
ELIMINATION OF SKIN-STRETCH INDUCED MOTION 

ARTEFACTS FROM ELECTROCARDIOGRAM SIGNALS 

Anubha Kalra 

A thesis submitted to  

Auckland University of Technology  

in fulfilment of the requirements for the degree of 

Doctor of Philosophy (PhD.) 

Institute of Biomedical Technologies  

School of Engineering 

Faculty of Design and Creative Technologies 

Supervisors: Dr. Andrew Lowe, Prof Ahmed Al-Jumaily 

© Anubha Kalra 

June 2017



i 

ABSTRACT 

Electrocardiography (ECG) is widely used in clinical practice, for example to diagnose 

coronary artery disease or the cause of chest pain during a stress test, while the patient is 

running on a treadmill. Ambulatory ECG monitoring is used for long term recording of 

ECG signals, while the patient carries out his/her daily activities. Artefacts in ECG are 

caused by the patient’s movement, moving cables, interference from outside sources, 

electromyography (EMG) interference and electrical contact from elsewhere on the body. 

Most of these artefacts can be minimised by using proper electrode design and ECG 

circuitry. However, artefacts due to subject’s movement are hard to identify and eliminate 

and can be easily mistaken for symptoms of arrhythmia and the physiological effects of 

exercise, leading to misdiagnosis and false alarms.  

Skin stretch has been identified as a major source of motion artefacts in ECG signals, 

which arise due to the flow of current, called the ‘injury current’ across the epidermis. 

Thus, the skin is generally abraded or punctured to minimize variations in injury current. 

This is unpleasant and not useful for long term monitoring, as the skin regrows after 24 

hours. Present motion sensing approaches to artefact reduction in ECG do not measure 

motion in terms of skin stretch.  

The main goal of this study is to quantify and eliminate motion artefacts from ECG 

pertaining to skin stretch. A polymer patch electrode with Young’s modulus lower than 

of skin has been developed to simultaneously measure ECG and skin stretch using an 

optical sensing technique. These signals were combined with infinitesimal strain theory 

to quantify skin stretch as two dimensional strains. Principal component analysis (PCA) 

and independent component analysis (ICA) were utilised for motion artefact removal 

from ECG signals.  

A motion Artefact Rejection (AR) system has been developed to validate the approach 

implemented in this study. As this study mainly focuses on skin stretch induced artefacts, 

a plastic tube has been used to stretch the forearm skin of 7 subjects across the following 

age groups: 18–35 years (3 subjects), 36–55 years (2 subjects), and 56 years and above 

(2 subjects). ECG with motion artefacts were measured using CNT/PDMS electrodes and 

dry Ag electrodes. The reference ECG (ECG at rest) was measured from the chest using 

conventional Ag/AgCl electrodes. The average improvements in SNRs using PCA and 

ICA algorithms were found to be 4.249 dB and 9.586 dB respectively, while the average 
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of maximum deviation from rest/reference ECG was 0.0843 for ECG with motion 

artefacts, 0.0702 for ECG after PCA and 0.0442 for ECG after ICA.  

Both PCA and ICA algorithms also aided in removing baseline wander and high 

frequency noises in the cases of less or no motion artefact. The system performed well in 

removing artefacts generated due to EMG interference and stretching the skin 

perpendicular, diagonal and parallel to Langer’s lines. Higher SNRs were achieved when 

PCA and ICA were performed by using 2D strains as motion information than when no 

motion information was used. In conclusion, ICA used for motion artefact reduction in 

ECG signals shows better performance than other techniques employing adaptive 

filtering, PCA and ICA.  

A novel, state-of-the-art technique to identify and eliminate motion artefacts from ECG 

signals has been developed through this study which is feasible for practical 

implementations. 
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CHAPTER 1  BACKGROUND 

1.1 GENERATION AND SIGNIFICANCE OF THE 

ELECTROCARDIOGRAM (ECG) 

Biopotentials are the electrical signals that are produced inside the body due to various 

biochemical processes that form a part of living metabolism. The monitoring/recording 

of these signals are essential in the analysis of various physiological parameters and 

diagnosis. Electrocardiogram (ECG), electromyogram (EMG) and 

electroencephalogram (EEG) are biopotential signals from the heart, muscles and brain, 

respectively.  The ECG gives a measurement of the electrical activity of the heart over 

time. It is an important clinical diagnostic measure which is widely known and 

practiced. It can be used to diagnose conditions such as cardiac arrhythmias, murmurs, 

pulmonary embolism and left ventricular hypertrophy [1]. Other than medical 

applications, ECG monitoring finds use in sports, for example optimising his or her 

performance during training [2]. 

Previous studies date back to 1838 when Carlo Mateucci demonstrated the electrical 

signal accompanying each heartbeat with his experiment on ‘rheoscopic frog’ [3]. The 

first human ECG was obtained by Waller (1887) [4], using saline sensors connected to 

crude galvanometers. Einthoven (1901) [5] developed a string galvanometer and 

devised an improvement over Waller’s method. He used buckets filled with saline as 

the sensors, one for each hand and one for the left leg. Through his work, in 1912, his 

method became known for ‘Einthoven’s Triangle’ and is an important basis for all forms 

of ECG measurements [6]. The shape of Einthoven’s triangle represents an inverted 

equilateral triangle with its centre at the heart. The branches of the triangle sum as 

vectors to a zero voltage (Figure 1.1) and represent potential differences measured by 

ECG. 
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Figure 1.1: Representation of Einthoven’s triangle. 

 

The electrical conduction in heart is carried out by special cells responsible for the flow 

of current from one cell to another. A normal heart beat starts in in the sino-atrial node 

(S-A node), located in the right atrium. The S-A node is connected to the left atrium 

through an electrical path. This makes both the atria contract at the same time when the 

S-A node fires. There is a slight delay in the conduction while the electrical signal travels 

down to the ventricles through the atrio-ventricular node (A-V node). The action 

potentials generated by different cells in the myocardium leads to the formation of an 

ECG signal. This action potential causes the muscle tissue to contract by the flow of 

ions from cell to cell. This ionic flow causes a change in potential which is known as 

depolarization and restoring back the original potential is called repolarization as shown 

in Figure 1.2 [7].  

An action potential arises when there is a difference in ionic concentration on the two 

sides of the cell membrane. Ion channels made up of large proteins are prevalent in the 

cell membrane. These channels have discrete biophysical properties that might cause 

channels to: 

I. Open and close quickly. 

II. Open quickly, close over long periods. 

III. Open and close after long periods. 

IV. Permit ions to flow only in one direction. 

V. Open all the time. 
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Figure 1.2: Depolarization and repolarization resulting in cardiac activity. 

In the human body, these ion channels control the heart beat rate, the perception of sound 

or sight, or storage of a memory [8]. The cardiac action potential involves the exchange 

of Sodium (Na+), Potassium (K+), Chloride (Cl-), and Calcium (Ca2+) ions across the 

cell membranes of the heart [9]. Na+ and Cl- are found outside the cell at rest, while K+

is found inside the cell. Ca2+ ions can be found both inside and outside the cells in a 

calcium store known as the sarcoplasmic reticulum. During depolarization, the Na+ ions 

enter the cell membranes, making the voltage positive. The K+ ions leave the cell 

membrane during repolarization. The intracellular concentration during the whole 

process is kept constant by the ion transporters or pumps, which maintain the leakage 

or the flow of ions across the cell membrane. The automatic nervous system affects, but 

does not control, the speed of action potential in the pacemaker cells. 

An ECG test is generally used by the doctors to analyse if the electrical activity is slow, 

fast or irregular. It is also used by cardiologists to measure the amount of electrical 

activity in the heart, to make sure that the heart muscles aren’t overworked [10]. Some 

common examples of abnormal ECGs can be seen in Figure 1.3. 
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Figure 1.3: Common examples of abnormal ECGs [11]. 

The ECG is also important in protecting and guiding the health of the athletes [12]. In a 

recent survey by Harmon and Asif (2011) [13], all cases of sudden deaths were 

identified using the National Collegiate Athletic Association (NCCA) database. During 
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the 5-year period, there were 273 sudden deaths in a total of 1 969 663 patients. 

Cardiovascular-related sudden death was the leading cause of death in medical cases 

(56%), accounting for 75% of sudden deaths during exertion. Male athletes were more 

than twice as likely as female athletes to die suddenly. The inclusion of a 12-lead ECG 

in screening tests of all the athletes was recommended by the European Society of 

Cardiology (ESC) [14]. However, it is difficult to distinguish the abnormal patterns from 

the physiological effects of training. Many clinical findings that may cause a concern in 

the general population are normal for athletes.  

An ECG can be used by the cardiologists to approximate the electrical axis of the heart, 

by observing the deflection in the QRS complex [11, Ch. 19]. Deviation of the electrical 

axis to the left can be due to hypertension, aortic stenosis, ischemic heart disease etc., 

while the deviation to the right is a consequence of chronic obstructive lung disease, 

pulmonary emboli, congenital heart disease etc. [11]. An ECG test can be used to find 

the heart beat frequency, to distinguish between normal sinus rhythms (60-100 beats per 

minute), sinus bradycardia (less than 60 beats per minute) and sinus tachycardia (higher 

than 100 beats per minute). Chaotic and irregular fluctuations in the ECG baseline can 

be due to atrial fibrillation, while the presence of saw-toothed flutter waves instead of P 

waves can indicate the condition of atrial flutter.  

 

1.2 MODERN FORMS OF ECG MEASUREMENT SYSTEMS 

Having established the importance of the ECG as a one-off measure, it is also recognised 

that long term monitoring of the ECG is clinically important. There is worldwide 

demand for a continuous health monitoring system that can detect heart rate variability 

through which cardiovascular diseases (accounting for 48% of non-communicable 

disease deaths, as per 2012 WHO Statistics [15]) can be diagnosed and managed at an 

early stage. Although standard clinical devices are employed with sensing techniques 

for blood perfusion, cardiac sound and vascular blood velocity; ambulatory ECG and 

blood pressure monitoring are considered the most mature techniques [16]. Cardiac 

arrhythmia events can be life threating, therefore regular monitoring and recording of 

ECG is valuable and can be used by a physician to achieve timely and accurate diagnosis 

or to determine the cause of the symptoms on patients [17]. 
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The ambulatory ECG device provides a continuous monitoring of the heart for longer 

periods of time, while the patient is performing his or her daily activities. Ambulatory 

ECG systems aim to achieve patient comfort and ease of use as well as efficient signal 

acquisition. Ambulatory systems are used to identify infrequent and highly variable 

cardiac arrhythmias which normally pass undetected in clinical situations [18] [19]. 

Ambulatory ECG monitoring, in conjunction with clinical findings can be useful in 

investigating heart conditions such as palpitations, light-headedness or syncope [20].  

1.2.1 Holter monitors 

The first ambulatory cardiac monitoring device, now known as a Holter monitor was 

built by a famous American biophysicist Norman J. Holter (1914-1983) [21]. Modern 

Holter monitors are battery-operated, portable devices which can measure the ECG 

continuously for 24-48 hours [22], and are worn by the patients with suspected, frequent 

palpitations having slow, fast or an uneven heartbeat. They may also be used if a person 

has a pacemaker to ensure its proper functioning. 12 channel Holter monitors obtain 

ECG signals in the same representation as during common rest ECG and/or stress test 

measurement using the Mason-Likar lead system. However, the resolution of recordings 

using 12 channel Holter monitors is significantly lower than standard 12-lead ECG. 

Modern Holter monitors employ two or three channel ECG [22]. 

The clinical importance of arrhythmia detected using ambulatory ECG monitoring can 

be determined by finding its correlation with the simultaneous occurrence of suggestive 

symptoms. The symptoms of cardiac arrhythmia occur more frequently in outpatients 

than in hospitalized patients. Surawicz et al. [23] through his experiments found that the 

symptoms of cardiac arrhythmia in outpatients and inpatients were 55% and 6% 

respectively. However, the correlation of symptoms with detected arrhythmia in 

inpatients (95%) was higher than in outpatients (44%). In another study performed by 

Zeldis et al. in 1980 [24], the concurrence of the symptoms with an associated 

arrhythmia was found only in 50 of 371 patients (13%) using Holter monitors.  Cardiac 

diagnosis obtained using Holter monitor by Drake (in 1984) [25], showed no significant 

relevance with associated arrhythmias. Thus, it can be inferred that Holter monitors 

employing 24-hour ECG monitoring exhibit a low diagnostic efficacy. Continuous long 

term monitoring is necessary for the correct diagnosis of the arrhythmia detected by an 

ambulatory device. When the monitoring time of the Holter monitor was increased from 

24 to 72 hours in 95 patients with syncope [26], the occurrence of symptomatic events 
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increased from 15% to 27%. Therefore, 24 hour ambulatory monitoring might not be 

enough to identify potentially important arrhythmias [27]. 

1.2.2 Event monitors 

In cases where patients experience intermittent or rare symptoms of palpitations, event 

monitors are used for ambulatory monitoring of the ECG. Event monitors, also known 

as loop monitors, are small and light-weight devices which can be triggered by the 

patient when they feel symptoms arise. The latest event recorders employ real-time 

continuous cardiac monitoring, where the arrhythmic event data is automatically 

transferred to the monitoring station [28] [29]. In comparison to Holter monitors, event 

monitors are smaller in size and can record cardiac activities for longer periods of time 

[17]. Lead placement in modern Holter and event monitors can be seen in Figure 1.4. 

 

Figure 1.4: 5 lead and 3 lead cable hook up in Holter monitor and Event Monitor [30]. 

 

1.2.3 Implantable loop recorders 

Implantable loop recorders (ILRs) or insertable cardiac monitors (ICM) are used for the 

detection of infrequent arrhythmias or in the cases where other ambulatory devices are 

indeterminate. They are used for cardiac monitoring for prolonged periods of months to 

up to 3 years [31] [32]. ILR devices are placed under the skin and can automatically 

record continuous long-term signals. 
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1.2.4 Patch sensors 

In recent years, innovative engineering has led to the development of non-invasive thin 

patch electrodes for long-term ECG monitoring. Two examples of adhesive patch 

electrodes available in the market are Zio Patch (iRhythm, CA, USA) and SEEQ Mobile 

Cardiac Telemetry (Medtronic, Minneapolis, USA). The Zio patch device can measure 

one-lead ECG using a small adhesive patch. It can record cardiac activity for up to 14 

days continuously without requiring any leads, wires or batteries [33] [34]. SEEQ 

Mobile Cardiac Telemetry  (MCT) sensors can be used for 30 day ECG monitoring, are 

water resistant and can be worn during showering [35]. Devices such as this are a 

convenient type of ECG monitor and can be used to obtain the average, maximum and 

minimum heart rate, number of premature beats, longest R-R intervals and ECG 

recordings for patient triggered events [27]. 

Another patch type ECG device is the Netguard, developed by Mindray [36]. The device 

is composed of two custom electrodes worn on the chest.  A drawback of the product 

was that it was limited to operating within range of its base station.  

A similar device, V patch was developed by Intelesens [37]. The device performed in a 

similar way to Netguard, offering advantages of portability and a battery life of a week 

after a full charge. The shortcoming was the addition of a bulky base station, to be worn 

along with the device.  

The integration of the sensing electrodes in a patch to form a Band-Aid adds to the list 

of existing smart devices to sense bio signals. It provides very convenient way 

ambulatory cardiac monitoring along with features like real time analysis and wireless 

ECG telemetry. Also, the monitoring can be complemented with functions like auto-

trigger event handling and recurring event handling.  

A glass bottle cap has also been implemented as a reusable, compact ECG patch 

electrode. Engineering World Health’s ECG pads do not have to be thrown away after 

use; they can be boiled to sterilize them [38]. The conductive gel required to fix the pad 

on the chest can be made of water, flour or salt. There are several commercial research 

groups and companies that have developed variants of wearable patches as biomedical 

sensors [39]. 
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The main advantage of using patch sensors is that they are easy to use, can be used for 

long-term ECG monitoring, require less maintenance, are less intrusive to daily 

activities and water-resistant [40]. In 2014 , Barret et al. [34] conducted a study in which 

both Zio patch and SEEQ MCT systems were well accepted by the subjects, where 93.7 

% of them found the former more comfortable and 81% preferred them over Holter 

monitor. However, their disadvantages include high cumulative consumer costs and 

dependence on the device’s company for accurate generation of a summary report. In 

one study by Shinbane et al. (in 2013) [41], the average time to diagnose a clinically 

relevant arrhythmia was found to be 5.8 ± 6.1 days, therefore patch electrodes have a 

higher diagnostic efficacy than Holter and Event monitors. In another study conducted 

by Rosenberg et al. (2013) in 75 subjects [42], the use of Zio patch for ~10.8 days 

resulted in the determination of 81% more arrhythmias compared with 24-hour Holter 

monitoring.  The diagnostic yield efficiency using Zio patch increased from 43.9 to 

62.2% when the duration of ECG monitoring was increased from 48 hours to 7.6 ± 3.6 

days [33]. 

Figure 1.5 shows the number of people using Holter monitors, event monitors, ILRs and 

patch sensors (MCT) annually [43]. A comparison of their features has been illustrated 

in Table 1.1. 

Figure 1.5: Cardiac diagnostic landscape of various ambulatory ECG monitors [43]. 
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Table 1.1: Features and diagnostic efficacy of various ambulatory ECG monitors 

Ambulatory 
ECG 
Monitors 

Features [27] Diagnostic 
Efficacy [43] 

Holter 
Monitors 

Are used in patients with daily or nearly daily 
symptoms. A Holter monitor report includes: 

• Total heart beats

• Average heart rate

• Maximum and minimum heart rates

• Number of premature beats

• Episodes of tachyarrhythmia and the etiology
of the arrhythmias

• Longest R-R interval

• ST segment changes

• Patient-triggered symptoms and any
associated ECG findings

• Hourly samples of the ECG tracing (eg.
hourly samples).

5 % to 13 % 

Event 
Monitors 

Are used in patients with weekly to monthly 
symptoms. An Event monitor report includes: 

• Patient triggered ECG recordings.

• Technician’s interpretation of the tracings.

• Reported symptoms and their duration.

Syncope 

6 % - 25 % 

Palpitations 

39 % - 68 % 

Implantable 
Loop 
Recorders 

Are used in patients with infrequent symptoms (less 
than monthly). An implantable loop recorder report 
includes: 

• ECG tracings for each patient-triggered or
auto-triggered event.

• Technician's interpretation of the tracing.

• Reported symptoms and their duration.

45 % - 88 % 
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Table 1.1: Features and diagnostic efficacy of various ambulatory ECG monitors 
(continued..) 

Zio Patch Are used for long-term non-invasive ECG recording. 
Zio patch report includes: 

• Average heart rate

• Maximum and minimum heart rates

• Number of premature beats

• Episodes of tachyarrhythmia and the etiology
of the arrhythmias

• Longest R-R interval

88 % 

It should be noted that Zio patch exhibited a higher diagnostic efficacy than Holter 

monitors due to its extended monitoring duration. Cheung et al. (2014) [44] pointed out 

that 17% more reportable arrhythmia events were reported by Holter monitor than Zio 

patch on 24 hours of monitoring. This could be due to the single-channel system in the 

Zio patch as compared to multi-channel in Holter monitors. The differences in detection 

algorithms can also be responsible for the variation in diagnostic efficacy [40]. 

1.2.5 Other systems 

Other types of commercially available ambulatory ECG devices include EPIC sensors 

[45] [46], chest harnesses [47] and multi-purpose vest shirts [48].

An unconventional approach of using EPIC (Electric Potential Integrated Circuit) 

sensors was designed to track the heart and respiration rates for vehicle drivers. These 

sensors were mounted on the back side of the chair and operate by capacitively sensing 

the ECG. To ensure proper safety conditions, the person touches both the sensor and 

some metal at ground potential. A steady ECG signal can be obtained after a settling 

time of tens of seconds due to large time constants pertaining to large impedance 

parameters. 
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An ambulatory ECG chest harness was developed by Cleveland based Orbital Research, 

which can measure ECG up to 48 hours. No skin preparation or use of any conductive 

gel is required as dry electrodes are embedded in the chest harness. A direct contact with 

skin is made and the electrodes are held in place so as to reduce the effect of motion 

artefacts and improve the signal-to-noise ratio of Orbital’s dry electrodes. 

A vest shirt allows medical professionals to perform frequent and less costly fitness and 

ECG monitoring. The body temperature, motion and ECG can be measured through this 

shirt. Motion detection is evaluated using an accelerometer. A multipurpose shirt of this 

type can be seen in Figure 1.6. 

 

 

Figure 1.6: Multipurpose vest shirt. 

 

Another proposition by IMEC (Belgium) for a wearable ECG device comprises of three 

leads along with a 3 axis accelerometer and Bluetooth radio for wireless transmission. 

It has a battery life of up to a month. However, the limitation of the device is that it 

doesn’t transmit raw ECG data, but derived waveform information like heart rate, offset 

of P, QRS and T waves, etc. [49].  

A comparison of Epic sensors, chest harness and multipurpose vest shirts has been 

presented in Table 1.2. 
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Table 1.2: Advantages and disadvantages of commercial ambulatory ECG sensors. 

Commercial ECG 

Sensors 

Advantages Disadvantages 

Epic Sensors 1. Can monitor patient’s 

alertness while 

driving. 

1. Patient needs to sit still 

on the seat for a 

considerable amount 

of time to allow the 

circuit to settle. 

2. Very user specific, 

therefore can’t be used 

when person is 

performing his/her 

daily activities. 

Chest Harness 1. Can monitor ECG of 

the patient for up to 

48 hours without 

using any adhesive or 

conductive paste. 

 

1. Provide low electrical 

conduction. 

2. Their performance 

depends on the 

presence of sweat on 

the chest of the patient. 

3. Not comfortable for 

long time ECG 

monitoring. 

Multipurpose Vest Shirts 1. Very comfortable to 

wear. 

2. Can monitor 

temperature, 

acceleration and ECG 

of the patient. 

 

1. Prone to signal 

distortions due to the 

varying amount of 

skin-sensor gap. 

 

 

1.3 DESIGN OF ECG CIRCUITRY IN AMBULATORY DEVICES 

The earliest machines used to record ECG were large, cumbersome devices that required 

patients to immerse their limbs into bucket electrodes filled with saline solution. 
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Improvements in electrodes and instrumentation electronics, as well as the development 

of analogue to digital converters and digital computers have revolutionised the ECG. 

Many modern ECG’s are small enough for a single person to easily carry and often 

include digital filtering techniques and computerised interpretation methods. 

In a typical modern device using skin contact or non-contact electrodes, the differential 

voltages caused by the depolarisation and polarisation of the heart muscle can detected. 

These signals are then amplified using an instrumentation amplifier. At this stage 

analogue filtering and further amplification takes place before the signal is digitised by 

an analogue to digital Converters (ADC). This digital signal can then undergo digital 

signal processing (DSP) such as filtering. Lastly the signal can be displayed, stored, and 

transmitted as required. A patient protection circuit protects the patient from potential 

electrical shocks or burns [50] [51]. A generalised ECG block diagram is shown in 

Figure 1.7. 

Figure 1.7: Generalized ECG block diagram 

The first stage of ECG circuit consists of an instrumentation amplifier that amplifies the 

weak ECG signal, which has a typical amplitude of 0.5 mV and eliminates the high 

frequency noise received by the antenna (the leads connecting the electrodes to the 

amplifier) [52]. 

The instrumentation amplifier is essentially a combination of two buffer stages, which 

eliminates the need for input impedance matching. Chi et al. (2009) [53] integrated an 

instrumentation amplifier with an additional bootstrapping amplifier. Bootstrapping is 
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a method through which an operational amplifier restores its losses by increasing the 

input impedance and a part of the output of the instrumentation amplifier is used to drive 

the input. Integrated analogue front end solutions (IAFEs) available today have made it 

possible to produce high quality ECG recordings with very small, portable, low power 

devices. These IAFEs include a range of different features and, compared to discrete 

components, have excellent electrical characteristics and very high resolution ADCs at 

a relatively low cost in extremely small packages.   

Another elementary aspect of the ECG circuit is the introduction of a band pass filter 

network with a lower cut-off frequency of 0.5 Hz and a higher cut-off frequency of 100 

Hz, which corresponds to the typical frequency bandwidth of the ECG signal. A notch 

filter with a cut-off frequency of 50 Hz (or 60 Hz) can be used to remove interference 

due to mains power [52]. An inverter can correct negative QRS in the ECG. The 

introduction of a DC-offset stage with the band pass filter adjusts the offset of the 

recorded ECG waveform from the reference voltage, thereby making Analogue to 

Digital Conversion easier [52]. 

The main purpose of adding a driven right leg circuit to an ECG circuit is to reduce the 

common mode voltage in isolated and non-isolated measurements [54]. For a three lead 

configuration, the voltage (𝑉𝑉𝑐𝑐𝑐𝑐) between the right leg and amplifier common (due to 

right leg impedance 𝑍𝑍𝑟𝑟𝑟𝑟) is countered by the output of the driven right leg amplifier as 

shown in Figure 1.8. 
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Figure 1.8: Use of a driven right leg circuit to reduce common mode voltage [54]. 

 

A sufficient galvanic isolation is necessary to ensure the safety of the patient if he or she 

contacts the mains line voltage, which is typically 220V, 50Hz [55],[56]–[58]. Bio-

signals are distorted due to the presence of high levels of interference through the mains 

power supply. A basic model illustrating the purpose of an isolation mode amplifier can 

be seen in Figure 1.9. 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the capacitance between body and ground & 𝐶𝐶𝑝𝑝𝑏𝑏𝑝𝑝 is the 

capacitance between body and mains power causing the interference current  𝐼𝐼𝑝𝑝𝑏𝑏𝑝𝑝 to 

flow through 𝑍𝑍𝑟𝑟𝑟𝑟. 
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Figure 1.9: Schematic diagram of an isolated biomedical circuit [55]. 

 

In Figure 1.9, 𝐼𝐼𝑎𝑎𝑐𝑐𝑝𝑝 flows through 𝑍𝑍𝑟𝑟𝑟𝑟 to the isolated common of the amplifier and via 

the isolated capacitance 𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏 to the ground. The isolation amplifier gives an output 

voltage V2 which serves the purpose of suppressing the isolation mode voltage 𝑉𝑉𝑖𝑖𝑐𝑐. With 

the switch closed, the value of 𝐼𝐼𝑖𝑖𝑖𝑖𝑏𝑏 is reduced to a great extent, which in-turn 

reduces 𝑉𝑉𝑖𝑖𝑖𝑖𝑏𝑏.  

According to the International Electrotechnical Commission (IEC 60601) medical 

standards [59], the maximum allowable leakage current a patient should experience 

under the normal operating conditions is between 10μA and 50μA. Using this as the 

patient protection goal, the resistance necessary to limit the current can be calculated 

by: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑆𝑆𝑅𝑅𝑅𝑅𝑉𝑉𝑅𝑅
𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑉𝑉𝑅𝑅 𝑅𝑅𝑆𝑆𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅

 
(1.1) 

It is obligatory to shield the measuring cables to reduce the interference currents in the 

wire. The capacitance of the shielded cables can reduce the input impedance of the 
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amplifier. Thus, the shield is driven with the signal at the inner wire [60]. This 

mechanism is known as guarding. 

 

1.4 ELECTRODE TOPOLOGIES FOR ECG SENSING 

A diagram representing four ways in which electrodes are used to measure biopotentials 

(electrode topologies) is given in Figure 1.10. 

 

Figure 1.10: Various Electrode Topologies [61]. 

 

In ECG monitoring, conventional silver-silver chloride (Ag/AgCl) electrodes are widely 

used. These electrodes use a conductive paste to maintain good electrical contact 

between the electrode and the skin and typically incorporate an electrolyte gel or 

solution that buffers the electrolytic composition through the outer and inner layers of 

the skin. This poses problems for long term ECG monitoring, mainly because the gel 

might dry out over time [62]. Also, the use of electrolyte benefits from the region of 

application being as stationary as possible so that the electrode-skin impedance doesn’t 

change if the electrolyte egresses due to movement of the patient.  Moreover, the gel 

can cause allergic reactions for some patients’ skin. Despite decades of research in non-

contact electrodes, conventional wet Ag/AgCl electrodes are still used universally for 

clinical and research applications [63].  
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Dry electrodes make electrical contact with the skin but do not employ paste or gel 

media.  Some flexible dry electrodes made of rubber, fabric or foam are considered to 

be quite appealing in terms of comfort of the patient and reducing motion artefacts by 

conforming to the body during motion. Although the use of dry electrodes is 

advantageous in terms of comfort for the patient, its use is limited as dry electrodes tend 

to fail to adhere to the skin for long times. The electrode-skin interface structure for dry 

and non-contact electrodes is much more variable than for wet electrodes. The skin-

electrode interface can be described as a layered capacitive and conductive structure, 

with a series combination of parallel RC elements [64]. The performance of dry 

electrodes depends on the presence of sweat on the skin. The conventional notion that 

low resistance (high conductance) is essential for electrode performance could be 

misleading. There is a trade-off between the performance of dry and wet electrodes in 

the transient and stability periods. The wet electrodes perform well allowing for a short 

time to stabilize the electrochemical interface, whereas dry electrodes take a 

comparatively longer time to achieve a stable trace.  

Conventionally, dry and wet electrodes are operated through direct physical contact with 

the skin. Capacitive sensing provides a non-contact mode of operation. The capacitive 

electrodes sense the signals with a significant gap between the sensor and the skin. The 

signal is essentially coupled through an insulation media such as hair, clothing or air. 

