classification accuracy values for CIF and RCIF with all the ERB filter 

models show significant improvement when compared to SIF and RSIF, 

respectively. The highest average classification accuracy for both CIF and RCIF is 

achieved using Greenwood [155] parameters. As such, the average classification 

accuracy value increases from 75.89% with SIF to 86.30% with CIF, an increase of 

10.41%, and from 81.08% with RSIF to 89.03% with RCIF, an increase of 7.95%.  

Furthermore, for the CITF, the highest average classification accuracy is achieved 

using Glasberg and Moore [153] parameters, as per the results in Table 5.20. There 

is once again an improvement in the average classification accuracy when compared 

to the spectrogram based features, increasing from 85.62% with SITF to 89.24% 

with CITF, an increase of 3.62%.  

 

Table 5.20: Classification accuracy values for CITF using the three ERB filter 

models 

ERB Filter Model 
CITF 

Clean 20dB 10dB 5dB 0dB Ave 

Glasberg and Moore [153] 92.65 92.65 92.21 90.38 78.30 89.24 

Lyon [154] 92.13 91.78 91.34 89.41 80.75 89.08 

Greenwood [155] 91.86 91.78 91.78 89.85 78.04 88.66 

 

 

5.6.2 Results for Best ERB Model with DNN 

The classification performance of the OAA multiclass SVM classification method 

has generally been better than the other three multiclass classification methods and 

the kNN classifier so far. As such, in this instance, the classification performance is 

only compared against the DNN classifier, the results for which are given in Table 

5.21 for the three cochleagram image features with the best performing ERB model 

in each case. The DNN classifier once again outperforms the baseline classifier 

under all noise conditions for all three features. Unlike the SIF, the overall 

classification performance of CIF is better than linear GTCCs, the best performing 

baseline feature, and, as with spectrogram image feature extraction, the reduced 

feature method, RCIF, gives better classification performance over the CIF. Also, 
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similar to the SITF, the CITF gives a better overall classification performance than 

CIF and RCIF and also the most noise robust. While there isn’t a huge difference 

between the classification accuracy values under clean and high SNR conditions, the 

CITF is seen to be more effective at low SNRs, 0dB SNR, in particular.  

 

Table 5.21: Classification accuracy values for CIF, RCIF, and CITF with the best 

performing ERB filter model using OAA-SVM and DNN classifiers 

 

OAA-SVM DNN 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

CIF 93.18 93.09 92.21 89.06 63.95 86.30 94.75 94.66 93.79 90.55 70.87 88.92 

RCIF 94.75 94.75 94.58 91.69 69.38 89.03 96.06 95.54 95.19 92.39 72.70 90.38 

CITF 92.65 92.65 92.21 90.38 78.30 89.24 95.80 95.63 95.45 95.19 88.54 94.12 
 

 

In addition, the improvement in the classification accuracy increases as the SNR 

decreases. From SIF to CIF, the classification accuracy value increases 1.57%, 

1.75%, 2.28%, 7.75%, and 10.15% under clean conditions and at 20dB, 10dB, 5dB, 

and 0dB SNRs, respectively, with an overall improvement of 4.65%. This shows 

that while the classification accuracy value under all noise conditions has improved, 

the most improved results are at low SNRs, 5dB and 0dB SNRs, in particular. 

Similarly, from RSIF to RCIF, the classification accuracy value increases 1.83%, 

1.66%%, 1.40%, 2.63%, and 6.56% under clean conditions and at 20dB, 10dB, 5dB, 

and 0dB SNRs, respectively, with an overall improvement of 2.82%. Finally, from 

SITF to CITF, the improvement in classification accuracy is 0.52%, 0.35%, 0.52%, 

0.88%, and 7.7% under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, 

respectively, with an overall improvement of 1.99%.  

Therefore, all the time-frequency image features show improvement in classification 

accuracy under all noise conditions when using a cochleagram image for feature 

extraction instead of the spectrogram image. While the improvement in the overall 

classification performance is more with the baseline classifier than with DNN, the 

classification performance using DNN is still better. Unlike CIF, the improvement in 

classification accuracy value is generally much more even for RCIF and CITF and 
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the improvement in the average classification accuracy lower. However, CITF can 

still be considered the most noise robust feature with a classification accuracy of 

95.19% and 88.54% at 5dB and 0dB SNRs, respectively. 

