
How difficult are exams? A framework for assessing the
complexity of introductory programming exams

Judy Sheard
Monash University

judy.sheard@monash.edu.au

Simon
University of Newcastle

simon@newcastle.edu.au

Angela Carbone
Monash University

angela.carbone@monash.edu.au

Donald Chinn
University of Washington, Tacoma
dchinn@u.washington.edu

Tony Clear
Auckland University of Technology

tony.clear@aut.ac.nz

Malcolm Corney
Queensland University of Technology

m.corney@qut.edu.au

Daryl D’Souza
RMIT University

daryl.dsouza@rmit.edu.au

Joel Fenwick
University of Queensland
joelfenwick@uq.edu.au

James Harland
RMIT University

james.harland@rmit.edu.au

Mikko-Jussi Laakso
University of Turku
milaak@utu.fi

Donna Teague
Queensland University of Technology

d.teague@qut.edu.au

Abstract
Student performance on examinations is influenced by
the level of difficulty of the questions. It seems
reasonable to propose therefore that assessment of the
difficulty of exam questions could be used to gauge the
level of skills and knowledge expected at the end of a
course. This paper reports the results of a study
investigating the difficulty of exam questions using a
subjective assessment of difficulty and a purpose-built
exam question complexity classification scheme. The
scheme, devised for exams in introductory programming
courses, assesses the complexity of each question using
six measures: external domain references, explicitness,
linguistic complexity, conceptual complexity, length of
code involved in the question and/or answer, and
intellectual complexity (Bloom level). We apply the
scheme to 20 introductory programming exam papers
from five countries, and find substantial variation across
the exams for all measures. Most exams include a mix of
questions of low, medium, and high difficulty, although
seven of the 20 have no questions of high difficulty. All
of the complexity measures correlate with assessment of
difficulty, indicating that the difficulty of an exam
question relates to each of these more specific measures.
We discuss the implications of these findings for the
development of measures to assess learning standards in
programming courses..

Keywords: Standards, quality, examination papers, CS1,
introductory programming, assessment, question
complexity, question difficulty.

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian Computing Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

1 Introduction
In Australia there has been an increasing amount of
attention placed on the government’s higher education
standards agenda, which aims to achieve quality
assurance in a number of areas including the standard of
qualifications and the learning outcomes of students in
higher education institutions. The Tertiary Education
Quality and Standards Agency (TEQSA) has been
established to register and evaluate the performance of
higher education providers against a new Higher
Education Standards Framework (Tertiary Education
Quality and Standards Agency, 2012). To ensure that
standards are developed the government has formed a
Standards panel (Evans, 2011) to set the benchmark for
quality in higher education.

The interest in learning standards is not restricted to
government agencies. In a recent online survey of
Australian academics, with more than 5,000 respondents
across 20 universities, 46.7% of respondents felt that
academic standards were in decline (Bexley et al, 2011).
From the student perspective, in a survey of nearly
10,000 graduates in 2008, 67% nominated “Challenge
students to achieve high academic standards” as an area
of potential improvement for undergraduate education
(Coates & Edwards, 2008).

In this environment, the challenge currently facing
academics in the Australian tertiary sector is how to
develop learning standards and assess learning outcomes.
As a way forward, the Australian government has funded
eight groups to work within specific disciplines to
develop learning standards: the minimum required
knowledge, skill and capabilities expected of a graduate.
The combined discipline group for Information and
Communication Technology (ICT) and Engineering has
begun its quest for learning standards by drawing on
existing learning outcomes developed from the relevant
professional bodies (Cameron & Hadgraft, 2010).

Proposals currently under consideration to assess the
attainment of learning standards include the development

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

145

of national standardised tests of generic and disciplinary
learning outcomes. In the engineering field, a feasibility
study is looking into testing discipline-specific skills as
part of an Assessment of Higher Education Learning
Outcomes (AHELO) (Australian Council for Educational
Research, 2011). As yet there is no comparable venture in
ICT, where the idea of standardised testing seems to be a
difficult one to address. There appear to be no clear
processes, pathways, or in some cases, communities, to
offer a coherent way forward to assessment of discipline-
specific learning standards.