Electrostatic frictional effects also contribute to the input voltage noise. A coupling 

capacitance is formed between the skin and the electrode. The thickness of the dielectric 

between the skin and the electrode, and the surface area of the plates decides the value 

of coupling capacitance [65]. Conductive threads when integrated into garments can act 

as a capacitive sensor and are also classified as textile-based sensors or textile 

electrodes. They have become a desirable form of ambulatory ECG monitoring. 

Although they provide comfort to the patient, their use is limited as they provide high 

skin contact impedance due to their asymmetrical surfaces [62], [66]–[70].  

Knitting or embroidering of conductive yarns has been commonly used for textile ECG 

measurements. Active electrodes were fabricated by Chi et al. (2010) [64], in the form 

of a layered structure with a single non-woven substrate sandwiched between two layers 

as shown in Figure 1.11. 
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Figure 1.11: Fabrication of active electrodes [64]. 

 

The basic purpose of active electrodes was to eliminate the variation effect of skin 

electrode contact impedance arising from movement of the patient. The use of active 

electrodes in place of passive electrodes successfully reduced the motion artefacts 

induced in ECG while performing vigorous activities like jogging [62].  

A comparison illustrating the advantages and limitations of three types of widely used 

electrodes: wet, dry and capacitive has been provided in Table 1.3. 
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Table 1.3: Comparison between wet, dry and capacitive electrodes for long-term bio sensing. 

Electrode types Benefits Disadvantages 

Wet Makes best electrical contact 
with skin due to presence of 
electrolyte. 

• Gel might dry 
over time. 

• Gel might cause 
an allergic 
reaction on 
patient’s skin. 

Dry No adhesive required. 

 

• Low electrical 
conduction. 

• The performance 
depends on the 
presence of 
sweat on the 
skin. 

Capacitive • Comfortable for the 
patient. 

• Easy to be woven or 
embedded into a fabric. 

• Biocompatible 

 

 

• The resistance 
offered by the 
fabric decreases 
the signal 
quality. 

• A coupling 
capacitance is 
formed between 
the skin and the 
electrode. 

• Provide high skin 
contact 
impedance. 

 

The rate of electrochemical processes occurring between the electrode and the skin 

surface is directly proportional to the area of their interface. For this reason, porous 

polymer wet electrodes that provide an immensely high electrode/electrolyte interaction 

area are favourable to implement in an ambulatory ECG system [71]. Conformal 

polymer electrodes stuck onto the chest of the patient using an adhesive can reduce 

inaccuracies due to change in subject-sensor gap in capacitive electrodes. Also, they 

provide a better electrical conduction than dry and capacitive electrodes. Lee (2014) 

[72] developed thin flexible polymer electrodes using carbon nano tubes (CNTs) and 

polydimethylsiloxane (PDMS) with similar mechanical properties to the skin. The 
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advantage of using CNT based electrodes is that they penetrate the wrinkles of the skin 

and maintain a steady contact. This leads to an increase in the contact area, thereby 

reducing the contact impedance. CNT polymer electrodes are discussed further in the 

next section. 

The choice of electrodes for biomedical applications, especially ECG monitoring, 

depends not only on the comfort that they offer to the patient, but also on the quality of 

the signal obtained. The skin-electrode interface decides the operational characteristics 

of any electrode system in conjunction with the properties of the electrode material. 

1.5 CARBON NANO TUBES FOR ECG AND STRETCH SENSING 

Carbon nano tubes (CNTs) are an allotrope of carbon which are cylindrical in shape and 

are potentially useful in a variety of applications like optics, nanotechnology etc. There 

are two main kinds of CNTs: single-walled CNTs (SWCNTs) and multi-walled CNTs 

(MWCNTs). They are cost effective and good conductors of electricity [73]. The CNTs 

are tangled and assembled randomly, therefore, they exhibit good electrical contact if 

embedded in a polymer electrode when the polymer is stretched or bent [72]. 

Cai et al (2013) [74] employed stretchable CNT/PDMS elastomers for human motion 

detection. One of the methods proposed to fabricate CNT/PDMS electrodes is by 

dispersing the CNT in PDMS by mechanical force as explained by Jung et al. (2012) 

[75]. In order to ensure a homogeneous dispersion of CNT in PDMS, the mechanical 

force must be greater than the van der Waals forces of attraction between CNTs. 

Different concentrations of CNTs were dispersed in PDMS by Jung et al (2012) [75], 

and qualitatively comparable ECG signals were obtained on adding 4.5 wt% of CNT in 

PDMS. The CNT/PDMS composites of different concentrations (1 wt%, 1.5 wt%, 2 

wt% and 4.5 wt %) were stretched from 5 % to 45 % at constant extension velocity; and 

least change in conductivity with stretching was observed for composites with 4.5 wt% 

CNT in PDMS. 

Electrodes made of CNT, graphene and PDMS fabricated for wearable ECG monitoring 

by Wang et al. [76] exhibited good electrical performance with a concentration of 6% 

CNT and graphene in PDMS with a mixing ratio of 9:1 (CNT:graphene).  
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Lee (2012) [77], fabricated ECG sensing electrodes by wetting the CNTs before mixing 

them with PDMS. This was done to detangle the CNTs to improve the electrical 

conductivity. Strong forces of attraction between the CNTs lead to CNT clumping. 

These agglomerates disturb the formative electrical networking in the electrodes. An 

effective way to disperse CNTs in PDMS was performed by sonication of CNTs in an 

organic solvent N-methyl-2-pyrrolidone (NMP) [78]. The ultrasonic agitation or mixing 

of up to 4 vol. % of CNTs with NMP prior to its dispersion in PDMS showed a good 

homogeneity of CNTs in the elastomer [78].  

A controlled deposition of SWCNTs in N-N dimethylformamide (DMF) was performed 

by Liu (1999) [79]. The suspensions of CNTs in DMF were found to be stable and could 

be stored at room temperature for several months. From various reports [80]–[82], it can 

be observed that the CNTs can be detangled in both DMF and NMP solvents to a 

significant degree [83]. Both DMF and NMP are hygroscopic solvents [84], however 

DMF is cheaper and tends to spontaneously break down over time [85]. 

 

1.6 SOURCES OF NOISE IN AMBULATORY ECG SYSTEMS 

Several noise sources having different frequency ranges are associated with ambulatory 

ECG monitoring. The low frequency noise is called the baseline wander, medium 

frequency noise includes power frequency interference and high frequency noise can be 

substantially due to electromyography (EMG) signals. The non-physiological sources 

of artefact such as external electromagnetic signals and power line frequency can be 

successfully removed with the use of a driven right leg (DRL) circuit, as discussed in 

section 1.3. In modern ECG devices, digital filters are typically used to eliminate 

baseline wander from ECG waveforms. Artefacts in ECG are also generated due to the 

contraction of the muscles in the vicinity of the electrodes [86], which can be reduced 

to some extent by proper electrode design and placement [87]. 

Holter monitors have electrodes attached with tape or adhesives, which might cause skin 

irritation and discomfort to the patient. Moreover, the moist inner pad of the Ag/AgCl 

electrodes used with Holter monitors can dry up over time, leading to a poor connection. 

Cable movements during exercise can introduce noise, which can be reduced by using 

a unity gain buffer amplifier (voltage follower) at each electrode [88]. The capacitive 
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mismatch in active non-contact electrodes can be significantly reduced by bootstrapping 

[53].  Other sources of noise include contact noises, which are introduced in ECG signals 

due to disturbances in electrode-skin impedance caused by poor adhesion and 

conductance of the electrodes [89].  

Artefacts due to motion in all ambulatory devices is inevitable. Motion artefacts refer to 

the noise generated in the ECG due to movement of the electrodes. Ambulatory devices 

can mistake motion artefact for fatal arrhythmias such as ventricular fibrillation (VF) or 

ventricular tachycardia (VT) and may trigger a false alarm [90]. An example showing 

the effect of motion artefacts on ECG is illustrated in Figure 1.12. 

 

 

Figure 1.12: A: ECG with motion artefacts, B: ECG without motion artefacts. 

 

ECG motion artefacts are generated due to such things as tremor or shivering, exercising 

and heavy breathing. In addition to measurement artefacts such as electrode-skin 

interface changes, physiological artefacts resulting from this motion also occur and are 

generated through the skin; therefore different measures such as skin abrasion and 

mechanical stabilization are adopted to minimise motion artefacts [86]. However, skin 

abrasion may cause skin irritation or skin infection in some patients. Motion artefacts 

strongly affect the ECG morphology and remain one of the major problems in short-

term and long-term ECG monitoring. 

Although many ambulatory ECG monitoring biosensors have been commercialised to 

date, a major problem is still faced due to patients performing motion related activities 
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that introduce unwanted signal noise and makes monitoring less effective [91]. The 

frequency spectrum of the motion artefact overlaps the ECG, therefore, it is the most 

difficult form of noise to be removed from the ECG signals [92]. Beyond skin abrasion, 

various motion biosensors used to date to remove motion related noise don’t respond 

well in cases where the patient is performing vigorous exercises [93].  

Approaches to motion artefact reduction include modification of materials involved in 

the skin electrode interface and by implementing models and algorithms for reducing 

motion artefact contribution [94], as discussed in the following sections. While much 

research has been conducted to remove time invariant noise, the removal of motion 

induced artifacts remains an unsolved problem [95]. The latest motion artefact rejection 

techniques employ motion tracking devices to identify motion and incorporate their use 

into adaptive algorithms like neural networks [96, p.] and fuzzy-rule-based adaptive 

nonlinear filters [97] to adjust digital filter coefficients. Various motion sensing and 

signal processing techniques employed to eliminate motion artefacts from ECG signals 

have been discussed in sections 1.7 and 1.8 respectively. 

1.7 MOTION TRACKING 

Motion tracking finds use in diverse applications such as head tracking, in the sports 

industry for measuring the performance of athletes, in the entertainment industry for 

movie-making and in development of video games [101]. Motion tracking can be 

employed to eliminate motion artefacts in ambulatory ECG measurements. The 

currently used motion tracking devices for this application are described in this section. 

1.7.1 Accelerometers 

Several studies identify motion artefacts in ECG by employing external devices such as 

accelerometers. The accelerometers are used predominantly to measure motion 

parameters in a mechanical model of a system. For the accurate detection of motion, 3-

D spatial measurements are taken to consider the effects in each orthogonal plane. This 

can be achieved by using 3-axis accelerometers and have been proposed to realize 

adaptive motion artefact reduction. In 2008, Yoon and Min [100] implemented an 

adaptive filtering technique to estimate the subject’s movement using a 3D 

accelerometer. The motion information was then subtracted from the ECG signal to 
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derive a refined ECG output. In Figure 1.13, the 3 orthogonal axes- U, V and W 

constitute the acceleration coordinates, while U’, V’ and W’ account for global Cartesian 

coordinates. The chest of the subject is aligned in the V’-W’ plane, and it was presumed 

that ECG was generated in the U’ axis. The motion artefact will be aligned along V’- 

axis when the subject is walking or jumping. 

 

Figure 1.13: Diagrammatic representation of the coordinate system in a 3-axis accelerometer. 

 

A tri-axial accelerometer offering the measurement of both dynamic and static 

acceleration was used by Kishimoto and Kutsana (in 2007) [101] to sense the motion 

artefact in ECG during sleep. In 2011, Liu [102] used the signals from an accelerometer 

to cancel the motion artefacts through adaptive filtering in a portable ECG recorder with 

Bluetooth technology. From experiments conducted by Raya and Sison [103], it was 

inferred that the use of a single axis accelerometer (particularly vertical axis) was 

sufficient for motion artefact cancellation. This was supported by the fact that the major 

kinematic acceleration in humans was found in vertical direction.  

1.7.2 Linear variable differential transformers (LVDTs) 

Kang (2007) [62] made use of linear variable differential transformers (LVDTs) for the 

estimation of changing position and deformations due to stretching while measuring 

ECG. A double substrate sensor structure with stretchable and non-stretchable textiles 

was implemented, as seen in Figure 1.14. Fine magnetic wires were stitched on the 

stretchable area. The convention has been to employ piezoelectric films due to their 

flexibility; however, their use is limited only to detection of micro displacements. As 
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the sensor stretches, two rectangular spirals slide over each other changing the mutual 

inductance between them.  

 

 

Figure 1.14: Single Inductive Linear Variable Differential Transformers. 

 

Non-washable fabric active electrodes were employed for long term monitoring of 

respiratory and ECG signals, therefore electrode sensors may malfunction due to sweat 

and other water sources. Screen printing technology was implemented to incorporate 

the sensors into textiles, which may dramatically reduce the inductance due to geometric 

limitations of screen printed lines on rough textile substrates. 

1.7.3 Gradiometers  

Non-contact electrodes with a polymer over-layer of thickness 0.18 mm were fabricated 

from a copper printed circuit board for measurement of ECG signals by Peng (in 2014) 

[104]. Dual and quad gradiometer electrode configurations were devised to account for 

a subject’s activity or ambient modulation. The output of dual electrode gradiometers 

was taken as the difference between the positive and the negative voltages. Whereas for 

quad electrodes, the output was measured by calculating the difference between the 

diagonal summations.  

The obtained signal depended upon certain parameters like the distance between the 

subject and the sensor ‘h’, and the angles ϴx and ϴy, as observed in Figure 1.15. Change 

in these parameters modulated the source capacitance by changing the subject-sensor 

gap. The source capacitance was a series combination of the capacitance from the 

polymer over-layer, air gap and the subject’s clothing. 
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Figure 1.15: Parameters affecting the source capacitance of the gradiometer (quad 
configuration). 

 

The ECG signals were obtained from two gradiometer electrodes and conventional 

Ag/AgCl electrodes. Using the measured R-R intervals, the average beats per minute 

(bpm) were determined along with its standard deviation. The performances of dual and 

quad gradiometer configurations (∆𝐷𝐷 𝑅𝑅𝑅𝑅𝑎𝑎 ∆𝑄𝑄) were calculated using: 

∆𝐷𝐷 (%) =
𝑏𝑏𝑆𝑆𝑏𝑏𝑏𝑏𝑑𝑑𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑆𝑆𝑏𝑏𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟

𝑏𝑏𝑆𝑆𝑏𝑏𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟
 100                                                                  

(1.2) 

∆𝑄𝑄 (%) =
𝑏𝑏𝑆𝑆𝑏𝑏𝑞𝑞𝑑𝑑𝑎𝑎𝑏𝑏 − 𝑏𝑏𝑆𝑆𝑏𝑏𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟

𝑏𝑏𝑆𝑆𝑏𝑏𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟
 100                                                                  

(1.3) 

The performance of dual and quad electrode configurations were evaluated at subject-

sensor gaps of 5, 15, 21 & 28 mm. The average values of ΔD and ΔQ were found to be 

0.38% and 0.345% respectively. The downside of this study was that bpm was used as 

a performance evaluation index instead of SNR. 

 

1.7.4 Optical sensors 

Image-based motion tracking techniques involve feature selection for tracking objects 

in consecutive frames using colour based comparison, edge detection, optical flow 

methods or texture intensity methods [105]. Several point detection techniques in 
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MATLAB® employ feature tracking algorithms like Kanade Lucas-Tomasi (KLT) and 

surface feature detection. Another popular technique ‘estimate geometric transform’ 

returns a 2D geometric transformed image and employ M-estimator Sample Consensus 

(MSAC) algorithm to map  the initial image to the final image [106], [107]. 

A sensor to estimate skin stretch simultaneously with ECG was developed by Liu in 

2007 [108], as seen in Figure 1.16.  

 

 

Figure 1.16: : Optical Components integrated in an electrode [108]. 

 

The surface underneath the sensor was illuminated using a light emitting diode (LED), 

and the displacement of the skin from the reference was measured using a CMOS image 

sensor. Assuming L as the distance between the fixed edge and the imaging area, the 

optical sensor output was calculated by: 

𝐿𝐿 = �(𝑥𝑥 − 𝑥𝑥0)2 + (𝑆𝑆 − 𝑆𝑆0)2                                                                                             (1.4)         

where 𝑥𝑥 and 𝑆𝑆 are the optical sensor outputs and 𝑥𝑥0 and 𝑆𝑆0 are initial optical sensor 

outputs.  

These uniaxial displacements were used to adjust the filter coefficients of an adaptive 

filter employing a least mean squares algorithm (LMS), first devised by Widrow and 

Hoff in 1960 [109]. The LMS algorithm was used to minimize the difference between 
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the noisy ECG and the output of the optical sensor. This can be explained through the 

following set of equations. 

Considering s as the clean ECG signal, a as the movement artefact and L as the optical 

sensor output, the noisy ECG signal d can be given as:  

𝑎𝑎 = 𝑅𝑅 + 𝑅𝑅 (1.5) 

The adaptive filter error can be given as: 

𝑅𝑅 = 𝑅𝑅 + 𝑅𝑅 − 𝐿𝐿 (1.6) 

The objective of the filter was to minimize 𝑅𝑅 − 𝐿𝐿, which can be achieved by minimizing 

the statistical expectation (E) of the square of the error [110]. 

The expectation of square of the adaptive filter error can be represented by  𝐸𝐸(𝑅𝑅)2 as 

shown in equation (1.7) 

𝐸𝐸(𝑅𝑅)2 = 𝐸𝐸(𝑅𝑅 + 𝑅𝑅 − 𝐿𝐿)2

= 𝐸𝐸(𝑅𝑅)2 + 𝐸𝐸(𝑅𝑅)2 + 2𝐸𝐸(𝑅𝑅𝑅𝑅) − 2𝐸𝐸(𝑅𝑅𝐿𝐿) + 𝐸𝐸(𝑅𝑅 − 𝐿𝐿)2 

(1.7) 

As ECG and noise are assumed to be uncorrelated, therefore, the equation (1.7) can be 

re-written as: 

𝐸𝐸(𝑅𝑅)2 = 𝐸𝐸(𝑅𝑅)2 + 𝐸𝐸(𝑅𝑅 − 𝐿𝐿)2 (1.8) 

Thus, reduction in motion artefacts can be achieved by minimizing the filter’s error 

𝐸𝐸(𝑅𝑅)2. The ECG signals were acquired from the chest of the subject as shown in Figure 

1.17. The optical sensor was attached by double-sided adhesive in the vicinity of the 

electrode on the left forearm. 
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Figure 1.17: Placement of electrodes and optical sensor [108]. 

 

1.8 PCA AND ICA FOR MOTION ARTEFACT REJECTION 

In addition to measurement hardware, software techniques have also been employed for 

motion artefact rejection in several studies and are discussed in this section. 

PCA and ICA are widely used for noise cancellation in ECG signals. In PCA, the data 

matrix is decomposed into a set of orthogonal components arranged in the order of their 

importance. In other words, if the first component of PCA is the best representation of 

the data set, then the second component will be the second best representation and will 

be orthogonal to the first component. In ICA, uncorrelated components of the data are 

generated. ICA aims at producing such non-Gaussian transformations which assure that 

the output signals are statistically independent [111]. The basic concept involved in the 

working of PCA and ICA has been explained in the following chapters. The main 

difference between PCA and ICA is that the former decomposes the data into a set of 

uncorrelated components, whereas the later provides a set of statistically independent 

components. 

Ramaswamy (2004) [112], implemented PCA by adaptively segmenting uni-channel 

ECG signals. A higher increase in SNR was observed when the signal was corrupted 

with more noise.  
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Romero (2010) [111], implemented PCA on noisy ECG signals (8-channel) obtained 

from 5 healthy subjects. The three most significant principal components showing the 

highest correlation with the clean ECG were chosen. The performance of PCA was 

better when more principal components were retained in cases of highly corrupted 

signals. A reduction in signal to noise ratio (SNR) was observed on reducing the ECG 

channels from 8 to 2. Therefore, the performance of PCA was found to be dependent on 

the number of ECG measurements in the input data set. 

Romero (2011) [114], investigated the performance of PCA and ICA in the context of 

motion artefact rejection from ECG signals acquired for 10 seconds. It was observed 

that both PCA and ICA showed similar performances when the SNR of the noisy ECG 

was up to 2dB, while ICA outperformed PCA for SNRs below that value. 

In another study [39], 37 sets of 10 seconds of ECG signals were obtained from healthy 

subjects using a 3-lead ECG system. Two motion rejection algorithms were explored: 

multi-lead ECG de-noising based on ICA, and adaptive filtering using electrode-tissue 

impedance (ETI). The signal quality was measured by using two parameters: correlation 

coefficient and positive predictivity. A significant noise reduction with a 10% increase 

in correlation with clean ECG was reported on implementation of ICA. The statistical 

significance or the positive predictivity of the proposed beat detection algorithm was 

increased from 93% to 100%.    

Alkhidir and Sluzek (2015) [115], measured ECG signals by placing textile electrodes 

on the wrists of a subject. The motion artefact was generated in the wrist by performing 

some random hand movements. Two additional electrodes were placed on the left wrist 

near the ECG sensing electrode to estimate the bio potential difference across the 

electrodes due to hand movement. The motion artefact removal was conducted by 

performing adaptive filtering and ICA. The motion information acquired by the 

additional electrodes was used to adjust the filter coefficients of the adaptive filter. 

Adaptive filtering and ICA were implemented by using a normalized LMS error 

cancellation algorithm and Fast ICA package in MATLAB respectively. To assess the 

performance of adaptive filtering and ICA, SNRs were computed before and after 

filtering. The SNR achieved after adaptive filtering (3.87dB) was higher than ICA 

(0.394dB).  
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A comparative analysis of ICA and adaptive filtering was performed by Rehman and 

Khan in 2016 [116]. Due to its non-iterative nature, ICA performed better than the three 

iterative gradient based algorithms employing LMS, normalized LMS (NLMS) and 

recursive LMS (RLMS). NLMS is generally used to normalize the LMS filter’s input to 

attain better filter stability, whereas RLMS (also known as RLS) recursively finds the 

coefficients to minimize the linear least squares cost function related to the input signals.   

Two ICA algorithms: Efficient Fast ICA (EFICA) and Joint Approximation 

Diagonalization of Eigen Matrices (JADE) were used for motion artefact removal from 

emergency ECG signals by Granegger and Werther (2011) [117]. The sensitivity of both 

the algorithms was found to be above 99.5%.  

The Fast ICA algorithm was applied by Jain and Shakya (2014) [118] to denoise baseline 

wander noise from ECG signals. The de-noising baseline wander noise was simulated 

in MATLAB. An average improvement of 1.26dB in SNR was estimated.  

For bio-signals such as ECG, ICA has been found to be increasingly used since it does 

not require any prior knowledge of the system [119] [120].  In one study [121], the 

performance of various ICA algorithms like Cardoso’s joint approximate 

diagonalization of eigen matrices (JADE), Hyvarinen’s fixed point method (Fast ICA) 

and Comon’s algorithm were compared and JADE and Fast ICA were found to perform 

slightly better than Comon’s algorithm. Puntonet and Prieto (2004) [122] performed a 

comparative study between Fast ICA and JADE on four synthetically generated EMG 

signals mixed together. The muscle contractions in the EMG signals were simulated 

from different numbers of motor units (3, 5, 8 and 10). It was observed that JADE 

performed considerably better than Fast ICA in separating the synthetically generated 

EMG signals into the contribution from different motor units. Interestingly, the 

effectiveness of JADE increased on increasing the number of source signals. However 

through experiments performed by Matic (2009) [123], it was observed that the 

performance of Fast ICA was marginally better than JADE in QRS wave detection. Both 

JADE [124]–[126] and Fast ICA [127]–[129] maximise the independence of their 

components by using a fixed point algorithm and jointly diagonalizing fourth order 

cumulant tensors respectively [130].  

A general model representing the working of JADE algorithm for ECG filtering has 

been explained in a later chapter. 
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1.9 OTHER MOTION ARTEFACT REJECTION ALGORITHMS 

Several techniques other than PCA and ICA have been employed for elimination of 

motion artefacts from biomedical signals.  

The wavelet transform is a proven tool for efficient filtering of signals in bio-signal 

processing [131]–[133]. It involves the decomposition of the signal, followed by its 

thresholding and then the proper reconstruction [134]. One study [135] used different 

wavelets to reduce motion artefacts from corrupted photo-plethysmography (PPG) 

signals. The wavelets used included the Daubechies, bi-orthogonal, symlet, Coiflet etc. 

out of which the Daubechies produced the best performance. In a study performed by 

Foo (2006) [136], the adaptive filtering technique was found to be more efficient in 

removing motion artefacts from PPG signals as compared to discrete wavelet 

transformation.  

The wavelet transform technique combined with ICA was implemented by Abbaspour 

(2015) [137] for motion artefact rejection. Motion artefact was added to 30 minutes of 

simulated ECG signal which was then filtered using wavelet transform. After that, ICA 

was used on the wavelet transformed signal and a higher SNR of 14.2 dB was achieved 

compared to 13.85 dB using only wavelet transform.  

Adaptive filtering is also a common filtering technique for the treatment of bio signals. 

Thakur and Zhu, 1991, applied it in foetal ECG recording, cancelling the cardiogenic 

interference signal from that obtained from impedance plethysmography (IPG), noise 

reduction from muscles, cancelling the 60 Hz power supply interference and ECG 

motion artefact reduction [92].   

Generally, adaptive filtering is realized by the subtraction of the noise from the received 

signal in an adaptive manner. The noise essentially is the unwanted component, here 

being the motion artefacts. The technique employs two inputs, one being the overall 

ECG signal, and the other being the noise source. As seen in Figure 1.18, the adaptive 

filter estimates the noise from its source sensor which is then subtracted from the first 

input [108]. 
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Figure 1.18: Signal processing using adaptive filtering. 

 

Many previous studies have utilised adaptive techniques incorporating adaptive neural 

networks [96] and fuzzy based adaptive non-linear filters [97] to check the ECG for 

motion artefacts.  

Although the adaptive filters are easy to implement in modern microprocessors, they are 

more useful for performing rhythm analysis than diagnostic analysis in ambulatory ECG 

monitoring. It is hard to identify the signal and noise components from an ECG 

measurement contaminated with large amounts of motion artefact, as it has the same 

morphology as the QRS complex in the ECG [138]. Kigawa and Oguri [139] 

implemented a neural network to differentiate between ECG signal and motion artefact.  

ECG signal with motion artefacts were modelled by Khambalkar (2012) [140]  who then 

used a Wiener filter for motion artefact cancellation and its performance was compared 

with an adaptive filter employing LMS. The Wiener filter does not require an additional 

sensor like an adaptive filter and use the statistics of the signals to determine the filter 

coefficients. The noise signal was simulated in MATLAB using the obtained ambulatory 

ECG signal. The average improvement in SNR after the implementation of Weiner filter 

was found to be 13.9 dB. 

In another study [141], a discrete time extended Kalman filter (EKF) was implemented 

to denoise the ECG signal. A set of state space equations in terms of phase (𝜃𝜃) and 

amplitude (𝑧𝑧) to model ECG were developed as shown in equations (1.9) and (1.10). 

𝜃𝜃𝑘𝑘+1   =  (𝜃𝜃  𝑘𝑘 + 𝛿𝛿) × 𝑏𝑏𝑉𝑉𝑎𝑎 2𝜋𝜋   (1.9) 



57 
 

𝑧𝑧𝑘𝑘+1   =  
𝛴𝛴𝑖𝑖   (𝛿𝛿𝛼𝛼𝑖𝑖   𝜔𝜔)

𝑏𝑏𝑖𝑖   
2[𝛥𝛥𝜃𝜃𝑖𝑖   𝑅𝑅𝑥𝑥𝑆𝑆 �−

𝛥𝛥𝜃𝜃𝑖𝑖   2   
2𝑏𝑏2 �

+ 𝑧𝑧𝑘𝑘   + 𝜂𝜂   
                                                                               

(1.10) 

 

Here 𝑧𝑧𝑘𝑘 represents the ECG magnitude at time ‘k’ at a sampling period δ,  𝛥𝛥𝛳𝛳𝑖𝑖  = 𝛳𝛳𝑘𝑘  −

 𝛳𝛳𝑖𝑖  𝑏𝑏𝑉𝑉𝑎𝑎 (2𝜋𝜋) where 𝛳𝛳 is the phase variable and summation i is taken over a number of 

Gaussian functions which can be used to get a desired ECG signal. Here summation i is 

taken over P, Q, R, S and T waves of the ECG signal and 𝛳𝛳𝑖𝑖 represents the Gaussian 

centre, 𝛼𝛼𝑖𝑖  denotes the Gaussian peak and 𝑏𝑏𝑖𝑖  represents the Gaussian width. The other 

parameters ω and η represent the process and white Gaussian noise respectively. Both 

are assumed to be stationary in this equation. 𝑧𝑧𝑘𝑘 and 𝜃𝜃𝑘𝑘  represent the state space 

equations of the extended Kalman filter. The dynamic ECG model is linearized 

continuously by updating the state equations with time. In an extended Kalman filtering 

approach, a priori information about the ECG dynamics is used to extract the ECG 

signal from the background noise. EKF is a prediction based model which requires the 

formation of complex state space equations under different circumstances. The 

limitation of using EKF is that it only works for systems with a unimodal distribution 

(having a single maximum), which can prove to be a problem in biomedical applications 

[142].  

 

1.10 EFFECT OF PADDING ON MOTION ARTEFACT REDUCTION 

The electrode contact pressure with the skin and the surface moisture have been 

considered as two main factors influencing the skin-electrode impedance [143]–[145]. 

According to experiments performed by Kim et al. (2008) [146], an improvement in the 

ECG signal quality was observed when higher contact pressures were applied on the 

electrodes.  

Comert et al. (2013) [147], recorded a two channel ECG from the chest of a subject as 

shown in Figure 1.19.  
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Figure 1.19: Depiction of electrode locations [147]. 

