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Abstract 
This paper aims to provide the software estimation 
research community with a better understanding of the 
meaning of, and relationship between, two statistics that 
are often used to assess the accuracy of predictive 
models: the mean magnitude relative error, MMRE, and 
the number of predictions within 25% of the actuals, 
pred(25). We demonstrate that MMRE and pred(25) are, 
respectively, measures of the spread and the kurtosis of 
the variable z where z=estimate/actual. Thus, we consider 
z to be a measure of accuracy and statistics such as 
MMRE and pred(25) to be measures of properties of the 
distribution of z. We suggest that we need measures of the 
central location and skewness of z as well as measures of 
spread and kurtosis. Furthermore, since the distribution 
of z is non-Normal, we may need non-parametric 
measures of these properties. For this reason, boxplots of 
z are useful alternatives to simple summary metrics. We 
also note that the simple residuals are better behaved 
than the z variable and could also be used as the basis for 
comparing prediction systems. 
  
Keywords:  Prediction systems; software estimation; 
goodness-of-fit statistics; prediction accuracy; MMRE; 
pred(25).; residual analysis. 
 
1. INTRODUCTION 

A major challenge for managers of software projects is to 
be able to make accurate predictions. For example, how 
long will a project take, how much effort will it require 
and how many defects will a particular component 
contain? To answer this type of question has been a major 
goal of workers in the field of software metrics over the 
past 25 years. In general, the approach adopted has been 
to collect various measures that can then be used to 
construct a prediction system. For example, one might 

count the number of function points or perhaps count the 
number of reports that are to be generated and investigate 
the relationship between these measures and some other 
measure of interest such as the effort to complete a 
project. 

In this paper we are not concerned with the methods used 
to construct a prediction system, we are interested in how 
researchers determine that one prediction system leads to 
better predictions than another. A large number of 
different prediction accuracy statistics have been used in 
the literature (see for example, Conte et al, 1986, 
Jorgensen, 1995, Lo and Gao, 1997, Miyazaki et al., 
1991). However, in a given situation the different 
accuracy statistics often give contradictory results. This 
indicates that they are not measuring the same aspect of 
prediction accuracy. We believe that the lack of 
understanding of what different accuracy statistics 
actually measure is hindering progress in this important 
branch of software engineering.  

In this paper we investigate the two most commonly used 
accuracy statistics: the mean magnitude relative error, 
MMRE, and the count of the number of predictions 
within m% of the actuals, pred(m), where m is usually 
taken to be 25. These are particularly important accuracy 
statistics because almost the entire software metrics 
research community has relied on MMRE and to a less 
extent pred(m) since Conte et al. publicised them. If these 
metrics are the basis of making comparisons between 
competing prediction systems, we need to be very sure 
what they mean. 

 
2. THE MMRE AND PRED(25) PREDICTION 

ACCURACY STATISTICS 
2.1 Mean Magnitude of Relative Error - MMRE 

The Mean Magnitude Relative Error (MMRE) prediction 
accuracy statistic is the most widely used indicator in 
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recent years, particularly when assessing the performance 
of software effort estimation models. The MMRE is 
defined by Conte et al. (1986) as: 
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where xi is the actual value and xi  is the estimated value 
of a variable of interest. 

In our view, however, this is not particularly meaningful 
for assessing predictions (as opposed to providing a 
goodness of fit statistic). If the aim is to generate an 
estimate of the effort for a new project, upper and lower 
bounds about the estimate are normally required, in order 
to present a range of values likely to contain the actual 
value. In other words interest is in the deviation relative to 
the estimate not relative to the actual. This is consistent 
with statistical residual analysis where the residuals (i.e. 
the estimate-actual) are plotted against the estimated 
values not the actual values. 

A formulation of the MMRE where the absolute residuals 
are divided by the estimate can be referred to as the 
EMMRE (Estimation MMRE). 

