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Abstract 
 

Wetland vegetation mapping is an important technical task for managing and maintaining 

essential ecosystem services that wetlands provide. Despite their importance, wetland 

ecosystems are highly threatened in New Zealand with less than 10% of pre-human extent 

remaining. Remote sensing has advantages over traditional techniques, allowing non-

destructive sampling of resources and enabling users to gain critical information more 

quickly and cheaply. The potential for remote sensing to provide an increased understanding 

of coastal wetland environments has not been realized in New Zealand.  

 

The collection and satellite simulation of spectral data for 14 species at Whatipu Scientific 

Reserve provides valuable information for the application of imagery classification and for 

future research. Despite low spectral separability between these species, a relatively accurate 

land cover map was established for each of the multi-date satellite imagery sets, with 

individual class accuracies between 75% and 99%, depending on vegetation type. This 

indicates that high-resolution multispectral imagery (2m spatial resolution) such as 

WorldView 2 and 3 satellite imagery products show good potential for the identification and 

classification of coastal wetland vegetation. 

 

In addition, although satellite remote sensing platforms are useful for vegetation mapping 

they still require field training and validation samples. This study investigated the use of low 

altitude Un-manned Aerial System (UAS) imagery (6cm spatial resolution) for the collection 

of training and validation data crucial for the classification of multispectral satellite imagery. 

By using ancillary data and UAS imagery, I minimised the need for extensive field surveys 

that are potentially destructive, timely and expensive. The land cover changes determined 

from the multi-date classifications at Whatipu show minimal change in the past 4.5 years, 

however changes that were detected are significant, particularly with the expansion of exotic 

shrubland species. The high-resolution UAS imagery also provided sufficient detail to 

accurately identify exotic Pampas (Cortaderia Selloana) in comparison to high-resolution 

(36cm spatial resolution) satellite imagery products. 
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1 Introduction and Literature Review 
 

1.1 Wetlands  
 

Wetland ecosystems 

 

Wetlands are ecosystems that appear along elevation and hydrological gradients between 

terrestrial and aquatic ecosystems. Wetlands are defined as including permanently or 

intermittently wet areas, shallow water, and land/water margins that support a natural 

communities of plants and animals that are adapted to wet conditions (Johnson & Gerbeaux, 

2004). They perform many valuable functions including habitat provision for vegetation, and 

other species, flood mitigation, water purification and nutrient removal (Clarkson, Ausseil, & 

Gerbeaux, 2013). 

 

Despite their importance less than 10 percent of New Zealand wetlands remain, making them 

a highly threatened ecosystem (Ausseil et al., 2008). In the past wetlands were seen as an 

impediment to development and access to resources. Wetlands were subjected to fire by early 

Maori for fishing, horticulture and defense, and drainage by European settlers for agriculture 

and urban development (Wardle, 1991). Many of the Wetlands in New Zealand are degraded 

and remain under significant threat from anthropogenic activity. These activities, summarised 

from Wardle (1991) include on-going loss through drainage and conversion to other land 

uses, the introduction of invasive species, nutrient enrichment, trampling, dewatering and 

desalination.  

 

Their importance is specifically outlined in the Resource Management Act 1991 (RMA) 

where wetlands are identified as matters of national importance and priorities for preservation 

and protection of wetlands for future generations are made. This is complemented by national 

policies (MFE, 2008), which contains provisions intended to prevent loss and degradation of 

freshwater environments, including wetlands. To prevent further wetland loss and conserve 

existing wetlands for biodiversity and ecosystems services, it is therefore important to 

inventory and monitor wetlands.  
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Coastal Wetland Ecological Classification 

 

There are many types of wetland ecosystems in New Zealand. Coastal wetlands in particular, 

are an important component of the New Zealand landscape. Coastal wetlands are transitional 

environments found within coastal watersheds and often influenced by both marine and 

freshwater hydrology. Although typically associated with saline wetlands, coastal wetlands 

also include freshwater wetland communities that are only occasionally influenced by salt 

spray. A common example in New Zealand is dune slack wetlands. These form in hollows 

between sand dunes and comprise complex vegetation mosaics, including restiad rushlands 

and sedge vegetation communities (Sykes & Wilson, 1987).  

 

The Department of Conservation (DOC) produced a classification system for New Zealand 

vegetation as a tool to be used in the classification and mapping of terrestrial habitats 

(Singers & Rogers, 2014). The classification hierarchy is based on key environmental drivers, 

which included climatic variables, substrates, soils and landforms. This resulted in 152 

ecosystems being recognised, 22 of which are recognised as wetland ecosystems and five that 

are classified as active coastal sand dunes. Wetlands are further divided into three water 

fertility zones based on Johnson and Gerbeaux (2004) and Dobson (1979), resulting in nine 

oligotrophic bog classes, eight mesotrophic systems known as fens or marshes, and five 

eutrophic systems known as swamps or marshes (Singers & Rogers, 2014). Auckland 

Council recognises 35 indigenous terrestrial and freshwater ecosystems (and their variants) 

that occur within the Auckland Region (Singers et al., 2013). These classes are based on the 

ecosystem classification system developed by the Department of Conservation and are 

intended to be complementary. Of the 22 wetland and five active coastal sand dune 

ecosystems in DOC’s ecosystem classification system, Auckland Council has identified 11 

that occur in the Auckland Region (Table 1.1).  

 

These classifications are intended to provide guidance for defining terrestrial ecosystems in 

efforts related to monitoring and mapping and also provide useful information for remote 

sensing classification schemes. 
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Table 1.1 Eleven Wetland and Coastal sand dune ecosystems in the Auckland Region (Singers & Rogers, 2014) 

Primary 

ecosystem driver 

Secondary 

ecosystem driver 

Tertiary 

ecosystem driver 
Quaternary ecosystem driver Ecosystem Unit 

Wetland - High 

water tables 

permanently or 

seasonally wet 

soils 

Oligotrophic—low 

nutrient status and 

high acidity [Bogs]  

Warm temperate  

Hillslopes and depressions with kauri 

podzols, e.g. Wharekohe or Te Kopuru 

soils 

WL1: Manuka–mingimingi–Machaerina scrub/sedgeland  

Depressions or the lagg of raised bogs with 

organic soils 
WL2: Manuka–wirerush–restiad rushland 

Raised bogs on in-filled lagoons/river 

oxbows with deep organic soils  
WL3: Bamboo rush, wirerush restiad rushland 

Mesotrophic—

moderate fertility 

and weak to neutral 

acidity [Fens and 

marshes]  

Warm temperate 

to cold 

Freshwater margins of estuaries, tidal 

rivers, coastal lagoons and some inland 

lakes 

WL10: Oioi restiad rushland/reedland 

Depressions, and lake and lagoon margins WL11: Machaerina sedgeland 

Lake and lagoon margins WL15: Herbfield (lakeshore turf) 

Eutrophic—high 

fertility and weak 

acidity to weak 

alkalinity [Swamps 

and marshes]  

Warm to cool 

temperate 

Depressions and terraces with recent and 

organic soils 
WL18: Flaxland 

Depressions, and lake and lagoon margins 

with recent and organic soils 
WL 19: Raupo reedland 

Depressions with recent and organic soils WL 20: Coprosma–Olearia scrub 

Active coastal 

sand dunes 

Warm to mild 

temperate 

Semi-arid to 

humid 

Dunes with raw sandy soils in association 

with atmospheric salinity (e.g. spume and 

salt-spray) 

DN2: Spinifex–pingao grassland/sedgeland 

Warm to cool 

temperate 

Semi-arid to 

humid 

Dune plains (including deflation hollows, 

dune slacks, damp sand plains and stream 

terraces) and exposed coastal hill slopes 

with raw sandy soils  

DN5: Oioi–knobby clubrush sedgeland 
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1.2 Remote Sensing for Wetland Mapping 
 

For inventorying and monitoring wetlands, remote sensing has many advantages. Remote 

sensing is a relatively low cost means of acquiring continuous data over large areas in often 

remote and inaccessible locations such as natural wetland environments. It is also a 

convenient non-destructive tool for efficient mapping of the environment over a range of 

spatial scales. Remote sensing data are available in digital format and relatively easy to 

integrate with geographic information systems (GIS). In particular using remotely sensed 

data for land cover classification can be costly and less time-consuming than traditional field 

surveys for large geographic areas (Ozesmi & Bauer, 2002). 

 

Many types of remote sensing have been used to study wetlands, beginning with aerial 

photography in the early twentieth century. Since the 1970’s the range of remote sensing 

option available has considerably increased. The launch of NASA’s Landsat satellite in 1972 

was heralded as the first earth observation satellite and is considered the global standard for 

remote sensing satellites (Hamilton, 1977).  Since this time the availability of remote sensing,  

data has helped scientist and land managers to study and map the earth’s surface in a wide 

variety of applications.  

 

The high heterogeneity of wetland vegetation has limited earlier use of satellite imagery for 

detailed vegetation mapping. However this has become technically feasible with the 

availability of high-resolution satellite imagery e.g. WorldView-2 (Hassan et al., 2014), 

IKONOS (Dillabaugh & King, 2008), and Quickbird (Labaa et al., 2008). There are also 

numerous techniques to extract information from imagery products. Pixel-based supervised 

classifiers are still the most common image information extraction techniques (Xie, Sha, & 

Yu, 2008), although other object-based techniques (Lechner et al., 2012) and hybrid 

techniques (Lane et al., 2014) are also emerging. There are many examples of thematically 

detailed vegetation mapping using pixel-based techniques with satellite imagery at medium to 

fine scales in natural environments.  

 

Fine scale vegetation mapping is a complex task. Critical to the success of the classification 

of satellite images is the collection of training samples. Training samples are usually 

collected from fieldwork or from high-resolution aerial or satellite imagery. When mapping 

heterogeneous landscapes the collection of training samples sufficient to describe 
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classification scheme is often difficult (Lu & Weng, 2007). One of the appeals of remote 

sensing is the ability to use non-destructive methods, where-by reducing time spent in the 

field. Collection of training samples from very high-resolution (< 1m) aerial or satellite 

imagery can be complicated by the coarseness and probability of mixed-pixels that may 

occur. My research is intended to fill this gap by collecting low-altitude high-resolution 

imagery to accurately identify vegetation for the collection of training samples.  

 

1.3 Remote Sensing Sensors and Coastal Applications 
 

Remote sensing (RS) imagery can be acquired by sensors onboard a wide range of air-borne 

and space-borne platforms. Air-borne platforms include Un-manned Aerial Vehicles (UAV) 

and piloted aircraft, while space-borne refers to satellite platforms. These survey platforms 

have similar characteristics although the differences in their altitude and stability result in 

varied image properties (Gomez, 2001) and ultimately determine the capabilities and 

application of the data collected.  In addition, data acquired from RS platforms is captured 

using a wide variety of sensors. Sensors are often designed to fit the specifications (e.g. 

specific payload, dimensions, power and capture conditions) of the RS platform and include 

Red-Green-Blue (RGB), multispectral and hyperspectral sensors with wavelengths ranging 

from visible to microwave, and with spatial resolutions from sub-meter to kilometers. RS 

typically depends upon passive energy sources such as the sun or the earth (Aggarwal, 2003) 

exceptions with LiDAR and radar. Imaging sensors are capable of measuring electromagnetic 

radiation within wavebands (multiple wavelengths) to discrete wavelengths; each region of 

wavelength has its own strengths in terms of the information that can contribute to image 

processing and information extraction. RS operates on the premise that objects (including 

vegetation) have unique spectral features (of reflectance and absorption) and therefore the 

objects can be identified from imagery according to their unique characteristics. Many of the 

Earth’s surface materials have diagnostic spectral absorption/reflectance features in the 

visible through to the shortwave infrared (SWIR) regions of the electromagnetic spectrum. 

Theoretically these should allow unique identification and mapping of surface material using 

RS and GIS processes. 

 

A wide range of instruments can be used to collect spatial and spectral information. In the last 

50 years of remote sensing research, imagery has been acquired by a range of platforms from 

airborne to spaceborne using a range of sensors from multispectral to hyperspectral with 
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wavelengths ranging from visible through near-infrared to shortwave infrared, and spatial 

resolutions from sub-meter to kilometers with temporal frequencies of daily up to annually. 

In the following sections, research directed towards wetland mapping is considered under 

sensor types used in remote sensing of coastal wetland systems. 

 

1. Field spectroradiometers 

2. Low to medium spatial resolution optical sensors 

3. High spatial resolution optical sensors 

4. Imaging hyperspectral sensors 

5. Active Systems (radar) 

6. Aerial Imagery 

7. GIS procedures using imagery 

 

It is important to define the difference between spectral image sensor capabilities (e.g. 

multispectral and hyperspectral). A generally accepted definition of multispectral sensors is 

that containing a discontinuous and broad wavebands (e.g. WorldView-3 has 8 wavebands), 

whereas hyperspectral sensors are capable of viewing continuous wavebands (e.g. AVIRIS 

has 224 wavebands) typically collecting 200 or more (Richards & Jia, 2005). Note that is not 

necessarily the difference in spatial resolution between multispectral and hyperspectral data 

but the spectral resolution that defines a sensors capabilities for vegetation analysis. 

Furthermore, it is the narrowness and contiguous nature of these hyperspectral wavebands 

that accomplishes such detailed data sets (Shippert, 2003). Spectral resolution is generally 

more important for vegetation mapping/analysis especially when targets of interest are highly 

heterogeneous and contain mixed vegetation communities (Zomer, Trabucco, & Ustin, 2009). 

 

Field Spectrometers 

 

Considered a remote sensing technique in its own right, field spectroscopy is a key tool for 

understanding and improving image analysis (Adam, Mutanga, & Rugege, 2010). The 

spectral range covered by spectroradiometers usually starts at visible wavelengths (400nm) 

and goes up to near infrared (1000nm) or mid-infrared (2500nm). Therefore, most of the 

reflectance data captured includes responses beyond the wavelengths visible to the human 

eye.  
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There are many roles for spectroradiometer data in remote sensing for charactering 

reflectance of vegetation. Milton et al., (2009) differentiate between the following 

applications, (1) discrimination of vegetation using airborne and spaceborne imagery, (2) as a 

source of data for quantitative models and spectral libraries.  

 

The spectral absorption/reflection features of vegetation are not fixed; in fact, the response 

can vary considerably. The spectral response can vary within an individual plant, species or a 

community (Fyfe, 2003). Due to the large amount of potential variation within vegetation, 

Price (1994) suggested that several species may have similar overlapping spectra and may not 

be unique. Identifying and attributing intra-species and interspecies variation is therefore an 

important task when attempting to discriminate between species (Hestir et al., 2008). Many 

studies have successfully discriminated and classified wetland vegetation at multiple spatial 

scales using field spectroscopy, to then be scaled up to airborne or spaceborne remotely 

sensed imagery (Cho et al., 2008; Clark, 2012; Schmidt & Skidmore, 2003). 

 

Schmidt and Skidmore (2003) studied spectral reflectance data of 27 coastal saltmarsh 

wetland species, measured at canopy level using a GER 3700 spectrometer, to evaluate the 

potential for discriminating species and identifying optimal bands for mapping vegetation in 

the Dutch Waddenezee wetland. They found six bands in the visible, near-infrared and 

shortwave infrared were suitable for discriminating species. Cho et al., (2008) compared the 

spectral response of three shrub and three tree species showing that reflectance in the visible 

near-infrared in leaves was higher than that of canopy data for all six species measured. 

Using lab-based hyperpsectral data, collected with a spectroradiometer (FieldSpec Pro FR, 

ASD), Vaiphasa et al., (2005) were able to distinguish 16 vegetation types in mangrove 

wetland in Thailand. The results of one-way ANOVA and Jeffries-Matusita (JM) distance 

demonstrated the best discrimination was possible with four bands located with the red-edge, 

near-infrared and mid-infrared regions. Similar results where found by Everitt et al., and 

(2015) and Quyang et al., (2013) both finding that best discrimination for vegetation was 

found in the NIR region. 

 

Additionally, vegetative responses to changes in the environment and differences in onset of 

biological queues potentially increase or decrease the likelihood of unique spectra. Many 

studies have investigated changes in the spectral characteristics of vegetation that correspond 

to various stages of the phenological cycle (Jakomulska, 2003). Forster and Kleinschmit 
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(2009) determined that not only was the multi-temporal spectral response of vegetation 

producing different trends for mixed grasslands when compared to common reed species but 

they were also able to recognise potential dates of highest differentiation for the vegetative 

groups respectively. They found that in the near infrared (804nm), which is commonly 

associated with high separability, that the phenological window for differentiation is greatest 

during June and July (summer months). 

 

Field spectroradiometer measurements rely on the illumination of the sun as the light source 

of the sample target. The inability to control the uniformity of illumination makes changing 

light conditions in the field a common issue, even on clear days. To achieve consistent 

spectral measurements in the field, it is important to regularly perform instrument calibration 

using calibration material, often a white reference. These references, such as the Spectralon® 

(Labsphere Inc.) panels are assumed to have a Lambertian surface with 100% reflectance, 

thus acting as an ideal diffuse reflector for calibration and baseline measurements. 

 

 

Low to medium spatial resolution optical sensors 

 

Low spatial resolution is defined as image pixels of the earth surface at ground resolutions 

30m or greater, and medium resolution as ground resolutions between 2.0 – 30m (Navulur, 

2006). In general, low and medium spatial resolution imagery may be adopted for regional 

scale mapping when a high-level vegetation class is required (Xie et al., 2008).  

 

Some of the most recognisable satellites providing low to medium spatial resolution imagery 

used in remote sensing Earth Observation are the Landsat satellite fleet. Since the launch of 

the first Landsat satellite in 1972, the TM and ETM+ imaging sensors have archived millions 

of images with nearly continuous records of global surface data. Landsat products have been 

applied to vegetation mapping and monitoring mainly at regional scales, for example Landsat 

ETM+ medium resolution imagery combined with ancillary data (topographic and soil) have 

been used to map wetland vegetation in the southwest Montana, USA (Baker et al., 2006). 