 

A reference electrode was placed on the lateral upper arm location, where motion 

artefact was introduced by random arm movements. This was done to simultaneously 

record ECG signal with motion artefacts (between reference and Ch1) and without 

motion artefacts (between Ch1 and Ch2). The noise due to motion was estimated by 

calculating the difference in detected R peaks between both signals. A reduction in noise 

was observed when a pressure of between 5 and 25 mmHg was applied on the reference 

electrode using a foam pad. Pressure exerted on the foam pad greatly influenced the 

motion artefact depending on the foam material and the intensity of pressure exerted. 

The electrode-skin impedance was also measured to study the change in impedance with 

change in pressure. The effect of increasing electrode pressure on motion artefact related 

parameters is illustrated in Figure 1.20. 
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Figure 1.20: Effect of increasing pressure on electrode-skin impedance, EKG and motion 
artefact [147]. 

 

A depression in electrode-skin impedance was observed when the applied pressure was 

greater than 15mmHg. However, when pressure of more than 20mmHg was exerted, the 

ECG signal deteriorated. 

 

1.11 SUMMARY 

The clinical approaches used for cardiac arrhythmia diagnosis only provide a periodic 

assessment of the disease. The majority of cardiac deaths are sudden, therefore 

continuous monitoring of the heart is necessary to enable timely detection of any cardiac 

instability. Many arrhythmias occur paroxysmally and might be hard to record in the 

doctor’s office [148]. Thus, ambulatory ECG monitoring can be useful for short term or 

long term evaluation of cardiac arrhythmias. Many symptoms arise only while 

performing certain activities like eating, exercising or sleeping. A continuous ECG 

recording can help in detection of such events, the type of pattern they produce, how 

long they last and whether they are related in time.    
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Ambulatory ECG monitors can be externally worn as Holter monitors, event monitors 

and patch sensors or implanted in the skin’s subcutaneous layer as ILRs. As discussed, 

the clinical importance of ECG recordings increases if the monitoring duration is 

increased.  Adhesive patch sensors have been demonstrated to be superior to Holter and 

event monitors, mainly because of their longer study period. However, the episodes of 

cardiac arrhythmias and congenital heart diseases in patients have mainly been assessed 

using 12-lead ECG and Holter monitors [149] [150]. 

The main physiological and non-physiological sources of noise in ambulatory ECG 

monitoring have been discussed in this chapter. The major problem in ambulatory ECG 

monitoring is the sensitivity to motion artefacts. This may hinder the cardiac diagnosis 

and lead to inappropriate treatment decisions. Applying pressure on the electrodes can 

aid in minimizing these artefacts, however, the ECG signals can deteriorate if more 

pressure is applied. The contribution of skin stretch in generating motion artefacts has 

been explained in chapter 2. Several methods employed by various researchers to reduce 

motion artefacts from ambulatory ECG systems by applying advanced signal processing 

algorithms were discussed in this chapter. Of all the software filtering techniques, PCA 

and ICA have proven to be more promising than adaptive filtering, Kalman filtering and 

filtering using wavelet transforms. Adaptive filters tend to remove important diagnostic 

information from ECG signals and therefore are mainly used in applications that require 

rhythm analysis, whereas Kalman filtering requires a prior information of the system 

unlike PCA and ICA. Wavelet transform is a computationally intensive technique and 

has proven to be less effective than PCA and ICA in several studies. 

The original contributions to knowledge made by this study include showing that skin 

stretch information is effective in rejecting motion artefacts from ECG signals using 

novel, modified PCA and ICA algorithms adapted to achieve this purpose. The 

publications arising from this thesis have been mentioned in the appendices. 
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CHAPTER 2 LITERATURE REVIEW  

 

2.1 INTRODUCTION  

Skin is the largest organ of the body and protects us from microbes and the elements, 

helps regulate the body temperature, and permits the sensations of touch, heat and cold 

[151]. This chapter reviews the physiology and mechanical properties of skin as they 

relate to ECG measurement. The effect of skin stretch in generation of motion artefacts 

in biomedical signals is explained. Skin stretch which will necessarily depend on the 

mechanical behaviour of the skin and the factors affecting its Young’s modulus and soa 

thorough review on estimating the Young’s modulus through tensile, indentation, 

torsion and suction tests has been conducted here. The various factors such as Langer’s 

lines, skin thickness, ageing and hydration influencing the skin’s Young’s modulus have 

also been considered. 

 

2.2 SKIN STRETCH: A MAJOR SOURCE OF MOTION ARTEFACT 

The movement of the patient results in skin stretch; which in turn generates potentials 

in the epidermis. Skin stretch is considered a major physiological source of motion 

artefact in the ECG [108].  

Odman [152] established a non-linear relationship between motion artefact and the 

mechanical stress applied on the skin. The skin stretch potentials obtained at different 

equally spaced time series were found to vary between individuals. In 1981, Odman 

measured the magnitude of deformation-induced potentials in the skin area beneath the 

electrodes [153]. Two metal plates were adhered to the skin and the rectangular area of 

the skin between the plates was stretched. The magnitude of potentials decreased with 

increasing distance from the rectangular zone. The movement-induced potentials were 

studied in different electrode configurations by Odman and Oberg in 1982 [154]. The 

study concluded that only small potential variations occur due to change in conduction 

caused by electrode electrolyte displacement during motion, while skin deformation is 

the major source of motion artefact. The origin of skin stretch induced motion artefacts 

was explained by Talhouet and Webster in 1986 [155]. From their experiments, it was 
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inferred that both motion artefact and impedance increase logarithmically with skin 

stretch. In 1989 [156], Odman found that the potential changes due to skin stretch were 

higher in curved skin surfaces than in flatter skin surfaces.  

Skin is composed of three layers: epidermis, dermis, and hypodermis [157] as illustrated 

in Figure 2.1. 

 

Figure 2.1: Schematic Diagram of the skin [108]. 

 

The capillary loops in the corneum nourish the skin. The new cells form in the stratum 

germinativum and move outward towards the stratum granulosum and the barrier layer 

[86]. The cells die in the barrier layer, stay on the surface of stratum corneum and fall 

off after some time. Bioelectric currents are generated due to various biological 

activities occurring in the body. The bioelectricity in the skin is caused due to the flow 

of ions between the dead cells on the epidermis and the new cells on the inner skin layers 

[108]. The epidermis layer is a storage of negative ions (anions) and is permeable to 

positive ions (cations) [158]. On the other hand, the inner layers of the skin have a 

positive charge on them due to the accumulation of positive ions (cations). Therefore, 

the skin behaves like a dc battery where the current is generated due to the flow of 

positive and negative ions across the barrier layer [158]. The skin’s bioelectricity may 

depend on various factors such as hydration, emotions, stress and disease.  

The impedance of the barrier layer is 50 kΩ/cm2 and the skin potential between the inside 

and outside of the barrier layer is 30mV. When the skin stretches, the skin potential can 

drop to 25 mV, and this 5mV change in the potential appears as motion artefact in 
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biopotential measurements. Thakor and Webster hypothesized that the difference in 

metabolic activities between stratum corneum and stratum germinativum lead to the 

flow of ‘injury current’ through the extracellular resistance [159] [108]. The 5mV 

difference in the skin potential can be reduced by scratching the skin with about 20 

strokes of fine sandpaper [160]. The sand paper scratches through the barrier layer and 

short circuits the skin potential [86]. The use of sandpaper to abrade the skin can cause 

bleeding, which might lead to skin infection. A skin puncturing technique developed by 

Burbank and Webster in 1978 showed significant reduction in motion artefacts [161]. 

The barrier layer provides a protection to the underlying layers of the skin from irritating 

substances like electrode gels. Therefore, only mild electrode gels should be used after 

the skin is abraded with sand paper [86]. However, the motion artefact returns as the 

skin regrows in 24 hours [160].  

 

2.3 YOUNG’S MODULUS OF THE SKIN 

The Young’s Modulus of skin is measured as a ratio of the stress applied to the skin in 

vitro or in vivo to the skin deformation. Pereira [162] considered skin to be viscoelastic, 

where there is a dynamic alteration in the stress-strain relationship, until a stable state is 

attained [106].  

The stress-strain behaviour of the skin is typically explained in three phases: When a 

strain of up to 0.3% is applied, the elastin fibres offer low resistance to the applied strain 

[163]. The skin exhibits isotropic behaviour and collagen fibres remain tangled and 

intertwined and do not contribute to the stiffness as seen in Figure 2.2. Phase 1 offers a 

linear stress-strain relationship and a low Young’s modulus (0.1-2MPa) [164]. 
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Figure 2.2: Structure of Collagen Fibre in different phases [164]. 

 

In Phase 2, the collagen fibres offer some resistance to the deformation [165] and the 

crimped collagen fibres begin to stretch, thus introducing non-linearity into the stress 

strain relationship. In the final Phase 3, for applied strain above 0.6%, the crimps begin 

to disappear and a linear stress-strain relationship can be observed. The collagen fibres 

break after the application of an ultimate tensile strain of 0.7% [164].  

Young’s modulus measurements differ with many factors, including the type of test 

performed (in vivo or in vitro), method of testing (tensile or indentation), test velocities 

(in tensile testing) or depth (in indentation techniques) [166]. These factors are discussed 

in this chapter. 

 

2.4 SIGNIFICANCE OF YOUNG’S MODULUS 

The Young’s modulus of the skin is a vital parameter describing the characteristics of 

skin. One of the striking features of a healthy skin is its ability to return to normal after 

being pulled. Cosmetic surgeons use a variety of topical and invasive methods to 

maintain the skin’s elasticity to prevent ageing [167]. The mechanical testing of skin 

can be useful to determine the mechanical behaviour of skin in the field of dermatology, 

to determine the course of a disease (Scleroderma, morphea, radio dermatitis etc.) or to 
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follow a cosmetic application. It can be used in detection of diseases in connective 

tissues such as mid-dermis elastolysis [168].  

UV radiation has been found to induce skin contractions causing photo ageing which 

can be analysed using Young’s modulus through the stress-strain relationship [169]. 

Quantification of hardness, elasticity and viscosity of the skin can help estimate the 

skin’s thickness which is a significant index for diagnosing patients with systemic 

sclerosis [170]. 

In previous reviews, Hendriiks [171] discussed several innovative techniques to 

determine the mechanical and structural properties of the skin such as ultrasound, 

confocal microscopy, optical coherence tomography and nuclear magnetic resonance. 

The use of the above methods is however restricted to the measurement of skin’s 

thickness and tomography. 

Knowing the Young’s modulus of skin can help in calibrating the elasticity of bio-

sensors to measure skin-stretch induced motion artifacts. This chapter provides an 

average range of Young’s modulus of the skin by comparing the work of various 

authors, thereby covering a broad range of factors affecting the Young’s Modulus. 

 

2.5 METHODS EMPLOYED FOR MECHANICAL TESTING OF THE SKIN 

The mechanical behaviour of the skin is measured by changing the shape of skin by 

employing different techniques such as stretching (tensile test), applying a perpendicular 

load on the skin (indentation test), elevating the skin in an aperture (suction test) and 

rotating the epidermis to different degrees (torsion test). All these tests have been 

discussed in detail in the following sections.  

The mechanical testing of skin can be further classified into in-vivo and in-vitro tests. 

In-vitro tests provide a simple and easy to model stress-strain relationship under 

controlled conditions with fewer confounding factors. In-vitro tests can also be used to 

calculate the ultimate tensile stress and strain when the skin ruptures. However, it can 

be difficult to clamp samples without applying an axial load and structural integrity of 

the excised skin is altered particularly at the edges of the sample as it is no longer 

attached to the body [172]. In comparison, in-vivo tensile measures are able to include 
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anatomical and physiological effects on skin properties. For example, skin ageing 

provides a negative impact on skin’s ability to perform functions like body temperature 

regulation and water loss prevention. Longitudinal studies of Young’s modulus values 

of skin must therefore be done in-vivo. 

2.5.1 Tensile test 

Tensile testing is the most common type of test performed ex-vivo under controlled 

conditions [157]. In tensile tests, the skin is stretched parallel to the plane of the skin. 

The load can either be uniaxial or biaxial. In early work, Manschot and Brakkee [173] 

performed uniaxial strain measurements on human skin (calf) and observed a non-linear 

relationship between stress and applied strain. The minimum and maximum values of 

the Young’s modulus across the tibial axis were found to be 0.32 and 4 MPa respectively 

and 0.3 and 20 MPa, respectively, along it. Meijer et.al [174] performed uniaxial tensile 

measurements on the forearm and found the stiffness value (Kc) to be 25 MPa. The 

work proposed a combined numerical-experimental method based on Lanir’s skin 

model [175] which considers the strain-energy function to be the sum of individual 

strain-energy values of the tissues.  

Several investigations relating to tensile testing of the skin at dynamic [176]–[178] and 

quasistatic (low level) speeds [179], [180] have been reported and a summary of results 

is given in Table 2.1. 
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Table 2.1: Values of Young’s modulus at quasistatic and dynamic speeds using tensile test. 

References Skin Source Speed ~Young’s Modulus 

Annaidh et.al. [176] Not Mentioned Dynamic 

(14.5m s-1 to 

29 m s-1) 

100 MPa 

Jacquemoud et.al. 

[177] 

Forehead Dynamic 

(3 m s-1) 

14 MPa, 140 MPa 

and 35 MPa (for 

longitudinal, 

transverse and shear 

strain) 

Gallagher et.al. 

[178] 

Back Dynamic (2 m s-1) 83.3 MPa 

Ankersen et.al. 

[179] 

Abdomen Quasistatic 

(0.83 mm s-1) 

14.96 MPa 

Ottenio et.al. [180] Abdomen Quasistatic Speed 

(0.16 mm s-1) 

4.02 ± 3.81 MPa 

 

From Table 2.1, it can be inferred that the Young’s modulus measured at quasistatic 

speeds (0.1-0.9 mm/s) varies from 4–15 MPa while for dynamic speeds (2–30 m/s), it 

varies from 14–100 MPa. Significant fluctuations in these values have been found with 

different orientations like transverse and shear, however, the overall Young’s modulus 

increased monotonically with speed. Tensile tests at a dynamic speed are generally 

conducted to investigate skin failure, while quasistatic speed is used to carry out 

conventional tests to measure the skin stiffness. 

2.5.2  Indentation test 

Indentation is one of the most widely used and accepted means of measurement of skin’s 

bio-mechanical properties-in vivo. It employs the use of an indenter which comes into 

contact with and applies a perpendicular force on a small area of skin. This method 
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characterizes skin as a monolayer by restricting the indentation amplitude to microns. 

However, the accurate prediction of Young’s modulus can be done only by considering 

the effects of underlying layers. Delalleau et.al. [181] proposed a combined numerical-

experimental work to estimate the skin elasticity. The skin was assumed to be a linearly 

elastic semi-infinite layer. Pailler-Mattie et.al. [182] investigated different mechanical 

models to determine the effects of the underlying tissue layers and developed a two layer 

elastic model for mechanical analysis. The indentation method ascertained Young’s 

modulus in the perpendicular direction without any skin pre-stressing [183], [184]. The 

obtained values for skin’s Young’s modulus varied from 4.5 – 8 kPa.  

The value of Poisson’s ratio also contributes to the obtained Young’s modulus 

calculations using indentation. Choi [185] performed experiments on bovine patellar 

articular cartilage and estimated the Young’s modulus to be 1.33 – 2.21 MPa for a 

Poisson’s ratio ranging from 0.45 – 0.47 using single indentation test. Jia [186] in his 

research, identified the variation of Young’s modulus with indentation depth using finite 

element analysis. Dynamic analysis was performed on two gel samples with different 

Young’s moduli between 0 – 500 Hz using the Tissue Resonator Indenter Device 

(TRID). Some of the studies relating to indentation tests at quasistatic and dynamic 

speeds are summarized in Table 2.2. 

 

Table 2.2: Values of Young’s modulus at quasistatic and dynamic speeds using indentation. 

References Skin Source Speed Young’s Modulus 

Boyer et.al. [187] (Laser 

Displacement Method) 

Forearm Dynamic (0.8 mm 

s-1 to 42 mm s-1) 

4.75 – 17.99 MPa 

Khaothong  [188] Inner-forearm Quasistatic (1 mm 

s-1) 

0.1-2.4 MPa 

Zheng and Mak [189] Tibia/Fibula Quasistatic 

(0.5 - 1 mm s-1) 

10.4–89.4 kPa 
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The efficiency of simple indentation measurements in thin films can be compromised 

by ignoring the combined contributions of the film and indenter to measured properties, 

as has been analysed in various works [190]–[194]. Jia [186] measured tissue 

mechanical properties in terms of static stiffness and dynamic stiffness as a function of 

various indenter depths and found an increasing trend for both. Groves [157] determined 

the elasticity of the skin at various indenter depths, for spherical and cylindrical 

indenters.  

 

Figure 2.3: Young’s modulus at different indentation depths for cylindrical and spherical 
 indenters 

 

It can be inferred that the cylindrical indenter measured a higher average value of 

Young’s modulus than the spherical indenter at higher indentation depths. Kuilenburg 

[195] also investigated the necessity of considering the geometry and size of indenters 

while considering the measurement of skin’s elasticity. 

In general, Young’s moduli found by indentation are significantly lower than those 

found by tensile tests, indicating that skin is highly anisotropic when thickness and in-

plane directions are considered.  A contributing factor may be that Young’s modulus 

values are dependent on contact dimensions and range of fit. The indentation contact is 

very small whereas the tensile tests are macroscopic. Furthermore, in an indentation test, 

the Young’s modulus depends on the depth of the indenter in contact with the underlying 

tissues. Therefore, when the depth of the indenter is small; the skin poses lower 

resistance from the collective effect of the underlying tissues/fibres or matrices. 

Conversely, these structures play a significant role in resisting tensile deformations. 
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2.5.3 Suction test 

The mechanical properties of thin elastic membranes of materials can be determined 

using diaphragm tests, where the membrane is clamped and inflated in the form of a 

dome, while the pressure of suction is controlled by a pressure controller.  

Early work of Grahame [196], Alexander and Cook [197] adopted a method of suction 

to stratum corneum considering skin to be isotropic. Following these works, the suction 

method to investigate anisotropy of skin has evolved to become a common procedure 

for skin mechanical testing. Generally, it employs the measurement of skin elevation in 

a circular aperture caused due to vacuum conditions (< 500 mBar) [198] using optical 

systems like Dermaflex and Cutometer.  

Dermaflex is a device with an aperture size of 10 mm, the cup being adhered to the skin 

to prevent creep. It has been used to measure skin distensibility [199] and to account for 

mechanical properties of dermis [200] by measuring elasticities as a percentage of skin 

retraction after the stretch. The Cutometer is a suction device employing probe apertures 

between 2-8 mm with the application of negative pressure through a vacuum pump 

[201]. Barel et.al. [202] determined stress-strain and strain-time curves using a 

Cutometer at 2 mm aperture and found a linear response within 150 – 500 mBar. Skin 

elevations of 0.1-0.6 mm were observed yielding Young’s modulus values between 130-

260 kPa at different skin sites. Diridollou et.al. [203] developed a suction system with 

ultrasound scanning – an echo rheometer capable of measuring thickness of epidermis 

and dermis. It operated in 3 modes at a frequency of 20 MHz and provided an axial 

resolution of 0.07 mm.  

Table 2.3 represents different values of Young’s modulus obtained by the suction 

method, measuring deformation with different aperture sizes.  

Suction tests are a common choice for skin testing, as they are easy to apply in-vivo and 

also allow for additional deformation detection through, for example, imaging 

ultrasound.  However, this technique involves the skin undergoing both in-plane and 

normal loading and depends on theoretical models to determine elastic properties. 

Moreover, the value of skin thickness has an effect along with the aperture size and the 

magnitude of negative suction pressure. According to the models proposed by Siqueira 
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[204] and Timoschenko [205], the Young’s modulus of the skin exhibits an exponential 

increase with increase in aperture size. 

 

Table 2.3: Young’s modulus using suction at different deformations & aperture sizes. 

References Skin Source Deformation measurement/ 

Aperture Size 

Young’s 

Modulus 

Diridollou 

[203] 

Forearm 100 mBar suction/ 6 mm 130 kPa 

Hendriks 

[171] 

Forearm 350 mBar suction, Ultrasound 

detection/ 6 mm 

56 kPa 

 

Barel [202] Cheek 150 – 500 mBar suction/ 2 mm 130 – 260 kPa 

Liang [206] Palm, 

Forearm 

450 mBar/ 2 mm 25 kPa, 

100 kPa 

 

2.5.4 Torsion test 

Torsion measurements are carried out by applying a constant torque through a guard 

ring and an intermediary disc and measuring the resultant rotation of skin as seen in 

Figure 2.4. 

 

Figure 2.4: Twisting of skin for measuring elasticity in the Torsion Test. 
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The method is supposed to reduce the skin anisotropic effects since the underlying layers 

do not contribute to the readings as postulated by Escoffier et .al. [207]. As the torque 

is applied, an immediate elastic deformation occurs followed by the occurrence of 

creeping viscoelastic deformation which is time dependent. The release of torque leads 

to immediate recovery followed by a slow recovery process which is usually not 

completed [208]. In torsion, the elongation is replaced by rotation and hence the 

measurement of elasticity becomes more complex. Early work includes that of Sanders 

[209], who performed an in vivo analysis to determine the extensibility of skin subjected 

to torsion. A twist of 0.8 mN-m was applied to a disc of diameter 8.7 mm. Young’s 

modulus was calculated using the formula (Vlasblom, 1967 [210]): 

𝑌𝑌𝑉𝑉𝑆𝑆𝑅𝑅𝑉𝑉′𝑅𝑅 𝑀𝑀𝑉𝑉𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 =
2𝑀𝑀 (1 + 𝜇𝜇)

4𝑅𝑅𝑅𝑅2𝜃𝜃
                                                                            

(2.1) 

where M is the applied torque, e is the skin thickness, μ is Poisson’s ratio, R is disc 

radius and θ is the rotation. 

The values of Young’s modulus obtained by using torsion techniques are shown in Table 

2.4.  

 

Table 2.4: Young’s modulus obtained through torsion for different guard ring parameters. 

References Skin 

Source 

Torque/ Disc diameter/ Guard ring 

diameter 

Young’s 

Modulus 

Sanders [209] Forearm 0.8 mN-m/ 8.7 mm/ _ 0.02 – 0.1 MPa 

Agache et.al. 

[211] 

Forearm 28.6 mN-m /25 mm/ 35 mm 0.42 – 0.85 MPa 

Escoffier et.al 

[207] 

Forearm 2.3 – 10.4 mN-m /18 mm/ 24 mm 1.12 MPa 
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Other significant works include the study of Grebenyuk and Uten’kin [212], who 

worked on different anatomical sites on children resulting in rotations of 7 -10° at an 

application of a constant torque.  

Torsion measurements are an accepted and reproducible means of in-plane skin 

elasticity analysis. However, they assume an isotropic behaviour of skin layers and a 

uniform deformation for the entire skin thickness. However, this consequently assumes 

that the applied force gradient reaches uniformly to the deeper layers of the skin. Also, 

since the measure of torsion is the rotational angle, it obtains, essentially, the shear 

modulus of the skin, which is theoretically related to the Young’s Modulus.  

 

2.6 FACTORS AFFECTING THE YOUNG’S MODULUS OF THE SKIN 

Skin is the outermost layer of the human body which regulates the body temperature 

and protects the body from abrasion and water loss. Skin is found to be highly 

anisotropic and Young’s modulus is found to be dependent on orientation, where highest 

value can be twice the perpendicular values. Young’s modulus decreases up to three 

orders of magnitude with hydration. An inverse relationship between skin’s thickness 

and Young’s modulus is observed. It can be concluded that the thickness of skin 

increases with age until 30 years and varies inversely with age after that. The following 

sections summarise the evidence of correlation of Young’s modulus with these 

intramural and extraneous factors. The effect of various internal and external factors on 

human and animal skin can be assumed to be comparable due to their similar anatomical 

and physiological structures [213]. 

2.6.1 Langer’s lines 

The epidermis is the outermost layer of the skin and acts as a protective shell. The dermis 

is the layer between the epidermis and the hypodermis, that protects and cushions the 

skin from stress and strain, and provides: elasticity to the skin, a sense of touch, and heat 

[214]. The hypodermis is essentially a fat layer of varying thickness which connects the 

underlying muscles to the skin [215]. The first two layers have a thickness of around 

0.07- 0.12mm and 1mm-4mm respectively [165]. The lower region of the dermis, which 

https://www.esciencecentral.org/journals/association-of-cd-and-cd-activation-markers-on-cd-and-cd-cells-with-skin-tests-in-drug-allergy-2329-6887.1000111.php?aid=20349
https://www.esciencecentral.org/journals/ArchiveJASC/currentissue-aging-science-open-access.php
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is the reticular dermis, is composed of collagen and elastin fibres (0.3-3.0μm in 

diameter) which deform as the fibres stretch and re-orientate [216]. Collagen is made 

up of protein and is cross-linked with covalent bonds. The cross-linking defines the 

strength of the fibre which varies with age and pathology [164]. With age, the collagen 

bundles become more compact and provide less room or space between individual 

bundles, thus increasing the Young’s modulus (E) of skin [165]. 

The direction in which the skin exhibits the least flexibility, due to the alignment of 

collagen fibres within the dermis, corresponds to the direction of Langer’s lines, named 

after their discoverer Karl Langer (1819-1887) [217]. The understanding of Langer’s 

lines is important in surgery, as the cuts made in the direction of (i.e. parallel to) these 

lines heal better [218]. These types of cuts are less subject to tensile stress [219]. The 

directions of Langer’s lines change with ageing. Young’s modulus of the skin also 

depends on the orientation of Langer’s Lines.  Several tensile tests have been carried 

out by taking the skin samples perpendicular, parallel and at 45° to the Langer’s lines 

[178]. The results have been summarised in Figure 2.5. 

 

 

Figure 2.5: Variation in Young’s modulus with the orientation of Langer’s lines. 
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Annaidh [172] and Gallagher [178] concluded that Young’s modulus measured at 45° 

and perpendicular to the Langer’s lines is lower than that measured at parallel 

orientations. On the other hand, Ottenio [180] suggested comparable values of Young’s 

moduli at 45° and parallel locations.   

Ankersen [179] tested the mechanical properties of a synthetic chamois. He 

demonstrated that the corresponding strain at 45° is greater than in a direction parallel 

to Langer’s lines.   

According to Escoffier [207], the anisotropic effects of the skin can be minimised by 

applying stress parallel to the plane of the skin, thereby minimizing the contribution of 

the underlying layers.  

Liang [206] proposed a frequency dependent relationship between Langer’s lines and 

Young’s Modulus. At a frequency of 50 Hz, the Young’s modulus for perpendicular and 

parallel orientations were found to be comparable (100 kPa and 85 kPa) using dynamic 

optical coherence elastography, but at a frequency of 600 Hz, Young’s modulus for 

perpendicular configuration was found to be much lower than the parallel configuration 

(100 kPa and 220 kPa).  

2.6.2 Age, gender and skin’s thickness 

The biomechanical properties of the skin change significantly with age, as it undergoes 

structural and cellular changes. Several studies pertaining to change in biomechanical 

properties of skin with ageing have been done in the past and no significant agreement 

was found amongst them. Young’s modulus increases with age according to Diridollou 

[220] and Alexander [221], but decreases with age according to Boyer [222] and Sanders 

[223]. Diridollou [220] conducted suction experiments on skin using an echo rheometer 

which comprised of a cylindrical aperture filled with a coupling liquid placed normal to 

the skin’s surface. The cylinder was integrated with a pressure control circuit used to 

elevate the skin and an electronic circuit to measure the skin’s displacement 

corresponding to the first echo produced by the coupling liquid. He observed that the 

skin behaves differently with age for men and women and developed a mathematical 

equation corresponding to the change in Young’s modulus with age. The graph in Figure 

2.6 indicates that the Young’s modulus increases after 30 and 50 years of age for both 

men and women. A noticeable difference in the pattern can be observed between men 
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and women after 80 years of age. The Young’s modulus of the skin increases for men 

and decreases for women after 80 years. This variance in trend can be understood by 

considering the effect of skin’s thickness with age in male and female. It was assumed 

that the skin’s thickness increases between 10-20 years, lowering Young’s modulus 

values and decreases after 50 years. The increasing behaviour of Young’s modulus can 

be explained on the grounds of change in metabolic activities and composition of 

collagen with age. Alexander [221] observed that Young’s modulus of the skin 

decreases initially up to 30 years until skin reaches a maturity level, and then begins to 

rise indicating an increase in stiffness. 

 

Figure 2.6: Variation of Young’s modulus with age and gender, measured using different 
testing techniques. 

 

In contrast, many studies found that the Young’s modulus of skin decreased with age. 

Boyer [222] assessed the skin’s stiffness with age in 46 subjects by using a dynamic 

indentation method. The values of Young’s modulus for the youngest and the oldest 

group were found to be 10.7 kPa and 7.2 kPa respectively. A possible reason for this 

type of behaviour is that the skin s age, thereby lowering the Young’s modulus measured 

by an indenter.   
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Sanders [223] measured the mechanical properties of skin in males and females using 

the torsion method. A continuous decrease in Young’s modulus with age for men and 

women was observed through (see Figure 2.6). Discontinuity and wear and tear of the 

collagen network with age can justify the sagging of the skin, which leads to a decline 

in Young’s Modulus.   