The work reported here forms part of the BABELnot
project (Lister et al, 2012), a principal goal of which is to
explore a possible approach for the development and
assessment of learning standards in programming
courses. Formal written examinations are a common form
of assessment in programming courses, and typically the
form to which most marks are attached. The approach we
have taken is to analyse examination papers to investigate
levels of, and variations in, assessment of learning
outcomes across institutions. In prior work (Simon,
Sheard, Carbone, Chinn, et al, 2012) we analysed
programming exam papers to identify the range of topics
covered and the skills and knowledge required to answer
exam questions in introductory programming. Here we
extend that approach to determine the complexity and
difficulty of exam questions and the level of knowledge
required to answer them correctly. Our approach is
similar to that taken by Crisp et al (2012), who explored
the types of assessment tasks used to assess graduate
attributes.

In this study we analyse exam questions to determine
the levels of difficulty and complexity of the exams,
which leads to an understanding of the standards being
assessed. We first explore the concepts of task
complexity and difficulty. We then develop a framework
to measure the complexity of programming exam
questions from which we can infer the level of
achievement we expect from our programming students.
Next, we apply this to a set of programming exam papers
from multiple institutions to compare the levels of
knowledge and skills being assessed.

2 Task Complexity and Task Difficulty
In a comprehensive review of the literature on the
concept of task complexity, Campbell (1988) proposed
that task complexity can be defined objectively as a
function of task attributes that place high cognitive
demands on the performer of the task. Braarud (2001)
further distinguished between the objective task
complexity, which is a characteristic of the task itself, and
subjective task complexity, which is the user’s perception
of the complexity of a task. Both Campbell and Braarud
argued that task difficulty is distinct from task
complexity, incorporating additional aspects – such as the
task context – that can entail high effort in doing a task.
Campbell (1988) proposed that complex tasks are often
ill-structured and ambiguous. He observed that while
complex tasks are necessarily difficult, difficult tasks are
not necessarily complex. For example, tracing a path
through a maze with a pencil can be quite complex, but is
seldom difficult.

Complexity is clearly a key concept for determining
the difficulty of a task, but there seems to be little
consensus amongst researchers about what attributes can
be used to determine the complexity of a task. Campbell
(1988) proposed four properties that influence task
complexity and used these to develop a task typology.
Mennin (2007) distinguished between simple,
complicated and complex problems, but did not explain
the distinction, instead using examples to illustrate the
categories. Haerem and Rau (2007) developed an
instrument to measure variability and analysability, which
they suggested are fundamental aspects of complexity.
An investigation of task complexity by Stahl, Pieschl and
Bromme (2006) used Bloom’s taxonomy to classify tasks
of different levels of complexity. They further classified
according to level of difficulty within these tasks, but did
not define what they meant by this.

Williams and Clarke (1997) completed the most
comprehensive work in this area. They proposed six
dimensions of complexity (linguistic, contextual,
representational, operational, conceptual and intellectual)
and applied these to problems in the mathematics domain.
Carbone (2007) later applied these six dimensions to
tasks in the computer programming domain.

3 Exam Question Complexity
In our work we wished to investigate the level of
difficulty of exam questions as a means to assess the level
of skills and knowledge being tested in introductory
programming courses. A search of the literature on
programming exam questions indicated a number of
factors that contribute to the complexity and hence
difficulty of these assessment tasks.

A common factor identified was the cognitive load
placed on the student by the question, which is defined as
the number of discrete pieces of information that the
student is required to understand in order to answer the
question (Sweller, 1988). An investigation of second-year
data structures exam questions by Simon et al (2010)
proposed that the phrasing and construction of a question
can add to cognitive load and therefore increase the
difficulty of a question. They argued that cognitive load
also increases when questions involve multiple concepts.
In a review of 15 introductory programming exams from
14 schools, Petersen et al (2011) investigated the content
and concepts covered by each question, proposing that
the more concepts the students need to deal with to
answer a question, the higher the cognitive load and
hence the difficulty of the question. They assessed
cognitive load simply by counting the distinct concepts
dealt with in a question, without considering whether
different concepts might have different intrinsic levels of
difficulty. They found that code-writing questions had the
highest number of concepts per question. In a study of
data structures exams, Morrison et al (2011) found few
long questions, and proposed that this was due to the
exam setters wishing to avoid the increased cognitive
load that would come with extra length.