Multi-temporal Landsat data from 1986 to 2002 were also used to study wetland pattern 

changes in the Minjian River estuary in China (Zheng, Zeng, & Chen, 2006). Due to 

differences in Landsat fleet sensors characteristics, this study also highlights the importance 

of making appropriate calibrations and corrections to imagery prior to spectral comparison.  
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Medium resolution imagery has also been used for detecting and classifying remote wetlands 

and classifying saltmarsh habitats in the North Norfolk, UK (Sanchez-Hernandeza, Boyd, & 

Foody, 2007). Due to the limited spatial resolution Landsat imagery and similar products are 

usually used to map vegetation at community level (e.g. wetland vs. forest). It is often 

challenging for low to medium imagery to map at species level, especially in heterogeneous 

environments. 

 

High spatial resolution optical sensors 

 

High-resolution sensors are those that collect image pixels with ground resolutions of 0.5-

2.0m. Most recent satellite spaceborne sensors produce imagery of high spatial resolutions 

(e.g. the WorldView fleet, Quickbird, IKONOS, SPOT). The technological advances in 

sensor resolution, traditionally achieved only by airborne sensors, has meant that spaceborne 

imagery can be used for finer detailed vegetation mapping. This increase in mapping scale 

allows satellite imagery to be used for local to regional to global vegetation classifications 

and to be used to validate the vegetation cover in other low-resolution satellite imagery (Xie 

et al., 2008). 

 

High-resolution imagery from WorldView-2 satellite imagery (0.5m panchromatic and 2m 

multispectral) has provided useful spatial and spectral information for mapping wetland 

vegetation. Worldview-2 satellite imagery was used to map dune and marsh vegetation 

formations on the French Atlantic coast (Rapinel., 2014). They classified WV-2 imagery into 

16 natural and semi-natural vegetation types, and five non-natural and non-vegetated classes, 

aided by ancillary thematic data. 

 

High resolution Quickbird imagery (0.6m panchromatic and 2.4m multispectral) was used to 

identify and map submerged plants down to species level in lake Mogan, in central Anatolia, 

Turkey (Dogana, Akyurekb, & Beklioglua, 2009). High resolution Quickbird imagery was 

also used to map plant communities and monitor invasive plants in the Hudson River 

Research Reserve, New York (Labaa et al., 2008). Classification of high spatial resolution 

IKONOS satellite imagery (1m panchromatic and 4m multispectral) also indicates strong 

potential for mapping wetland vegetation. Twelve vegetation classes of terrestrial and aquatic 
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vegetation were mapped using IKONOS imagery at three riparian marshes near Ottawa, 

Ontario (Dillabaugh & King, 2008).  

 

Imagery acquired from high-resolution spaceborne sensing systems can also be integrated 

with other high-resolution data from airborne platforms. Maxa and Bolstad (2009) combined 

high-resolution IKONOS imagery with LiDAR-based elevation data in north-central 

Wisconsin, to map wetland types. They mentioned that the addition of elevation information 

was particularly useful for distinguishing wetlands from other terrestrial vegetation on 

sloping terrain.  

 

Hyperspectral sensors 

 

Hyperspectral imaging data is defined as imagery data that has hundreds of narrow spectral 

bands between 400 and 2500nm of the electromagnetic spectrum (Govender, 2007) and is 

usually captured with airborne platform (with the exception being the Hyperion spaceborne 

sensor). This section will focus on the spectral nature of hyperspectral imagery products, not 

the spatial dimension as depending on the altitude of the aircraft the spatial resolution can 

vary considerably. Greater spectral information allows more in-depth discrimination of 

vegetation types and which is often considered to be lacking in multispectral optical sensors 

(Cochrane, 2000). 

 

Hirano et al., (2003) used hyperspectral Airborne Visible/Infrared Spectrometer (AVIRIS) 

with 224 spectral bands and 30m spatial resolution imagery to map wetland vegetation in a 

section of the Everglades National Park, Florida, USA. Another Airborne hyperspectral 

sensor, HyMap, which has 126 bands, was used to map wetland vegetation communities of 

the Australian Great Attesian Basin Springs (White & Lewis, 2012). Both studies used 

hyperspectral imagery to map vegetation down to species level, exlpoiting the high 

dimensionality and disrciminatory power more spectral information provides.  

 

Hyperspectral imagery has proved to be useful for wetland vegetation discrimination. 

However, hyperspectral imagery acquisition is often considerably more expensive and more 

time consuming to process. However, due to advances in smaller more affordable 

hyperspectral sensors and affordability of unmanned aerial vehicles (UAV’s) the potential for 

high quality multi-temporal hyperspectral data has increased (Jay et al., 2009). 
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Active Systems  

 

Satellite radar data can be collected any time of day and isn’t dependent on weather. 

Therefore, whilst providing different information to optical sensors, it can be advantageous 

for remote sensing (Ozesmi & Bauer, 2002). Using ESR-1 synthetic aperture radar (SAR) 

data to detect the presence of water in wetlands of Big Cypress National Preserve, Florida, 

USA, Kasiscke and Bourgeau-Chavez (1997) were able to distinguish vegetation 

communities based on soil moisture and the presence or absence of flooding water, in 

addition to detecting canopy structure. By integrating radar with optical (multispectral and 

aerial colour composite) and topographic data, Corcoran et al., (2012), illustrated significant 

improvements on single data classification for mapping wetland vegetation in Minnesota, 

USA. 

 

Aerial Imagery 

 

Aerial imagery (photographic/film) was the first form of remote sensing employed for 

mapping wetland environments. Now aerial imagery comes in a variety of forms including, 

black and white film, colour film and digital RGB, and is commonly collected by airplanes, 

although satellites, un-manned aerial vehicles (UAV), balloons and kites are also used. 

Regarding wetland mapping, aerial imagery is primarily used to provide contextual 

information for field surveys or training and validation of automated land cover 

classification.  

 

The long and sustained archive of aerial photography and imagery has become a useful tool 

for long-term change analysis studies. Lishawa et al., (2013) used multi-temporal aerial 

imagery to reconstruct Typha invasion at ten dates spanning 1955 to 2007 at Illinois Beach 

State Park, Illinois, and another eight dates spanning 1963 to 2009 at Cheboygan Marsh, 

Michigan coupled with paleobotanical analysis of pollen cores.  

 

Although similar to other optical imagery (e.g. Multispectral), aerial imagery typically has 

relatively low spectral resolution and high spatial resolution. Therefore, images are most 

commonly analysed using manual photointerpretation techniques.  
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1.4 Remote Sensing Classification 
 

Classification of remotely sensed imagery involves assigning a class attribute to an image 

pixel, or cluster of pixels. This can be done using manual methods such as visual 

interpretation and delineation or by using automated computer methods such as un-

supervised or supervised classification models. Classifying remotely sensed data remains a 

challenge because of many factors that may affect the success of a classification including the 

complexity of the landscape in a study area, the variety of remotely sensed data available, and 

variety of image processing and classification approaches available to analysts. 

 

Visual Interpretation 

 

Visual interpretation (photo interpretation) of remotely sensed imagery is still a common 

method in wetland vegetation mapping. Visual interpretation mapping relies on the 

interpreter to make qualitative decisions based on image elements. The basic elements 

commonly used to aid visual image analysis and identification of features is: tone, size, 

texture, pattern, shadow, and geographic location (Ustin, 2004). These techniques aim to 

introduce consistency to the identification, classification and delineation process. The most 

common method used to delineate and map vegetation is an on-screen (heads-up) digitising 

method; traditionally this was done on paper. This process involves viewing digital imagery 

on a screen and digitising features over the imagery.  

 

Using manual interpretation methods, Harvey and Hill (2001) mapped fourteen tropical 

freshwater swampland cover types in Northern Australia, using airborne aerial imagery. They 

also compared accuracies with automated classification of satellite imagery and found 

manual interpretation provided superior detail, although more time intensive. 

 

Visual interpretation to classify wetland land cover isn’t limited to aerial (airborne) imagery. 

High-resolution satellite imagery IKONOS was used to manually interpret wetland types in 

north-central Wisconsin (Maxa & Bolstad, 2009). High-resolution (2m) multispectral 

WorldView-2 imagery was used to map 15 species in the Paya Idah Wetlands, Indonesia 

(Salari et al., 2014).  To enhance discrimination visual interpretation of true and false color 

images the interpreter used various reflectance-band combinations. 
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Recent advances in un-manned aerial vehicle platforms for capturing digital imagery, 

typically of high spatial, but low spectral resolutions, has shown that visual interpretation for 

fine scale mapping is a suitable method to extract meaning information (Samad et al., 2013). 

The ultra-high resolution of imagery provides for accurate identification of fine scale image 

objects.  

 

Although visual interpretation of imagery is useful for mapping wetlands, most recent 

research has focused on using automated classification techniques to save time and reduce 

cost of mapping efforts.  

 

Pixel-Based Classification 

 

Remote sensing of vegetation has previously been dominated by pixel-based methods such as 

supervised or un-supervised classification methods. These methods employ cluster 

classification algorithms, e.g. K-mean and ISODATA for unsupervised and Maximum 

Likelihood Classification (MLC) for supervised classifications.  

 

The unsupervised classifiers are iterative clustering algorithms that operate by relying only 

on pixel-based spectral statistics to establish the classification themes. No training data is 

required to define the class themes. These algorithms are widely available in image 

processing and statistical analysis software and often used as an exploratory method to 

indicate dissimilarity between potential themes. An advantage of this method is the time 

consuming training phase of supervised classification methods is avoided.  

 

For example, an unsupervised classification procedure was applied to a wetland area in 

Turkey to identify vegetation to near-species level; some classes were grouped due to spectral 

similarity to form community level classes (Dogana et al., 2009). The authors also used a 

value-based mask to reduce data and remove water features.  

 

By contrast, a supervised classification algorithm clusters pixels by user-defined training data 

to establish the classification themes. The training data usually consists of areas of pixels of 

known identity to train the algorithm to recognise pixels outside of the training areas. 

Supervised methods are usually preferred to un-supervised methods because the classes of 

interest are predefined often increasing the output accuracy is often increased.  
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An example of the MLC was used to produce 20-class land cover maps for four marshland 

habitats within a reserve (Labaa et al., 2008). Overall, classification accuracies of 73.6%, 

68.4%, 67.9%, and 64.9% are encouraging results that MLC classification offers significant 

potential using high-resolution satellite imagery. 

 

Pixel-based methods are still commonly used, especially for broad scale vegetation mapping; 

however managing land cover classifications at the spatial scale of pixel can introduce 

significant weaknesses. A persistent issue is that a pixel may not equal that of the land cover 

feature of interest, or that of mixed pixels, whereby the pixels spatial extent covers more than 

one type of land cover class, producing pixel misclassification (Aplin & Smith, 2008). One 

solution to the problem associated with pixel based classification methods may be to operate 

at the spatial scale of the object of interest, rather than relying on the extent of image pixels.  

 

Object-based Classification 

 

High resolution imagery pixels are typically much smaller than the objects being classified, 

object-based image analysis (OBIA) not only uses the spectral information used in pixel-

based methods, but can also include textural, structural and relational information on image 

objects (Aplin & Smith, 2008). This is particularly important when classifying features 

within wetlands using remotely sensed imagery, because the fine scale of wetland floral 

variation and the low degree of spectral dissimilarity makes delineation of features a 

persistent challenge.   

 

The development of robust object orientated classification techniques is well suited to the 

development of the high-resolution imagery products and capabilities and provides a valid 

alternative to the ‘traditional’ pixel based classification techniques. Since the emergence of 

high spatial resolution satellite sensor imagery (WorldView, SPOT, IKONOS etc.), object-

based classification has been applied extensively to this type of data in an attempt to 

overcome pixel-based misclassification and within-object variation that can lead to 

misclassification with low spatial resolution satellite imagery.  

 

By removing the possibility of misclassifying individual pixels, OBIA classification methods 

can be more accurate than pixel-based. Whiteside and Ahmad (2015) found object-based 
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methods generated better accuracy results than pixel-based classification methods when 

mapping broad scale land cover with medium spatial resolution multispectral ASTER data. 

Weih and Riggan (2010) also compared object-based vs. pixel-based classification for land-

use/land-cover mapping applications and found that when combining colour infrared (CIR) 

high-spatial aerial imagery with medium resolution SPOT-5 satellite imagery, an object-

based classification will outperform both supervised and unsupervised pixel-based 

classification methods. They also emphasised the importance of high-resolution (1m) 

imagery, concluding that the presence of HSR imagery improved classifiers more than multi-

temporal datasets, especially with object based classifications. However, Fernandes et al., 

(2014) demonstrated OBIA classification was more accurate and less complex when 

produced from a multispectral satellite image (WorldView-2) than in airborne images (2 

meter and 0.5 meter spatial resolution respectively).  

 

Current literature regarding OBIA is dominated by high-spatial resolution satellite imagery 

applications. There are however a few applications using OBIA on very high spatial 

resolution (VHR) captured from air-borne platforms; e.g. Giljum (2014) used OBIA to 

classify Helicopter borne VHR (8cm) imagery (RGB), although map accuracy of 60% it is 

promising.   

 

However Visser and Wallis (2010) found when mapping submerged Chalk stream 

macrophytes with sub-centimeter spatial resolution CIR imagery, the accuracy of the object-

based method was considerably lower than the pixel-based classification (Maximum 

Likelihood) method tested. This is most likely due to underdevelopment of the rule set that 

defined the OBIA. It is likely that development of more sophisticated rule set defining the 

image object attributes will increase the accuracy of OBIA, although this is both time 

consuming and in some case requires expert botanical knowledge.  

 

Typically, the presence of high spatial resolution imagery has greater impact on the 

classification success of imagery than the type of classification method used in to process the 

imagery. The use of OBIA in combination with very high-resolution imagery, such as that 

acquired from UAS is a promising direction for improved wetland classification accuracies. 
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Hybrid Approaches 

 

Combining classification has also shown to increase mapping accuracies. Using a hybrid 

pixel-based and object-based approach with additional ancillary thematic data Rapinel et al., 

(2014) yielded kappa indexes varying from 0.90 0 0.88 for classifications. They also 

compared the hybrid approach against standalone pixel-based methods and found that 

difficulties spectrally separating natural vs. non-natural vegetation classes was reduced in the 

object-based approach by the addition of contextual information.  

 

Pixel based hybrid classification approaches using additional metrics derived directly from 

the satellite imagery have also proven to improve classification accuracy. Lane et al., (2014) 

used additional normalised difference vegetation index (NDVI) and image texture metrics to 

classify 22 classes of aquatic and wetland habitats, improving overall accuracy from 82.9% 

using all eight WorldView-2 bands, to 86.5% with the addition of NDVI and texture metrics. 
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1.5 Remote Sensing Training and Validation Datasets 
 

Critical to the success of image classification is the collection of training and validation 

samples. Training and Validation datasets are a set of measurements (e.g. points, pixels, and 

polygons) whose class is known by the analyst. These datasets must be collected based on 

information derived directly from the imagery (to be classified) or from aerial imagery, field 

surveys, or thematic maps. Collecting sufficient training and validation samples is a 

prerequisite for imagery classification processing. Training samples are used to train the 

supervised classification algorithms to identify unknown pixels, whereas validation samples 

are used during the accuracy assessment to test the quantity and or percentage of correctly 

classified image pixels.  

 

It is recommended that training and validation samples be used independently, although the 

same collection strategy should be employed for each dataset so they are equally 

representative of class populations. Typically, the more samples the better, as increasing the 

sample size tends to increase characterisation of the class populations (Foody et al., 2006). 

Although collecting more samples often requires more time and effort, either in the field 

(GPS) or on-screen digitising. 

 

There are three generally recognised strategies for collecting training and validation sample: 

single-pixel, block-pixel and polygon. Chen and Stow (2002) investigated the effect of these 

training strategies on classification accuracies. For spectrally homogenous classes, a single-

pixel approach was more successful. For spectrally heterogeneous classes block-pixels or 

polygons was advantageous, and reduces collection time to define class populations. Another 

consideration must be made for the spatial resolution of the remote sensing data in light of 

probability of mixed pixel occurrences (where a single pixel represents multiple classes) (Lu 

& Weng, 2007).  Therefore the spatial resolution, complexity of the landscape and 

availability of ground reference data must be considered when selecting training and 

validation data. 
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1.6 Change Detection  
 

All wetlands are dynamic. They change over both short and long time scales, and at 

continuous or periodical rates (Johnson & Gerbeaux, 2004). As wetland conditions change, 

so too does the vegetation in a process known as succession. Detecting change due to 

external pressures is an important aspect of understanding the natural world. According to 

Singh (1989), “Change detection is the process of identifying differences in the state of an 

object or phenomenon by observing it at different times.” Analysing temporal effects of 

change using multi-temporal datasets is the foundation of change detection. In principle the 

process of assessing change is quite simple; it involves the comparison of two or more 

images of the same areas, at different times, to detect changes in wetland area, composition 

or structure. However, change detection within wetlands is a difficult task to perform with 

remotely sensed imagery, made more difficult because of the high natural temporal 

variability within wetland ecosystems. Singh (1989) highlighted the need for comparable data 

types, acquisition dates and analysis techniques to get a better change detection outputs. 

Emphasis on accounting for additional factors like difference in sensor calibration, 

atmospheric condition, scene illumination, whilst also making considerations for the different 

spectral properties of land cover features. 

Lu et al., (2004) reviewed various change detection techniques using remotely sensed data,  

like univariate image differencing, image regression, image ratioing, vegetation index 

differencing, principal component analysis, post-classification comparison, direct multi-date 

comparison. 
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1.7 Wetland Remote Sensing in New Zealand 
 

Remote sensing has played an important role in assessing and monitoring wetland 

environments in New Zealand. The use of Remote sensing data dates back to the early 

twentieth century, with Crown aerial survey archives from 1936 onwards.  

 

Cochrane and Male (1977) used Landsat TM imagery to map seasonal sediment discharges 

along the New Zealand coast. Satellite remote sensing is also widely applied in New Zealand. 

Dymond et al., (1996) used Landsat TM imagery to map vegetation distribution and patterns 

in Gisborne. Israel & Fyfe (1996) used SPOT XS imagery to detect estuarine intertidal and 

sub-littoral vegetation and to monitor the health and distribution of eelgrass communities in 

Otago. Gao et al., (2004) classified and mapped mangrove wetland forests within Waitemata 

Harbour, Auckland, using SPOT imagery. They were able to identify and determine relative 

mangrove health and accurately mapped 83% of stunted and 96% of lush mangrove forests 

using a knowledge-based approach. 