In order to understand what the MMRE measures, 
consider a random variable x distributed normally with 
mean µ  and variance σ 2 . Iglewicz (1983) demonstrated 
that for a sample of size n, where x  is the average of the 
n observations:  
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If we rewrite the MMRE as follows: 
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it is clear that if xi  is an unbiased estimator of xi , the 

expected value of 
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Furthermore, if zi  is distributed Normally with mean 1 
and variance σ z , the MMRE tends to the value 

σ
π

z × 2 . This demonstrates that the MMRE is an 
estimate of the spread of the variable z that will not be so 
vulnerable to large outliers as the conventional root mean 
square estimate. In addition, the median magnitude 
relative error would be an even more robust measure of 
spread. Since MMRE is a measure of spread it is incorrect 
to refer to it as a measure of prediction accuracy. The 
variable z is a better indicator of prediction accuracy since 
it has a defined optimum value (i.e. 1) which indicates 
clearly whether or not the prediction system under- or 
overestimates. 

Using the above argument, the EMMRE will be an 

estimate of spread of the variable q
z

=
1

. 

This discussion indicates that the quality of a prediction 
system can be reported in terms of the average or median 
value of the prediction accuracy variables z or q, and the 
MMRE or EMMRE can be used to assess the variability 
of z and q respectively.  

 
2.2 Pred(m) 

Another widely used prediction quality indicator is 
pred(m), which is simply the percentage of estimates that 
are within m% of the actual value. Typically m is set to 
25 so the indicator reveals what proportion of estimates 
are within a tolerance of 25%. Clearly, pred(m) is 
insensitive to the degree of inaccuracy of estimates 
outside the specified tolerance level. For example, a 
pred(25) indicator will not distinguish between a 
prediction system for which predictions deviate by 26% 
and one for which predictions deviate by 260%. 

As with MMRE, it is preferable to formulate pred(m) for 
estimating by considering the percentage of actuals within 
m% of the estimate. 

Based on the discussion of MMRE above, it is clear that 
if the prediction accuracy (i.e. z=estimate/actual) is 
approximately Normal, pred(m) has (asymptotically) a 

functional relationship with MMRE. If z
x
xi
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i
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is 

distributed normally with mean µ = 1 and variance σ z
2 , 

then the proportion of actuals within m% of the estimate 
depends on the size of the variance compared with a 
Standard Normal variate which has mean of zero and a 
variance of 1. The MMRE provides an estimate of the 
variance of z. Recalling that the mean of z is 1, the 
proportion of actuals within m% of the estimate can be 
calculated using the tables of the standard normal variate 
and the ratio: 
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For example, if m=25% and MMRE=0.5, an estimate of 
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 which is approximately 

0.5/1.2533=0.3989. The proportion of actuals within 25% 
of the estimate corresponds to the number of actuals in 
the range 0.75 to 1.25. This depends on how the variance 
of z compares with the proportion m/100. In this case an 
upper and lower bound of 0.25 around the mean and a 
standard deviation of 0.3989 corresponds to plus or minus 
.25/.3989=0.627 standard deviations about the mean. 
From tables of the standard normal variate, this range 
corresponds to a probability of 0.46. Thus if a sample 
comprises 100 estimate-actual pairs, 46 of the actuals 
should be within 25% of the estimate. 

However, pred(25) is not a measure of the spread of z. To 
understand what it measures, consider what happens if a 



distribution is more peaked than a Normal distribution. A 
sample from a more peaked distribution would have more 
values within 25% of the mean than normal. Similarly a 
sample from a flatter distribution would have less values 
within 25% of the distribution. Thus, pred(25) is related 
to the shape of the distribution z. Shape has two 
dimensions: skewness which describes whether or not the 
distribution is symmetrical about a central value and 
kurtosis which describes the extent to which the 
distribution peaks around its central value. Pred(25) is 
therefore a measure of kurtosis.  

 
2.3 Inconsistencies evaluations using MMRE and 

pred(25) 

Since MMRE and pred(25) measure different properties 
of the distribution of z it is not surprising that the two 
statistics may appear to give inconsistent results if they 
are used to evaluate alternative prediction systems. For 
example, using the Desharnais data set (Desharnais, 
1989), we can predict effort from size (measured in raw 
function points) in three ways: 

1. OL: Using ordinary least squares on the raw data. 

2. MR: Using a median regression technique on the 
raw data (as implemented in the STATA statistical 
analysis tool). 

3. LNOLS: Using ordinary least squares regression 
on the data after applying the natural logarithmic 
transformation to the effort and size variables. 

Using the complete 81 project data set to generate the 
models, and then using each of the models to make a 
prediction for each of the projects, we can generate the 
MMRE and pred(25) values for each of the prediction 
systems as shown in Table 1 (where the statistics for the 
logarithmic model are calculated after the predictions 
have been transformed back to the raw data scale). 

