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Abstract

Modern power systems are gradually adopting the philosophy of autonomous and distributed means

of dynamic event detection processes, by facilitating system operation using intelligent algorithms.

Dynamic data has different forms, such as voltage, current, active-reactive power, frequency, rotor

speed and angle, status of a breaker, electricity demand, electricity price, operation schedules and

many more. Collecting and storing these dynamic data from a system has recently become much

more feasible for engineers. Along side that, computational resources have also been increased in

multitude. Implementing these resources can bring practical benefits for post-event operation under

uncertain conditions. The market drive towards decentralization and deregulation is constantly

introducing problems which are stochastic. Thus, techniques like machine learning are observing a

fair share of its applications in the field of power engineering. Though in recent years, application of

machine learning algorithms in the power industry has become a prominent domain, understanding

a dynamic data set requires additional features. Developing such features is yet an interesting

research genre where significant contributions can be made. The concept of feature analysis using

power system dynamic data is relatively novel.

This research, in multiple steps, applies different machine learning methods to understand the

dynamic nature of power system data. The idea is to search for effective methods to analyse this

power system data. The dynamic nature of any power system demands efficient training and testing

facilities in a pattern recognition system. Thus, recognizing the impacts of different dynamic tech-

niques on a continuous flow of power system data would be a priority in this work and it requires a

prelude to realizing the capacity of data analytics to understand power system dynamics.

However, investigating the dynamic capabilities of the machine learning techniques is only the

beginning. The power system is a complex network that has lots of segments and interconnections,



with predefined priorities assigned. Multiple pattern recognition techniques may, therefore, be

required to effectively understand the interactions between events that govern system operation and

control. Rather than analysing the impact of a method on all types of scenarios, preparing different

effective methods for different events would be a logical approach. The question arises whether

a centralized scheme can be of any use while understanding events that are occurring in different

autonomous zones. For example, the dynamic behavior of a system near a wind farm, reacting

to different wind power penetrations, could effectively be understood with a decentralized system

that is already installed in a nearby substation. Under such a scenario, collecting all the system

data and storing it to the central station for further analysis should be computationally expensive,

considering that some events are taking place at that very moment. It is another motivating factor

for this work to investigate whether distributed data analysis with dynamic data handling capacity

can lead towards better prediction, and consequently, the operation of a system.

However, power system dynamics and machine learning algorithm-based data analysis are two

independently broad domains. Analysing the impacts of data analytics on power system dynamics,

would therefore be another broad discussion, ranging from a generic towards a specific study. In this

thesis, machine learning platforms have been considered as the intelligent means of data analysis

and the self-healing framework of a microgrid has been used for classification of the dynamic

power system events. The key contribution of this research is developing a feature-extraction-based

algorithm that has the capacity of detecting power system events and facilitating decision making.
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Chapter 1

Introduction

In this chapter, the motivation behind this thesis, has been discussed and presented as research

background. The research objectives are introduced, alongside which the contributions are also

brought out.

1.1 Research Background

A data-driven self-healing structure is just the crux of the so-called system of systems smart grid.

To achieve a state where a power system can be defined as a smart grid, it must undergo several

configuration changes. These changes may be represented as, online monitoring and reactive ca-

pability, appropriate forecasting capability and capacity of time to time rapid isolation [12]. These

attributes can bring an end-to-end resiliency that not only reduces outages but also achieves system-

wide operational objectives.

Ideally, the control strategies in a self-healing smart grid can be divided into four categories:

emergency, restorative, corrective and preventive [12]. Therefore, a self-healing structure is in-

troduced to reduce operational cost due to service interruption, and optimality can also be sought

out inside the boundary of a self-healing architecture [13]. Such optimization problems often lead

11



the analytical approach from a centralized towards a decentralized one, which sometimes is re-

ferred to as a distributed control. The distributed architecture mostly contributes to the field level

device such as synchronous machines. However, controlling synchronous machines to perform

self-healing functionalities requires additional decision-making tasks. Earlier research focused on

introducing intelligent schemes such as machine learning-based systems, to make such decisions,

as a means of rapid-response, to face the external stimuli. These decisions at a higher level, are

more sophisticated and thus, require centralized coordination [14]. It is not an overstatement to say

that, the notion of a self-healing smart grid encompasses low-level system control influenced by

high-level decision making. Such a hierarchy and multidisciplinary structure make self-healing a

very complex process. Therefore, a timely step would be to discuss different approaches to intro-

duce intelligence in the self-healing functionality. Studies have already discussed the concept of

an intelligent restoration decision support system (RDSS) [15]. However, at a major scale, most

of those schemes are on an offline basis, which is quite impractical from an economic standpoint,

especially, when the integration of renewable energy sources has already introduced higher degrees

of uncertainty. Besides, any offline restorative method is time-consuming. Another critical limi-

tation observed in those methods is that the service restoration in a self-healing grid is often not

considered as a multi-objective function. Therefore, researchers are addressing diverse issues that

can eventually be solved through a single decision support system [16]. One solution to such ap-

proach can be an offline-online self-healing platform. Where the offline controller deals with the

situational parameters and optimizes those, while the online controller regulates those parameters

in a near real-time to real-time basis based on the proposed optimization [17].

The self-healing process requires balance, and balancing the active and reactive power in a

stand-alone microgrid is a critical task. A microgrid without energy storage capability is even

more vulnerable to energy imbalance and stability issues. Realizing self-healing is not possible,

without understanding the core concept of energy balance, through a system parametric point of

12



view [14, 18]. On top of that, due to the nature of a broader aspect, energy balance itself is a

large domain. Individually, all the techniques associated with energy balance can contribute to

self-healing. Therefore, it can influence different strategic decision-making processes, based on the

technique implemented. It is preferred to investigate one solution at a time to avoid this conundrum.

One of those solutions is a distributed supervised secondary control, to maintain the rated voltage

in a stand-alone microgrid. This control scheme is hierarchical. The supervision can be a machine

learning-based system. As the machine learning (ML) algorithms can be implemented both with

supervised and unsupervised data sets, applying ML in a hierarchical decision-making structure is

more relevant, as such hierarchy can incorporate external information, like weather data, in decision

making. Another motivation for ML is that, supervised control schemes are mostly applied where

primary and secondary control schemes are insufficient to maintain system stability after a sudden

and major change in load or fault. Once a severe contingency occurs in a microgrid, it is imperative

for the grid to monitor its status, act based on the level of severity, and restore the system once the

contingency has been cleared. Based on the above philosophy, scenarios in which self-healing was

mostly proposed were model specific but generic regarding labels. Therefore, the overall decision

making can be a stochastic-data driven intelligent action. Under this context, machine learning is a

superior candidate for data analysis [19].

One key trend is to deploy such hierarchical control in a centralized architecture. With an

increasing number of microgrids and distributed generation stations, deploying centralized control

is costly. In an interconnected network, it is important to detect the underlying events taking place

in each of the distributed stations; otherwise centralized decisions become non-coherent. In power

systems, event detection is a problem, where data analysis can play a vital role [7, 20]. Ideally, the

load-flow data machine parameters are used to detect the underlying events. But, modern system

analysis understands that other ambient factors such as weather, interconnectivity and costs should

also be considered. Such an approach demands further incorporation of dynamic and stochastic
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data analysis. Once the database becomes large, centralized control schemes no longer remain the

most efficient methods. Therefore, the distributed operation becomes more relevant. Usually, the

performance of any distributed and supervised control is monitored by the substations.

The key motivations for developing a distributed control process are cost-effectiveness and

speed of operation, especially in islanding modes. The complex machine learning process intro-

duced in the earlier work is offline, time intensive and not quite suitable for a near real-time ap-

plication. But, achieving a near real-time basis decision support system is also resource intensive.

Therefore, an offline-online structure has more flexibility. In past years, a couple of offline-online

methods of post-fault service restorations have been tested on different types of microgrids, that

have distributed and also on renewable energy generation schemes [21,22]. Microgrids are smaller,

thus, quite suitable to be used as test beds. A microgrid is usually operated at its design limits. Such

an operational method is even more prone to post-fault instability, even though the fault that causes

instability is cleared within a short duration. With intelligent decision-making tools, such instabil-

ities can be addressed if those tools can analyse and classify stochastic dynamic events. However,

the dynamic data obtained from any power system is time series in nature. Thus, recognizing pat-

terns from the individual scenario is complex. So, a keen focus is required to understand, what are

the impacts of different types of features on a decision-making tool.

Finally, it should be addressed that, a self-healing process is a multifaceted framework. Differ-

ent definitions can be found for a self-healing system. Therefore, a frame of reference can always

help understand the point of view proposed in any study. This study uses a corrective voltage con-

trol (CVC) framework that maintains sufficient load margin, as a point of reference in the ‘N-1’

self-healing strategy. Standard CVC measures are based on an active and reactive dispatch from

generating units [23]. However, in a post contingent scenario, it is often critical to select appro-

priate parameters. This study undergoes (undertakes) such observations and proposes a distributed

machine learning platform to address the issues.
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1.2 Research Objectives

The first research objective is to understand the limitations of a traditional machine learning ap-

proach for a self-healing microgrid. The assessment is based on different contingencies or stochas-

tic parameters. Different machine learning algorithms are used in the process, which has also been

previously used to solve meaningful power system problems. While analysing the traditional ap-

proaches, it was observed that the distributed generators, such as the wind and solar plants, as well

as the residential loads, have some degree of randomness.

The second objective is to propose a modification of the traditional machine learning approach

to address the self-healing phenomenon. The introduction of this proposed algorithm is small scale.

It means, in this phase, the algorithm is only judged based on its problem-solving capabilities. This

stage does not consider the cost of deploying the algorithm in a centralized or distributed plat-

form, nor does it consider interoperability. However, one of the objectives of this initial algorithm

development is also to find out the limitations of this algorithm, for larger networks.

The third objective of this study is to propose, a novel feature selection-based distributed ma-

chine learning algorithm, to detect the dynamic signatures of different power system events. The

purpose is to facilitate a post-fault decision-making process to restore a stand-alone microgrid with-

out the intervention of a central station. At this stage, a more complex decision architecture will be

used.

The fourth objective would be to implement the proposed algorithm in a larger network and

analyse its potential.

The fifth objective is to fine-tune the algorithm, by selecting appropriate features and by com-

paring those features to solve a self-healing problem.

The sixth or final objective of this research is to apply the proposed machine learning method

in a multi-objective scenario, considering cost reduction as one of the vital goals.
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The overall concept of developing the above mentioned, machine learning driven data analysis

strategy is based on the following relevant and recent literature. The literature review is prepared

to bear a theme of dynamic data analysis, keeping the proposed use cases in consideration. The use

cases are explained chapter by chapter as the development process progresses.

1.3 Research Contributions

This research is carried out to investigate dynamic data analysis for self-healing microgrids. The

contribution observed in this work are as follows.

• Understanding dynamic events during a contingency, is crucial for a self-healing microgrid

to act fast. This research develops a feature-selection based method, that can assist a machine

learning platform to identify specific events in a microgrid.

• Distributed control often introduces loss of synchronism, while a system is restored. This

issue of loss of synchronism has been addressed by the hierarchical machine learning plat-

form. The hierarchy is developed by both unsupervised and supervised machine learning

algorithms.

• Finally, a decision support system is developed based on an ensemble of machine learning

algorithms, to perform a multi-objective function in a self-healing microgrid.

Over the course of this work, the following articles have been published.

• Dynamic Event Detection Using a Distributed Feature Selection based Machine Learning

Approach in a Self-Healing Microgrid. IEEE Transactions on Power Systems, 2018.

• A machine learning based optimized energy dispatching scheme for restoring a hybrid mi-

crogrid. Electric Power Systems Research, Volume 155, February 2018, Pages 206-215.
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• A distributed machine learning approach for the secondary voltage control of an Islanded

microgrid. Innovative Smart Grid Technologies-Asia (ISGT-Asia), 2016 IEEE, Pages 611-

616.

• A Feature-based Distributed Machine Learning for Post Fault Restoration of a Microgrid Un-

der Different Stochastic Scenarios. Innovative Smart Grid Technologies-Asia (ISGT-Asia),

2017 IEEE.

• Distributed Machine Learning on Dynamic Power System Data Features to Improve Re-

siliency, 2018, IET Research Journals. (Submitted, waiting for review)

1.4 Chapter Introductions

In this section, an introduction to all the following chapters is provided. In the chapter Literature

Review, studies relevant to dynamic data analysis is presented. How power system data is a can-

didate for dynamic data analysis has also been addressed. In the second chapter Stochastic Data

Model, stochastic data generation is discussed. The following chapter Machine Learning for Su-

pervised Hierarchical Platform, discusses the impact of stochastic parameters in a microgrid, and

how machine learning algorithms can be trained using a simple triggering mechanism. In the next

chapter, Simplified Feature Selection for Dynamic Data, different data preparation techniques

for event-detection is introduced. This data preparation technique involves three feature selection

mechanisms. In the following chapter Data Augmentation for a Segmented Grid, a larger power

system with more complex events has been analysed. The underlying objective of this chapter is to

develop a self-healing strategy. The next chapter Selection of Appropriate Feature Space further

explores the idea of feature selection in a complex environment to fulfil an objective. This objective

is the previously introduced self-healing mechanism. Chapter Decision Making With Multiple

Constraints discusses ensemble methods for multi-objective functions and a relative analysis on
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addressing misclassification problems for a self-healing network.

The purpose of such distribution of the chapters is to create a road-map, for demonstrating

the evolution of concept in applied machine learning methods to solve self-healing functions in

microgrids.
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Chapter 2

Literature Review

This chapter discusses the background literature that motivated and supported the arguments pre-

sented in this work. Rather than making it an exhaustive search, a key focus has been put, on

discussing the chronology of designing the research steps. This chronology includes the relevance

of power system data, the importance of machine learning and the handling of dynamic data. The

following sections will provide hints and strong case studies to advocate preparing machine learn-

ing algorithms to address dynamic events.

2.0.1 Power System Data

Deregulation and decentralization have substantial impacts on power system analysis. Modern

methods are compelling engineers and operators to work with a vast amount of information. The

growing needs for power consumption are also resulting in introduction of more data [24]. Wide

area measurement systems (WAMS), therefore, have evolved and can accumulate the so-called big

data. Processing such high-volume data requires additional support on top of traditional methods.

In reference [25], Equation-2.1 is used to measure the scalability of WAMS data the following

equation is used;

19



MT = (
N∑
i+1

((8pi + 4ai + 4si) + 20) + 12)vkT + δ × C (2.1)

where MT is the size of the storage space, N is the number of phasor measurement units PMUs,

P is the number of phasors, vk is the transmission rate of the dynamic data, and T is the specified

storage time length, δ is the additional space required to store dynamic data that can have a value

of zero, and C is the split number of files required for the dynamic data. It shows the magnitude of

data volume, which future operators will have to deal with.

A major contribution in data volume in the distribution nodes is observed due to the frequent im-

plementation of advanced sensor-based systems, such as phasor measurement units, high-frequency

voltage and current sensors, advanced metering infrastructure (AMI), etc. Research predicts that

the installed base of smart meters would surpass the number one billion by the year 2022. The

cost of data storage is going down, thus, the usage of data analytics is gaining popularity. The

phasor measurement units (PMU) have the capability of providing high resolution and real-time

data. Such capacity enables advent of new types of data and new means of analysis [26]. It is not

without challenges — in power system analysis, data science can bring fruitful results [27, 28]. In

the consequent chapters of this thesis, different power system models have been introduced. The

data collected from those models are phasor type, and the data structure is synchronized. Therefore,

this thesis is based on PMU data.

Traditional data analysis methods cannot be overthrown in a day or two. Reference [29] ad-

dresses the problems regarding the slow data processing of the SCADA system and fast data pro-

cessing capacity of the PMUs. The authors there proposed a multi-rate multi-sensor data fusion.

This challenge also provides a subtle hint as to why the centralized system control may not be as

effective as it has been with traditional systems. Thus, data analysis gets a new perspective. In this

thesis, a distributed control scheme has been adopted as the intended case study. The data analysis

platform, therefore, is also proposed for use cases deploying distributed control schemes.
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While considering a distributed control approach, system reliability, security and stability be-

come the key aspects [30,31]. Thus, practical and modern operation schemes must be carefully uti-

lized to address a scenario and take necessary response based on the effective information. Keeping

that in mind, in Chapter-7 a comparison of different parameters regarding different events is pre-

sented.

Even if it is quite evident that power system data is a prime candidate for different data analytics,

the overall concept of applying algorithms, to understand high volume data, would only make sense

if data-driven operational schemes are practiced. The modern energy industry is not shying away

from this concept. Scrutiny is required to get some idea on how the industry utilizes high volume

data.

Data Driven Operation and Control

Large volume, high velocity, and increasing variety are the characteristics of modern power sys-

tems, that are driving the industry towards efficient, condition-based asset management and real-

time operation for outage prevention. Streaming synchrophasor measurement system (SMS), au-

tomated revenue metering (AMR) and intelligent electronic devices are compelling operators to

use intelligent control and operation schemes for situational awareness, billing and condition-

based management in a typical modern power system. Data outside of the technical realm such

as weather data, lightning data, financial data are also having a fair share of contribution in system-

operation. Though the existing system is coping with modern data-driven aspects of power systems,

the decision-making process requires finesse. Understanding large data requires management tech-

niques such as sensing, measuring, information exchanging, knowledge extracting and visualizing.

Statistical methods also need to be implemented in order to derive the relevant data set for efficient

decision-making that influences corrective, predictive, distributive and adaptive actions [32]. The

on-line voltage stability study is important for interconnected systems like PJM, ERCOT etc.
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Reference [33] summarizes the efforts of CIGRE ′ Task Force 38.02.20 for advanced power

system control using intelligent systems. Online dynamic security assessment using a neural net-

work to predict dynamic frequency response, intelligent systems for emergency control, control

centre operation under deregulation are some of the focused topics of the task force. The key

argument placed in reference [33] lies in figuring out supplements for the conventional control

approaches. To achieve high-level adaptation and quick decision-making features, system-wide

control schemes must be capable of working with imprecise information, that is generated in a

modern yet uncertain and less structured environment. This issue can somewhat be addressed by

implementing effective data pre-processing techniques. In Chapter-3 such a data pre-processing

technique has been analysed, regarding complex event detection.

Such data-driven actions must be aided with computational-intelligence. One of the most effi-

cient ways to retrieve information or knowledge, from either a data base or streaming on-line data,

is to apply a pattern recognition tool, which is often a machine learning algorithm. Therefore, it has

become a paradigm in the energy research community, to implement and analyse the performance

of different machine learning methods. The following section introduces some of the interesting

applications of machine learning in power systems.

2.0.2 Applications of Machine Learning in Power System

Power System Steady State Data

Availability of a large quantity of data opens up new avenues in power system analysis. As data is

generated, stored and made available for future references, the context of using machine learning

techniques gets more relevance. Machine learning techniques in general offer clustering, classi-

fication, regression and pattern finding to effectively manage data and extract useful information.

Power system engineers are also often being benefited by applying pattern recognition algorithms

such as neural networks, support vector machine, k-means clusters, classification trees and visu-
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alization techniques [34, 35]. Numerous literature can be found where effective machine learning

based methods have been introduced, analysed and compared for solving power system problems

like security assessment, economic feasibility, on-line steady-state analysis, transient stability anal-

ysis, load profiling, system control, fault detection, state estimation and more [36]. In a broad

sense, the application fields are generalized as problems in visualization, clustering, classification

and regression. Data visualization is a key method to understand and express data during operation

and control of a system. In reference [37] a geographic data view (GDV) based is proposed to

facilitate rapid decision-making to solve problems such as line overload. The method displays a

wide range of power system information with multiple attributes, along with the geographic loca-

tion data. An interactive visualization technique that is based on a 3d virtual environment platform

is proposed in reference [38]. The underlying objective of the work is to establish a bridge between

multiple complex networks such as those in a power system, as well as the economics associated

with the power system, using interactive visualization techniques. However, the objective of this

research work is not to propose a new visualization technique, but rather to modify the existing

pattern recognition techniques to facilitate dynamic power system operation and control. Thus,

understanding the benefits of the visualization techniques is thought to be important, but not the

key focus of this work. This work would consider the standard visualization methods to express,

analyse and compare results.

In a general notion, data mining with the help of machine learning refers to a process where

pattern recognition gets the key attention. Out of different pattern recognition tools, clustering is

one of the most popular ones. A multitude of articles has addressed clustering techniques as a com-

ponent to solve power system problems. In reference [39] a clustering technique is used to improve

performances of the security assessment for daily operation and planning. Unsupervised clustering

is used in reference [40] to solve dynamic security assessment problems. Reference [41] introduces

a method where clustering and optimization based control design is used to address FACTS device
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and PMU based, wide-area, oscillation damping issues. Some other interesting works that use clus-

tering techniques are cable layout design for wind farms [42], load pocket identification [43] and

load forecasting [44]. The clustering process represents unsupervised learning, which can be used

as a means for data pre-processing. In this thesis other types of clustering techniques have also

been used for data pre-processing.

The classification techniques can be considered as the supervised counter part of the unsuper-

vised clustering method. The most common methods for classifying data are decision-tree based

methods, support vector machine, k-nearest neighbour, etc. Classification techniques are often uti-

lized in power system calculations, such as in secured economic dispatching [45], locating series

compensators [46], classifying voltage disturbances [47], wind power forecasting [48] etc. Once

it becomes obvious that, for an increasing data volume, classical expert opinion-based control and

operation schemes are becoming obsolete every day, techniques like machine learning should get

more attention. The machine learning in power system operations and control can be observed in

two different ways. First one is to evaluate the performance of the machine learning routine by

solving the individual problem. Here, based on historical data, an operation and or control scheme

will be chosen, which will be compared with traditional approaches. This method does not require

dealing with the dynamic characteristics of the system in real-time. Rather it can be a post-mortem

analysis, where the only critical evaluation will be carried out by understanding the performance

of the method or algorithm for a typical case. The second approach will be to consider the stream

of dynamic data, analyse them in real-time and make on-line decisions for one or multiple events.

This method requires not only to understand the dynamic nature of power system data, but also

the dynamic nature of the machine learning methods proposed. It is important to compare the

performance of these methods with the traditional machine learning schemes.

The following section introduces literature, that deals with different methods to do dynamic

data analysis with machine learning algorithms in power systems.
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Power System Dynamic Data

Dynamic data analysis methods can be implemented in different fields. Power systems could be a

potential candidate where dynamic data analysis can prove to be highly effective. Research shows

that dynamic methods are frequently being used for power system data analysis. This section will

discuss some of those works.

Dynamic data management is key to dynamic data analysis. So far, dynamic data analysis

has frequently been observed in energy management systems. In reference [49] big data analytics

has been introduced for dynamic energy management purposes for a Smart Grid (SG). SG allows

consumers and micro energy producers to play an active role by enabling bidirectional power as

well as the data flow. Dynamic energy management (DEM), therefore, depends on the instantaneous

quantity of load and renewable energy generators. In a large network, data analysis becomes quite

relevant, while considering DEM in play. It is because, DEM requires power flow optimization,

system monitoring, planning and real-time operation. In short, DEM has a heavy dependency on

complex multi-variate statistics. Such dependency demands advanced data analysis methods and

machine learning to discover meaningful patterns from that data stream. But, machine learning for

SG is a complex process of cascaded tasks, such as dimension reduction, classification, forecasting

and distribution of resources to minimize processing time. To attain that goal, an effective near real-

time monitoring and forecasting system is needed. In reference [49] a forecast model, that deploys

pattern recognition in a parallelized computation platform, is proposed to solve this issue. The

proposed method is shown in Figure-2.1. The key point observed here, is the addition of a feature

extraction layer that can facilitate pattern recognition for solving the problems of forecasting.

One criticism of the systems mentioned above is the curse of dimensionality. Large-scale data

analysis may not perform efficiently as the system grows bigger. Therefore, other data analysis

methods are also sought out from time to time. One probable method to deal with the ever-growing

electricity industry is to distribute resources. This distribution can also be implemented while con-
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Figure 2.1: Proposed forecasting model for smart grid [1]

sidering machine learning based methods. In reference [50], the authors explored distributed ap-

proaches for analysing and processing data. The idea there is to increase flexibility in local control.

The article assumes that, shortly along with the traditional energy companies, certain households

would also supply energy. Multiple companies would then be interested to understand the dis-

tributed energy generation and supply patterns, and a household or a company may subsequently

restrict data centralization. To deal with such phenomenon, the authors used multivariate linear

regression and distributed rank aggregation techniques. The model is node based, yet topology

independent that considers each node generates homogeneous data tuples given by Xm
i where m is

the number of features. Multivariate regression was deployed asynchronously, while the approxi-

mate linear coefficients were calculated locally to get the overall global regression model.