The anisotropic properties of the skin can be explained due the different orientation of 

collagen fibres in the dermis, as discussed earlier. Escoffier [207] analysed the variance 

of thickness of skin with ageing and determined a linear regression equation for men 

and women, where Ep is the skin thickness in millimetres. A linear regression equation 

for men and women up to 30 years [207] can be given as: 

𝐸𝐸𝑆𝑆 = 0.7 + (8 × 10−3 × 𝑅𝑅𝑉𝑉𝑅𝑅)  (2.2) 

 

Separate relationships were determined for men and women after 30 years:  

For women: 

𝐸𝐸𝑆𝑆 = 0.89 − (3 × 10−3 × 𝑅𝑅𝑉𝑉𝑅𝑅)   (2.3) 

 For men:  

𝐸𝐸𝑆𝑆 = 1.05 − (4 × 10−3 × 𝑅𝑅𝑉𝑉𝑅𝑅)                                                                           (2.4) 

The relation between skin’s thickness and age was found to be inverse after 30 years, 

but men’s skin was found to be 16% thicker than women after 30 years. Diridollou [220] 

used an ultrasonic scanner to measure skin thickness and found the thickness of men’s 

skin to be 5.2% greater than women. Zheng [189] and Hara [224] found an inverse 

relation between skin’s thickness and Young’s Modulus. Zheng observed that the 

average value of Young’s modulus for men at different sites and different postures was 

40% more than that of females.  
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The elasticity and viscosity of skin also depends on the site of testing. Comparing the 

values of Young’s modulus from different parts of pig skin using tensile testing, 

Ankersen [179] found that Young’s modulus for pig back and belly were 15 MPa and 

7 MPa  respectively. Similarly when Liang [206] conducted experiments using Optical 

Coherence Tomography (OCT), he came to a conclusion that  the Young’s modulus for 

different sites viz. volar forearm, dorsal forearm and palm were 101.180, 68.678 and 

24.910 kPa respectively.  

Ishikawa [225] performed experiments on 191 human subjects by using a new suction 

device and noted that there is no significant relation between skin’s elasticity with sex 

or degree of obesity. Although, when experiments were carried out on different body 

sites – finger, forearm, hand and chest, then Young’s modulus on the chest was 

significantly lower than that of the other three sites. 

2.6.3 Hydration 

Stratum corneum, the outermost layer of the epidermis, regulates water flow through 

the skin and acts as a barrier against the penetration of foreign substances. Many studies 

have shown the effect of hydration on the mechanical properties of skin. Kuilenburg 

[195] found that the effective Young’s modulus of the stratum corneum decreased 

significantly with increase in hydration. On the other hand, the other layers of skin 

showed a minor influence of hydration on the magnitude of Young’s Modulus.   

According to Blank [226], stratum corneum receives moisture from the fluids which are 

present in the layers beneath it. Sweat glands become active at temperatures above 30°C. 

Moreover, unclothed areas tend to lose some water content due to evaporation, reducing 

the moisture content of stratum corneum to below that for the underneath layers. 

Park and Baddiel [227] stated that water behaves as a plasticizer and converts the skin 

from a glassy state to a rubbery state. At low hydration levels, the elasticity increases 

due to stretching of bonds, but at higher hydration levels, the hydrogen bonds become 

hydrated (weak) and the sulphide bonds remain intact, thereby leading to the formation 

of a lightly cross-linked network of collagen fibres.  

Wildnauer [228] reported that under controlled room temperatures, the fracture strain of 

stratum corneum excised from the human upper back increased from 20% to 190% when 

the relative humidity was increased from 0 to 100%.  
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Papir [229] investigated the change in mechanical properties of the stratum corneum in 

rats pertaining to alterations in hydration and temperature. It was observed that the 

stratum corneum became more elastic and ductile with increasing moisture content. 

Additionally, at 22°C and 77% relative humidity, a steep fall in the value of Young’s 

modulus was observed.  

Figure 2.7 represents a comparison of different works showing variations in Young’s 

modulus with relative humidity.  

 

Figure 2.7: Variation in Young’s modulus with humidity:   Papir (tensile test on stratum 
corneum), Park and Baddiel (tensile test), Wildnauer (tensile test on human upper back). 

 

Uniaxial tensile tests were performed on wet and dry synthetic chamois by Ankersen 

[179]. High moisture content in the synthetic chamois caused a slight increase in both 

failure stress and strain, demonstrating the increase in elasticity on increasing the 

hydration on skin.   

Liang [206] investigated Young’s modulus at different frequencies for wet, dry and 

normal skin. The values of Young’s modulus obtained at a driving frequency of 50 Hz 

were the lowest for wet skin and the highest for dry skin. At larger frequencies of around 

500 Hz, the wet and normal skin experienced a gain in Young’s modulus, though there 

was a dramatic decline in the Young’s modulus of dry skin. 
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2.7 SUMMARY 

Four major methods employed for mechanical testing of the skin have been discussed 

in detail. Young’s modulus in the thickness-direction typically measures between 

10.4 kPa to 17.99 MPa by indentation tests. However, measured values can depend on 

indenter geometry and whether quasistatic or dynamic testing is being performed. 

Values of between 0.02 kPa and 140 MPa are typical for both tensile and torsion tests. 

Tensile tests indicate higher Young’s modulus at higher strain rates, indicating that skin 

is viscoelastic. Young’s modulus measured by suction tests span 25 kPa to 260 kPa, 

which is between the ranges found from indentation (thickness-mode) and 

tensile/torsion (in-plane mode).  This may be because suction tests involve both in-plane 

and perpendicular deformations.  

In-plane measurements of Young’s modulus depend on orientation with respect to 

Langer’s lines, where highest Young’s modulus is seen in the parallel orientation, and 

can be twice the perpendicular values of Young’s Modulus.  

In addition to anisotropy, and technique-dependent variables, Young’s modulus 

decreases up to three orders of magnitude with hydration, and this effect appears 

primarily confined to the stratum corneum.    

The relationship with demographic features such as age is less clear but is possibly 

biphasic, with increasing Young’s modulus below 30 years, and decreasing values 

thereafter.  No consistent difference between sexes is observed.  Several studies showed 

an inverse relation between the skin’s thickness and the Young’s Modulus, and skin 

thickness is also dependent on age, sex and body site.  This suggests individual variation 

is much greater than age and gender effects on their own. 

In many applications in -vivo testing provides more relevant information than in -vitro 

testing. Indentation tests are mostly performed in- vivo, and are relatively easily applied. 

This study involves the estimation of skin’s deformation in vivo, therefore, the average 

range of Young’s Modulus has been taken between 7.2 kPa and 17.9 MPa, considering 

the effect of Langer’s lines, age, gender, skin’s thickness and hydration. 
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CHAPTER 3 RESEARCH GAP AND OBJECTIVES  

 

3.1 SUMMARY OF PREVIOUS STUDIES 

The phenomena of generation of ECG due to the flow of bioelectric currents in the heart 

and the importance of ECG monitoring to diagnose various heart abnormalities by the 

cardiologists have been discussed in chapter 1. A 12-lead ECG system used in hospitals 

provides a detailed and calibrated analysis of heart rhythm, conduction and 

repolarization from multiple lead vectors, enabling the detection of cardiac structural, 

electrophysiological and metabolic abnormalities and drug effects [40]. However, 

ambulatory ECG monitoring is required to detect cardiac episodes that occur 

infrequently. Modern trends in ambulatory ECG monitoring aim for the use of patch 

sensors for long-term monitoring in place of conventional Holter and event monitors. 

The diagnostic efficacy of patch sensors is higher than Holter or event monitors.  

The main sources of noise in ambulatory ECG systems have been mentioned in chapter 

1. The use of driven right leg in ECG circuits and proper electrode placement can be 

implemented to remove noise from power line and EMG interference. It can be inferred 

that the conventional Ag/AgCl electrodes provide the best electrical contact with the 

skin, although the electrolyte gel may dry out after sometime or may cause skin irritation 

in some patients. These electrodes are inconvenient to wear for long durations as 

compared to dry or capacitive electrodes. However, the electrode-skin impedance 

offered by dry and capacitive textile electrodes is high and depends on the presence of 

sweat on the skin and application of pressure. The use of flexible, porous and conductive 

CNT/PDMS polymer patch electrodes is recommended for long term use to increase 

comfort. These electrodes can be stuck on the patient’s skin using a conductive paste 

that is biocompatible.  

Motion artefacts remain one of the major problems in short-term and long-term ECG 

monitoring and can lead to wrong diagnosis and trigger false alarms. Motion tracking 

using accelerometers, inductance in LVDTs, capacitance in gradiometers and 

displacement in optical sensors has been extensively applied to identify motion artefacts 

in ECG. Software techniques employing wavelet transform, adaptive filtering, EKF, 

PCA and ICA have been employed for motion artefact removal. Some of these 

techniques are reported to provide satisfactory performance. 
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Skin stretch is a major physiological source of motion artefact in ECG due to the flow 

of injury current across the barrier layer of the skin. This has resulted in employing 

techniques to reduce this artefact, such as skin abrasion using sand paper and skin 

puncturing. Skin abrasion may lead to skin irritation and the motion artefact may return 

back due to skin regrowth. The amplitude and frequency range of motion artefacts due 

to skin stretch is comparable to ECG, therefore it is difficult to identify and eliminate 

them using adaptive software techniques. The magnitude of skin stretch depends on the 

Young’s modulus of the skin, and is affected by orientation in relation to Langer’s lines, 

hydration and age. The average range of Young’s modulus of the skin lies between 

7.2 kPa and 17.9 MPa.  

 

3.2 RESEARCH GAP AND RESEARCH QUESTIONS 

It is apparent from the reviewed literature that existing approaches to reducing motion 

artefact from ECG do not address a main cause of motion artefact, which is skin stretch. 

A number of studies have applied algorithms to reduce motion artefact by examining 

only the ECG signal.  Other researchers have made use of a noise signal such as uniaxial 

displacement, sensor acceleration or other sources which do not directly measure or 

address skin stretch as a primary cause of motion artefact. The optical sensing technique 

implemented by Liu (2007) [108] measured absolute displacement of the images in any 

direction, thereby neglecting to calculate the strain (normal and shear) of the skin.  

This work aims to reduce ECG motion artefacts by exploiting the physical principal of 

injury current due to skin strain as a primary contributor to motion artefacts. It will 

account for the directions and the orientation of the skin strain field at the electrode to 

try to achieve a high signal to noise ratio (SNR) while preserving user comfort and 

biocompatibility.  

The major research questions that can be identified are thus: 

I. How to track and quantify motion artefact in terms of skin stretch at the point of 

biopotential measurement? 

II. Can the incorporation of skin stretch information using PCA and ICA aid in 

eliminating motion artefacts from ECG signals?  

Therefore, main objectives of this research are as follows: 
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I. To investigate an appropriate method of quantifying motion artefacts in terms of 

skin stretch while acquiring ECG measurements. 

II. To investigate a technique to incorporate the skin stretch measurements in PCA 

and ICA and find the best approach to reject motion artefacts from ECG signals. 

The research addressing these questions has been presented in the following chapters of 

this thesis.  

 

3.3 RESEARCH AND THESIS OUTLINE 

Considering the range of skin’s Young’s modulus (7.2 kPa and 17.9 MPa), PDMS films 

with similar elasticity to that of skin have been prepared (discussed in chapter 4); so that 

they can be used to emulate skin stretch. The Young’s modulus of the films was tested 

and found to lie within the range of skin. Conductive CNT/PDMS and graphene/PDMS 

electrodes were prepared for measuring ECG signals. The conductance of these 

electrodes were compared with conventional Ag/AgCl and dry Ag electrodes. The 

CNT/PDMS electrodes showed a higher conductance over graphene/PDMS electrodes, 

therefore they were considered appropriate for carrying out ECG measurements. The 

Young’s modulus of the CNT/PDMS electrodes was tested and found to lie within the 

acceptable range of skin’s Young’s modulus. Thus, a conductive polymer patch 

electrode (CNT/PDMS) with similar elasticity to skin was successfully developed to 

measure ECG and skin stretch under the electrode.  

In chapter 5, a PDMS film electrode was printed with a checkerboard pattern to quantify 

skin stretch. A high speed camera was utilized to track the movement of the film on 

stretching. The video frames were filtered and processed to identify the checkerboard 

corners in each frame. Infinitesimal strain theory was used to calculate the 2D strain 

distribution from point displacements in MATLAB®. The derived 2D strain 

distributions were validated against strains calculated by carrying out stretch 

simulations in SolidWorks®. In this way, the optical technique was qualified to measure 

skin stretch from CNT/PDMS electrodes.  

The basic principal behind the working of PCA and ICA has been covered in chapter 6. 

ECG signals were acquired from a subject’s arms and three different kinds of 

movements were introduced. The strains due to motion were quantified using the 
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method described in chapter 5. The quantified strains were utilized as motion 

information in PCA and ICA algorithms to identify and eliminate motion artefacts from 

ECG signals. The results were compared and a significant reduction in motion artefact 

from ECG signals was observed after the implementation of PCA and ICA,  

The developed motion artefact rejection system has been validated in seven healthy 

subjects, as described in chapter 7. ECG signals with and without motion artefacts were 

acquired simultaneously from the arms (by inducing movement) and the chest (at rest). 

The ECG signals from the chest were obtained using conventional Ag/AgCl electrodes 

and were considered as reference, whereas noisy ECG signals from the arms were 

measured using CNT/PDMS electrodes. The performance of the system was evaluated 

in terms of improvement in SNR and infinity norm (∞-norm) and was compared with 

other related work. The system outperformed systems which do not directly address skin 

stretch as the main cause of motion artefact. It was also found that CNT/PDMS 

electrodes exhibited a higher SNR than dry Ag electrodes when used in this system. 

In chapter 8, a critical analysis of the thesis has been presented and novel contributions 

with directions for future work have been highlighted. 
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CHAPTER 4 DEVELOPMENT OF STRETCHABLE 

POLYMER ELECTRODES 

 

4.1 INTRODUCTION 

This chapter describes the preparation of PDMS films having various Young’s moduli. 

The Young’s modulus was evaluated for each film by conducting tension-relaxation 

tests. The PDMS electrodes were made conductive by mixing them with multi-walled 

CNTs and graphene using an ultrasonic mixer. The CNTs and graphene were wetted in 

DMF prior to their dispersion in PDMS. This was done to avoid them clumping in 

PDMS and to ensure more uniform dispersion. The conductance of the CNT/PDMS and 

graphene/PDMS electrodes was measured using an LCR meter (E4980A Keysight 

Technologies, California, USA) and was compared with that of Ag/AgCl and dry Ag 

electrodes. The Young’s modulus of the CNT/PDMS film was evaluated and compared 

with that of PDMS and human skin. The ECG measurements in this study were carried 

out using CNT/PDMS electrodes which were glued onto the skin using a conductive 

adhesive. 

 

4.2 PDMS PREPARATION 

PDMS is a silicon-based polymer which belongs to the group of polymeric 

organosilicon compounds [230]. PDMS is widely used for the fabrication and 

prototyping of microfluidic chips [231]. It is a bio-compatible, optically clear, inert, 

non-flammable and non-toxic polymer. PDMS is available in liquid form and its elastic 

polymer, or elastomer, is prepared by mixing it with a cross-linking or a curing agent. 

The elastic properties, specifically the Young’s modulus, of PDMS can be altered by 

changing the ratio of base (liquid PDMS) to curing agent. Therefore, PDMS with similar 

elasticity to that of human skin can be prepared and used to emulate skin stretch. PDMS 

is not without its shortcomings, however, and these include change in its mechanical 

properties with time (also known as PDMS ageing), its sensitivity to exposure to some 

chemicals, and difficulty in managing the liquid due to its highly viscous nature. Two 

types of PDMS commonly used by researchers are PDMS RTV-615 (Momentive 

Performance Materials, New York, USA, formerly and GE Silicones) and PDMS 
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Sylgard 184 (Dow Corning, Michigan, USA). Although PDMS RTV-615 is more robust 

and convenient for the fabrication of bilayer microfluidic devices, PDMS Sylgard 184 

is less prone to contamination, softer and easy to cure [231] [232]. Therefore, PDMS 

Sylgard 184 consisting of Part A: Base (B) and Part B: Curing Agent (CA) was used in 

this research.  

The time and temperature required to cure PDMS varies with thickness. PDMS samples 

of different thicknesses were fabricated using spin coating. Spin coating is a procedure 

which involves the deposition of thin uniform films on a central flat substrate of a spin 

coater. The coating material (PDMS in this case) is applied on the centre of the substrate 

which is either spinning at low speed or not spinning at all. The spin coater is then 

rotated at high speeds to uniformly spread the coating material on the substrate using 

centrifugal force [233]. The spin coating was performed in this case by using a Laurell 

Spin Coater (Model WS-650Mz-23NPP, Laurell Technologies Corporation, Paris, 

France). The thickness of the elastomer was controlled by altering the spinning speed 

and other parameters of the spin coater, as seen in Figure 4.1. 

 

 

Figure 4.1: Laurell Spin Coater WS-650Mz-23NPP used to fabricate thin PDMS films 
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PDMS elastomers with different B:CA ratios were prepared. The process involved in 

PDMS membrane realization is explained below: 

1. B and CA were poured in ratios of 8:1, 10:1, 12:1 and 15:1 in separate Petri 

dishes and then mixed vigorously for 2 minutes using a wooden spoon. 

2. The PDMS mixtures were poured on thin glass slabs of dimensions 30 mm × 

30 mm × 5 mm. 

3. The PDMS was formed into a membrane using a spin coater at a speed of 500 

rpm for 10 seconds. 

4. The glass slabs were placed in a desiccator for 45 minutes to degas the PDMS 

mixtures and to remove air bubbles.  

5. The PDMS mixtures were baked in an oven at a temperature of 80°C for 2 hours 

[234]. 

6. The PDMS substrates were peeled from the glass slabs using tweezers. 

 

4.3 YOUNG’S MODULUS OF PDMS FILMS 

After the realization of thin membranes, a PDMS film with dimensions of 30mm × 

30mm × 2.5 mm was subjected to tensile testing using a TA.XTPlus texture analyser 

from Stable Microsystems (Surrey, UK), as seen in Figure 4.2. 

 

 

Figure 4.2: Texture Analyser 
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The values assigned to the testing parameters in the texture analyser settings are listed 

in Table 4.1. 

Table 4.1: Parameters used in the mechanical testing of the CNT/PDMS film using texture 

analyser. 

Test parameters Value/Type 

Test mode Tension-Compression 

Test speed 0.5mm/sec 

Target mode Strain 

Maximum strain percentage 60% 

 

The TA.XTPlus allows data acquisition of force and displacement at up to 500 points 

per second. The tensile tests were conducted at a speed of 0.5 mm/s and a maximum 

strain of 60 %. The PDMS samples were subjected to a tension-relaxation test over a 

time period of 10 seconds. The force and resulting displacement data were used to 

calculate the stress-strain locus; an example is shown in Figure 4.3. The curve was 

smoothened by using a Savitzky-Golay smoothing filter in MATLAB. 

 

Figure 4.3: Stress-strain curve obtained from the texture analyser for tension-relaxation test 
of PDMS substrate with a B: CA ratio of 10:1 
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A hysteresis loop can be observed in the stress-strain plot of the PDMS substrate in 

Figure 4.3. When elastomers are stretched, the polymer molecules become more 

oriented and less random. This decrease in randomness makes the elastomer hotter. On 

releasing the polymer, it contracts and gets colder, since the molecules must adsorb heat 

to become more random. This heat transfer between the elastomer and its surroundings 

accounts for the hysteresis loop associated with elastomers [235]. 

 The slopes of the stress-strain curves during elongation were evaluated to find the 

values of Young’s modulus for all PDMS samples. The mean values of the slopes were 

taken as the average Young’s modulus for each PDMS substrate. Figure 4.4 shows a 

comparison between the stress-strain plots of PDMS mixtures with different B:CA 

ratios. 

 

Figure 4.4: Comparison of stress-strain plots for PDMS mixtures with different B:CA ratios 

 

As observed from Figure 4.4, the slope of the curve decreases as the ratio of PDMS B 

to CA increases. The average Young’s modulus values for different PDMS samples are 

given in Table 4.3. 
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Table 4.2: Average Young’s modulus for PDMS with different B: CA ratios 

PDMS Base: Curing Agent Young’s modulus (MPa) 

8:1 1.0538 

10:1 1.0398 

12:1 0.8623 

15:1 0.3798 

 

As mentioned in chapter 2, the range of Young’s modulus for skin lies between 7.2 kPa 

and 17.9 MPa. Skin stretch information is used for motion artefact quantification and its 

removal from ambulatory ECG measurements. The main goal here is to develop a 

prototype which does not significantly obstruct the skin stretch and has a Young’s 

modulus lower or equal to that of the skin. The Young’s modulus of PDMS is lower 

than the average Young’s modulus of the skin and can be modified by altering the B:CA 

ratio. Therefore, the use of PDMS to emulate skin stretch is an appropriate choice. 

 

4.4 PREPARATION OF CNT/ PDMS ELECTRODES 

As discussed in chapter 1, there are two major types of CNTs: single-walled and multi-

walled. Multi-walled CNTs have a higher tensile strength [236], better dispersability in 

polymers [237], and are more electrically conductive [238] than single-walled CNTs. 

Therefore, multi-walled CNTs with a diameter of 50–85 nm and length of 10–15 

micrometres were purchased from Graphene Supermarket (New York, USA) for this 

study. As mentioned in section 1.5, 4.5 wt% concentration of CNTs in PDMS was 

considered appropriate for ECG monitoring. The CNT/PDMS-based electrically 

conductive, stretchable and biocompatible electrodes were prepared using this CNT and 

PDMS (Sylgard 184).  

One gram of CNTs was dispersed in 40 ml of DMF solution and then mixed vigorously 

using a 750 Watt ultrasonic processor (Sonics & Materials Inc., Connecticut, USA) for 

1 hour at a temperature of 40°C, as shown in Figure 4.5. 
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Figure 4.5: Mixing of CNT and DMF in controlled environment using ultrasonic mixer. 

 

After sonication, a visual inspection of the mixture was performed to confirm the 

debundling of CNT dispersion. The purpose of sonicating CNTs with DMF was to 

modify the CNTs by detangling them for their homogenous dispersion in PDMS. Figure 

4.6 shows images obtained from a scanning electron microscope (SEM) (Hitachi SU-

70, Illinois, USA) in which CNTs are dispersed in PDMS with and without prior 

sonication with DMF. The CNTs (white in colour) in Figure 4.6a are widely spaced and 

uniformly distributed within the PDMS (grey in colour), while CNT bundling can be 

seen in Figure 4.6b. 

The dispersion was vacuum-filtered using a glass fibre filter of 125 μm porosity. The 

CNT-DMF mixture was dried to evaporate the remaining DMF using a digital hotplate 

stirrer (Labnet AccuPlate, Auckland, New Zealand) at 140°C for 2 hours. This was 

followed by the sonication of 4.5wt% of dried and debundled CNT with PDMS (B:CA 

ratio = 10:1) at room temperature for 1 hour [78]. The sonication of CNT with PDMS 

was performed to ensure thorough and uniform mixing. 

A part of the mixture was poured on a glass slab with dimensions of 30 mm × 30 mm 

× 5 mm and the slab was then spun using the Laurell Spin Coater. The film was then 
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cured at room temperature for 24 hours. CNT/PDMS films of various thicknesses were 

fabricated by altering the speed of the spin coater.  

 

 

Figure 4.6: Use of SEM to observe the dispersion of CNTs in PDMS; a: using DMB, b: 
without using DMF 

 

As mentioned in section 1.5, some researchers have used graphene to prepare conductive 

electrodes for bio signal measurements. Therefore, conductive electrodes were prepared 

by sonication of 4.5wt% graphene (purchased from Graphene Supermarket, New York, 

USA) with PDMS (B: CA ratio = 10:1). Like CNTs, graphene tends to agglomerate due 

to the presence of strong van der Waals forces of attraction between them [239]. Hence, 

the graphene was wetted and sonicated with DMF solution before mixing with PDMS. 

 

4.5 YOUNG’S MODULUS OF CNT/ PDMS ELECTRODES 

Tensile testing was performed on the CNT/PDMS films with dimensions of 30 mm ×

 30 mm × 2 mm using the texture analyser to find and compare the Young’s modulus of 

these films with the PDMS films fabricated in the section 4.2. The tensile test was 

carried out under the same boundary conditions used for the PDMS film tensile test.  

The CNT/PDMS films were subjected to a tension-relaxation test over a time period of 

10 seconds. The force and resulting displacement data were used to calculate the stress-

strain loci, an example of which is shown in Figure 4.7. 
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Figure 4.7: Stress-strain curve obtained from texture analyser for tension-relaxation test of 
CNT/PDMS substrate with a B: CA ratio of 10:1 

 

The slope of the stress-strain curve during elongation was calculated to find the Young’s 

modulus of elasticity for the CNT/PDMS film. The mean value of the slope was found 

to be 1.3309 kPa, which was considered as the average Young’s modulus for the films. 

The Young’s modulus of the CNT/PDMS film was approximately 800 times lower than 

the PDMS film (B:CA ratio = 10:1) and approximately 5 times lower than the minimum 

Young’s modulus of human skin (7.2 kPa). CNTs are black in colour and liquid PDMS 

is colourless, therefore the electrodes prepared by adding CNT in PDMS were black. 

 

4.6 CONDUCTANCE OF THE ELECTRODES 

The impedance of the CNT/PDMS, graphene/PDMS, dry Ag and commercially 

purchased foam-padded Ag/AgCl (3M Red Dot, Minnesota, USA) electrodes was 

measured and compared at frequencies ranging from 20 Hz to 10 KHz using an LCR 

meter, as seen in Figure 4.8. The dry Ag electrode was prepared by removing the sticky 

electrolyte gel from the back of the purchased Ag/AgCl electrode using a pair of 

tweezers. Aluminium snaps were glued using conductive paste Ten 20 (Weaver and 

Company, Colorado, USA) on both sides of CNT/PDMS and graphene/PDMS 

electrodes.  

The magnitude and phase of the impedance were measured across the surface of the 

electrodes using Kelvin leads clipped on the aluminium snaps, as shown in Figure 4.9.  
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Figure 4.8: Measurement of conductance of CNT/DMF electrodes at different frequencies 
using LCR meter. 

 

 

 

Figure 4.9: Measurement of conductance across the CNT/DMF electrodes. 
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The conductance values were estimated from obtained impedance magnitudes and 

phases by using the formula: 

𝐺𝐺 =
1

𝑍𝑍𝑅𝑅𝑉𝑉𝑅𝑅𝛳𝛳
                             (4.1) 

where 𝐺𝐺 is the estimated conductance in siemens, 𝑍𝑍 is the magnitude of impedance in 

ohms (Ω) and 𝛳𝛳 is the phase angle in radians. 

The plot of conductance vs frequency for different electrodes at 100 logarithmically 

spaced intervals within 10 Hz–10 kHz can be seen in Figure 4.10. 

 

 

Figure 4.10: Variation in conductance with frequency for different electrodes. 

 

As can be seen in Figure 4.10, the conductance of the standard Ag/AgCl electrodes was 

the highest. The conductance of 4.5wt% CNT/PDMS electrodes was observed to be 

higher than the 4.5wt% Graphene/PDMS electrodes and therefore the former was an 

appropriate choice for ECG sensing. The average conductance offered by CNT/PDMS 

electrodes in the ECG frequency range (0.01–150 Hz) was approximately 1 µS, while 

the minimum required conductance for ECG measurement is 0.02 µS [240]. Although 

the conductance offered by CNT/PDMS was lower than that of the conventional Ag and 

Ag/AgCl electrodes, it was acceptable for ECG monitoring. 
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The variation in conductance was also evaluated for CNT/PDMS samples having 

different thicknesses. Four samples of thickness – 0.8 mm, 1.2 mm, 1.6 mm and 2 mm 

– were prepared and their conductance was measured using the method described above. 

The plot of conductance vs frequency for CNT/PDMS samples of different thicknesses 

can be seen in Figure 4.11. 

 

 

Figure 4.11: Variation in conductance with frequency for CNT/PDMS samples with different 

thickness. 

 

As can be seen in Figure 4.11, only a small increase in conductance is observed in the 

ECG frequency range of 0.05–150 Hz (diagnostic) with decreasing thickness [241]. 

Therefore, for convenience, the ECG measurements were obtained from subjects using 

a CNT/PDMS patch electrode of dimensions 30 mm × 30 mm × 2 mm. The ECG signal 

quality was enhanced by adhering the electrode to the skin using Ten 20 conductive 

paste.  

The main purpose of CNT/PDMS film is to measure ECG signals and skin stretch under 

the electrode. As the film stretches with the skin it is important to consider the effect of 

stretching of the film on the ECG signal. 

For this purpose, the variation in conductance of the CNT/PDMS film on stretching was 

measured (see Figure 4.12). The film was stretched up to a maximum strain rate of 50% 
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using the texture analyser and the conductance across the film was measured using the 

LCR meter.  

 

 

Figure 4.12: Variation in conductance with frequency for CNT/PDMS samples at different 

stretch percentages. 

 

4.7 SUMMARY 

In this chapter, four PDMS films of dimensions 30mm × 30mm × 2.5 mm were 

prepared by mixing different ratios of B:CA: 8:1, 10:1, 12:1 and 15:1. The film with a 

B:CA ratio of 15:1 exhibited the lowest Young’s modulus (0.38 MPa), while the highest 

Young’s modulus (1.05 MPa) was exhibited by the film with a B:CA ratio of 8:1. Thus, 

it can be inferred that increasing the PDMS B concentration in the film makes it more 

stretchable. However, the Young’s modulus of all four films lay within the estimated 

range of the Young’s modulus of human skin (7.2 kPa–17.9 MPa) described in chapter 

2. Thus, the PDMS film prepared using the method described in this chapter can be used 

to emulate skin stretch.  