Table 1. MMRE and pred(25) for Desharnais data set 

Prediction System pred(25) MMRE 

Ordinary Least Squares 42 0.697 

Median Regression 42 0.652 

Logarithmic Transformation 37 0.599 

Based on MMRE we would conclude that the logarithmic 
transformation produced the best prediction system 
whereas the pred(25) values suggest that it produced the 
worst prediction system. 
 
3. DISCUSSION 
3.1 Summary statistics for z 

We have shown that MMRE is a measure of the spread 

(i.e. standard deviation) of the variable z where 
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and that pred(25) is a measure of how peaked the 
distribution of z is. Thus, the two accuracy statistics 
measure two different properties of the distribution of z. 

This explains why they may appear to give contradictory 
results when they are used to assess different prediction 
systems. There is no reason why the distribution of z 
obtained from one system should not have a smaller 
variance than that of another system while also having a 
flatter distribution.  

We have also noted that the distribution of a random 
variable has two other important properties: central 
location and skewness. The central location of the 
variable z can be assessed by the mean or median of z.  

Skewness is conventionally measured as: 
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where s3 is the cube of the standard deviation and m3 is 
the third moment about the mean. That is 
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where n is the number of values of the variable z in a data 
set and z  is the mean of the n values. Note s2 (the 
variance) is the second moment about the mean. This 
measure of skewness has a theoretical value of 0 for a 
Normal distribution, since the Normal distribution is 
perfectly symmetric.  

The conventional measure of peakedness (kurtosis) is: 
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where s4 is the standard deviation taken to the fourth 
power and m4 is the fourth moment about the mean. That 
is 
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Thus, pred(25) is related to kurtosis but is not the standard 
way of measuring it. 

A problem with the use of conventional measures of 
central location, spread, skewness and kurtosis is that they 
were derived from consideration of the Normal 
distribution. They are not very good measures of the 
properties of non-Normal distributions. Since the variable 
z is defined on the range 0 to ∞ with a theoretical mean of 
1, z must, by definition, be skewed and hence non-
Normal. Thus, to understand the accuracy of a prediction 
system we need to understand the distribution of z. If we 
can determine the functional form of the distribution of z 
we can identify appropriate summary statistics to measure 
properties of interest. However, if we cannot identify the 
functional form of the distribution we need non-
parametric measures of properties of the distribution. 

 
3.2 Robust distribution statistics 

Pickard et al. (1999) recommend inspecting boxplots of 
the residuals to compare models. This gives a good 
indication of the distribution of the residuals and can help 



explain the behaviour of the summary statistics. In a 
similar way, boxplots can display the distribution of z. 
Boxplots are based on non-parametric statistics. They 
show the median value as the central location for the 
distribution. If the median is close to 1, the predictions are 
unbiased. The length of the box from lower tail to upper 
tail gives an indication of the spread of the distribution. 
The position of the median in the box and the length of 
the boxplot tails show the skewness of the distribution. If 
the upper and lower tails are approximately equal and the 
median is in the centre of the box the distribution is 
symmetric. If the distribution is not symmetric the relative 
lengths of the tails and the position of the median in the 
box indicate the nature of the skewness. The length of the 
box relative to the length of the tails gives an indication of 
the shape of the distribution. A boxplot with a small box 
and long tails represents a very peaked distribution, a 
boxplot with a long box represents a flatter distribution.  

Boxplots provide a simple means of comparing the 
predictions from alternative prediction systems. For 
example, using the Desharnais data set and three 
prediction systems, we can make a prediction for each of 
the projects based on each of the models. Then we can 
generate three different sets of z values: zOLS, zMR and 
zLNOLS (where zLNOLS is calculated after the predictions 
have been transformed back to the raw data scale). The 
boxplots for the three different z distributions are shown 
in Figure 1. Figure 1 suggests that the logarithmic model 
gives marginally better predictions than the other models: 
the box length and tails are slightly smaller than the box 
length and tails for the other models. Furthermore the 
outliers from the logarithmic model are slightly less 
extreme than the outliers from the other models. 
However, the logarithmic model appears to be more 
susceptible to under-estimation than the other models. 

