
Multi-Dimensional Creativity: A Computational Perspective 

This paper presents a multi-dimensional perspective for the study of creativity 

and formulates a framework for computational creativity that consists of 1) 

Culture; 2) Society; 3) Groups; 4) Individual, and 5) Brain. This framework 

enables the definition of functional relationships among these scales, and 

captures the effects of time within each scale. Its relevance and usefulness are 

shown firstly by classifying recent studies of computational creativity, and 

secondly by illustrating multi-dimensional approaches to the computational study 

of creativity with sample scenarios grown in a simulation system. The paper 

closes offering modelling guidelines for the computational studies of creativity. 
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1. Introduction 

The scientific study of creativity spans across multiple areas of knowledge, however 

most research is conducted in disciplinary isolation. The ways in which scholars frame 

research questions related to creativity largely depend on their affiliations, i.e., the 

methods they trust, the variables and indicators accepted in their fields to develop and 

test hypotheses, their scope, definitions and assumptions about a complex concept such 

as creativity, and the ways causal arguments are built. The scientific study of creativity 

is not only divided by “cultures” (Mahoney and Goertz 2006), but also by the many 

levels at which creativity is analysed. Research programs today include the study of 

“creative brains” (Fink et al. 2010), “creative cognition” (Smith et al. 2006), “creative 

personality” (Martinsen 2011), “creative teams” (Gloor et al. 2012), “creative 

leadership” and “creative organizations” (Mathisen et al. 2012), “creative occupations” 

(Lee and Drever 2012), “creative products” (Besemer 1998; Haller et al. 2011), 

“creative cities” (Evans 2009), “creative industries” (Hotho and Champion 2012), 



“creative countries” (Kim 2007), and “creative eras” (Marshall 2009) –to name just a 

few. 

Rather than pursuing an encompassing definition, in this paper creativeness 

across scales and domains is viewed as a relative value ascribed to persons, processes, 

products, populations, etc. In other words, a person, process, product, occupation, city, 

or industry is considered creative inasmuch as they exhibit properties that set them apart 

from their counterparts. Such properties are defined and accepted by a community and 

customarily include novelty, utility, and surprise or non-obviousness. The ascription of 

creative value ranges from routine to disruptive (Gero 1990; Kaufman and Beghetto 

2009). Since the creation and evaluation processes occur at different scales and times, 

this paper regards creativity as a multi-level construct. A framework is presented here to 

support the study of creativity from multiple scale and time dimensions. Although this 

framework can guide all research work, we demonstrate its relevance in computational 

creativity, due to the methodological flexibility that computational models offer to 

define, inspect and scrutinize interactions across scale and time levels.  

Computational creativity is a relatively recent and promising research approach 

that complements the current methods and techniques to understand and support 

creativity. Its origins in Artificial Intelligence (AI) help explain its emphasis so far on 

the modelling of individual processes, and the use of external (human) evaluations of 

performance and outcomes. In the traditional AI paradigm, the system architecture 

consists of autonomous agents interacting with an external environment and producing 

solutions that are assessed by human judges in terms of their quality and similarity to 

human solutions (Russell and Norvig 2005). Alternative ways of applying 

computational methods to the study of creativity from multiple dimensions are 

developed in this paper.  



A multi-dimensional perspective for the study of creativity is presented here. 

The aims of this work include: to enable new ways of thinking about creativity from 

different disciplines supported by computational models, to support communication 

between research traditions, and to map the units of analysis, variables and interactions 

across scales and time. The paper is organized as follows: Section 2 introduces key 

concepts and draws from the theoretical bases of this approach; Section 3 presents our 

framework and explains its main structural and functional aspects. Section 4 applies this 

framework to classify recent studies of computational creativity and illustrates multi-

dimensional modelling approaches in a simulation system used to inspect fundamental 

questions about creativity and innovation. Section 5 closes the paper presenting 

modelling guidelines and implications for connecting computational methods to other 

research methods for the study of creativity.   

2. Background 

Integrating scientific disciplines is an intellectual effort that goes back to Comte’s 

hierarchy of sciences according to the scale and complexity of theoretical tools (Mayer 

and Lang 2011). The role of cultural mediation in the development of cognitive 

functions has its origins in the tradition of cultural psychology since Vygotsky (Moran 

and John-Steiner 2003). Research on the social-psychology of creativity began to 

illustrate the interaction between individual and external factors (Hennessey 2003). 

More recently, cultural-psychology creativity has extended that approach by shifting the 

architecture from a view of individual behavior “conditioned” by social factors and 

towards a more integrated view where interdependent relationships co-constitute 

complex creative systems (Glăveanu 2010). Ecological models of creative problem 

solving integrate cognitive, personality, and situational factors (Isaksen et al. 1993). 

Conceptual models where creativity is viewed as a social construct have been discussed 



(Simonton 2004; Westmeyer 2009), but they remain largely unconnected from 

empirical, experimental or computational studies.  

Multilevel models that capture the interactions between psychological, social 

and cultural factors enable two complementary research directions. On the one hand, 

holistic explanations are possible by going up in the hierarchy drawing upon higher 

levels that moderate lower effects. On the other hand, reductionist explanations go 

down in the hierarchy to inspect lower-level factors that account for high-level 

phenomena (Koestler and Smythies 1969). For example, accounting for cultural 

constructs can be essential to understand individual attitudes to altruism (Sheldon et al. 