5.7 Results using Proposed Feature Combinations 

In this section, results using a combination of features are presented. Two sets of 

feature combinations are considered in this work: cepstral + time and frequency 

domain features and cepstral + time-frequency image features. Also, so far the 

performance analysis of the classifiers has been limited to individual features. This 

section also looks at the classification performance of the various classifiers with 

feature vector combination. 

5.7.1 Cepstral + Time and Frequency Domain Features 

First, a combination of cepstral and time and frequency domain features is 

considered, which has been the norm in a number of other similar research. Since 

linear GTCCs are the best performing cepstral feature, only linear GTCCs are 

considered here. However, various time and frequency domain features are 

considered which are as follows: ZCR, STE, SBE, SC, BW, and SR. The average 

classification accuracy value for linear GTCCs in combination with these time and 

frequency domain features is plotted in Figure 5.4 using the baseline classifier. The 

average classification accuracy using linear GTCCs only is used as reference here. 

The combination with ZCR, STE, and SBE, combined one at a time, gives some 

improvement in the average classification performance with the highest result using 

linear GTCC + SBE at 87.16%. However, there is hardly any change in the 

classification performance with the inclusion of SC while the inclusion of BW and 

SR reduce the average classification accuracy. As such, it can be deduced that not all 

features have a positive impact on the classification performance with feature vector 

combination. 

In addition, while the inclusion of all time and frequency domain features at once 

gives improvement in the classification performance, it is lower than the average 

classification accuracy of linear GTCC + SBE. This could largely be attributed to 

the inclusion of ineffective features in SC, BW, and SR. As such, the final plot in the 
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figure is with the inclusion of ZCR, STE, and SBE, which were the only time and 

frequency domain features to give improvement in average classification 

performance when combined individually with linear GTCCs. At 88.14%, this 

combination is seen to give the best average classification accuracy, significantly 

better than the average classification accuracy of 84.25% with linear GTCCs on its 

own. 

 

 

Figure 5.4: Average classification accuracy of linear GTCC + time and frequency 

domain features 

 

5.7.2 Cepstral + Time-Frequency Image Features 

Next, the classification performance using a combination of cepstral and time-

frequency image features is presented. Once again, for the cepstral features, linear 

GTCCs are considered being the best performing cepstral feature. However, log 

GTCCs are also considered here so that a comparison of log and linear cesptrums 

could be done in feature vector combination. For the time-frequency image features, 

only cochleagram derived features are considered since these have been shown to be 

more robust than spectrogram image derived features. 
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The classification accuracy values using a combination of GTCCs and cochleagram 

image features, with the best overall performing ERB model used in each case, is 

given in Table 5.22 using the baseline classifier. The average classification accuracy 

values for all cochleagram image features show improvement when combined with 

log and linear GTCCs. Compared to the average classification accuracy of CIF, 

RCIF, and CITF, when combined with log GTCCs, the improvement is 3.94%, 

2.69%, and 2.57%, respectively. Similarly, the improvement is 5.23%, 3.55%, and 

4.06% for CIF, RCIF, and CITF when combined with linear GTCCs, respectively.  

 

Table 5.22: Classification accuracy values for log and linear GTCCs in combination 

with cochleagram image features 

 

Log GTCCs + Linear GTCCs + 

Clean 20dB 10dB 5dB 0dB Ave Clean 20dB 10dB 5dB 0dB Ave 

CIF 96.33 95.98 93.88 91.69 73.32 90.24 96.06 95.98 95.28 93.35 76.99 91.53 

RCIF 97.38 96.50 94.40 93.09 77.25 91.72 97.64 97.38 96.59 91.51 79.79 92.58 

CITF 96.33 95.28 94.66 92.39 80.40 91.81 96.59 96.59 95.36 94.23 83.73 93.30 
 

 

The performance when combined with log GTCCs is relatively good considering the 

relatively poor performance of log GTCCs against linear GTCCs. However, the 

improvement in classification performance for all three cochleagram features is 

more with linear GTCCs than log GTCCs. Therefore, feature combination with 

linear GTCCs can be considered more superior than with log GTCCs. In addition, 

CIF combined with linear GTCCs gives the most improved results. However, CITF 

is once again the best performing feature with an average classification accuracy of 

93.30% when combined with linear GTCCs. In addition, this combination also gives 

the most noise robust performance with a classification accuracy of 94.23% and 

83.73% at 5dB and 0dB SNRs, respectively. 