The conceptual level of topics covered by a question
has also been proposed as an influence on question
difficulty. A survey by Schulte and Bennedsen (2006)
gathered 242 academics’ opinions of the difficulty of CS1
topics. The topics found most difficult were design,

CRPIT Volume 136 - Computing Education 2013

146

recursion, advanced OO topics (polymorphism &
inheritance) and pointers & references. This aligns well
with a survey of 35 academics by Dale (2006) which
showed that design, problem solving, control structures,
I/O, parameters, recursion, and OO concepts were seen as
the difficult concepts for novice programming students.

Based on a detailed statistical analysis of student
answers to introductory programming exam questions,
Lopez et al (2008) proposed a hierarchy of programming-
related skills. In an attempt to interpret results that were
not intuitively obvious they concluded that there were
characteristics of a task other than its style that could
explain its level of difficulty. They proposed that the size
of the task and the programming constructs used also
influenced the difficulty of a question.

A corpus of work has used Bloom’s taxonomy
(Anderson & Sosniak, 1994) to classify questions
according to the cognitive demand of answering them
(Thompson et al, 2008); or the SOLO taxonomy (Hattie
& Purdie, 1998) to classify the intellectual level
demonstrated by answers to questions (Clear et al, 2008;
Sheard et al, 2008).

From a different perspective, the study of engineering
exam questions by Goldfinch et al (2008) concluded that
the style and structure of questions influenced perceptions
of difficulty.

4 Classifying Exam Question Complexity
In the studies of programming exam questions that we
have reviewed, the assessments of question difficulty
were impressionistic; however, the reasons given for
difficulty usually pointed to specific aspects of
complexity. Some of these related to the question itself,
some to what was required as a response. We considered
that complexity could be inherent both in the question
and in the response to the question. This led us to propose
a framework for assessing the aspects of complexity of
exam questions which could then be used to identify
areas of difficulty for the student.

To determine the factors that influence complexity we
considered four perspectives.
1. How is the question asked? How readily will the

students be able to understand what the question is
asking them to do? Question phrasing or style can
lead to ambiguity and uncertainty in how to respond

(Goldfinch et al, 2008; Simon et al, 2010). To address
these questions we consider the linguistic complexity
of the question and references to external domains
beyond the scope of the course, which we called
‘cultural references’ in our previous work (Sheard et
al, 2011).

2. How much guidance does the question give as to how
it should be answered (Goldfinch et al, 2008; Simon
et al, 2010)? Here we consider the explicitness of the
question.

3. What is the student required to do in order to answer
the question? Here we consider the amount of code to
be read and/or written and the intellectual complexity
level demanded (Lopez et al, 2008; Morrison et al,
2011; Petersen et al, 2011).

4. What does the student need to understand in order to
answer the question? This relates to the number of
concepts involved in the question and to their intrinsic
complexity. Here we consider the conceptual
complexity (Dale, 2006; Schulte & Bennedsen, 2006).
The aspects of complexity highlighted by these

questions led to the development of an exam question
complexity classification scheme, a framework for
determining the levels of complexity of a question. There
are six dimensions to the scheme, as shown in the first six
rows of Table 1. The first three are concerned with the
exam question alone and the next three are concerned
with the question and answer combined. For example,
linguistic complexity applies to the language in which the
question is expressed, while code length assesses the
combined length of any code provided in the question and
any code that the student is required to write in the
answer. Four of the six measures of complexity are
closely aligned to the dimensions of Williams and Clarke
(1997). These are external domain references and
linguistic, conceptual and intellectual complexities. The
last row of the table shows the measure of level of
difficulty, which we consider to be distinct from the
various measures of complexity.

For each measure, the possible classification values
and a brief description of the measure are given. More
detailed explanations of the complexity measures are
given in the results section.