2011). Likewise, individual cognitive styles have been studied to help explain and 

manage group conflict (Kim et al. 2012).  

Contemporary personality research provides empirical support for the 

irreducibility postulate: i.e., “no scientific discipline is likely to subsume the others, all 

are needed” (Sheldon et al 2011). In the field of personality and well-being, multilevel 

approaches are recommended to study the complex interactions and effects among 

factors within and between levels of organization: cultural, social, personality, cognition 

and neural (van Mierlo et al 2005). Such integrated and interdisciplinary models should 

account for moderator relationships between levels of organization.  

The Multilevel Personality in Context (MPIC) (Sheldon et al. 2011), The Five 

Fundamental Principles for an Integrative Science of Personality (McAdams and Pals 

2006), and the Cognitive-Affect Personality System (CAPS) (Mischel and Shoda 1995) 

show how multiple levels of analysis can be integrated for a more reliable and complete 

understanding of complex human behavior –such as creativity. The MPIC model 

specifies the following levels: Culture, Social relations, and four levels of Personality: 

Self-Narratives, Goals/Motives, Traits/Dispositions, and Needs/Universals (Sheldon et 



al. 2011). Reviewers of the MPIC model further suggest the addition of situations to 

account for contextual factors beyond the bio-psychosocial (Mayer and Lang 2011). 

McAdams and Pals (2006) view personality as shaped by individuality, dispositional 

traits, characteristic adaptations, and life stories situated in a cultural environment that 

provides rules for the expression of trait tendencies, influences the content and timing of 

characteristic adaptations, and provides the canonical narrative forms out of which 

people make meaning of their lives.  

In the study of creativity, Indurkhya (2012) addresses the interaction between 

system levels by asking where is the creativity when non-conscious or unintentional 

processes generate artifacts deemed as creative by an audience (i.e., works of art by a 

person diagnosed with schizophrenia or in cases of unexpected commercial success). A 

similar point can be made when considering the attribution of creativity to designs by 

Nature (McGrew 2012). Understanding the interplay between generative and evaluative 

processes of creativity has the potential to transcend such apparent paradox where at a 

given level it may seem like “there is nothing distinctive […] that we can label as 

creative” (Indurkhya 2012). Paraphrasing Weisberg (1993), a multi-dimensional 

approach to creativity may reinforce the view that “creative works, even the most 

radical, are the result of [the coupling between] ordinary thinking [generative and 

evaluative] processes.” 

In view of the disciplinary divides between fields where creativity is studied 

(psychology, anthropology, sociology, cultural geography, innovation research, design 

research, economics, linguistics, neuroscience), the study of such complex phenomenon 

requires cross-disciplinary perspectives that explore complementary levels of causality 

(Sternberg and Grigorenko 2001). In contrast to other research methods, computational 

creativity supports such cross-disciplinary reasoning (Meyer et al. 2009).  



Computational creativity refers to the scientific study of computational 

processes related to human creativity (Cardoso et al. 2009). This type of research in 

artificial creativity has been heavily dominated by generative systems focused on 

modelling the cognitive level, exploring the extents to which computers can produce 

solutions deemed as creative by unsuspecting judges. Paulus et al. (2010) present a 

generative system that combines individual and small-group creative processes, drawing 

from and transforming a corpus that is internal to the system, i.e., repositories of 

baseline solutions inspired by external (human) cultural references but with no goal to 

transform them.  

Automated creativity further illustrates the gap between computational 

representations and human interpretations, such as the gap between written recipes and 

the imagined dish by cooks (Morris et al. 2012). This constitutes one of the main 

challenges of this field: that ‘creative computers’ ought to impact the external domain 

(poetry, music composition, painting, etc.) taking as inputs existing exemplary works to 

produce outputs that are evaluated by expert judges with a more complete access to the 

domain. For instance, in the case of written recipes, judges can easily imagine how a 

dish may taste (Morris et al. 2012). From a more pragmatic approach, in the field of 

Computer-Aided Innovation (CAI), computational tools are created and studied to assist 

designers in the creative process (Leon 2009).  

Maher (2012) frames the need for evaluation criteria that are independent of the 

generative process. Jordanus (2011) suggests a standardized approach to evaluation 

where key components are identified, clear metrics are defined and tests are 

implemented. The work presented in this paper extends previous work (Sosa and Gero 

2013) and puts forward a structural and functional framework for the integrated study of 



computational creativity spanning system dimensions and therefore integrating views of 

creativity across disciplines. 

3. Multi-Dimensional Creativity 

The Multi-Dimensional Creativity (MDC) framework builds on the Idea-Agent-Society 

(IAS) triad of creative systems: epistemological, individual and social (Sosa et al. 

2009). IAS synthesizes constructs from five influential theories, i.e.: exemplars, 

proponents, and communities (Ludwik Fleck); innovations, entrepreneurs and markets 

(Joseph Schumpeter); noosphere, strong spirit and culture (Edgar Morin); domain, 

individual and field (Mihalyi Csikszentmihalyi); and logic, genius and zeitgeist (Dean 

Simonton). The IAS framework maps out intrinsic processes within epistemic, human 

and social spheres (idea, agent and society, respectively), and six directed interaction 

processes between these spheres (Csikszentmihalyi 1988; Fleck 1981; Morin 1992).   