The wet Ag/AgCl electrodes exhibited the maximum conductance within the ECG 

frequency range, followed by the dry Ag, CNT/PDMS and graphene/PDMS electrodes. 

A CNT/PDMS patch electrode with dimensions of 30 mm × 30 mm × 2 mm was 

developed to acquire ECG measurements in this study (see chapter 7). The average 
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conductance of the film in the ECG frequency range was 1 µS. The Young’s modulus 

of the film was found to be 1.3309 kPa, which is lower than the minimum Young’s 

modulus of skin. Hence, it can be inferred that the addition of CNTs to PDMS makes 

the film more stretchable, meaning it causes less restriction to skin stretch. The electrode 

thickness hardly affected the conductance. A slight change in conductance (at ECG 

frequencies) was observed on stretching the CNT/PDMS film up to a strain rate of 50% 

using a texture analyser. 
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CHAPTER 5 OPTICAL STRAIN MEASUREMENT SYSTEM 

 

5.1 INTRODUCTION 

This chapter introduces a novel technique to quantify skin stretch in terms of strains by 

using a video camera and infinitesimal strain theory. The objective of this part of the 

research was to analyse the strain field distribution due to skin stretch. A PDMS film 

was used to emulate skin stretch. The effect of PDMS stretching was approximated 

using a 2D strain analysis over a region of interest. The infinitesimal strain theory has 

been utilized to quantify stretching in terms of 2D strain distributions using point 

displacements in PDMS.  

The point displacements in PDMS were identified using an optical technique. A 

checkerboard pattern was printed on a PDMS film which was then stretched using a 

texture analyser. The movement of the film was video-recorded using a high speed 

camera. For each video frame, the movement of the corner points of the checkerboard 

squares from the first frame were identified and tracked. The motion tracking algorithm 

implemented to obtain the x-y coordinates of the corners of the checkerboard squares is 

discussed in detail in section 5.4.  

The implementation of this technique was validated with the stretch simulations carried 

out in SolidWorks (Dassault Systemes, Velizy-Villacoublay, France [242]). The effect 

of increase in thickness on 2D strain calculation using infinitesimal strain theory was 

also evaluated. Physical insight into strains can be obtained by decomposing them into 

normal and shear components. Finite strain theory is used to deal with arbitrarily large 

(finite) rigid-body displacements and rotations in elastomers, biological tissues and 

fluids [243]. Rigid-body motion does not contribute to strain field. This study requires 

the calculation of extensional and shearing deformations, therefore the use of 

infinitesimal strain theory is appropriate in this case.  

 

5.2 MATHEMATICAL APPROACH TO QUANTIFY SKIN STRETCH 

The infinitesimal strain theory is a mathematical approach in which the displacement of 

the material particles is considered to be smaller than any relevant dimension of the 
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body [244]. Estimation of the point strains can be achieved by defining a displacement 

field for a particular body deformation.  

Considering a small rectangular body PQRS with dimensions dx and dy, the coordinates 

of the body will be (x, y), (x+dx, y), (x, y+dy) and (x+dx, y+dy), as shown in Figure 5.1 

[245]. 

 

 

Figure 5.1: A body undergoing infinitesimal deformation [245]. 

 

Under the influence of a displacement vector 𝑃𝑃𝑃𝑃′ = 𝑆𝑆𝑥𝑥� + 𝑣𝑣𝑆𝑆� , the body PQRS deforms 

to P’Q’R’S’ with the following coordinates: 

 

𝑃𝑃′ =  (𝑥𝑥 + 𝑆𝑆,𝑆𝑆 + 𝑣𝑣)                                                                                                    (5.1) 

𝑄𝑄′ =  +
𝛿𝛿𝑆𝑆
𝛿𝛿𝑥𝑥

 𝑎𝑎𝑥𝑥,𝑆𝑆 + 𝑣𝑣 +
𝛿𝛿𝑣𝑣
𝛿𝛿𝑥𝑥

 𝑎𝑎𝑥𝑥)                                                           
(5.2) 
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𝑅𝑅′ = (𝑥𝑥 + 𝑆𝑆 +
𝛿𝛿𝑆𝑆
𝛿𝛿𝑆𝑆

 𝑎𝑎𝑆𝑆,𝑆𝑆 + 𝑣𝑣 +
𝛿𝛿𝑣𝑣
𝛿𝛿𝑆𝑆

 𝑎𝑎𝑆𝑆)                                                 
(5.3) 

 

𝑆𝑆′ =  (𝑥𝑥 + 𝑆𝑆 +
𝛿𝛿𝑆𝑆
𝛿𝛿𝑥𝑥

 𝑎𝑎𝑥𝑥 +
𝛿𝛿𝑆𝑆
𝛿𝛿𝑆𝑆

 𝑎𝑎𝑆𝑆, 𝑆𝑆 + 𝑣𝑣 +
𝛿𝛿𝑣𝑣
𝛿𝛿𝑥𝑥

 𝑎𝑎𝑥𝑥 +
𝛿𝛿𝑣𝑣
𝛿𝛿𝑆𝑆

 𝑎𝑎𝑆𝑆)        
(5.4) 

 The point strains can be determined from the displacements as: 

 

εx =
Q′x� − P′x�

dx
=

x + u + δu
δx  dx − (x + u)

dx
=
δu
δx

 
                   (5.5) 

𝜀𝜀𝑏𝑏 =
𝑅𝑅′𝑆𝑆 − 𝑃𝑃′𝑆𝑆�

𝑎𝑎𝑆𝑆
=
𝑆𝑆 + 𝑣𝑣 + 𝛿𝛿𝑣𝑣

𝛿𝛿𝑆𝑆  𝑎𝑎𝑆𝑆 − (𝑆𝑆 + 𝑣𝑣)

𝑎𝑎𝑆𝑆
=
𝛿𝛿𝑣𝑣
𝛿𝛿𝑆𝑆

 

                      (5.6) 

𝜀𝜀𝑥𝑥𝑏𝑏 =
 𝛿𝛿𝑆𝑆
𝛿𝛿𝑆𝑆

+
𝛿𝛿𝑣𝑣
𝛿𝛿𝑥𝑥

                       (5.7) 

 

where 𝜀𝜀𝑥𝑥 is the normal strain in x-direction, 𝜀𝜀𝑏𝑏 is the normal strain in y-plane and 𝜀𝜀𝑥𝑥𝑏𝑏 is 

the shear strain in xy-plane. The definition of the principal and shear strains for any 

rotational deformation 𝜃𝜃 can be expressed as [246]: 

𝜖𝜖𝜃𝜃 =
𝜖𝜖𝑥𝑥 + 𝜖𝜖𝑏𝑏

2
+

 𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏
2

𝐶𝐶𝑉𝑉𝑅𝑅[2𝜃𝜃] +  
1
2
𝜀𝜀𝑥𝑥𝑏𝑏𝑆𝑆𝑅𝑅𝑅𝑅[2𝜃𝜃]  (5.7) 

 

−1
2
𝛾𝛾𝜃𝜃 =

𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏
2

𝑆𝑆𝑅𝑅𝑅𝑅[2𝜃𝜃] −
1
2
𝜀𝜀𝑥𝑥𝑏𝑏𝐶𝐶𝑉𝑉𝑅𝑅[2𝜃𝜃]  (5.8) 

where  
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𝜃𝜃 =  
1
2

tan−1

𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏

�𝜀𝜀xy2 + (𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏)2

𝜀𝜀xy

�𝜀𝜀xy2 + (𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏)2

 

           (5.9) 

The principal strains are defined as the maximum and minimum strains for a purely 

rotational deformation. Thus, they have no shear component and can be expressed as: 

𝜖𝜖1,2 =
𝜖𝜖𝑥𝑥 + 𝜖𝜖𝑏𝑏

2
± ��

𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏
2

�
2

+ �
1
2
𝜀𝜀xy�

2

 
(5.10) 

The principal angle 𝜃𝜃𝑝𝑝 associated with principal strains is given by: 

   𝜃𝜃𝑝𝑝 =   
1
2
𝑅𝑅𝑅𝑅𝑅𝑅−1

𝜀𝜀𝑥𝑥𝑏𝑏
𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏

 (5.11) 

 

Also, the maximum shear strain (associated with the 45° angle to the principal strains) 

can be represented as: 

𝜖𝜖𝑥𝑥𝑏𝑏𝑐𝑐𝑎𝑎𝑥𝑥
2

= ��
𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏

2
�
2

+ �
𝜖𝜖𝑥𝑥𝑏𝑏
2
�
2

                                                                 
(5.12) 

 

𝜃𝜃𝑖𝑖 = −
1
2

tan−1 �
𝜖𝜖𝑥𝑥 − 𝜖𝜖𝑏𝑏
𝜀𝜀xy

� 
(5.13) 

  

where 𝜃𝜃𝑖𝑖 is the maximum shear angle. 

The above terms were used in the analysis of strains in different conditions. They 

parameterize in the form of a circle called Mohr’s circle, which is a widely used 

representation when performing a stress or strain analysis on a material body. The strain 
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equations (5.7) and (5.8) describe the locus of Mohr’s circle. It is essentially a 

parametric plot between 𝜖𝜖𝜃𝜃 and 1
2
𝛾𝛾𝜃𝜃 where the principal strains are located diametrically 

opposite on the horizontal axis, as shown in Figure 5.2 

 

Figure 5.2: Mohr’s circle for plane strain 

 

In this research it is desired to estimate the strain field over a region of skin. This can be 

carried out by assuming that small triangular elements cover the region and estimating 

the strains based on the displacements of the vertices. Consider a case where some 

random number of test points/nodes are marked on the skin. They may be triangulated 

using Delaunay triangulation [247]. Delaunay triangles are well shaped and connect 

points in the nearest neighbourhood and therefore Delaunay triangulation is useful in 

scattered data interpolation [248]. 

Each triangle can be considered as an element that can be represented by a single strain 

value, as illustrated in Figure 5.3. The overall strain for each element can be calculated 

at its centroid by applying infinitesimal strain theory [244] for three points (the vertices) 

undergoing relative displacement. 
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Figure 5.3: Set of points A, B and C on skin undergoing deformation, displaced at A’, B’ and 
C’. 

Assuming a triangular element ABC deforms to A’B’C’, the strain-displacement matrix 

can be defined using infinite strain theory as: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐴𝐴𝑥𝑥 − 𝐵𝐵𝑥𝑥 0

�𝐴𝐴𝑏𝑏 − 𝐵𝐵𝑏𝑏�
2

0 𝐴𝐴𝑏𝑏 − 𝐵𝐵𝑏𝑏
(𝐴𝐴𝑥𝑥 − 𝐵𝐵𝑥𝑥)

2

𝐵𝐵𝑥𝑥 − 𝐶𝐶𝑥𝑥 0
�𝐵𝐵𝑏𝑏 − 𝐶𝐶𝑏𝑏�

2

0 𝐵𝐵𝑏𝑏 − 𝐶𝐶𝑏𝑏
(𝐵𝐵𝑥𝑥 − 𝐶𝐶𝑥𝑥)

2

𝐶𝐶𝑥𝑥 − 𝐴𝐴𝑥𝑥 0
�𝐶𝐶𝑏𝑏 − 𝐴𝐴𝑏𝑏�

2

0 𝐶𝐶𝑏𝑏 − 𝐴𝐴𝑏𝑏
(𝐶𝐶𝑥𝑥 − 𝐴𝐴𝑥𝑥)

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝜀𝜀𝑥𝑥
𝜀𝜀𝑏𝑏
𝜀𝜀𝑥𝑥𝑏𝑏

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛥𝛥𝐴𝐴𝑥𝑥 − 𝛥𝛥𝐵𝐵𝑥𝑥
𝛥𝛥𝐴𝐴𝑏𝑏 − 𝛥𝛥𝐵𝐵𝑏𝑏
𝛥𝛥𝐵𝐵𝑥𝑥 − 𝛥𝛥𝐶𝐶𝑥𝑥
𝛥𝛥𝐵𝐵𝑏𝑏 − 𝛥𝛥𝐶𝐶𝑏𝑏
𝛥𝛥𝐶𝐶𝑥𝑥 − 𝛥𝛥𝐴𝐴𝑥𝑥
𝛥𝛥𝐶𝐶𝑏𝑏 − 𝛥𝛥𝐴𝐴𝑏𝑏⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

(5.14) 

 

where 𝐴𝐴 = (𝐴𝐴𝑥𝑥,𝐴𝐴𝑏𝑏) and likewise 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 & 𝜀𝜀𝑥𝑥𝑏𝑏 are normal strain components in x, y and 

shear x-y strains respectively.  

In order to apply this theory, it is necessary to identify points that move as the skin is 

stretched, so that the strain of the skin can be calculated. In this work the coordinates 
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for the initial positions (𝐴𝐴,𝐵𝐵,𝐶𝐶… ..) and the final positions (𝐴𝐴′,𝐵𝐵′,𝐶𝐶′… . . ) of the points 

were estimated using an optical device and the strain values (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏) were 

calculated from equation  

 

(5.14).  

Marking a set of points on the skin to measure skin stretch in terms of normal and shear 

strains would be difficult to implement considering the discomfort caused to the patient. 

In addition, the points marked on the skin would be covered by the ECG electrode, 

therefore they can’t be used to measure skin stretch under the ECG sensing site. Also, 

the ink used to mark the points may wash off after some time. 

This research circumvented these issues by printing a checkerboard pattern on the 

PDMS film electrode itself using screen printing. In the screen printing process, the 

screen, which usually consists of a piece of mesh made of synthetic polymer, is used to 

transfer ink onto the substrate [249]. In this case, a mesh with an aperture of 0.1 mm 

was used for fine printing. The mesh was mounted on a frame made of wood. A 

checkerboard pattern was printed on some part of the mesh using black silicone ink 

(Print-On, Raw Material Suppliers, California, USA), and the other parts of the mesh 

were made impermeable to the ink. The ink in the mesh openings was squeezed on the 

substrate using a blade or a squeegee. The ink was then allowed to dry out for 24 hours. 

Silicone ink was found to be one of few inks that permanently adhered to the silicone. 

Other conventional inks (water or oil based) were found to rub off easily. Silicone ink 

is used for printing on wristbands and swimming caps. It is safe to work with as it does 

not produce any dangerous fumes on heating. It cures at 121°–204°C in only 2–6 

minutes. It is easy to use, provides a robust adhesion and is water resistant and 

stretchable [250]. The dimensions of each square (black and white) in the checkerboard 

were 1 mm × 1 mm. 

 

5.3 PDMS STRETCH SIMULATION IN SOLIDWORKS® 

After printing, the PDMS stretch simulations were carried out in SolidWorks, where the 

PDMS was stretched in different directions. The special distributions of plane strain 
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components ε𝑥𝑥 , ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏 in response to the applied force were obtained and the 

simulations were validated experimentally. 

A thin PDMS film was modelled and simulated for strain measurements in SolidWorks. 

Since the study involved simulating displacement induced strains in a thin elastomer, 

the SolidWorks platform offered to be an appropriate choice, considering its efficient 

solver abilities.  

A film with dimensions of 30 mm × 30 mm × 2.5 mm was modelled, and custom 

material properties to mimic the mechanical properties of PDMS were assigned to the 

film, which are listed in Table 5.1 [251]. 

 

Table 5.1: Approximate material properties used to emulate PDMS. 

Material properties Value 

Elastic modulus 1 MPa 

Poisson's ratio 0.49 

Mass density 0.97 kg/m^3 

Tensile strength 2.24 MPa 

Thermal conductivity 0.15 (W/m-K) 

Specific heat 1.46 kJ/(kg·K) 

 

The structure was considered to be linearly elastic and isotropic over the range of 

expected motion. A static study was implemented to respond to small displacements 

within the elastomer geometry. The construction of any solid geometry in SolidWorks 

for static analysis requires defining structural restraints as boundary conditions. 
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A specified translation with respect to a specific plane and axis for a face, edge or vertex 

can be defined using reference geometry in SolidWorks [252]. The objective of this 

work was to analyse the strain induced in different parts of the elastomer due to 

stretching. Two types of fixtures were defined on the designed geometry. The top face 

of the film was translated by 1 mm in the upward direction (y-axis) by assigning it as 

reference geometry and the bottom face was fixed using fixed or immovable fixture. 

Two types of guided clamp pairs – curved and rectangular – were used for PDMS stretch 

simulation to induce different strain fields in the membrane (see Figure 5.4).  

 

 

Figure 5.4: Stretch simulation using curved and rectangular clamps. 

 

Finite element analysis (FEA) is a reliable numerical technique for analysing 

engineering designs. The process starts with the creation of a geometric model. This is 

followed by subdividing the model into small regions of simple shapes called elements 

which are connected via common points called nodes. The finite element method (FEM) 

predicts the behaviour of the model by combining the information obtained from all 

elements making up the model.  

Meshing is a crucial step in design analysis. The automatic mesher in SolidWorks 

generates a mesh based on a global element size, tolerance, and local mesh control 

specifications. Mesh control constrains the sizes of elements for components, faces, 

edges and vertices.  
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The software estimates a global element size for the model, taking into consideration its 

volume, surface area and other geometric details. The size of the generated mesh 

(number of nodes and elements) depends on the geometry and dimensions of the model, 

element size, mesh tolerance, mesh control and contact specifications. For a more 

accurate solution, a smaller element size was chosen in this study, as shown in Table 

5.2.  

Meshing generates 3D tetrahedral solid elements, 2D triangular shell elements and 1D 

beam elements [253]. A mesh consists of one type of element unless the mixed mesh 

type is specified. Solid meshes generate linear (draft quality) and parabolic (high 

quality) tetrahedral geometries, as represented in Figure 5.5. 

 

 

Figure 5.5: Solid mesh geometries [254]. 

 

Parabolic geometries are superior to linear geometries as they represent curved 

boundaries more accurately and produce better mathematical approximations. Shell 

elements are naturally suitable for modelling thin sheet metals, and beams and trusses 

are suitable for modelling structural membranes [253]. In this case, solid type meshing 

was performed using high quality geometry, as illustrated in Figure 5.6. 
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Figure 5.6: Meshing of PDMS using high quality solid meshing. 

 

When mesh quality is high, the “Jacobian points” setting controls the number of points 

to be used in checking the distortion level of high order tetrahedral elements. The 

tolerance can be adjusted to solve some meshing problems due to free edges. The 

platform offered two types of meshers: standard and curvature based. The standard 

mesher involves the use of a Voronoi-Delaunay meshing algorithm while the curvature 

based mesher is better suited for assigning more elements at the curves, especially in 

cases of volumetric meshing. The standard mesher option was therefore chosen for this 

analysis. The details of the generated mesh are listed in Table 5.2. 
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Table 5.2: Meshing parameters for PDMS stretch simulation. 

Mesh parameters Values 

Mesh type Solid mesh 

Mesher used Standard mesh 

Jacobian points 4 points 

Element size 2.16 mm 

Tolerance 1.067 mm 

Mesh quality High 

Total nodes 24, 530 

Total elements 14, 103 

 

Once the meshing model was defined, the next step was to run the study using an 

appropriate modelling solver. Modelling solvers are utilized to solve a large system of 

simultaneous equations quickly while using minimum time, disk space and memory 

requirements. The two solver options provided by SolidWorks are: 

1. The Direct Sparse solver 

2. The FFEPlus solver 

The Direct Sparse solver does not use approximations while solving a set of equations, 

therefore there are no errors associated with the solution process. On the other hand, the 

FFEPlus solver is an iterative solver that approximates a solution and calculates the 

associated errors. The iterations continue until the error is reduced to an acceptable level. 

Discretization errors are present in both iterative and direct solvers [255].  

While the answers given by both solvers are similar, speed and performance may differ 

depending on the type and size of the problem. For large and complex problems, the 

FFEPlus solver is more efficient than the direct solver [256]. 
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The PDMS stretch simulations in this case were performed for rectangular and curved 

clamps using the FFEPlus solver. The distribution of plane strain components 

ε𝑥𝑥, ε𝑏𝑏  and ε𝑥𝑥𝑏𝑏 in response to the applied displacement (1 mm translation in the upward 

direction) were obtained in this way. 

The infinitesimal strain theory equations discussed in section 5.2 are valid for 2D in-

plane analysis. This work investigated the effect of skin stretch prevalent through small 

surface displacements. Therefore, 2D strain analysis is justified by employing surface 

strain equations and ignoring any significant strain components in the z-plane. The 

analyses were subsequently validated by simulating a 3D model, including the effect of 

increasing PDMS film thickness on overall strain calculations (section 5.4).  

To examine the effect of localized perturbations in the film, a bi-axial prescribed 

displacement force (0.04 mm, 0.001 mm) was applied at the bottom-left corner of a thin 

PDMS film of dimensions of 30 mm × by30 mm in SolidWorks, as seen in Figure 5.7. 

 

 

 

Figure 5.7: PDMS stretch application on a circular region at the bottom left corner in 
SolidWorks. 

 

A set of 500 data points (nodes) from SolidWorks was imported in MATLAB for strain 

calculation using Delaunay triangulation and the infinitesimal strain theory equations. 

The simulations were performed for various thickness of the film. The mean values of 

the strain field distribution (ε𝑥𝑥, ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏) were evaluated in SolidWorks and 

MATLAB for five thicknesses: 1 mm, 5 mm, 10 mm, 15 mm and 20 mm. The error 
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plots exhibiting the difference between the strain values derived from SolidWorks and 

MATLAB, computed at different thicknesses of the simulated PDMS film, are shown 

in section 5.5. 

 

5.4 EXPERIMENTAL VALIDATION 

To validate the simulations discussed in section 5.3, experiments were performed on a 

thin PDMS patch of the same dimensions used in the SolidWorks simulation. A 

checkerboard pattern was inked on the PDMS patch which was then subjected to tensile 

testing using a texture analyser. The preparation and printing of the PDMS patch was 

described in section 5.2. The tensile tests were conducted at a speed of 0.5 mm/s, using 

rectangular and curved clamps (as shown in Figure 5.8) to mimic the simulation studies 

in section 5.3. 

 

 

Figure 5.8: Use of rectangular and curved clamps to conduct tensile tests. 

 

The vertical displacement of the PDMS sample after being subjected to a tension-

relaxation test for 13 seconds was recorded using the rear camera of an iPad Air at 720p 
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HD, 120 fps, with a sensor of 1.12 µm pixel pitch and aperture size of f/2.4. The frames 

targeted the node points of the checkerboard pattern undergoing stretch and relaxation 

throughout the test. The pattern selection allowed for a symmetrical analysis of node 

points. Due to the high video recording rate (120 fps), around 1600 frames were acquired 

from 13 seconds of test duration. To reduce computational demands, and taking into 

consideration the slow strain rates, every 25th frame was compared with its 

corresponding down-sampled value from the texture analyser readings, a more complete 

description is available in [99].  

Initially, all the frames were filtered, sharpened and cropped in Photoshop CC (Adobe, 

California, USA) [257]. Corner points were identified using the Harris-Stephens 

algorithm in MATLAB and their movement was tracked over consecutive frames. 

Following identification of corner points in each frame, the displacements of points in 

consecutive frames was estimated by two methods. First, the Point Tracker feature in 

MATLAB employs the Kanade-Lucas-Tomasi (KLT) algorithm which works well for 

video stabilization, camera motion estimation and object tracking. However, this tracker 

works satisfactorily only for short range tracking [258]. It was found that KLT offered 

effective tracking for small displacements between the points in consecutive frames, but 

there were some unavoidable errors in the case of medium to large displacements 

propagated over time. Another confounding factor was the need to re-initialize the 

tracker periodically. Consequently, an alternative point matching method was developed 

based on Euclidean distance point mapping. The Euclidean distance method was applied 

to match points from the initial frame to the next frame by considering the minimum 

projected distance between them. This was achieved by choosing the least distance 

between two points in consecutive frames to be a mapped pair [99]. The corners for both 

black and white squares were tracked for each frame as seen in Figure 5.9. 

Changes in ambient lighting conditions proved to be confounding factors in efficient 

motion tracking of the PDMS. Nevertheless, the displacements of the points from their 

initial positions were computed and the three components of strain 

( ε𝑥𝑥, ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏) were calculated using the three points on each triangle via equation  

 

(5.14). The strains were attributed to the incentres of the triangles formed by Delaunay 

triangulation, as shown in Figure 5.10. 
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Figure 5.9: Motion tracking from first frame using Euclidean distance mapping. 

 

 

Figure 5.10: Delaunay triangulation using the checkerboard corner points. 

 

5.5 RESULTS 

The results obtained by interpolating strains due to PDMS translation by texture 

analyser were found to be in good agreement with the strain distribution (ε𝑥𝑥, ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏) 

over the plane of PDMS in SolidWorks. The strain distributions in the x, y and xy planes 

using rectangular clamps are compared in Figures 5.11-5.13 respectively. 
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Figure 5.11: Strain distribution in  𝜀𝜀𝑥𝑥 for PDMS stretch simulation in SolidWorks (left) and 
PDMS translation by texture analyser (right) using rectangular clamps 

 

 

Figure 5.12: Strain distribution in  𝜀𝜀𝑏𝑏 for PDMS stretch simulation in SolidWorks (left) and 
PDMS translation by texture analyser (right) using rectangular clamps 
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Figure 5.13: Strain distribution in  𝜀𝜀𝑥𝑥𝑏𝑏 for PDMS stretch simulation in SolidWorks (left) and 
PDMS translation by texture analyser (right) using rectangular clamps 

 

The strain distributions in the x, y and xy planes using curved or semi-circular clamps 

are shown in Figures 5.14-5.16 respectively. 

 

Figure 5.14: Strain distribution in  𝜀𝜀𝑥𝑥 for PDMS stretch simulation in SolidWorks (left) and 
PDMS translation by texture analyser (right) using curved clamps 
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Figure 5.15: Strain distribution in  𝜀𝜀𝑏𝑏 for PDMS stretch simulation in SolidWorks ( left) and 
PDMS translation by texture analyser (right) using curved clamps 

 

 

Figure 5.16: Strain distribution in  𝜀𝜀𝑥𝑥𝑏𝑏 for PDMS stretch simulation in SolidWorks (left) and 
PDMS translation by texture analyser (right) using curved clamps 

 

The difference in mean strains ε𝑥𝑥, ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏 due to the application of a bi-axial 

displacement force on a PDMS film in SolidWorks and MATLAB (as discussed in 

section 5.3) for different film thicknesses can be seen in Figure 5.17.  
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Figure 5.17: Strain differences/errors (𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑏𝑏 & 𝜀𝜀𝑥𝑥𝑏𝑏) as a function of thickness 

 

5.6 DISCUSSION 

The strain distribution for rectangular and circular clamps can be clearly differentiated 

in the above results. In the strain profiles for rectangular clamps (Figure 5.11–5.13) a 

uniform distribution of stretch induced strains can be observed for all three strain 

components. This is due to the equal transmission of stretch along the edge of the clamps 

with a monotonically increasing displacement as it is transmitted to the bottom fixture. 

In contrast, the strain distributions for circular clamps (Figure 5.14–5.16) show a radial 

spread throughout the film’s geometry. In this case, the intensity of induced strain is 

centralized and decreases uniformly along the edges. The maximum strain is observed 

in the region with the minimum gap between the clamps and decreases as the gap 

increases with curvature.  

It was expected that the uniformity of strain fields while performing image processing 

on the measurements obtained from the texture analyser could have been compromised 

due to errors in fiducial point identification, the interpolation of data using the Delaunay 

triangulation and mathematical equations. However, the results revealed very similar 

variations in strain distributions, which confirmed the approach and the parameters used 

in this study. 

The efficacy of 2D strain theory was also tested for different PDMS film thicknesses. 

The increase in error with thickness was expected since the analysis technique used 

focused on the 2D strains in the plane of PDMS, considering it to be a planar film. With 

an increase in thickness, the assumed strain distribution and equations become less 

appropriate and therefore deviations from the expected values were observed, as shown 

in Figure 5.17. 
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5.7 SUMMARY 

This chapter has investigated the ability of an optical strain measurement system to 

estimate the strain field resulting from the stretching of PDMS electrodes. This work 

was motivated by the desire to eliminate skin stretch induced motion artefacts from ECG 

signals. A novel technique for measuring skin stretch in terms of 2D strains was 

described which employs an optical sensor and infinitesimal strain theory in MATLAB. 

A PDMS film with dimensions of 30 mm ×by 30 mm × and a thickness of 2.5 mm was 

modelled by defining the material properties of PDMS in SolidWorks. The stretch 

simulations were carried out by clamping the PDMS film between rectangular and 

curved clamps. In both cases, the PDMS was stretched/translated upwards by 1 mm to 

analyse the strain distributions ε𝑥𝑥 , ε𝑏𝑏 and ε𝑥𝑥𝑏𝑏 under different circumstances. 

The results were experimentally validated by stretching a PDMS film of the same 

dimensions using a texture analyser and by applying similar boundary conditions. 

Videos capturing the movement of the PDMS film held between rectangular and curved 

clamps were acquired. Image processing techniques were employed to compute the 

strain fields due to 1 mm upward translation of the PDMS film using a texture analyser. 

The experimental results obtained from the tensile testing of PDMS patches were in 

good agreement with the results obtained from the FEA simulation in SolidWorks. An 

additional objective of this study was to analyse the effect of increasing thickness of 

PDMS films on 2D strain calculations. As expected, the accuracy was observed to 

decrease with increasing the thickness of the film.  
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CHAPTER 6 A PILOT STUDY ON ECG MOTION 

ARTEFACT REJECTION  

 

6.1 INTRODUCTION 

In chapter 5, a novel technique to estimate motion artefact from ECG signals using a 

video camera and infinitesimal strain theory equations has been discussed. This chapter 

describes the use of non-uniform strain field pertaining to skin stretch to reduce motion 

artefacts from the ECG measurements. Skin stretch was quantified in terms of normal 

and shear strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏) and used to remove motion artefacts from ECG signals 

through Principal Component Analysis (PCA) and Independent Component Analysis 

(ICA). 