Reference [50] has also deployed a distributed ranking application on power consumption data.

They considered a scenario where the price changes based on the load variation in a smart grid

platform. The pattern of power consumption can be ranked locally, and by aggregating the local
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rankings, a global rank can be established. As for a large system, centralized systems may not be

effective enough as a node-based distribution system that can communicate with its neighbours and

become more efficient. The global aggregation is inspired by the Condorcet criterion that declares

a candidate as the winner that has majority votes against all probable candidates. In reference [50],

the time periods that were considered as candidates and the period that had the highest energy

consumption was ranked at the top, in the global aggregate ranking.

In reference [51], a large collection of signal processing schemes, as well as statistical models,

have been reviewed for solving, forecasting and optimizing problems. The summary is presented

in multiple tables that give a brief idea of how signal processing schemes are deployed on each set

of problems.

In reference [52], a pattern discovery (PD) based fuzzy classification system is proposed for

power system dynamic security assessment. The novel method at first improves performances of

the traditional pattern discovery schemes by adding a method called centroid deviation analysis.

Then the improved PD system is deployed, and the results are used in a fuzzy logic-based classi-

fication method security index of a given power system. The pattern discovery process discussed

here is developed on residual analysis and recursive partitioning. The PD system relies on some

basic conceptions such as events Ei, volumes V , observed frequency noi and virtual frequency nvi.

The residual analysis is carried out to understand how event frequency departs from a uniform sta-

tistical distribution. The events are further categorized into significant, insignificant and negative

significant groups. Then a recursive partitioning is used based on four predefined conditions to

trace out significant events. After that, a well-defined centroid deviation analysis is carried out to

improve the accuracy of the pattern discovery. Pattern discovery can detect multiple patterns for

a given operation point (OP). Based on those patterns the system must predict whether the power

system is in the secure or insecure state. At this stage, a fuzzy classification is used to classify the

system states either as ’secure’ or ’insecure.’ The article implements this PD-based fuzzy classifier
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initially using 6000 operating points in an IEEE-50 machine system. Finally, it concludes with a

noticeable improvement in the pattern discovery scheme for identifying the power system transient

disturbance assessment problem.

Reference [53] discusses an IDS (intrusion detection system) that classifies system behaviour

into three categories; specific disturbances, normal operations, and cyber-attacks. It utilizes the

knowledge obtained from the sequences of an event called ’common paths.’ Time-stamped sensor

data have been chosen to find such common paths. A state S = {TS, f1......fn} is proposed to

have features f and a normalized time stamp TS. The path mentioned earlier can be denoted

with P where the i-th path Pi has a number of states {S1, S2....SN}. The sequence is a subset

of the path. G is the set of all paths considering an event Q has taken place. Q can be defined

based on some support thresholds. A sequence may have multiple paths and based on the support

threshold criteria a common path for any event can be set. Once several common paths have been

identified a classification is carried out to compare an event to those common paths. If there is more

than one candidate, common paths become maximal and the event is categorized as unknown. For

testing the method, a distance-protection scheme in a three-bus two-line transmission system has

been deployed. Different scenarios such as a single line to ground fault, fault replay attack, open

relay problem, command injection attack, normal system operations have been deployed to test the

methodology. The result showed around 94% accuracy of the tested scenarios.

A Kohonen neural network has been implemented for dynamic security assessment and classifi-

cation based on transient stability issues in reference [54]. It has used steady-state pre-contingency

operating variables to figure out whether the system would shortly sustain a line fault or outage.

Correlation between pre-contingency operating variables and critical clearing time has been the key

to train the neural network. The algorithm successfully classified 90% of the test events.

Dynamic security assessment has also been addressed in reference [20]. It proposed a growing

hierarchical self-organizing map (GHSOM) technique via a supervised artificial neural network. As
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the dynamic security assessment for a large scale power system is a colossal computational task in

reference [20], the authors reduced the complexity by dividing the problem into smaller tasks and

then by training dedicated neural networks to classify each of the tasks. Here PNSI (project network

with stochastic interconnects), which is a three-layer supervised neural network, has been used. The

array of PNSI took pre-fault state vectors as inputs, whose features have already been selected in

parallel, to estimate the post-fault state vector for each contingency. Predefined state vectors for

both pre and post-fault scenarios have been used to train the networks where the hidden layer units

have been determined adaptively. The outputs of the network were trainable projection matrix.

The output is then fed to GHSOM trained to classify the post-fault vectors. The method projected

three clusters, namely safe, critical and unsafe operation points of an IEEE-9 bus model, having 14

lines and three generators. The proposed method showed accuracy and high-speed execution for a

large-scale power system.

In reference [55], a decision tree (DT) has been proposed to enhance the dynamic security

of a power system. The idea is to determine the transient stability related security regions and

their boundaries. Rules developed by the decision tree algorithm, sensitivity analysis, and optimal

power flow are the key driving criteria in this work. DT provided security margins for the ongoing

operating conditions and based on that either generation rescheduling or load shedding has been

implemented to enhance security measures. The knowledge base of the security regions has been

enhanced to facilitate accurate and robust decision-making. The method has been tested on an

’Energy Power System’ with two specific N − 2 contingencies. The overall method showed signif-

icant promise. Reference [56] has also dealt with dynamic security assessment, focusing transient

stability, using a neuro-fuzzy based approach.

In reference [2], hierarchical clustering is applied as a means of post-disturbance analysis to fig-

ure out the dynamic signatures of the power system. The system response is obtained by the Monte

Carlo simulation. The machine learning approach taken here is an off-line operation to classify dy-

29



namic data on-line. The hierarchical clustering uses an agglomerative strategy to merge clusters of

one level to the next one. It uses a linkage criterion to link sets of objects into the hierarchical tree.

This method is applied to the data obtained for every contingency. By suitably cutting the trees, a

group is prepared to represent the patterns in generators that vary contingency to contingency. The

number of clusters in each loop is not specified, rather they have been calculated automatically.

The generator groups are developed based on their rotor angle characteristics for each contingency.

The cut-off criteria of the tree are predefined by the rotor angle stability margin. If the rotor angle

crosses a certain value, then the system is identified as unstable, otherwise stable. The members

of each cluster can always stay within a common distance (360O) by this method. This approach

only considered the rotor angle at the last instance which may affect taking an optimal solution.

The article also proposed a second approach that considers the complete simulation of the swing

curves of the rotor angle of the generators. Euclidean distance between two rotor angle vectors

is considered to define the stable contingencies. The process is summarized in Figure-2.2. A key

observation can be made that, a simplified measurement of maximum Euclidean distance can help

linearizing data for a group-wise pattern recognition scheme.

The method is then applied on a 16-machine, 68-bus reduced order equivalent model of the

’New England Test System’ and ’New York Power System’ (NETS & NYPS). Both the methods

have proven their effectiveness on grouping the generators in many contingencies. The article

concluded that these methods are suitable to label data for identifying potential dynamic signatures

based on these groups.

In reference [57], a method to carefully select data and define them in a simple linear regression

is proposed to do short-term load forecasting. The foundation of this article lies on simplification

of the complexities faced by other popular methods such as exponential smoothing, autoregressive

integrated moving average, neural networks, fuzzy systems, etc. For example, ARIMA models are

popular but linear. The selection of order in an ARIMA model is difficult to apply, which can be
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Figure 2.2: Proposed second approach [2]

considered as an obstacle. Here data processing is carried out to define the patterns of the seasonal

cycle which helps by eliminating the nonstationary and filtering trend and cycles longer than the

daily one. The method identifies two patterns namely input x and output y patterns. To find out the

input patterns the first vector mean of the load, up to a particular point, is subtracted from that data

point and then divided by the length of resulting the vector. This process provides a normalized
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vector of input patterns. In a similar process the output patterns are obtained, which is the vector

of future load patterns, but instead of using the mean and length of the unknown forecasted values,

the known mean and length used to find out input patterns are used. It is done so that by using

a simple transformation the loads can be figured out from the output patterns, as the mean value

and length is known, and the y patterns are forecasted. This pattern-based linear regression can be

summarized as the following;

1. Mapping original values into patterns

2. Selection of K-nearest neighbors of the query pattern where proximity refers to the same day

of the week.

3. Construction of the linear regression model

4. Determination of the forecasted value from the mapping

5. Decoding forecasted values to get original load value

The proposed model is then compared with the popular models for load forecasting such as ARIMA,

exponential smoothing, multi-layer perceptron and nonparametric regression model. The result

showed mixed performance where the proposed method was proven to be as effective as the others,

if not better. In this thesis, a similar concept has been explored in Chapter-8.

Reference [58] talks about an operation optimization decision support system that implements

technologies such as data warehouse and data mining. A fuzzy association algorithm is used here

to find out associative rules in quantitative data. The fuzzy rules enable a smooth transition between

the member and non-member. The overall decision support structure is shown in Figure-2.3

Reference [59], discusses different aspects of the sources of the big data in the smart grid and

provides an outline of how to use segmentation to reduce it. It mainly works with data obtained

from digital fault recorder during faults. The first step of data reduction is segmentation. Out of
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Figure 2.3: DW and DM Based Decision Support System

the different segmentation techniques this work advocates for the wavelet-transform based method.

The purpose of segmentation is only to focus on the fault section. The idea is to save our work with

a segment that only holds the interesting portion of the data.

Power system analysis often poses a challenge to work with narrow security and stability mar-

gins, with high expected reliability. In reference [60], this challenge is addressed by focusing on

accurate dynamic modelling, updating parametric values within shorter intervals, applying filtering

mechanisms and at the same time discussing computational challenges for achieving all these goals.

[61] proposes a fractal theory and reconstructed phase space-based time series data mining for

power system disturbance analysis. The fractal dimension is associated with a set in its space that

defines the thickness of the set by using an index. Fractal dimension is a capacity dimension also

known as a box dimension. If F is a limitary nonempty subset and N(ε) represents the minimum

number of the minimum set that has a diameter of ε to cover F then fractal dimension (DB) can be

expressed;
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DB = lim
ε→0

lnN(ε)

ln 1
ε

(2.2)

I(ε) is information equation which can replace N(ε) in the above equation, where I(ε) is equal

to
∑N(ε)
i=1 −P (ε, i) ln (P (ε, i)). P (ε, i) is the probability of the element in the set that belongs to a

subset of i. Fractal dimensions can also be called correlation dimension;

DB = lim
ε→0

lnC(ε)

ln 1
ε

(2.3)

where C(ε) is the correlation function that depends on H , Heaviside function. The recon-

structed phase space theory deals with a single variable time series. It at first introduces a delay

factor τ a then divide the series into a m − dimension phase space where m is an embedded

dimension.

Xi = [xi, xi+τ , ...xi+(m+1)τ ]
T (2.4)

where i = N − (m − 1)τ . This work has found out the fractal number of eight out of ten power

disturbances. Also, the authors here found out the trajectories of those disturbances to compare

them to a normal sinusoidal signal. Both the methods proposed here yielded interesting results.

In reference [62] two-time series fitting models have been proposed to evaluate wind energy

data for power systems. The first series can simulate auto-correlation, seasonal property and diurnal

distribution of wind energy. The second proposed series can only simulate the auto-correlation of

wind speed.

Reference [63] also discusses data mining techniques on time series data and claims that data

mining methods can outperform traditional statistical analysis based methods. The field of appli-

cation chosen here is electricity market analysis. Authors have explained how different methods

worked in time series analysis and presented a review on those. The methods discussed here are

linear methods such as AR, MA, ARMA, ARIMA, ARCH, etc. Nonlinear forecasting techniques
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such as neural networks, support vector machine, nearest neighbour have also been analysed. Rule-

based decision-making, and wavelet techniques have also been covered. Along with those, some of

the ensemble methods have also been mentioned.

Dynamic regression and transfer function models have been discussed in reference [64], for

24-hour electricity price forecasting. In a competitive electricity market, environment time series

data exhibits the following characteristics;

1. High Frequency

2. Inconsistent mean and variance

3. Multiple seasonal attributes

4. Calendar effect

5. High degree of volatility

6. Unusual pricing phenomenon during high demand

The outline schemes utilized in both the methods are;

1. Step-1: A model is prepared based on an underlying hypothesis.

2. Step-2: The parameters of that model are estimated.

3. Step-3: If the aforementioned hypothesis is validated then continue from step three to four.

Or otherwise start again from the initial step.

4. Use the model for forecasting.

The dynamic regression model establishes a relation between the price at hour t to the previous

prices at hour t − 1, t − 2, t − 3 as well as previous demands at hour t − 1, t − 2... etc. This is
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done to produce a model that has uncorrelated errors. Initially a model is chosen to work with. This

model can be expressed as;

pt = c+ wd(B)dt + wp(B)pt + εt (2.5)

where pt is price at time t, c is a constant and dt is the demand at that time. wp(B) are the polyno-

mial functions of the backshift operator B : Blzt = zt−l and εt is the error at time t. At the initial

state the terms are chosen randomly from a normal distribution having zero means and a constant

variance of σ2. This approach heavily depends on the selection of appropriate parameters. The

parameter selection process is an iterative one which is validated using series residuals.

The transfer function model deals with a serially correlated error. The generalized model can

be defined using the following equation;

pt = c+ wd(B)dt +Nt (2.6)

Here the new term Nt is a disturbance term that follows an ARMA model Nt = θ(B)
φ(B)

εt. θ(B)

φ(B) are the polynomial functions. Finally when the models have been prepared a refinement

method is implemented for fine tuning of the models.

Based on the correlation analysis of the multi-dimensional time series data a fault prediction

method is proposed in reference [65].

A power load clustering model with time series data is used in reference [66], to design a con-

troller that ensures the stability of a SMIB (Single Machine Infinite Bus) system. The stabilization

is achieved by using two schemes, linear quadratic regulator based optimal controller and robust

fuzzy controller. However, [67] introduces the concept of local linear model and simultaneous

confidence band on a nonlinear solar power generation data.

In reference [68], a novel technique that identifies coherent clusters of synchronous genera-

36



tors in a multi-machine scenario has been discussed and evaluated. The choice of algorithm is

agglomerative hierarchical clustering. The technique clusters synchronous generators based on the

coherency measures obtained from time domain response data, collected after a disturbance. The

strength of this work lies in addressing as many events that lead towards oscillation as possible. The

algorithm is claimed to be fast and accurate. The article, however, does not discuss much of the

dynamic data preparation methods for the algorithm. The sampling rate and frequency of updating

the matrices are not the focus of the work, thus it becomes imperative to do a query on dynamic

data preparation methods that can enable implementation of such clustering techniques in on-line

operation and control applications.

The above discussions led this work to choose a path where initially a simpler method is pro-

posed and evaluated regarding the dynamicity of a power system data. To achieve that goal the

performance of a popular pattern recognition algorithm namely the artificial neural network is dis-

cussed under different contexts such as forecasting data and predicting controlling parameters. The

underlying objective of this approach is to observe the performance of the algorithm, while address-

ing a dynamic set of data generated by a power system. Based on the performance of the artificial

neural network, later stages of this research work are designed, where the key focus would be to

implement dynamic characteristics in a data mining method to perform tasks on an on-line basis.

The following section discusses the basic structure of some of the well-known machine learning

platforms.

2.0.3 Existing Methods for Dynamic Data Analysis

This section introduces some of the previous works both on the dynamic data mining techniques as

well as dynamic mining methods applied on power system data. With the growth of data volume

traditional data analytic methods are losing efficiency day by day. Incorporating new information

into already discovered knowledge should be the modern approach. Thus, arises the concept of
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dynamic data mining, which is a relatively new concept, that analyses the impact of data mining

applications on a dynamically changing data set. Unlike a single deterministic run, dynamic data

mining techniques run continuously to explore more and more rule spaces. Thus the problem of

over generalization can be resolved [69, 70]. The following sections will briefly discuss some of

the interesting research work, relevant to dynamic data analysis, carried out in this field namely

dynamic item-set counting engine, neighbourhood rough sets, fuzzy recurrent neural network, dy-

namic cluster tree implementation and adaptive neuro fuzzy inference.

DICE Method for Dynamic Data Mining (DDM)

Traditional data mining techniques often must heavily depend on pruning to minimize the space of

rules. However not all the applications allow pruning to be effective either because of restrictions,

or because pruning cannot reduce much in those cases. The association mining with a large data

set often produces potential rules in exponential quantities. Dynamic data mining (DDM) can be

of use in those instances, as it runs continuously. With DDM exploration rule spaces become more

comprehensible than a single deterministic run [69]. The DDM method presented in reference [69]

relies on user defined weights and is guided by heuristics called heavy edged property. Heavy edged

property is an assumption on the underlying data and weight function. It relies on the assumption

that heavy hyper edges are likely to have heavy neighbours. The concept of hyper edge is slightly

modified than that of edges. An edge is a set of two nodes or vertices while a hyper edge is a

collection of vertices.

Dynamic data mining (DDM) introduces some architectural changes to the traditional data min-

ing process. Instead of having a closed end, finite process or complete set of items, DDM works

with a continuous process. The process does counting in intermediate stages, thus waiting till the

end is no more required. The user defined weights can be continuously adjusted on the fly. Thus,

they are useful to dynamically adjust the responses obtained from DDM.
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This DDM uses a method called dynamic item set counting (DICE). The key aspects of DICE

are:

1. The DICE keeps track of its current position in the given data set. This position after wrap-

ping the data does not reset itself rather it increments.

2. For each item set the DICE keeps track of counting of that item set with the position men-

tioned previously. Once the data set is completed it halts and completes counting the item

set.

3. For higher efficiency in the process of counting the item sets are kept in a hash tree.

4. New items are added to the hash tree with its position in data set and a count of zero from

that particular position.

5. If required items are deleted with their memory to facilitate adding newer more significant

items.

6. For unknown yet important item sets the DICE item set manager adds counter and resets

its position as zero in the data set so that the collective effort of new previously unknown

items and old known items can be observed from the very beginning to develop effective rule

spaces.

There are different types of weight functions available. Let’s define P (s) as the support of an

item set S. Where support of a function is the set of points or values for which the function yields

non-zero output. Mathematically for any function f(x) this is defined as;

support(f) = {xεX|f(x) 6= 0} (2.7)
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The weight functions then can be defined as LogInterest(S), SetInterest(S) and SetConviction(S).

LogInterest(S) =
log( P (S)∏

iεs
P ({i}))

|S|
(2.8)

SetInterest(S) = maxiεs
P (S)

P ({i})P (S − {i})
(2.9)

SetConviction(S) = maxiεs
P (S − {i})(1− P ({i}))
P (S − {i})− P (S)

(2.10)

Where the support of all the immediate subsets must be known before the calculation of weight

is started. Thus, a well normalized log-interset function is a preferable choice. In brief, log-

interset function can be expressed as the total number of occurrences of an item-set divided by the

expected quantity of that item-set. This ratio is then normalized on a log scale. To make an item-set

interesting, a support threshold can be set. The key to implementing the DICE method is to use

effective sampling of both the data and item-sets. This method is interesting to mine a large data

set, where it is nearly impossible to explore all the possible spaces of rules [69].

Neighbourhood Rough Sets for Dynamic Data Mining

The fundamental concept of rough set theory is to approximate the classifications of knowledge

for an item-set of interest. The knowledge being a set the rough set theory estimates its upper and

lower spaces. The lower spaces are definitely some of the elements of the interest subset where

the upper spaces are probable elements of that subset. The approximation space κ = (U,R) has

two elements U called universe and R ⊆ U × U is an equivalent relation on U . The κ is called

approximation space. R divides U into separate subsets. The subsets are represented as a quotient

set denoted by U/R. Any element x if belongs to R − th equivalence class the class including x

can be denoted as [x]R.

40



The approximation space κ = (U,R) is understood through an information system S =

(U,A, V, f); where, U = x1, x2, ...xn is a non-empty finite set of objects. A = a1, a2, ....am is

a non-empty finite set of attribute or features. V is the domain of attributes and f : U × A → V .

Any typical information function f(x, a)εVa for every xεU , aεA; f(xi, aj) represents the value of

object xi on the attribute aj . To understand the properties and characteristics of rough set some

definitions are worth mentioning.

Definition1: if B ⊆ C be subset of attributes and xεU . The neighbourhood δB(x) of x in the

feature space B is defined as

δB(x) = {yεU |∆B(x, y) ≤ δ} (2.11)

Here ∆ is the standard distance function. Satisfy all the necessary conditions related to any two

points on a two dimensional coordinate system.

1. The distance between any two points x and y is either equal or more than zero. It is zero

when both of them are the same points.

2. The distance between point one to point two and the distance between point two and point

one are equal.

3. The distance between any two point would be either less or equal to the sum of distances

between a third point and the two points in hand.

In pattern recognition three distance function are often used. They can be expressed by a single

equation;

∆P (x, y) = (
m∑
j=1

|f(x, aj)− f(y, aj)|P )
1
P (2.12)
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where, x and y are two objects in an m-dimensional space A = a1, a2, a3.....am. f(x, aj) is the

value of x in the attribute number aj . Equation-2 is a Manhattan distance when P = 1, Euclidean

distance when P = 2 and a Chebychev distance if P =∞

Definition 2: If κN = (U,N), where U is a set of sample and N is the neighbourhood relation

to U , δ(x)|xεU is member of that neighbourhood then κN = (U,N) is called the neighbourhood

approximation space.

Definition 3: For the κN = (U,N) where 3 X ⊆ U the upper and lower approximations are as

two subsets defined with the following equations. Here the lower approximations are definitely the

part of X where the upper approximation might be shared by other than X .

N(X) = {xεU |δ(x) ⊆ X} (2.13)

N(X) = {xεU |δ(x) ∩X 6= ∅} (2.14)

The boundary of X is represented by;

BN(X) = N(X)−N(X) (2.15)

The degree of roughness of the set X is characterized by the boundary region. For example,

boundaries for decision attributes should be as little as possible. Otherwise the uncertainty level

will increase in a decision process [70]. If the attributes generate a neighbourhood relation over

the universe then the information system called a neighbourhood relation over the universe. It is

defined as NIS = (U,A, V, f). Where f is defined using f : U × A → R. A neighbourhood

infoemation system turns into a decision system NDT = (U,C ∪D, V, f) if A = C ∪D where C

is condition attribute and D is decision attribute.

Definition 4: In the neighbourhood decision table if U/D = D1, D2....DN , δ(x) is the neigh-
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bourhood information units including x itself, and generated by the attribute set B ⊆ C then the

lower and upper approximations of the decision D with respect to attributes B are defined as

NB(D) = ∪Ni=1NB(Di) (2.16)

NB(D) = ∪Ni=1NB(Di) (2.17)

where, NB(Di) = {xεU |δB(x) ⊆ Di} and NB(Di) = {xεU |δB(x) ∩ Di 6= ∅}. The decision

boundary region of D with respect to attributes B is defined as

BN(D) = NB(D)−NB(D) (2.18)

[70]

Fuzzy Recurrent Neural Network for rules extraction

For dynamic data mining a method using ’Fuzzy Recurrent Neural Network (RFNN)’ is proposed

in reference [3]. The proposed structure can be observed in Figure-2.4. Where xlj(t) is the j-th

fuzzy input to the i-th neuron of layer ’l’ at time step ’t’. yli(t) is the corresponding output signal

at the same time step t. ylj(t− 1) is the activation of the neuron ’j’ at time step of ’(t-1)’. The box

elements are memory cells that store the values of activations of neurons at previous time step. Lets

define the other parameters such as wij as the connection-weight between neuron ’i’ and neuron ’j’,

θi is the fuzzy bias of neuron ’i’ and ϑij is the recurrent connection-weight from neuron ’i’ to ’j’ in

the same layer. The activation function ′F ′ for a total input to any neuron ′s′ is calculated as;

F (S) =
s

1 + s
(2.19)

So, for the neuron ’i’ at layer ’l’ the equation stands;
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yli(t) =
θli +

∑
jx
l
j(t)w

l
ij +

∑
jy
l
j(t− 1)ϑijl

1 + |θli +
∑

jxlj(t)w
l
ij +

∑
jylj(t− 1)ϑijl |

(2.20)

The fuzzy signals and connections weights are generally fuzzy set of numbers that can be rep-

resented using L0....Ln−1 and Rn−1....R0.

Figure 2.4: Structure of RNN [3, 4]

For the learning of FRNN the article has used genetic algorithm (GA). Here the selection of

best genome is carried out using a fitness function. The fitness is calculated from the FRNN error

performance indices. The FRNN error performance index is calculated by the following formula-

tion;

Etot =
∑
p

∑
i

D(ypi, y
des
pi ) (2.21)

where ’p’ is the learning data entry. ’D’ is the distance measure between two fuzzy sets desired

and computed. In reference [3], the distance has been calculated using Hamming distance method.