MDC goes beyond the mapping of systemic dimensions and enables the 

definition of temporal and functional relationships in five scales of analysis: 1) Culture; 

2) Society; 3) Group; 4) Individual; and 5) Brain. These relationships can be defined in 

computational studies as independent or interdependent, i.e., the former represent 

processes that occur only within a single scale in isolation, whilst the latter represent 

processes that are connected between scales. For example, a range of cognitive 

functions can be studied in a computational system, some of which can be assumed to 

emerge from explicit lower-level neural processes, others that are defined only within 

the cognitive level, and a third type that leads to higher-level personality or group 

processes. Figure 1 shows the MDC framework in a radial arrangement to explicitly 

avoid the implication of concentric circles where higher-level factors consist of 

aggregated units from lower levels (i.e., a group is not seen simply as a collection of 

individuals, etc.). 



[Insert Figure 1 here] 

Dimension MDC-1, Culture, refers to the macro epistemological scale of 

creativity and addresses questions such as “How do systems of beliefs, language or taste 

change over time?”, “How may intellectual property law affect creativity and 

innovation in the short and long run?”, or “To what extent do the physical environment 

and communication practices determine the levels of creativity in an organization?”. 

Computational models at this scale can seek to grow these processes artificially by 

manipulating a range of initial factors and conditions, or they may consist of artificial 

systems that draw from or are inspired by real-world knowledge bases and corpora. 

MDC-1 relevant studies target topics such as: culture and technology evolution, 

organizational culture, language and semiotics, economic impacts, taste and traditions, 

public policy, mass media, intellectual property, cross-cultural comparisons, and 

creative environments.  

Dimension MDC-2, Society, refers to the macro scale of human agency. It 

captures processes that account for the influence of –or seek to grow effects on– 

demographics, networks, migration, social influence and authority, roles and 

occupations, class structure, social capital, crowdsourcing, market segmentation, 

reputation and popularity, ethnic diversity, gender and aging, diffusion of innovations, 

and crowd behavior. Computational social models may instantiate the societal group as 

a separate class of variables with group-level behaviors, although the more common 

approach has been to view artificial societies as aggregate groups of autonomous agents 

which lack any explicit representation of their shared membership.  

Dimension MDC-3, Group, refers to creativity phenomena that occurs at the 

scale of small to large groups of humans. This includes ideation sessions, team 

dynamics, communities of practice, family and peer support, co-creation, artist 



collectives, art commission, brainstorming, change management and leadership, 

deliberation, collaboration/competition strategies, workplace practices, groupthink, 

game theory, adopter categories. In computational creativity the difference between the 

social and group levels may be one of scale with the ensuing implementation 

challenges, and the option to have richer models of individual behavior in smaller 

groups. Modelling small groups may also facilitate the study of group-to-group 

interactions as well as individual awareness of group characteristics. 

Dimension MDC-4, Individual, is the most common scale of study of creativity 

spanning cognitive science and psychology research. Beyond ‘creative cognition’ 

(intuition, insight, incubation, problem framing and solving, concept formation, 

representation, fixation, association, analogy, divergent thinking, abductive reasoning), 

processes on this scale also include personality types, motivation, curiosity, 

extroversion, mental health, addictions, emotions, risk aversion, well-being and 

lifestyle, habit, expertise, perception, biases, heuristics, etc. This is also the dominant 

approach in computational creativity where the main aim has been to build generative 

systems that typically produce a large number of solutions from which the researcher 

arbitrarily selects a few to either present as evidence of creativity or to present to a 

panel of judges (audiences or experts), who compare and evaluate the outputs.  

Finally, dimension MDC-5, Brain, includes all creativity processes at the neural 

scale including neuroanatomy (brain asymmetry, neural circuits), neuromodulation 

(risk, arousal, novelty), brain stimulation, as well as neural network (NN) models of 

creative reasoning.  

[Insert Table 1 here] 

The MDC framework presented here accounts for multiple scales of creativity, 

each of which has been traditionally addressed in isolation as shown by the existing 



research programs in Table 1. MDC links these scales together and enables researchers 

across disciplines to explore top-down and bottom-up connections between these scales, 

as well as to distinguish time-based patterns within each scale.  

3.1 Time in MDC 

The MDC framework includes time factors across scales. Time is considered by 

the length and stability of the interactions, ranging from a few seconds as in studies of 

creativity and brain activity to millennia as in studies of creativity in human evolution. 

Therefore, the time scale is defined independently for each dimension. In MDC-1, 

culture, short-term processes of interest range from rapid changes over days or weeks 

such as those observed in the fashion industry (Mora 2006) and transient fads 

(Krapivsky et al. 2010). Mid-term processes of MDC-1 span over years and include 

geographical analyses of innovation and entrepreneurship (Lee et al. 2004), influence of 

knowledge and beliefs on creativity (Bhawuk 2003; Kim 2007), and the cultural 

assessment of creative ideas (Hempel and Sue‐Chan 2010). Long-term processes that 

span from years to centuries in MDC-1 include archeological studies of the origins of 

human innovation and creativity (Elias 2012), and historical studies of culture and 

creativity (Marshall 2009; Tan 1997; Kuhn 2012).  