Furthermore, the combination of cepstral and time-frequency image features is seen 

to be more effective than the combination of cepstral and time and frequency 

domain features. Looking at the best feature combination in each case, the average 
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classification accuracy with linear GTCC + ZCR + STE + SBE is 88.14% and 

93.30% with linear GTCC + CITF, a difference on 5.16%. 

5.7.3 Classifier Performance with Feature Combination 

While the classification accuracy values of the different classifiers have been 

compared for a number of individual features, in Table 5.23, the performance is 

compared with feature vector combination. Only the best performing feature 

combination, linear GTCC + CITF, is considered here and results are given using 

the four multiclass SVM classification methods and the kNN and DNN classifiers. 

The OAA multiclass SVM classification method is once again seen to more noise 

robust with a better overall classification performance than the OAO, DDAG, and 

ADAG methods. The kNN classifier is seen to be the least effective with feature 

vector combination. However, the DNN classifier once again outperforms all 

classifiers with the highest classification accuracy under each noise condition and an 

average classification accuracy of 96.06%, 2.76% more than the baseline classifier. 

The most improved results are at 0dB SNR, with an improvement of 7.52% over the 

baseline classifier. 

 

Table 5.23: Classification accuracy values for linear GTCCs + CITF with different 

classification methods 

Classification 
Method 

Linear GTCCs + CITF 

Clean 20dB 10dB 5dB 0dB Ave 

OAA-SVM 96.59 96.59 95.36 94.23 83.73 93.30 

OAO-SVM 94.23 94.49 93.44 91.34 81.10 90.92 

DDAG-SVM 94.23 94.23 93.00 90.73 80.93 90.62 

ADAG-SVM 95.80 95.71 94.49 91.86 81.54 91.88 

kNN 83.20 82.41 82.06 81.45 78.04 81.43 

DNN 97.90 97.81 97.64 95.71 91.25 96.06 
 

5.8 Further Analysis 

The proposed method of feature extraction using the GLCM gives the most noise 

robust performance and also the best overall classification performance with 
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spectrogram feature extraction, cochleagram feature extraction, and when combined 

with linear GTCCs. The peak of the filter bank energies play a key role in 

characterizing a sound signal which is demonstrated by the superior performance of 

both the cepstral features under clean conditions. However, the conventional log 

compression can produce high variations in the output for low energy components 

[167] which explains its poor performance as the SNR decreases. While the 

introduction of linear cepstrums improved the noise robustness, the proposed 

methods give a far superior performance at low SNRs. 

In addition, for features extracted from the linear spectrograms, which have been 

shown to be more noise robust than log spectrograms, the results achieved using the 

proposed features, RSIF and SITF, are better than the SIF method of data 

representation given in [2]. Significant improvement in the classification 

performance was also achieved by using a cochleagram image for feature extraction 

over the spectrogram image. The combination of linear GTCCs and cochleagram 

image features also gave some improvement in classification performance with best 

classification accuracy values of 97.90%, 97.81%, 97.64%, 95.71%, and 91.25% 

under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively. All 

these values are marginally to significantly higher than in [5], a related work the 

results for which are summarized in section 2.5.2. In addition, the number of classes 

in this work is one more than in [5] with 66.67% of data used for training when 

compared to 70% in [5]. As such the classification task in this work can be 

considered slightly more challenging. While a more noise robust performance is 

achieved in this work, it is difficult to conclusively say that the techniques presented 

here are better due to the variations in sound and noise databases. However, the 

techniques proposed in this work have been shown to outperform a number of 

baseline methods. 

Furthermore, for various individual and combined features, the DNN classifier has 

been seen to outperform the SVM classifier in terms of overall classification 

performance and noise robustness. The classification accuracy results for the 

individual cepstral and time-frequency image features also have some similarity to 

the results in [106]. For example, in [106], for MFCCs, the improvement in 

classification performance from SVM to DNN is -9.0%, 20.7%, 22.9%, and 8.5% 

under clean conditions and at 20dB, 10dB, and 0dB SNRs, respectively, with an 
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improvement of 10.8% in the average classification performance. In our work, for 

linear GTCCs, the best performing cepstral feature, the improvement in 

classification accuracy over the baseline classifier is -1.05%, 1.67%, 1.05%, 

0.87%%, 4.72% under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, 

respectively, with an improvement of 1.45% in the average classification accuracy. 