 

Several classifications of ecosystems and communities have been produced in New Zealand, 

usually related to particular biomes or geographic areas. The New Zealand Land Cover 

Database (LCDB) classified 33 classes of land cover and land use from satellite imagery, of 

which four are related to wetland ecosystems. Now in the fourth version, the analysis was 

initially done using the SPOT satellite imagery from 1996/97 and Landsat -7 ETM+ from 

2001/2 and more recently from the Quickbird or IKONOS. The LCDB provides a consistent 

minimum mapping unit of 1 hectare across all versions. LCDB was created to classify the 

national extent of New Zealand by the land cover and land use for monitoring the landscape 

changing overtime and its management (Thompson, Grüner, & Gapar, 2003).   

 

A review of the potential use of satellites in New Zealand for mapping freshwater 

environments by Ashraf et al., (2010) identified several suitable platforms. However, they 

concluded that using high spatial and spectral resolution images fit better in assessing 

freshwater environments.  
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1.8 Introduction to Whatipu Wetland 
 

Whatipu Dune Wetland Complex 

The Whatipu wetland is one of New Zealand’s most dynamic wetland systems and as a result 

provides an outstanding location to apply remote sensing techniques to assess and monitor 

wetlands.  The wetland contains a wide range of environmental gradients that provide habitat 

for an even wider range of vegetation communities. In this landscape dominant habitats 

include dunelands, duneslacks, sand rivers, sandflats and stabilised rear dune. These habitats 

form complex and heterogeneous vegetation composition and associations (e.g. various 

mixes of indigenous and exotic vegetation). The physical drivers at Whatipu include, 

progradation of coastline sediments (Williams, 1977), dune development and relative levels 

of water inundation from feeder streams and the naturally high rainfall. The landscape is also 

highly modified from a century and a half of agriculture and industrial pressure (ARC, n.d). 

Dune slack wetlands at Whatipu are primarily restiad Oioi (Apodasimia similis) rushland and 

dune lakes tend to harbor stricter wetland species such as Schoenoplectus tabernaemontani 

and Machaerina articulate, while dominant exotic species (e.g. Cortaderia spp. Ulex 

europaeus, Lupinus arboreus, Pennisetum clandestinum) are usually found on dune habitats 

(foredunes, stabilised reardunes and duneflats) (Pegman & Rapson, 2005). The southern 

American Pampas grasses (Cortaderia jubata and C. selloana) are environmental weeds and 

pose a high threat to the structure of dunes and the survival of rare native species at Whatipu 

(Gosling, Shaw, & Beadel, 2000). Both Cortaderia spp. found in New Zealand are present at 

Whatipu, of which is considered the highest priority site in the Auckland region due to its 

significant ecological values and the potential impacts of Pampas on the dune wetlands 

systems and coastal habitats (Craw, 2015). Pampas is widespread at Whatipu and is common 

beneath the cliffs, on the old fore-dunes and on the raised shrubland belt behind the old fore-

dunes. Pampas is also scattered throughout the mosaics of permanent wetlands, and on the 

edges of ephemeral wetlands and sand river habitats.  
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1.9 Research problems, aims  
 

This thesis will improve on previous mapping efforts by using satellite remote sensing 

techniques to investigate the spatial and temporal nature of coastal wetland vegetation of 

Whatipu Scientific Reserve.  

 

This research aims to determine spectral signatures of common species at Whatipu Scientific 

Reserve to assess the spectral separability and determine if species-specific spectral 

signatures are unique. Fourteen native and exotic species were sampled and representative 

signatures were developed and implemented in a spectral library. 

 

This research aims to identify land cover through the use of satellite imagery at Whatipu 

Scientific Reserve. This research created a classification map using field spectroradiometer 

data, low altitude UAS aerial imagery, and eight-band multispectral WorldView imagery. 

The classifications were carried out on the multispectral satellite imagery. The high 

resolution UAS imagery was used as a non-destructive alternative to ground surveys for the 

collection of training and validation. 

 

This research also aims to assess the use of low altitude very-high resolution aerial imagery 

and high-resolution satellite imagery using manual visual interpretative methods for detecting 

invasive weed species. By applying this technique to a subsection of both imagery datasets 

within the Whatipu reserve, a species-specific classification map was created and 

classification results were compared. These results were also compared with the final 

classification results of the automated classification procedure. 

 

This research was done using remote sensing software and GIS that helped with identification 

of vegetation and detection of change in vegetation cover. 
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1.10 Objectives 
 

Objective One: Use field hyperspectral reflectance measurements to develop spectral 

signatures of dominant wetland and dryland vegetation at Whatipu and to assess their spectral 

separability. 

 

Objective Two: Investigate the use of low altitude, high spatial resolution Unmanned Aerial 

System imagery for ground-truthing (training and validation sample collection) of satellite 

imagery classifications. 

 

Objective Three: Compare performance of pixel-based classification methods using high-

spatial multispectral satellite imagery to identify dominant wetland vegetation at Whatipu 

wetland dune complex. 

 

Objective Four: Undertake change analysis to identify if and how Whatipu vegetation has 

changed between 2011 and 2015. 

  

Objective Five: Case Study: Investigate the use of low altitude, high spatial resolution 

Unmanned Aerial System imagery for identification and delineation of invasive species at 

Whatipu. 
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1.11 Structure of Thesis 
 

Chapter 2 of this thesis comprises a critical assessment of literature relating to New Zealand 

wetlands and remote sensing research and techniques. It investigates different remote sensing 

methodologies for extracting meaningful information and the value of remote sensing as a 

tool for mapping, monitoring of wetlands.  

 

In Chapter 3, focuses on the acquisition of remote sensing datasets and the methodology to 

preprocess the datasets for classification. It then looks at classification scheme and 

classification techniques used to derive land cover classes of vegetation and non-vegetated 

cover at Whatipu, followed by the Change analysis techniques used to determine how land 

cover has changed between 2011 and 2015. This chapter is concluded by the Case Study 

methodology used to investigate the potential of low altitude UAS imagery for identifying 

invasive species in Whatipu. 

 

Chapter 4 presents the results of field spectroradiometer data analysis, classification outputs 

and accuracy comparisons. The final land cover thematic maps and results are then shown, 

along with the change analysis results and the results of the Case study.  

 

In Chapter 5, the results of spectral reflectance data analysis, the training datasets, 

classification outputs, validation datasets and the Case study are then discussed with regard to 

relevant literature. 

 

Conclusions arising from this research are presented in Chapter 6.  
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2 Methods 

2.1 Study Area 
 

New Zealand has few remaining intact, natural areas of active duneland, and there is limited 

spatial information describing their vegetation. Whatipu scientific reserve remains, one of the 

few large areas of intact duneland systems in New Zealand (Hilton, Macauley, & Henderson, 

2000). The reserve is situated on Auckland’s west coast, on the northern side of the entrance 

to the Manukau Harbour (Figure 2.1). The area covers 820ha from Whatipu to Karekare point 

and is made up of extensive low-lying wetlands and coastal dunelands and sandflats.  

 

Whatipu contains a wide range of habitats for flora and fauna, including: foredune, duneslack 

wetlands, dune lakes, and native and exotic scrub (Pegman & Rapson, 2005). The vegetation 

at Whatipu consists >100 species of native and exotic vegetation including stabilising 

communities, foredune communities, herb meadows, and wetland communities. Pegman and 

Rapson (2005) identified 12 major vegetation communities in the southern end of Whatipu 

including wet and sandy communities.  

 

The major drivers of vegetation community distribution at Whatipu are identified primarily 

as geomorphological dynamics (fluctuating coastal dune accretion and erosion, and mobility 

of dunes) (Pegman & Rapson, 2005) and to a lesser extent hydrological regime. The area has 

a dynamic history of beachfront progradation (Williams, 1977) and has been significantly 

influenced by disturbances such as stock grazing up until the 1970’s and commercial logging 

between 1850 and 1911. The substrate is fine predominantly fine sand made up of quartz, 

feldspar, augite originated from Awhitu peninsula to the south, and titano-magnetite from 

Taranaki volcanic region (Williams, 1977). The Whatipu beach, dunes and wetlands border 

the Waitakere Ranges reaching heights of 200m and contain historic sea caves. The Whatipu 

dune lands are a relatively recent addition to the north island landscape, forming over the last 

150 years. Since European arrival and the subsequent forest clearance in the mid 1850’s 

sediment discharge from the harbours rapidly increased, likely causing the accretion of 

sediments recorded at Whatipu (Williams, 1977). 

 

Because of this unique environment, Whatipu is protected as a Scientific Reserve by the 

Department of Conservation in 2001 under the Reserves Act (1977) and managed by 

Auckland Council Regionals Parks administration. Declaration as a Scientific Reserve 
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restricts access to dogs and vehicles whilst allowing for the protection and preservation of the 

area for scientific study, research, education and the country’s benefit. Current uses of the 

area include fishing, walking, camping and birdwatching.   

 

The regional climate is sub-tropical temperate. Based on 30-year observations between 1981 

and 2010, the areas annual rainfall is between 1200 and 1300 mm and median annual average 

temperature between 15 and 16°C (NIWA, 2013). Prevailing southwesterly winds are 

generally moderate to strong, especially on exposed coastal sites. Auckland airport, east of 

Whatipu, inside the Manukau Harbour receives an annual wind speed of 19 km/hr (9.7knots) 

(NIWA, 2013).  

 

 
 

Figure 2.1 Whatipu Scientific Reserve (not the official boundary). 
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Case Study Area 

 

The area chosen for the multi-sensor invasive species detection case study is in the southern 

section of the Whatipu Scientific Reserve (Figure 2.2). All three data sets used for the 

comparison have sufficient overlap in this section of the reserve. The southern area is 

significantly more modified than the rest of the reserve due to access from the Whatipu road 

and the settlement and historical grazing access from the adjacent farm, although doesn’t 

necessarily represent the area where Pampas is most dense. 

 
Figure 2.2. Case study area 
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2.2 Wetland Classification Scheme 
 

Details of the classes to be used in this study can be found in Table 2.1. Preparation of 

classification scheme is a perquisite in the classification process. Many plants grow equally 

well in wetland conditions and upland or dryland conditions. To clarify what plants may be 

found the wetland site, a list of wetland species was used; “Wetland Indicator Status Ratings 

for New Zealand Species” (Clarkson et al., 2013) in the National Vegetation Survey (NVS) 

Database. In the listing, wetland plants are divided into five indicator categories based on the 

frequency of occurrence in wetland (Clarkson, 2013).  

 

 Obligate (OBL): almost always in wetlands 

 Facultative wet (FACW): usually found in wetlands 

 Facultative (FAC): sometimes found in wetlands 

 Facultative upland (FACU): seldom found in wetlands 

 Upland (UPL): rarely found in wetlands 

 

This list provided useful information about the species distribution that could be expected at 

Whatipu. The wetland indicator statuses were used as a guide to develop the wetland and 

non-wetland classifications along with additional literature with information specific to 

Whatipu vegetation distribution and the assemblages and communities commonly found 

there (Pegman & Rapson, 2005). Common or dominant species within the wetland were 

grouped aided by their wetland indicator status. Obligate and Facultative wetland status 

species were used to classify areas of strict wetland and Facultative and Facultative upland 

were used to classify areas in ephemeral and drier wetland areas, these also aligned with the 

community assemblages noted by Pegman and Rapson (2005) and dominant land cover types 

established by Thomas Civil and Environmental Consultants (Dixon, 2013).  

 

Table 2.1 Whatipu classification scheme 

Land cover 

Type 
Class 

Dominant 

Species 

Code 

Rating Origin 

W
et

la
n

d
 v

eg
et

at
io

n
 

Apodasmia similis rushland APOsim FACW Endemic 

Eleocharis acuta rushland ELEacu OBL Non- Endemic 

Schoenoplectus tabernaemontani reedland SCHtab OBL Non- Endemic 

Typha orientalis reedland TYPori OBL Non- Endemic 

Machaerina articulate reedland MACart OBL Non- Endemic 

Pennisetum clandestinum grassland PENcla N/A Exotic 

Native shrubland 

CORaus FACW Endemic 

PHOten FACW Endemic 

LEPsco FAC Non- Endemic 

COProb FACU Endemic 

FICnod FACU Non- Endemic 
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MELram FACU Non- Endemic 

MUEcom FACU Non- Endemic 

Exotic shrubland 
CORsel FAC Exotic 

LUParb UPL Exotic 

Ulex europaeus shrubland ULEeur FACU Exotic 

Duneland 

vegetation 

Spinifex sericeus/Ficinia spiralis duneland N/A N/A  

Carex pumila sandfield CARpum FAC Non- Endemic 

Un-

vegetated 

Openwater 
   

Un-vegetated sand 

 

 

Only dominant cover species were selected for the classification of the scene. Selecting 

dominant species was undertaken because the number of species found in the wetland (>100 

native and exotic species) would require extensive field surveys to spectrally characterise 

each of the species and to collect spatial information for ground-truthing (training and 

validation). Additionally dominant species composition can often tell a lot about other 

species that may be there by association and is common practice in habitat remote sensing 

(Cho, Malahlelac, & Ramoeloa, 2015). Including too many species in the classification 

request can also lead to misclassification if the species are relatively uncommon in the scene. 
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2.3 Datasets and data acquisition 
 

Spectral reflectance data was used in this study to assess the spectral separability of common 

duneland and wetland species at Whatipu and to characterise their spectral variability for 

future use. The low-altitude aerial imagery captured using the Un-manned aerial vehicle 

(UAS) was collected in place of undertaking extensive field surveys for ground-truthing 

(training and validation sampling) of satellite classifications. It was also used in the case 

study assessing the effect of image resolution for detection of invasive species using manual 

visual interpretive techniques. The multi-date WorldView (2 & 3) satellite imagery was used 

for automated classifications and change analysis of land-cover at Whatipu. Table 2.2 shows 

the characteristics of key image and spectral dataset used in this study.  

 

Ancillary datasets contributed to the creation of training and validation samples. Training and 

validation samples creation are technically a processing step in the creation of automated 

classification, however due to their importance they have been treated as an independent 

dataset and described in this section. 

 

The following datasets were fundamental for the development of the multi-date vegetation 

maps, change analysis and for the case study of this project. 

 

 Spectral Reflectance Data 

 Low Altitude Aerial Imagery 

 Satellite Imagery  

 Ancillary Data 

 Training and Validation Data 
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Table 2.2 Key imagery and spectral datasets used in various stages of this project. 
Contribution Dataset Information 

Project 

stage 
Contribution Data Sets Platform 

Acquisition 

Date 

Spatial 

Resolution 

Spectral 

Resolution 
Source 

Time 1 

(2011) 

Automated 

classification 

WV-2 

Multispectral 

Imagery 

Satellite April 2011 2m 8 Band  DigitalGlobe 

ROI and 

validation 

WV-2 pan 

sharpened 
Satellite April 2011 

50cm 

(panchromat

ic) 

3 Band 

(RGB) 
DigitalGlobe 

ROI and 

validation 

Colour 

composite 

Aerial 

Imagery 

Piloted 

Aircraft 

January 

2011 
1m RGB 

Land 

Information 

New 

Zealand 

(LINZ) 

Time 2 

(2015) 

Automated 

classification 

WV-3 

Multispectral 

Imagery 

Satellite 
January 

2011 
1.2 8 Band  DigitalGlobe 

ROI and 

validation 

WV-3 pan 

sharpened 
Satellite 

January 

2011 

36cm 

(panchromat

ic) 

3 Band 

(RGB) 
DigitalGlobe 

ROI and 

validation 

Colour 

composite 

Aerial 

Imagery 

UAS 
February 

2015 
6cm RGB 

Collected in 

this study 

Spectral 

analysis 

Spectral 

reflectance 

signatures 

Hand-

held 

Spectrora

diometer 

February 

2015 
n/a 

Hyperspectr

al 

Collected in 

this study 

Case 

Study 

Manual 

classification 

WV-3 pan 

sharpened 
Satellite 

January 

2011 

36cm 

(panchromat

ic) 

3 Band 

(RGB) 
DigitalGlobe 

Manual 

classification 

Colour 

composite 

Aerial 

Imagery 

UAS 
February 

2015 
6cm RGB 

Collected in 

this study 
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Spectral Reflectance Data 

 

An ASD® FieldSpec® HandHeld 2™ Spectroradiometer (Analytical Spectral Devices Inc.) 

was used the capture the reflectance measurements of vegetation at Whatipu. This instrument 

measures in the VNIR (Visible Near-Infrared), sensitive in wavelengths from 325 to 1075nm 

with a sampling interval of 3nm. These data points are automatically interpolated by cubic-

splines to produce 1nm interval data points. Only bare fiber with 25° field-of-view was used 

for the sampling in this study.   

 

A Handheld GPS was used to capture location of each sample, a Sony point-and-shoot 

camera was used to document and ID filed objects and metadata were manually collected, 

recorded, and tabulated on field sheets. Spectral data, GPS, photos and metadata were 

transferred to a laboratory work station where they were read by the customised software and 

stored in a format to be transferred the spectral a database at a later date.  

 

Metadata is important for the interpretation of scientific data, quality assessment and long-

term feasibility of the spectral data sets (Huni et al., 2007). In order to better understand 

electromagnetic radiation and vegetation relationships, contributing absorption/reflectance 

needs to be correctly identified and attributed. This can be assisted by vigorous collection of 

metadata enabling outliers to be excluded to maximise a true reference spectra. The factors 

that affect standardised measurements for spectral information are summarised to include: 

environmental, viewing geometry, illumination geometry, properties of the target, and the 

calibration of the instrument and reference standard (Pfitzner, Bollhofer, & Carr, 2006; 

Zomer & Ustin, n.d.).  