 
3.3 Statistical tests to compare alternative 

prediction systems 

Although boxplots allow a simple graphical method of 
comparing predictions from alternative prediction 
systems, they cannot confirm whether one predictions 
system is significantly better than another. Stensrud and 
Myrtveit (1998) suggested using a paired t test to test 
whether the absolute relative error (i.e. the MRE) for each 
data point obtained using one prediction system is 
significantly different from the absolute relative error 
obtained using another system. If we view the MMRE as a 
measure of spread, Stensrud and Myrtveit's procedure can 
be interpreted as testing whether or not one prediction 
system is more variable than another. This seems a sensible 
approach to assessing whether one prediction system is 
better than another, but it is worth considering whether other 
tests of the distribution of z would also be useful.  

Initially it would seem that we could test for bias in our 
prediction system by confirming whether or not the 
central location of the distribution is significantly 
different from 1. However, for skewed distributions it is 
not always clear what measure of central location should 
be tested, since the mean, median and mode will not be 
equal. Furthermore, the method used to construct the 
prediction system can directly influence the value of 

central location measures. A median regression will lead 
to a prediction system where the median of z=1 (where 
the values of z are based on the measures used to 
construct the prediction system). An ordinary least 
squares regression applied to the logarithmically 
transformed data will lead to a prediction system where 
the geometric mean of z on the raw data scale equals 1. 
Ordinary least squares regression applied to the raw data 
(i.e. size and effort measures) will not result in a 
prediction system for which the mean of z is always equal 
to one. Ordinary least squares regression results in a 
prediction system where the mean of the residuals (i.e. 
estimate-actual) always equal 0, but if the data is skewed 
the mean of z is not guaranteed to equal 1. 

For example, the central location values of the three z 
distributions shown in Figure 1 are shown in Table 2. 

Figure 1. Boxplots of'the z values for each prediction 
system 

(i) Ordinary LS regression, (ii) Median regression, (iii) Log regression 

 
Table 2. Central Location statistics for three prediction 

systems 

Central Location statistics zOLS zMR zLNOLS 

Arithmetic average 1.463 1.384 1.251 

Geometric mean 1.166 0.945 1.000 

Median 1.045 1.000 0.904 

It is possible to test whether the distribution of the 
predictions from the different prediction systems are 
equal or not using a non-parametric test such as the 
Wilcoxon matched pairs signed rank test (Siegal and 
Castellan, 1988) on each pair of prediction systems. In 
this case, the results of the Wilcoxon tests confirm that all 
the prediction systems have significantly different 
distributions (p<0.01). But it is not clear whether the 
median regression model is best because its median value 
is 1, or the logarithmic model is best because its mean 
value is closest to 1.  

The spread statistics for the z values are shown in Table 
3. Table 3 suggests that the logarithmic model is superior. 
Both the standard deviation of z and the MMRE of zLNOLS 
are smaller than the standard deviation and the MMRE of 
the other z variables, suggesting that the predictions from 



the logarithmic model are less variable than the 
predictions from other models.  

Table 3. Spread statistics for the three prediction systems 

Distribution Standard deviation MMRE 

zOLS 1.2889 0.697 

zMR 1.2064 0.652 

zLNOLS 1.0901 0.599 

Paired ‘t’ tests of the absolute relative error for each data 
point confirm that the logarithmic model predictions are 
significantly less variable than the predictions from the 
other models (p<0.01). In addition, the predictions from 
the median regression are significantly better than the 
predictions from the ordinary least squares model 
(p<0.01). Since, the boxplots in figure 1 are skewed, it is 
preferable to use the Wilcoxon matched-pairs signed rank 
test on the absolute relative error values from each pair of 
predictions systems. In this case, the Wilcoxon tests give 
results that are the same as those obtained from the paired 
“t” tests. However, simple sign tests, as proposed by 
Pickard et al. (1999), are not powerful enough to detect a 
statistically significant difference between the prediction 
systems. 

This discussion seems to suggest that presenting the mean 
of z and using a paired test of the absolute relative 
deviation is all that is necessary to compare alternative 
prediction systems. However, there are situations where 
these summary statistics are misleading. The standard 
deviation is based on the squared deviation from the 
observed mean of z, while the MMRE is based on the 
absolute deviation from the theoretical mean of z (i.e. 1). 
Thus, if a prediction system consistently predicted values 
much larger or much smaller than the real values, is 
would be possible to have a very large MMRE and a 
mean value of z far from 1, accompanied by a very small 
standard deviation. Such systematic bias is much easier to 
observe using a boxplot than using only summary 
statistics. Furthermore models can be adjusted to remove 
the effect of systematic bias, so a model that would be 
rejected on the basis of the summary statistics might be 
recognised as potentially superior from inspection of its 
boxplot. 
 