While our work does not achieve as much improvement in classification 

performance as in [106], it should be noted that the evaluation task in [106] was 

identical to [109] and the results for MFCC-SVM were taken from [109]. It is 

understood that linear SVM is used in [109] using the OAO multiclass classification 

method. In our experimentation in [16], the classification performance using 

nonlinear SVM and OAA multiclass classification method were determined to be 

better than linear SVM and OAO multiclass classification method, respectively, 

which could explain the lesser improvements in classification performance in our 

work than in [106]. 

For the SAI features, the improvement in classification performance from SVM to 

DNN in [106] is 1.87%, 1.80%, 8.07%, 9.40% under clean conditions and at 20dB, 

10dB, and 0dB SNRs, respectively, with an improvement of 5.28% in the average 

classification performance. For the CITF, the best performing time-frequency image 

feature in our work, the improvement in classification performance is 3.15%, 2.98%, 

3.24%, 4.81%, and 10.24% under clean conditions and at 20dB, 10dB, 5dB, and 

0dB SNRs, respectively, with an improvement of 4.88% in the average classification 

performance. As such, the improvement in the classification performance for the 

CITF compares favorably with the SAI features in [106]. However, results for 

feature vector combination and the training and evaluation times have not been 

reported in [106]. 

5.8.1 Interclass Classification 

While overall classification accuracy values have been presented so far, to 

understand the classification performance between classes, the classification and 

misclassification values of classes are presented here. The confusion matrix for the 

CITF, the best performing individual feature, under clean conditions and in the 

presence of noise at 0dB SNR is given in Table 5.24 and Table 5.25, respectively, 

using the baseline classifier. The values in the confusion matrix are given in 
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percentage as number of correctly (or incorrectly) classified samples divided by 

number of test samples in the class. The rows in the confusion matrix denote the 

classes that are intended to be classified while the classified results are given in the 

columns.  

For example, for the confusion matrix under clean conditions given in Table 5.24, 

96.67% of the test samples from alarms were correctly classified while the 

remaining 3.33% were misclassified into children voices. Dog barking, footsteps, 

and glass breaking also have misclassification in one class only while gunshots, 

horn, machines, and phone rings are the best performing classes with no 

misclassifications. Children voices and construction are the worst performing 

classes with a classification accuracy of 70% and 83.33%, respectively, with both 

classes also having multiple misclassifications. In addition, there is only one-sided 

confusion between footsteps and dog barking whereby test samples from footsteps 

are misclassified into dog barking but not vice-versa. Alarms, construction, dog 

barking, and glass breaking have two-sided confusion with children voices whereby 

test samples from each of these classes is misclassified into children voices and 

vice-versa. 

 

Table 5.24: Confusion matrix for test samples under clean conditions using CITF 

 
Alarms Children 

Voices Construction Dog 
barking Footsteps Glass 

breaking Gunshots Horn Machines Phone 
rings 

Alarms 96.67 3.33 0 0 0 0 0 0 0 0 

Children voices 3.33 70.00 5.00 11.67 6.67 1.67 0 1.67 0 0 

Construction 0 6.67 83.33 0 0 6.67 0 0 0 3.33 

Dog barking 0 3.57 0 96.43 0 0 0 0 0 0 

Footsteps 0 0 0 1.75 98.25 0 0 0 0 0 

Glass breaking 0 5.00 0 0 0 95.00 0 0 0 0 

Gunshots 0 0 0 0 0 0 100.00 0 0 0 

Horn 0 0 0 0 0 0 0 100.00 0 0 

Machines 0 0 0 0 0 0 0 0 100.00 0 

Phone Rings 0 0 0 0 0 0 0 0 0 100.00

Overall Classification Accuracy = 92.65% 

 

 



95 
 

Looking at the confusion matrix at 0dB SNR, Table 5.25, all classes now have 

misclassifications when compared to only six classes which had misclassification(s) 

under clean conditions. Once again, most classes have misclassification into 

children voices, all except horn, which, with a classification accuracy of 98.48%, is 

also the best performing class and the only one not to have multiple 

misclassifications. While there were no misclassifications for machines under clean 

conditions, it is the worst performing class at 0dB SNR with a classification 

accuracy of just 47.78%. It also has two of the highest misclassifications into any 

single class, 22.22% into glass breaking and 15.56% into phone rings.  