Once the total error performance has been evaluated the fitness for any corresponding genome of

the GA algorithm is calculated as;
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f =
1

1 + Etot
(2.22)

Dynamic Clustering Methods: ClusterTree

In reference [71] a novel ClusterTree has been proposed for dynamic data that embeds a time

stamp in data, which can later be used for pattern recognition. This method allows the ClusterTree

to remain in the most updated form always. A clusterTree represents clusters of a data set in

a hierarchical fashion. Like other clustering methods it also has internal and leaf nodes. The

internal nodes assign pointers towards sub-clusters and leaf nodes assign pointers to data points.

For individual clusters the ClusterTree calculates several parameters namely: number of data points,

volume of the minimum bounding sphere S, centroid c. The different centroids are calculated as;

ci =

∑N
j=1 oji
N

, 1 ≤ i ≤ d (2.23)

where N stands for total number of data points and oji is the i-th value of data point oj in the

cluster. In this way each of the clusters can be presented inside a hyper sphere S. Any two hyper-

spheres may share a common data region and some hyper-spheres may not contain any data points,

in a given time. The cluster density can be thus represented by the following equation;

Density − of − clusterc =
numberofpointsinC

volumeofS
(2.24)

Density − of − clusterc =
numberofpointsinC

2πd/2
rd

dΓ( d
2

)

(2.25)

The Γ(x) or Gamma function is defined as;

Γ(x) =
∫ ∞

0
tx−1 exp−1 dt (2.26)
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where, Γ(x+1) = xΓ(x) and Γ(1) = 1. If the density of a cluster is lower than a preselected thresh-

old value, then the cluster will be divided into smaller sub clusters. There are three approaches to

associate time information in a cluster tree;

1. Add time information as an additional dimension.

2. Use queuing mechanism to process time

3. Use a separate B+ tree like structure only to handle time information

In reference [71], the authors used an individual B+ tree-similar structure to handle the time

information. This approach can cater to both the time-relevant and time-irrelevant queries. Time

irrelevant queries can be done using the original clusterTree and time-relevant queries can be done

using the modified clusterTree and B+ or here Bt tree structure to get the final result. Internal and

leaf nodes are the two kinds of nodes of the clusterTree. An internal node can be defined as; Node:

identifier, γ number of entries, ot the oldest time when data have been inserted, nt is the newest

time in the order, (entry − 1, entry − 2, ..... entryγ), (mnode minimum number of entries ≤ γ ≤

Mnode the maximum number of entries) where the entries can defined as Entryi: (SCi pointer to

the i-th subcluster, BSi bounding sphere for the i-th subcluster, SNi number of data point in the

i-th subcluster).

Similarly the leaf nodes can be defined as; Node: leaf node identifier, γ number of entries, ot the

oldest time when data have been inserted, nt is the newest time in the order, (entry− 1, entry− 2,

..... entryγ), (mleaf minimum number of entries ≤ γ ≤ Mleaf the maximum number of entries)

where the entries can defined as Entryi: (ADRi address of the data point residing in the secondary

storage, Ti time information when the data point is inserted, Li link to the time information point

of the Bt tree). The Bt tree is similar to the B+ tree that incorporates all the time data during the

insertion of a data point. The modified characteristics of the Bt tree are:

1. No minimum number of entries are required
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2. In leaf nodes an extra field is assigned to trace the time data point back to the ClusterTree

data point.

The construction of clusterTree includes the construction of Bt tree in parallel. The clusterTree

is dynamically processed via the three following steps: insertion, query, deletion. Insertion allows

three types of data points: Cluster points that fall under the defined boundary of a cluster, close by

points that fall very near to cluster boundary and random points that either are not bounded by any

cluster or do not have any neighbouring cluster points. Queries are of two types. The first kind

is time relevant and the second kind is time irrelevant. Time irrelevant queries are associated to

position of a data point within a cluster and time relevant queries are the insertion time of that data

point. Deletion ensures that the data base manager should be able to delete either obsolete data or

a data obtained in a given time frame. Deletion also enables the system to be adjusted by itself.

ANFIS

In reference [72] authors have used Adaptive Neuro Fuzzy Inference System (ANFIS) to model

dynamic loads whereas in reference [1] ANFIS has been used to predict water level in a reservoir.

Reference [5] has implemented ANFIS to predict dam inflow based on a long term weather forecast.

The ANFIS uses a neural network to learn and a fuzzy reasoning system to map input into output.

Overall it acts as a feedforward network. Here the verbal power of fuzzy system and numerical

strength of neural network are combined. Though time consuming, the ANFIS system is quite

strong in learning and classifying data. For simple representation, a fuzzy inference system is often

considered as having dual inputs ′x′ and ′y′ that result in an output of ′z′. For a first order Sugeno

fuzzy model a typical if-then rule can be established as the following;

Rule 1: If x = a1 and y = b1 then output z1 = p1 × x+ q1 × y + r1

Rule 2: If x = a2 and y = b2 then output z2 = p2×x+ q2× y+ r2 The terms pi, qi and ri are the

linear parameters of the consequent ’THEN’ part of the first order fuzzy inferencing model. The
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five layered ANFIS model is shown in Figure-2.5.

Figure 2.5: Five-layer Two-input Four-Rule fuzzy model (Sugeno) [1]

The first layer is the input node. Membership functions have been used here to generate mem-

bership grades at each node that corresponds to the appropriate fuzzy sets.

O1,i = µAi(X) for i = 1, 2 (2.27)

O2,i = µBi−2(Y ) for i = 3, 4 (2.28)

where X and Y are the crisp input to node i, µA and µB are the bell-shaped membership

functions. A and B are the characteristics label defined by the appropriate membership functions.

The bell-shaped membership functions can be denoted as;
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µAi =
1

1 + (|x−ci
ai
|)2bi

(2.29)

µBi−2
=

1

1 + (|y−ci
ai
|)2bi

(2.30)

Here, a1, bi and ci are the parameter set of the membership function that result in changing the

shapes of the membership. Parameters in this layer are called the ’Premise parameters’. A tentative

example of fuzzy reasoning is shown in Figure-2.6.

Figure 2.6: Fuzzy Reasoning [5]

The second layer is called the rule nodes. Here the ’AND’ operation is implemented to get

a single output obtained from the preceding conditions of that rule, which is also called firing

strength. Firing strength refers to the range (degree) of the antecedents to be satisfied for that fuzzy

rule and also it accordingly shapes up the output. The output O2,k is actually the products of the

corresponding degrees of the previous layer, means the input nodes.
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O2,k = wk = µAi(X)× µBj(Y ) where, k = 1, .....4; i = 1, 2 j = 1, 2 (2.31)

The third layer is called the average nodes. The objective of this layer is to calculate a ratio.

The ration is in between two firing strengths, firing strength of the i-th rule and sum of the firing

strengths of all the rules. Once such an operation is carried out a normalized output (O3,i) is

obtained.

O3,i = wi =
wi∑4
k=1 wk

(2.32)

The fourth layer is called the consequent nodes. It calculates the contribution of each rule

towards the final output or layer five. The output of the layer four is denoted by O4,i.

O4,i = wifi = wi(pi × x+ qi × y + ri), i = 1, ....4 (2.33)

Here wi is the output from the previous layer for the i-th rule and fi is the linear function of the

Sugeno fuzzy model.

Finally, the fifth layer is called output nodes. This is a singular node that combines or adds up

the contributions from layer four. This is also a defuzzification layer that translates the fuzzy results

of individual rule into a crisp output value O5.

O5 =
4∑
i=1

wifi =

∑4
i=1 wi × fi∑4

i=1wi
(2.34)

These layers are trained based on the supervised learning schemes. By supervised learning, it

means that the network parameters are adjusted iteratively based on training data set inputs and

corresponding outputs. To update these parameters, ANFIS uses both the gradient descent and
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least-squares methods. The gradient descent is applied to estimate the nonlinear parameters of the

premise (ai, bi, ci) and the least squares method is applied to estimate the linear parameters (pi, qi,

ri). Finally, by adjusting the overall quadratic cost function the parameters are fixed. In Chapter-6

a case study is carried out where ANFIS has been used as the chosen machine learning algorithm.

Ensemble of Bagged Decision Trees

The goal of implementing ensemble methods, is to converge towards a solution, produced from

a diverse yet individually accurate set of algorithms. The concept, behind this overall process,

is to eliminate classification errors as much as possible by obtaining votes from those individual

entity (algorithm). By voting, the most popular class is selected. One of the prominent algorithms

in the field of ensemble learning is ‘Bagged Decision Trees’ [10, 107, 125]. The term ‘Bagging’

refers to ‘Bootstrap-Aggregation’, where a set of decision trees can grow deep, without considering

over-fitting. Then from those deeply grown trees one decision class is voted out, thus the task of

aggregation is performed. An individual tree is trained from a subset of the training data set. The

subsets are prepared using the replacement technique, which means that each set can have some

common data available in one or more other sets. This replacement technique allows different

combinations of training sets that in turns can have more samples than the original training set.

For example, if ST = x1, x2, x3 is a training data set then, by using replacement technique more

than two training subsets can be prepared sub1 = x1, x2, sub2 = x2, x3 and sub3 = x1, x3.

This method has been frequently used in this research, and therefore, is further discussed in the

subsequent chapters.

Time Series Data Analysis

Crude time series analysis comes as a natural ability to a human being, but it is considered a com-

plex problem for computers to solve. The common aspects of time series analysis can be divided
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into parts, such as representation techniques, distance measures and indexing methods. In recent

years, time series analysis has matured from an interest of pure methodology development towards

modern problem solving such as economic forecasting, intrusion detection, gene expression etc.

One of the key challenges of time series data mining is dimension. The data mining tasks in time

series are a set of objectives. Namely these are querying, clustering, classification, segmentation,

prediction, anomaly detection, motif discovery. Query by content in a data space can be obtained

in two possible ways. Firstly, by e-range query that searches data within a given range. In a two-

dimensional space the range can be a circle. The second method would be a k-nearest neighbour

search that returns several points (’k’) adjacent to the query point. The clustering is the method

of finding natural groups in a set of data points. The objective is to find out most homogeneous

groups distinct from each other despite having different size. On the other hand, the classification

task puts a label on a series of data. The difference between classification and clustering is that

classification labels are predefined. Once a new data point is entered, the active set is based on the

predefined labels and the new data is categorized into different classes. Nearest neighbour, support

vector machine, decision forests are some of the prominent classifiers. The segmentation technique

tries to retain the key features of the signal, while reducing its dimension. Piecewise linear approx-

imation is one of the most popular segmentation techniques. Prediction finds out the next few data

points in a time series which has not yet been observed in a data set. Prediction is one of the most

discussed applications in time series analysis. The anomaly detection figures out abnormalities in a

data set by comparing it to the most frequent and prominent features, or in other words the normal

characteristics of the set. The motif discovery, another predictive analysis, discovers subsequent

phenomenon in a longer time series. The time series mining tasks have some implementation com-

ponents to deal with. These are essential elements to retrieve patterns from a dataset and often

more extensive then the mining algorithms themselves. Preprocessing, representation, similarity

measure, indexing fall under that category [73] [74].
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Chapter 3

Stochastic Data Model

This section introduces the methods applied to generate stochastic data. This data represents energy

generation from the wind power plant, solar plant and the noncritical loads. These methods have

been implemented in the Matlab-Simulink platform.

3.1 Preparation of the Data Models

The first condition of any effective machine learning routine is to have sufficient data [75]. This

work is not any different from the others. The underlying pretext is that without a significant amount

of data, analysing the implications of dynamic machine learning methods on a power system would

be inconclusive. Power system data can be obtained using several possible ways. Here two ap-

proaches are taken to collect or generate data. For the initial stages, where different methodologies

will be developed and assessed, a Simulink based power system model is used. The purpose of the

Simulink model is to generate different types of data under multiple contingencies. The contingen-

cies can be a discrete phenomenon, or multiple contingencies can occur simultaneously. Based on

these contingencies, events dynamic power system parameters is collected as viable data for further

analysis. The initial data collection approach is not to collect any model specific data, rather to
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collect event specific data, so that the developed methodology can be implemented on other sys-

tems too. Initially, a simple two area-based power system is chosen. Then for the later stages of

this research, where more patterns are to be sought out, larger models are used. Another modelling

approach is to use simpler parameters, such as magnitudes, in the initial stages of this research

work. For complex decision-making processes, complex parameters are introduced, such as com-

plex power, voltage magnitudes as well as angles, etc. The third and final data collection approach

is to collect real-life data from the New Zealand national grid.

Along with generating the data it must be prepared for the machine learning platform. Prepa-

ration of data is a prerequisite before the algorithm can be deployed. Based on different types of

events and data, different types of data preparation processes are offered in this experiment.

Wind Energy Model

While preparing the wind turbine model for this work, certain conditions have been taken into

account such as; the model only considers wind speed as input variable, the velocity of wind is

uniformly distributed on the surface of each blade, the air density is constant during each calculation

period, the neural network model only predicts the active power generated by the wind turbines.

The fundamental equation to calculate the active power from wind velocity is;

P = Ctotal
1

2
ρAv3 (3.1)

where, P is active power output, Ctotal is overall efficiency of the wind turbine, ρ is air density,

A is swept area and v is the wind velocity. The energy model used in this thesis is a 9-MW wind

farm, rather than a single turbine, and is driven by wind velocity as input information. In some of

the earlier research, the wind velocity has been considered as a function of temperature [76]. In this

thesis a fixed location has been selected and the wind velocity has been observed. For the training

purpose the data has been taken from [6]. The plant shown in Figure-3.3 is a similar example.
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Figure 3.1: Normal Probability Distribution of Temperature (Degree Celsius)
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Figure 3.2: Random temperature values (Degree Celsius)

Solar Energy Model (Photovoltaic)

To simulate the characteristics of solar power generation, a simplified model is used in this work.

The irradiance based photovoltaic cell model of a solar cell is as following;
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Figure 3.3: Wind Power Plant

I = Iph − Is[e
V+IRs
NVt − 1]− Is2[e

V+IRs
N2Vt − 1]− V + IRs

Rp

(3.2)

where Iph is the solar-induced current that can be further explained by Iph = Iph0
Ir
Ir0

Ir is the

irradiance inW/m2, Iph0 is the solar current obtained for irradiance Ir0; Is and Is2 are the saturation

currents of the Diode-1 and Diode-2 inside; N1 andN2 are the quality factors diodes; Vt = kT
q

is the

thermal voltage, (k is Boltzmann constant, T is device temperature in Kelvin); Rs and Rp are the

series and parallel resistances; V is the terminal voltage [77, 78]. Once the PV-model is prepared a

solar radiation data model based on air temperature is used for prediction [79,80]. For predicting the

solar radiance from temperature data using a neural network, the data model shown in Figure-3.1

and Figure-3.2 has been chosen. To train the neural network, a specific location has been selected

with a latitude of 25.7oN and longitude of 89.3oE [6]. Two different locations have been picked

to observe sufficient variation in wind as well as solar data so that a robust neural network can be

prepared for multi scenario cases.
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Figure 3.4: Solar Plant

Electrical Load Model

The application of a neural network to predict electrical load has recently received much attention.

Electrical load forecasting is not an easily achievable task. The task becomes even more critical

when the economic losses for miscalculations are considered. Though the neural network has yet

to demonstrate a high degree of accuracy to convince the sceptics, it holds immense potential [81].

The electrical load has a complex nonlinear relationship with several factors such as temperature,

days of the week and time of the day [82]. This thesis adopts the method to predict electrical

load based on daily temperature. Figure-3.1 and Figure-3.2 refer to the normal distribution of

the temperature model and the randomly chosen set of values of temperature for prediction. The

temperature chosen is normally distributed by a probability distribution function having a mean

value of 17.5oC and standard deviation of 7.5oC inspired by the work [83]. The mean and standard

deviation has been picked to mimic the temperature data for a nearby location mentioned in Figure-
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3.4. For training the system a random day in winter (24-hours) has been selected. Then the average

hourly load has been plotted against average hourly temperature.

Once the electrical load model chosen, a third-degree polynomial curve fitting has been de-

ployed to find the functional relationship between the electric load data and temperature. The curve

fitting performed is a least squares approach to minimize error [84].

PLoad = f(T ) = a0 + a1T + a2T
2 + a3T

3 (3.3)

where a = multiplying constants, T = temperature in degree Celsius. With a goodness of fit

by R2 0.9077, the fitting resulted in a0, a1, a2, a3 = 2.385e8,−1.136e7, 8.413e5,−1.747e4. Based

on this polynomial fit, the load presumed from the test temperature data is shown in Figure-3.5.

The load curve looks random because in this experiment the temperature data for testing is chosen

randomly, which is shown in Figure-3.2.
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Figure 3.5: Calculated Electrical Load
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3.2 Machine Learning for Power System Stability: Traditional

Approach

After the initial data models have been prepared, a neural network has been trained and tested. For

testing the ANN’s performance a two-area power system with a hydroelectric power plant, a diesel

generator plant and a fixed load have been proposed. The chosen load model is a three-phase RLC

load. The value is obtained from the 24 hours ahead estimation, using a nonlinear autoregressive

network with exogenous inputs discussed in detail in the later section.

Figure 3.6: Two Area AGC Based System

The hydro turbine governor takes three fundamental inputs to manipulate the output mechanical

power. Namely, they are electric power output, the angular speed of the rotor and reference values.

On the other hand, the diesel governor works by taking the rotor angular speed and a predefined

reference as input data. The hydro power plant has been chosen to have a nominal power of 190 MW

and the diesel plant of 25 MW with both synchronized at 60s−1 in the Matlab-Simulink platform.

Figure-3.7 and Figure-3.8 show the transfer functions designed for the turbine governors for the
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purpose of automatic generation control.

Figure 3.7: Hydro Turbine Governor

Figure 3.8: Diesel Turbine Governor

After system modelling the neural network has been trained in several steps, hence, this work

claims to be a multi-level application of a neural network. The first set of training is carried out with

both the hydro and diesel governors. The structure follows a feedforward network with one hundred

hidden neurons. To facilitate prediction of both the hydro and diesel power plant the randomly

chosen electrical loads are more than the maximum production capability of the hydropower plant.

In the training process an array of load scenarios has been chosen and based on those individual

loads, turbine governor data has been fed to the neural network for training, testing and validating.

The data division is made 70%, 15%, and 15% respectively. The training process is stopped either

after one thousand iterations, six consecutive validations with the lowest possible mean squared

error or when the mean squared error (MSE) is equal or less than 1e−5. In this experiment for both
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cases, the training of a neural network has been stopped after six consecutive validations. Figure-

3.9 and Figure-3.10 are showing the mean squared error (MSE) for both the training networks.

Identifying the proper network for this thesis has been an iterative process. Once the best MSE is

obtained, then the networks have been chosen for the next steps.

Figure 3.9: MSE of ANN training for hydro power plant

For training the neural network for predicting wind and solar power as well as the electrical

load at twenty-four hours basis, a NARX (nonlinear autoregressive with external input) model of

a neural network has been used which is shown in Figure-3.11 [82]. The training model uses

daily average temperature as input and average daily powers (wind, solar, load) as outputs. Below

Figure-3.12, and Figure-3.13 show the 24 hours ahead prediction of the average hourly wind speed

and average hourly solar radiance. The actual data has been collected from the areas shown in

Figure-3.3 and Figure-3.4 using the software mentioned in reference [6]. The solar radiance data

has been collected only at the hours when sunlight is available. The NARX model uses 50 hidden

neurons with d = 24 delays, referring to a twenty-four hour ahead forecasting in this study.
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Figure 3.10: MSE of ANN training for diesel power plant

Figure 3.11: NARX network

Through a similar process, the 24 hours ahead prediction of the electrical load has been carried

out. The idea of this study is to predict the turbine governor parameters of the hydro and diesel

power plant for a certain load level, predicted 24 hours after deducting the predicted generations

from distributed generations by wind and solar power plants. Figure-3.14 is the prediction model

of the electrical load with a 24 hour ahead basis. Out of the 48 data points of predicted load, to
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Figure 3.12: Wind speed prediction [6]

Figure 3.13: Solar radiance prediction [6]

match the average temperature profile of the training data the load area has been chosen to have

around 210 MW. Which suits, the parameter values of the generators in this study. The load value

has been specified after comparing it to a generation plant mentioned in reference [84] to maintain

the practical aspect of this study. The load prediction has been carried out in two ways. Along with

the NARX model of a neural network, a fitting model has also been applied to the prediction of

electrical loads based on ambient temperature. The reason for applying a second prediction scheme

is to compare the outcome of different methods for predicting load. Figure-3.15 is showing the

fitting model. The comparison between a neural network fitting model and NARX model compels

the authors to select the NARX modelling approach over a neural-fitting approach for such a time
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series analysis.
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Figure 3.14: Predicted load 24 hour ahead (Fitting Model)
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Figure 3.15: Predicted load 24 hour ahead (NARX Model)

3.3 Understanding the Limitations of Traditional Approaches

Once the predictive models, as well as 24 hours ahead predictions have been established, the me-

chanical power inputs to the governors are predicted. In an autonomous solution the equation that

will be continuously followed is Psynch generators = Pload−Pwind+solar. To reduce complexity here,
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only one instance has been mentioned, where the total generation required from the hydro and

diesel plant after considering the distributed generations is 207.5 MW. This indicates that the syn-

chronous generators have to produce 207.5 MW to maintain load balance. The predictions of input

mechanical power for both the generators are shown in Figure-3.16, Figure-3.17 and Figure-3.18.
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Figure 3.16: Prediction of hydro turbine governor (Transient Part)
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Figure 3.17: Prediction of hydro turbine governor (Steady Part)

From Figure-3.16, Figure-3.17 and Figure-3.18 it is quite evidential that the performance of the

neural network during transient phases of the analysis is not up to an overwhelming standard. In the

later halves or the stable factions, the ANN model shows sufficient accuracy. Various reasons can

be attributed to such inadequacy of ANN for dynamic analysis. The most important reasons would
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Figure 3.18: Prediction of diesel turbine governor

be the lack of training data as the transient stages are very short lived. Another reason might be that

different training of a neural network starts from different initial data points. As the training process

stopped after six validations with the lowest possible mean squared error, other training possibili-

ties were thus ignored. Besides, the training data contains both the transient and steady-state data

points which should put an impact on how the neural network chooses its weights. Though the

responses shown in Figure-3.16, Figure-3.17 and Figure-3.18 are impressive, more tuning could

have been implemented as spikes and irregularities are spotted in the transient parts. Hence further

modifications have been proposed.

The modified approach divides the data into dynamic and steady state factions and train two

neural network submodels [84]. Each model has been tested with either the dynamic data or steady

state data. Any phasor that contains oscillation is considered ’dynamic,’ and a phasor without

any oscillation is ’steady.’ With such an approach the dynamic responses improved a lot. The
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stable responses remained almost like the previous method. Some of the spikes in the output for the

dynamic parts have not been properly reduced. So further steps were carried out. A moving average

was imposed on the output obtained from the dynamic responses. However, applying moving

average on the output data introduced a small delay in the signal, so a further signal enhancement

was done. This enhancement included matching the pick values by shifting the response curves on

time domain. The results are shown in Figure-3.19 and Figure-3.20. However, this overall attempt

is still rudimentary and not efficient.

Figure 3.19: Prediction of hydro turbine governor (with sub networks)

Selecting a neural network for solving a nonlinear problem has its demerits too. The application

of a neural network in predicting a pattern is already field-proven, however, applying ANN to pre-

dict future power generation, loads, as well as control parameters, are not pragmatic without higher

degrees of accuracy. Besides, the performance of the neural network varied due to its probabilistic

nature. So, a real-time controller of a turbine governor with an ANN might not be suitable during

transient periods. Thus, it can be concluded that a better framework is required for dynamic data.

The following chapter discusses the development of an algorithm, that can be implemented in an
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Figure 3.20: Prediction of diesel turbine governor (with sub networks)

online platform for power system post-fault restoration purposes. The idea behind this experiment

is to propose a method for dynamic data analysis. The study is conducted on a use case basis.

Therefore, a self-healing microgrid has been considered as the subject for data generation.
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Chapter 4

Machine Learning for Supervised

Hierarchical Platform

This chapter addresses the challenges observed in the previous chapter. Alternate means, such as,

changing the data analysis method and selecting a suitable algorithm for the data types used, have

also been discussed here. The key observation made in this chapter is that a hierarchical platform

for the data analysis can be a relevant candidate for a self-healing algorithm. This chapter has been

published in the following conference:

This chapter has been published in ISGT-Asia, 2016. ( M. A. Karim, J. Currie and T. T. Lie, “A

distributed machine learning approach for the secondary voltage control of an Islanded microgrid,”

2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Melbourne, VIC, 2016, pp.