In MDC-2, society, the shortest timescale includes events such as creativity in 

online collaboration and unconventional self-coordinated rapid responses to 

contingencies (Webb and Chevreau 2006; Crespo et al. 2007). Social processes that 

span weeks to months in their planning and execution include: word-of-mouth 

communication, and innovative bottom-up structures such as social movements in 

politics, sports, and festivals (Godes and Mayzlin 2004; Shepard 2011). More stable 

social relationships relevant to creativity grow over years and can extend through 

centuries and beyond, such as schools, awards and creative guilds; studies of population 



genetics, human behavioral ecology and evolutionary psychology also illustrate long-

term social phenomena related to creativity (Mahmood 2008; Kijkuit and Van Den 

Ende 2007; Scott 2006; Becker 1997; Sunstein 2003).  

In MDC-3, group, ephemeral interactions occur in periods of a few minutes or 

hours such as ideation sessions, conversation analysis and improvisation (Paulus and 

Nijstad 2003; Sawyer 2006; Björkman 2004; Lemons 2005). More stable events include 

project teamwork and conflict, workplace dynamics, creativity and leadership, creative 

performance over time, and classroom creativity (Chen 2006; Nemeth et al. 2004; 

James et al. 2004; Shalley and Gilson 2004; Tierney and Farmer 2011; Saracho 2012; 

Starko 2009). Long-term structures in MDC-3 may span for decades and longer, such as 

in the role of social networks and career development (Jones 2010; Ohly et al. 2010). 

In MDC-4, individual, the research methods tend to focus on laboratory settings 

where particular cognitive mechanisms are studied over a few minutes, and may extend 

to include effects that last days or weeks, i.e., periods of incubation and a-ha moments 

of insight (Smith et al. 1995; Gero 2011; Storm and Angello 2010; Hennessey 2003; 

Gilhooly et al. 2012). Personal traits and processes that span over several years include 

formal education, ageing, childhood and mental health (Simonton 2004; Vygotsky 

1990; Duffy 2006; Basu et al. 2011; Zhang and Niu 2013; Noori et al. 2012). Lastly, 

MDC-4 life-long phenomena such as giftedness, career trajectories and biographies 

represent the long-term dimension in this category (Sak 2004; Gardner 2011; Syed 

2010).  

Lastly, in MDC-5 brain activity is analyzed over short periods from seconds to 

minutes (Aziz-Zadeh et al. 2013, Kowatari et al. 2009; Green et al. 2012; Dietrich 2004; 

Dietrich and Kanso 2010). More persistent processes include the sustained effects of 

brain magnetic stimulation, drugs, sleep and dementia, as well as brain plasticity 



(Snyder et al. 2012; Fink et al. 2010; Rosenthal and Westreich 2010; Maquet and Ruby 

2004; Miller and Hou 2004; Otte 2001). Long-term brain phenomena include the 

evolution of the human brain, the relation between brain development and language, 

and the neurobiology of nonhuman animal creativity (DeFelipe 2011; Christiansen and 

Chater 2008; Kaufman et al. 2011). 

3.2 MDC Modeling 

MDC is a conceptual framework that aims to guide computational studies of creativity, 

although it is applicable to other approaches combining existing research methods. 

Cross-scale and time-based interactions open up a triple set of opportunities for the in 

silico or computational study of creativity, such as the following examples:  

• MDC supports the framing of reductionist models, i.e., what neural mechanisms 

help explain team ideation processes such as productivity loss (A arrow in 

Figure 2); how group dynamics, societal and cultural norms shape the role of 

change agents or determine self-perception of creativity (B arrow in Figure 2).  

• MDC supports holistic studies across scales, i.e., how may cultural or 

generational attitudes to change explain and be explained by individual traits, 

group dynamics such as family, and social rituals (C arrow in Figure 2); the two-

way interaction between brain and language evolution (D arrow in Figure 2). 

• MDC enables the framing of longitudinal studies, i.e., how sudden events may 

lead to long-term cultural changes, workplace policies or social movements (E 

arrow in Figure 2); how a short-lived experience may affect an individual’s 

creative career, and the lives of their peers and pupils (F arrow in Figure 2).  

The MDC framework accommodates various research traditions, approaches and 

units of analysis. Figure 2 depicts the MDC framework with scales on the vertical axis 



and time on the horizontal axis. Arrows show examples of the type of cross-scale and 

time-based interactions that MDC supports. 

[Insert Figure 2 here] 

3.3 Evaluation 

In this section the MDC framework is applied to recent computational creativity studies 

with the aim to evaluate whether cross-level interactions are currently captured in the 

literature. All 34 full papers published in the proceedings of an international conference 

were selected for this exercise, including full papers and position papers (Maher et al. 

2012). These were classified in one or more of the MDC scales according to their 

research aims and claims as stated by the author(s), as well as the target research 

agendas in position papers. Table 2 presents the 34 papers (rows) and their relation to 

the MDC scales (columns) –only the first author’s surname is used for clarity. 

[Insert Table 2 here] 

As may be expected, a vast majority of papers (more than 90%) in 

computational creativity address the individual scale MDC-4, mainly by describing 

generative systems that produce creative outputs which are selected by the researchers 

and, in some cases, evaluated by external judges. This widespread focus on the 

individual scale is explained by the origins of this field in Artificial Intelligence, but 

also by the “lone genius” myth of creative practice, the dominance of individual 

approaches to the study of creativity in cognitive, personality and biographical fields, 

and the reductionist belief that other scales will ultimately build upon the individual 

dimension once it’s well understood (Johnson 2012).  