 

Table 5.25: Confusion matrix for test samples at 0dB SNR using CITF 

(misclassifications of more than 10% have been highlighted) 

 
Alarms Children 

Voices Construction Dog 
barking Footsteps Glass 

breaking Gunshots Horn Machines Phone 
rings 

Alarms 86.11 7.22 0 6.67 0 0 0 0 0 0 

Children voices 3.89 61.67 7.78 12.78 6.11 4.44 0 3.33 0 0 

Construction 0 6.67 85.56 0 0 2.22 0 0 0 5.56 

Dog barking 0 5.95 0 92.86 0 0 0 0 0 1.19 

Footsteps 0 1.17 4.09 2.92 77.19 0 9.36 0.58 0 4.68 

Glass breaking 0 5.00 0 0 0 91.67 0.00 0 0 3.33 

Gunshots 0 2.38 11.90 0 3.57 0 82.14 0 0 0 

Horn 0 0 0 1.52 0 0 0 98.48 0 0 

Machines 0 11.11 3.33 0 0 22.22 0 0 47.78 15.56 

Phone Rings 0 5.07 0.72 1.45 0 13.04 0 0 0 79.71 

Overall Classification Accuracy = 78.30% 

 

 

To further understand the effect of the different environmental noises on the 

classification performance, the average classification accuracy for each noise type at 

0dB SNR are computed which are as follows: speech babble – 69.29%, destroyer 

control room – 78.74%, and factory floor 1 – 86.88%. This shows that most of the 

misclassifications are due to speech babble noise while factory floor 1 has the least 

misclassifications. The machines sound class has three subclasses and, upon further 

analysis, it was observed that under destroyer control room noise, most of the test 
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samples from subclasses 1 and 2 were misclassified into children voices and phone 

rings, respectively. The cochleagram image of a sample sound signal from subclass 

1 under clean conditions and with the addition of destroyer control room noise at 

0dB SNR is shown in Figure 5.5(a) and (b), respectively. The dominant frequency 

components of the sound signal are clearly evident under clean conditions in Figure 

5.5(a). While they are also largely visible with the addition of noise, Figure 5.5(b), 

the destroyer control room noise introduces strong spectral peaks which 

significantly alters the intensity distribution in the cochleagram image, hence, 

making the classification task much more difficult. While a decent overall 

classification accuracy of 78.74% is still managed to be achieved using destroyer 

control room noise at 0dB SNR, it could be said that the proposed features are more 

suited to noise environments which do not contain strong spectral peaks, such as 

factory floor 1, as shown in the time-frequency images in Figure 3.11. 

 

 
(a) 

 
(b) 

Figure 5.5: Cochleagram images of a sample sound signal from subclass 1 of sound 

class machines. (a) Cochleagram image of sound signal under clean conditions and 

(b) cochleagram image of sound signal at 0dB SNR with destroyer control room 

noise. 

 

Moreover, compared to CITF, linear GTCCs, the best performing baseline feature, 

have significantly higher confusion at 0dB SNR as per the confusion matrix in Table 

5.26. To some extent, there is a reversal in the classification performance of 

individual classes. For example, with CITF, children voices, machines, and phone 

rings are amongst the worst performing classes at 0dB SNR. However, the 

classification accuracy of these classes is higher with GTCCs. For all the other 

classes, however, CITF gives much better classification performance than GTCCs. 
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There are also some similar trends as far as misclassifications are concerned. With 

CITF, all except one class has misclassifications into children voices and with 

GTCCs, all classes have misclassifications into children voices. Also, 

misclassifications of more than 10% are most into glass breaking for both features, 

two classes for CITF and six classes for GTCCs. 