611-616. doi: 10.1109/ISGT-Asia.2016.7796454 )

4.1 Post Fault Restoration

The concept of a smart grid emerged to improve reliability and sustainability through intelligent

means. The idea is to offer better strategies for the operation that the conventional electric power
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system often struggles to realize. Distributed energy generation, deregulated energy market, gov-

ernment incentives and demand response are some of the key attributes that demand an enhanced

control architecture in a modern power system. Recent studies show that the microgrids can be

considered as the building blocks of a smart grid due to the distributed and stochastic characteris-

tics that allows bi-directional energy flow [85]. A microgrid is a smaller, distributed and somewhat

independent entity in a power system that mostly provides energy to a remote distribution network.

It usually contains distributed energy generation facilities such as wind power generation, solar

power generation, gas turbine based plants, diesel generator based plants, fuel cells, energy storage

devices, etc. A microgrid strives to mitigate local demand from its inventory. If required, it can

borrow or provide power to the grid [86]. Microgrids can also be operated on a stand-alone basis.

Usually, a stand-alone microgrid appears out of a fault, or it is built in a remote location or island.

The voltage and frequency in a microgrid are controlled by synchronous generators. Due to

the stochastic or uncertain nature of solar and wind power generation, power electronic interfaces

such as inverters and converters are often used in a microgrid. These uncertainties can influence

innovative strategies for droop control [87]. As electricity production must be balanced with the

consumption, the random nature of the distributed generators often poses threats against maintain-

ing this balance. This characteristic sometimes requires the microgrids to deploy energy storage

mechanisms [88]. On the other hand, operation of a microgrid without any energy storage device

has also been considered due its cost-effectiveness and high-power quality under normal operation

scenarios. However, operating a microgrid without energy storage poses many challenges [89]. In

reference [90], an energy storage less control scheme, that utilizes pulse width modulation tech-

nique for maximum power tracking from PV-array and fuzzy logic-based diesel generator speed

control, is proposed. Such a mechanism is good enough for the PV-diesel based hybrid system.

However, the diesel generator used in the article had a maximum capacity higher than the peak load

predicted to provide full energy support at night. This planning strategy would not be sufficient for
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a wind-PV based isolated microgrid, that uses synchronous generators, having lower capacity than

the peak demand.

Microgrids with sufficient distributed energy generation capacity may use low capacity syn-

chronous generators [91], but in those microgrids, during an emergency, optimized load shedding

may be a necessity [92]. A typical microgrid often does not accommodate the concept of having

a base load, as large variations may be expected due to the frequent use of inductive loads [93].

Due to this reason, optimization techniques are often discussed in the literature to manage the con-

trollable resources [94–96]. Commands based on those optimization techniques can be carried out

from a control centre. However, the continuous bi-directional communication could be an expen-

sive venture [97]. To mitigate these issues, research such as [98] proposed decentralized control

schemes at every subsystem node, but how the uncertainty of the distributed energy resources in-

fluences the control schemes in each of the sections has not been adequately discussed, which is

one of the keys focuses in any decentralized microgrid management system [10].

Decentralized control schemes such as droop controller are one of the most popular schemes.

This scheme, time to time may suffer from the presence of the small signal instability issues [18].

This study proposes a distributed machine learning algorithm architecture, established on the syn-

chronous generators to provide a secondary control scheme under different scenarios. The purpose

of the secondary control is to maintain the desired voltage level throughout a microgrid by identi-

fying and mitigating an imminent voltage instability problem. The designed microgrid would be

in a stand-alone mode without having access to an energy storage device. The machine learning

algorithms would be trained based on the historical energy production data and the variable demand

data.
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4.1.1 Microgrid Model

This chapter follows the lumped load on a common transmission grid approach shown in reference

[96, 98, 99]. However, this model differs in dividing the system load into two parts: critical and

controllable loads [100]. The critical loads are comparable to the base load of a system that remains

unchanged throughout a certain period, while the controllable loads are unpredictable in nature and

sudden changes can be observed at any given time. The system has two thermal power plants run

by synchronous generators: a wind farm, and a solar plant. The overall demand in the system is

higher than the total capacity of the synchronous generators. This means that the wind power plant

and the solar plant play a significant role in mitigating the demand. The wind power plant deploys

an induction generator-based variable speed wind turbine. While the solar power plant is designed

as a current source with a diode, multiple resistances (internal and leakage current) followed by

a voltage source converter (VSC) [101]. Voltage source converters with appropriate controllers

can ensure grid stability, however in this article, a VSC based solar plant is only implemented

as a variable energy source. Both the solar plant and the wind power plant are not subject to the

secondary voltage and frequency control rather, from the secondary controller’s point of view, these

plants serve as a data source for the proposed binary classifier using a decision tree based machine

learning algorithm.

4.2 Proposed Secondary Control

The purpose of the primary control, which is a part of the hierarchical control scheme in a power

system, is mainly to stabilize the system frequency and voltage. The primary control in a standalone

microgrid that does not have any storage units which may cause frequency deviation even if the

system remains in a steady state condition. The secondary control acts on the deviations observed

after the primary control has been implemented and tries to balance the system. The secondary
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Figure 4.1: The Microgrid Model a Modified Approach from [7]

control has a slower dynamics than the primary control in a power system. The idea behind this

is to introduce a decoupling mechanism between these two [7]. Although the usual practice is to

implement the secondary control centrally in this study, a distributed supervised secondary control

scheme is proposed. The initial feedback data to trigger the secondary control is taken from the

transmission line voltage and the frequency of the individual machine. The secondary control

is applied after the machine initialization has been taken care of and the system has reached a

steady state condition. The proposed secondary controller acts as a restorative measure over the

primary controller. This study follows a similar approach for the conventional droop characteristics

principle discussed in reference [7] for the primary frequency and voltage control. This principle

observes that the droop control coefficients for active and reactive power DP and DQ should be

determined based on the nominal ratings of the individual machine. By calculating DQiQNi and

DPiPNi and subtracting those from the no-load output voltage and angular frequency, the reference
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voltage and angular frequency can be fine-tuned during standalone operations of the microgrid.

The overall distribution should satisfy the condition DPiPNi = ∆ωmax and DQiQNi = ∆Emax.

Where ‘N’ is the number of distributed energy generators which in this work is two and ‘P’ and

‘Q’ are the generated active and reactive power, ∆ωmax and ∆Emax are the maximum allowable

angular frequency and voltage deviations. After that, the dynamic response can be observed through

linearizing the active and reactive power equations to find out their small signal models.

∆P (s) =
G

s+DPG
∆ω∗(s) (4.1)

∆Q(s) =
H

1 +DQH
∆E∗(s) (4.2)

Here, G and H depend on the nominal terminal voltage and load angle of the generator and the

transmission line voltage where power is delivered. Through the deviation in angular frequency,

the primary controller controls the active power reference to the synchronous generators that in turn

controls the active power generation and through the deviation in terminal voltage the controller

regulates reactive power generation from the synchronous generators. This study implements the

secondary control scheme once the threshold of the ∆ωmax and ∆Emax has been breached under a

steady state operating condition. Figure-4.2 shows the model of the secondary control system. The

secondary control is considered as a part of the hierarchical control of the microgrid [7, 87, 102].

The key element in this control scheme is represented via a switch. The switch is used to move the

incoming signal for active power and voltage references between two modes; normal mode and the

contingency mode. In the normal mode the incoming reference signals are multiplied by a value

of 1 and in the contingency mode the value is modified by the proposed algorithm and multiplied

with reference signal as a discrete gain. The switch routes these two signals when needed. In

this study, the secondary control is designed based on the distributed machine learning algorithms

trained under different voltage stability conditions. The following section discusses the preparation
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Figure 4.2: Secondary Control Scheme

of the control algorithm. The main objective of designing the algorithm is to maintain the voltage

quality at the transmission line [7, 102].

4.2.1 Data Preparation

The proposed machine learning based secondary control scheme is applied to the synchronous

machines, based on the amount of power generation available from the wind and solar power plant,

as well as the controllable residential loads. The algorithm works in a cascaded form. The initial

part of the algorithm is a binary classification prepared with four different attributes and one target

attribute. The available wind power and solar power, controllable loads and the sudden changes in

load are the input attributes. The target attribute is the binary class of the system either being stable

or unstable.

For establishing such a relation in this study, the data set has been prepared out of fifty randomly

selected scenarios chosen at a very close to voltage instability point to intentionally reproduce

voltage instability at times. Thus, the operating point of the system is chosen near the lowest

voltage margin on the system PV-curve [8] shown in Figure-4.3.
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Figure 4.3: Operating Near the Voltage Instability Point (Without Compensation) [8]

As the system has been forced to operate near its stability margin, the probability of losing the

system stability increases with a sudden change in load. The simulation model ensures a significant

change in load to introduce voltage instability in the system. The sudden change in load breaches

the active power margin, that introduces power swing in the system, specially between the two

synchronous generators, due to the impact of primary controller in both the locations. To observe

the instability of the system, fifty random incidents have been prepared. It is shown in Table-4.1.

The transmission line voltage of these fifty incidents is then observed. The voltage character-

istics are distinguished based on its difference ∆V between any two points N and N − 1. The

characteristics of the transmission line voltage are monitored using a four-second window. Within

this four second window if the voltage fluctuation crosses the allowable fluctuation-threshold ∆Vmax
∆T

more than a certain predefined number M , then the voltage fluctuation is considered as persisting

and the individual scenario is labelled as unstable. Otherwise, the voltage of the system is consid-

ered as stable. A similar approach is also proposed for the rotor angular frequency at the individual

synchronous generator.
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Figure 4.4: Fluctuation During Voltage Instability

4.2.2 Preparing the Distributed Algorithm

Once the model data has been prepared, an unsupervised K-means cluster has been prepared. The

purpose of using an unsupervised cluster is to narrow down the target data before preparing another

machine learning algorithm, the neural network. Unsupervised clustering would make sure that the

data falls under one category at a time. Five predefined categories have been chosen for the clusters.

The purpose of using the neural network is to do parameter fitting. In this case, the parameters

are the references for rotor speeds and the references for field voltages of the two synchronous

generators. For a better prediction accuracy, in this study separate neural networks are proposed for

five different clusters [56]. The clustering data is shown in the Table-4.1. The clustering process is

shown in Figure-4.5.

The second step of the algorithm is to prepare a classification routine, using an ensemble of

bagged decision trees. The purpose of this classifier is to establish a binary class of stability. Some

of the fifty incidents are stable, and some are unstable. The bagged decision tree classifier is trained

with these incidents for future predictions. Once a new set of data arrives, the binary classifier

is invoked to predict the imminent outcome of this incident during a sudden and significant load
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Table 4.1: Data Table With Clusters (Units in watts)
Wind Power Solar Power Residential Load Load Change Cluster

200000 200000 203000 28000 4
187500 200000 204000 50000 4
225000 100000 198000 50000 5
187500 150000 198000 47000 1

... ... ... ... ...
187500 100000 204000 47000 5
225000 100000 191000 45000 5
200000 50000 192000 42000 3
187500 100000 201000 46000 5

change. If the classifier predicts probable instability, based on the previously prepared cluster

value of that particular incident a suitable neural network is selected. The purpose of the neural

network in the individual cluster is to propose necessary modifications in the active and reactive

power control that is currently under operation through a primary controller. The modifications

are applied based on the scenarios if the systems were stable with a similar amount of remaining

residential load. It means the neural network under each cluster is prepared based on the final

value of the residential load (‘post-event’) considering that the sudden change has occurred. The

system is simulated with the ‘Post-event’ load scenario maintaining a steady state condition. The

output of the neural network predicts the appropriate value of the reference rotor speed ωSG as

well as reference field voltage Vfld of the individual synchronous generator (SG) at the steady state

condition. The purpose of the neural network in this study is to calibrate the primary control system

for those above fifty predefined conditions. The overall architecture of the algorithm is shown in

Figure-4.6.

4.2.3 Results and Discussions

The test microgrid shown in Figure-4.1 has been used to apply the fifty different scenarios close

to the system instability points. Then the decision tree was applied and tested on the system data
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Figure 4.5: K-means Cluster based Neural Networks [9]

and a binary classifier was prepared. The result obtained from the classifier is shown in Figure-4.7.

The tree classifies two scenarios; ‘Y’ represents unstable scenarios and ‘N’ represents the stable

scenarios. The “ResLoad” stands for residential load.

In a parallel working stream, the data is also fed to an unsupervised clustering algorithm and

five different data clusters have been prepared. The centroids of each cluster have been stored for

labelling the newly arrived data. The data labelling is based on the previously prepared clusters.

The centroids of each cluster are given in the Table-4.2.

Table 4.2: Centroids of the Clusters
Cluster Wind(kW) Solar(kW) Load(kW) Changes(kW)

1 191 150 198 42
2 190 200 202 36
3 204 50 200 39
4 200 100 202 44
5 198 0 199 44
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Yes

No

Figure 4.6: Work-Flow of the Proposed Algorithm

When a new system data has been collected, the decision tree-based classifier predicts a proba-

ble voltage instability in the system. Then based on the proposed clustering scheme an appropriate

neural network was invoked and prepared for the imminent threat. If the system identifies voltage

instability the secondary control scheme forces active and reactive power control on each of the
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Figure 4.7: Binary Classification of the System Stability (Units in watts)

generators based on the predicted outcomes of the neural networks. The result of the two neural

networks are shown in Table-4.3.

Finally, Figure-4.8 shows the performance of the proposed algorithm in detecting and subsiding

the voltage instability with the data cluster number ‘4’, and Figure-4.9 shows the performance with

data cluster number ‘3’.

Figure-4.8 and Figure-4.9 have been divided into multiple segments for better visualization.

The circled lines on the left show the point where the system observes a sudden unexpected change

in load. As the initial control scheme is the linearized primary droop control, the immediate impact

is a sudden rise in voltage. The voltage rise is followed by voltage instability that the primary con-

troller cannot regulate due to the mismatch in active power in the system. This point is shown using

81



Table 4.3: Predictions Using Neural Networks
Active Power Reference: Generator-1

Cluster Actual Neural Net Error %
4 0.8013 0.848 5.828
3 0.87 0.849 2.41

Field Voltage Reference: Generator-1
Cluster Actual Neural Net Error %

4 1.00 1.054 5.4
3 1.00 1.0075 0.75

Active Power Reference: Generator-2
Cluster Actual Neural Net Error %

4 0.8014 0.86 7.31
3 0.87 0.8709 0.103

Field Voltage Reference: Generator-2
Cluster Actual Neural Net Error %

4 1.00 1.065 6.5
3 1.00 1.007 0.7

the 2nd line with cross marks. The oscillation starts to rise and crosses the permissible maximum

∆V for the transmission line. At this moment, when the instability is spotted, the system forces

the secondary control mechanism to take over the synchronous generator. This transition is marked

using the squares. After the secondary control is applied the transmission voltage becomes momen-

tarily stable and reaches towards a new equilibrium point. In Table-4.3 the performance of neural

network in predicting reference values are shown. The table shows that the prediction has some

errors in it. The observation also show that the predictability of the proposed method works better

with the data cluster-3 than the data cluster-4. The results are coherent with Figure-4.8 and Figure-

4.9, in explaining why a better response is observed in Figure-4.9. The reason for such differences

can be traced back to the bin count of the clusters. In these fifty cases, cluster-3 has occurred four-

teen times while the cluster four has occurred nine times. Such a difference could influence the

training process of the neural network. Despite having these small errors, the proposed secondary

controller damps the oscillation effectively. However, due to that minor prediction error, after the

system becomes stable the transmission voltage tries to reach towards a new dynamic stability. This
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Figure 4.8: Performance of the Proposed Secondary Control Scheme (Cluster-4)

phenomenon is shown using the 4th line with pentagrams. At that point of new dynamic stability,

the system is switched back to its primary control mechanism. This switching is shown using the

5th line with plus marks. The system remains stable after that point. The secondary controls applied

in both the machines do not use any communication channel between them. The centralized control

scheme for supervising the performance of the secondary control is only used when secondary con-

trol is incapable of maintaining stability and the centralized control would either shed additional

load or switch to the second synchronous generator, having lower energy ratings off.
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Figure 4.9: Performance of the Proposed Secondary Control Scheme (Cluster-3)

4.2.4 Analyzing the Limitations

This study implements a cascaded method of applying machine learning algorithms in a distributed

architecture, to provide secondary supervisory control on an isolated microgrid. The results ob-

tained through this study are significant. However, there is a need to discuss the impact of mis-

classification on the system operation. It is also important to address the modification required for

the distributed control system. On the other hand, the performance of the classifier, as well as the

neural network fitting model, heavily depends on the number of use cases. In this study, only fifty
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scenarios have been used near the region of stability margin in the PV-curve. The accuracy of both

the binary classifier and neural network fitting models will improve if many scenarios are incor-

porated. Another critical observation is that the proposed model is quite simple. Therefore, only

a limited number of complex scenarios could be generated. In a smart microgrid, the number and

types of generators may vary. In those cases, the method mentioned above may not be proven as

effective as it has performed so far. The following chapter analyses these scenarios and addresses

the limitations by introducing a simplified feature selection method.
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Chapter 5

Simplified Feature Selection for Dynamic

Data

This chapter provides a solution for the problem of complex event detection. In multi-area power

systems, data preparation plays a vital role. In this chapter, feature selection is used to address some

of those challenges observed in the data preparation stage. This chapter has been published in the

IEEE Transactions on Power Systems, 2018.

( M. Al Karim, J. Currie and T. T. Lie,“Dynamic Event Detection Using a Distributed Feature

Selection based Machine Learning Approach in a Self Healing Microgrid,” in IEEE Transactions

on Power Systems, vol. PP, no. 99, pp. 1-1. doi: 10.1109/TPWRS.2018.2812768 )

5.1 Addressing the Limitations with Feature Selection

The advent of Phasor Measurement Units (PMU) has improved Supervisory Control and Data Ac-

quisition (SCADA) system in recent years. It has also enabled new possibilities in the field of

protection and stability analysis, that eventually lead towards self-healing [97, 103]. Through a

framework, autonomous systems can be deployed in an interconnected network to maintain system
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reliability [18]. However, an end-to-end system configuration, which can deploy self-healing mech-

anisms, may require multiple layers of decision-making processes. These can be represented as a

hierarchical, three-tier structure. The bottom layer is placed near each measurement device close to

the physical system. The middle layer is intelligence at the substation level and the top layer is the

centralized command and control operations undertaken by engineers [14]. The deployment of an

immediate control scheme in the bottom layer is considered a well-established strategy to address

and solve contingencies locally, without any intervention from the central station. The sole purpose

of such an action is to reduce costs and increase speed of operation. The goals of reducing costs

and resources have motivated recent authors to explore local decision-making methods [8–10,104].

In reference [10] a novel sectionalized self-healing approach was introduced, featuring a section-

alized grid system to mitigate energy distribution problems. The objective set by [10] is to guar-

antee supply and demand balance in each subsection, either by adjusting the power output from

the dispatchable sources or by shedding loads. The article proposed a rolling-horizon optimization

method in order to schedule the outputs of the dispatchable distributed generators (DGs). The pro-

posed method has significant merit; however, the article assumes that the self-healing process does

not give rise to any dynamic stability issues, which often is not the case [100]. On the contrary,

power system stability relies heavily on the dynamic behaviour of the generators. In reference [10]

the authors argue that system instability can be assumed by observing the dynamic behaviour of the

generators. In other words, the development of an automated algorithm should rely on the idea of

low-level machine control.

Recent literature also suggests that local or distributed control is quite dependent on the identifi-

cation of dynamic events under different contingencies. An appropriate detection of power system

events can lead to smart restoration strategies [10, 97, 103, 105]. This study integrates the con-

cepts of both [106] and [10] and introduces a novel algorithm that detects dynamic events from

the distributed generator data in a sectionalized microgrid. The dynamic events are associated with

87



the self-healing process of the microgrid used in this study. The algorithm interprets the dynamic

events and decomposes those into user-specified regions to facilitate decision making in the context

of restoring an unstable power system. The proposed algorithm has the capacity to detect patterns

in the dynamic data and distinguish the data based on the underlying events. Once the underlying

event in terms of the affected generator is recognized, the algorithm can take local decisions on

each of the generating stations and restore the system after a major fault. The algorithm is installed

in each of the generating stations, which are independent of each other, but can make a coherent

decision in a post-fault contingency. In the proposed system, two types of non-dispatchable en-

ergy sources is introduced; wind and solar. The proposed method is based on a machine learning

algorithm which is a modified ensemble of bagged decision trees with an added Boosting mech-

anism. The algorithm uses the generator data collected from the aforementioned grid. For a bet-

ter prediction, the generator data is augmented using a simplified feature selection process. The

purpose of the feature selection process is to prepare the data set for increasing the accuracy of

prediction [107–109]. However, some of the major concerns regarding feature selection are high

sensitivity to tuning and added redundancy in the algorithmic steps [110]. For these reasons, ad-

ditional algorithms for improving relevance and removing redundancy go hand in hand with any

feature selection process [107]. Solving such challenges would require more resources and would

be a time-consuming process to enable data preparation; although this is very important it is unnec-

essary to address it in a near-real-time application . This study considers an alternative approach,

avoiding feature selection in real time by implementing a pre-processed set of input features [109].

The relevance and effectiveness of these features are discussed in the later sections. To develop,

train and test the proposed system a two-area-based microgrid was prepared in Matlab-Simulink.

The overall contribution of this study can be summarized as:

1. Developing a feature selection-based machine learning algorithm that detects dynamic events

in a stand-alone and self-healing microgrid.
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2. Exploring the potential of feature-based augmented datasets, to enhance the predictability of

a multiclass classifier algorithm for dynamic time series data.

A similar test system as introduced in the earlier section is used. However, Like [106] the system

is designed to have both a normal operating mode and a self-healing mode. The self-healing mode

consists of series compensators (SCs) in both areas near the synchronous generators. The post-fault

contingency is considered as a first swing stability problem, which can be damped using a linear

continuous control. From each distributed controller’s point of view the grid is a single machine

infinite bus system; thus, the active and reactive power transmitted through the transmission line

can be modelled as Pi = V 2sinδ
(1−k)X

and Qi = 2V 2

X
k

(1−k)2
(1− cos δ). Here i is the distributed generator,

X is the line inductance and k = Xc
X

;Xc = series capacitance. Once the proposed algorithm detects

an instability it operates the SCs and damps the oscillation. For simplicity the compensators are

considered to have two modes; Bypass Mode for damping the oscillations in a post-fault scenario

and Blocking Mode for normal operations. Once a post-fault rotor angle instability is identified, the

SC closest to the most affected generator is switched to Bypass Mode, to suppress the oscillation

and stabilize the system. The SC is then returned to Blocking Mode after the system has been

restored [111].

5.2 Proposed Methodology

The overall process is shown in Figure-5.1. It starts with a data preparation stage where a Monte

Carlo-based simulation is carried out with four different fault locations close to the wind power

plant, solar plant, hydro and diesel power plants. The process is followed by the preparation of

a dynamic response database. The database contains the pre-fault, during fault and post-fault dy-

namic responses of each generator. The feature extraction stage follows, to extract some predefined

features and augment the dataset for training machine learning algorithms placed near each of the
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generators. Once the training process is over the algorithm is evaluated with a new set of randomly

chosen datasets. This phase has three outputs. The first output is invoked when classification er-

ror is observed while training. This link adjusts the feature space. The second output ensures the

system is properly trained and completes the training process. The third output contributes in the

actual decision-making phase on right.

Figure 5.1: Workflow of The Proposed Algorithm
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5.2.1 Data Preparation

The data preparation stage does the data selection and the feature selection shown in Figure-5.1. In

order to develop the system dynamic response database from the generators, 250 simulations were

carried out with randomly selected wind generation and demand for each of the four fault locations

as shown in Figure-5.2 resulting in a total of 1000 different scenarios. For example, the random

scenarios relevant to the wind power plant were created with a mean wind speed of 10m/s, and

a standard deviation of 1m/s. This study only considers scenarios where rotor angle instability

emerges after a major fault.

Figure 5.2: The Microgrid Model

=

The feature selection mechanism adopts the concept presented in reference [112]. The method

implies that it should be agnostic to use machine learning for modelling; it should account for a

streaming dataset; and it should be scalable to support many events. However, unlike [112], this

study implements a fixed feature set to eliminate dependency on any wrapper (different models
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for different subsets) or filter methodology for feature selection. As the system analysis is largely

based on post-fault data, non-linear mapping functions, which are mostly required for load and price

signals, can be avoided [110]. Thus, a predetermined feature set can be considered. As the time

constants of MGs are relatively smaller than those of a high voltage system, generator parameters

were carefully considered to select the appropriate features [113]. To produce the generator data a

conventional differential algebraic equation-based model was used [114].