Measure Focus* Classification values Description
External domain

references
Q only low, medium, high; if medium or high, the

external domain is specified
Reference to a domain beyond what one would

reasonably expect introductory programming
students to know

Explicitness Q only high, medium, low (note order of levels) Extent of prescriptiveness as to how to answer
the question

Linguistic complexity Q only low, medium, high Length and sophistication of the natural
language used to specify the question

Conceptual complexity Q & A low, medium, high Classification of the individual programming
concepts required to answer the question

Code length Q & A low, medium, high, NA Whether code is up to half a dozen lines long,
up to two dozen lines long, or longer

Intellectual complexity
(Bloom level)

Q & A knowledge, comprehension, application,
analysis, evaluation, synthesis

Bloom’s taxonomy as applied to programming
questions by Gluga et al (2012)

Level of difficulty Q & A low, medium, high Subjective assessment of difficulty of question

* The second column, Focus, indicates whether the measures apply only to the question or to the question and answer.

Table 1: Six complexity measures and level of difficulty used to classify exam questions

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

147

5 Research Approach
The first version of the exam question complexity
classification scheme emerged from a brainstorming
session that was framed by the perspectives listed in
Section 4 and informed by the literature discussed in the
preceding sections. This was followed by a number of
iterations in which about a dozen researchers applied the
measures to the questions in an exam. After each round of
classification the measures were clarified and adjusted as
appropriate until the classification scheme appeared to
have stabilised.

At that point an inter-rater reliability test was
conducted on the complexity measures, with all
researchers classifying all 37 questions in a single exam,
first individually and then in pairs. As all of the measures
are ordinal, reliability was calculated using the Intraclass
Correlation (ICC) (Banerjee et al, 1999), and was found
to be satisfactory on all measures, with pairs proving
distinctly more reliable than individuals.

Following this test, the remaining exams were
classified by pairs of researchers, who first classified the
questions individually and then discussed their
classifications and reconciled any differences.

6 Results
This section presents the results of analysing 20
introductory programming exam papers using the
complexity measures listed in Table 1. A total of 472
questions were identified in these exams, with the number
of questions in an exam ranging from four to 41.

The 20 exam papers were sourced from ten institutions
in five countries. All were used in introductory
programming courses, 18 at the undergraduate level and
two at the postgraduate level. The latter two courses are
effectively the same as courses taught to first-year
undergraduate students, but are taught to students who are
taking a postgraduate computing qualification to
supplement a degree in some unrelated area. Course
demographics varied from 25 students on a single campus
to 800 students over six campuses, two of these being
overseas campuses. Most courses used Java with a variety
of IDEs (BlueJ, JCreator, Netbeans, Eclipse), two used
JavaScript, one used C# with Visual Studio, one used
Visual Basic, one used VBA (Visual Basic for
Applications), and one used Python.

Most of the exams were entirely written, but two were
separated into a written part and a computer-based part,
each worth 50% of the complete exam.

Note that for the analysis, the percentage mark
allocated to each question has been used as a weighting
factor for the other measures.

6.1 Overall Complexity Measures
Each question was classified according to six measures of
complexity.

The results for five levels of complexity (external
domain references, explicitness, linguistic complexity,
conceptual complexity and code length) are summarised
in Table 2. Because the percentage mark allocated to each

Measure of complexity low medium high
External domain references 95% 5% 0%

Explicitness 3% 30% 67%
Linguistic complexity 80% 17% 3%

Conceptual complexity 8% 67% 25%
Code length* 27% 54% 10%

* 9% of questions (weighted) did not involve code

Table 2: Overall levels of complexity of questions from
the 20 exams, with mode values shown in bold

question was used as a weighting, the figures in the table
represent the percentage of the exam marks allocated, not
the percentage of the number of questions.

While these five measures are all classified as low,
medium, or high, intellectual complexity is classified
according to Bloom’s six-point scale, so its classifications
are shown separately in Figure 1. These classifications
ranged from 3% for Evaluation to 44% for Application.

Considering the mode values, we can see that, over all
the exams, questions are predominantly low in external
domain references, highly explicit, low in linguistic
complexity, of medium conceptual complexity and
medium code length, and at the Application level of
Bloom’s taxonomy.

Figure 1: Overall measure of intellectual complexity

(Bloom’s taxonomy)

6.2 External Domain References
Many exam questions involve some sort of scenario,
referring to a domain beyond what would necessarily be
taught in the programming course. These scenarios have
the potential to make a question more complex.