The most common type of paper overall (41%) reports corpus-based generative 

systems, i.e., where the researcher selects a set of exemplars to use them as the basis for 

the synthesis of new solutions. The range of themes and domains is varied: poetry 



generators that use newspaper articles as input, music generators from sample classical 

music and from non-musical audio signals, poster generators that modify existing 

designs, and recipe generators based on recipes gathered from specialized websites.  

These archetypical papers can also be seen as addressing MDC-1 not because 

they aim to model cultural changes within the system, but because they take repositories 

of human culture as inputs to produce their output. Such papers account for 67% of 

papers dealing with the MDC-1 scale, the rest being mainly position papers that 

underline the importance of including the cultural dimension in computational studies. 

The two exceptions are Baydin et al. (2012) whose algorithm is based on the concept of 

“memes” or units of culture and Gabora and DiPaola (2012) who specifically aim to 

model cultural evolution.  

Societal factors (MDC-2 scale) are mentioned in 20% of all papers, half of these 

by reporting evaluation by audiences or panels of experts. The four cases that explicitly 

refer to the modelling of social processes are all position papers proposing approaches 

and analyzing the potential benefits of accounting for the social scale of creativity in 

computational systems. Group creativity (MDC-3) is targeted in less than 10% of all 

cases, two position papers and one research paper reporting results from a 

computational study of group influence (Sosa and Gero 2012).  

Only two papers (6% of all entries) refer to the brain scale (MDC-5), in both 

cases by using neural network approaches for the implementation of generative systems 

(Gabora and DiPaola 2012, Hoover et al. 2012). Elsewhere, progress is being made 

explicitly modelling creative neural processes (Iyer et al. 2009).  

The following observations can be made from this MDC mapping exercise: a) 

the field of computational creativity is characterized by studies that focus on individual 

generative processes (MDC-4); b) most of the generative systems reported take human 



cultural corpora as inputs, training sets or exemplar cases; and c) less than 1 in 4 papers 

span more than two MDC scales –half of these being position papers suggesting future 

research directions. The MDC framework provides a modelling structure to support the 

ongoing development of the field towards tackling multi-level research questions.  

More specifically, this mapping exercise of the literature using the MDC scales, 

supports the framing of possible modelling approaches. Here we develop a few possible 

research scenarios for illustration purposes:  

• Computational models that integrate group and social evaluation of creativity 

explicitly within the system, i.e., “automated critics” or “artificial audiences” 

capable of simulating the assessment criteria and patterns of human judges. Such 

evaluations could account for multiple decisive conditions such as 

agreement/disagreement, public opinion, expert endorsement, and different 

scales and levels of domain expertise. A sample research question for such 

systems is “How may a computational system automatically distinguish 

innovative from ordinary designs in product catalogues from different 

industries?” 

• Computational models of neuro-mechanisms related to the synthesis as well as 

to the evaluation of creativity. Such systems could capture the connections 

between neural mechanics and other scales, particularly cognitive and group 

processes. A relevant research question is “How may basic functions such as 

word retrieval and short term memory moderate the generation and evaluation of 

creative ideas in brainstorming?”  

• Computational models of personality and motivation in the synthesis as well as 

the evaluation of creativity, for example systems that create or evaluate artifacts 

based on emotional predispositions, gender and age differences, and other 



personality dimensions. In such models, creative behavior can be analyzed as 

moderated by environmental cues. Relevant research questions include “How 

may personality traits such as extroversion and conformity moderate the drive to 

generate or the assessment of new ideas?”.  

• Accounting for the effects of time across scales can lead to computational 

models that help understand the conditions that make an ephemeral event or a 

new idea become influential in modifying a culture or a domain of practice. By 

modelling managerial practices and informal interactions in teams and 

organizations, computational models can help grow scenarios where leadership 

creates and sustains cultures of innovation. Generative systems that integrate 

time-based factors could model perseverance, anticipation, habit, and the effects 

of expertise and mastery. 

 

In summary, mapping recent computational creativity studies applying MDC 

scales is valuable because it allows to clarify assumptions and units of analysis, connect 

issues, identify gaps and formulate new proposals for the advancement of the field. 

MDC suggests ways to transcend the current focus on individual generative systems 

that draw from a hand-picked set of external sources to cleverly produce new solutions 

which may be judged as creative by external experts and audiences. As computational 

models integrate multi-scale factors, they can draw from and inform a multiplicity of 

ongoing research methods to support and complement alternative ways of 

understanding and studying creativity. 

3.4 Multi-scale MDC computational modelling 

An example of how MDC applies in computational creativity is offered in this 



subsection to illustrate the type of questions, target processes, experimental variables 

and conditions, and ultimately the type of outputs and expected contributions using 

cross-scale computational creativity in multidisciplinary research programs. 

The model discussed here belongs to a class of computational simulations used 

to gain qualitative understanding of human and social behavior and it is also one of the 

simplest to code (Nowak and Lewenstein 1996). Montfort and Fedorova (2012) 

recommend such ‘small-scale systems’ in computational creativity as they are easily 

communicated, implemented, understood and modified. Only a few studies have used 

this modelling formalism to reason about creativity and innovation (Goldenberg and 

Efroni 2001; Adamatzky and Wuensche 2013). The model is a type of two-dimensional 

cellular automata where reactive agents move about and interact with each other in a 

shared environment guided by simple representations and behaviors. Agents in this 

model are viewed as having an opinion or idea encoded as a chain of numerical values. 

They communicate with neighboring agents to exchange and influence their ideas. 