This study carried out multiple simulations based on the above principles by randomly varying

the wind power and demand while considering four probable fault locations. The overall process of

damping the rotor angle instability is mentioned in reference [8]. However, unlike [8], a supervised

control scheme was not implemented; rather the study relied on primary control, secondary control

and appropriate series compensation. For simplicity, only cases where oscillation was completely

damped were considered as valid candidates for training the machine learning system. Analysis of

the undamped scenarios was regarded as out of scope and not undertaken.

To establish a relationship between the generator model and the constant impedance load model,

classical energy functions were used [109];

Mi
d2δi
dt2

+Di
dδi
dt

= Pi −
m∑

j=1,j 6=i
(Cij sin δij +Dij cos δij) (5.1)

where, m is the number of synchronous generators. δi is the rotor angle of the i− th generator.

Cij and Dij are the function of transfer conductance and susceptance of the reduced network. The

per unit inertia constant of each of these generators is H = 1
2
Mω, where ω is the synchronous

speed.

The dynamic data produced from the generators was selected based on a multi-band power

system stabilizer (PSS) model for the hydro power plant and a traditional PSS model for the diesel

power plant. The parameters are rotor speed ω, rotor angle deviation dδ, reactive power generated

QE and terminal voltage EG [115, 116].
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Parameters are represented in per unit . Those generators and consumers not close to the vicinity

of the fault are kept constant during the period when a transition between two events is taking place.

5.2.2 System Dynamic Responses

The proposed algorithm implements a simplified feature selection technique for data preparation

and applies multiple machine learning algorithms in order to detect underlying events from the time

series data. The method is initialized by preparing a database of the system dynamic responses.

Four attributes namely: generator rotor speed ω, rotor angle deviation dδ, reactive power generated

QE and terminal voltage Eg were chosen for preparing the database [10,117,118]. The rotor angle

deviation was measured against the center of intertia (COI) angle;

δCOI =

∑n
i=1 Hiδi∑
i = 1nHi

(5.2)

δi is the rotor angle and Hi is the inertia constant of the i-th generator.

The system dynamic response is characterized by different events taking place in the proposed

two-area-based system. The events are divided into nine different categories. The categories or

events are based on the transient, sub-transient and steady state behaviour of the pre-fault, during

fault and post-fault system states. Two events are associated with the pre-fault state, one event

identifies the fault, three events are associated with the post-fault state with classification errors

and the remaining three events are associated with the post-fault state without classification errors.

For each of these categories or events, generator data was collected from different power plants

and stored as a matrix of time series databases. Considering tn is the length of time and m is the

number of generators, the attributes of the classification algorithm therefore become m data points

ranging from (tn, E1, Q1, ω1, dδ1), (tn, E2, Q2, ω2, dδ2) to (tn, Em, Qm, ωm, dδm).The duration of

the fault was kept uniform. It was just long enough to introduce a rotor angle instability in the

system. However, the length of post-contingent scenarios is not uniform; rather they were chosen
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based on the time required to achieve system wide stability. This measure was taken to monitor

whether a loss of synchronism appears before initiating the next event.

A power system is often interrupted by uncertain events such as three-phase faults. Once the

fault is cleared, the system must be restored and operated at its optimal target configuration. The

actual method of system restoration is a well-established research domain that consists of expert

systems, mathematical programming and heuristics, as well as soft computing e.g., [105,119–122].

The primary focus of this study is not to analyse different restoration mechanisms, but rather to ac-

curately detect the underlying events and properly categorize them using an automated system. This

study assumes a soft computing-based (machine learning-based) system restoration mechanism as

discussed in later sections.

The nine events are briefly explained below. Figure-5.3 and 5.4 show six time-varying dynamic

events out of those nine events. Each of these events has different values in the chosen features.

These different values help linearize the attributes for the classification algorithm.

1. Starting the generators: In this state the transient and sub-transient phases of the generators

during start-up are addressed.

2. Stable operating point after start up: This is the pre-fault stable operating point. Once the

system reaches this state the experiment is considered ready for the introduction of faults.

3. Introduction of the fault: A large reactive power mismatch is caused by disconnecting a large

inductive load. This state lasts long enough so that a rotor angle instability, and in turn, a

high amount of power swing, can be introduced.

4. Fault clearance and post-fault transient state: In this state the fault is cleared and post-fault

transience is observed. The SC is kept in bypass mode (damping mode) in the transmission

line.

5. Post-fault stable operating point: The steady-state operating point after clearance of the fault.
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6. Transition towards the initial stable operating point: Once the post-fault system becomes

stable the operating conditions are reverted to the normal pre-fault operating condition. This

event represents the transition from the post-fault stable operating point towards the initial

restoration states. This state is similar to the sub-transient state of the machine initialization

phase.

7. Restoration of the initial stable operating point: The stable operating point equivalent to

event-2.

8. Fault clearance and post-fault transient state: In this state the fault is cleared and post-fault

transience is observed. The SC is kept in blocking mode (undamped) in the transmission line.

It is a post-fault scenario with misclassification.

9. Transition towards the post-fault stable operating point to reach the post-fault stable state or

event-5. The SC is kept in blocking mode (undamped) in the transmission line. It is the

other post-fault scenario, with misclassification. Event-7 follows both the event-4 (properly

classified decisions) and event-8 (misclassified decisions).
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Figure 5.3: Generator Data Under Different Dynamic Events (50 samples/second)
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Figure 5.4: Generator Data Under Different Dynamic Events (50 samples/second)
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The duration of each of the events may vary depending on the operating conditions of the mi-

crogrid. In general, most of the events are longer than one second. During any transition state the

later parts become relatively more stable. Thus, identification of that half becomes comparatively

less challenging due to the reduced variation in data, and also becomes less effective for identify-

ing features. Therefore, to reduce the computational burden, only the attributes exhibiting certain

variation in data, that exceeds a pre-defined threshold, are filtered and sent for feature selection.

The rotor speed deviation dω is chosen for preparing this threshold. The crossing of the thresh-

old value is observed for a period of 60ms. In other words there are three consecutive data points

∆ωi = ωi − ωi−1; (i ≥ 2).

5.2.3 Selected Features

Harnessing information from magnitude and frequency of a signal, has been a well-established

technique in understanding power quality. Therefore, different signal processing techniques were

introduced to understand power quality issues in numerous studies [123]. Scientific analysis in

other disciplines such as Electroencephalography, signal processing is often implemented to detect

events such as analysing the shape of an action potential measured in millivolts [124]. The key

argument observed in those studies is that signal shape contains valuable information. This study

is also motivated by a similar argument.

After the attribute had been selected, a layer (in the form of attribute columns) of features was

added, in order to augment the data to improve predictive capabilities [19,125]. All the features are

normalized to make the overall process generic for different wind power sources and demands. The

augmentation is carried out based on three selected engineered features. These features have the

potential to understand an underlying event, based on the shape of a time-series data. The features

are:

1. Prominence of local maxima
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2. The width of the local maxima

3. Available frequencies in the time series data

The characteristics of local maxima in a data set can carry valuable information [126, 127].

Time series data is composed of different frequencies and amplitudes. The characteristics of those

amplitude peaks varies based on the event taking place at a certain period [128]. Dynamic phasor

data, obtained from an MG, exhibit similar amplitude and frequency variations. This is the primary

motivation for selecting the 1st and the 2nd feature. To select a range in the subject signal, a 1-

second window was prepared. The window slides 20ms in each iteration, meaning that after every

20ms one data point is recorded. The justification for selecting a 1-second window is provided

later.

As the initial selected feature in the data set, a topographical prominence was chosen. The

method followed here is based on the work presented in reference [129]. The 1-second time series

window is first normalized. Then the lowest contour line circulating a local maximum point is de-

tected and the height of that point is measured in terms of that contour line. The second engineered

feature is the length of the contour lines. It signifies the width of individual peaks. Figure-5.5 shows

the method for finding prominent local maxima from a 1-second window in the terminal voltage of

the generator in a hydro power plant (generator-1). The process applies Getis and Franklin’s (G&F)

variation of Ripley’s K-function rather than a height threshold. The aim is to determine the number

of localizations, n, in the 1-second data window or the region of interest (ROI). If K(r)j is the

Ripley’s j-th K-function and δij is the Euclidean distance between localization i and localization j,

then;

K(r)j = A×
∑n
j=1 δij

n
(5.3)

Here, A is the area of the ROI and r is the radius around
∑n

i=1
δij

n
, keeping the localization j in
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the center. It means K(r)j represents the local signal amplitudes in relation to the average signal

amplitude over the whole ROI, which in this case was the indicator of the peak prominence factor.

The K-function is normalized across its variance and L-function, in preparation for data analysis.

The diameter 2× r signifies the width of the localization j.

L(r)j =

√
K(r)j
π

(5.4)

One of the main ways of understanding power system oscillations is frequency spectrum anal-

ysis. Due to the spatio-temporal nature of power system dynamics, frequency spectra can develop

valuable features [130], which can be helpful not only for understanding inter-area or intra-area

oscillations but also for analysing voltage flicker, as has been done in past research [131–133]. The

third chosen feature is therefore the available frequencies in the 1-second data window. A discrete

Fourier transformation (DFT) is used for this feature;

x[n] =
N−1∑
n=0

1

N
X̃[k]e−jk(2π/N)/n, K = 0, 1, ....N − 1 (5.5)

Here, X̃[k] is the amplitude and x[n] is the linear combination of the complex exponentials

with that amplitude. DFT has often been used in the field of harmonics and power quality analysis

[132, 134, 135]. In this study, a frequency spectrum of the first 20Hz was chosen to analyse the

voltage fluctuation.

The commercial availability of phasor measurement units has made it easier to store power sys-

tem attributes at a rate of 50 samples/second or higher. Here, a sampling rate of 50 samples/second

was chosen, and thus, based on the “Nyquist–Shannon sampling theorem” the DFT could be carried

out up to a frequency of 25Hz. Therefore, 1-second is sufficient to capture the frequency spectrum

in one event. However, in the proposed microgrid it was observed that any frequency more than

20Hz had little to no contribution in calculating the frequency factor. Therefore, the proposed fre-
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Figure 5.5: Peak Prominence and Width Inside a Predefined Data Window of the Terminal Voltage
of Generator-1

quency feature is calculated based on frequencies up to 20Hz. Based on the above argument, as

mentioned in earlier sections, a window size of 1-second was chosen. Another motivation for se-

lecting a 1-second window length was to retain enough distinction between different events. In the

proposed microgrid, some of the observed events are no more than two seconds long. Therefore,
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the frequency features in the transition windows (from unstable towards stable responses), are more

likely to be corrupted. The top sub-figure (5.6a) of Figure-5.6 shows a comparison between three

events under different window sizes and the bottom sub-figure (5.6b) shows a transition window

between two events. From the figures, it is quite comprehensible that if the data window length

increases beyond a certain point, the possibility of identifying distinct features decreases.
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Figure 5.6: (a) Frequency Factor at Different Window Length and (b) Transition Between Two
Events

To provide justification for those features, a randomly selected sample data set with three dif-

ferent events was prepared as shown in Figure-5.7. The chosen attribute was the terminal voltage

of generator 1. The figure consists of the samples collected from three events Event1, Event3 and

Event9. Different events, despite having similar overlapping magnitudes, exhibit different char-

acteristics in their signal peaks, widths and available discrete frequencies. This justification is

reflected in Table-5.1.

For a better understanding of K(r) and L(r) parameters, the aforementioned sample data set

as shown in Figure-5.7 was used. To show the calculation process for peak prominence and width,

the Event1 marked with a yellow line was considered. Firstly, from any local minimum i to the

102



0 20 40 60 80 100 120 140 160 180 200 220
4.4-Second Data Window (50 Samples/second)

0.8

0.9

1

1.1

T
er

m
in

al
 V

ol
ta

ge
 P

.U
. Event9

Event3
Event1

MAX Width

Varying
Heights

Varying
Heights

Varying
Heights

MAX Width

Varying
Heights MAX Width

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

0

1

2

3

4

W
ei

gh
ts

Single-Sided Amplitude Spectrum

Event 1
Event3
Event9

Figure 5.7: Sample Data and Feature Selection

next local minimum i+1 a total of n = 40 samples were selected. The distance 26.002 observed

in the X-axis of the data window, between i and i+ 1 is considered as the diameter of the peak.

Area A, 530.92 is then calculated based on this diameter. The average height
∑n

j=1
δj

n
of the i-th

peak is calculated by summing the height of each sample 0.82, 0.83, ... 1.044, ...0.82 and dividing

it by n = 40, which is 0.4765. Once the area and average height are found, K(r) = 253.90

and L(r) = 8.99 are calculated using the above-mentioned formula. Width is calculated from the

diameter 26.002. Table-5.1 was prepared using the above interpretation of the dataset. Figure-5.10

shows this process of including feature selection to aid the classification algorithm. A similar data

set to that shown in Figure-5.7 can be used to calculate the frequency features by adding all the

weights of the first 20Hz frequencies in one data window. For example, inside one arbitrarily

selected data window of event1, the twenty weights observed were 0.072, 0.1446, 3.7611, 0.1407,

0.0843, 1.0338, 0.0901, 0.0365, 0.5217, ....... , 0.072, 0.0060. Adding those, a feature value of

6.8565 was obtained. While, The feature value with the first 25Hz frequencies is 6.8567.

As mentioned earlier, while extracting the features, each data window is sampled with 50 data
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points, representing one measurement every 20ms. However, to train a machine learning algorithm

to identify the underlying event, each of the windows must be represented as a single row of at-

tributes at any given time. The transition of the data window can thus be considered as a transition

of events either from event i to event i or from event i to event j. This action is carried out in three

different ways. For the first feature, a mean value of all the available peak prominences in a data

window is selected; for the second feature, the maximum width of any given time frame is chosen;

and for the third feature, accumulated weight obtained from the DFT of the first twenty frequencies

is considered. Thus, a range of 50 data points is converted into one data point identifying the feature

characteristics of that window.

The intention of the feature selection and data augmentation is to provide additional information

to the classification algorithm. In this way significant differences can be seen between two time

series data sets that have a high degree of similarity. For example parts of Event-3, Event-6 and

Event-9 are shown in Figure-5.8. Along with that, the parts of comparatively more stable events,

Event-2, Event-5 and Event-7 are also shown. The similarity between these parts is very high for

proper classification by using the traditional classification methods. Besides, with varying wind

power, solar power and demand these similar events overlap each other, which makes it difficult for

a machine learning algorithm to gain adequate information.

However, adding the feature space to the original data set brings new information to the classi-

fier algorithm, as shown in Table-5.1. The addition of such information helps to reduce classifica-

tion error and improves the performance of the classification algorithms. This hypothesis is further

analyzed, tested and explained in detail in a later section Testing the Overall Hypothesis.

5.2.4 Multiclass Classifier

Power system event detection is a multiclass classification problem, where multiclass classifiers

are frequently implemented. A multiclass classifier can be an algorithm or a set of algorithms that

104



5 10 15 20 25 30

Within a '1-second' Data Window (50 Samples/second)

0.99

0.992

0.994

0.996

0.998

1

1.002

R
ot

or
 S

pe
ed

 P
.U

.

Event-3
Event-6
Event-9

0 20 40 60 80 100 120 140 160 180 200
'4-second' Data Window (50 Samples/second)

0.91

0.92

0.93

0.94

0.95

R
ot

or
 S

pe
ed

 P
.U

.

Event 2
Event 5
Event 7

Figure 5.8: Similarity among multiple events

can predict more than two data classes. To solve such problems, researchers often use ensemble

decision trees, sometimes also referred to as the random forest. A random forest algorithm uses

multiple decision trees and regression techniques, on multiple sub-sets of a training dataset. In this

study, once the data preparation stage was over, a multiclass classifier, which is an ensemble of

bagged (bootstrap aggregation) decision trees, was trained as shown in Figure-5.10. Bootstrapping

divides the training dataset into n-number of smaller sets with sample replacement, to train n-

number of base classifiers. After training, each of those base classifiers vote for a class. The

weights of all the votes are then considered in developing one improved composite model, which

significantly increases the accuracy of classification [10, 125].

The key advantage of using bootstrap aggregated or bagged classifier is that it enables a linear

combination of the function estimates. Based on the different sets of predictor variables and their
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Table 5.1: Features In Three Similar Events
Event Width Factor Prominence Factor Frequency Factor

1 26.002 8.93 6.8565
3 33.47 0.94 4.0348
6 47.83 0.042 0.6782
9 4.59 0.001 0.946
2 56.43 0.00035 0.008
5 77.02 0.00001 0.00197
7 109.52 0.00001 0.00111

estimates, the input data is weighted and re-weighted. For example; a function estimate ĝens =∑M
k=1 ckĝk(.) is obtained based on the k−th re-weighted data with a combined linear estimation co-

efficient ck. This method is helpful in addressing the issue of classification error due to estimation

variance and statistical bias, especially in a stochastic scenario [136]. Bagged decision trees are,

therefore, not pruned and are longer, which helps the ensemble method to improve accuracy by

combining several low-biased sub-models. For example, in reference [133] an ensemble of decision

trees was used, on PMU-based post-fault rotor angle data, to predict catastrophe in a wide-area

power system. The implementation of ensemble trees improved the accuracy of the prediction by

more than 20%, compared to a single decision tree.

However, the accuracy of classification or prediction of such an approach, depends heavily on

the number of trees. Figure-5.9 is shown as a proof of concept, where a comparison of mean

classification errors with different numbers of trees is made. 100 test cases were used for this proof

of concept. The fault was placed near the hydro power plant and the data of Event-4 was used

as the target attribute. Once the use case was prepared, the classification error of the algorithm

was evaluated, and the moving average of the error was plotted against the number of trees. The

analysis shows that with an increased number of trees, mean classification error decreases. It was

also observed that if more than 100 decision trees are chosen for the algorithm, accuracy reaches

saturation point.

Therefore, based on the above analyses the ensemble was prepared using 100 fully grown trees
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Figure 5.9: Classification Error Vs Number of Trees

by splitting the attribute data into 100 training sets, D1, D2,...,D100 in order to obtain an improved

composite model. Mi(1 ≥ i ≥ 100) classifiers vote by predicting a class and the ensemble se-

lects the final class from those votes. The overall technique includes Bagging and Boosting. The

Boosting process works in a sequence by considering previously generated classification errors and

rectifying those [10, 19, 107, 125]. The classifier is implemented on each of the four synchronous

generator data sets. Different contingencies have different durations and thus different dynamic

signatures. However, some degree of similarity is present in the dynamic events presented in this

study, which affects the process of identifying classes. That is why, unlike [10] and [125], in this

study a new scheme of multiple ensemble trees was used to significantly improve the scalability of

decision trees.

In this method, using the four attributes of rotor speed ω; rotor angle deviation dδ; reactive

power generated QE; and terminal voltage Eg, and three features for each of the attributes, three

different ensembles of bagged decision trees are trained. Each ensemble then is used to predict

the events and an array of predicted events is prepared. The data is then analysed using a simple

statistical mode operation and the most frequent prediction in each instance is considered as the

final predicted event. This approach can reduce error while predicting the underlying event. The

idea of using the statistical mode is to strengthen the estimation process by incorporating different
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dynamic responses observed in a synchronous generator. The results are shown in the following

section. Figure-5.10 shows the overall process of preparing the ensemble tree [11]. Hypothesis

testing, with a limited dataset, is discussed in the following section in order to test the proposed

method.

Figure 5.10: Preparation of the Multi-class Ensemble Trees [10, 11]
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5.2.5 Testing the Overall Hypothesis

The overall hypothesis in this study is that different data types, with their inherent features, can

significantly differentiate these events. The proposed algorithm suffers most during the transition

periods from dynamic state to steady state, because the features become less distinct. However, if

different data types are used to prepare the features, the accuracy of the ensemble method increases.

The idea of using a statistical mode is to filter out the classification errors in one data type by using

the results obtained from the other data types.

For example, rotor speed, terminal voltage and reactive power are dynamic in nature and each

of them produces similarities between different events at certain durations. However, all of these

are not similar at the same data points. Thus, if the classifier, using rotor speed, introduces a

classification error, the other classifiers can mitigate that because of their own features. Figure-5.7

shows the data sample chosen from the terminal voltage of one of the diesel generators for testing

the hypothesis.

The hypothesis also advocates for feature extraction to improve the performance of the classifi-

cation algorithm. The proposed m× 3 feature matrix introduced in the earlier section is considered

individually irrelevant. The decision tree algorithm recursively tests the attributes and partitions

the dataset Dt containing scalar values into two or more child nodes Dt1, Dt2. Here t is used to

represent a continuous data set representing one window. Each child node Dti is defined by a range

query such as thresholdi ≤ Dti ≤ thresholdi+1. However, this query range cannot give an ap-

propriate split if the time series data available shares similar values for different classes. Figure-5.7

is such a time series data set. However, adding the predefined distinct features that represent an

individual class helps to eliminate this condition. A fictitious example is shown in Figure-5.11 to

elaborate the concept. If feature extraction is used the algorithm reaches the end node (representing

only one class) with higher accuracy in fewer steps. On the other hand, without the use of features,

the algorithm reaches the end node with a larger number of steps. The classification error is also
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high without the use of features. In the figure, class shapes have been used as additional information

along with the position of each data point.

Figure 5.11: Classification With and Without Features (fictitious Data)

To understand the rationale behind the proposed classification approach, a concept called deci-

sion node impurity is invoked. When the decision tree splits a data set, the node impurity indicates

how well the classes are separated. If, in a particular node, all the data points belong to one class

without any classification error, then the node impurity is 0 or the node is considered pure. in

Figure-5.11 the algorithm with feature augmented data reaches a pure end-node, while without

feature augmentation it reaches an impure end-node.

In Figure-5.12 two instances of classification processes with the same data set are presented.

The upper tree is based on the time series data only, and the lower tree is based on the augmented

features partly observed in Table-5.1. To understand how the tree with feature data is performing

better, a determination of goodness of split is carried out.
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Figure 5.12: Classification Without and With Features

∆ = IParent −
k∑
j=1

N(vj)

N
I(vj) (5.6)

where ∆ is the information gain; I(parent) is the impurity of the parent nodes; N is the number

of parent nodes; k is the number of attribute values; and N(vj) is the number of child nodes. The

evaluation process measures impurity in order to understand the information gain. The information

gain of classifying the first event (Event1) was 7.283% for the process without the features and

around 26.87% with features. It shows that adding meaningful features reduces impurity. The

comparison is done based on the first three interior nodes. The interior nodes are also known

as non-leaf nodes, where a data set is divided based on a threshold observed in an attribute. The
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impurity was then calculated based the equation shown below for each of the parent and child nodes

[136–138]. In the equation, Ni is the node impurity, Ctarget is the number of samples representing

the target class and Ctotal is the total number of samples those are available in the child node.

Ni =
Ctotal − Ctarget

Ctotal
(5.7)

For example, if in a child node the observed Ctarget is 50 samples of event-3 and in the same

node Ctotal is 100 samples of event-3 and event-9, then the node impurity is 50%

5.3 Performance of the Feature Augmentation Based System

The proposed method was then examined and compared using a test data base. The test database

was prepared by randomly distributing the events. The test set contains 400 × 9 events scattered

over the time frame. To test the robustness of the algorithm, a normal random noise was also

added to the attribute data. The random noise had a mean of 0 and standard deviation of 0.01 P.U.

Table-5.2 shows the accuracy of the algorithm in detecting the dynamic events in each of the four

generating stations. Table-5.2 also shows a comparison between the performance of the algorithm

and three other traditional machine learning-based methods: a classification and regression tree

(CART); an artificial neural network (ANN); and a K-nearest neighbour algorithm. The result

shows a significant improvement can be achieved if a feature vector is introduced to the time series

data that can add a distinct attribute characterizing each of the underlying events. Classification

errors mostly occur during the transition between one event and another event, especially when the

system is achieving stability. This is because when a system is near a stable state, features become

less prominent and the margin of error increases.

The comparison clearly demonstrates the superiority of a feature selection-based method over

traditional classification methods. Some of the classical techniques are very accurate and promis-
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Table 5.2: Accuracy for Event1, Event3 and Event9 in Percent %

Event-1

Generator Proposed CART ANN K-NN
1 99.8949 89.4529 < 30 93.2276
2 99.8603 89.7265 < 30 93.5394
3 98.9123 89.3287 < 30 90.6113
4 95.7268 92.4601 < 30 95.4763

Event-3

Generator Proposed CART ANN K-NN
1 99.6636 87.3372 < 30 90.0813
2 99.6765 87.52398 < 30 91.5239
3 99.6042 88.4577 < 30 92.1306
4 97.9386 89.6389 < 30 93.9854

Event-9

Generator Proposed CART ANN K-NN
1 97.1287 81.0249 < 30 89.8023
2 97.1146 84.2273 < 30 91.2254
3 97.5543 79.4611 < 30 93.1175
4 95.2584 73.7433 < 30 94.0028

ing. However, as a stand-alone microgrid is a highly sensitive network, a small classification error

in a post-fault scenario can have significant consequences. Therefore, it is desirable to implement

an algorithm with improved accuracy.