Different types of movement artefacts were induced in the left arm of a human subject 

(age group 18-35 years) by back & forth movement, opening and closing fist and 

rotating wrist clockwise and anticlockwise. A video camera was used to track the skin 

stretch under the ECG electrode as a 2-dimensional strain field. The objective of 

evaluating normal and shear strains was accomplished by mathematically relating them 

to the displacement of an infinitesimal particle due to skin stretch. The concept behind 

PCA and ICA has been explained and the results obtained after their implementation on 

noisy ECG have been illustrated. Although PCA and ICA algorithms are used 

extensively in the field of biomedical engineering, the main motive of this work is to 

incorporate the use of strains in the algorithms to remove motion artefacts from ECG. 

Therefore, a new state-of-the-art algorithm has been devised by implementing PCA and 

ICA along with skin stretch information.  

 

6.2 MATERIALS AND METHODS 

An ECG measurement was acquired from a subject for 10 seconds using a PhysioFlow 

PF05 L1 (Manatec Biomedical, Paris, France) through a National Instruments data 

acquisition board (NI-DAQ, Texas, USA).  

Standard Ag/AgCl electrodes were placed close to the radial artery on the palmar sides 

of both forearms. The experiments were conducted by generating different kinds of 
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motion artefacts in the arm. Three types of motion were accounted for in this study: a) 

continuous back and forth movement of the arm, b) opening hand and closing fist 

continuously, and c) rotating wrist clockwise and anticlockwise (see Figure 6.1).  

 

Figure 6.1: Movements induced in arm by back and forth movement, opening and closing fist 
and rotating wrist clockwise and anticlockwise 

 

Motion artefacts were induced in the left forearm of the subject, while the right forearm 

was kept stable. A PDMS patch of dimensions 30 mm ×x 30 mm ×x 2.5 mm with 

similar elasticity to skin was adhered to the arm in the vicinity of the ECG electrode 

using polyvinyl alcohol (PVA) adhesive. The movement of the patch during the ECG 

measurement was recorded using a video camera with a resolution of 1920 × 1080 

pixels at 25 fps. The PDMS patch had a checkerboard pattern printed on it to identify 

the corner points of the checker boxes, as shown Figure 6.1. The movement of the patch 

was quantified by calculating mean values of normal and shear strain 

components (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏) over each frame using infinitesimal strain theory by using 

the method described in chapter 5 (section 5.4). 

A flowchart describing the quantification of motion artefact from an ECG signal is given 

in Figure 6.2. 
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Figure 6.2: Flowchart representing the quantification of ECG motion artefact. 

 

The recorded motion signal was processed using image processing and point tracking. 

The motion artefacts were calculated using infinitesimal strain equations. The video was 

recorded for 10 seconds at 25 fps. Plots of normal and shear strains against time can be 

seen in section 6.5. After the quantification of motion artefacts, the next step involved 

their elimination from the ECG. The motion artefacts were removed from the ECG 

signal using PCA and ICA, as discussed in the following sections. 

 

6.3 MOTION ARTEFACT REJECTION USING PCA IN MATLAB 

PCA is a statistical measure that employs affine transformation to convert a set of 

correlated values into a set of orthogonal linearly uncorrelated values. PCA is performed 

by eigenvalue decomposition of the data after mean centring each data element. The 

first step of PCA involves the calculation of the mean of each element of the data set 

followed by the evaluation of their deviation from the mean:  

𝑋𝑋� = 𝑋𝑋 −  𝑋𝑋�       

 

(6.1) 

where 𝑋𝑋 is the input data matrix needed to be filtered.  



123 
 

Baseline wandering of the ECG signal was removed by implementing zero-phase digital 

filtering in MATLAB [259] using the ‘filtfilt’ function, as seen in Figure 6.3. 

 

Figure 6.3: Acquired ECG signal (in green) and ECG after baseline removal (in red). 

 

This was achieved by processing the data in both forward and reverse directions [260]. 

The filter coefficients 𝛼𝛼 and 𝛽𝛽 were evaluated using the butterworth filter through the 

following equations [261] [262]. 

𝛼𝛼 =
�1 − 𝐿𝐿 × cos(2𝜋𝜋𝑓𝑓𝑐𝑐) − �2 × 𝐿𝐿 × (1 − cos (2𝜋𝜋𝑓𝑓𝑐𝑐) − 𝐿𝐿2 × sin (2𝜋𝜋𝑓𝑓𝑐𝑐)22 �

1 − 𝐿𝐿
 

(6.2) 

𝛽𝛽 = 1 − 𝛼𝛼   (6.3) 

 

where 𝐿𝐿 = 0.707 for the cut-off frequency and 𝑓𝑓𝑐𝑐 is the normalized frequency for the 

power supply interference at 50 Hz.  

One method of employing PCA for the elimination of motion artefacts from the ECG 

involves acquiring multiple ECG measurements through different leads at the same 

time, and by taking each ECG measurement as an independent data set [263].  

In this study, the ECG signals with motion artefacts were acquired using one lead of the 

ECG measurement system. Each segmented beat of the measured ECG was considered 



124 
 

a separate data vector [264]. A data matrix was formulated using repetitions of a unit 

beat data set for all the ECG beats, consisting of one column containing the samples 

from one ECG beat followed by three columns for each of the corresponding 

strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏. For example, if the number of beats in an ECG measurement was 

20, then the data set included 20 columns of ECG beats and 20 columns each of 

𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏, corresponding to the respective ECG beats.  

Another case, in which the ECG signal was not segmented into beats, is investigated in 

chapter 7. In this approach, the data set comprised four columns where the first column 

contained all the ECG samples and the other three columns for each of the corresponding 

strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏, calculated as the mean strain for all elements in the region.  

In order to segment the beats, it is important to find a fiducial point. A fiducial point 

must be determined so that the exact segment location within the beat can be defined 

[263]. PCA on the ECG signal was performed here by R peak detection and beat 

segmentation. Each beat of the ECG signal constituting an R to R interval was 

segmented and used as an independent vector in the data matrix. Figure 6.4 illustrates a 

typical ECG with fiducial points identified as R peaks (green dots).  

 

Figure 6.4: R peak detection and ECG beat segregation. 

The R peak detection was performed in MATLAB using a max-min search employed 

on several windows of the ECG data. Each sample was checked for an absolute maxima 

or minima in a certain range of a potential window, where the range was approximated 

using the ECG beat rate. This is similar to the method employed by Sameni et al. (in 

2006) [262]. 
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Segmentation was followed by the covariance matrix calculation. Covariance is always 

measured between two dimensions. Covariance of two sets of data points is a measure 

of their variance from the mean with respect to each other [265]. The mathematical 

equation for finding the covariance between two data sets X and Y, having n number of 

elements is: 

𝑅𝑅𝑉𝑉𝑣𝑣(𝑋𝑋,𝑌𝑌) = Σ𝑖𝑖=1𝑛𝑛 (𝑋𝑋𝑖𝑖 − 𝑋𝑋)(𝑌𝑌𝑖𝑖 − 𝑌𝑌) (𝑅𝑅 − 1)   ⁄  (6.4) 

In this case, the covariance between the ECG data and the quantified strains (which is 

assumed to relate to ECG motion artefacts) was calculated.  

The next step involves the calculation of the eigenvectors and eigenvalues. Each 

component of the data set contains new information about the data set. The data set is 

ordered in a way so that the first few components account for the most variability [263]. 

An eigenvector is essentially a non-zero vector which does not change its direction on 

application of a linear transformation. Interestingly, only square matrices can have 

eigenvectors and not all square matrices have eigenvectors. Eigenvalues and 

eigenvectors always come in pairs. The eigenvalues and eigenvectors are calculated by 

solving the equation below. 

(𝑋𝑋 − 𝐼𝐼𝐼𝐼).𝐸𝐸 = 0 (6.5) 

where 𝑋𝑋 is the input data matrix, 𝐼𝐼 contains the eigenvalues, 𝐼𝐼 is the identity matrix and 

𝐸𝐸 is the eigenvector. The value by which the eigenvector is scaled on multiplication 

with the transformation matrix is called the eigenvalue. Once the eigenvectors are found, 

they are ordered with respect to eigenvalue from highest to lowest. In this way, the 

components are arranged in order of significance. The components of lower significance 

can then be ignored. The next step is to multiply the significant or chosen eigenvectors 

with the original data set. The number of eigenvectors is always equal to the number of 

data sets. Here, the first two most significant eigenvectors were chosen and multiplied 

with the data set. The mean values were then added back to the data set and the ECG 

signal was reconstructed as shown below. 

𝑌𝑌 = 𝐼𝐼𝑖𝑖𝑋𝑋                                                (6.6) 
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𝑋𝑋𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟 = 𝑌𝑌 + 𝑋𝑋�                            (6.7) 

where 𝐼𝐼𝑖𝑖 constitutes two most significant eigenvectors and 𝑋𝑋𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟 is the ECG obtained 

after PCA filtering. 

A flow chart to illustrate the application of PCA is shown in Figure 6.5. 

  

 

The number of eigenvectors is always equal to the number of data sets. In Figure 6.6, a 

comparison between an ECG signal with motion artefacts, an ECG signal with PCA 

filtering without using strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏, and an ECG signal with PCA filtering 

using those strains can be observed. 

 

 

 

Discard the 
unwanted 
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and multiply 
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eigenvector. 

Add mean to 
the data 

matrix and 
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the ECG 
signal. 

Arrange 
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and 
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Figure 6.5: Flow chart representing the steps employed in the working of PCA 
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Figure 6.6: (A) Original ECG signal with motion artefacts; (B) PCA filtering of (A) through 
beat segmentation without using strains; (C) PCA filtering of (A) through beat segmentation 

by using strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏 (in red) 

 

The ECG measurements were obtained using the method discussed in section 6.2. From 

Figure 6.6A, it can be noted that the ECG signal that was affected by arm movement led 

to an abnormally inverted T wave, highlighted by a solid circle between 3 and 4 seconds. 

This could lead to the wrong diagnosis of cardiac instability (e.g., ventricular 

hypertrophy, pulmonary embolism, etc.) [266]. Therefore, it is necessary to filter out the 

artefacts generated in the signal due to movement of the patient.  

On filtering the signal using PCA without strains, the direction of the T wave remained 

unchanged (see Figure 6.6B). On the other hand, the direction of the T wave was 

reversed, and was the same as that of the QRS complex, when PCA was performed using 

strains (see Figure 6.6C). Also, the amplitude of the R peaks was significantly increased 

(highlighted by a dotted circle between 6 and 7 seconds) on execution of PCA using 

motion information.  

 



128 
 

6.4 MOTION ARTEFACT REJECTION USING ICA IN MATLAB 

ICA is a method through which a multivariate signal can be separated into statistically 

independent components [267]–[269]. A fundamental feature of ICA is that the 

independent components are non-Gaussian signals. Like PCA, ICA of ECG signals can 

be done by either taking segmented beats as independent columns of data sets or by 

obtaining ECG through different leads at the same time. A flow chart explaining the 

process involved in ICA appears in Figure 6.7. A statistical ‘latent variables’ method 

was used to rigorously define ICA [127]. 

 

Consider a matrix X such that  𝑥𝑥1 … . . 𝑥𝑥𝑛𝑛  are independent vectors of n linear mixtures.  

X is a mixture of A and S such that X=AS, where S is the source signal and A is a 
noise related parameter.  Like X the matrices A and S have independent vectors 
𝑅𝑅1 … .𝑅𝑅𝑛𝑛 and  𝑅𝑅1 … . . 𝑅𝑅𝑛𝑛  respectively.  Therefore, X = (𝑅𝑅1 … .𝑅𝑅𝑛𝑛) ( 𝑅𝑅1 … . . 𝑅𝑅𝑛𝑛). 

Both A and S are unknown matrices which can be calculated from the known matrix 
X.  

After the estimation of mixing matrix ‘A’, its inverse ‘W’ is calculated and thereby 
independent components are calculated as S=WX. 

 

A is referred as a mixing matrix and is assumed to be a square matrix for simplicity. 

 

Figure 6.7: Flowchart representing the procedure involved in ICA 
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For ICA analysis, a linear mixture of n independent components 𝑅𝑅1 … . . 𝑅𝑅𝑛𝑛 can be defined 

as: 

𝑥𝑥𝑗𝑗 = 𝑅𝑅𝑗𝑗1𝑅𝑅1 + 𝑅𝑅𝑗𝑗2𝑅𝑅2 + ⋯𝑅𝑅𝑗𝑗𝑛𝑛𝑅𝑅𝑛𝑛 (6.8) 

where xj holds for all j. Here, all the variables are random variables and have a zero 

mean. In the matrix notation, this can be defined as: 

𝑋𝑋 = 𝐴𝐴. 𝑆𝑆                           (6.9) 

where A is the matrix of 𝑅𝑅𝑗𝑗1 … .𝑅𝑅𝑗𝑗𝑛𝑛 and S of 𝑅𝑅1 … . . 𝑅𝑅𝑛𝑛. A defines the matrix composed 

of different mixing weights to the independent signals and is therefore termed the 

mixing matrix. The independent components can be obtained through processing the 

inverse of mixing matrix A with the mixture, as in the following equation: 

𝑆𝑆 = 𝑊𝑊.𝑋𝑋                                                                                             (6.10) 

where W is estimated with the knowledge of A and equals its inverse. 

The mixing matrix A can be calculated using different approaches in ICA. Here the 

JADE algorithm [270]–[272] was used to remove motion artefacts from the ECG signal 

using beat segmentation and the strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏. The first step in the JADE 

algorithm involves mean centring and whitening of the data using PCA. The data matrix 

is ordered in the order of decreasing eigenvalues. Before discussing the equations 

involved in JADE algorithm, it is important to understand the concept of cumulant 

matrices.  

In probability theory, cumulant matrices are used to provide information about the set 

of possible moments of distribution [273]. JADE can be defined as a blind source 

separation method involving fourth-order cumulant tensors [127]. The first, second and 

third order cumulants are the mean, the variance and the central moment respectively. 

The fourth and higher order cumulants are not equal to central moments [273]. 

Therefore, in order to make the independent components non-Gaussian, a fourth order 

cumulant matrix is derived in ICA. The fourth order cumulant [127], also called kurtosis, 

can be calculated using: 
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𝐿𝐿𝑆𝑆𝑐𝑐𝑅𝑅(𝑋𝑋) = 𝐸𝐸{𝑋𝑋4} − 3(𝐸𝐸{𝑋𝑋2})2                                            (6.11) 

X corresponds to the data set constituting the ECG beats and their corresponding strains. 

The JADE algorithm involves the calculation of auto-cumulant and cross-cumulant 

matrices using equation (6.10). The auto-cumulant is calculated for each independent 

vector and the cross-cumulant is calculated between at least two independent vectors. If 

x1 and x2 are two independent vectors of data set X, then the theoretical analysis of 

kurtosis can be simplified based on its linear additive property, as shown in equation 

(6.12) [127]. 

𝐿𝐿𝑆𝑆𝑐𝑐𝑅𝑅(𝑥𝑥1 + 𝑥𝑥2) = 𝐿𝐿𝑆𝑆𝑐𝑐𝑅𝑅(𝑥𝑥1) + 𝐿𝐿𝑆𝑆𝑐𝑐𝑅𝑅(𝑥𝑥2)                          (6.12) 

After finding the cumulant matrix, a joint diagonalization or orthogonal rotation of the 

matrix is performed to find the mixing matrix A. A mathematical implementation of ICA 

using the JADE algorithm can be explained through the following equations.  

First, the data matrix needs to be pre-processed by subtracting its mean value 𝑋𝑋 � , as 

shown in equation (6.13). 

𝑋𝑋� = 𝑋𝑋 −  𝑋𝑋�                                      (6.13) 

The next step involves data whitened using PCA, which is performed to normalise the 

data containing ECG and strains, as shown in equation (6.14). Whitening was performed 

using eigenvalue decomposition of the covariant matrix 𝑉𝑉𝐷𝐷𝑉𝑉𝑇𝑇. D is a diagonal matrix 

with the corresponding eigenvalues. The whitening is done by multiplication of 𝑋𝑋� with 

the transformation matrix P , as shown in equation (6.15) [274]. 

𝑃𝑃 = 𝑉𝑉.𝐷𝐷−1/2.𝑉𝑉𝑇𝑇                                 (6.14) 

𝑍𝑍 = 𝑃𝑃.  𝑋𝑋�     (6.15) 

 

The fourth order expectation E of the cumulants of the whitened matrix 𝑍𝑍 having four 

signals 𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗 , 𝑧𝑧𝑘𝑘 & 𝑧𝑧𝑟𝑟  is calculated by solving equation (6.16) [275]. 
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𝑅𝑅𝑆𝑆𝑏𝑏�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗 , 𝑧𝑧𝑘𝑘, 𝑧𝑧𝑟𝑟�

= 𝐸𝐸�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗 , 𝑧𝑧𝑘𝑘, 𝑧𝑧𝑟𝑟� − 𝐸𝐸�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗�𝐸𝐸[𝑧𝑧𝑘𝑘, 𝑧𝑧𝑟𝑟] − 𝐸𝐸[𝑧𝑧𝑖𝑖, 𝑧𝑧𝑘𝑘]𝐸𝐸�𝑧𝑧𝑗𝑗 , 𝑧𝑧𝑟𝑟�

− 𝐸𝐸[𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑟𝑟]𝐸𝐸�𝑧𝑧𝑗𝑗, 𝑧𝑧𝑘𝑘� 

(6.16) 

All the fourth order auto-cumulants AC and cross-cumulants CC were calculated using 

mathematical equations in MATLAB, as described in the equations below [276].  

𝐴𝐴𝐶𝐶 = ∑ ( 𝑍𝑍𝑖𝑖2 .𝑍𝑍 .𝑍𝑍𝑇𝑇)/𝑅𝑅𝑐𝑐
𝑖𝑖=1 − 𝐼𝐼𝑐𝑐 − 2. 𝐼𝐼𝑖𝑖. 𝐼𝐼𝑖𝑖𝑇𝑇                  (6.17) 

𝐶𝐶𝐶𝐶 = √2 × ∑ 𝑍𝑍𝑖𝑖.𝑍𝑍𝑗𝑗.𝑍𝑍𝑇𝑇

𝑛𝑛
𝑖𝑖−1
𝑗𝑗=1 − 𝐼𝐼𝑖𝑖 . 𝐼𝐼𝑗𝑗𝑇𝑇 − 𝐼𝐼𝑗𝑗 . 𝐼𝐼𝑖𝑖𝑇𝑇                                   (6.18) 

 

where m is the number of data sets, n is the size of each data set and I is the identity matrix.  

 

The cumulants were stored in a matrix C of size m × t (as seen in equation (6.19)), where 

t is the total number of cumulants �𝑅𝑅 = 𝑏𝑏2 × �𝑐𝑐+1
2
��. 

𝐶𝐶 = (𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 … … . .𝐶𝐶𝑡𝑡)                                                    (6.19)               

 

The auto-cumulants are the diagonal elements, while the cross-cumulants are the non-

diagonal elements of matrix C.  

A joint diagonalization or orthogonal rotation of matrix C was performed using Given’s 

(or Jacobi’s) rotation [125]. A step by step procedure involving the orthogonal 

diagonalization of the cumulant matrix is explained in the following equations. 

Initially, an approximate diagonalization was performed by estimating the eigenvalue 𝑉𝑉 

and by reshaping the cumulant matrix 𝐶𝐶 as 𝐶𝐶𝑀𝑀 in MATLAB. 

𝑉𝑉 = 𝑅𝑅𝑅𝑅𝑉𝑉(𝐶𝐶)        (6.20) 

𝐶𝐶𝑀𝑀 = 𝑉𝑉𝑇𝑇 .𝐶𝐶 (6.21) 
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The Given’s rotation matrix 𝐺𝐺𝑀𝑀 was computed by calculating the rotation angle 𝜃𝜃 to 

make the diagonalized matrix 𝐶𝐶𝑀𝑀 orthogonal.  

The Given’s rotation parameters 𝐺𝐺, 𝑞𝑞 and 𝑐𝑐 were evaluated using the information in the 

cumulant matrix 𝐶𝐶𝑀𝑀.  

𝐺𝐺 = ∑ ∑ �
∑ 𝐶𝐶𝑀𝑀𝑡𝑡
𝑟𝑟=𝑗𝑗+𝑐𝑐 𝑗𝑗𝑟𝑟

− ∑ 𝐶𝐶𝑀𝑀𝑘𝑘𝑟𝑟
𝑡𝑡
𝑟𝑟=𝑘𝑘+𝑐𝑐

∑ 𝐶𝐶𝑀𝑀𝑗𝑗𝑟𝑟𝑡𝑡
𝑟𝑟=𝑘𝑘+𝑐𝑐 + ∑ 𝐶𝐶𝑀𝑀𝑘𝑘𝑟𝑟

𝑡𝑡
𝑟𝑟=𝑗𝑗+𝑐𝑐

�𝑐𝑐
𝑘𝑘=𝑗𝑗+1

𝑐𝑐−1
𝑗𝑗=1                                               (6.22) 

𝑞𝑞 = (𝐺𝐺 ∗ 𝐺𝐺𝑇𝑇)(1,2) + (𝐺𝐺 ∗ 𝐺𝐺𝑇𝑇)(2,1)                                       (6.23) 

𝑐𝑐 = (𝐺𝐺 ∗ 𝐺𝐺𝑇𝑇)(1,1) + (𝐺𝐺 ∗ 𝐺𝐺𝑇𝑇)(2,2)             (6.24) 

The rotation angle 𝜃𝜃 has been calculated using the Given’s rotation parameters as: 

𝜃𝜃 =   𝑞𝑞
𝑟𝑟+�𝑟𝑟2+𝑞𝑞2

          (6.25) 

        

𝐺𝐺𝑀𝑀 was calculated using 𝜃𝜃 as: 

𝐺𝐺𝑀𝑀 = �
𝑅𝑅𝑉𝑉𝑅𝑅 (𝜃𝜃) −𝑅𝑅𝑅𝑅𝑅𝑅 (𝜃𝜃)
𝑅𝑅𝑅𝑅𝑅𝑅 (𝜃𝜃) 𝑅𝑅𝑉𝑉𝑅𝑅 (𝜃𝜃) �                                        

(6.26) 

      

The orthogonal joint diagonalization was performed by updating the eigen matrix 𝑉𝑉 

from equation (6.27) using 𝐺𝐺𝑀𝑀 as: 

𝐶𝐶𝑀𝑀𝑏𝑏𝑖𝑖𝑎𝑎𝐴𝐴 = 𝑉𝑉.𝐺𝐺𝑀𝑀                         (6.27) 

The mixing matrix 𝐴𝐴 was calculated by multiplying 𝐶𝐶𝑀𝑀𝑏𝑏𝑖𝑖𝑎𝑎𝐴𝐴 with the whitened data 𝑍𝑍 in 

equation (6.28): 

𝐴𝐴 =  𝐶𝐶𝑀𝑀𝑏𝑏𝑖𝑖𝑎𝑎𝐴𝐴.𝑍𝑍          (6.28) 
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The first column of the mixing matrix 𝐴𝐴 showed the highest correlation with the ECG 

signal. Therefore, only the first column of 𝐴𝐴 was multiplied with the acquired ECG 

signal in matrix 𝑋𝑋 to obtain an ECG signal without motion artefacts in matrix 𝑆𝑆 by using 

equation (6.9). 

The steps involved in the JADE algorithm to calculate the mixing matrix 𝐴𝐴 and the 

source signal 𝑆𝑆 are shown in the flow chart in Figure 6.8.  

 

 

Figure 6.8: Steps involved in the JADE algorithm. 

 

In the following section, a critical analysis of the results obtained after the 

implementation of PCA and ICA algorithms on the ECG is presented. 

ECG data 
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Mean Centering
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Finding Auto 
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Joint 
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6.5 RESULTS AND DISCUSSION 

As discussed in section 6.2, three different kinds of motion artefacts were induced in the 

arm by back and forth movement, opening and closing the fist, and rotating the wrist 

clockwise and anticlockwise. The strain plots obtained by inducing back and forth arm 

movement are shown in Figure 6.9. 

It can be observed that the strain values lie within 0.02 and 0.07, which is a plausible 

range of strain for skin under these conditions. Signal fluctuations corresponding to the 

pseudo-periodic motion of the arm can also be observed.  

 

 

Figure 6.9: Plots of normal and shear strain components against time 

 

The vector plots representing the change in position of the checkerboard corners of the 

corresponding frame from the first frame of reference can be seen for frames 55, 56 and 

57 in Figure 6.10. The direction of the arrows represents the direction in which the points 
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moved. The strain vectors (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏) evaluated from the vector points are mapped 

onto the incentres of the Delaunay triangles for each frame as described in chapter 5. 

Strain contour plots of the respective frames corresponding to the vector plots are shown 

in Figures 6.11 to 6.13.  

 

 

Figure 6.10: PDMS patch adhered to the arm and displacement vectors from the first frame.  
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Figure 6.11: Contour plots showing change in normal strain 𝜀𝜀𝑥𝑥 with change in displacement 

 

 

Figure 6.12: Contour plots showing change in normal strain 𝜀𝜀𝑏𝑏 with change in displacement 
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Figure 6.13: Contour plots showing change in shear strain 𝜀𝜀𝑥𝑥𝑏𝑏 with change in displacement 

 

The recorded ECG signal consisted of the true ECG signal, environmental noise and the 

motion artefact. The environmental noise and the noise due to interference with the 

mains power line can be filtered by using an instrumentation amplifier and a band pass 

filter. In this case, hardware filtering was provided by the PhysioFlow PF05 L1 

(Manatec Biomedical, Paris, France).  

The ECG measurements acquired from the subject with and without movement for 10 

seconds are presented in Figure 6.14. It can be observed that the ECG voltage of the 

subject lies between 1 mV and 1.8 mV. Under the same environmental conditions, a 

significant change in the ECG pattern can be observed between Figure 6.14A and B due 

to the effect of motion artefacts induced in the arm by the back and forth movement.  

Software processing of the collected raw signal thus becomes necessary to ensure the 

required signal quality within the required range (of frequency or time). A typical set of 

algorithms serves to remove noise and the motion artefacts, detect the heartbeats (QRS 

complex) and compress the data for efficient acquisition [277]. Although the important 

objective of ECG detection and conditioning is to obtain an accurate QRS pattern, the 

focus here is to detect the motion artefacts due to skin. A typical procedure for unwanted 
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jitter and noise removal involves low pass filtering. A low pass butterworth filter with a 

cut-off frequency of 10 Hz was implemented in MATLAB, as illustrated in Figure 6.14C 

and D. 

 

 

Figure 6.14: (a) ECG without motion artefacts; (b) ECG with motion artefacts (induced by 
back and forth movement); (c) bandpass filtering of ECG signal (a); (d) bandpass filtering of 

ECG signal (b) 

 

The results obtained by performing PCA and ICA on ECG signals with different kinds 

of motion artefacts can be seen in Figures 6.15-6.17. 
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Figure 6.15: (A) ECG with motion artefacts due to back and forward arm movement; (B) PCA 
filtering of ECG using beat segmentation; (C) ICA filtering of ECG using the JADE algorithm 

 

In Figure 6.15 a noticeable improvement can be seen in the signal quality after the 

implementation of PCA and ICA (in Figure 6.15B and C). However, only a marginal 

difference between the signals obtained from PCA and ICA can be observed. It should 

also be noted that the R peaks can be easily identified in Figure 6.15A, thereby implying 

that there are not many motion artefacts present in the signal. Importantly, the direction 

of the negative T waves due to the presence of motion artefacts has been successfully 

reversed using PCA and ICA. It can also be established that the R peaks in Figure 6.15B 

and C are more distinguishable and easier to identify than in Figure 6.15A. 

Another case where motion artefacts were introduced – this time by closing the fist and 

opening hand continuously – can be seen in Figure 6.16. 
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Figure 6.16: (A) ECG with motion artefacts caused by closing fist and opening hand 
continuously, B. PCA filtering of ECG using beat segmentation, C. ICA filtering of ECG using 

JADE algorithm 

 

It is evident from Figure 6.16A that the ECG signal is greatly corrupted by motion 

artefacts, making it difficult to distinguish the ECG beats. There was no significant 

improvement in signal quality after the execution of PCA. However, on implementing 

ICA on the ECG with motion artefact, a remarkable transformation in the shape of the 

signal can be seen (Figure 6.16C). Even though the application of ICA makes the 

appearance of the R peaks in ECG more distinguishable, it is still hard to interpret the P 

and T waves. It should also be noted that no form of pre- or post-filtering (high pass or 

low pass) was performed on the signal other than PCA and ICA. 

The third kind of motion artefacts were generated by rotating the left wrist in clockwise 

and anticlockwise directions; the results of which are shown in Figure 6.17. 
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Figure 6.17: (A) ECG with motion due to clockwise and anticlockwise rotation of the wrist; 
(B) PCA filtering of ECG using beat segmentation; (C) ICA filtering of ECG using the JADE 

algorithm 

 

The presence of motion artefacts in the ECG due to wrist rotation can be observed from 

Figure 6.17A. The QRS complex in the ECG can be easily detected after filtering the 

signal using PCA and ICA, as seen in Figure 6.17B and C respectively. An abnormal ST 

elevation in the signal could be observed after the execution of PCA in Figure 6.17B, 

between 4 and 6 seconds (highlighted by a solid circle). This could lead to the 

misdiagnosis of cardiac abnormalities such as acute myocardial infarction, coronary 

vasospasm (Printzmetal’s angina), left ventricular hypertrophy, etc. [278]. The ST 

elevation was successfully removed by using ICA (Figure 6.17C). It is also possible that 

some heart arrhythmias are filtered out as motion artefacts by PCA or ICA. However, in 

this case the ECG recording was obtained from a healthy subject.  