Individual differences give each agent a unique profile on how it traverses the social 

space, the initial set of ideas assigned to them, and the strength of its ideas (their 

abilities to change opinions). During a simulation every agent has a location in a 

coordinate space expressed by a pair (x,y) of integers, an individual idea expressed by a 

set (ki…n) of size n of integers, and individual traits that regulate their behavior also 

expressed by a set (ri…m) of size m of integers. Set k contains the values to be 

exchanged by agents, while set r contains individual parameters that determine how 

individual agents behave.  

In the initial state of this dynamic system, agents are instantiated from a super 

class and stored in an array with pseudo-random values assigned on the three sets, 

following a distribution of choice. Figure 3 shows 20 agents at step 0 with a unique 



location in a torus square grid and a color combination representing their idea values. 

Simulations with millions of agents are feasible with current personal computers, but we 

follow the ‘small-scale system’ guideline to maximize clarity. At every step, agents 

decide where to move, who to contact and whether to exchange or not an idea with one 

or more of their neighbors. This decision is made by a combination of randomness 

(agents’ location and choice of idea value to exchange) and individual characteristics 

(idea value and strength to influence other agents). Full details of this stochastic system 

are given elsewhere (Sosa and Gero 2012) where multiple combinations of these 

parameters have been studied. 

[Insert Figure 3 here] 

A set of typical results are mapped in Figure 4, where idea diversity is plotted 

for three population sizes: 100, 200 and 400 agents. Two measures are used for 

estimating idea diversity on every step: origIdeas and diffIdeas . The former refers to 

the number of ideas held by only one individual in the population, while the latter refers 

to the number of different ideas across the population. Another way to see these two 

diversity indicators is: diffIdeas tells us how diverse ideas are in the whole group, 

origIdeas tells us how many individuals in the group have a uniquely different idea 

(Sosa and Gero 2012).  

Lastly, ideasBreadth refers to how many positions or variables are used to 

represent ideas and ideasDepth to how many values are possible for each variable. In 

other words, the former captures how many issues are being discussed in the group, 

while the latter captures how varied are each of those issues. Suppose that a group of 

people get together to discuss recent laws on gay marriage or recreational drugs, then 

both ideasBreadth and ideasDepth will be rather short since opinions are framed as 

yes/no in both cases, with perhaps few other circumstances considered. In contrast, in 



an ideation session where groups discuss future market strategies, scientific research 

proposals or budget allocations, ideasBreadth will be as long as the number of issues 

included (possibly fixed at initial time), and ideasDepth will be as long as the number of 

alternatives generated (certainly expanding during a simulation). The results shown in 

Figure 4 are with ideasBreadth = 8, ideasDepth = 4 over 1500 simulation steps; cases 

are average trends of 100 simulations runs varying the random seed generator.  

Two aspects of Figure 4 are relevant in this context: firstly, regardless of the 

values assigned in this type of models (grid size, number of agents, number of 

neighbors, decision to move or to exchange values), the final outcome is always 

identical: total group convergence, i.e., origIdeas = 0 and diffIdeas = 1. Another way to 

say this is that in these simple models of agents that exchange ideas, the final outcome 

is always total consensus on one dominant idea. Axelrod (1997) presents models where 

a notion of compatibility is implemented, whereby agents only exchange ideas if one of 

their values is the same. This rule allows for ‘regional convergence’ where agents form 

clusters of agents who share an idea and who do not have contact with other 

incompatible agents. The second significant observation here is that not all convergence 

is the same: under certain parameters, the rate of convergence in a group may accelerate 

or slow down, for example as a result of increasing redundant interactions between 

agents who already agree on some or all their ideas. 

[Insert Figure 4 here] 

Group convergence is important when reasoning about creativity because novel 

ideas are considered creative when a community agrees upon their novelty and 

usefulness (Kaufman and Beghetto 2009). However, for these systems to be relevant as 

reasoning aids in the study of creativity, they need to support divergence. In simulations 

with rich enough idea landscapes, a type of ‘intrinsic divergence’ is already observed in 



these convergent models: as agents exchange values, new combinations are generated 

(Sosa and Gero 2005). To that extent, the ‘winning’ or dominant idea in these systems is 

seldom or never (depending on the size of the idea space) one of the ideas originally 

assigned at initial simulation step, but a mutation collectively shaped by the exchange of 

ideas over time. A more relevant way to include divergence in these models is to 

include a threshold inspired by classic studies of the human bias to avoid monotonous, 

homogeneous stimuli (Berlyne 1970).  

With such mechanism, as agents are repeatedly exposed to the same idea values, 

their probability of generating a new value increases. Figure 5a illustrates such case in a 

group of 20 agents where agent #18 introduces a new value after recurrently 

encountering sameness with their neighbors. As expected, the chances of these 

nonconformist individuals to actually trigger a group change are slim, in most cases 

they are overcome by the convergent wave and adopt again the dominant idea due to the 

influence of neighbors. However, in some cases the new values do spread in a 

population, mostly in novel combinations of new and old ideas. Figure 5b shows the 

same group where the idea first introduced by agent #18 has spread in three variants –

although the agent itself has by then reverted to the majority value.  