In Figure-5.13 the overall accuracy in detecting all the nine events of the proposed distributed

method are determined based on four different fault locations. In total 400 simulations were carried

out to test the algorithm; 100 simulations for each of the fault locations. In each simulation the

wind power and demand were randomly varied within a predefined boundary to develop different

test data. The black, blue, green and red lines represent the accuracy of the algorithm in the diesel

power plant, the solar power plant, the wind plant and the hydro power plant respectively. While

the Dotted ..., the Dashed - - -, the Dot-Dashed -.- and the Solid lines represent faults near the solar

power plant, the diesel power plant, the hydro power plant and the wind power plant respectively.

The key application of the proposed method is likely to be in the context of identifying the

generator affected most by a fault and making valuable decisions in order to clear the impact and

restore the grid.
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Figure 5.13: Accuracy Chart After 400 Simulations

Based on the determination of the underlying event, the distributed controllers operate the SC

located closest to the faulty generator. This means the decision is to identify which SC close to

the subject generators should be in bypass mode. The other SCs will remain in the blocking or

non-operational mode. Table-5.3 represents all the available features for a 1-second data window

during the fault period. The fault location was altered from close to generator-1 to generator-4

and four scenarios were created. The detection of each underlying event is presented in the table.

The algorithms do not share data between themselves. The application shown in column 6 shows

whether an SC should be operated in bypass mode or not in order to damp the oscillation. Yes means

operate the closest SC and No means do not operate that SC. Each algorithm can only control the

SC located closest to it. Once the algorithm recognizes the transition from Event3 towards Event4

the algorithm switches back the SCs into non-operational mode. This switching of the SCs based

on the identification of different events is considered an online operation.

Figure-5.14 shows a simulated event where a decision error results from a classification error.

The decision made with a classification error is then compared with a decision without any classifi-

cation error. In this event the algorithm placed closer to the Generator-1 fails to identify the location
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Table 5.3: Online Decision Making based on the feature data collected from different locations
(Observed from different generators)

Observed
From

Fault at Prominence
Factors

Width Fac-
tors

Frequency
Factors

Decision

G1 G4 0.0315 38.878 12.1 No
G1 G3 0.00166 34.72 1.2 No
G1 G2 0.038 37.57 12.4 No
G1 G1 10.64 27.183 49.98 Yes
G2 G4 0.035 21.51 15.2 No
G2 G3 0.00135 22.35 2.7 No
G2 G2 8.66 19.57 37.2 Yes
G2 G1 0.044 21.21 22.3 No
G3 G4 0.038 27.5 8.66 No
G3 G3 7.4 19.88 4.74 Yes
G3 G2 0.002 24.07 5.76 No
G3 G1 0.018 24.3 9.8 No
G4 G4 9.02 26.1 35.46 Yes
G4 G3 0.0002 34.8 9.12 No
G4 G2 0.017 34.75 10.03 No
G4 G1 0.025 35.44 10.82 No

of the fault and does not operate its SC but Generator-4 operates the SC near it, thus affecting the

direction of power flow.
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Figure 5.14: Decision making with and without the proposed algorithm
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Figure-5.15 shows a post-fault operation based on the decisions made. This shows how the

distributed SCs are operated once the fault location is detected near generator-1. Only the SC close

to generator-1 is operated in bypass mode and the oscillation is damped to achieve a post-fault

stable state. The switching in SC takes place immediately after the fault is cleared.
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Figure 5.15: Post fault operation of Generator-1 with the Nearby SC in Bypass Mode

5.4 Understanding the Limitations

This study develops and demonstrates a novel algorithm to detect power system dynamic events

by implementing a less computationally expensive feature selection method. The performance of

the algorithm is clearly superior to the traditional classification approaches. Minimal classification

errors were found to occur during the transition periods from one event to another. Once the data

window falls into only one category the classification becomes close to 100% accurate.

The performance of the algorithm was tested on an offline basis only. Any misclassification

due to time lag or missing data was ignored. Another key consideration with the current algorithm

is selecting an appropriate data window. Faults are considered to have a fixed length before being

cleared. During each of the short data windows, loads as well as non-dispatchable generations are
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considered constant. In future studies, dynamicity of the loads, intermittent generation and fault

duration will also be addressed.

The detection of events is mostly based on one type of three-phase fault leading to rotor angle

instability. More comprehensive analysis needs to be carried out for other types of instability.

Furthermore, the decision-making capability can be made more extensive by considering optimal

restoration actions for a cost-effective post-fault operation.

Overall, it can be stated that the proposed algorithm has shown promise, despite being less

computationally intensive than the traditional methods. However, the concept has been tested only

with a smaller system. The method of feature selection must be further explored and tested in a

larger network.
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Chapter 6

Data Augmentation for a Segmented Grid

In this chapter the concept of feature selection is further explored, with a larger power system,

having the capacity of being divided into multiple segments under duress. This chapter has been

accepted in the conference IEEE-PES, Asia 2017.

6.1 Features in Larger Networks

The concept of standalone microgrids for addressing economic and environment-friendly electric-

ity generation is ever pushing the limit of load margin. One of the key objectives in a microgrid

is cost-effective operation through the integration of large-scale renewable energy sources. This

factor also contributes to voltage instability. To address this challenge, modern grids often put an

effort to introduce the self-healing feature through software intelligence. The advent of the phasor

measurement unit (PMU) has further strengthened the avenue of self-healing [97, 103]. Through a

framework or multiple layers of decision making processes, autonomous systems can be deployed

in achieving self-healing mechanisms. An end-to-end system configuration often requires a hierar-

chical structure; The bottom layer for measurement, the mid layer for deploying intelligence in the

substation level and finally the top layer is the centralized command [14]. Deployment of an emer-
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gency control scheme in the mid and bottom layer can address and solve some of the contingencies

in a distributed order, avoiding any interventions from SCADA which is in the top layer. Such

effort helps reduce operational costs and increase speed of operation; thus local decision making

for service restoration is getting more attention in recent years [8–10, 106]. After a major fault,

service restoration in a sectionalized microgrid demands distinct solutions. In reference [106] a

novel self-healing approach has been introduced. It distributes the self-healing process into multi-

ple segments of a fault affected microgrid. The demand balance is maintained either by adjusting

the power output or by shedding loads in each of these sections. However, the study considers that

no dynamic and transient stability issues would arise while applying the self-healing process, which

often is not the case [100]. System instability in a sectionalized microgrid can be understood by

observing the dynamic behaviour of the generators both in pre and post-fault conditions [10]. This

indicates that to develop an automated service restoration mechanism, while considering dynamic

events, understanding the methods behind low level machine control could be resourceful. [139]

argues that analytical calculation of the post-fault system instability can give an acute range of

post-fault operating points. This method is quite effective in simplifying the post-fault protection

schemes but the method does not consider any stochastic element present in the network. Wind

power integration, variable demand and fault locations are some of the key elements introducing

uncertainties i.e. instability in a multi-machine network. As the line voltages and frequency in a

microgrid can be controlled by controlling the synchronous machines in the network, the dynam-

icity in the machine parameters potentially can distinguish different events. Recent literature thus

infers that the local or distributed control is quite dependant on the identification of dynamic events

under different contingencies [10, 97, 103, 105]. To maintain the post-fault voltage stability, the

most common measures are demand response (DR) and involuntary load curtailment (ILC). Under

different stochastic scenarios, specially under post-fault contingencies, while the system is subject

to transient and dynamic stability issues, the effectiveness of DR is yet to be discussed in larger
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contexts [140]. On the other hand, ILC is the least desired avenue. Numerous studies, therefore,

turn towards the concept of a corrective voltage control (CVC) scheme, which is based on control-

ling active power generation from the fast-response generating units and reactive power generation

from VAR sources like synchronous generators [23, 140, 141]. In reference [23] the CVC has been

formulated as a scenario based multi-objective function. Each scenario reflects the availability of

wind power and demand. The multi-objective function minimizes the risks of voltage instability at

a lower cost. The overall method, despite being technically sound lacks the ability to analyse the

development of scenario-based active and reactive power dispatching scheme from a point of view

of a post contingent unstable system. The fast service restoration schemes right after detection of a

system instability is therefore not observed in the scenario-based assessments, which is a key factor

in any self-healing microgrid. Besides the applied fuzzy satisfying method to select post contingent

operating points is not intelligent which can also contribute to delaying the service interruption.

This part of the analysis implements a scenario-based optimized CVC technique similar to [23]

from the perspective of controlling a synchronous machine. Instead of analysing cost efficiency

the methods address the transient stability issues in the optimization routine, especially in a system

which is vulnerable to critical short circuit faults. To address the shortcomings of DR presented in

reference [140] a machine learning based system has been proposed that works on the data prepared

by the optimization routine as well as a feature extracted from the machine data. The feature

selection process is used to prepare the data set for enhancing the decision-making capabilities of

the proposed algorithm [108]. The overall objective of the machine learning platform is to identify

system instability and based on the stochastic scenario of the wind power and demand, take rapid

decisions to stabilize the system, during periods of instability. The algorithm is trained on an offline

basis and then tested online using IEEE-39 bus 10-machine systems with an addition of an offshore

wind farm at bus-36 [142].
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6.2 System Under Consideration

The proposed microgrid for this analysis as shown in Figure-6.2 is an IEEE-39 bus 10-machine

test system. The system is quite suitable for stability analysis [143]. During a critical contin-

gency, the system can be divided into a sectionalized network, which is necessary to implement

distributed control. Individually, these sections are considered as microgrid in this study. For the

distributed control, each area has been equipped with multiple synchronous generators, which adopt

real power frequency and reactive power voltage droop control. For dispatchable energy generation

a wind power plant, based on an induction generator, is considered and connected in bus-36 at the

proximity of Generator-7 [142]. The system considers two types of loads; critical invariant and

non-critical variable load. The synchronous generators are considered to provide for the base load.

The capacity of the wind turbine is chosen to cater the variable load. Based on the availability of

the wind power and variable load the loading margin is observed either sufficient or insufficient.

The variable load is considered lumped in bus 32 [98]. To create different stochastic test scenarios,

critical short circuit faults have been introduced. The critical fault introduces rotor angle instability

as the generators swing against each other in groups [117].

The rotor angle instability introduces large voltage fluctuation in the transmission lines. The

proposed CVC eliminates the rotor angle instability by analysing the dynamic data collected from

all the available generators and imposing a distributed supervised secondary control scheme; dEG
dt
→

0; EG = Generator terminal voltage. The supervised secondary machine control, based on the pro-

posed CVC, is a modified and extended approach carried out in reference [8]. The modification is

brought in the data analytics platform by considering system sensitivity regarding ∂PM/∂Vf and

∂QM/∂Vf [144]; where PM , QM are the machine active and reactive power, while Vf is the voltage

at the fault node. An extension is carried out by introducing a 10-machine system with multiple

fault locations. The system is designed to have both a normal operating mode and self-healing
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mode. In the normal operating mode, the grid is resilient enough to stabilize the system after the

fault is cleared. On the other hand, the self-healing mode is invoked once a rotor angle instability

is observed within a 1-second window, after the clearing of a critical fault. To identify rotor angle

instability after the fault, a threshold value of the rate of change in between −5◦ to +5◦ has been

chosen. The method is shown in Figure-6.1 during a short circuit fault near bus-16 and bus-17.
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Figure 6.1: High Fluctuation in Rotor Angle due to a Critical Fault

The post-fault contingency is considered as a first swing stability problem which can be damped

using a trained linear continuous control (LCC). From each distributed controllers point of view the

grid is a single machine infinite bus system; thus, the active and reactive power transmitted through

the transmission line can be modelled as Pi = V 2sinδ
(1−k)X

and Qi = 2V 2

X
k

(1−k)2
(1− cosδ). Here i stands

for the synchronous generators, X is the line inductance and k = Xc
X

;Xc = Series capacitance.

Once the proposed algorithm detects an instability, it invokes the LCC and damps the oscillation.

The LCC is developed based on the proposed CVC optimization technique, discussed in detail in

the later sections.

The model as shown Figure-6.2 serves the purpose of generating time series dynamic data

to train, validate and test the proposed CVC based control scheme. The system uses a primary

control based on the so called drooping characteristics of frequency and voltage. The reactive load
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Figure 6.2: The Microgrid Model

sharing capacity of a droop controller largely depends on the feeder impedance. By introducing and

clearing critical faults, overall network topology has been temporarily altered. These contingencies
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are applied in Ten different locations very close to the synchronous generators and Two locations

in the critical transmission lines that can be disconnected to create a segmented grid. The proposed

distributed method identifies the most affected generators by any fault and takes relevant action

to mitigate it. The algorithm validates the action (decision) by identifying the 1-second window

following the clearance of the fault. By analysing this window of machine data in terms of CVC

optimization, stabilizing actions are categorized and processed. The categorization is prepared

based on the post fault transient characteristics of the synchronous machines.

6.3 Proposed Secondary Control

In a hierarchical control chain, the purpose of the primary control is to maintain the system fre-

quency and voltage. The primary control in an isolated grid may cause frequency deviation, after

a critical fault, despite maintaining a steady state condition. The secondary control acts on that

observed deviation and fine tunes the control parameters with a slower dynamic. The slower dy-

namic decouples the two control schemes. This study implements a centralized secondary control

under normal operating mode and proposes a distributed and supervised secondary control during

the self-healing mode. The secondary control is considered as a part of the hierarchical control

scheme of the microgrid [7, 8, 102]. The trigger point to activate the self-healing mode is set by

creating and observing a stochastic database for the rotor angle and terminal voltage of individual

machine.

The secondary control is applied after the machine initialization has been taken care of and the

system has reached a steady state condition. The proposed supervised control is a restorative action

over the primary controller. The overall method has been shown in Figure-4.2.

The workflow, for the proposed supervised secondary control, applied in this section is shown

in Figure-6.3. The workflow is divided into two factions ‘Offline’ and ‘Online’. The training stage

directly contributes in the online stage. Once the algorithm is trained it works as a function in the
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online stage. The crisscrossing lines have been used to show information exchange between these

two stages.

Figure 6.3: Workflow of The Proposed Method

The data preparation stage is based on sampled stochastic scenarios of random wind power and

demand. The wind power is considered proportional to the wind speed. A K-means clustering

technique is used to categorize each stochastic scenario into a cluster. For simplicity this study

deploys 9 clusters considering 3 levels in wind speed and 3 levels in demand. The cluster is prepared

using a matrix of normalized wind speed and demand data. Figure-6.4 shows the clusters prepared

for simulation optimization. Each colour represents one cluster.

Based on the different stochastic scenarios and fault locations a sensitivity analysis is also car-
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Figure 6.4: Preparation of the Nine Stochastic Clusters

ried out. The sole purpose of introducing a sensitivity analysis is to calibrate the optimization rou-

tine. The P-V and Q-V characteristics have been considered under three different contexts pre-fault

steady state, post-fault transient state and post-fault steady state condition to estimate the control

parameters [144]. One instance of the sensitivity curve is shown in Figure-6.5;
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Figure 6.5: Sensitivity ∂Pm/∂Vfbus Curve of Fault-11

In Figure-6.5 four sensitivity curves, of the generators { G7, G6, G4, G5 } closer to the short

circuit fault, are compared to that of a generator {G2 } not affected by the fault. The analysis shows

the aperture of the curve increases if the effect of the fault is greater on any machine. The aperture

is calculated using the numerical integration by trapezoid method. The limit of each response curve

is considered between two extreme points over the X-axis or the ∆Vfbus axis. Each curve is then
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equally distributed into two halves around the extreme point as convex(Upper) and concave (Lower)

perimeters. Finally, the overall area is calculated by subtracting the area under the concave curve

from the convex; Area = Aconvex − Aconcave.

∫ V 2

V 1
f(xconvex)dx ≡

V 2− V 1

2N

N∑
n=1

(f(xn) + f(xn+1)) (6.1)

∫ V 2

V 1
f(xconcave)dx ≡

V 2− V 1

2N

N∑
n=1

(f(xn) + f(xn+1)) (6.2)

The calculated area is considered as a feature in the generator data. Each contingency develops

a set of feature data of the generators. Under one stochastic scenario the area feature is normalized

between the largest and the lowest absolute values. Depending on the feature data the upper bounds

of the optimization variables are set while stabilizing the system with a cost function of;

Objective : min(εV fault =
N∑
i=1

[Vprefault − Vpostfault(i)]2) (6.3)

For optimization in the proposed CVC, Genetic Algorithm (GA) has been chosen [145]. GA is

optimizing the supervised active and reactive power generation from each generator during the self-

healing mode for a window of ‘4-seconds’. The forced power generation is maintained to damp the

rotor angle instability and the voltage fluctuation. Once the oscillation is damped, the supervised

secondary control is removed [8]. The objective function is subject to the following constraints;

Pdpfcl + Pdpfncl + PT loss ≤
ng∑
i=1

pgi +
nren∑
i=1

preni (6.4)

where Pdpfcl and Pdpfncl are the critical and non-critical loads. Due to a sudden change in

demand, in some cases, deviation in power generation can be observed. In this study the post fault

demands are kept constant and any large deviation is neglected. Thus, pgi,t − pgi, t0 is considered

zero for the half an hour span pre-defined for the stochastic data points. Therefore, the upper ramp
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rate URi and lower ramp rate LRi have been neglected. To maintain post fault frequency, the

stability sufficient spinning reserve should be available.
∑
i∈G SRi,t ≥ SSRt; ∀t ∈ T .

Where, SRi,t is the available spinning reserve of individual diesel generator at t-th half hour,

and SSRt is the system wide required spinning reserve. Each generator also follows the gen-

erator output constraints, which means that generation does not exceed its upper limit pgi,t ≤

PGi,max;∀t ∈ T and also for the renewable energy generators pgreni,t ≤ PGreni,max;∀t ∈ T .

Furthermore, wind and synchronous generators are subject to their active and reactive power limit

0 ≤ Pwind
scenarion ≤ Pwind

max,scenarion and PG
i,min ≤ PG

i ≤ PG
i,max; 0 ≥ Qwind

scenarion ≥ Qwind
min,scenarion and

QG
i,min ≤ QG

i ≤ QG
i,max.

After each optimization routine is completed a stability database of stochastic wind and demand

data with different fault location is prepared. The data table contains the information of forced

active and reactive power generation from each generator during each contingent scenario. Once

the data table is prepared, an Adaptive Neuro Fuzzy Inference System is trained ‘offline’, as shown

in Figure-6.6. The fuzzy inference system is considered as having dual inputs ′x′ and ′y′ that result

in an output of ′z′. For a first order Sugeno fuzzy model typical if-then rules can be established as

the following;

Rule 1: If x1 = a1 and x2 = b1 then output z1 = p1 × x1 + q1 × x2 + r1

Rule 2: If x1 = a2 and x2 = b2 then output z2 = p2×x1 + q2×x2 +r2 The terms pi, qi and ri are

the linear parameters of the consequent ’THEN’ part of the first order fuzzy inferencing model [53].

The outcome of the proposed algorithm finally can be stated as an optimized, supervised, active

and reactive power output from the affected generators in a fault stricken segment of a microgrid.

6.4 Result Analysis

The data preparation step develops a table based on the stochastic scenarios of wind speed and

demand. The Table-6.1 shows some of the distributed control incidents for the Generator-7 and
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Figure 6.6: Five-layer Three-input Four-Rule fuzzy model (Sugeno) [1]

Generator-9.

Table 6.1: Stochastic Data Preparation Stage for Generator-7&9 (Selected Scenarios)
Wind
Power

Demand Cluster Fault Lo-
cation

Sensitivity
Feature

Optimized
Active
Power
(P.U.)

Optimized
Re-Active
Power
(P.U.)

High Me 2 B-16 0.4712 G7: 0.70 G7: 0.62
Low Me 8 B-16 0.4034 G7: 0.75 G7: 0.56
Med Low 4 B-26 0.1729 G7: 0.45 G7: 0.57
—- — - —— — — —
High Med 2 B-16 0.2052 G9: 0.41 G9: 0.62
Low Med 8 B-16 0.2284 G9: 0.39 G9: 0.62
Med Low 4 B-26 0.5913 G9: 0.73 G9: 0.55

The scenario-based data consists of the stochastic cluster, fault location and sensitivity fea-

ture, which is fed to the ANFIS model, to predict the optimized active and reactive power gener-

ation from each generator in a distributed order. One incident of ANFIS based prediction for the
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Generator-7 is shown in Figure-6.7.
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Figure 6.7: ANFIS Based Prediction for Generator-7

The result for predicting the optimized power for Generator-7 is quite accurate. However, a

minor classification error is observed in the data sample 4. From an individual machine perspective,

such a minor classification error can be neglected.

The overall performance of the proposed method is shown in Figure-6.8, during a critical fault

introduced in the Bus-16. The critical fault is cleared by disconnecting the transmission line be-

tween the Bus-16 and the Bus-17, as well as the Bus-16 and the Bus-15. During the process of

clearing the fault two segments are created. The Segment-1 consists of the synchronous machines

G4, G5, G6, G7; while the Segment-2 has the rest of the machines connected. The contingency in-

troduces rotor angle instability in the Segment-1 thus supervised control is imposed on the 4 mostly

affected synchronous machines.

Furthermore, in Figure-6.9 the rotor angle deviation compared to the system slack bus and rotor

speed of the Generator-7 are elaborately presented. The solid red line marks the beginning of the

short circuit fault; the dashed red line marks the clearance of the fault. The solid blue line marks

the identification of rotor angle instability and starting of the supervised control scheme while the

dashed blue line marks the end of the supervised control scheme and handing over to the primary

control of the system. The solid green line marks the re-closing of the transmission line between
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Figure 6.8: Stabilizing the Segmented Microgrid with the Proposed Algorithm

Bus-15, Bus-16 and Bus-17.
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Figure 6.9: Generator-7 Data

Finally, in Figure-6.10 a comparison between the fault bus voltages is shown. The comparison

is carried out among the proposed algorithm with optimized CVC, without the CVC optimization

(pre-fault fixed value of the control parameters) and without the proposed algorithm. It is observed

that the proposed algorithm has better damping coefficient thus better resiliency than the rests.
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Figure 6.10: Comparison of Voltages at the Fault Bus With Different Methods

6.5 Analyzing Limitations

The proposed algorithm successfully eliminates rotor angle instability and restores system voltage

in a segmented microgrid. The method works on a distributed platform without any intervention

from the central station during a post-fault operation. However, the algorithm is tested on a sam-

pled post-fault scenario with only 9 clusters. A comprehensive analysis with more variations would

provide further insight. The study also does not consider classification errors. Thus, the full ramifi-

cation of a few clusters against accuracy is not addressed in this study. Besides these minor issues,

the overall performance of the algorithm on IEEE-39 bus test system for self-healing is promis-

ing. Therefore, an exploration of different possible power system features is required to test the

effectiveness of the proposed method.
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Chapter 7

Selection of Appropriate Feature Space

This chapter focuses, on the selection of different types of features and their impact on a self-healing

microgrid. The complexity of the self-healing microgrid has been further increased in order to carry

out this investigation.

7.1 Different Types of Features

Self-healing is a lucrative feature in the service restoration process of a power system. In recent

studies, under the category of post-fault islanding scenarios, this self-healing mechanism is getting

significant attention [97]. The prominent trend in addressing self-healing is established through

the local or distributed control. It is because distributed control is quite effective in faster decision

making. However, applying local or distributed control is quite dependant on the dynamic char-

acteristics of the network under analysis. On the other hand, dynamic characteristics are heavily

influenced by the pre-contingent stochastic parameters, fault analysis, demand response (DR) and

the performance of the algorithms assessing power system security [109].

In previous studies, different methods and systems have been investigated for fault detection,

isolation, and service restoration (FDIR). Some of these methods are Central Controller (CC), Dis-
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tribution Automation System (DAS), Automatic Controlled Switching (ACSs), Fault Passage In-

dication (FPI), Corrective Voltage Control (CVC) and the Emergency Demand Response Program

(EDRP) [146]. Most of these approaches are data intensive programs, thus prime candidates for

machine learning algorithm-based systems, including Artificial Neural Network (ANN), Support

Vector Machine (SVM), Random forest. If the underlying events during any critical contingency

are properly identified [147], the identification can lead towards developing intelligent self-healing

strategies. The process can be developed through expert systems, with a large scenario-based

dataset. The performance of the machine learning based systems with a large data set is com-

mendable. However, machine learning systems are affected by processing time and memory. In

a fast restoration system, it is not desired, especially for those grids that require adaptive online

decision making. Besides, for a large network, performing the dynamic security assessment (DSA)

is an increasingly complex problem affected by numerous criteria [148,149]. Under these contexts,

the traditional machine learning applications are progressively being less effective.