After analysing the results demonstrated in Figure 6.15 and Figure 6.17, it can be 

inferred that the performance of PCA and ICA is similar in eliminating motion related 

artefacts from ECG signals if the signal is not corrupted by a large amount of motion 

artefacts. When motion artefacts in the ECG signal are more significant, as in Figure 

6.16, then ICA performs better than PCA.  

In PCA, the data matrix is decomposed into a set of orthogonal components arranged in 

order of importance. In other words, if the first component of PCA is the best 
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representation of the data set, the second component will be the second best 

representation (and orthogonal to the first component). In ICA, by contrast, statistically 

independent and uncorrelated components of the data are generated. Romero (2011) 

[114] performed PCA and ICA on artificially generated ECGs with motion artefacts, 

and ICA outperformed PCA by providing a better signal-to-noise ratio and positive 

predictivity. 

Although ICA has been shown to be a more effective method in removing motion 

artefacts from ECG than PCA, there are a few ambiguities involved in the calculation 

of ICA. With reference to Figure 6.7, both source S and noise related parameter A are 

unknown matrices in ICA, and therefore any scalar multiple in one of the sources in 

matrix S can be cancelled by dividing the corresponding vector A [127]. Thus, the 

independent components obtained after the multiplication of X (ECG signal with motion 

artefacts) with W (inverse of mixing matrix A) are sometimes required to be scaled in 

amplitude. There is another ambiguity of change in sign due to scaling, which can be 

addressed by multiplying the independent components by -1 if needed. Another 

disadvantage of using ICA is that we cannot directly determine the order of significance 

of the independent components [127]. Therefore, this research has used the approach of 

disregarding the independent components which show high correlation with the 

measured strains. 

  

6.6  SUMMARY 

This chapter has addressed the quantification of skin stretch using an optical technique 

and the elimination of motion artefacts from ECG signals by implementing PCA and 

ICA. The simulation of strain values reflecting skin stretch was accomplished by 

acquiring a video recording of a moving PDMS patch glued to the subject’s arm during 

an ECG measurement. This was followed by the superposition of the strain vectors εx, 

εy and εxy pertaining to skin stretch. To measure deformation, a predetermined 

checkerboard pattern was marked on the PDMS patch to aid in video-based motion 

tracking. The quality of image frames was improved using Adobe Photoshop CC and 

the region of interest was cropped in MATLAB. Vector plots representing the 

displacements of corner points of the checkerboard from the first frame were obtained 
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over a period of 10 seconds. A simple yet effective method of point tracking was 

employed and no corner points were lost while tracking.  

The objective of evaluating normal and shear strains was accomplished by 

mathematically relating them to the displacement of an infinitesimal particle due to skin 

stretch. A strain field pertaining to the movement of the arm was obtained over a period 

of 10 seconds. 

This motion information and was used to remove motion artefact the measured ECG 

using PCA and ICA. A step by step procedure for implementing PCA using baseline 

wander removal and ECG beat segregation was presented in section 6.3. In section 6.4, 

the ICA approach involving the use of the JADE algorithm was detailed. It was 

concluded that the application of both PCA and ICA resulted in a significant 

improvement in the morphology of the ECG. However, ICA proved to be more efficient 

than PCA in the case where the ECG was highly degraded by motion artefacts (Figure 

6.16). There are some constraints involved in this study regarding analysis of the signal 

after using PCA and ICA algorithms. It is possible that these algorithms discard some 

important ECG information as motion artefacts. Therefore, it is important to statistically 

determine the enhancement in the signal quality on the application of these algorithms. 

In this chapter, all the ECG measurements were taken from one subject by inducing 

different kinds of motion artefacts due to arm movement. Although a useful proof of 

concept study, it would be better to obtain the measurements from more than one subject 

as one person may only move his/her arm in a certain way. Another limitation of this 

study was that the ECG signal was only acquired for 10 seconds, and no reference ECG 

signal was collected, which makes it hard to investigate the performance of PCA and 

ICA algorithms objectively and for longer durations. All these limitations are further 

addressed in the following chapter.  
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CHAPTER 7 VALIDATION OF ARTEFACT REJECTION 

SYSTEM 

 

7.1 INTRODUCTION 

This chapter describes experiments to validate removal of motion artefacts from skin 

strain information. Statistical methods employing the calculation of SNR and infinity 

norms (∞-norms) were used to determine the performance of PCA and ICA algorithms, 

using strains as motion information. The statistical significance of the algorithms 

implementing PCA and ICA was determined by performing Student’s t-tests. The 

Young’s modulus of the skin varies with age, therefore the effect of skin stretch induced 

artefacts on an ECG was measured in people from different age groups. The study was 

performed on 7 healthy subjects across the following age groups: 18–35 years (3 

subjects), 36–55 years (2 subjects), and 56 years and above (2 subjects) for a time period 

of 60 seconds. Approval for this study was obtained from the Auckland University of 

Technology Ethics Committee (Application number: 17/170). 

The materials used and methods employed to measure the ECG using wet Ag/AgCl, dry 

Ag and CNT/PDMS electrodes are discussed in section 7.2. The various attributes of 

the system, such as intra-test repeatability, EMG artefact rejection (AR) efficiency, 

performance of PCA with and without beat segmentation, and the effect of Langer’s 

lines were assessed. The use of strains for providing motion information in terms of skin 

stretch is also described.  

The results obtained by implementing the PCA and ICA algorithms on ECG 

measurements were compared across the experiments and with other related studies. In 

addition, the performance of CNT/PDMS electrodes was compared with dry Ag 

electrodes. Finally, the benefits and limitations of this work are discussed in detail.  

A flow chart describing the experimental validation of the system performed in this 

chapter can be seen in Figure 7.1. 
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Figure 7.1: Flow chart describing the layout of the experimental validation of the system. 

Metrics 
used for 

comparison 
with other 

studies 

Comparison 
between 

CNT/PDMS 
and dry Ag 

Results 

Discussion 

Summary 

Materials and Methods required to acquire ECG with motion artefacts (from 
arms using CNT/PDMS and dry Ag electrodes) and without motion artefacts 

(from chest). 

Evaluating system’s performance under different conditions. 

Intra-
test 

repeat
ability 

EMG 
artefact 
rejection 
efficiency 

PCA with and 
without beat 
segmentation 

Effect of 
Langer's 
lines 

Performance parameters used to evaluate the performance of the system in 
removing motion artefacts from ECG measurements. 

Infinity norm (∞-norm) Student’s t-test Signal to Noise ratio (SNR) 



146 
 

7.2 MATERIALS AND METHODS 

A simple 1-lead configuration was used to obtain a reference ECG through standard 

Ag/AgCl electrodes. This was implemented by placing one electrode on each shoulder 

of the subjects, as shown in Figure 7.2. The subjects were asked to sit still to avoid any 

shoulder movement during the ECG monitoring so that the reference ECG was free from 

motion artefacts. However, as part of the experiments, different types of movements 

were induced in one of the forearms of the subject and the ECG with motion artefacts 

was measured using electrodes prepared from CNTs and PDMS, with dimensions of 

30 mm × 30 mm × 2 mm, as discussed in chapter 4. ECG measurements were also 

obtained using dry Ag electrodes on each forearm, as seen in Figure 7.2.  

 

Figure 7.2: ECG measurement set up 

 

As shown in Figure 7.2, three ECG measurements were obtained simultaneously from 

a subject over a period of 60 seconds using wet Ag/AgCl electrodes, dry Ag electrodes 

or CNT/PDMS electrodes. The ECG measurements were taken using a 16-channel bio-

amplifier (g-USBamp 3.0, G.TEC Medical Engineering GmbH, Austria) at 1256 Hz 

through a National Instruments Data Acquisition board (NI-DAQ, Texas, USA). 

The g.USBamp employs wide-range, DC-coupled amplifier along with 24-bit sampling 

generating an input voltage range of ±250mV with a resolution of <30nV [279]. The 
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ECG pre-processing was performed by implementing a low pass fourth order 

Butterworth filter in LabVIEW followed by bandpass filtering in MATLAB within 

normalized cut-off frequencies of 0.001 to 0.038. 

A checkered pattern was printed on the CNT/PDMS electrodes and a video camera 

attached on a tripod was used to capture the electrode’s movement on the left forearm 

while the right forearm was kept at rest. The resolution of the video camera was 1920 

pixels × 1080 pixels and the frames were recorded at a frame rate of 25 fps. 

Motion artefacts were generated in the 7 subjects by stretching and releasing their skin 

on the left forearm in the vicinity of the CNT/PDMS electrode using a plastic tube, as 

illustrated in Figure 7.3. The plastic tube was used to avoid any interference in the ECG 

recordings due to electrical charges arising from another person. 

 

Figure 7.3: Generating motion artefact by stretching forearm using a plastic tube 

 

7.3 PERFORMANCE PARAMETERS 

The following parameters were used to evaluate the performance of the artefact rejection 

system in this study. 
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7.3.1 Improvement in SNRs 

In order to statistically measure the improvement in signal quality, the signal to noise 

ratio (SNR) for the signals filtered using PCA and ICA was calculated. SNR was used 

as a measure of signal strength relative to the motion artefact with respect to the 

reference signal. The ratio was calculated in decibels (dB) by using the formulas shown 

in equations (7.1) and (7.2). 

𝑆𝑆𝑆𝑆𝑅𝑅𝑛𝑛𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏 𝐸𝐸𝐴𝐴𝐸𝐸 = 10𝑆𝑆𝑉𝑉𝑉𝑉10 �
𝑣𝑣𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑅𝑅𝑓𝑓𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐶𝐶𝐺𝐺)

𝑣𝑣𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑅𝑅𝑓𝑓𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐶𝐶𝐺𝐺 − 𝑅𝑅𝑉𝑉𝑅𝑅𝑅𝑅𝑆𝑆 𝐸𝐸𝐶𝐶𝐺𝐺)� 
(7.1) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑓𝑓𝑖𝑖𝑟𝑟𝑡𝑡𝑓𝑓𝑟𝑟𝑓𝑓𝑏𝑏 𝐸𝐸𝐴𝐴𝐸𝐸 = 10𝑆𝑆𝑉𝑉𝑉𝑉10 �
𝑣𝑣𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑅𝑅𝑓𝑓𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐶𝐶𝐺𝐺)

𝑣𝑣𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �
𝑐𝑐𝑅𝑅𝑓𝑓𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐶𝐶𝐺𝐺 −  𝐸𝐸𝐶𝐶𝐺𝐺 𝑅𝑅𝑓𝑓𝑅𝑅𝑅𝑅𝑐𝑐

                                  𝑃𝑃𝐶𝐶𝐴𝐴/𝐼𝐼𝐶𝐶𝐴𝐴 �
� 

(7.2) 

The improvement in SNR on application of PCA and ICA was measured using equation 

(7.3): 

 𝑆𝑆𝑆𝑆𝑅𝑅 𝐼𝐼𝑏𝑏𝑆𝑆𝑐𝑐𝑉𝑉𝑣𝑣𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑆𝑆𝑆𝑆𝑅𝑅 𝑉𝑉𝑓𝑓 𝑓𝑓𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑎𝑎 𝐸𝐸𝐶𝐶𝐺𝐺 −  𝑆𝑆𝑆𝑆𝑅𝑅 𝑉𝑉𝑓𝑓 𝑅𝑅𝑉𝑉𝑅𝑅𝑅𝑅𝑆𝑆 𝐸𝐸𝐶𝐶𝐺𝐺               (7.3) 

7.3.2 Infinity norm (∞-norm)  

Another method adopted to analyse the effectiveness of signal filtering using PCA and 

ICA involved the calculation of the ∞-norms of the ECG with motion artefacts, filtered 

ECG, and ECG without motion artefacts. The ∞-norm or max norm is the maximum 

absolute value of a vector [280]. This can be useful for calculating the maximum 

deviation of the noisy signal from the reference ECG. The ∞-norm was calculated for 

the acquired ECG with motion artefacts and the filtered ECG by finding the absolute 

maximum of their differences from the reference ECG. The maximum deviation of the 

signal from the reference ECG was calculated by using equation (7.4). 

∞ norm = 𝑏𝑏𝑅𝑅𝑥𝑥�𝑅𝑅𝑏𝑏𝑅𝑅(𝑅𝑅𝑅𝑅𝑓𝑓𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐶𝐶𝐺𝐺 − 𝑆𝑆𝑉𝑉𝑅𝑅𝑅𝑅𝑆𝑆 𝐸𝐸𝐶𝐶𝐺𝐺 𝐹𝐹𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑎𝑎⁄ 𝐸𝐸𝐶𝐶𝐺𝐺)� (7.4) 
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7.3.3 Student’s t-test 

Student’s t-tests were performed (assuming unequal variances) between the filtered 

signal (using PCA and ICA) and the measured signal (ECG with motion artefacts) to 

establish that the results had not occurred by random chance. The residuals between the 

filtered and measured data were calculated and T and P values were derived. The T value 

is used for calculation of the size of the difference relative to the variation in the sample 

data. The greater the value of T, the greater the evidence against the null hypothesis (of 

no difference). Two-tailed t-tests were performed in this study, as they are more 

conservative than one-tailed t-tests [281]. P values are used to estimate the probability 

of null hypothesis. The significance level of the test is set by assigning the value of 

α=0.05. If the value of P is less than α, then the null hypothesis is rejected. The paired 

t-test was used in this case, where each observation in one group is paired with a related 

observation in the other group.  

 

7.4 EVALUATING SYSTEM PERFORMANCE UNDER DIFFERENT 

CONDITIONS  

The following aspects were investigated in 2 subjects, one from the 18–35 age group 

and one from the 36–55 age group. This section (from 7.4.1 to 7.4.7) describes the 

evaluations performed and the corresponding results are presented in section 7.5. 

7.4.1 EMG induced artefact rejection efficiency 

Muscle movement artefacts were introduced by asking the subjects to repeatedly close 

and open one fist, as illustrated in Figure 6.1. This was done to test the performance of 

the PCA and ICA algorithms in eliminating artefacts generated that include EMG 

signals. 

7.4.2 Intra-test repeatability 

The performance of both PCA and ICA algorithms was evaluated at epochs of 15 

seconds over a period of 60 seconds. This allows comparison of intra-test repeatability. 

http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
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7.4.3 PCA with and without beat segmentation 

The performance of PCA with and without beat segmentation was also evaluated. In the 

first case, the data samples of each of the segmented ECG beats were arranged in an 

independent column vector of the data set followed by three corresponding 

strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏and 𝜀𝜀𝑥𝑥𝑏𝑏). In the second case, the data set consisted of four columns where 

the first column was composed of the entire ECG signal with motion artefacts and the 

remaining columns contained motion information in the form of the corresponding 

strains. In the work reported in this chapter, PCA was performed without using beat 

segmentation. 

7.4.4 Effect of Langer’s lines 

As discussed in section 2.6, the Young’s modulus of the skin in directions parallel to 

Langer’s lines is much higher (almost double) than that in directions perpendicular to 

them. On the other hand, the Young’s modulus of the skin at 45° to Langer’s lines is 

lower than that at parallel and perpendicular directions. The direction of Langer’s lines 

on the human forearm is shown in Figure 7.4. 

 

Figure 7.4: Orientation of Langer’s lines on human forearm 

 

Parallel 

Perpendicular 

Diagonal 
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To observe any significant changes in the magnitude and morphology of motion 

artefacts, the skin of the subjects was stretched and released in directions perpendicular, 

parallel and diagonal to Langer’s lines in following ways. 

7.4.4.1 Effect of stretching the skin perpendicular to Langer’s lines 

As shown in Figure 7.3, the skin on the left forearm of the subjects was stretched and 

released in direction perpendicular to Langer’s lines using a plastic tube. 

7.4.4.2 Effect of stretching the skin parallel to Langer’s lines  

Since the edges of the forearms are curved, the skin on the left forearm of the subjects 

was pulled and released along Langer’s lines by an assistant using his thumbs to get a 

better grip, as seen in Figure 7.5. In order to avoid any electrical interference in the ECG 

recordings, Latex gloves were worn by the assistant stretching the skin. 

 

Figure 7.5: Introducing motion artefacts by stretching the skin parallel to Langer’s lines 

 

7.4.4.3 Effect of stretching the skin diagonal to Langer’s lines 

The skin was stretched diagonal to Langer’s lines as shown in Figure 7.6. 



152 
 

 

Figure 7.6: Introducing motion artefacts by stretching the skin diagonal to Langer’s lines 

 

The ECG signals acquired from the subjects while stretching their skin in different 

directions were filtered using PCA and ICA algorithms. The motion AR efficacies using 

the two algorithms were then compared. 

7.4.5 Alternative methods of calculating strain signals 

As mentioned in section 7.2, a video camera was used to record the movement of the 

CNT/PDMS patch during the skin stretches. The video frames obtained from the camera 

were filtered, sharpened and cropped in Photoshop CC (Adobe, California, USA). The 

four corner points of the patch’s boundary were detected in each frame using the 

boundary detection feature in MATLAB (Figure 7.7).  
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Figure 7.7: Detecting the patch’s boundary in each frame 

 

The corner points of the checker boxes within the patch’s boundary were detected and 

tracked over each frame using the Harris-Stephens algorithm and Euclidian distance 

mapping (Figure 7.8), as discussed in section 6.2. 

 

Figure 7.8: Detecting and tracking the corner points of the checker boxes within the patch 



154 
 

The strains at the incentres of each triangle formed by performing Delaunay 

triangulation were computed in all video frames (Figure 5.10). Mean and median values 

of the normal, shear �𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏and 𝜀𝜀𝑥𝑥𝑏𝑏� and principal strains (𝜀𝜀1, 𝜀𝜀2) were calculated for 

each frame. The ECG measurements along with the corresponding strains were used as 

the data set to be filtered by PCA and ICA. 

Strains in different regions of the CNT/PDMS patch were evaluated (Figure 7.9) and 

used as motion information when the skin was stretched and released using a plastic 

tube on one subject in the 18–35 year age group. 

 
Figure 7.9: Strains obtained from different regions of the CNT/PDMS patch. 

 

PCA was performed without using beat segmentation wherein the data set comprised of 

only 4 columns (ECG with motion artefacts, normal strain in x-direction (𝜀𝜀𝑥𝑥), normal 

strain in y-direction (𝜀𝜀𝑥𝑥) and shear strain (𝜀𝜀𝑥𝑥𝑏𝑏)). In contrast, ICA was performed using 

beat segmentation where the data set contained each column of the ECG beat as well as 

3 columns for the corresponding strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏and 𝜀𝜀𝑥𝑥𝑏𝑏), as shown in Figure 7.10. The 

reason for not segmenting the ECG beats while performing PCA is explained in section 

7.9. The performance of both PCA and ICA was evaluated with and without using 

motion information. The motion information was acquired by taking mean and median 

values of the following strains for each video frame: 

• normal and shear strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏𝑅𝑅𝑅𝑅𝑎𝑎 𝜀𝜀𝑥𝑥𝑏𝑏). 
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• maximum and minimum principal strains (𝜀𝜀1, 𝜀𝜀2).  

• maximum principal strain (𝜀𝜀1). 

• minimum principal strain (𝜀𝜀2). 

• average Euclidian displacements.  

The column vectors of the data set matrix were arranged in different ways, as shown in 

Figure 7.10 – 7.14.  
 

Figure 7.10: Arrangement of data matrix by taking normal and shear strains (𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑏𝑏𝑅𝑅𝑅𝑅𝑎𝑎 𝜀𝜀𝑥𝑥𝑏𝑏) 
as motion information in PCA and ICA 

 

Figure 7.11: Arrangement of data matrix by taking principal strains (𝜀𝜀1, 𝜀𝜀2) as motion 
information in PCA and ICA. 
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Figure 7.12: Arrangement of data matrix by taking maximum principal strain (𝜀𝜀1) as motion 
information in PCA and ICA. 

 

Figure 7.13: Arrangement of data matrix by taking minimum principal strain (𝜀𝜀2) as motion 
information in PCA and ICA. 
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Figure 7.14: Arrangement of data matrix by taking normal and shear strains (𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑏𝑏𝑅𝑅𝑅𝑅𝑎𝑎 𝜀𝜀𝑥𝑥𝑏𝑏) 
from 4 checkerboard regions as motion information in PCA and ICA. 

 

7.4.6 Metrics used for comparison with other research 

Section 7.5.4 compares the results achieved in this study with those of similar studies. 

In 2007 an optical sensor was used by Liu [108] to quantify motion artefacts in terms of 

uniaxial displacement of the skin in one subject. ECG signals were measured from the 

subject’s chest using Ag/AgCl electrodes and an optical sensor was attached near the 

ECG sensing site. The reference ECG was obtained from the wrist before introducing 

motion artefacts. 
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In this study, the optical sensing technique was employed to measure skin stretch 

directly under the ECG electrode in 7 subjects within different age groups. The reference 

ECG signals were measured simultaneously (from the chest) with the ECG with motion 

artefacts (from the forearm). Two-dimensional strains instead of uniaxial displacements 

were measured using CNT/PDMS electrodes. The motion artefacts from the ECG were 

filtered using PCA and ICA instead of the adaptive filtering performed by Liu [108]. 

The AR percentage was calculated using equation (7.5):  

𝐴𝐴𝑅𝑅 % =
 𝐿𝐿2 𝑅𝑅𝑉𝑉𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏 𝑖𝑖𝑖𝑖𝐴𝐴𝑛𝑛𝑎𝑎𝑟𝑟 −   𝐿𝐿2 𝑅𝑅𝑉𝑉𝑐𝑐𝑏𝑏 𝑓𝑓𝑖𝑖𝑟𝑟𝑡𝑡𝑓𝑓𝑟𝑟𝑓𝑓𝑏𝑏 𝑖𝑖𝑖𝑖𝐴𝐴𝑛𝑛𝑎𝑎𝑟𝑟

𝐿𝐿2 𝑅𝑅𝑉𝑉𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏 𝑖𝑖𝑖𝑖𝐴𝐴𝑛𝑛𝑎𝑎𝑟𝑟 −    𝐿𝐿2 𝑅𝑅𝑉𝑉𝑐𝑐𝑏𝑏 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑛𝑛𝑐𝑐𝑓𝑓 𝑖𝑖𝑖𝑖𝐴𝐴𝑛𝑛𝑎𝑎𝑟𝑟
  

 

(7.5) 

The 𝐿𝐿2 norm or Euclidean norm of a vector can be defined as the square root of the sum 

of the absolute values squared, as seen in equation (7.6): 

∥ 𝑥𝑥 ∥2= �𝛴𝛴𝑅𝑅𝑥𝑥𝑅𝑅2                                          (7.6) 

where  𝑅𝑅 is the length of vector 𝑥𝑥.  

The AR ratio calculated by Liu [108] on introducing different types of motions (slightly 

stretching the upper chest, horizontally waving the left arm, vertically raising the left 

arm, walking and running) in one subject was 85% [108]. 

In this study, motion artefacts were generated in 7 subjects by stretching the skin on 

their forearm and the motion AR percentage was evaluated using equation (7.5). 

7.4.7 Comparison between CNT/PDMS and dry Ag electrodes 

A comparison of the SNRs achieved using CNT/PDMS and dry Ag electrodes with that 

achieved using the standard Ag/AgCl electrodes was also performed. ECG 

measurements were obtained at rest for 10 seconds using Ag/AgCl electrodes (on the 

chest), dry Ag and CNT/PDMS electrodes (on the forearm), as seen in Figure 7.3. 

Conventionally, an ECG is measured using a 12-lead measurement system with 10 

electrodes placed on the patient’s limbs and on the surface of the chest [282]. However, 

an ECG in ambulatory conditions is typically measured using a 1-lead or a 2-lead 

measurement system with electrodes placed on the chest or wrist. Although the signal 
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quality of the ECG obtained from chest is superior to that obtained from wrist, it can be 

more convenient to measure the signal from wrist, especially for longer periods of time. 

In research by Chaiwisood et al. [283], the signal quality of the ECG obtained using a 

3-lead measurement system from both the chest and wrist was investigated. It was found 

that the ECG obtained from both chest and the wrist using wet Ag/AgCl electrodes 

exhibited similar morphology and power spectrum in time and frequency domains 

respectively. However, the SNR for the signal obtained from chest was 9 dB higher than 

that obtained from wrists. In this study, a 1-lead ECG measurement system was used 

and the pre-processing of the signals was done in LabVIEW and MATLAB. The ECG 

measurements obtained from the wrist using dry Ag and CNT/PDMS electrodes with 

the subject at rest for 10 seconds were compared with those obtained from the chest 

using wet Ag/AgCl electrodes (3M Red Dot, Minnesota, USA). 

 

7.5 RESULTS 

The results of the tests described above are presented below. 

7.5.1 Skin stretch induced artefact rejection 

Table 7.1 compares the improvement in SNRs (dB) and ∞-norms and P values (from 

Student’s t-tests) obtained using PCA and ICA on ECG signals measured from 7 

subjects by stretching the skin on their forearm for 60 seconds. Both PCA and ICA 

utilized normal and shear strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏, 𝜀𝜀𝑥𝑥𝑏𝑏) to eliminate motion artefacts from ECG 

signals. 
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Table 7.1: Comparison of various performance parameters for ECG with motion artefacts 
(MA) and ECG filtered using PCA and ICA for 60 seconds. 

Age 

groups 

and 

subjects 

Subjects 

within 

various 

age groups 

Average SNR 

improvement 

for 60 seconds 

(dB) 

∞-norms P values 

PCA ICA MA PCA ICA PCA ICA 

18-35 

years 

Subject 1 3.193 9.679 0.12 0.1 0.064 <0.05 <0.05 

Subject 2 2.816 7.8 0.093 0.0811 0.0519 <0.05 <0.05 

Subject 3 4.708 10.377 0.075 0.0682 0.0365 <0.05 <0.05 

36-55 

years 

Subject 4 3.153 9.034 0.06 0.055 0.041 <0.05 <0.05 

Subject 5 4.065 8.702 0.14 0.095 0.0547 <0.05 <0.05 

Above 

56 years 

Subject 6 5.891 11.461 0.0519 0.05 0.0318 <0.05 <0.05 

Subject 7 5.915 10.05 0.0507 0.0421 0.0296 <0.05 <0.05 

Average All subjects 4.249 9.586 0.0843 0.0702 0.0442 <0.05 <0.05 

 

Figures 7.15 and 7.16 show the cases with the least and most improvement in SNRs 

using PCA, while Figures 7.17 and 7.18 show the cases with the least and most 

improvement in SNRs using ICA. 

 



161 
 

 

Figure 7.15: Case with least improvement in SNR (2.816 dB) using PCA.  
A: ECG with motion artefact induced in Subject 2 by opening hand and closing fist 

continuously (in red); B: Signal filtered using PCA (in green); C: Reference signal (in blue). 

 

 

Figure 7.16: Case with most improvement in SNR (5.915 dB) using PCA.  
A: ECG with motion artefact induced in Subject 7, by opening hand and closing fist 

continuously (in red); B: Signal filtered using PCA (in green); C: Reference signal (in blue). 
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Figure 7.17: Case with least improvement in SNR (7.8 dB) using ICA.  
A: ECG with motion artefact induced in Subject 2, by stretching the forearm skin using a glass 

slide (in red), B: Signal filtered using ICA (in green), C: Reference signal (in blue). 

 

 

Figure 7.18: Case with most improvement in SNR (11.461 dB) using ICA.  
A: ECG with motion artefact induced in Subject 6, by stretching the forearm skin using a glass 

slide (in red), B: Signal filtered using ICA (in green), C: Reference signal (in blue). 
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The morphology of the ECG with motion artefacts and corresponding strains on 

stretching the skin of a subject (Subject 4, 18–35 years) at different time sequences can 

be seen in Figure 7.19-7.22. 

Figure 7.20: A: ECG (in mV) with motion artefact induced in Subject 4 for the second time 
sequence (15–30 seconds), SNR= -3.4925 (in green); B: Corresponding strain 𝜀𝜀𝑥𝑥 (in red); C: 

Corresponding strain 𝜀𝜀𝑏𝑏 (in blue); D: Corresponding strain 𝜀𝜀𝑥𝑥𝑏𝑏 (in black) 

Figure 7.19 : A: ECG (in mV) with motion artefact induced in Subject 4 for the first time 
sequence (0–15 seconds), SNR= 3.5171(in green); B: Corresponding strain 𝜀𝜀𝑥𝑥 (in red); C: 

Corresponding strain 𝜀𝜀𝑏𝑏 (in blue); D: Corresponding strain 𝜀𝜀𝑥𝑥𝑏𝑏 (in black) 
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Figure 7.21: A: ECG (in mV) with motion artefact induced in Subject 4 for the fourth time 
sequence (45-60 seconds), SNR= -0.3916 (in green); B: Corresponding strain 𝜀𝜀𝑥𝑥 (in red); C: 

Corresponding strain 𝜀𝜀𝑏𝑏 (in blue); D: Corresponding strain 𝜀𝜀𝑥𝑥𝑏𝑏 (in black).    