An external domain reference is any use of terms,
activities, or scenarios that may be specific to a particular
group and may reduce the ability of those outside the
group to understand the question. For example, if a
question refers to the scoring scheme of Australian Rules
football, students would require specific knowledge to
fully understand it – unless the question explicitly
includes all of the knowledge that is needed to deduce the
answer. Another question might display a partly complete
backgammon game and ask students to write a program
to determine the probability of winning on the next throw

CRPIT Volume 136 - Computing Education 2013

148

of the dice. Unless the question fully explains the relevant
rules, students who do not know backgammon will
clearly not be able to answer it.

Programming knowledge does not constitute an
external domain reference, because it is assumed to be
taught in the course or prior courses. General knowledge
is not considered as an external domain reference so long
as the classifier is confident that it really is general: that
all introductory programming students could reasonably
be expected to know it.

We classify external domain references as high if
students cannot understand the question without knowing
more about an external domain; medium if they are given
all the information they need, but the wording might lead
them to think otherwise; and low if all students should be
able to understand the question as it is.

None of the questions that we analysed relied upon a
high level of knowledge from an external domain. Only
seven exams contained questions with a medium level of
external domain knowledge; these comprised at most
20% of any exam, and made up only 23 questions (less
than 1% of the 472 questions).

Of those 23 questions, a few assumed some
knowledge of the business domain (interest, profit, taxes),
and a couple assumed knowledge of mathematical
concepts (complex numbers, log arithmetic) or scientific
concepts (storm strength). A few questions assumed
knowledge of computing concepts (codes/encryption,
pixellation, domain name format) beyond what would be
considered reasonable for an introductory programming
student. Some references were culturally based (name
format, motel, vehicle registration, sports, card games).
One referred to a sorting hat, a concept from a popular
series of books and films. All of these references were at
the medium level, so students did not need the external
domain knowledge in order to answer the questions.

Of particular interest are questions that refer to
external domain knowledge but make it clear that this
knowledge was covered thoroughly during the course,
perhaps being the subject of a major assignment. Such
questions would not constitute external domain
knowledge for this particular cohort of students.
However, if the question were to be placed in a repository
for the use of other academics, it would be wise to flag
that there are external domain references for other
students; therefore such references were classified as
requiring external domain knowledge, with the domain in
question being specified as the course assignment.

6.3 Explicitness
How strongly does the question tell the student what steps
to use in writing an answer? How strongly does it
prescribe, for example, what programming constructs
and/or data structures to use? There is a fairly high level
of explicitness in “Write a method that takes an array of
integers as a parameter and returns the sum of the
numbers in the array”. There is a very low level of
explicitness in “Write a program to simulate an automatic
vending machine,” which requires the students to
determine the purchase process of the vending machine
and identify the corresponding programming operations.
Another question might require students to specify a Card
class to use in a card game program. A highly explicit

version would list the methods required and the attributes
and their types. A version with a low level of explicitness
would not specify methods, attributes, or operations. A
version with medium explicitness would perhaps specify
some of the attributes and/or methods and require the
student to deduce the rest. Note that the level of
explicitness of a question would be expected to have an
inverse relationship with the question’s difficulty; that is,
the more explicit a question, the easier we would expect
students to find it.

Figure 2 shows a summary of the explicitness levels of
questions over the 20 exams. Two thirds of the marks
(67%) were allocated to questions expressed with a high
level of explicitness. The graph shows that less than a
third of the exams (6) contained questions of low
explicitness, and the marks allocated for these questions
comprised 20% or less of these exams. In most of the
exams more than half the questions were highly explicit.

Note: in Figure 2, and those following, the four exams
that exceed 100% do so because they include some
choice, so students do not have to complete all questions
to score 100%. The exam that is less than 100% is from a
course that included non-programming topics and has
questions that do not relate to programming. We
classified only the programming-related questions in this
exam.

6.4 Linguistic Complexity
Linguistic complexity is related to the length and
sophistication of the natural language used to specify the
question. Some questions have lengthy descriptions or
use unusual words, which could affect the ability of a
student to answer them. One possible view of linguistic
complexity is that it is an approximation of the likelihood
that a student not fluent in the natural language of the
question would have trouble understanding the question.

Overall, most marks were allocated to questions
involving a low level of linguistic complexity (80%). In
about a third of the exams (7), all questions were
classified as having a low level of linguistic complexity.
Only two exams had questions with high linguistic
complexity. In one of these, the high linguistic
complexity was in a single question, comprising 50% of
the exam, which was to be answered at the computer.