3.4 Additional benefits of the z variable 

We believe that identifying the variable z as a measure of 
prediction accuracy and other statistics such as MMRE 
and pred(25) as measures of properties of the distribution 
of z has additional benefits beyond merely increasing our 
understanding of what the statistics actually measure. 
Currently, prediction systems are assessed as good or bad 
against arbitrary values of MMRE and pred(25). That is, 
by custom, we regard an MMRE≤0.25 and a pred(25) ≥75 
as indicative of a good predictive system. However, 
neither of these values allow us to make simple 
probability statements about the accuracy of future 
estimates. If we consider the distribution of z, we can 
estimate confidence limits about the central value of the 
distribution either using the boxplot for robust limits, or, 

if we can identify the functional form of the distribution 
of z, we can construct 95% or 99% confidence limits for 
our predictions. 

Furthermore, in an effort to compare alternative 
prediction systems some researchers use summary 
statistics based on the MMRE such as the maximum MRE 
and the standard deviation of the MRE (Myrtveit and 
Stensrud, 1999). We believe such complications are 
unnecessary if researchers agree that: 

• Accuracy is measured in terms of z. 

• Comparison of the alternative prediction systems are 
based on comparisons of the boxplots of z from the 
competing predictions systems together with formal 
tests of properties such as the bias and variability of 
the prediction systems. 
 

3.5 Limitations of the z variable 

We have discussed the z variable at some length because 
it is the basis of MMRE and pred(n) but it is clear from 
Figure 1 that it has some undesirable properties including 
asymmetry. An implication of that asymmetry is that if 
we base our choice of prediction system on summary 
statistics of the z variable, we will tend to favour 
prediction systems that minimise overestimates rather 
than prediction systems that minimise underestimates. 
Since in most cases overestimates are less serious than 
underestimates, this may not lead to an appropriate choice 
of prediction system. 

An alternative to the use of the z variable, is to consider 
the distribution of the residuals (i.e. actual-estimate). 
Figure 2 shows the boxplots of the residuals, which are 
clearly better behaved than the z variable in terms of 
symmetry. It is interesting to note that paired “t” tests of 
the difference between the absolute residuals suggests 
there is no significant difference between the three 
prediction systems. The Wilcoxon matched pair rank test 
leads to the same conclusion. 

Figure 2. Boxplols of residuals for each prediction 
system 

(i) ordinary LS regression, (ii) median regression, (iii) log regression 

 
 



4. CONCLUSION  

Our analysis and results suggest that the two statistics 
most frequently used to assess the quality of prediction 
systems, MMRE and pred(25), are respectively measures 
of the spread (standard deviation) and peakedness 
(kurtosis) of the variable z (where z=estimate/actual). We 
believe that it is necessary to understand the distribution 
of z in order to assess the accuracy of a prediction system. 
We suggest that boxplots of the z values or the residuals 
give a better assessment of prediction quality than one or 
two summary statistics. The use of boxplots is particularly 
appropriate since boxplots are based on non-parametric 
summary statistics and the variable z is skewed and hence 
non-Normal. Boxplots are also suitable for showing the 
distribution of residuals even though residuals are better 
behaved in terms of symmetry than the z variable. 

Whilst the arguments in this paper may appear arcane to 
the non-statistician, it is essential that we understand how 
to make comparisons between competing prediction 
systems. Researchers have employed a wide range of 
different accuracy indicators, some of which appear to 
give contradictory results. Without understanding what 
the various indicators are describing, meaningful 
comparison is not possible. Furthermore if we cannot 
make meaningful comparisons we cannot make progress. 
We have argued that the indicators are statistics 
describing the distribution of the variable z and that a 
number of different properties of the distribution need to 
be described. We also note that the simple residuals are 
better behaved than the z variable. For this reason we urge 
researchers to present boxplots of the residuals or the z 
variable values of competing prediction systems in 
addition to performing appropriate statistical tests. 
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