Although the traditional machine learning algorithms are trained on an offline basis, generation

of large-scale data often makes this approach unattractive for online DSA programs. Therefore,

many studies conducted often recommend alternate solutions such as feature selection [21]. The

feature selection process is implemented to modify a data set to increase the accuracy of predic-

tion [107–109]. However, it adds redundancy in the algorithmic steps [110]. In reference [109],

an energy function-based feature selection is proposed to outperform the raw inputs, to train the

machine learning algorithms with a smaller dataset. This strategy proves to be highly effective,

but a limited dataset is insufficient while addressing multiple stochastic scenarios because in a

hybrid microgrid, stochastic parameters make it challenging to assess dynamic security using an-

alytical approaches. One solution to address this challenge is a simulation-based Monte Carlo

method. This approach can establish the stability boundary of a grid with multiple stochastic pa-

rameters, [150, 151]. Once the stability boundary is established for a coherent group of stochastic
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parameters a limited data set can be used for online DSA programs. This study considers this

approach.

Multiple power system features have been introduced in this study to develop a distributed ma-

chine learning platform. The underlying objective is to find patterns to classify different dynamic

events. The events chosen for this analysis are focused on stabilizing a sectionalized power sys-

tem and restoring the grid within a shorter duration, without any major service interruptions. The

events are categorized based on two aspects: stabilization of a section and restoration of the sec-

tion by reconnecting it to the rest of the system. The feature-based machine learning platform is

used to classify events and make decisions. Each decision refers to a set of actions that will en-

sure system restoration without further instability. Each of these decisions is based on different

stochastic scenarios. For generating those scenarios, a Monte Carlo method-based simulation strat-

egy has been deployed. An IEEE-39 bus 10-machine test system as shown in Figure-7.1 is used in

this study [143]. During a critical contingency, the system can be divided into multiple sections,

which is necessary to eliminate instability. While developing the algorithm, these segments in the

IEEE-39 bus system have been individually considered as microgrids.

7.2 Machine Data and Additional Features

The IEEE-39 bus system is suitable for stability analysis. For non-dispatchable energy generation,

a wind power plant based on an induction generator is considered and connected in bus-36 at

the proximity of Generator-7. The demand and wind speed are randomly varied to do a Monte

Carlo based simulation, to prepare a stability database with the synchronous generator data. The

parameters chosen are in per unit quantity and these are rotor speed ω, rotor angle deviation dδ,

active power generated PE , reactive power generated QE and terminal voltage EG. For simplicity,

only the cases where the system can be stabilized and restored by dividing it into two segments are

considered. Based on these cases and the generator data four features are prepared:
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Figure 7.1: The Microgrid Model

1. Prominence of local maxima in terminal voltage [126–129]

2. Available frequencies in the time series voltage data [132, 134, 135]

3. Principle components in the generator data of the islanded sections [147]

4. Sensitivity ∂PE/∂Vf and ∂QE/∂Vf . where, Vf is the voltage at the fault bus [22, 150].

Figure-7.2 shows an example of the terminal voltage at Generator-7 under different scenarios,

during the beginning of the rotor angle instability. The similarity in the time series data is so

overwhelming that it makes application of a machine learning algorithm quite difficult. However,

each scenario has its own features that can be used to distinguish them.
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Figure 7.2: Time Series Data of Generator-7 Under Different Scenarios

7.3 Corrective Voltage Control Data

The primary control in an isolated grid may not be sufficient as it may cause frequency deviation

after a non-critical fault, even if the system is in steady state. Therefore, the secondary control

implements a slower dynamic to fine tune the control parameters and prevent frequency fluctua-

tions. However, under a critical fault when the system wide rotor angle instability is observed, a

secondary control often fails to stabilize the system [23, 118]. This study implements a machine

learning driven supervised secondary control during the post fault scenarios, where secondary con-

trol cannot maintain stability after a critical fault. The supervised secondary control is considered

as the topmost part of the hierarchical control scheme in this microgrid [7, 8, 152]. The hierarchi-

cal supervised control and the overall workflow has already been discussed in the earlier sections,

Figure-4.2 and Figure-6.3.

7.4 The Machine Learning Platform

To understand the full ramifications of using a feature data set, a machine learning platform has

been introduced. The machine learning classifies decisions based on the stochastic scenarios that

can restore an unstable and sectionalized microgrid. An ensemble of bagged decision trees has
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been chosen as the classification algorithm.

7.4.1 Features for Pre-processing

To prepare the features in each data window, sixty samples per second have been considered. Topo-

graphical prominence has been chosen as the first feature. The method followed here was inspired

by [129]. A normalized window of 1-second duration in the time series data was chosen to carry

out the feature extraction. For simplicity transitional windows have been ignored.

First, the lowest contour line in the 1-second data window circulating a local maximum point

has been detected. Then the height of that point is measured regarding that contour line. Figure-

7.3 shows the method of finding prominent local maxima from a 1-second window of the terminal

voltage of one of the generators with an example data set. Once several prominent peaks are

detected, their average heights are considered as a feature for that data window.
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Figure 7.3: Peak prominence and width inside a predefined data window of the Terminal voltage of
Generator-1

The second feature is based on the available frequencies in any oscillation, observed in the 1-

second data window. This feature is extracted through a Discrete Fourier Transformation (DFT)

technique; x[n] =
∑N−1
n=0

1
N
X̃[k]e−jk(2π/N)/n, K = 0, 1, ....N − 1. Here, X̃[k] is the amplitudes

and x[n] is the linear combination of the complex exponentials with that amplitude. Decision

making based on frequency data has often been observed in the field of harmonics and power
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quality analysis [132, 134, 135]. In this study, a frequency spectrum of the first 10 Hz has been

chosen as the featured attribute as shown in Figure-7.4 (with a small displacement in the X-axis

for the purpose of visualization). The chosen attribute is the speed of the generators. Once the

magnitudes of the prominent peaks are calculated, all the magnitudes are summed up to be used

as a feature for that data window,
∑10
i=1 Mfi; where, Mfi is the i-th magnitude of the frequency

feature.
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Figure 7.4: Available Frequencies

The third feature is the principle component of the machine data attributes, observed in one seg-

ment of the network. The Principle Component Analysis (PCA) is used to find the first component

account for most of the variations in data. The data matrix X has m number of observations with

n number of attributes. The m-number of orthonormal basis functions are represented by w which

is of n
∏
n dimensions. The data matrix is then represented as X = TW ′, where T is (t1,i.....tm,i)

is used to form the coherent clusters. To create a feature out of this information, a mean of the

absolute value of the most significant principle component has been considered for the data win-

dow. Figure-7.5 shows the threshold observed while considering this feature to understand stability.

‘PC-1’ is the first principle component.

A sensitivity data based on the voltage at fault bus and the active power generation from the

subject generator is considered as the fourth feature [144]. One instance of the sensitivity curve is

shown in Figure-7.6;
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Figure 7.6: Sensitivity ∂Pm/∂Vfbus Curve

In Figure-7.6, three sensitivity curves of the generators { G7, G1, G8} are shown. It clearly

shows the aperture of the curve varies depending on the impact of fault. To calculate the aperture,

the trapezoid method of numerical integration is used. The limit of each response curve is consid-

ered between two extreme points over the X-axis or the ∆Vfbus axis. Two extreme points develop

convex (Upper) and concave (Lower) perimeters. Then the area under the curves are calculated.
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The overall area of the aperture is then assumed by subtracting the area under the concave curve

from the convex; Area = Aconvex − Aconcave.

∫ V 2

V 1
f(xconvex)dx ≡

V 2− V 1

2N

N∑
n=1

(f(xn) + f(xn+1)) (7.1)

∫ V 2

V 1
f(xconcave)dx ≡

V 2− V 1

2N

N∑
n=1

(f(xn) + f(xn+1)) (7.2)

7.4.2 Multiclass Classifier

The Multiclass classifier is an ensemble of bagged decision trees trained using the stochastic pa-

rameters and the features. The bagged decision trees weigh and reweigh the predictor variables

and their estimates. For example; a function estimate ĝens =
∑M
k=1 ckĝk(.) is obtained based on

the k − th reweighed data with the combined linear estimation co-efficient ck. This method is de-

ployed to eliminate classification error due to estimation variance and statistical bias, especially in

a stochastic scenario [136]. The ensemble implemented in this study is prepared using one hun-

dred fully grown trees by splitting the attribute data into one hundred training sets, D1, D2,...,D100.

This approach helps to obtain an improved composite model. Mi(1 ≥ i ≥ 100) classifiers vote by

predicting a class and the ensemble selects the final class from those votes. The overall technique

along with Random Forest and Random Subspace also includes Bagging and Boosting [107].

7.5 Results

The proposed analysis is carried out on three timelines: timeline for detecting post fault rotor angle

instability, timeline for CVC to stabilize the instability, and timeline representing the post restora-

tion period. The two latter periods can either be stable or unstable. Each of these timelines has

been assessed using Monte Carlo based simulation strategy, by randomly generating wind power
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Figure 7.7: A Part of the Classification Tree

and demand. In Figure-7.8, all the different timelines have been shown. Timeline-2 data is the

candidate for feature extraction and timeline-3 is the candidate data for evaluating the performance

of the algorithm.
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Figure 7.8: Events

Based on the randomly selected stochastic scenarios 22 decisions have been identified in this

study. Those decisions can maintain a post restoration stability. Table-7.1 shows an example data

set with features that have been used to predict the decision class to stabilize the restored network.

PCA1 is the mean of absolute value of the first principle component, Snsvt is the area of the aperture
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Table 7.1: Decisions
Decision Wind Speed Non Critical Demand PCA1 Snsvt Prmn FF

1 6 3.5e8 0.24 1.4384 67.8908 1.25974
2 6 1.45e8 0.22 1.8333 0.659 1.24694
3 6 2.05e8 0.225 1.6361 0.566 1.00874
4 8 5e8 0.2617 1.4013 0.609 0.98874
5 11 6.0e8 0.2389 1.3250 0.606 1.18874
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..

21 10 5.1e8 0.2182 1.3495 0.642 1.48874
22 11 7.9e8 0.2340 1.4345 0.593 1.25566

calculated from the sensitivity data, Prmn is the peak prominence and FF is the frequency feature

measured from the available 0 Hz - 10 Hz frequencies in the oscillation.

To address the stochastic nature of the proposed algorithm, a Monte Carlo based simulation is

carried out for a limited 1560 scenarios. 1000 scenarios have been used for training the algorithm

and rest of the 560 scenarios have been used for testing. Figure-7.9 shows the average prediction

accuracy of the algorithm with the 560 test cases. With a limited data set the accuracy of the algo-

rithm is promising. In the Figure-7.9 a comparison with the proposed method (extracted features)

and without the proposed method has also been shown. The process without the proposed method

only uses 1st principle component as raw data.
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However, the rest of the 5% cases where the algorithm misclassified the decisions, the system
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recovery could not be achieved. Figure-7.10 shows a comparison between two cases where in one

the algorithm successfully identified the decision and in the next the algorithm could not.
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Figure 7.10: Ramification of the Classification Error

7.6 Overall Performance Evaluation

Overall the proposed method for analysing decision making, for post-fault restoration has shown

promising results. The method works with high accuracy, despite a limited number of training data

being provided. One limitation of the study is dimensionality explosion. With the increased number

of faults, the system needs to be divided into more than two areas. The proposed training data set

does not deal with those scenarios. In the author’s future studies, the method is extended towards

multiple segment restoration strategies, with a centralized controller having a communication net-

work.

IEEE-39 bus test system has been used to demonstrate the capabilities of the proposed method.

Furthermore, the proposed algorithm is tested with a high degree of stochastic influence in the

network. This study is highly significant for a stand-alone microgrid where feature-based data

analysis is implemented for service restoration.

To understand the performance of an ensemble of machine learning algorithms, in case of mul-

tiple decision-making scenarios, a case study with multi-objective function can be helpful. The
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following chapter deals with an economic dispatch problem in a self-healing microgrid. The under-

lying concept is to assess the performance of a machine learning algorithm, under multi-objective

functions.
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Chapter 8

Ensemble Method for Multi-objective

Application

This chapter deals with a multi-objective function, and addresses the challenges associated to that,

by using an ensemble of machine learning algorithms. A classical economic dispatch problem, in a

post-contingent network with stochastic parameters, has been chosen as the use-case scenario. This

chapter has been accepted in Elsevier electric power system research.

( Miftah Al Karim, Jonathan Currie, Tek-Tjing Lie, A machine learning based optimized energy

dispatching scheme for restoring a hybrid microgrid, Electric Power Systems Research, Volume

155, 2018, Pages 206-215, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2017.10.015. )

8.1 Decision Making With Multiple Constraints

A microgrid, having the capability of integrating distributed and renewable energy sources, can

use bidirectional energy and information flow. But maintaining bidirectional power flow often in-

troduces security issues in the modern microgrids [153]. The advent of large-scale solar power

generation in residential areas, as well as integration of large-scale wind energy sources, contribute
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even more to this security. A three-phase fault in such a stochastic scenario can easily cause pro-

tection system failure leading towards cascading outages. Thus, a renewably powered microgrid

demands novel ways of energy dispatching methods [154]. Traditionally, under these conditions,

a central station addresses the tertiary regulation that typically has an interval of 24 hours. How-

ever, in a modern microgrid, integration of distributed generators (DG) is compelling to adopt a

more local, decentralized approach [106]. It is because long-term planning often is prone to large-

scale errors leading towards service interruptions. The alternate approach thus would be to build

short-term forecasting systems for a nation’s dispatchable energy sources [155]. One of the most

sought out methods in this field is the application of machine learning algorithms [76,81,156,157].

The neural network, as well as many ensemble techniques, are often discussed and implemented

for such a purpose [76, 81, 156]. However, most study limits itself in analysing the accuracy of

the algorithm by comparing actual and forecast data. Thus, very few studies have been conducted

to forecast power system security which can take service restorative (SR) measures [158]. On

the other hand, considerable efforts have already been made to improve SR plans by implement-

ing multi agent-based systems (MAS), advanced metering infrastructure (AMI), knowledge-based

systems, linear programming, progressive hedging (PH), etc [155, 159, 160]. These methods are

computationally complex and often are not suitable for uncertain fault durations, involving integer

decision variables such as a binary indication of the presence of rotor angle instability. This issue

can be resolved by considering two types of uncertainties, i.e., a critical fault during vulnerable

and non-vulnerable periods. These periods than can be further decomposed into multiple scenario-

based stochastics programs [158]. However, such methods would demand accurate forecasting of

the system security. The previous studies often ignored this integration and assumed that the local

demands, generated from Distributed Resources (DR) are either updated or kept unchanged during

a critical fault [161]. However, to minimize the service interruptions, the process of updating the

data generation online, right after the fault is cleared, is quite important [162].
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This study intends to bridge this gap between security forecasting and service restoration plans

by implementing a novel architecture. The key argument of this study is to take advantage of

heuristic search over the logic reasoning or empirical judgment [163], by implementing a predictive

analytical method that forecasts the vulnerability of a system, if a critical three-phase short circuit

fault occurs at that instance. The prediction is made based on the available wind power, solar power

and the noncritical (controllable) loads. Machine learning driven optimization is used to implement

an autonomous restoration scheme after a critical three-phase fault followed by loss of a generation.

The proposed method considers the distributed generations and demands the prediction of system

security. The security assessment is carried out within short intervals considering the possibilities

of a major three-phase fault taking place shortly [164, 165]. Monte Carlo simulation is used to

generate the POS database and train the proposed algorithm.

This analysis explores the idea that under different energy demand and distributed energy gen-

eration, the impact of a three-phase fault can either be critical or non-critical [164]. The proposed

method figures out that criticality and prepares a set of optimized contingent scenarios for restoring

the system. The algorithm is based on machine learning that manipulates an optimization platform

to achieve lowest possible operating cost after ensuring voltage quality throughout the network in

a post-fault contingency [165]. The database of POS is prepared by a Monte Carlo simulation

method. The goal is achieved by implementing an ensemble of bagged decision tree-based systems

to perform forecasting followed by a genetic algorithm (GA) for the service restoration. The secu-

rity above is assessed by a binary security index Probability of Stability (POS) after an event of a

short circuit fault resulting in isolating a generator bus at the affected area [27]. The database of

POS is prepared by a Monte Carlo simulation method.

A vulnerability analysis should have a hierarchical structure with a primary goal of protection

and a secondary goal of economic restoration.

The application of machine learning algorithms in power system is not a novel concept, and
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there have been several success stories. In reference [166], applications of an artificial neural net-

work (ANN) is reviewed that solves various energy-related problems. Problems, such as modelling

and designing a solar steam generation plant, predicting the local concentration ratio, finding inter-

cept factors of parabolic-trough collectors, predicting performances of solar water-heating system,

etc. The application of neural networks also includes diagnosis of faults, forecasting loads, tuning

the stabilizers, modelling machines, planning expansions, etc. The strengths and abilities of a neu-

ral network based system vary regarding pattern classification, response speed, generalization and

prediction of trends, etc. [76, 167–169].

Data-driven control is the main theme in this work. One of the usages of the forecasted data is to

predict severity and take necessary measures to maintain stability, which falls under a classification

problem [164], and for the classification task here a genetic algorithm driven random forest is used.

Different key operational strategies have been combined for running this method. These strategies

are addressed in a cascaded scheme to achieve the final goal of predicting the mode of operation of

multiple generators. The modes are namely ‘ON’,‘OFF’ or ‘Continuous’ under different forecasted

data clusters. The mode of operation is a direct result of optimized decision-making process where

the final objective is to restore the subject microgrid, which is operating in a stand-alone mode after

a major three-phase fault has occurred.

8.2 The Microgrid Model

The proposed microgrid as shown in Figure-8.1, has one hydro turbine based synchronous gen-

erator, two backup diesel generators (synchronous) G1=4MW and G2=3MW, one asynchronous

generator representing the wind farm and a voltage source converter based solar power plant. The

loads are lumped on a common transmission grid. This distribution approach is inspired by the

microgrids used in reference [99, 159]. However, this model differs in dividing the loads into two

parts; critical and noncritical loads [170]. The critical loads are comparable to the base load of
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a system that remains unchanged throughout a certain period. While the controllable loads are

unpredictable in nature and sudden changes can be observed at any given time. In this study the

residential loads have been considered critical and noncritical thus load shedding actions can be ap-

plied to it. The total demand in this microgrid is higher than the total capacity of the synchronous

generator models used as power plants. It signifies that the power quality and stability of the system

time to time depends on the wind power plant and the solar power plant. The wind power plant

is modelled as an induction generator-based variable speed wind turbine. The solar power plant is

modelled as a current source and placed closer to the residential load. The three-phase model has

diodes, internal resistance, and leakage current followed by a voltage source converter (VSC) as

presented in reference [101]. In this thesis, the VSC based solar plant is only implemented as an

intermittent energy source. These two distributed and intermittent sources do not have any power

system stabilizers installed in them thus maintaining stability in the system is carried out through

the synchronous generator-based models. To capture the full dynamics of bi-directional energy

flow both the solar and wind turbine plants are designed not to have any energy storage device.

Figure 8.1: The Microgrid Model
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The generator buses are represented using the typical second order swing-equation;

Miδ̈i = Pmi − Pgi; i ∈ generator1:3 (8.1)

Here, δi is the generator rotor angle, Pmi is the mechanical power input, Pgi is the electrical

power output, Mi generator’s inertia coefficient and Di is the generator’s damping coefficient. The

overall operation is subject to;

Pgi − Pli −
3∑
j=1

UiUj(Gijcosδij +Bijsinδij) = 0, (8.2)

Qgi −Qli −
3∑
j=1

UiUj(Gijcosδij −Bijsinδij) = 0, (8.3)

To test the security of the system and develop the POS database, a critical three phase fault is

placed near the hydro station.

Two scenarios are established based on whether the fault is cleared within the critical clearing

time or not. Depending on that the post fault response is either stable or unstable. The following

part of this article is based on the scenario where the fault is not cleared within its critical clearing

time. If the power system stabilizer installed in the hydro plant fails to remove the rotor angle,

instability arises right after the three-phase fault generator bus is disconnected. In Figure-8.2 a

comparison between the two scenarios with a time delay is shown. The model accommodates the

concept of failure to operate as protection system failure. The failure to operate mode is observed

in the power system stabilizer installed in the hydro plant. This mode also ensures loss of a critical

load connected to that bus.
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Figure 8.2: Stable and Unstable Post Fault Responses

8.3 Data Model

To build up the forecasting system three data models have been prepared. Once the data model has

been prepared, a random data set of N number of data points is generated and fed to the aforemen-

tioned microgrid model in Figure-8.1 in order to carry out the Monte Carlo simulation for develop-

ing the Probability of Stability (POS) table by introducing the three-phase fault; here N = 10000.

Figure-8.3 shows the application of the data model in this study. The following sections discuss the

development of different data models.

8.3.1 Wind Energy Model

While preparing the wind turbine generating model, certain conditions have been considered such

as: the model only takes wind speed as input variable, the velocity of wind is uniformly distributed

on the surface of each blade and the air density is constant during each calculation period. The

fundamental equation to calculate the active power from wind velocity is;

PW = Ctotal
1

2
ρAv3 (8.4)

where, PW is active power output, Ctotal is overall efficiency of the wind turbine, ρ is air density,
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Figure 8.3: Implementing the Data Model into the Proposed microgrid

A is swept area and v is the wind velocity. The wind velocity at any certain height is calculated by

vh = vr(
h
hr

)α and α is the power law exponent. Where, vh is the speed at hub height, vr is the speed

at reference height.

In some of the earlier research the wind velocity has also been considered as a function of

temperature [76]. Further considerations are made;

PW = 0; v(t) < vci (8.5)

PW = 0; v(t) > vco (8.6)

where, vci is cut-in speed and vco is cut-out speed. The energy model used in this study is a 3.8

MW wind farm driven by wind velocity as input information. The data model is influenced by the

Hau Nui Wind Farm in Christchurch, New Zealand; the model has a cut in speed of 3m/s [171,172].
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Figure 8.4: Normal probability distribution of temperature (Degree Celsius)

8.3.2 Solar Energy Model (Photovoltaic)

To simulate the characteristics of solar power generation the following irradiance based photo-

voltaic cell model of a solar cell is used;

I = Iph − Is[e
VOC+IRs

NVt − 1]− Is2[e
VOC+IRs
N2Vt − 1]− VOC + IRs

Rp

(8.7)

VOC(t, β) = VOC−STC −KV TC(t) (8.8)

where VOC is the open circuit voltage of the PV-module, Iph is the solar-induced current that

can be further explained by Iph = Iph0
Ir
Ir0

Ir is the irradiance in W/m2, Iph0 is the solar current

obtained for irradiance Ir0; Is and Is2 are the saturation currents of the Diode-1 and Diode-2 inside;

N1 and N2 are the quality factors diodes; Vt = kT
q

is the thermal voltage, (k is Boltzmann constant,

TC is device temperature in Kelvin) and KV is the open circuit voltage temperature coefficient;

TC = TA + (NOCT − 20 deg) Ir(t,β)
800

. Rs and Rp are the series and parallel resistances [77]. β

is the tilt angle and TA is the ambient temperature. The overall output power from the plant is

given as; Parray(t, β) = ηPVNSNPPPV (t, β). Here, NS and NP are the total number of modules
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connected in series and parallel, η is the conversion efficiency. PPV = VOCI; is the instantaneous

power output from each PV-module. The solar power plant is designed to have a maximum of 6

MW power capacity.

8.3.3 Electrical Load Model

The electrical load model used in this study is a function of the base load as well as the ambient

temperature. The ambient temperature influences the residential controllable loads while it is con-

sidered to have no impact on the critical uncontrollable loads. The impact of temperature on the

residential load is modelled as a 3rd order polynomial system. [84] shown in Figure-8.5.
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Figure 8.5: Influence of the Ambient Temperature on the Controllable Load

The controllable load model is assumed in MW as;

PLoad = f(T ) = BCL + a0 + a1T + a2T
2 + a3T

3 (8.9)

where BCL is the base controllable load that is not influenced by temperature, a = multiplying

constants, T = temperature in degree Celsius. The coefficients are a0, a1, a2, a3 = −0.5632,−1.185e−1, 1.09e−2,−1.8221e−4.