 

Table 5.26: Confusion matrix for test samples at 0dB SNR using GTCCs 

(misclassifications of more than 10% have been highlighted) 

 
Alarms Children 

Voices Construction Dog 
barking Footsteps Glass 

breaking Gunshots Horn Machines Phone 
rings 

Alarms 48.89 15.00 0 0 0 23.89 0 0 0 12.22 

Children voices 0 85.00 1.11 0.56 0 6.11 0 0 6.11 1.11 

Construction 0 7.78 64.44 0 0 23.33 4.44 0 0 0 

Dog barking 9.52 54.76 2.38 22.62 0 10.71 0 0 0 0 

Footsteps 0 9.36 1.75 0 54.39 32.16 2.34 0 0 0 

Glass breaking 0 10.00 0 0 0 81.67 0 0 3.33 5.00 

Gunshots 0 7.14 15.48 0 25.00 30.95 21.43 0 0 0 

Horn 1.52 25.76 1.52 0 0 1.52 0 69.70 0 0 

Machines 0 3.33 0 0 1.11 18.89 0 0 61.11 15.56 

Phone Rings 0 1.45 0 0 0 0.72 0 0 5.80 92.03 

Overall Classification Accuracy = 61.77% 

 

 

5.8.2 Performance Analysis of the Different Classification 
Methods 

Of the four multiclass SVM classification methods considered in this work, the 

OAA classification method generally gave the best overall classification 

performance and also the most noise robust. The better performance of the OAA 

classification method over the other methods under noisy conditions could be 

explained in terms of its decision function. In OAA method, the class corresponding 

to the largest margin is declared the winner indicating a high confidence level in the 

decision. However, in the other three multiclass SVM classification methods, the 

final decision is based on classification between pair of classes. The class even with 

the slightest of margin wins and gets a vote in the case of OAO classification 
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method or proceeds to the next round as in the case of DDAG and ADAG 

classification methods. The hyperplane between classes has been determined using 

clean samples only and with the addition of noise, there could be more overlapping 

of data points meaning the hyperplane is no longer an optimal one. As such, chances 

of error with the OAO, DDAG, and ADAG methods are increased more than the 

OAA method. The kNN classifier, on the other hand, gave a mixed classification 

performance. It was seen to be more effective for linear cepstral coefficients and 

linear time-frequency image features but produced poor results with log cepstral 

coefficients and log time-frequency image features. The performance with feature 

vector combination was also the worst amongst the classifiers considered. The DNN 

classifier, however, almost always outperformed all other classification methods 

both in terms of overall classification performance and noise robustness. 

Next, the training and evaluation time of the four multiclass SVM classification 

methods and the kNN and DNN classifiers are compared. These are given in Table 

5.27 for the best performing feature set of linear GTCC + CITF.  

 

Table 5.27: Comparison of training and evaluation time of the different 

classification methods for the best performing combined feature vector (linear 

GTCC + CITF) 

Classification 
Method 

Training Time 
(s) 

No. of Classifiers 
Evaluated per Test 
Sample (ܯ = 10)

Total Testing 
Time (s) 

OAA-SVM 0.4512 10 33.7504 

OAO-SVM 0.4565 45 106.7339 

DDAG-SVM 0.4565 9 21.6259 

ADAG-SVM 0.4565 9 22.0322 

kNN 0.0530 – 1.2498 

DNN 89.8556 – 0.0566 

 

 

Starting with the multiclass SVM classification methods, the OAO, DDAG, and 

ADAG approaches have the same training procedure and time. The training time for 

OAA is only marginally lower than these three classification methods. The DDAG 
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and ADAG classification methods have approximately the same evaluation time and 

are the fastest. Using the DDAG evaluation time as basis, the OAA method takes 

about 1.56 times more time while OAO classification method takes a significantly 

greater time, about 4.94 times more than DDAG. The significantly higher evaluation 

time for the OAO classification method can be expected since it requires the 

evaluation for 45 classifiers per test sample when compared to only 9 classifiers for 

DDAG and ADAG classification methods. As such, ideally, the OAO approach 

should take 5 times more time to evaluate. Since the OAA multiclass classification 

method generally gives more noise robust and better overall classification 

performance than the other three classification methods and with a reasonable 

training and evaluation time, it could be deduced that it is the most suitable 

multiclass SVM classification method from those considered. 

However, the training and evaluation time of all the multiclass SVM classification 

methods are significantly higher than the kNN classifier, which also offers the 

fastest training time. The disadvantage of the kNN classifier though is the mixed 

classification performance for the many different features considered in this work. 