 

Spectral Sampling  

 

All sampling was undertaken in late February 2015, during 2hrs either side of solar noon to 

ensure high sun angle and direct line to the sun resulting in adequate lighting thereby 

reducing shadowing.  Weather conditions during time of collection were variable, an effort 

was made to limit sampling during times of high cloud cover.  Sampling area was limited to 

the southern end of Whatipu in areas visible in imagery captured by Satellite and UAS 

sensors. The southern area of the Whatipu wetland was chosen due to its accessibly and 

proximity to the public car parking at the main public entrance Whatipu Beach. Samples were 
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typically taken from specimens on the fringe of the wetland, as access to the wetland was 

limited to tracks and near tracks.  

 

Standards for the collection of field data were:  

 Only cloudless conditions were used 

 Readings were taken from nadir  

 Recalibrate after eavery set or when illumination conditions change 

 An average number of 10 samples were collected per species 

 The samples were averaged over 10 readings internally by the spectroradiometer  

 Collection of spectra took place between two hours of solar noon  

 A bare fibre optic with a 25° field of view was used  

 Homogenous targets were selected to provide the best endmembers possible  

 The height above the targets was kept approximately 0.15 metres. The resulting FOV 

was 22 cm in diameter (see figure 2.3) 

 

 

 

 
Figure 2.3 Spectroradiometer field-of-view 

 

 

For calibration a Spectralon® white panel (99% reflectance) was used at the time of 

measurement the time of measurement and/or when there was a change in illumination 

conditions. Calibration comprises measuring irradiance that is used to convert incoming 

radiance to reflectance. At times weather conditions during time of collection were extremely 
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variable, an effort was made to limit sampling during times of high cloud cover. In some 

situations, the capture of extraneous materials such as leaf litter, soil or other vegetation 

could not be avoided due to the sparse foliage structure of some species. Reflectance samples 

of several species were collected, which included several specimens per species to account 

for intraspecies (in-species) variation. The number of spectra captured per species varied 

slightly with the size or variation exhibited by the individual specimens, and an effort was 

made to randomise sampling from different areas of the individual with consideration for 

different vegetative components. 

 

Spectral Data 

 

Spectra of a total of 14 species were collected (see Table 2.3). The species assembled are by 

no means sufficient to characterise the variety found in New Zealand or the Whatipu 

vegetation. However, as a first step the number and variety collected suffices for the purpose 

of assessing the spectral separability and classification of some New Zealand native 

vegetation and determinng the possibilty for classification success in imagery. Field spectra 

were evaulauted and visually inspected for their quality and categorised in the species 

classes.  
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Table 2.3 Spectral signatures of native and extoic vegetation collected at Whatipu 

Latin name 
Common name & 

Maori name 

Species 

code 
Structural Class 

Total 

Spectra 

Apodasmia similis Jointed wire rush, Oioi APOsim Rushes 54 

Coprosma robusta Karamu COProb 
Dicotyledonous 

Trees & Shrubs 
20 

Cordyline australis Cabbage tree, Ti kouka CORaus 
Monocotyledonous 

Trees and Shrubs 
9 

Cortaderia selloana Pampas grass CORsel Grasses 17 

Eleocharis acuta Sharp spike sedge ELEacu Sedges 14 

Ficinia nodosa 
Knobby club rush, 

Wiwi 
FICnod Sedges 22 

Leptospermum scoparium Manuka, kahikatoa LEPsco 
Dicotyledonous 

Trees & Shrubs 
26 

Lupinus arboreus Tree lupin LUParb 
Dicotyledonous 

Trees & Shrubs 
33 

Melicytus ramiflorus Whitey wood, Mahoe MELram 
Dicotyledonous 

Trees & Shrubs 
23 

Muehlenbeckia complexa 
Wire vine, scrub 

Pohuehue 
MUEcom 

Dicotyledonous 

Lianes 
11 

Pennisetum clandestinum Kikuyu grass PENcla Grasses 7 

Phormium tenax Flax, Harakeke PHOten 
Monocotyledonous 

Herbs 
19 

Schoenoplectus 

tabernaemontani 
Kuawa SCHtab Sedges 15 

Ulex europaeus Gorse ULEeur 
Dicotyledonous 

Trees & Shrubs 
20 
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Low Altitude Aerial Imagery 

 

The low altitude high resolution aerial imagery was acquired in the southern region of the 

Whatipu Scientific reserve covering approximately 100 ha of the wetlands and dunelands. 

Aerial imagery for this project was collected using an Un-manned Aerial System (UAS) 

made up of off the shelf products (Table 2.4). The UAS flight areas were located within the 

reserve and conducted with the permission of the Auckland Council. We successfully 

conducted 31 flights over six days in early march 2015 and collected 15,195 images.  

 

The quadcopter is small (465 x 465 x 190 mm) and lightweight (1200 – 1300g including 

sensor and battery). Because the quadcopter has a small payload capacity (250g), we used a 

lightweight (122g) compact digital camera (Sony, Action Cam, HDR-AS100v, Tokyo, Japan) 

as the image sensor.  It was additionally chosen for image georeferencing functionality. The 

camera was mounted underneath the quadcopter and captured images in interval mode (1 per 

second). The UAS has a continuous flight time of 8-10 minutes requiring battery replacement 

after each flight and has a horizontal flight range within 800m of the operator (due to radio 

transmitter limitations and Civil Aviation Authority line of sight restrictions). The maximum 

vertical height was programmed to 50 m to ensure a high-resolution product. UAS flights are 

highly dependent of weather and could only be conducted in fine conditions with no rain and 

light wind (<10knots).  

 

Table 2.4 Un-manned Aerial System components and characteristics 
UAS Components Weight (g) Price(NZD) 

Quadcopter Blade® 350 QX2 Quadcopter 1006 
$500each 

Blade® 350 QX3 Quadcopter 955 

Battery 2200 mAh 11.1 30c Li-Po Battery & 188 

253 
$50each 

3000 mAh11.1 30c Li-Po Battery 

Transmitter Spektrum 6-Cahnnel Transmitter n/a $400 

Sensor Sony HDR-AS100v (with Waterproof case) 122 $600 

Total  1265g - 1330g $1550 

 

Blade products are designed and intended for a wide variety of uses including both 

recreational and commercial, however they are not specifically designed for aerial mapping 

applications. However, the Blade products align with many of the characteristics of 

commercial UAV systems,  such as they are lightweight and easily deployable, easy to use 

and very little training required. They can also be retrofitted with a variety of sensors with 

easily integratable products, they have safety mechanisms in place such flight vertical and 

horizontal limits.  
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Aerial Image Acquisition 

 

Flight planning 

 

Before any field sampling it was imporant to establish a flight plan, whereby specifying the 

flight scanning pattern, the number of flights, number flight lines per flight and their 

direction, the amount of overlap and the altitude. While keeping in mind the desired 

resolution of the output images. These pieces of information along with launch/landing 

locations and weather data are used to develop a flight plan prior to heading into the field. 

Using the pre-determined flight plan, we navigated to the launch/landing locations and began 

the flight procedures.  

 

 

Flight procedure 

  

Pre-field checks:  

 Test all system batteries (sensor, quadcopter and transmitter) using voltage meter. 

 Ensure sensor memory cards are cleared. 

   

Begin start-up sequence 

 Install a charged Quadcopter battery, plug it in and close the hatch. 

 Install the sensor, making sure the positoin is secure and will not loosen from flight 

vibration. 

 Turn on Transmitter. 

 On a level surface, turn on Quadcopter and allow the Blade and Transmitter to 

initialise. 

 Wait for binding and GPS lock, this is indicated by solid green light (Safe mode). 

May take between 30-90 seconds. 

 Arm and Fly. To Arm: From throttle at trim position props start by moving the 

throttle stick to the inside bottom corners and then releasing them in a fluid sequence. 

The props will begin to spin, locking the home position. The aircarft is ready to fly. 

 

Flight Plan Execution 

 

The flight of the Quadcopter was directed by the Transmitter operator. Navigation of the 

survey area and the direction of flight is dictated by moving the directional stick inline with 

the desired flight path. It was especially useful to have at least one other person to help 

maintain straight lines of flight. This was achieved by positioning a second person at the end 

of the line (Figure 2.4) who assisted the directing of the craft during flight. 
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Figure 2.4 Flight plan 

 

Landing 

 

There are two options for landing the Blade 350: 

 Guide the aricraft back manually to where you wish to land, reducing the 

throttle until landed then engage the cut throttle button to disarm the motors. 

 Activate the Return Home function to return the aircraft to the assigned home 

location and land automaically.  

 

Shut-down procedure 

1. Turn off the power switch on the aircraft. 

2. Turn of the power on the transmitter. 

3. Unplug and remove the battery form the aircraft. 

 

Aerial images, GPS data and any other supplementary data were transferred to the geospatial 

workstation at AUT. Additional field trip logs were made for general maintenance of the 

UAS and Safety. Other post field procedures included, the charging of all system batteries; 

sensor, quadcopter, transmitter, radio. 
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Satellite data 

 

The primary datasets for this project consist of one multispectral (MS) WorldView-2 (WV-2) 

scene and one MS WorldView-3 (WV-3) scene captured four years apart, at 22:50:43 GMT, 

18 April 2011 and 22:11:51 GMT, 01 January 2015 respectively. DigitalGlobe Inc. granted 

the Worldview datasets, providing all eight spectral bands and panchromatic image for each 

date. WorldView-2 (WV-2), launched in October 2009, was the first commercial high-

resolution satellite to provide eight spectral sensors in the VNIR range at 1.84m spatial 

resolutions, also having a high-resolution panchromatic sensor at 46cm spatial resolution. 

WV-3, launched in august 2014, sensors match WV-2’s multispectral range (8 bands) whilst 

increasing the spatial resolution to 1.24m and 31cm for the panchromatic band. Wavelength 

characteristics for each dataset from WV-2 and WV-3 are displayed in Table 2.5. 

 

Table 2.5 Spectral bands of the WorldView-2 and WorldView-3 Sensors 
Spectral band Wavelength center (nm) Wavelength min - max (nm) 

Coastal 427, 425 400 - 450 

Blue 478, 480 450 - 510 

Green 546, 545 510 - 580 

Yellow 608, 605 585 - 625 

Red 659, 660 630 - 690 

Red edge  724, 725 705 - 745 

Near infrared 1 (NIR1) 831, 832 770 - 895 

Near infrared 2 (NIR2) 908 860 - 1040 

Panchromatic 630 450 - 800 

 

The Standard Satellite Imagery, also referred to as 2A, is a product that is supplied 

preprocessed; radiometric, sensor and geometric corrections. The standard product is 

resampled to a cartographic projection and the metadata for this product contains information 

for rational functions model. Standard (2A) Imagery products are radiometrically corrected, 

sensor corrected, and projected in a plane using the map projection and datum of the 

customer’s choice. Standard 2A imagery also has a coarse DEM applied to it, which is used 

to normalise for topographic relief with respect to the reference ellipsoid. This is an effort to 

minimise the effect of terrain distortions. The degree of normalisation is relatively small, so 

while this product has terrain corrections, it is not considered orthorectified. All standard 

products have uniform GSD throughout the image product.  

 

The imagery covered the western Auckland region including the 7km2 of the Whatipu dune 

and wetland area (Figure 2.5). Table 2.6 lists the scene parameters for each image. All scenes 

were supplied in a format suitable for land cover analysis. 
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Figure 2.5 WorldView Image scenes. Red polygon is the extent of WV-2 scene captured on 

the 18 April 2011 (S01) and green polygon is the extent of WV-3 scene captured on 18 

January 2015 (S02) 
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The WV-2 scene has a noticeable difference in mean satellite azimuth and off-nadir viewing 

angle to the WV-3 scene. As a result, there is a visible difference in shadowing and viewing 

geometry caused by the sensor to capture geometry and terrain distortions. Methods for 

correcting the geometry distortions are outlined in section 3.5 (Geometric Correction).  

 

Table 2.6 WorldView imagery metadata  
Satellite Imagery S01 (2011) (S02) 2015 

Spacecraft WV02 WV03 

Imaging bands Pan + MS1-8 Pan + MS1-8 

Pan spatial resolution 0.5m 0.36 

MS spatial resolution 2.0m 1.2m 

Acquisition date 18/04/2011 18/01/2015 

Acquisition time 22:50:43 GMT 22:11:51 GMT 

Mean off-nadir view angle 13.5° 23.7° 

Mean satellite azimuth 264.6° 70.2° 

Mean satellite elevation 74.7° 64.0° 

Cloud cover 0.013 0.398 

 

 

Ancillary Datasets 

 

The following ancillary datasets were compiled and incorporated into the project to aid 

identification of vegetation to be used in the classification training and validation component 

of this study. Table 2.7 includes the ancillary maps used in this project. The two maps were 

used to collect training and validation samples to be used as ROI’s during supervised 

classification of the Time-1 (2011) stage of this study. No additional dataset were required 

for the Time-2 (2015) processing and analysis beyond data that was collected during the 

course of this study.  

 

The Wetland Overview Field Map supplied by Auckland Councils, Research Investigations 

and Monitoring Unit (RIMU) was compiled in 2011 as part of the wetland-monitoring 

program. 

 

The Whatipu Vegetation Map created by Thomas Civil and Environmental Consultants for 

Auckland Council, aimed to delineate fifteen land cover types including vegetation and non-

vegetated surfaces. The project involved extensive fieldwork to identify and record 

boundaries between land cover types, which were later digitised in a GIS to produce a 

complete land cover map of the system (TCEC, 2014). 
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Table 2.7 Ancillary datasets used in various stages of this project 
Contribution Dataset Information 

Project 

stage 
Use Dataset 

Thematic 

information 

Acquisition 

date 
Source 

Time 1 

(2011) 

ROI and 

validation 

Wetland 

Overview Field 

Map 

Dominant 

Vegetation 
2011 

RIMU, 

Auckland 

Council 

ROI and 

validation 

Whatipu 

Vegetation Map 

15 Land cover 

classes 
2012-2013 

Thomas Civil 

and 

Environmental 

Consultants 

 

Training and Validation Data  

 

In remote sensing the collection of training and validation data for automated classification 

procedures is crucial to enable the user to downscale information in the imagery to the 

objects and features on the ground. This involved identifying areas at Whatipu with 

homogenous patches of target classes greater than the spatial resolution (pixel size) of the 

sensor (2m2). The identification of suitable samples was achieved by on-screen digitising 

methods and data collected in the field. On-screen or heads-up digitising involved the use of 

high spatial imagery products and the delineation of areas to be imported into ENVI. Training 

and validation samples for thirteen land cover target classes were digitised and converted to 

ROI’s and then pixels. Many of the 2011 samples were reused in the 2015 sample dataset 

where land cover did not change. Using a random selection process, half of the samples were 

used as training samples to ‘train’ the classifier, and half were retained for the accuracy 

assessment.  

 

Time-1 (2011) training and validation samples were digitised from the 2011 1.0m spatial 

resolution aerial imagery (RGB) and directly from the 2011 0.50m spatial resolution 

pansharpened satellite imagery. Samples were also taken from the Wetland overview field 

data, which are digitised field surveys undertaken in 2011 by Auckland Council. 

Additionally, a 2013 vegetation map was also used as a general guide to identify vegetation. 

No fieldwork was undertaken for the 2011 training and validation samples. 

 

Time-2 (2015) utilised some field data, which involved walking the perimeter of the wetland 

and taking GPS waypoints of features of interest. This was done at the same time as spectral 

sampling and therefore additional data such as photo points were also applied used to help 

identify samples areas. These field samples were collected within 2 months of the image 
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capture date. Training and validation samples were however predominantly collected from 

on-screen digitisation of the 2015 5cm spatial resolution low altitude aerial imagery (RGB) 

collected with the UAS. This data provided excellent spatial information for visual 

interpretation and identification however, the UAS aerial survey did not cover the extent of 

the wetland and therefore additional samples were digitised directly from the 2015 0.5m 

spatial resolution pansharpened satellite imagery. 

 

As a results of the different collection strategies used, there is a slight difference in the 

number of training samples for each class between images (Table 2.8), e.g. polygons were 

used for Time-1, where as a mixture of per-pixel, polygons was used for Time-2. 

 

Table 2.8 Training samples used in the classification of satellite imagery 
Class Training and Validation pixels 

 Time 1 (2011, WV-2) Time 2 (2015, WV-3) 

Apodasmia similis rushland 1447 1476 

Eleocharis acuta rushland 253 135 

Typha orientalis reedland 1149 908 

Schoenoplectus tabernaemontani reedland 1130 132 

Machaerina articulate reedland 1061 236 

Pennisetum clandestinum grassland 1516 1750 

Native shrubland 1605 1120 

Exotic shrubland 1663 1167 

Ulex europaeus shrubland 1682 1138 

Spinifex sericeus/Ficinia spiralis duneland 1049 338 

Carex pumila sandfield 332 139 

Openwater 1595 922 

Un-vegetated sand 2877 1216 
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2.3 Software 
 

ViewSpec Pro 

 

ViewSpec Pro is a program used for the post processing of spectra files collected using ASD 

instruments. ViewSpec Pro was not used in this study for post processing, however was 

essential for converting the asd spectra files into to ASCII format to be processed in both 

ENVI and Excel. 

 

Pix4DMapper 

 

To obtain highly accurate georeferencing capability and to combine multiple digital images 

and generate one orthomosaic for the entire survey scene, Pix4d mapper (Switzerland) was 

used. Pix4d Mapper is designed to create 3D point clouds, 3D Digital Surface Models and 

orthomosaics from overlapping 2D images using automated reconstruction algorithms.  

 

ENVI 5.2 

 

ENVI 5.2 is an image processing software, created by ITT Visual Information Solutions, Inc. 

(2015) that visualises, analyses and presents all types of imagery products and other 

geospatial data. The software includes tools related pre-processing and processing of imagery 

such as radiometric correction, geometric correction, radar and LiDAR analysis and vector – 

raster capabilities. Processing outputs are widely compatible with other GIS products, namely 

ArcGIS and supports a wide range of source data formats(Exelis Visual Information 

Solutions, 2010). 