The overall controllable residential load model is shown in Figure-8.6.
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Figure 8.6: Controllable Load Model

8.3.4 Security Index Probability of Stability

Due to the possibilities of having numerous post-disturbance initial conditions, generalizing ser-

vice restoration plans is quite a challenge [163]. This study thus assumes that the post-fault initial

conditions only differ from the pre-fault operational conditions in the topological layer and in the

form of bus isolation at the affected segment. However, all the other available parameters are kept

similar. The start-up time for the backup diesel generators is considered negligible. Even so, the

possibilities are endless. To address this issue a Monte Carlo simulation-based approach is taken to

prepare the POS database [173]. Wind, solar and consumption data have been randomly selected

within a predefined range and fed to the simulation model to create the events. In every simulated

event, a three-phase fault is introduced and cleared after the critical clearing time, which is ob-

served 300 milliseconds for the proposed microgrid. Depending on the energy flow in the system,

a rotor angle instability is developed. As the stochastic data of wind, solar and load can produce

infinite combinations, a k-means clustering approach is taken to prepare finite data segments. The

POS is then calculated based on each of the data segments or clusters as; POSk =
∑
iNk

Sik
Nk

. Here,

k is the current data cluster, Nk is the total number of simulations in each cluster. Sik is 1 if the
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system becomes unstable and 0 if the system remains stable. Overall 10000 simulation is carried

out to develop the POS for 0, 1, 2...k number of clusters of the system [165,174]. The POS table is

shown in Table-8.1.

Table 8.1: Data Table With Clusters Centroids
Wind Power
MW

Solar Power
MW

Controllable
Load MW

Cluster POSk

1.73 3.47 8.31 1 16.00%
2.77 5.55 9.7 2 64%
... ... ... ... ...
... ... ... ... ...
2.17 4.3 9 45 80%
0.6 1.2 6.8 81 0.0%
2.93 5.87 9.91 96 48%

The overall POS under a critical three-phase fault is represented in Figure-8.7 using a kernel

density function due to the finite data sample used for simulation. Due to the smoothing operation,

negative and more than 100% probability is observed within the maximum confidence interval.

However, the proposed 100 data clusters are of different data size. Thus the method is implemented

recursively, in every iteration eliminating a data cluster having more than 100 data points.
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Figure 8.7: Kernel Density Estimation

8.3.5 Data for Fault Analysis

The proposed microgrid considers four instances of the line voltage; pre-fault line voltage Vpre,

during fault line voltage Vflt, line voltage during the post-fault restoration Vrst and line voltage af-

157



ter the post-fault restoration Vpost. This study aims to accurately predict system operation strategies

that will lead towards achieving a stable and optimal post-fault line voltage. The transition period

from the fault state towards the restoration state has been considered similar for all the operational

strategies. Incidents such as starting up of a backup generator are considered under the conditions

when energy balance cannot be made.
∑ng
i=1 pgi +

∑nren
i=1 preni ≤ Pdpfcl + Pdpfncl + PT loss; where,

Pdpfcl is post-fault critical load, Pdpfncl is the post-fault non critical load, PT loss is the transmission

line loss, preni power generated from the renewable energy sources, ng is number of hydro gen-

erators, nren is the number of renewable energy sources. Under such conditions, post-fault initial

states are re-evaluated, and the operation scheme initiates a temporal restoration process compris-

ing of 30 to 60 minutes. The fault location is set near the generator mostly catering to the base load.

The generator along with the nearby load is considered disconnected in the process of clearing the

fault. Depending on different times of the day, the loss of load in the generator bus is considered

within a range of 6 MW to 10 MW.

8.4 Classification Process for Optimal Voltage

After preparing the forecasting models, an unsupervised K-means cluster has been implemented.

The purpose of using an unsupervised cluster is to narrow down the target data before preparing

other machine learning algorithms. Unsupervised clustering would make sure that the data falls

under one category at a time. Here twelve predefined categories have been chosen for the clusters.

These twelve clusters have been selected from the combinations of: high and low wind power, high

and low solar power and high, medium and low residential loads, shown in

The POS data are shown in Table-8.1 is used to initiate the optimal decision-making process.

While testing the proposed algorithm, random instances for wind power, solar power, and noncriti-

cal load have been chosen and then compared with the POS above table. If the instance matches to

any of the clusters having a probability of higher than 5% of being unstable have been considered
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as a potential candidate for the optimized restoration analysis. The unsupervised ‘K-means’ cluster

discussed earlier also minimizes the leaf nodes of the classification tree used. Each cluster or data

segment is associated to one of the sixteen predefined restoration actions for the case of loss of

generation implemented in this study. The sixteen actions are defined in Table-8.2. The actions

are described through a set of binary numbers, where for the backup generators 1 means start and

0 means do not start. While for the non critical loads 1 means shedding loads and 0 means not

shedding loads. The diesel generators are presented as to the swing equation model where the ca-

pacities are subject to; Pgimin ≤ Pgi ≤ Pgimax, Qgimin ≤ Qgimax, 0 ≤ Pli ≤ Pdi, 0 ≤ Qli ≤ Qdi,

Vtimin ≤ Vtimax. Here, Pli and Qli are the load after system restoration and Pdi and Qdi are the ac-

tual active and reactive demand, Vt is the generator terminal voltage. So the overall load shedding

under any of the sixteen actions is Pdi − Pli.

Table 8.2: Sixteen Probable Restoration Schedules
Decision Start Diesel-1 Start Diesel-2 Shed 1.5 MW Shed 2.5 MW
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
.. .. .. .. ..
.. .. .. .. ..
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0
10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 0 0
14 1 1 0 1
15 1 1 1 0
16 1 1 1 1

The post-fault restoration executes one of these sixteen actions. The difference between the
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diesel generator-1 and the diesel generator-2 is that the diesel generator-1 has higher rated power

than generator-2; 4 MW capacity compares to that of 3 MW capacity. While restoring the system,

it has been considered. The primary objective is to maintain an equal pre and post-fault voltage

state. The actions above have been thus evaluated against this objective of maintaining system-wide

desired voltage level. The objective was achieved by implementing an exhaustive search-based

optimization technique. Here a total of 9600 cases have been simulated to observe the impact of

the all sixteen actions.

Objective : min(εV =
N∑
i=1

[Vprefault − Vpostfault(i)]2) (8.10)

Here i is the data point in consideration. N is the total number of data points considered once

the fault is cleared. Vprefault is the stable line voltage before the fault and Vpostfault is the post-fault

stable line voltage. The action with the lowest voltage deviation is the optimized target decision for

the classification algorithm.

The third step is to prepare a genetic algorithm-based system to make the optimized decision

for the above mentioned twelve clusters. The purpose of the decision-making process is to select

one of any six post-fault conditions or actions for system restoration before the base generator can

be integrated again.

Table 8.3: Data Table With Clusters Centroids
Number Action

1 Start two diesel generators without load shed
2 Start two diesel generators with load shed
3 Start the diesel generator-1 without load shed
4 Start the diesel generator-1 with load shed
5 Start the diesel generator-2 without load shed
6 Start the diesel generator-2 with load shed

160



8.4.1 Preparing the Classification Tree

Once all the optimized restoration actions have been identified for the 9600 data points, an ensemble

of bagged decision trees has been trained. In Figure-8.8 one limited instance of the ensemble tree

is shown;

Figure 8.8: The Decision Tree Classifier (Limited Scenarios)

However, the classification algorithm is not immune to classification errors [26]. As a microgrid

operated at its design limit is highly vulnerable any misclassification may lead towards unstable post

fault operation. Therefore, a decision ranking system has been proposed in this study to prevent the

probability of system instability due to misclassification. The ranking system is a cluster of decision

hierarchy that has been prepared from Table-8.1 and Table-8.2 based on the voltage deviation εV

observed previously. In this study thirteen different combinations have been identified in the top
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five decision hierarchy. Based on these combinations a hierarchical cluster is prepared to validate

any predicted decision by the ensemble tree. Table-8.4 shows the ranking hierarchical cluster.

Table 8.4: The Hierarchical Ranking Table
1st 2nd 3rd 4th 5th HCluster
5 4 9 7 11 1
9 7 11 6 10 2
.. .. .. .. .. ..
.. .. .. .. .. ..
1 3 7 11 10 3
11 9 5 10 8 4
7 6 11 9 10 5
5 10 7 11 6 6
12 8 10 9 13 7
8 11 9 6 12 8
15 14 16 13 12 9
13 15 14 16 12 10
9 5 2 1 6 11
7 3 13 2 15 12
13 15 14 12 16 13

The dendrogram prepared from the hierarchical cluster is shown in Figure-8.9
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Figure 8.9: Hierarchical Cluster

The hierarchical cluster indicates the coherency among different decision clusters. Three ad-

ditional ensemble of bagged decision trees have been trained with the identical data set with two

different target decisions. Decisions having the Ranks 2nd, 3rd. Then a temporary decision set is
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prepared D1st, D2nd, D3rd. The decision set is then compared with the hierarchical ranking Ta-

ble (Table-8.4). Where N th
P stands for the probable predicted decision, N th

Ri is the combination of

decisions observed in the ranking table from historical data and HC stands for the hierarchical

clusters.

DSETi = {1stP ∩ 1stRi, 2
nd
P ∩ 2ndRi, 3

rd
P ∩ 3rdRi}; i ∈ HC1:13 (8.11)

DSETi is then used for validation. Three conditions have been observed in the validation pro-

cess;

1. If all three decisions match to one of the combination presented in the ranking table the over-

all prediction is considered accurate and the hierarchical cluster is preserved as the predicted

cluster.

2. If top two decisions match then the the hierarchical cluster is preserved as the predicted

cluster.

3. If the top decision and the bottom decision match the hierarchical cluster is preserved as the

predicted cluster.

Apart from these three conditions any other condition is considered erroneous and the process

is repeated.

8.4.2 Process for Economic Dispatch

The secondary objective of the optimized grid restoration strategy is economic dispatch (ED). The

objective function for the ED is to minimize total generation cost of the microgrid.

min :
∑
t

∑
i∈G

Ci(pgi,t) +
∑
t

∑
k∈D

Ci(pdi,t);∀t ∈ T (8.12)
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where, Ci(pgi,t) is the cost function of the i-th generator at t-th half hour. Ci is formulated as a

quadratic function Ci(pgP i, t) = a0,i + a1,ipgi,t + a2
2,ipgi,t

, where, a0, a1 and a2 are the coefficients.

A similar approach has also be taken for the cost of shedding load Ci(pdP i, t). The cost function is

subject to the inequality constraints at any given time after the fault has been cleared;

Pdpfcl + Pdpfncl + PT loss ≤
ng∑
i=1

pgi +
nren∑
i=1

preni (8.13)

where Pdpfcl and Pdpfncl are the critical and non-critical loads. Due to sudden change in de-

mands, in some cases deviation in power generation can be observed. In this study the post fault

demands are kept constant and any large deviation is neglected. Thus pgi,t − pgi, t0 is considered

zero for the half an hour span pre-defined for the stochastic data points. Therefore, the upper ramp

rate URi and lower ramp rate LRi have been neglected. To maintain post fault frequency stability,

sufficient spinning reserve should be available.

∑
i∈G

SRi,t ≥ SSRt;∀t ∈ T (8.14)

where, SRi,t is the available spinning reserve of individual diesel generator at t-th half hour, and

SSRt is the system wide required spinning reserve. Each generators also follows the generator out-

put constraints, which means the generation does not exceed its upper limit pgi,t ≤ PGi,max;∀t ∈ T

and also for the renewable energy generators pgreni,t ≤ PGreni,max;∀t ∈ T [175, 176].

For solving the economic dispatch problem, genetic algorithm (GA) is used. Here the GA

applies five steps: population initialization, evaluation, selection, crossover, and mutation. In the

proposed method the GA has generations of 51, the problem type is defined as linearconstraints,

and the number of evaluation of the fitness function is carried out 10201. The dataset has been

pre-processed by the ensemble of bagged decision trees mentioned earlier. The classifier, based on

the stochastic data of POS introduces the upper boundary for the design variables namely, dispatch
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from two diesel generators and shedding two loads. The upper boundary is prepared based on

the decision table (Table-8.2). For example if the classifier takes Decision-13, then the two diesel

generators will be switched on under the condition of 0 ≤ pgi,t ≤ PGi,max; ∀t ∈ T and no load

shedding will take place thus, pdi,t = 0;∀t ∈ T and i ∈ {1, 2} [145].

The overall architecture of the proposed algorithm is shown in Figure-8.10. The algorithm

has two parts. Offline detection and mitigation of unstable use cases is presented on the left hand

faction of the figure. On the right hand side, the online application phase is shown. One of the key

reasons to select this architecture is to gradually train the proposed classification algorithm. Once

the instability is spotted several consecutive steps are taken to generate a data set that contains the

optimized decisions. The algorithm is trained with these optimal decisions. The offline stage also

collects data and stores it. Depending on the detection of instability the system data is stored in

different locations and used appropriately in the online stage.
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Find instability and 
send status information
Yes=UnStable, No=Stable

Figure 8.10: Work-Flow of the Proposed Algorithm

8.5 Results

8.5.1 Estimation of Instability

The application of Monte Carlo method is opening a scope of interpreting the underlying post-

fault scenario. The method relative to each data point presents unique characteristics which either
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leads the system towards instability or the system remains resilient. The Monte Carlo simulation is

carried out with 10000 data points. Out of the 100 data clusters, 6, randomly selected clusters have

been chosen to analyse the overall outcome of this study.

Figure-8.11 shows the process of estimating POS of all the proposed clusters. It is based on

multiple simulated scenarios under one cluster. Each simulation result is added up and the average

of POS is updated gradually till it converges towards obtaining the final POS data.
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Figure 8.11: POS of the 100 Clusters and the Monte Carlo method of convergence

Figure-8.12 shows the POS of all the proposed clusters. Once the convergence is observed,

the POS data is stored in a table against each of the clusters. The clusters having a very lower

probability of being unstable has not been considered for further analysis.
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Figure 8.12: POS of the Clusters

Any data cluster having a low POS is ignored in the process of training the ensemble of bagged

decision tree. For example POS cluster-13 has a zero probability of being unstable. Therefore, no

restorative measure has been taken for all the instances in POS cluster-13.
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8.5.2 Selection of Restorative Action

The proposed ensemble of bagged decision tree method is invoked if the threshold probability of

5% is crossed. Figure-8.13 demonstrates the result of the classification algorithms in finding out

the 1st, the 2nd and the 3rd top decisions with the lowest possible errors. The top decision database

is used to control the upper bound of the GA.
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Figure 8.13: Top Three Decisions after 10k simulations

The GA is applied to observe the lowest possible operational cost. The results are explained

with the previously mentioned six POS clusters. The key observation made in this study is that the

most economical dispatch under duress is not always producing the best possible voltage profile.

Thus, the machine learning algorithm is implemented to find out the suitable initial conditions for

the GA that will maintain post-fault system stability. Table-8.5 shows the three different possi-

bilities while deciding and Table-8.6 shows the comparisons between the operational costs. The

comparison is made with actions only considering economic dispatch, the voltage quality and the

proposed method.

Table 8.5: Three Different Actions
POS Cluster 13 44 60 95 97 99
Decision With the Lowest Cost but poor voltage
pofile

NA 11 1 8 10 10

Decision With the Best Voltage Profile NA 5 3 12 5 7
Acceptable Voltage Profile at Lower Cost NA 9 3 9 11 9
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Table 8.6: Normalized Operational Costs
POS Cluster 13 44 60 95 97 99
Decision With the Lowest Cost NA 0 0 0 0 0
Decision With the Best Voltage Profile NA 1 1 1 1 1
Acceptable Voltage Profile at Lower Cost NA 0.96 1 0.62 0.89 0.13

Depending on the available wind, solar power and controllable loads the actions mentioned

above can either be different or can be overlapping. Figure-8.14 and Figure-8.15 elaborately shows

all three decisions and their impacts on the SIX clusters. In cluster-13 the probability of system

instability is zero. Thus, the post-fault restorative actions are not invoked. For the other clusters

like cluster-44, the algorithm is applied. In all the cases the decisions with the lowest cost have the

highest voltage deviation. It is a clear indication that GA for cost optimization alone is not sufficient

to maintain voltage quality. On the other hand, the exhaustive optimization method for maintaining

post-fault voltage quality based on the decision hierarchy recommended decisions have the highest

operational costs. The proposed algorithm is mitigating these two extremes by taking appropriate

actions that produce stable output at a lower cost.

8.6 Analyzing the Limitations

This study demonstrates a probabilistic optimization model for restoring a power system after a ma-

jor three-phase fault. The underlying objective of managing resource under a contingent scenario,

with a machine learning based system is analysed and presented. The standard GA based optimiza-

tion system is manipulated using the machine learning-based classifier, and comprehensive results

are achieved.

The control strategies adopted in this study is grid specific. Therefore, data pre-processing plays

a vital role in this study. The analyses advocates considering different approaches for different

systems. However, the Monte Carlo simulation-based approach is implemented in this study to
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Figure 8.14: Results With and Without the Proposed Method

understand the feasibility of developing a data-driven generic restoration strategy. The challenge is

to create a bridge between the finite numerical simulation and the infinite post-fault scenarios.

The proposed classifier also considers classification errors and simplified rectification tech-

niques. The rectification process is an important factor while considering a machine learning algo-

rithm for maintaining a system-wide stable operation under all the stochastic scenarios. The method

for rectification implemented in this study was comprehensive. However, whether such a simplified

technique is adequate for a larger context needs to be evaluated. Also, further investigations need

to be carried out to understand the full ramifications of misclassifying data.

The performance of the GA is quite satisfactory for the proposed microgrid, and the contingen-

cies analysed. More scenarios would help to compare and to understand the performance of the

GA optimization method under other contingencies, not considered in this study. Overall it can be

stated that the proposed Monte Carlo simulation and machine learning algorithm driven optimiza-

tion model, for restoring a stand-alone microgrid after a major short circuit fault, is demonstrating
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Figure 8.15: Different Decision Making Processes and Impacts (The Remaining Clusters)

a very promising outcome.
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Chapter 9

Conclusion and Future Work

9.1 Concluding Remarks

Machine learning is a well-established domain in much applied scientific research. It has the ca-

pability of tracing out meaningful patterns in a given dataset, which in turn can help make critical

decisions. However, traditional cleaning, training, and testing-based applications of machine learn-

ing cannot succeed in many scenarios as machine learning also has its limitations. This work

investigated such use-cases, where a traditional application of machine learning algorithms is not

meaningful. In a sequence of five different case studies, this research established a novel ensemble

of machine learning algorithms to solve complex power system problems. It has also recommended

different machine learning platforms for different types of use-cases.

The investigations led to an understanding that, power system data, especially the dynamic

power system data, has many different characteristics. Exploring those characteristics helps a ma-

chine learning platform to improve accuracy and efficiency. The purpose of this study is to adopt

a point of view that is application-centric. The applications had to be meaningful and complex

enough for intuitive decision-making. Such, applications have been sought out and successfully

resolved by applying machine learning algorithms. Several areas where the implementation of
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machine learning based systems is apparent have been described in this thesis.

While addressing different data preparation techniques, it became evident that cross-disciplinary

approaches are mandatory in a competitive environment. However, the selection of appropriate in-

terdisciplinary approaches also depends on case study or events. A critical observation is, therefore,

required for understanding the suitability of an algorithm in a particular scenario. In several case

studies, this thesis has established such an approach. It is also advocated that a certain degree of

scepticism is in-fact quite rewarding. In Chapter-3 Stochastic Data model, it is discussed that

machine learning algorithms are not a good candidate to solve any and every problem in power sys-

tems. Especially for low-level machine control in real-time scenarios, the performance of machine

learning algorithms is not at all overwhelming. However, as shown in the later chapters of this

thesis, in a complex and sequential decision-making scenario, machine learning based platforms

excel. In a nutshell, this is the major contribution of this work.

While the performance of the proposed ensemble methods is commendable, it is also impor-

tant to keep in mind that power system operation is also influenced by other acts. Factors from

other engineering faculties such as database management, communication channels and network-

ing can affect the flow of data. Those factors can also affect the characteristics or the so-called

‘features’ used in this study. Therefore, it will be interesting to further incorporate other factors

while analysing any system phenomenon and making a valid decision. Overall, before summariz-

ing this thesis, it is imperative to state that, influences on power system data from other disciplines

such as database management, communication, etc. have been ignored. Only the influences from

system dynamics, data preparation techniques, and different algorithms have been considered.

In summary, a data-driven decision-making process has its fair share of challenges. This thesis,

in multiple stages, addresses those issues. In the process, several key areas have been identified.

In Chapter-4 Machine Learning for Supervised Hierarchical Platform, the ramifications of the

speed of operation in decision making have been observed. In a hierarchical structure, if faster
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decision-making tools are not deployed, system stability cannot be maintained. In a small-scale

system, a centralized structure may bring value, however with added areas it will lose speed. The

simplified patterns observed in a small-scale network also evolves with the addition of different

types of distributed generators and loads. Therefore, the concept developed in this chapter is generic

regarding hierarchy but specific in terms of decision making. Such specificity demands a distributed

architecture.

In the Chapter-5, Simplified Feature Selection for Dynamic Data, the proposition of an in-

dependent and distributed system operation is presented. The distribution of resources depends on

local patterns. Understanding those and forming a decision coherency requires specific knowledge

extraction. This chapter successfully delivered that by proposing a simplified feature extraction

technique that not only understands local patterns but also the influences those from neighbouring

systems.

Metrics defining system restoration accuracy is a concept needed to be addressed in case of

a larger network. For example, if the decision-making accuracy is not attained to a level of near

perfection, then decision-making itself can lead towards a system-wide instability. In Chapter-6

Data Augmentation for a Segmented Grid a concept called corrective voltage control based op-

timization technique has been considered, as a native structure to define decision-making accuracy,

in a multi-machine system. The evolution of features with stochastic data such as fault location,

wind power, etc. is observed and dealt with in this chapter. The stochastic parameters can increase

dimensionality. And with increased dimensionality training an algorithm becomes challenging.

However, with an increased number of case studies and appropriate data preparation, this challenge

can be overcome.

In Chapter-7 Selection of Appropriate Feature Space an analysis and comparison among

different features have been presented. An association is brought by solving complex multi-area

restoration problems. The problems are again stochastic, while being heavily influenced by the
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inter-machine dynamics. Regardless, the fault location for the proposed feature-based machine

learning algorithms are capable of restoring grid-segments and then the grid itself. However, it is

also observed that misclassification, even if it occurs in rare conjunction of stochastic parameters

has severe ramifications. Distributed control fails under those scenarios.

A backup plan thus becomes mandatory and in Chapter-8 Ensemble Method for Multi-objective

Application an additional focus is set on it. Mitigation of any misclassification error is important.

Thus, the machine learning platform must be self-correcting. This has been achieved at a concept

level in this chapter by using hierarchical machine learning algorithm. While making decisions, the

challenges of multi-objectivity has also been addressed.

The work carried out in this thesis cultivates the idea of how machine learning platforms can be

prepared or manipulated for dynamic data analysis, to assist the self-healing process in a system.

This thesis can be used as a reference for further expansion in the field of machine-learning based

self-healing functionalities in a stochastic network. The potential is immense. Therefore, it is

hoped that subsequent researchers can take these principles to a pathway for developing real-life

self-healing applications.

9.2 Future Scopes

This work could only scratch the surface of self-healing process in a standalone microgrid using

machine learning algorithms. In the future, this work can be taken even further through various

means. One of the approaches would be to apply deep learning and artificial intelligence. In

this method, the sequential decision-making process can be presented as a Markov, chain model.

The process then will train a deep learning algorithm as a reinforcement learner. The stochastic

parameters can help develop a policy gradient-based system for training. The process can provide

a classification probability of each restoration process in a segmented grid, by building a n-the

order Markov model, while the deep learning platform will associate the policy gradient and find
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the optimum decision in each stochastic scenario. This method can be assumed as an extension of

Chapter-8.

The Chapter-7 Selection of Appropriate Feature Space can further be extended by reviewing

feature extension method applicable for different power system operational issues. This work can

bring comparison among different techniques. Modern machine learning methods and their use in

feature extraction can also be brought out. For example, deep learning algorithms have a work-flow

that allows them to find suitable features. Ramifications of such approaches can also be introduced.

Further analysis in the online decision-making process can also be carried out. This approach

will be an extension of Chapter-6 Data Augmentation for a Segmented Grid. Rather than moving

towards deeper learning methods, how a simplified algorithm can be efficiently distributed can also

be addressed.

The Chapter-5 Simplified Feature Selection for Dynamic Data can be further extended by im-

plementing an optimization method that can address both feature selection and distributed control.

Feature selection is used in this work to complement distributed control. However, feature selection

can become resource heavy for an online system. A balance needs to be sought out. Therefore, an

optimization routine can be developed for selecting appropriate features for online operations. It

is hoped that this work has developed enough ground, for the subsequent researchers to carry it on

and fathom the aspects which have not yet been discussed.
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