[Insert Figure 5 here] 

By introducing divergence in these models, they now support reasoning about 

change cycles. Figure 6 shows a group of 200 agents iteratively building consensus 

(diversity decreasing as in Figure 4) punctuated by ‘spikes’ of novelty over 20,000 

simulation steps. These sudden increases of diversity are triggered by individuals 

changing one random idea value when diffIdeas ≤ 5%. With a pool of new ideas 

introduced, diversity rapidly increases by combination with old ideas and this process 



continues until recurrent exchange slows down the generation of new ideas and 

gradually falls toward group convergence again.  

[Insert Figure 6 here] 

Varying the novelty threshold and the degree of novelty as well as other model 

parameters, the frequency and amplitude of cycles can be manipulated. In fact, there are 

numerous possible ways of growing such cycles of divergence and convergence even in 

these simple models. As argued earlier in this paper, the choices will largely depend on 

the intentions by the researchers and what their fields accept as valid assumptions and 

constructs. At this point, MDC offers clear options to locate sources and factors of 

change across dimensions. Even in such elementary systems, the alternatives are 

numerous.  

MDC-1 Culture can guide the encoding of ideas, ranging from binary decisions 

as in yes/no referendums to topics that require increasingly longer coding schemas such 

as consensual group decisions or group ideation for open-ended problems. Knowledge 

representation can also be studied by including domain constraints, such as intrinsic 

relations of inclusion or exclusion between ideas or to account for re-structuring of 

knowledge schema. MDC-1 Culture can also address the shape and characteristics of 

the environment; while in cellular automata it is customary to represent this as a 

continual lattice in a two-dimensional space, topological features, such as social 

networks and idea sharing platforms remain to be studied.  

MDC-2 Society can be used in these systems to define how agents traverse the 

space and cross boundary regions. This would help reasoning about practices and limits 

of movement as a way to understand the effects of migration in creativity and 

innovation (Hansen and Niedomysl 2009). Social structures of influence that can be 

included to study divergence and convergence include gatekeeping roles to endorse and 



promote new ideas, social norms of communication and exchange of ideas between 

agents, and social identity as a way to settle and form stable communities. Repeated 

success in triggering a group change could be used to build reputation levels in these 

systems where followers could build expectations around an elite group of agents.  

MDC-3 Groups can help inform the definition of neighborhood type and size, 

principles of team formation with shared goals and emergence of leadership in small 

groups, etc. Turn-taking and other coordination strategies to influence the direction of 

change can be included in these systems, as well as biases and dilemmas of group 

collaboration informed by game theory (Wong 2012).  

MDC-4 Individual and MDC-5 Brain can be used to account for differences 

between agents (openness to change, extroversion) including changes over time as a 

result of experience (conformity bias, boredom) and acquired abilities (learning, brain 

plasticity). Extending these models in more complete cognitive and neural models 

would move them closer to multi-agent architectures and possibly beyond the ‘small-

scale systems’ principle adopted in this paper. One basic type of question in these two 

dimensions that can be explored in such models is: “How wide do individual differences 

need to be in order to generate extraordinary change events in the group?” (Weisberg 

1993).  

4. Discussion 

Blunt (2010) states that “creativity is quintessentially a neurodevelopmental 

phenomenon”. Such views are pervasive across disciplines and traditions where 

creativity is studied: assumptions of what type of phenomenon is under scrutiny largely 

influence the questions, methods and claims. This paper has introduced a structured way 

of re-thinking creativity from a multi-level perspective. Multi-Dimensional Creativity 

(MDC) is relevant for all modes of inquiry, and has been discussed at length here in the 



context of computational creativity due to its methodological suitability to implement 

such studies.  

MDC helps to frame the study of computational systems of agents, groups and 

societies that interact to generate and evaluate new ideas in reference to a shared 

domain that is internal to the system. Depending on the type and level of research 

question, cross-scale computational studies may establish pre-defined and uniform 

processes at some levels, while setting other processes as experimental at the same or 

different levels. For instance, if the researchers are interested in the possible ways in 

which neural activation determines how different individuals cope with failure (Davis et 

al. 2012), a system can be devised where a range of cultural, social, group and 

individual phenomena relevant to creativity is manipulated as control, while variations 

of the neural activity of individuals within certain social situations can be tweaked to 

capture possible causes and effects throughout the system. In such system, top-down 

changes can be introduced experimentally to inspect the transition levels at which social 

situations and neural activation in some individuals replicate target cases or rates of 

cultural change.  

As with other types of inductive research, MDC modelling can be used to collect 

data systematically in an attempt to develop a theory or hypothesis. Inductive methods 

are valuable in new lines of enquiry where limited knowledge is insufficient to deduce 

testable propositions (Saunders et al. 2011). MDC models are seen here as weak 

computational creativity according to the AI nomenclature (Al-Rifaie and Bishop 2012). 

In distinction to strong positions that seek to address the conundrum “Can computers 

ever be creative?”, weak positions explore the value of algorithmic studies of creativity 

in helping us to develop and empirically evaluate very specific and explicit ideas about 

this complex topic. As such, MDC models are not expected to provide strong evidence 



for new theories, or conclusive evidence to support or challenge current theoretical 

constructs. Their role is exploratory, their value is to aid reasoning, and they can be seen 

as an inductive approach to the study of creativity: MDC models help demonstrate what 

is possible, with the advantage of explicitly representing the mechanisms and dynamics 

at work. 

In addition to multi-scale questions, possible longitudinal studies can be 

analyzed based on the MDC framework where time effects within and across scales can 

be systematically inspected. In an early study, questionnaires were applied to a large 

group of children in 1958 and again in 1980 showing that a significant relationship 

existed between having a mentor and creative achievement (Torrance 1981). 