 

ArcGIS 

 

ArcGIS 10.2 is software created by ESRI used in geographic information systems (GIS) and 

used to compile and manage geospatial information. It supports GIS applications such as 

mapping, data compilation, analysis, geodatabase management and geospatial information 

sharing. ArcGIS was used for digitising training and validation polygons, post classification 

processing, and cartographic visualisation. 
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2.4 Data Pre-processing 
 

Each dataset required specific pre-processing pathways and programs. The datasets that 

required pre-processing before any analysis could be undertaken were: 

 

 Spectral Reflectance Data  

 Low Altitude Aerial Imagery  

 Satellite Image  

 

Spectral Reflectance Data Pre-processing 

 

Waveband Filtering 

 

Waveband filtering is a common procedure to remove noisy data at the upper and lower 

wavelengths of the spectroradiometer instrument range. The signals measured in the lower 

and upper ends of the instrument range, i.e. 325-450 and 950-1075nm, were discarded due to 

sensor noise caused by atmospheric absorption. Spectral signatures were therefore studied 

from the 450nm to 950nm spectral range. 

 

Spectral Reflectance Data 

 

Due to changing illumination conditions in the field and other factors that influence the 

spectral purity of samples, many samples contained additional spectral noise. These spectra 

could be identified based on irregular shape and/or where there was a significant deviation in 

intensity from the majority of samples. To do this each species was plotted separately and 

outliers identified and removed.  

 

Simulation of WorldView-2 and WorldView-3 Sensors 

 

The simulation of WorldView sensor spectral responses using ASD field spectroradiometer 

data data is useful to make direct comparisons of spaceborne sensor and ground data, to 

reduce the dimensionality of the data, and to simplify the data analysis. 

 

The imitation of other sensor bands using groundbased data can be generalised by calculating 

the band values of the sensor. This however depends on the sensor response function. The 

WV-2 sensor captures data from 400 to 1040 nm with eight bands. Figure 2.6 shows the 5% 

response for upper and lower edges and center wavelengths for each band. The WorldView 
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sensor is an example of a Gaussian sensor. Waveband centres do not lie at whole number 

frequencies, bandwidths are not sharply defined and the sensitivity of the sensor is not 

uniform over the bandwidth.  

 

 
Figure 2.6 Spectral response functions of WorldView-2 sensor bands (Source: DigitalGlobe). 

 

 

ENVI software provides response functions for a range of multispectral sensors including the 

WorldView fleet. ENVI uses a Gaussian model and with full width at half maiximum 

(FWHM) for each of the eight WorldView bands to obtain simulated WorldView 

multispectral spectra.  
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 Low Altitude Aerial Imagery Pre-processing and Preparation 

 

Orthomosaic Generation 

 

To combine digital images captured in the field and generate one orthomosaic for the survey 

area, Pix4Dmapper was used. Pix4D is designed to create 3D point clouds, 3D Digital 

Surface Models and orthomosaics from overlapping 2D images using automated 

reconstruction algorithms. 15,195 images were captured (Figure 2.7) at Whatipu. Due to the 

capture rate (camera interval time) and altitude of flight, the number of images collected in 

this project had more than sufficient overlap (~75% overlap). To reduce processing time and 

errors associated wih processing demands, I reduced the number of images to 3759 by 

removing image duplicates (from take-off and landing points) and every third input image 

before processing. Even so, the image dataset was still considerably large. It is recommended 

that large datasets be split to ensure accurate processing and orthomosaic generation (Pix4D, 

2015). To process the imagery I used the Pix4DMapper split and merge option. All of the 

images were split into to 500 image subsets, processed independently and merged into one 

final project. Each subproject was split whilst ensuring overlap between them. Processing 

time depends on a number of parameters such as the number of images selected, image sizes, 

image content, scene area, resolution and computing power available.  

 

 

 
Figure 2.7 Georeferrenced photo points (represented by blue+green points) 
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Generating Orthomosaics is compartmentalised into 3 distinct processing steps which within 

themselves include several processing actions: 1) Initial Processing; this computes keypoints 

by extracting features and then matching keypoints between images, followed by camera 

optimisation and geolocation calibration, then Automatic Aerial Triangulation (AAT) and 

Bundle Block Adjustment (BBA); 2) Point Cloud Densification, this includes generation of 

points (pixels), point densification and 3D textured mesh generation (Figure 2.8); 3) DSM 

and Orthomosaic Generation, is the generation of Digital surface model and automatic 

blending of Orthomosaic images.  

 

 

 
Figure 2.8 Pointcloud generated in Pix4Dmapper 

 

To create the orthomaiaic Pix4Dmapper automatically blends images matches. Pix4Dmapper 

offers manual scene editing to further increase the match accuracy for each image (Figure 

2.9). This post processing step allows the user to select the image, correct brightness and alter 

the image projection model (either orthoimage or planar image). The Whatipu site is 

relatively flat terrain, therefore the planar projection produced more accurate image blending 

results.  
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Figure 2.9 Mosaic Editor with Orthoimage View 

 

 

 

Aerial Image Corrections 

 

The aerial imagery collected in this project was not intended for automatic classification and 

therefore calibration is not necessary. If radiometric calibration was to be done, calibration 

targets should be captured under same conditions as the imagery. Additionally, accurate 

determinations of the camera sensor parameters are required. The specific spectral 

characteristics of the red green blue image elements are not disclosed by Sony at this time. 

Atmospheric corrections are also not required due to the small distance between the sensor 

and ground (flight altitude 40-50m). 
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Satellite Image Pre-processing and Preparation 

 

Imagery to be used in spectral based classifications should be converted to a format that is 

compatible for comparison with other data types. This conversion process requires the 

calibration from the DN data to radiance at a minimum and then further calibration to 

reflectance. These corrections are made to account for the variation in relative positions of 

electromagnetic intensity, positioning of the sun, earth and sensor platform, and to obtain an 

absolute value for which spectral comparisons can be made.  

 

All corrections applied to satellite imagery products were done using either standalone tools 

or workflows available in the standard package and modules of ENVI software (ITT 

Visualization Information, 2010), unless otherwise mentioned. 

 

In general, the steps used to derive a useful imagery product are as follows: 

  

 Spatial Subset 

 Geometric Correction 

 Radiometric Calibration  

 Atmospheric Correction (and conversion to Reflectance) 

 Mask Generation 

 Pan-Sharpening 

 Image Transformation 

 

 

Spatial Subset 

 

The image products were received as entire scenes that included area beyond that of the 

scope of this research project. To avoid long processing times the scenes were subset to an 

area that covered the extent of the study site (5.6km by 3km) prior to corrections and 

classifications were applied.  This was done using the image subset tool in ENVI.  

 

Geometric Correction 

 

The WV-2 & WV-3 products are delivered geometrically corrected by DigitalGlobe, 

however, because a coarse DEM and terrain corrections were applied, it is not suitable for 

orthorectification (DigitalGlobe, 2014). Instead, the Image Registration workflow in ENVI 

was used to geometrically align the two satellite scenes with different geometries, to enable 

accurate spatial comparison of the classification outputs (Fig. 2.10). The geometric correction 

co-registers images by using an automated correlation-based identification of image ‘‘tie 
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points’’ with a maximum RMSE of 2 m and a Delaunay triangulation transformation 

algorithm that warps the two images (Richards, 1999). The image with the viewing angle 

closer to nadir (SO1; 2011) was selected as the base. Tie points were manually checked, 

edited, and added to, to improve registration. To match the spatial resolution of WorldView-2 

with WorldView-3 imagery for standardised imagery interpretation, WorldView-3 samples 

were resampled to 2m m pixel size using the nearest neighbor approach. 

 

 
Figure 2.10 (a) Original georectified WorldView satellite datasets supplied by DigitalGlobe, 

note the asymmetric georectification misalignment due to topography and different viewing 

angles. This issue is addressed in (b) with ENVI’s Image-to-Image Registration workflow. 

Top: WV-3 2015 imagery. Bottom: WV-2 2011 imagery. 

 

 

Radiometric Calibration 

 

The WV-2 & WV-3 Standard 2A image products are provided as pre radiometrically 

corrected image pixels (DigitalGlobe, 2014). These are calculated as a function of the 

radiance that enters the telescope and instrument conversion of that radiation in to digital 

numbers (DN) (Figure 2.11 a and 2.12 a). However, the DN pixel values are unique to the 

sensor and require further radiometric calibration to make image comparisons. The image 

pixels were converted to top of atmosphere spectral radiance (Figure 2.11 b and 2.12 b), 

which refers to the spectral radiance entering the telescope aperture at the WV-2 or WV-3 

altitude of 770 km. The image pixels were then rescaled and formatted to make them 

compatible with the atmospheric correction module. The top of atmosphere radiance 

correction was computed using ENVI’s Radiometric Calibration tool, which recognises 

WorldView image types and automatically enters metadata inputs. This correction uses the 

following equation (Updike & Comp, 2010):  

(a) (b) 
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𝐿𝑃𝑖𝑥𝑒𝑙,𝐵𝑎𝑛𝑑 = 𝑎𝑏𝑠𝐶𝑎𝑙𝐹𝑎𝑐𝑡𝑜𝑟𝐵𝑎𝑛𝑑 ∗ 𝑞𝑃𝑖𝑥𝑒𝑙,𝐵𝑎𝑛𝑑
 

 

Where 𝐿𝑃𝑖𝑥𝑒𝑙,𝐵𝑎𝑛𝑑  represents the top-of-atmosphere spectral radiance image, 

 𝑎𝑏𝑠𝐶𝑎𝑙𝐹𝑎𝑐𝑡𝑜𝑟𝐵𝑎𝑛𝑑  is the radiometric calibration factor for a given band, and 𝑞𝑃𝑖𝑥𝑒𝑙,𝐵𝑎𝑛𝑑 is 

the given radiomterically corrected image pixels. All of these parameters can be found in or 

derived from information located in the Metadata (.Imd) file provided by the supplier. The 

resultant images are in the units of [W.m-2.sr-1.μm-1]. 

 

Atmospheric Correction 

 

The images were then atmospherically corrected using the ENVI Modtran based, Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLASSH) atmospheric correction 

module. FLAASH offers several options including, solar position, water and aerosol 

correction and atmospheric geographically dependent model schemes. In this study, the rural 

aerosol correction scheme was applied using recommended setting specifically for WV-2 

data (Exelis Visual Information Solutions, 2013). Visibility was set at 100km and 40km for 

the 2011 WV-2 and 2015 WV-3 scenes due differences in image clarity and to reduce the 

occurrence of negative pixels. The image pixel values were additionally scaled from radiance 

to surface reflectance (Figure 2.11 c and 2.12 c). Reflectance is the ratio of the radiance 

(energy received by the telescope) to irradiance (energy directed towards the earths surface). 

Furthermore, the surface reflectance is the reflectance of the surface of the earth, achieved by 

removing noisy radiation and irradiative artifacts. Correcting for atmospheric noise is the 

standard by which images captured at different times and by sensors can be compared and 

qualitative information about features on the earth can be extracted (Updike & Comp, 2010).  
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Figure 2.11 WorldView-2 (2011) imagery DN to Reflectance conversion results shown using 

the same contrast stretch algorithm;  (a) original image, (b) ToA radiance image and (c) 

FLAASH surface reflectance image.  

 

 
Figure 2.12 WorldView-2 (2011) Spectral response curve of image features; (a) DN 

response, (b) ToA radiance and (c) FLAASH surface reflectance. Feature classes; ( ) 

freshwater, ( ) un-vegetated sand, ( ) grassland, ( ) treeland, ( ) rushland. 

 

In order to make accurate comparisons of multi-date imagery and of spectral signatures of 

WorldView imagery pixels with the groundbased spectral reflectance signatures the 

atmospheric correction FLAASH was applied. The 2011 WV-2 imagery output was 

successfully producing reflectance responses consistent with expected reflectance features. 

However, a satisfying output could not be achieved with the 2015 WV-3 imagery despite 

using various settings for atmospheric and aerosol models and other parameters. Although the 

atmospheric noise reduction is apparent, with haze reduction and colour correction (Figure 

2.13 b and c). The coastal band (400-450nm) and blue band (450-510nm) values were 

uncharacteristically high (Figure 2.14). Other methods such as empirical line correction and 

QUAC (Quick Atmospheric Correction) in ENVI were also attempted; however, these efforts 

(a) (c) (b) 

(a) (c) (b) 
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resulted in additional errors that could not be explained. More thorough investigation was 

beyond the timeframe of this research. 

 

 
Figure 2.13 WorldView-3 (2015) imagery DN to Reflectance conversion results shown using 

the same contrast stretch algorithm;  (a) original image, (b) ToA radiance image and (c) 

FLAASH surface reflectance image. 

 

 
 

Figure 2.14 WorldView-2 (2011) Spectral response curve of image features; (a) DN 

response, (b) ToA radiance and (c) FLAASH surface reflectance. Feature classes; ( ) 

freshwater, ( ) un-vegetated sand, ( ) grassland, ( ) treeland, ( ) rushland. 

 

 

 

Mask Generation 

 

Two masks were created to exclude pixels outside of the study area and to remove noise from 

the processing of classifications algorithms used to identify features of interest. Masking 

(a) (b) (c) 

(a) (c) (b) 
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helps achieve an accurate classification model by removing extraneous image information 

and reducing the processing time.  

 

A mask polygon defining the Whatipu wetland duneland boundary was created in ArcGIS 

and applied to the imagery in ENVI. This mask was applied to both Time-1 (2011) and Time-

2 (2015) imagery. 

 

The second mask was used to remove shadow pixels from classification processing. Only the 

WV-2 2011 image shadowing warranted the use of masking. Shadows are caused by either, 

areas of objects that don’t receive equal illumination or shadows that are cast by the direction 

of the light source. In this study shadows of interest are those that are cast from elevated 

natural features. ENVI band math tool was used to calculate a shadow detection index (SDI) 

image developed specifically for WV-2 imagery (Shahi, Shafri, & Taherzadeh, 2014). The 

SDI utilises three bands (Blue, NIR1, and NIR2) from WV-2 imagery to effectively extract 

shadow pixels whilst distinguishing shadows from dark objects. The Shadow Detection 

Shadow can be calculated using the following equation:  

 

𝑆𝐷𝐼 =
𝑁𝐼𝑅2 − 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅2 + 𝐵𝑙𝑢𝑒
− 𝑁𝐼𝑅1 

 

The resulting SDI image was then subjected to a two-way classification (shadow vs. non-

shadow) using the Support Vector Machine (SVM) classifier used by the creators of the 

index. The extracted shadows were then converted to ROI’s for use as a mask in vegetation 

classification processing.  

 

 

Pansharpening 

 

Pansharpening is the process of image fusion between low-resolution multispectral imagery, 

and hyperspectral imagery, with high-resolution panchromatic (grey scale) image by 

resampling to the high-resolution image. To sharpen the WV-2 and WV-3 low-resolution 

multispectral images with their respective high-resolution panchromatic images, I used a 

nearest neighbor diffusion (NNDiffuse) pan-sharpening algorithm available in ENVI that is 

shown to preserve both spatial and spectral features of imagery (Sun, Chen, & Messinger, 

2014). The pan-sharpened result was used during training and validation sample collection. 
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Image Transformation 

 

The image transformation implemented was a Normalized Band Indices. The Normalized 

Vegetation Index (NDVI) is a commonly used vegetation index exploiting spectral 

characteristics deterministic of vegetation responses.  These narrow band indices are useful in 

that they take advantage of spectral reflectance/absorbance features of vegetation. The NDVI 

ratio incorporates the Red band, which represents the lower reflectance response from 

vegetation and the NIR band, which represents the higher reflectance response of vegetation. 

The WorldView sensors have available two NIR bands. In this study the NIR2 band was used 

in the NDVI ratio as this band typically shows higher values than traditional NIR band values 

and usually produces a higher NDVI ratio (Wolf, 2010).  

 

𝑁𝐷𝑉𝐼 =
(𝑅𝑒𝑑 − 𝑁𝐼𝑅2)

(𝑅𝑒𝑑 + 𝑁𝐼𝑅2)
 

 

Fortunately, the error associated with the atmospheric correction of WorldView-3 2015 

dataset is avoided here, as the error did not appear to affect the Red and NIR bands. In this 

study, I calculated NDVI values using the Red (660nm) and NIR-2 bands to test the spectral 

separability of our target classes based only on narrow band NDVI scores.  
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2.5 Data Processing, Post Processing and Analysis 
 

All outcomes developed in this section will be presented in the Results Chapter (Chapter 4).  

 

 Field-based Spectral Reflectance Data Analysis 

 Region of Interest Analysis (training dataset) 

 Satellite Image Classification techniques 

 Satellite Image Classification processing 

 Accuracy Assessment (validation dataset) 

 Classification Post-processing 

 Change Analysis 

 

 

Field-based Spectral Reflectance Data Analysis 

Spectral Variability  

 

To assess the separability of common species at Whatipu the mean spectral signatures and 

spread for each species, were plotted against each other. This allowed a visual assessment of 

the amount of variability within a species and easy determination of the conflict that each 

species has with other species. We can therefore make qualitative determinations about the 

spectral separability of each species and about the usefulness of the spectral signatures in 

classification processing for imagery multispectral of Whatipu. 

 

Comparison of Simulated Spectra with Satellite Spectra 

 

The simulated spectral signatures and satellite-derived signatures were directly compared 

with satellite derived spectral signatures. I compared the spectral information for a subset (n= 

4) of species that matched regions of interest for classification processing. This included, 

Apodasmia similis, Eleocharis acuta, Ulex europaeus, and Pennisetum clandestinum. The 

objective was not to conduct an in-depth analysis comparison, but rather to evaluate the 

spectral response of the vegetation in the different bands to determine the correlation of 

spectra for the sensors to draw general conclusions about the potential for up-scaling the 

spectral signatures in future studies. 
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Training Data Analysis 

 

Training Data Separability  

 

Following the collection of training samples, it was important to ascertain if the samples 

contain information that would accurately discriminate between each class. To determine the 

separability of classes I used the n-D Visualizer in ENVI. The visualizer plots the distribution 

of points in 2-dimensional space, where each class population should separate out into 

distinct groups and should not overlap. If there is overlap, classes should be edited to remove 

overlapping pixels or restructuring of the classification scheme.  