On the other hand, the training time of the DNN classifier is considerably higher 

than all classification methods, about 200 times more than OAA-SVM, which can be 

a disadvantage if performing unsupervised training. However, the evaluation time of 

the DNN classifier is the fastest, about 596 times faster than OAA-SVM. Also, the 

DNN classifier almost always gave the highest overall classification performance 

and the most noise robust. Therefore, if using supervised training, as in this work, 

the DNN classifier can be considered the best choice due to its superior 

classification performance and faster evaluation time. Besides, techniques such as 

the use of GPUs over CPUs have been proposed for faster training time for DNNs 

[168, 169]. 

5.8.3 Training and Evaluation Time of Features 

Finally, the training and evaluation time of the different features are computed. 

These are plotted in Figure 5.6 for DNN classification. The training and evaluation 

time in this instance are largely affected by two variables, the feature vector 

dimension and the internal layer dimensions of the DNN classifier, both of which 

are given in Table 5.3. For example, all cepstral features and the RSIF and RCIF 
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have the same feature dimension of 72 and DNN internal layer dimension of 50. As 

such, the training and evaluation time of these features are approximately same. 

Similarly, SIF and CIF have the same feature dimension and layer dimensions 

resulting in approximately same training and evaluation times. In general, a good 

correlation is observed between the training and evaluation times. 

 

 

Figure 5.6: Training and evaluation time of various features 

 

As far as the individual features are concerned, the cepstral features and the RSIF 

and RCIF have the fastest training and evaluation times of about 26s and 12.5ms, 

respectively. With a training time of more than 40s and an evaluation time of 

approximately 20ms, the SITF and CITF, the best performing spectrogram and 

cochleagram features, respectively, have the highest training and evaluation times of 

all the individual features. As such, the RSIF and RCIF probably offer the best 

compromise between classification accuracy and the training and evaluation times. 

The feature combination of linear GTCC with CIF and CITF coupled with 160 

dimensional internal layers results in the highest training and evaluation times. 

However, due to relatively lower feature and layer dimensions, the training and 

evaluation times of linear GTCC + RCIF is relatively low, both at about half of 
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linear GTCC + CITF. In addition, the average classification accuracy using this 

combination was determined to be 95.42%, only 0.64% lower than the feature 

combination of linear GTCC + CITF which gives the highest average classification 

performance. As such, the feature combination of linear GTCC + RCIF is a good 

alternative if lower computational costs are a priority. 

It should be noted that the training and evaluation times given here are for indicative 

purposes and for relative comparison. These times were measured using software 

and can vary depending on the internal or background processes in the processing 

unit and the processing power dedicated by the processing unit, amongst others, 

which are not totally controllable by the user.  
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  Chapter 6

Conclusion 

This work considered a number of cepstral and time-frequency image features in 

trying to achieve improvement in classification performance in the presence of noise 

in an audio surveillance application. For cepstral coefficients, treated as baseline 

features in this work, using both log and root compression, GTCCs gave the best 

overall and most noise robust performance. Root compression was seen to 

significantly improve the noise robustness of both features, MFCCs and GTCCs. 

The root value was set to 1, around which the best overall classification performance 

was achieved, and this was referred as linear compression. Generally, there was a 

slight reduction in classification performance from log to linear compression under 

clean conditions but linear compression was seen to be much more effective under 

noisy conditions with a better overall classification accuracy. 

The final baseline feature was the SIF. While the best results using the SIF were 

higher than log compressed MFCCs and GTCCs, it was only marginally better than 

linear MFCCs and lower than linear GTCCs. As such, linear GTCCs was 

determined as the best performing baseline feature. 

The proposed reduced method for the SIF, RSIF, gave an improved classification 

performance when compared to the SIF with the added advantage of a much lower 

feature dimension. The overall classification performance was also higher than 

linear GTCCs. However, the best overall classification performance using 

spectrogram derived features was achieved with the SITF, which is based on the 

GLCM method of image texture analysis. While the classification accuracy under 

clean conditions was slightly lower than linear GTCCs, the classification 
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performance under noisy conditions, particularly at low SNRs, was significantly 

better. Also, for all three time-frequency image features, significantly improved 

classification performance was achieved using cochleagram image feature extraction 

instead of the conventional spectrogram image. These features were referred as CIF, 

RCIF, and CITF and the CITF gave the best overall performance, as did SITF with 

spectrogram feature extraction. 