Computational studies of mentorship can implement several rules of interaction 

between generative agents with a focus on hierarchies of expertise in order to dissect the 

principles and types of knowledge transfer between individuals to minimize learning 

curves or to challenge conventional practices. For instance, studies of the link between 

childhood and adulthood creativity have yielded contradictory outcomes: whilst Albert 

(1996) suggested that creativity was typically not maintained, Keegan (1996) found 

children’s creativity to be a predictor of adult creativity. As with other factors related to 

creativity, answers are unlikely to be straightforward, and computational models can be 

enlightening to understand the type of life events that are more likely to nurture or 

suppress creativity through life stages (Casas 2003). 

Based on the work presented in this paper, the following guidelines are provided 

to guide multi-dimensional computational modelling of creativity, building on the 

evaluation guidelines by Jordanus (2011). 

• Guideline #1: Scales to be included within the model 



o Define primary and complementary scales in the model; whilst empirical 

validation may not be possible across levels, computational explorations 

systematically support alternative thinking in scales of interest.  

o Identify level variables (experimental and dependent) that represent 

target factors and observable behaviours or patterns of interest. 

Background literature from several disciplines are necessary to inform 

the formulation of contextual conditions.  

o Define inputs and outputs at target levels, establishing the bootstrapping 

strategies of the model.  

• Guideline #2: Processes and links between scales 

o Establish explicit connections above/below primary levels in the model. 

o Define irreducible factors, causal links and whether the model is being 

used for holistic or reductionist purposes. 

o Identify internal/exogenous factors to the system. 

• Guideline #3: Processes and links across time  

o If relevant, establish time-based conditions, processes and variables of 

interest.  

o Ensure that the targeted time series are reproducible to allow for 

experimental treatment. 

• Guideline #4: Define system outputs  

o Define type and range of outputs, identifying extreme points such as 

non-creative to creative artifacts 

o Capture and analyze aggregate data, model tuning and refinement 

• Guideline #5: Evaluation metrics  



o Validity may be achievable in some models where relevant empirical 

data exists at the primary level(s) of interest, but this may be inaccessible 

and even undesirable for exploratory models. 

o Usefulness and relevance of such systems are ultimately defined by their 

aids as thinking tools, to explore hypotheses, to identify and connect 

issues across scales, to articulate conversations between disciplines. 
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Table 1. Sample studies of creativity in the five scales of our multi-dimensional model 

of creativity (MDC). 

MDC scales Sample creativity studies 

MDC-1: 

Culture 

Cultural dimensions in creativity (Lubart 2010); Peer-reviewed repositories (Duflou and 

Verhaegen 2011); IP law (Lessig 2008); Built environment (McCoy and Evans 2002).  

MDC-2:  

Society 

Gatekeeping (Sosa and Gero 2005); Cultural psychology (Glăveanu 2010); Creative 

class (Florida 2005); Migration (Hansen and Niedomysl 2009); Social capital (Fischer 

et al. 2004). 

MDC-3: 

Group 

Group conformity (Kaplan et al. 2009); Team diversity (Bassett‐Jones 2005); Group 

brainstorming (Sosa and Gero 2012). 

MDC-4: 

Individual 

Creative cognition (Finke et al. 1992);  Bilingüalism (Adesope et al. 2010); 

Extraversion and dominance (Anderson and Kilduff 2009); Openness (Dollinger 2004);  

MDC-5:  

Brain 

Functional neuroanatomy (Dietrich and Kanso 2010; Jung et al. 2010); Neural network 

models (Iyer et al. 2009) 



 

Figure 1. Radial arrangement of MDC scales show that rather than subsumption of 

lower levels, scale-specific factors exist that are not decomposable to smaller units. 



 

Figure 2. MDC dimensions (axes) and modeling approaches (arrows). 
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M
D
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Agustini ●     ●   
Baydin  ●     ●   
Burnett  ● ●   ●   
Charnley        ●   
Colton  ●     ●   
Eigenfeldt    ●   ●   
Gabora ●     ● ● 
Gatti  ●     ●   
Grace  ●     ●   
Hoover  ●     ● ● 
Indurkhya ● ●   ●   
Jennings       ●   
Johnson ● ●   ●   
Jordanus ●         
Jursic  ●     ●   
Keller        ●   
Li        ●   
Linson      ● ●   
Maher ● ● ●     
Monteith  ●     ●   
Montfort       ●   
Morris  ●     ●   
Noy        ●   
O’Donoghue ●     ●   



Ogawa  ●     ●   
Pérez y Pérez  ● ●   ●   
Rank        ●   
Ritchie       ●   
Smith  ●     ●   
Sosa     ● ●   
Toivanen  ● ●   ●   
Veale  ●     ●   
Wiggins       ●   
Zhu ●         

Table 2. Classification of recent computational creativity papers using MDC levels 

 

Figure 3. Typical initial state of a cellular automata of 20 mobile agents in a torus 

square grid of size 200 x 200. Color coding represents the ‘idea values’ assigned at 

random at initial step. 

 



 

Figure 4. Set of results with 100, 200 and 400 agents showing total group convergence 

across cases. 

 

Figure 5. Generative process by one agent leading to the spread of new ideas in a group. 

 

 

 



Figure 6. Diversity effects of non-conformist behavior: a group of 200 agents going 

through cycles of divergence and convergence. 
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