 

Additionally, I used ENVI’s ROI separability tool to identify the samples that were poorly 

separated from other classes. This tool computes the spectral separability of classes using the 

Jeffires-Matusita (JM) and Transformed Divergence (TD) separability measures. Both 

measures produce a value range of 0 to 2.0 and indicate how well each class pair statistically 

separate. Classes with very low separability value (less than 1) were considered for merging.  
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Satellite Image Classification Processing 

 

ENVI 5.2 supervised classification algorithms were used to identify features of interest 

within the wetland system at Whatipu. The classifications techniques were used to identify 

image pixels that represent features on the ground by matching image statistics with the 

training samples chosen. The following supervised classifications were applied to all 8 bands 

supplied with the WorldView imagery products: 

 

 Maximum Likelihood classification 

The maximum likelihood classification (MLC) is the most common supervised classification 

method used. MLC assumes that the data for each class is normally distributed and then 

calculates the probability that a single pixel belongs to one of the classes defined. It classifies 

all image pixels unless otherwise set in the threshold. No threshold was used in this study.  

 

 Minimum Distance 

The minimum distance classification algorithm uses the average vector of each end-member 

and calculates the Euclidean distance from each of the unknown pixels to the mean vector for 

each class. The images pixels are classified to the nearest class that was selected via the 

training samples (Exelis Visual Information Solutions, 2010). Pixels that fall outside of the 

specified range will remain unclassified. 

 

 Mahalanobis Distance 

The Mahalanobis Distance classification method available in ENVI was used to classify the 

2011 MSI imagery based on regions of interest. The method is a direction sensitive classifier 

that uses statistics for each class. This method is similar to the MLC, although makes the 

assumptions that all classes have equal covariance (Exelis Visual Information Solutions, 

2010). This method is therefore much faster than the MLC method.  

 

For each of the WorldView datasets the same general classification workflow was employed. 

1): import reflectance image, 2): apply Whatipu boundary mask and shadow mask (Time-1 

WV-2 image only), 3): import training samples and convert to ROI’s, 4): select classification 

tool and run the algorithm using specific algorithm parameters: export classification to vector 

file and again to shapefile.  
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Accuracy Assessment 

 

Confusion Matrix 

 

A Confusion matrix was used to calculate the accuracy of the classification. This determines 

the accuracy of the classification by comparing the validation samples with the classification 

results. This was used to get the producer and user accuracies of each class and were 

compared using the Kappa coefficient as well as the overall accuracy. Overall accuracy is the 

division of the total number of correct pixels by the total number of pixels. The producer’s 

accuracy is the total number of correct pixels in a category divided by the number of pixels of 

that category as derived from the reference data. The user’s accuracy is the total number of 

correct pixels in a category divided by the total number of pixels of that category as derived 

from the classification data or map data. The overall kappa coefficient indicates how well the 

classification results agree with the reference data. 

 

The accuracy assessment was undertaken using ENVI’s Confusion Matrix tool. This is a 

standard technique for assessing accuracy with limited or no ground control points. To 

qualify for comparison of classification results in change analysis, land cover classes are 

required to meet accuracy thresholds of 85% minimum overall, and 70% per-class accuracy. 

Data not reaching this criterion will require reclassification, as per Thomlinson et al., (1999). 

 

Post classification processing 

 

Following the classification and accuracy assessment the most accurate result was identified 

and run through an automatic cleanup process to remove meaningful objects and facilitate 

GIS handling. This was done using the majority class (3x3) tool in ENVI.  

 

The final classification results for the WV-2 (2011) and WV-3 (2015) were also manually 

processed to remove misclassifications. This was done by exporting the classification results 

from ENVI to ArcMap and manually combing over the classification vectors and checking 

the accuracy of the automatic classifier. Where there is obvious misclassification the class 

was changed to an appropriate class. The addition of an un-classified class was made to 

account for areas of bare rock and any other features that could not accurately be attributed to 

a class from visual interpretation of imagery. 
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Change Analysis 

 

There is a large range of methodologies for change detection. Change detection procedures 

can be grouped under the broad categories characterized by the processing procedures and 

analysis techniques used to identify significant change: (1) image enhancement, (2) multi-

date classification comparison, and (3) comparison of independent classifications (Hussain et 

al., 2013). The image enhancement approach combines the imagery from different dates and 

involves the subtraction of selected transformed bands to produce a single band image 

difference results. The direct multi-date comparison based on single analysis of the combine 

multi-date images. The comparison of independently classified imagery is the comparison 

classification results of two images of different dates in order to identify specific changes in 

cover.  

 

ENVI and ArcMap were used to perform change detection analysis of the WorldView 

imagery products. All analysis was focused towards the detection of the vegetation change at 

Whatipu, as opposed to geomorphological changes. Due the difficulties involved in change 

detection techniques it must be noted that changes might sometimes arise from variances in 

illumination conditions (regardless of preprocessing corrections), wetness (soil moisture, 

pond/lake levels), shadow and colour.  

 

Change in cover between Time one (2011) and Time two (2015) was calculated using the 

following methods; (1) image differencing using multi-date (t1 and t2) NDVI images (image 

enhancement), and (2) direct multi-date classification comparison (independent classification 

comparison). The NDVI grouping was only used as an initial step to assess vegetative 

change. To characterize temporal trends in wetland loss and gain, I calculated amount of 

wetland gain and loss and net change (gain–loss), for each of thirteen clandcover classes of 

the multi-date imagery final classifications. 
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2.6 Case Study  
 

This case study investigated the use of high-resolution imagery from Un-manned Aerial 

Systems (UAS) and satellite, for visual interpretation and the detection of invasive Pampas 

(Cortaderia spp.) (Figure 2.15). Mapping involved a number of tasks including visual 

identification of features within the study area, delineation and classification of features. 

Each level required a level of standardization to produce consistent datasets. Additionally it is 

assumed that there is no need for field verification. This is because the low altitude imagery 

seeks to replace field verification; its high spatial scale allows for identification of the target 

species at a standard equal to that of field mapping.  

 

 
Figure 2.15 Pampas (Cortaderia Selloana) specimen at Whatipu 

 

 

Visual Interpretation 

 

The delineation of Pampas through visual image analysis formed the foundation for deriving 

classification results. Consequently, the analysis placed emphasis on the quality of image 

interpretation. The basic elements that aided visual image analysis and identification of 

features (i.e. tone, size, texture, pattern, shadow, and geographic location) were applied to 

Cortaeria sp. (Table 2.9) from Figure 2.16 nadir image characteristics.  
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Table 2.9 Image interpretation elements applied to Pampas 
Image elements Element description Pampas description (nadir perspective) 

Tone and colour 
Relative brightness or 

colour of image pixels 

Leaf: light bluish-green to dark green  

Leaf base: beige/brown 

Flower head: white through to pink/purple & dirty 

white 

Size 
Size of the object 

relative to other objects 
Up to 4m in diameter and 3-4m+ in height 

Shape 
General outline of 

objects 
Often circular and/or ellipse 

Texture 

Smoothness or 

roughness caused by 

change in tone 

Coarse; central plumage and leaf ring 

Pattern Spatial arrangement Systematic; linear-curvilinear 

Geographic Location  Habitat Colonizer on open/bare ground 

Association 

Position relative to 

other object in the 

landscape 

Relatively wet areas (inside curve of flowing water 

body) is often on old foredune -shrubland belts 

 

 

 
Figure 2.16 Pampas (Cortaderia Selloana) specimen at Whatipu, surrounded by Kikuyu 

grassland (Pennisetum clandestinum) from an aerial (nadir) perspective. Taken from low-

altitude UAS aerial imagery 

 

A source of potential of miss-identification was with the morphologically similar indigenous 

toetoe (Austroderia toetoe), which Pampas is often confused. However, no Toetoe was 

identified during field observations made in this study and a vegetation study conducted in 

1996 found none in the southern section of Whatipu (Pegman & Rapson, 2005) that includes 

the area of this case study. For the purpose of this case study it is assumed that only Pamaps 

is present in this section of the wetland, as accurate identification from aerial image 

interpretation between the two, even at 6cm resolution, is considered difficult.  

Digitization – Manual classification 

 

Manual digitization was done in ArcMap; Polygons only included live Cortaderia spp. 

specimens. To reduce interpretation bias when comparing imagery classification results, I 

digitized Pampas successively from lowest resolution (0.3m pan-sharpened satellite image), 

to high spatial resolution (0.06m UAS aerial imagery).  
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Comparison  

 

Three datasets were be compared in this case study: 

 

1. Satellite Pampas polygons (derived from manual interpretation and digitization of 

0.3m resolution WV-3 pan-sharpened satellite imagery). 

2. UAS Pampas polygons (derived form manual interpretation and digitization of low-

altitude 0.06m resolution UAS aerial imagery). 

3. Exotic shrubland class (derived from automatic classification of 2m resolution WV-3 

multispectral satellite imagery). This class will undoubtedly include significant error, 

as it also includes other exotic species common at Whatipu (e.g. Gorse and Lupin). 

 

 

Miss classification (error) was removed from the satellite-derived datasets by extracting 

matches when overlapped with the UAS dataset. The “Exotic shrubland” classifications were 

also clipped to the UAS Pampas polygons in ArcGIS to remove misclassified polygon area. 

 

The spatial statistics (e.g. area) of digitized polygons (Satellite and UAS) and the “Exotic 

shrubland” class were then compared with each other. The number of individual pampas 

specimens could not be compared due to the varied spatial scales of datasets and to avoid 

clusters of individual Pampas being misrepresented.    
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3 Results 

 

3.1 Spectral Reflectance Data 
 

Spectral Properties of Plants 

 

The spectra collected show typical features of vegetation (Figure 3.1): low reflection in the 

visible with a noticeable peak in the green around 570 nm for most species. The exceptions to 

this are the brownish colour of rushland and reedland species which exhibit a sloping rise in 

the blue through to red wavelengths. The red edge is found around 690 nm where a steep rise 

begins and levels out onto the NIR plateau around 750 nm.  

 

 
Figure 3.1 Features of a typical vegetation curve. Plotted is a ground-based signature of 

Kikuyu grass (Pennisetum clandestinum), taken at Whatipu. 

 

WorldView Simulated Signatures 

 

The WorldView simulation resulted in a drastic data reduction, creating 8 new bands 

(WorldView; 1-8) from 750 wavelengths of each ground based spectroradiometer spectra. 

Figure 3.2 compares the simulated spectral signature of Apodasmia similis for the 

WolrdView sensor against the un-modified ground based spectral signature captured by an 

Asd Spectroradiometer. The WorldView simulation results in a good fit with the raw data, 

although some features have been lost, such as, the NIR shoulder and depth of the chloropyll 
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absorption in the Red region. While identiifcation of species using the simulated WorldView 

data would be more difficult than using the near-continous spectroradiometer data, it does 

feature datapoints in the blue, green, red, yellow, and NIR that are meaningful for vegetation 

studies. 

 

 
Figure 3.2 Raw Asd Spectroradiometer signature (grey) and WorldView simulated signature 

(black) of Apodasmia similis. Underlying graphic represents WorldView sensor band widths. 

 

Spectral Signatures Comparison 

 

Figure 3.3 (a), (b) and (c) shows the mean simulated WorldView spectral reflectance 

signature for fourteen native and exotic species found at Whatipu. Comparison of the spectral 

curves show the rushes and sedges (a) generally had lower near-infrared reflectance than 

other species. Monocotyledonous trees and grasses (c) typically had higher reflectance in 

visible wavebands than other species. Although several species had distinct NIR reflectance, 

most species have similar reflectance, making visual discrimination based on their reflectance 

curves difficult. 
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Figure 3.3 Mean spectral reflectance at simulated WorldView wavebands of 14 common 

native and exotic species found at Whatipu. (a): rushes and sedges, (b): dicotyledonous trees, 

shrubs and lianes, and (c): monocotyledonous trees and grasses. Codes used to designate 

species on (a) are: APOsim, Apodasmia similis; ELEacu, Eleocharis acuta; FICnod, Ficinia 

nodosa; SCHtab, Schoenoplectus tabernaemontani. Codes used to designates species on (b) 

are: COProb, Coprosma robusta; LEPsco, Leptospermum scoparium; LUParb, Lupinus 

arboreus; MELram, Melicytus ramiflorus; MUEcom, Muehlenbeckia complexa; ULEeur, 

Ulex europaeus. Codes used to designates species on (c) are: CORsel, Cortaderia selloana; 

CORaus, Cordyline australis; PENcla, Pennisetum clandestinum; PHOten, Phormium tenax. 

 

(a) 

(b) 

(c) 
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The spectral reflectance variation within each species at particular wavebands also shows that 

most species have similar reflectance profiles, indicated by the amount of overlap between 

them (Figure 3.4). The WorldView near-infrared-2 waveband (NIR2) was chosen because 

near infrared is typically associated with high discrimination between species. The amount of 

intra-species variation differs between species. Comparison of these species reveals that the 

intra-species variability and the overlap between each species at NIR2 is too great to 

successfully differentiate and therefore is not optimal for species recognition. However, 

several species had reduced intra-species variability and little overlap with distinct 

reflectance values indicating that this waveband is suitable for some species where 

overlapping species are not present. 

 

 
Figure 3.4 Spread of spectral reflectance at WorldView NIR2 band (860 - 950nm) of 14 

common native and exotic species found at Whatipu. (a): rushes and sedges, (b): 

dicotyledonous trees, shrubs and lianes, and (c): monocotyledonous trees and grasses. Codes 

used to designate species on (a) are: APOsim, Apodasmia similis; ELEacu, Eleocharis acuta; 

FICnod, Ficinia nodosa; SCHtab, Schoenoplectus tabernaemontani. Codes used to 

designates species on (b) are: COProb, Coprosma robusta; LEPsco, Leptospermum 

scoparium; LUParb, Lupinus arboreus; MELram, Melicytus ramiflorus; MUEcom, 

Muehlenbeckia complexa; ULEeur, Ulex europaeus. Codes used to designates species on (c) 

are: CORsel, Cortaderia selloana; CORaus, Cordyline australis; PENcla, Pennisetum 

clandestinum; PHOten, Phormium tenax.  

(a) (b) (c) 
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3.2 UAS Results 
 

To obtain 15,000 two megapixel aerial images, covering 115 hectares, from a flight altitude 

of 50m, it took approximately 250 minutes of flight. I obtained clear images with sufficient 

overlap to create a high-resolution orthomosaic and digital surface model (DSM) in 

Pix4Dmapper (Figure 3.5). Processing the ~3400 images took roughly 48 hours, producing a 

very high resolution image product of 6cm spatial resolution, sufficient to visually identify 

vegetation by structural class, some down to species level.  

 

 

Figure 3.5 Orthomosaic of southern Whatipu. 
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3.3 ROI Spectral Separability 
 

The supervised classification training samples were analysed prior to classification 

processing to determine their spectral separability. The separability between the land cover 

classes were analysed visually using feature space (2-d scatterplots). The statistical 

separability of each training sample in the form of region’s of interest (ROI) was measured 

by calculating the Jeffries Matusita (JM) and Transformed Divergence (TD) distances. The 

analysis was carried on the 2011 and 2015 region of interest data.  

 

The 2-dimnesional scatterplots of the ROI’s for both time datasets are shown in Figure 3.6. 

The results show that most vegetation classes contain significant overlap. In both datasets, the 

overlap between unvegetated surfaces (water and unvegetated sand) and the sparsely 

vegetated surfaces (Carex pumila sandfield and Spinifex sericeus/Ficinia spiralis duneland) 

is generally minimal, the exception being Time-2 (2015) datasets unvegetated sand and 

Spinifex sericeus/Ficinia spiralis duneland classes.  

 
 

Figure 3.6 NDVI (Y axis = NIR2 band and X axis = Red band) feature space scatterplots 

showing the spread of values associated with 13 region of interest training samples. (a) 2011 

WorldView-2 Imagery and (b) 2015 WorldView-3 Imagery. (--) Unvegetated sand, (--) 

Carex pumila sandfield, (--) Spinifex/Pingao duneland, (--) Pennisetum clandestinum 

grassland, (--) Openwater, (--) Machaerina articulate reedland, (--) Schoenplectus 

tabernaemontani reedland, (--) Typha orientalis reedland, (--) Apodasmia similis rushland, (--

) Eleocharis acuta rushland, (--) Exotic shrubland, (--) Native shrubland, (--) Ulex europaeus 

shrubland.  

 

 

 

(a) (b) 
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The JM and TD distances presented in Table 3.1 show reasonable separability was achieved 

with both WV-2 ROI data and WV-3 ROI data with mean JM distances of 1.7773 and 1.7077 

respectively. A JM distance of 2.0 indicates full separability and a value of ~1.9 is good 

separability.  

 

Table 3.1 Statistics of separability analysis. 

Distance Measure 2011 ROI 2015 ROI 

JM min 0.4697 0.8734 

JM max 2.0000 2.0000 

JM mean 1.7077 1.7773 

TD min 0.5078 1.0538 

TD max 2.0000 2.0000 

TD mean 1.8238 1.8882 

 

Comparison of Simulated Spectra with Satellite Spectra 

 

WorldView imagery spectral signatures were derived from ROI’s and compared simulated 

WorldView sensor (field based) spectral signatures to assess the utility of the WorldView 

reflective bands for obtaining realistic reflectance measurements, shown in Figure 3.7. The 

satellite-derived signatures are atmospherically corrected to match surface conditions. We 

can see that the WorldView-2 and simulated reflectance show a good agreement for bands in 

the visible regions but the agreement deteriorates at the near-infrared band. In addition, the 

WorldView-3 signatures are generally larger than the simulated signatures for the available 

WorldView bands; this is likely an artifact of errors encountered during atmospheric 

correction. 
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Figure 3.7 Comparison of simulated WorldView ( ), WorldView-2 ( ) and WorldView-

3 ( ) spectral signatures our dominant vegetation types at Whatipu. (a) Apodasmia similis, 

(b) Pennisetum clandestinum, (c) Eleocharis acuta, (d) Ulex europaeus. 

 

 

 

 

 

  

(a) 

(c) 

(b) 

(d) 
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3.4 Satellite Classifications 
 

Supervised Classifications 

 

Figure 3.8 shows the classification results for the 2011 WorldView-2 supervised 

classification techniques used in this study. All classifiers were able to identify land cover 

beyond the area of the ROI’s, although the accuracy of each differs substantially.  