As far as feature combination is concerned, only GTCCs were considered being the 

best performing cepstral feature. Of the time and frequency domain features 

considered in this work, the inclusion of only some features were seen to have a 

positive effect on the classification performance with SBE determined to be the most 

effective. However, the combination with cochleagram image derived features was 

seen to give better classification performance and the combination with CITF 

determined to give the highest results. 

In addition, of the four multiclass SVM classification methods considered in this 

work, the classification performance of the OAA method was generally seen to be 

the best with both individual and combined features. However, the overall 

classification performance of the DNN classifier was the highest from all the 

classifiers considered with all but one feature. The DNN classifier also had a much 

faster evaluation time but the training time was determined to be the slowest. This 

can be an issue in an unsupervised system or when performing training in real-time. 

Apart from the number of layers and layer dimension, the training and evaluation 

time are also dependent on the feature dimension. As a tradeoff between 

classification accuracy and the training and evaluation time, the feature combination 

of linear GTCC and RCIF was determined to be arguably the best. 

While the proposed features show improvement in classification performance when 

compared to related work, there are still a number of areas to improve on. The 

proposed time-frequency image features were determined to be more suited to noise 

types which do not contain strong spectral peaks. As such, more research is needed 

to test and improve the performance in the presence of impulsive noise. In addition, 

this work did not consider out-of-class sound signals which would be beneficial for 

a practical implementation of an audio surveillance system. For the sound database 

used, the sound signals are either already segmented or segmentation is performed 

manually. As such, another requirement for a real-time implementation is sound 
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signal segmentation. In [27], for example, the sum of the signal magnitude is used to 

distinguish between silent and non-silent frames. Separation of overlapping sound 

events will also be required for a more robust performance, such as in [170]. 

In addition, the inconsistency in the choice of sound databases in most literature 

makes it difficult to make direct comparison of the performance of the proposed 

techniques. While sound libraries, such as the Latin music database, RWCP 

databases, and the BBC sound effects library have been employed for research in 

certain SER applications, the creation of the sound database for use from these 

available libraries is at the discretion of the researchers. Also, the number and 

complexity of sound classes and the amount of training data, amongst others, have a 

direct influence on the classification performance of a SER system. Therefore, there 

is a need to standardize sound databases and experimental setups to make it easier 

for direct comparison of proposed techniques, similar to what has been seen in [26-

28], refer to Table 2.1. 

Moreover, different approaches have been noticed in structuring of classes in some 

similar applications, such as audio surveillance, as in [5], and sound event 

recognition, as in [2]. In [5], a sound class has a number of sound events. For 

example, shots fired from a rifle, shotgun, and machine gun are examples of 

different sound events but would be treated as a single sound class such as gunshots. 

In some cases, the signal properties of subclasses in a particular class are similar to 

the subclasses in other classes but different to subclasses in its own class. This 

creates interclass similarity and intraclass diversity, increasing the complexity of the 

problem as a result.  

Furthermore, the addition of new features does not necessarily improve the 

classification performance as some features are redundant, as seen in 5.7.1, and 

optimization techniques have been used in some literature to determine the optimal 

feature set. Alexandre et al. [32] argue the computational limitations of digital signal 

processing hardware in hearing aids and genetic algorithm (GA) with restricted 

search [171] is proposed to select the optimal features so that the feature vector 

dimension could be reduced and the computation speed increased as a result. With 

an original 76-dimensional feature vector, the results show that while the 

unconstrained GA required 43 and 46 features to get the best probability of correct 

classification for the two classification problems, respectively, only 11 features are 
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shown to give comparable performance using restricted GA which is also always 

slightly better than the sequential methods [172], sequential forward search (SFS) 

and sequential backward search (SBS). Chmulik and Jarina [173] experimented with 

particle swarm optimization (PSO) [174] and GA to select the optimum features for 

classification of six sound classes. While comparable classification accuracy is 

achieved using both the optimization techniques, PSO gives the highest 

classification accuracy at 82.48% with a feature dimension of 86. This is much 

better than the classification accuracy with all the features included at 72.94% and a 

feature dimension of 137.   
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