Figure 7.22: A: ECG (in mV) with motion artefact induced in Subject 4 for the third time 
sequence (30–45 seconds), SNR= -0.8761(in green); B: Corresponding strain 𝜀𝜀𝑥𝑥 (in red); C: 

Corresponding strain 𝜀𝜀𝑏𝑏 (in blue); D: Corresponding strain 𝜀𝜀𝑥𝑥𝑏𝑏 (in black) 
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7.5.2 Evaluating system performance under different conditions 

7.5.2.1 EMG induced artefact rejection efficiency 

The performance of PCA and ICA upon introducing voluntary muscle movements 

(EMG induced artefacts) in 2 subjects by asking them to repeatedly close and open one 

fist can be seen in Table 7.2. 

Table 7.2: Performance of PCA and ICA in eliminating EMG induced artefacts 

Subjects Time 
interval 
(seconds) 

SNR 
improvement 
(dB) 

∞-norms P values 

PCA ICA MA PCA ICA PCA ICA 

Subject 1 

(18-35 years) 

 
0-15 1.7835 9.551 0.093 0.092 0.057 <0.05 <0.05 

 
16-30 2.1399 10.20 0.102 0.109 0.053 <0.05 <0.05 

 
31-45 2.6377 8.244 0.103 0.062 0.065 0.112 <0.05 

 
46-60 2.03 8.137 0.076 0.063 0.046 <0.05 <0.05 

Average: 
Subject 1 

 
60 2.14 9.034 0.093 0.082 0.055 <0.05 <0.05 

Subject 2 
(36-55 years) 

 
0-15 2.6558 6.914 0.115 0.108 0.033 <0.05 <0.05 

 
16-30 1.8131 6.545 0.088 0.084 0.053 <0.05 <0.05 

 
31-45 4.0525 8.339 0.110 0.095 0.041 <0.05 <0.05 

 
46-60 1.7337 6.189 0.097 0.093 0.068 <0.05 <0.05 

Average 
Subject 2 

 
60 2.5637 6.997 0.103 0.095 0.049 <0.05 <0.05 

Overall 
average 
performance 

120 
2.35 8.015 0.098 0.088 0.052 <0.05 <0.05 
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7.5.2.2 Intra-test repeatability 

In Figures 7.23 and 7.24, the SNRs and ∞-norms of ECGs with motion artefacts (MA) 

and ECGs filtered using PCA and ICA are compared across epochs of 15 seconds. 

  

Figure 7.23: Comparison of SNRs calculated for ECG with motion artefact and ECG filtered 
using PCA and ICA (represented by MA, PCA and ICA respectively) by inducing motion 

artefacts in 2 subjects, at different time intervals 
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The mean values of SNRs and ∞-norms for 60 seconds are shown in the above figures. 

7.5.2.3 PCA with and without beat segmentation 

A comparison of SNRs obtained after implementing PCA with and without beat 

segmentation is shown in Figure 7.25 (mean values shown with dashed line).  

 

Figure 7.24: Comparison of ∞-norms (represented by MA, PCA and ICA respectively) by 
inducing motion artefacts in 2 subjects, at different time intervals 



168 
 

Figure 7.25: Comparison of SNRs on application of PCA with and without peak detection/beat 
segmentation (represented as PCA peaks and PCA respectively) 

 

An example signal showing the difference in ECG waveform on the implementation of 

PCA with and without ECG segmentation is shown in Figure 7.26. The SNR for the 

acquired ECG with induced motion artefact (in Figure 7.26A) with respect to the 

reference signal (in Figure 7.26D) was -3.49 dB. A negative SNR implies that the signal 

noise, or motion artefact in this case, has a greater impact on the acquired signal 

compared to the ECG. On performing PCA on the measured ECG signal in Figure 7.26A 

without beat segmentation, the SNR was improved by 4.06 dB, as shown in Figure 

7.26B. On the other hand, the improvement in SNR on application of PCA with beat 

segmentation was 4.48 dB, which is slightly better than the figure without beat 

segmentation, as shown in Figure 7.26C.  
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Figure 7.26: A: Recorded ECG signal with motion artefact (in Subject 2 by stretching the skin 
using a plastic tube); B: PCA filtering on ECG without beat segmentation; C: PCA filtering 

on ECG with beat segmentation; D: Reference ECG signal 

 

7.5.2.4 Effect of Langer’s lines 

A comparison between SNRs obtained on stretching the skin parallel, diagonal and 

perpendicular to the Langer’s lines (in 2 subjects) is shown in Figure 7.27. 

 
Figure 7.27: Comparison of SNRs calculated for ECG with motion artefact and ECG filtered 

using PCA and ICA (represented by MA, PCA and ICA respectively) by stretching the skin 
parallel, diagonal and perpendicular to Langer’s lines 

 

MA PCA ICA MA PCA ICA

Subject 1 (age group: 18-35 years) Subject 2 (age group: 36-55
years)

Parallel 9.58 11.02 12.601 7.561 8.5312 9.9607
Diagonal -2.021 4.15 10.86 1.073 3.961 9.149
Perpendicular 1.7657 4.9587 11.445 0.31 2.8423 8.723
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The following plots show a comparison between ECG with motion artefact, PCA-ICA 

filtered ECG and reference ECG at different orientations of Langer’s lines. The 2D 

strains obtained by stretching the skin in different directions can be seen in Figure 7.31. 

 

Figure 7.28: A: ECG with motion artefact in Subject 1 on stretching the skin parallel to 
Langer’s lines, SNR= 9.58 dB (in red); B: ECG after PCA filtering, SNR= 11.02 dB (in 

black); C: ICA after ICA filtering, SNR=12.601 dB (in green); D: Reference ECG signal (in 
blue) 

 

Figure 7.29: A: ECG with motion artefact in Subject 1 on stretching the skin diagonal to 
Langer’s lines, SNR= -2.021 dB (in red); B: ECG after PCA filtering, SNR= 4.15 dB (in 

black); C: ICA after ICA filtering, SNR=10.86 dB (in green); D: Reference ECG signal (in 
blue) 
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Figure 7.30: A: ECG with motion artefact in Subject 1 on stretching the skin perpendicular to 
Langer’s lines, SNR=1.7657 dB (in red); B: ECG after PCA filtering, SNR= 4.9587 dB (in 

black); C: ECG after ICA filtering, SNR=11.445 dB (in green); D: Reference ECG signal (in 
blue) 

Figure 7.31: Strain plots (𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑏𝑏, 𝜀𝜀𝑥𝑥𝑏𝑏) corresponding to ECG signals acquired by stretching 
the skin parallel (in green), diagonal (in red) and perpendicular (in blue) to Langer’s lines 
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7.5.3 Strain contribution in skin stretch quantification 

The performance of PCA and ICA using data set arrangements shown in Cases 1, 2, 3 

and 4 in section 7.4.5 can be seen in Figure 7.32 – 7.35. 

The motion noise was quantified in terms of normal and shear strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑆𝑆, 𝜀𝜀𝑥𝑥𝑆𝑆) in 

Case 1, principal strains (𝜀𝜀1, 𝜀𝜀2) in Case 2, maximum principal strain (𝜀𝜀1) in Case 3 

and minimum principal strain (𝜀𝜀2) in Case 4. The mean and median amplitudes of the 

normal (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏), shear (𝜀𝜀𝑥𝑥𝑏𝑏) and principal strains (𝜀𝜀1 and 𝜀𝜀2) computed from all 

points, 4 corner points, and regional points of the checkerboard (see section 7.4.5) can 

be seen in Figures 7.36-7.39. 
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Figure 7.32: Evaluation of SNRs using PCA and taking mean and median values of strains as 
motion information 

 

 

Figure 7.33: Evaluation of SNRs using ICA and taking mean and median values of strains as 
motion information 
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Figure 7.34: Evaluation of ∞-norm using PCA and taking mean and median values of strains 

as motion information. 

 

 

Figure 7.35: Evaluation of ∞-norm using ICA and taking mean and median values of strains 
as motion information. 
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Figure 7.36: Mean and median strains (for all points in Figure 7.8) corresponding to ECG 
measurement in Subject 1 (age group: 18–35 years) for 60 seconds 

 

 
 Figure 7.37: Mean and median strains (for corner points in Figure 7.7) corresponding to 

ECG measurement in Subject 1 (age group: 18–35 years) for 60 seconds 
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Figure 7.38: Mean and median strains (for points in region 1 in Figure 7.9) corresponding to 
ECG measurement in Subject 1 (age group: 18–35 years) for 60 seconds 

 

 

Figure 7.39: Mean and median strains (for points in region 4 in Figure 7.9) corresponding to 
ECG measurement in Subject 1 (age group: 18–35 years) for 60 seconds 
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The ECG waveforms obtained using some of the above mentioned cases can be seen 

in Figure 7.40. 

 

 

 
Figure 7.40: A: ECG with motion artefact, 

filtered using ICA with data set arrangement in Case 1 (Figure 7.10); B: On taking motion 
information from all points (Figure 7.8); C: On taking motion information from corner points 

(Figure 7.7); D: On taking motion information from points in region 4 (Figure 7.9) 
E: Reference ECG from shoulders 

 

The performance of PCA and ICA using data set arrangement in Case 5 (Figure 7.14), 

using average displacements and without using motion information, was evaluated for 

60 seconds in one subject (age group 18–35 years). A comparative tabulation of these 

values against Case 1 is shown in Table 7.3. 
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Table 7.3: Comparison of PCA and ICA performance for Case 5, average displacements and 

without motion information against Case 1 

Cases SNR 

improvements 

(dB) 

Infinity norms (∞-norms) P values 

PCA ICA MA PCA ICA PCA ICA 

Case1 3.193 9.679 0.12 0.100 0.064 <0.05 <0.05 

Case 5 3.24 9.46 0.12 0.094 0.0589 <0.05 <0.05 

Average 
displacements 

1.71 5.264 0.12 0.113 0.0625 <0.05 <0.05 

Without using 
motion 
information 

1.38 4.417 0.12 0.124 0.1195 <0.05 <0.05 

 

7.5.4 Comparison of this study with other research 

The motion AR efficiencies of the PCA and ICA algorithms were calculated from 

equation (7.5) using the  𝐿𝐿2 norms of the ECG measurements obtained by inducing skin 

stretch in the 7 subjects. The average AR percentages using PCA and ICA were found 

to be 48% and 91% respectively. The average improvement in SNR using PCA and ICA 

were 4.249 dB and 9.586 dB respectively (see Table 7.1). A comparison of this study 

with other related research is shown in Table 7.4. 
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Table 7.4: Comparison between performances in related research with those in the 

current study 

Type of filtering Performance parameters Current study 

ICA [115] SNR Improvement (Fast ICA) 

=0.394 dB 

SNR improvement (JADE) 

=9.586 dB 

PCA [113] SNR improvement= 

1.44 dB 

SNR improvement = 

4.249 dB 

ICA [117] P value of corrupted vs 

reconstructed signal < 0.01 

Mean of P value 

for all ICA (JADE) 

cases = 0.00678 

ICA [118] SNR improvement (Fast ICA) 

=1.26 dB 

SNR improvement (JADE) 

= 9.586 dB 

PCA [112] SNR improvement for most 

corrupted signal= 8.88 dB 

SNR improvement for least 

corrupted signal = 2.92 dB 

SNR improvement for most 

corrupted signal=6.0291 dB 

SNR improvement for least 

corrupted signal =1.337 dB 

 

7.5.5 Comparison between CNT/PDMS and dry Ag electrodes 

The SNRs for the dry Ag and CNT/PDMS electrodes were found to be 9.029 and 15.27 

dB respectively; corresponding signals are shown in Figure 7.41. 
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Figure 7.41: ECG measurement for 10 seconds at rest using: 
 A: Dry Ag electrodes on wrist with SNR= 9.029 dB; B: CNT/PDMS electrodes on wrist with 

SNR= 15.27 dB; C: Ag/AgCl electrodes on chest 

 

7.6 DISCUSSION 

In this study, three ECG measurements were taken from 7 healthy subjects from three 

age groups (18–35 years, 36–55 years and 56 and above) simultaneously using 

CNT/PDMS, dry Ag and Ag/AgCl electrodes. During the experiments, the forearm skin 

of the subjects was stretched by another person using a plastic tube. The CNT/PDMS 

and dry Ag electrodes were used to measure ECG with motion artefacts from the wrist, 

while the rest (reference) ECG was measured across the chest using conventional 

Ag/AgCl electrodes. The CNT/PDMS electrodes were employed to measure the ECG 

and to emulate skin stretch. An optical sensor was used to capture the forearm 

movement, and 2D strains corresponding to the skin stretch were evaluated.  

An altered cardiac action potential may lead to changes in ECG characteristics with 

time, even when the patient is at rest. Therefore, in this work, the ECG at rest and with 

motion artefacts were measured simultaneously, as opposed to the studies performed by 

Liu [108] and Romero [113] ,where they were measured separately. The SNRs of the 

filtered and the corrupted signals (ECGs with motion artefacts) were calculated by 

considering the ECG obtained from chest as the rest/reference ECG. A difference in the 

signal qualities obtained from the chest (using Ag/AgCl electrodes) and the wrist (using 

CNT/PDMS electrodes) was expected, and therefore the improvements in SNRs (from 
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equation (7.3)) were measured to estimate the performances of the algorithms. In some 

cases, the reference signal was degraded due to the shoulder movement of the subjects, 

an example of which is seen in Figure 7.26. 

The average improvements in SNR using PCA and ICA were 4.249 dB and 9.586 dB 

respectively. The ∞-norms of the signals were found to be in the order ICA<PCA<MA 

for all cases, as shown in Table 7.1. Although PCA filtering led to a significant increase 

in SNR, the efficacy of ICA on motion AR was greater. Student’s T-tests were carried 

out to determine statistical significance of noise reduction using the PCA and ICA 

algorithms. The P values were always less than the threshold α=0.05 (confidence level 

95%) for ICA, thereby rejecting the null hypothesis. The average P value for ICA was 

lower than that for PCA, thus showing greater statistical significance. 

The best and the worst performances exhibited by PCA and ICA were illustrated in 

Figures 7.15–7.18. It can be deduced from the results that both PCA and ICA perform 

better in cases where the motion artefact is large. Even though the amplitudes of ECG 

and strains due to skin stretch varied from person to person, both PCA and ICA 

algorithms exhibited higher SNRs and lower ∞-norms in all subjects, as shown in Table 

7.1.  

Different 15 second epochs of motion artefacts in ECGs in the same subject were 

compared when the skin was stretched and relaxed continuously using a plastic tube, as 

observed in Figures 7.19-7.22. The higher resultant strain due to stretching led to more 

degradation in the ECG in Figure 7.20 compared to that in Figure 7.21. On the other 

hand, when the resultant strain due to stretching was similar (in Figure 7.19 and Figure 

7.22), the ECG signal in Figure 7.22 was more affected. Therefore, it can be inferred 

that skin stretch doesn’t necessarily introduce similar effects on the ECG signal at 

different time sequences. 

These observations are supported by a 2007 study performed by Liu [109], in which a 

subject’s skin stretch induced artefacts were found to be larger than the ECG signal for 

a certain period of time, and then disappear over another time frame. Odman [152] found 

a non-linear relationship between the size of potential variations in the skin and the 

mechanical stress, which was found to vary amongst individuals.  

The proposed technique in this study involving the implementation of JADE (in ICA) 

was effective in removing considerable motion artefacts from ECG signals. Unlike an 
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extended Kalman filter (EKF), ICA does not require any assumptions or prior 

information related to the model describing the data. This is beneficial as it makes ICA 

general in its application [126]. In principle, ICA alone could have been used on the 

ECG signal. However, it is useful to use some prior information with ICA to remove 

artefacts from heavily corrupted signals. In this work, motion information in terms of 

2D strains was employed to improve the motion AR from ECG using PCA and ICA.  

Artefacts due to EMG interference were also generated in 2 subjects by asking them to 

repeatedly close and open one fist. The intra-test repeatability of the system was tested 

by applying PCA and ICA algorithms to the acquired ECG measurements at different 

time sequences. No significant variation in the performance of PCA and ICA was 

observed for four epochs of 15 seconds, as seen in Figures 7.23 and 7.24. 

PCA was performed on the ECG signals with and without beat segmentation. From 

Figure 7.25, it can be inferred that the SNRs were slightly higher when PCA was 

performed by segmenting the ECG signal into beats. An explanation for this is that an 

adaptive averaging of the segmented ECG beats was performed in the former case. 

Therefore, the ECG beats that deteriorated due to motion artefacts were averaged out by 

clean ECG beats. The signal is then decomposed into orthogonal components and the 

contribution of the components to the signal is measured through eigenvalues. Even 

though the SNR achieved by applying PCA with beat segmentation was higher, it is 

more appropriate to not segment beats from the ECG signal in this application. This is 

because the main objective of this study is to remove motion artefacts from the ECG 

using quantified motion information in the form of strains. In applying PCA after beat 

segmentation, an intermediate or average of the beats is taken which might lead to loss 

of some clinically significant information. If the ECG beats are averaged over a longer 

period of time, infrequently occurring abnormalities could go undiagnosed. In contrast, 

if the signal is not segmented, only strain information is utilized to remove motion 

artefacts, without averaging individual beats. However, in case of ICA, the ECG signal 

is decomposed into independent components and the components which are most 

correlated with the noise are removed, therefore, ICA does not produce the same 

“averaging” effect as PCA. 

The SNRs of the acquired ECGs were significantly lower when the skin was stretched 

perpendicular (in the y-direction, SNR= -1.7657 dB) and diagonal (in the xy-direction, 
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SNR= -2.021 dB) as compared to parallel (in the z-direction, SNR=9.58 dB) to Langer’s 

lines, as seen in Figure 7.30.  

This can be due to two causes. Firstly, stretching the skin parallel to Langer’s lines 

doesn’t generate enough injury current to contribute motion artefacts to the acquired 

ECG measurements. Secondly, as depicted in Figure 2.5, the Young’s modulus of the 

skin lowers as the direction changes from parallel to perpendicular to Langer’s lines, 

which may affect the amount of motion artefacts due to lesser skin stretch. The former 

possibility is the more likely explanation in this case as the 2D strains due to stretching 

in all directions were similar (within -0.3–0.3), with highest strain amplitudes 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑥𝑥𝑏𝑏 

and 𝜀𝜀𝑏𝑏 in the parallel, diagonal and perpendicular directions respectively, as seen in 

Figure 7.31. 

Data sets having different arrangements of ECG signals with corresponding mean and 

median strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏,  𝜀𝜀𝑥𝑥𝑏𝑏, 𝜀𝜀1 and 𝜀𝜀2) were taken for filtering using PCA and ICA, as 

seen from Figures 7.10-7.14.  

Mean and median values of strains for each frame corresponding to each ECG sample 

were calculated. The strain amplitudes due to stretching were as high as 0.5 and as low 

as 0.001. Figure 7.42 shows small and large displacements of the checkerboard points 

in consecutive frames from the initial frame. 

Figure 7.42: Small and large displacements (blue arrows) of checkerboard corner points (in 
green circles) from the points in initial frame (in red circles) 
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It can be inferred from Figure 7.36 that the mean strain amplitudes were significantly 

higher than the median strain amplitudes when computed from the movement of all 

checkerboard points and points in Regions 1 and 4 for each frame. This was due to larger 

displacements of some points in certain areas of the checkerboard. It can be observed 

from Figure 7.43 that the resultant displacement of the checkerboard corners due to 

stretching is higher in the y- and xy-directions in Region B compared to that in Region 

A; therefore, the mean strain amplitudes 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏 are higher than the median strain 

amplitudes.  

 

Figure 7.43: Displacements (blue arrows) of checkerboard corner points (in green circles) in 
Regions A and B from the points in the initial frame (in red circles) 

In contrast, the mean and median strain amplitudes computed by tracking the four corner 

points for each frame were similar. The SNRs achieved using mean strain amplitudes as 

motion information in PCA and ICA were higher than those using median strain 

amplitudes, as seen from Figures 7.32 and 7.33. The performance of PCA and ICA using 

data set arrangements in Cases 1, 2, 3 and 5 (section 7.4.5) can be seen in Figures 7.32-

7.35. When motion information was evaluated by taking strains from all points (see 

Figures 7.32 and 7.33), the lowest SNR was obtained in Case 4 for both PCA and ICA. 

On the other hand, Cases 1 and 3 showed a similar improvement in SNR, whereas Case 

2 showed a slightly lower improvement. Therefore, the PCA and ICA algorithms can be 

simplified by taking 𝜀𝜀1 in place of 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏 and 𝜀𝜀𝑥𝑥𝑏𝑏 as motion information. 

Region A Region B 
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The AR system performed best when strains were obtained from all points and from 

points in Region 4, as seen in Figures 7.32-7.35, the performance of the system was 

worst when strains were evaluated from Region 1 and the four corner points of the 

checkerboard. This is because Region 4 is the closest and Region 1 is the farthest from 

the ECG lead site, as shown in Figure 7.44. It appears that the strains due the 

displacements of 4 corner points (as opposed to using the entire strain field) are not 

sufficient to quantify motion information in terms of skin stretch. 

 

 

No significant change in SNRs using PCA and ICA was observed on taking individual 

strains from all four regions of the checkerboard (Case 5, Figure 7.14) as motion 

information as seen in Table 7.3. On the contrary, the SNR dropped considerably when 

the algorithms were performed without taking any motion information or by taking 

average displacements as motion information.  

The performance of this system was found to be better than other systems employing 

PCA and ICA for motion artefact removal from ECGs (Table 7.4). The average AR 

percentages evaluated using 𝐿𝐿2 norms (from equation (7.5)) were higher for ICA than 

for PCA. A greater SNR was achieved using CNT/PDMS electrodes compared to dry 

Ag electrodes on the forearm.  

The method adopted to identify skin stretch did not lead to a wrong diagnosis when no 

motion artefacts were introduced. This is because the overall strain at rest was zero. 

The efficacy of the ICA algorithm depends on the accurate detection of R-peaks. The 

window length in the peak detection algorithm (discussed in section 6.3) was optimized 

manually for the ECG measurement obtained from each subject due to a difference in 

CNT/PDMS 
with printed 
checkerboard 

Region 1 

Region 3 

Region 2

Region 4
ECG lead site 

Figure 7.44: Representation of position of each region of the checkerboard from the ECG 
sensing site 
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their heart rate. Accurate detection of R-peaks can be challenging in cases where the 

ECG signal is heavily corrupted with motion artefacts. 

In this study, the skin was only stretched in two dimension along the planar surface of 

the arm using a plastic tube. The effect on ECG signals due to stretching the skin along 

the curved edges of the arm, inflating the skin in form of a dome (in section 2.5.3) and 

twisting the skin (in section 2.5.4) were not considered. 

The experiments were carried out in only seven subjects within different age groups and 

the changes in magnitude and morphology of skin stretch induced artefacts with change 

in skin’s thickness, gender and skin’s hydration were neglected. 

The ECG was measured from arms instead of the chest and the efficacy of the AR 

system was not tested in conditions where the subjects were actively moving, walking, 

jumping, or running. Offline instead of real time signal processing was performed on 

the ECG signals using PCA and ICA. 

Another downside of this study was the discomfort experienced by the subjects due to 

the application of conductive paste on their skin to hold the electrodes in place. 

Therefore, people having a history of skin lesions, skin allergies or sensitivities to 

cosmetics and lotions were not allowed to participate in this study. 

The study was only conducted in healthy subjects and did not involve people with a 

history of heart arrhythmia.  

7.7 SUMMARY 

Overall, a novel method to eliminate motion artefacts from ECG signals was developed 

and validated in 7 healthy individuals. The strains were normalized and PCA and ICA 

was used to remove the motion artefacts from the ECG using various schemes for 

calculating strain signals.  

The AR system employing PCA and ICA efficiently removed motion artefacts from the 

ECG measurements of all seven subjects.  A significantly higher improvement in SNR 

was attained when mean strain amplitudes were used rather than median strain 

amplitudes as motion information in PCA and ICA. The AR system performed best 

when mean strains 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏, 𝜀𝜀𝑥𝑥𝑏𝑏 or 𝜀𝜀1 evaluated from all points and from points in Region 

4 of the checkerboard were used as motion information in ICA (Figures 7.32-7.35). The 

average improvement in SNRs obtained on employing ICA in the AR system was almost 
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two times higher than that obtained using PCA. The performance of the AR system 

under different conditions has been compared in Figure 7.45. 
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Figure 7.43: A comparison of performance of the AR system under different conditions 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORKS 

 

8.1 CONCLUSIONS 

A novel non-invasive technique to remove motion artefacts from ECG signals has been 

developed and demonstrated. In this study, skin stretch has been used to quantify motion 

artefact from ECG, as opposed to other studies employing rigid body displacements for 

motion artefact quantification, such as in accelerometers, LVDTs, gradiometers and 

optical sensors. The use of infinitesimal strain theory for skin stretch measurements in 

removing motion artefacts from ECG has not been previously reported in the literature. 

The following conclusions and contributions have resulted from this study: 

1. An Artefact Rejection (AR) system employing 2D strain analysis can effectively 

remove motion artefacts due to externally imposed skin-stretch and voluntary 

motion. Although both PCA and ICA have been extensively used in previous 

studies, this study emphasises using 2D strains corresponding to skin stretch 

during ECG measurements in mitigating motion artefacts using PCA and ICA. 

Taking motion information in the form of 2D strains rather than Euclidian 

displacements of the points within the electrode resulted in better AR. These 

results support physiological evidence that the injury current caused by skin 

stretch is an important contributor to ECG motion artefact.  

 

2. Greater improvements in SNRs and lower ∞-norms were obtained using ICA 

than PCA in all the cases. As the ICA algorithm decomposes the signal into 

independent and uncorrelated components, this supports the presumption that 

noise due to motion is independent from the ECG.  

 
3. The system performed better when PCA and ICA were applied using 2D strains 

than without using them. The best performance (SNR improvement = 11.461 dB 

in subject 6) was achieved when normal and shear strains (𝜀𝜀𝑥𝑥, 𝜀𝜀𝑏𝑏, 𝜀𝜀𝑥𝑥𝑏𝑏) due to 

skin stretch were used as motion information in ICA. The results indicate that 

more detailed information of the 2D strain distribution within the electrode is 

necessary and this information cannot be directly estimated from the corners of 

the electrode (i.e. using strain information with a lower spatial resolution).  
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4. The AR system performed better when mean rather than median strains were 

considered, for both PCA and ICA.  This seems to indicate that ECG noise is 

affected by “outliers” that are filtered out when using median strains. 

 
5. In this study a thin, conductive and biocompatible prototype electrode was 

developed using CNTs and PDMS to both measure ECGs and emulate skin 

stretch. Even though CNT/PDMS electrodes are quite commonly employed in 

bio signal acquisition, in this study, they have been shown to be suitable for 

measuring ECG and skin strain measurements simultaneously.  

 

6. This study demonstrated a technique and algorithms for measuring a skin strain 

field by optically tracking the corner points of checkerboard squares printed on 

the electrode. Although the technique needs to be further developed to be 

practical, it may nevertheless find use in a variety of applications. 

 

7. The motion artefacts induced on stretching the skin perpendicular and diagonal 

to the Langer’s lines were significantly higher than those induced by stretching 

the skin parallel to them. This provides evidence that the injury current and 

susceptibility of the ECG to motion artefacts is dependent on the directionality 

of skin stretch.  This may aid in designing electrodes and choosing appropriate 

electrode placement for motion artefact minimization. 

 

8.2 FUTURE DIRECTIONS 

The following investigations related to this study can be performed in future: 

8.2.1 Future sensor development 

One of the major limitations of this study is that the camera focus and the light 

conditions easily obstructed the strain measurements in cases of vigorous motion. 

Therefore, an alternate approach for measuring skin displacement, such as piezoresistive 

sensing, could be used in subsequent studies. 

The integration of ECG circuitry into compact CNT/PDMS polymer patch electrodes 

could be implemented for long-term ECG monitoring.  
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It was found that strong forces of attraction between the CNTs leading to CNT clumping 

could be mitigated using DMF as a wetting agent,  thereby ensuring their homogeneous 

dispersion in PDMS. Both DMF and NMP solvents can be used to detangle CNTs, 

however, DMF was used in this study as it is easily available, cheaper and safer to 

handle. Future work may direct towards using and comparing NMP as a wetting agent 

against DMF in terms of analysing Young’s modulus, homogeneity of the composite 

and change in conductance with stretching. 

8.2.2 Further development of algorithms 

In this study, a singular mean strain amplitude corresponding to each ECG sample was 

used as motion information in PCA and ICA. However, further use of the distribution 

of 2D strains in the plane of the electrode instead of a singular representative can be 

employed in future studies. The AR system in this study could also be augmented by 

other sensor systems to quantify motion artefacts. Such an implementation could then 

be assessed against the current system’s performance to provide the best solution for 

motion artefact rejection from ECG signals. 

8.2.3 Further validation 

The current study has only been validated in 7 healthy subjects. In order to evaluate the 

true efficacy of the PCA and ICA algorithms used in this study, they should be tested in 

patients with heart arrhythmias to ensure that clinically important information isn’t 

filtered out. It should be noted that even though the average AR percentages achieved 

using PCA and ICA are 40% and 93% respectively, the amount of motion artefact under 

the conditions of vigorous exercises like running could be much higher. Therefore, the 

algorithm needs to be tested for motion artefacts under ambulatory conditions like 

running, walking and jumping.  

This research has shown that if limitations of the current approach (robust and compact 

wear-ability, and validation in real-world conditions) can be achieved, the technique of 

directly utilising measurements of skin-strain field under ECG electrodes may become 

a viable and highly effective means of removing motion artefact from ECG signals, and 

consequently making ambulatory ECG measurements much more clinically useful. 
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