 

The Minimum Distance (Figure 3.8 a) was inaccurate in classifying the significant portion of 

vegetation and unvegetated classes of the Whatipu wetland dune complex for 2011 

WorldView-2 imagery (overall accuracy: 69.0%, Table 3.2). These results were particularly 

inaccurate in separating Typha orientalis reedland from Native and Exotic shrubland classes. 

Only six of the thirteen classes produced accuracies greater than the 70% threshold. 

Unvegetated classes (Openwater and Unvegetated sand) produced the highest individual 

accuracies, which were both greater than 90%. 

 

The Mahalanobis Distance algorithm (Figure 3.8 b) classified classes with increased overall 

accuracy of 77.0%. These results show similar inaccuracies as the Minimum Distance 

algorithm, where Typha orientalis reedland from Native and Exotic shrubland classes showed 

significant misclassification (Figure 3.8 b). Although slightly improved individual class 

accuracies with nine of the thirteen classes above the threshold of 70%. Again, unvegetated 

classes produced the highest individual producer accuracies (>99%, Table 3.2). 

 

The Maximum Likelihood classification algorithm was a significant improvement over the 

other two methods (Figure 3.8 c), with an overall accuracy of 91.7%. Typha orientalis 

reedland and Exotic shrubland classes were the worst performing classes attaining class 

accuracies of 79 and 78% respectively. Eleven of the thirteen classes achieved producer 

accuracies greater than 80% (Table 3.2). 
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Figure 3.8 Whatipu Scientific Reserve, showing 2011 WorldView-2 supervised 

classifications. (A. Minimum Distance; B. Mahalanobis Distance; C. Maximum Likelihood). 

 

  

(a) (c) (b) 
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Table 3.2 Confusion matrix results of 2011 MSI Supervised classifications. 

Classification 

Type 
Class 

Producer 

accuracy 

(%) 

User 

accuracy 

(%) 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

M
in

im
u

m
 d

is
ta

n
ce

 

Apodasmia similis rushland 84.91 83.65 

69.0553 0.6485 

Eleocharis acuta rushland 43.87 5.34 

Typha orientalis reedland 21.58 12.35 

Schoenoplectus tabernaemontani reedland 35.40 25.05 

Machaerina articulate reedland 42.03 37.31 

Pennisetum clandestinum grassland 80.15 54.79 

Native shrubland 17.06 45.29 

Exotic shrubland 38.77 73.17 

Ulex europaeus shrubland 16.11 27.29 

Spinifex sericeus/Ficinia spiralis duneland 73.61 94.05 

Carex pumila sandfield 73.07 51.46 

Openwater 99.80 98.87 

Un-vegetated sand 98.15 80.42 

M
ah

al
an

o
b

is
 D

is
ta

n
ce

 

Apodasmia similis rushland 88.96 86.99 

77.0295 0.7397 

Eleocharis acuta rushland 84.98 6.78 

Typha orientalis reedland 41.08 40.38 

Schoenoplectus tabernaemontani reedland 80.00 28.30 

Machaerina articulate reedland 35.75 73.93 

Pennisetum clandestinum grassland 78.84 88.57 

Native shrubland 59.80 85.75 

Exotic shrubland 26.14 62.93 

Ulex europaeus shrubland 75.98 40.87 

Spinifex sericeus/Ficinia spiralis duneland 79.45 95.97 

Carex pumila sandfield 79.76 54.35 

Openwater 99.32 94.96 

Un-vegetated sand 99.20 87.81 

M
ax

im
u

m
 L

ik
el

ih
o

o
d

 

Apodasmia similis rushland 91.71 96.91 

91.7232 0.9059 

Eleocharis acuta rushland 96.05 35.37 

Typha orientalis reedland 79.11 68.19 

Schoenoplectus tabernaemontani reedland 82.92 61.89 

Machaerina articulate reedland 93.08 84.51 

Pennisetum clandestinum grassland 90.84 97.40 

Native shrubland 81.82 93.48 

Exotic shrubland 78.55 86.01 

Ulex europaeus shrubland 85.73 62.70 

Spinifex sericeus/Ficinia spiralis duneland 96.96 95.92 

Carex pumila sandfield 89.15 76.27 

Openwater 99.70 99.95 

Un-vegetated sand 98.81 99.33 
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Figure 3.9 shows the classification results for the 2015 WorldView-3 supervised 

classification techniques used in this study. The results were similar to the 2011 WorldView-

2 dataset supervised classifications, accuracies increased (Table 3.3) from Minimum Distance 

(overall accuracy: 70.6%), to Mahalanobis Distance (80.1%) to Maximum Likelihood 

(92.4%). 

 

Again, the minimum Distance was inaccurate in classifying the majority of land cover classes 

and the Mahalanobis Distance produced reasonable classification. Common sources of 

misclassification were reedland and rushland communities and between Typha orientalis 

reedland and the Native forest and Exotic forest shrubland classes. Both classifications did 

however produce good results for Un-vegetated classes, especially Openwater class.  

 

 
Figure 3.9 Whatipu Scientific Reserve, showing 2015 WorldView-3 supervised 

classifications. (A. Minimum Distance; B. Mahalanobis Distance; C. Maximum Likelihood). 

 

 

  

(a) (c) (b) 
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Table 3.3 Confusion matrix results of 2015 MSI Supervised classifications. 

Classification 

Type 
Class 

Producer 

accuracy 

(%) 

User 

accuracy 

(%) 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

M
in

im
u

m
 d

is
ta

n
ce

 

Apodasmia similis rushland 87.71 89.98 

70.6006 0.6656 

Eleocharis acuta rushland 73.56 12.94 

Typha orientalis reedland 0.70 0.72 

Schoenoplectus tabernaemontani reedland 36.43 14.76 

Machaerina articulata reedland 59.65 48.66 

Pennisetum clandestinum grassland 86.77 76.48 

Native shrubland 12.68 85.64 

Exotic shrubland 42.45 60.27 

Ulex europaeus shrubland 82.28 26.37 

Spinifex sericeus/Ficinia spiralis duneland 86.87 94.97 

Carex pumila sandfield 61.84 57.28 

Openwater 97.56 94.13 

Un-vegetated sand 87.34 69.82 

M
ah

al
an

o
b

is
 D

is
ta

n
ce

 

Apodasmia similis rushland 86.60 95.03 

80.1504 0.7738 

Eleocharis acuta rushland 93.68 12.96 

Typha orientalis reedland 14.17 17.90 

Schoenoplectus tabernaemontani reedland 74.48 24.27 

Machaerina articulata reedland 53.18 70.37 

Pennisetum clandestinum grassland 82.93 89.25 

Native shrubland 82.85 90.82 

Exotic shrubland 33.74 69.30 

Ulex europaeus shrubland 89.13 51.30 

Spinifex sericeus/Ficinia spiralis duneland 88.27 99.25 

Carex pumila sandfield 86.58 52.34 

Openwater 99.22 93.29 

Un-vegetated sand 98.84 73.45 

M
ax

im
u

m
 L

ik
el

ih
o

o
d

 

Apodasmia similis rushland 96.21 96.76 

92.4163 0.9128 

Eleocharis acuta rushland 100 44.85 

Typha orientalis reedland 75.24 71.91 

Schoenoplectus tabernaemontani reedland 78.09 65.61 

Machaerina articulata reedland 93.29 91.41 

Pennisetum clandestinum grassland 96.78 98.80 

Native shrubland 87.13 94.18 

Exotic shrubland 75.87 84.43 

Ulex europaeus shrubland 97.04 70.46 

Spinifex sericeus/Ficinia spiralis duneland 92.89 99.64 

Carex pumila sandfield 88.54 72.57 

Openwater 99.09 99.20 

Un-vegetated sand 99.81 89.00 

 

The Results of the 2011 and 2015 WorldView classifications indicate that the MLC algorithm 

is better equipped to classify wetland duneland vegetation. Not only were the overall 

accuracies considerably higher for the Maximum Likelihood than the Minimum Distance and 

Mahalanobis Distance, but also the individual producer and user accuracies for vegetation 

classes were higher. It was therefore decided that the Maximum Likelihood Classification 

results would be used in the change detection analysis.  
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General Vegetation and Habitat Patterns 

 

All classifications revealed a lot about the spatial distribution of vegetation land cover at 

Whatipu. Although the distribution of these classes has been investigated before (TCEC, 

2014), there is little information describing this in the public domain. Below general 

vegetation patterns and species associations are described in relation to their ecology and 

geography within the context of Whatipu wetland duneland system.  

 

The dominant Apodasmia similis rushland class occupies a brackish zone behind the active 

foredune that spans almost the entire length of Whatipu beach. This class often grades up-

slope from wet organic soils to dry sandy soils. Eleocharis acuta rushland is present amongst 

Pennisetum clandestinum grassland on permanently damp ground and along stream margins. 

Typha orientalis reedland is found on margins of ponds, lakes and slow flowing streams 

along the eastern edge of wetland. Schoenoplectus tabernaemontani reedland was found 

throughout the wetland often in ponds, lake or stream margins. Similarly, Machaerina 

articulata reedland was found throughout the wetland in dune depressions of either ponds or 

lakes. Many if not all of the reedland and rushland communities mix throughout the wetland. 

 

Pennisetum clandestinum grassland dominates many parts of the Whatipu complex, 

particularly in the southern section and at the bottom of the cliff.  This exotic grassland 

typically appears in damp depressions with scattered Eleocharis acuta. Young scattered 

shrubs (native and exotic), mature Cabbage tree (Cordyline australis) and exotic Pampas 

grass (Cortaderia spp.) are also found in this class. 

 

The native shrubland class is found on raised remnant rear dunes with organic topsoils and at 

the base of the cliff. Common species include Coprosma robusta (Karamu), Leptospermum 

scoparium (Manuka), Melicytus ramiflorus (Mahoe), Muehlenbeckia complexa, with 

scattered Phormium tenax (flax) and Cordyline australis (Cabbage tree). Ficinia nodosa 

(Knobbly clubrush) is mixed throughout. 

 

Exotic shrubland is found throughout the Whatipu complex, often on dryland soils on and 

behind the foredune, similarly found on rear old-dunes. Exotic shrubland is also scattered 

throughout the Apodasmia similis rushland. This class includes Cortaderia selloana, Lupinus 

arboreus and scattered Ulex europaeus. Also contains vegetation associated with a flat dune 
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plain at the northern end of Whatipu. The dune plain is predominantly native shrubland 

dominated by Ozothamnus leptophyllus and Ficinia nodosa shrubland. Although it does not 

fit the criteria of Exotic shrubland, it was poorly separated out during preliminary 

classifications and therefore was merged. Much like the exotic shrubland vegetation, Ulex 

europaeus shrubland (also exotic) was found throughout the Whatipu complex on remnant 

stabilized dunes. This class is mixed with the native and exotic shrubland vegetation, and 

scattered on the flat dune plain dominated by Ozothamnus leptophyllus and Ficinia nodosa 

shrubland.   

 

Spinifex sericeus/Ficinia spiralis duneland is native plant dominated dunelands vegetation 

common where there is a supply of coastal sands in association with wind action. The 

dominant Spinifex-Ficinia grassland occurs on the foredune at the front of the beach, whilst it 

also occurs on sand ridges and dunes scattered behind the foredune and at the rear of the 

beach. Carex pumila sandfield is relatively uncommon and occurs in restricted locations in 

the southern end of Whatipu. It was predominantly found in wet dune slacks behind the 

foredune transitioning into Spinifex sericeus/Ficinia spiralis duneland.  

 

Areas of open water occur throughout the wetlands in the form of flowing water (streams), 

ephemeral ponds and permanent dune lakes.  
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3.5 Wetland Vegetation Change from 2011 and 2015  
 

Only a small fraction of the Whatipu wetland and duneland complex underwent land cover 

changes between 2011 and 2015. The Normalised Difference Vegetation Index (NDVI) 

image (Figure 3.10) was used as an initial step to identify if change could be detected at 

Whatipu in the short timespan (4yrs) between the 2011 and 2015 imagery sets. This output 

highlights areas within the complex where changes are likely to have occurred by identifying 

any differences in radiance values at Red (660 nm) and near-infrared (950 nm) between the 

multi-temporal datasets. Bright areas indicate significant change, while dark areas indicate 

little to no change. Areas of open water appear to have undergone significant change from 

2011 and to 2015, even in areas where no water loss occurred. This is likely an artifact of the 

differences in radiance values reflected from the waters surface due to difference in sensor 

viewing angle. Areas of the un-vegetated sand also show a difference in NDVI values, 

possibly due to a change in water saturation of sand, as NDVI is sensitive to water content. 

Vegetation Change is slightly harder to identify. However there is some evidence of this on 

fringe areas of the foredune and rear dunes, and sandflats in the north, where bright pixels 

follow the contour of the beach, indicative of vegetative change (growth and/or expansion).  

 

 
Figure 3.10 NDVI difference image (2011 and 2015), contrast stretch was applied to 

highlight features 
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To identify specific land cover changes between the multi-temporal datasets the final 

manually edited supervised classification results (Figure 3.11) were compared. The multi-

date classification comparison identified areas specific to classes where change has occurred 

at the Whatipu complex. Of the area surveyed, 88ha of land cover underwent some form of 

change, either gain or loss, which represents 13.9% of the total study area (638ha) (Table 

3.4). The majority of classes have undergone some change between the two dates, either 

because of actual change or as an artifact of classification errors between the two imagery 

sets.  

 

 
Figure 3.11 Whatipu Scientific Reserve, showing final manually edited supervised 

classifications of 2011 WorldView-2 and 2015 WorldView-3 imagery.  

 

The “Spinifex sericeus/Ficinia spiralis duneland” at Whatipu have been subject to the most 

change in the last 4.5 years with a total decrease of 24.3 ha. This significant loss is the result 

of the increase in “Exotic shrubland” communities on sparsely vegetated sediments and 

expansion of “Apodasmia similis rushland” into wet sand hollows behind the foredune. 

Another significant decrease was seen in “Unvegetated sand” (7.5ha). This is particularly 

noticeable on the foredune and the rear dunes, especially on the rear dune located halfway up 
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the Whatipu complex. This decrease is a result of the expansion of colonising “Spinifex 

sericeus/Ficinia spiralis duneland” and “Exotic shrubland” classes. The decrease in 

“Eleocharis acuta rushland” (6.2 ha) is likely misclassification and confusion with the 

“Pennisetum clandestinum grassland” class. The decrease in “Openwater” of 2.6ha is in most 

localities can be attributed to the expansion of “Apodasmia similis rushland” and 

“Machaerina articulata reedland” classes. 

 

The largest increase in vegetation is attributed to the “Native shrubland” class (17.3ha). It is 

difficult to say how much of this change is actual change, and not caused by misclassification 

errors. However, maturation and broadening of native shrubland canopy and expansion into 

sparsely vegetated dunes or exotic vegetation classes has occurred in some areas. The large 

increase in “Apodasmia similis rushland” (11.1ha) is due to a combined decrease in “Spinifex 

sericeus/Ficinia spiralis duneland” and “Openwater” classes. The increase in “Exotic 

shrubland” (6.8ha) is due to expansion into the “Spinifex sericeus/Ficinia spiralis duneland”. 

The increase in “Pennisetum clandestinum grassland” (6.6ha) is likely a result of 

misclassification the with “Eleocharis acuta rushland” class. The “Machaerina articulata 

reedland” class increased by 2.6ha in areas previously of the “Openwater” class, through 

either expansion or densification. 

 

Table 3.4 Whatipu vegetation land cover change statistics. 

Class 

2011 2015 Gains and Losses 

Area 

(ha) 
Percent 

Area 

(ha) 
Percent 

Area 

(ha) 
Percent 

Apodasmia similis rushland 171.2 26.8% 182.3 28.5% 11.1 1.7% 

Eleocharis acuta rushland 9.0 1.4% 2.8 0.4% -6.2 0.9% 

Typha orientalis reedland 5.5 0.8% 5.5 0.8% 0 0.0% 

Schoenoplectus tabernaemontani reedland 6.6 1.0% 5.8 0.9% -0.8 0.1% 

Machaerina articulata reedland 16.8 2.6% 19.4 3.0% 2.6 0.4% 

Pennisetum clandestinum grassland 39.6 6.2% 46.2 7.2% 6.6 1.0% 

Native shrubland 48.8 7.6% 66.1 10.3% 17.3 2.7% 

Exotic shrubland 93.7 14.6% 100.5 15.7% 6.8 1.0% 

Ulex europaeus shrubland 29.7 4.6% 28.1 4.4% -1.6 0.2% 

Spinifex sericeus/Ficinia spiralis duneland 112.0 17.5% 87.7 13.7% -24.3 3.8% 

Carex pumila sandfield 4.14 0.6% 3.0 0.4% -1.14 0.1% 

Openwater 14.0 2.1% 11.4 1.7% -2.6 0.4% 

Un-vegetated sand 86.7 13.5% 79.2 12.4% -7.5 1.1% 

Unclassified 0.4 0.0% 0.2 0.0% -0.2 0.0% 

Total 638 100 638 100 88.74 13.9 

 

Figure 3.12 is an example area from within the wetland duneland complex at Whatipu to 

highlight some of the changes that have occurred in the last four years between 2011 and 

2015. We can see here that the “Apodasmia similis rushland” class replaces the decrease in 
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“Openwater” in 2011 in 2015. The “Apodasmia similis rushland” class also appears to have 

replaced some of the in “Exotic shrubland” class. Also evident here are increases in “Exotic 

shrubland” occurring in areas previously classified as “Spinifex sericeus/Ficinia spiralis 

duneland”. The shrubland communities “Exotic shrubland”, “Ulex europaeus shrubland” and 

“Native shrubland” (Figure 3.12) appear to have changed considerably, this is likely a result 

of misclassification between classes. The significant differences in cover between the two 

dates, is improbable in a short time span of four years, especially for slower growing tertiary 

successional classes. 

 

Figure 3.12 Example showing differences in pan-sharpened imagery and classification results 

between 2011 (left) and 2015 (right). 
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3.6 Case Study Results 
 

The two visually interpreted datasets and the automatically classified dataset produced 

significantly different results (Figure 3.13). Visual interpretation of high-resolution (0.3m) 

satellite imagery produced 23 polygons including clusters and individuals of Cortaderia spp, 

covering 150.6m2 (Table 3.5). This excludes seven polygons that were removed due to miss 

interpretation when cross-referenced with the high resolution UAS imagery. In each case 

miss-interpreted polygons were results of similarities Pampas has with the tone and shape of 

Cabbage tree (Cordyline australis) foliage (light ashy green and circular) or flax (Phormium 

tenax) foliage (bright green, high reflectivity and circular shape).  

 

Total pampas area detected in the “Exotic shrubland” class derived from automatic 

classification (which included species other than Cortaderia e.g., Lupin and Gorse.), had 54 

polygons that contained pampas, covering 394.4m2. The high resolution UAS imagery on the 

other hand identified 1480.2m2 of Pampas in 320 polygons of individual and clustered 

specimens.  

 

Using The UAS Pampas polygons as the standard, the satellite derived Pampas coverage for 

visually interpreted (satellite pampas polygons) and manually classified (“Exotic shrubland” 

class) only detected 10.17% and 26.65% respective area of Pampas found. It is not surprising 

that the higher resolution imagery was able to detect more Pampas coverage in the study area 

than the lower resolution imagery (visually and manually interpreted). However, this 

highlights the significant underestimation that can result from inadequate resolution imagery 

for identifying specific species such as Pampas. 
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Figure 3.13 Pampas cover in the southern section of Whatipu Scientific Reserve. Yellow 

polygons: Exotic shrubland class from automatic classification of multispectral satellite 

imagery (2m spatial resolution) Red polygons: visually classified from high-resolution (0.3m) 

satellite imagery. Blue polygons: visually classified from high-resolution (0.06m) aerial 

imagery (also under lying image in grey scale for clarity). 

 

Table 3.5 Case study results. 

Dataset 
Imagery Spatial 

Resolution 

Number of 

polygons 
Area of pampas coverage 

Satellite Pampas polygons 0.3m 23 150.6 m2 

UAS Pampas polygons 0.06m 320 1480.2 m2 

Exotic shrubland class 2m 54 394.4 m2 

 

 
Figure 3.14 Examples of pampas polygons from each dataset: Satellite Pampas polygons 

(right), UAS Pampas polygons (middle) and Exotic shrubland class (left). Red polygons: 

identified from high-resolution (0.3m) satellite imagery, Blue polygons: identified from high-

resolution (0.06m) aerial imagery. 
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4 Discussion  
 

This chapter is grouped into five main sections. The first section will focus on spectral 

uniqueness and separability of dominant vegetation at Whatipu (section 4.1). The second 

section will discuss the use of using UAS imagery as an alternative to field visits for the 

collection of validation and training samples (section 4.2). The third section will discuss the 

performance and the limitations of the classifications of multi-date imagery (section 4.3). 

Section 4.4 discusses how and why land cover changes have occurred at Whatipu. The final 

section focuses on the use of UAS imagery for identification of species and practicality of the 

UAS platform for low altitude remote sensing.  

 

4.1 Spectra of Whatipu Vegetation 
 

Objective One: Use field hyperspectral reflectance measurements to develop spectral 

signatures of dominant vegetation at Whatipu and to assess their spectral separability. 

 

Spectral signatures were used to evaluate the potential for separating dominant species, and 

to characterize spectral variability of each species. According to the mean spectra at 

WorldView wavebands in Figure 3.3 (Chapter 3) most species showed maximum differences 

at NIR2 (840-950nm). The NIR region is commonly associated with greatest spectral 

separability (Everitt et al., 2015; Quyang et al., 2013), however dominant species found at 

Whatipu still show significant intra-species variability in the NIR region (Figure 3.4, Chapter 

3). This, as well as similarities in overall shape of the spectral profiles, indicates low levels of 

spectral uniqueness as suggested by Price (1994). The consequences of low spectral 

uniqueness, i.e. high intra-species and interspecies variability, of vegetation means the 

spectral component of imagery cannot alone offer species specific identification. Other 

components, such as structural, textural and relational information in imagery could be 

exploited as solution to difficulties associated with limited spectral separability (Aplin & 

Smith, 2008; Visser, 2010; Hassan et al., 2014). 

 

Even with limited spectral separability between species, the simulated WorldView bands 

preserved many of the spectral features characteristic of vegetation (Figure 3.2, Chapter 3). 

Therefore the spectra could be used in other applications, potentially at locations where 

vegetation spectral heterogeneity is lesser than Whatipu wetland and duneland complex. 
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However, more thorough statistical investigation should be undertaken to properly determine 

the spectral separability.  

 

4.2 Training and Validation Samples  
 

Objective Two(2): Investigate the use of Unmanned Aerial System imagery for supervised 

classification sample data collection. 

 

One of the many appeals of remote sensing is the ability to use non-destructive methods. 

However to achieve accurate classification of land cover there is a need for training and 

validation samples collected from the field.  Although not the only method, e.g. collection 

from imagery or ancillary data, collecting field data is commonly used for fine scale mapping 

(Rapinel et al., 2014; Roeck et al., 2014). The high resolution UAS imagery was used to 

identify vegetation class reference sites and to supplement the samples collected from the 

pan-sharpened satellite imagery for the 2015 supervised classification as an alternative to 

field sampling (e.g. quadrats and transects). Low altitude, high resolution (<10cm pixels) 

UAS imagery provides sufficient information to accurately identify vegetation; potentially 

down to species level (Ishihama, Watabe, & Oguma, 2012). Identification of classes was 

easier and delineating the boundaries was sharper using the low altitude UAS aerial imagery 

in comparison to the high-resolution satellite imagery. Therefore, UAS imagery can be used 

in place of field visits for the collection of training and validation data for vegetation 

classification of satellite imagery, eliminating the need to disturb or destroy the site in which 

one seeks to survey. Not only was the imagery easier to interpret, but also collecting UAS 

imagery reduces the amount of time one needs to spend in the field and therefore is 

potentially much cheaper, especially for large areas. Field surveys also run the risk of making 

inaccurate observations as coastal wetland environments are often difficult to traverse. An 

aerial perspective is an obvious advantage. 
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4.3 Land Cover Classification 
 

Objective Three: Compare performance of pixel-based classification methods of 

multispectral satellite imagery to identify vegetation. 

 

For mapping coastal wetland and duneland vegetation, using multispectral WorldView 

imagery, the supervised classification techniques showed reasonable accuracy with the 

Minimum Distance and Mahalanobis Distance classification algorithms. However using the 

Maximum Likelihood classification algorithm better accuracies were reached. From the 

accuracies determined in the Confusion Matrix, it clearly shows that the Maximum 

Likelihood technique was able to distinguish the classes with higher accuracies than other 

classification techniques. This is similar to other vegetation mapping efforts that have found 

that using the Maximum Likelihood classifier is more accurate that other pixel based methods 

(Everitt et al., 2008; Szuster, Chen, & Borger, 2011). 

 

The vegetation classification of Whatipu identified two wetland and one coastal duneland 

ecosystem from the eleven ecosystems created by the Department of Conservation and 

identified by Auckland Council as being present in the Auckland region (Singers et al., 2013; 

Singers & Rogers, 2014). These ecosystems, outlined in Table 1 (Chapter 1), include “Oioi 

restiad rushland/reedland” (WL10), “Raupo reedland” (WL19) and “Spinifex–pingao 

grassland/sedgeland” (DN2). Other ecosystem classes were found at Whatipu but were not 

classified individually. However, classes could be combined to upscale to terrestrial 

ecosystem units. 

 

Classification Accuracy and Limitations 

 

The two final supervised classification outputs of Whatipu wetland dune system (2011 and 

2015 images, Chapter 3, section 3.5) presented in this research have overall accuracies of 

91.7% and 92.4% (Kappa value of 0.90 to 0.91) and individual producer accuracies between 

78% and 99% for 2011 and 75% and 99% for 2015 for all thirteen classes. Both 2011 and 

2015 classification results achieved the accuracy threshold of 85% minimum overall 

accuracy, and greater than 70% per-class accuracies as per Thomlinson et al., (1999). The 

respective Kappa coefficients (0.9059 and 0.9128) show good agreement between the 

producer and user accuracies that suggest the classification were most likely correct (Aronoff, 

2005). 
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Despite satisfactory results, the classifications of vegetation at Whatipu could be improved. 

Firstly, separability of 2011 WV-2 image classification classes could be improved by further 

refinement of training and validation sampling as these classes contained significant overlap 

and low separability. Secondly, the classification training and validation samples were partly 

based on thematic data created outside of this project (Thomas Civil field-based Wetland 

survey and Auckland Council wetland monitoring programme field maps). Thus, the 

classification quality depended on the accuracy of these datasets. On the other hand, 

increased spectral separability for the 2015 WV-3 imagery could be provided by larger 

sampling for classes with small samples (Typha orientalis) that were poorly represented in 

the UAS imagery collected for training and validation sampling. 

 

Inaccuracies were also reflected in the separability of regions of interest used for training and 

validation of the classification themselves. The scatter plot visualization gave indications 

about the separability of species in 2-dimensional feature space, there was little difference 

between the spectral separability of the training samples collected in for the 2011 supervised 

classification and the 2015 supervised classification. The red band and NIR2 band 

combination data showed clusters for many target classes, however there was also significant 

over crowding of feature space resulting in overlap of many vegetation class clusters.  

 

Future studies may achieve higher wetland classification accuracies if efforts are taken to 

reduce spectral confusion of vegetation classes and sample size is increased to account for the 

spectral variability of coastal duneland wetland vegetation and surrounding land cover.  

Further division of samples based on soil types (especially were vegetation becomes sparse) 

may also improve accuracies by increasing the capture of spectral variability.  

 

Another limitation was the acquisition of a clear satellite image needed to accomplish this 

study. Although relatively cloud-free imagery was collected for this study, the acquisition 

dates of the imagery was 3 months apart (April 2011 and January 2015). Thefore matches 

based on phenological characteritics could provide additional information as to why the 

accuracies were different. This is evident in the April 2011 (Scene 01), where a common 

weed species, Gorse (Ulex europaeus), can been seen flowering with bright yellow 

inflorescence, whereas in January 2015 (Scene 02), Gorse was not flowering. Future studies 

should consider the benefits of satellite imagery with the potential delays associated 



 89 

acquiring optimal imagery. If specific imagery dates are required, aerial platform acquisition 

may be a preferred source for imagery for mapping exercises.  

 

As this project only assessed the use of standard 2m resolution multspectral imagery product, 

higher spatial resolution satellite imagery, such as a pan-sharpened imagery product, should 

be investigated to determine if spatial resolutions affect classification accuracies. Other 

satellite and aerial platform (airplane or unmanned aerial veheical) sensors should also be 

examined to determine their accuracies in assessing vegetation within wetland and duneland 

systems, such as the high resolution (2.4m MS and 0.6 Pan-sharpened) satellite Quickbird 

imagery available through the New Zealand Government “Kiwi Image” scheme (Ashraf et 

al., 2010).  

 

Other improvements could have been made to processing techniques and the workflow 

chosen for this study. Given the high variability of coastal wetland duneland systems, a 

object based or hybrid classification approach may also prove helpful in improving 

accuracies. Object based classification could have improved the accuracy of the compared to 

the pixel-based methods as errors associated with the high spectral variability that exists in 

high spatial resolution imagery are often cited as an advantage to the OBIA approach 

(Fernandes et al., 2014; Hassan et al., 2014).  

 

Although the final classification results were reasonably high, improvements were made by 

manually reclassifying polygons. This was done using visually identifying misclassified 

pixels (groups and individuals) and manually changing the class to an appropriate substitute. 

The aim of this was to increase the accuracy of the final classification (although no accuracy 

assessment was done) sufficient to use in change analysis.  
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4.4 Change Detection 
 

Objective Four: Undertake change analysis to identify if and how Whatipu vegetation has 

changed between 2011 and 2015. 

 

The Whatipu wetland and duneland complex has particularly interesting vegetation 

community associations and patterns. Here, land cover changes between 2011 and 2015, 

exhibit broad scale changes (14 vegetation classes) in fine scale time (4 years), are described. 

Despite the classification limitations presented in Chapter 3, section 3.5 (e.g. 

misclassification between classes) there has been some considerable change at Whatipu. 

 

From the results it is clear that the majority of land cover changes occurring are conversions 

from herbaceous shorter-lived species communities to shrubs and longer-lived species. This 

is evident with several exotic species at Whatipu. Exotic species form important communities 

at Whatipu, particularly in fore dune and rear older dune areas. Exotics make up about half of 

the flora with high cover (approximately 30% of entire land cover, Chapter 3, Table 3.4). The 

dominance of exotic species, those are now significant weeds, in the Whatipu complex are 

the result of farming practices and dune stabilization programs prior to the 1970’s (Elser, 

1974). Land cover changes between 2011 and 2015 show the expansion of many of the exotic 

species classes (e.g. Exotic shrubland 6.8ha, Chapter 3, Table 3.4). This is particularly 

noticeable on the foredune and rear old dune (Chapter 3, Figure 3.11 and 3.12), indicating 

secondary succession from Spinifex sericeus/Ficinia spiralis duneland to Exotic shrubland 

communities. Whatipu’s active dunelands are an endangered ecosystem and exotic species 

such as Pampas (Cortaderia selloana), Lupin (Lupinus arboreas) and Marram (Ficinia 

spiralis), pose the greatest threat, displacing many native species (Hilton et al., 2000).  

 

Early successional trends can also be seen on the fringes of the duneslack composed 

primarily of Apodasmia similis. Where early dune hollows species such as Carex pumila are 

then succeeded by taller successional species Apodasmia similis. which is a normal part of 

primary dune succession (Pegman & Rapson, 2005).  

 

Another change in land cover is the conversion of open water to primary successional restiad 

species (e.g. Apodasmia similis). It is possible that this change results from the fluctuation 

water levels in ponds and lakes or it could be evidence of the gradual dynamic change from 
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openwater through vegetative expansion and trapping of sediments, ultimately causing the 

drying out of water bodies (Johnson & Gerbeaux, 2004). Another primary change is seen 

with the conversion of un-vegetated sand to sand binding species (e.g. Spinifex sericeus and 

Ficinia spiralis). 

 

Other changes shown in the results are due to classification errors. This is likely the case with 

the native shrubland class that showed a significant increase (17.3ha) from 2011 to 2015. 

Determining the accuracy of this result is difficult. Identifying native shrubland from 2011 

(time 1) imagery datasets was particularly difficult due to their relatively low resolution, and 

therefore accurate determinations of change to 2015 could not be made. Although some 

changes in native shrubland cover may have occurred, Pegman and Rapson (2005) suggested 

the native shrubland and forest succession at Whatipu has been slowed by the dense areas of 

exotic grassland (Kikuyu: Pennisetum clandestinum) and low native seed input, and therefore 

unlikely to have changed that much in 4.5 years.  

 

4.5 Low Altitude Aerial Imagery 
 

Objective Five: Case Study: Investigate the use of low altitude, high spatial resolution 

Unmanned Aerial System imagery for identification and delineation of invasive species at 

Whatipu. 

 

The case study presented here demonstrates that distinguishing vegetative features and 

accurately identifying Pampas (Cortaderia Selloana) was significantly increased when using 

a higher resolution image product. This highlights the importance of high-resolution imagery 

for visual interpretation of fine scale vegetative features such as the identification of invasive 

weed species. It also highlights the use of cost-effective tools such as UAS for monitoring of 

exotic vegetation. The UAS used in this study cost approximately $1500NZD (Chapter 2, 

Table 2.4), was easily deployed and operated safely to collect high-resolution (6cm) imagery. 

Imagery of this resolution is not available through space borne and other airborne platforms 

(piloted aircraft) (Salamí, Barrado, & Pastor, 2014). 
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5 Conclusions  

 

Heterogeneous vegetation found at the Whatipu wetland and duneland complex were difficult 

to separate using spectral attributes, shown by the high variability found in dominant species 

and by the low separability found in land cover classes used for classification training. 

Despite low spectral separability, a relatively accurate land cover map was established for 

each of the multi-date imagery sets, with overall accuracies between 75% and 99% 

depending on vegetation type. Indicating that high-resolution multispectral imagery such as 

WorldView 2 and 3 imagery products show good potential for the identification and 

classification of coastal vegetation. Although, results can be improved if methods are refined 

to minimize spectral confusion and classification error. The land cover changes determined 

from the multi-date classifications at Whatipu has shown little change in the past 4.5 years, 

however changes that were detected are significant, particularly with the expansion of exotic 

shrubland species.  

 

Recent developments in cost-effective UAS technology has allowed for improved techniques 

for classifiing vegetation to be established. Here UAS imagery allowed for the avoidance of 

extensive field surveys and destruction to the Whatipu wetland duneland ecosystem for the 

collection of classification training samples. The high-resolution (6cm) UAS imagery also 

provided sufficient detail to accurately identify exotic Pampas in comparison to high-

resolution (36cm) satellite imagery products. 
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Appendices  
Appendix 1. Digital Surface Model of southern Whatipu 

 
Appendix 2. Shadow Detection Mask 
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Appendix 3. 2011 Training and Validation polygons
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Appendix 4. 2015 Training and Validation polygons 
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Appendix 5. Satellite derived spectral signatures 

 
(a) WorldView-2 and (b) WorldView-3 region-of-interest mean spectral signatures and 

standard deviations; (--) Un-vegetated sand, (--) Carex pumila sandfield, (--) Spinifex/Pingao 

duneland, (--) Pennisetum clandestinum grassland, (--) Openwater, (--) Machaerina 

articulate reedland, (--) Schoenplectus tabernaemontani reedland, (--) Typha orientalis 

reedland, (--) Apodasmia similis rushland, (--) Eleocharis acuta rushland, (--) Exotic 

shrubland, (--) Native shrubland, (--) Ulex europaeus shrubland. The WorldView-3 Coastal 

waveband data was omitted due to an error in atmospheric correction affecting only that 

band. 
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Appendix 6. Sample area for Change Analysis 
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Appendix 7. 2011 NDVI result (left) and 2015 NDVI result (right)

 
 

 