Figure 2: Explicitness of questions in each exam

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

149

6.5 Conceptual Complexity
Questions in programming exams usually require students
to understand a number of different ideas or concepts. On
the basis of our own experience of teaching introductory
programming, and of other people’s survey findings
(Dale, 2006; Schulte & Bennedsen, 2006), we have
classified a number of programming concepts as being of
low, medium, or high conceptual complexity. For
example, variables and arithmetic operators are of low
conceptual complexity; methods, and events are of
medium conceptual complexity; and recursion, file I/O,
and arrays of objects are of high conceptual complexity.
Note that these levels were defined specifically for Java-
like procedural or object-oriented introductory
programming courses; when we come to classify exams
in courses that use functional programming, we might
need to redefine them, with recursion, for example,
shifting from high to a lower conceptual complexity.

We classified the questions using the initial
categorisation as a guide, while remaining conscious that
particular usage might affect the classification. For
example, although loops are generally classified as
medium, a classifier could argue for high complexity
when classifying a particularly tortuous loop.

The conceptual complexity findings are summarised in
Figure 3. Overall, two thirds of the marks (67%) were
allocated to questions involving a medium level of
conceptual complexity. Most exams showed a range of
conceptual complexity, with the majority of marks
allocated to questions involving concepts of medium
complexity. Only four exams had no questions of high
conceptual complexity, and only four had no questions of
low conceptual complexity.

6.6 Code Length
The questions were classified according to the amount of
code involved in reading and answering the question,
with a simple guide that up to about half a dozen lines of
code would be considered low, between there and about
two dozen lines would be considered medium, and any
more than about two dozen lines of code would be
considered high. A summary of the results is shown in

Figure 4. Overall, more than half the marks (54%) were
allocated to questions involving a medium amount of
code. About two thirds of the exams (14) contained
questions that did not involve code; however, these were
usually only a small component of the exam. Most of the
marks in most of the exams were allocated to questions
involving low and medium code length. Less than half the
exams (8) had questions involving large amounts of code,
and only three exams had large weightings of marks
(more than 40%) involving high code length.

6.7 Intellectual Complexity
Bloom’s cognitive domain is a long-recognised measure
of the intellectual complexity of a question in terms of its
expected answer. There has been debate about whether
Bloom’s domains can be usefully applied to
programming questions, but there is some consensus that
they can (Thompson et al, 2008). Gluga et al (2012)
provide a clear explication, with examples and a tutorial,
of one way of doing this.

The summary in Figure 5 shows a great variation in
levels of intellectual complexity across the exams.
Considering the three lowest levels of intellectual
complexity, most exams (17) contained questions at the
Knowledge level, all exams contained questions at the
Comprehension level, and all but one exam contained
questions at the Application level. Questions at the
Analysis level were found in just over half the exams
(12). At the highest Bloom levels there were very few
questions, with only one exam containing Evaluation
level questions and three exams containing Synthesis
level questions.

6.8 Degree of Difficulty
Assessing the degree of difficulty entails classifying a
question according how difficult an average student at the
end of an introductory programming course is likely to
find it. This is a holistic measure. We would expect there
to be a correlation between question difficulty and
students’ marks on the question: the higher the difficulty,
the lower the average mark we might expect students to
attain.

Figure 3: Conceptual complexity of questions in each
exam

Figure 4: Length of code involved in questions in each
exam

CRPIT Volume 136 - Computing Education 2013

150

Question difficulty assesses the student’s ability to
manage all of the demands of a task. It is concerned with
the student’s perception of and response to the question,
whereas task complexity is static and defined by the
nature of the question itself.

The questions were classified according to the
perceived level of difficulty for a student at the end of an
introductory programming course. Overall, half the marks
(50%) were allocated to questions rated as medium, with
30% for questions rated as low difficulty and 20% for
question rated as high difficulty. The summary in Figure
6 shows the variation across the exams. Although some
exams have a fairly wide spread of low/medium/high
difficulty questions, about a third (7) of the exams have
no high difficulty questions, and one exam has high
difficulty only in a bonus question. One exam had no
questions of low difficulty, just 45% medium and 55%
high.

We have been asked why we bother to subjectively
assess question difficulty when the students’ marks on the
questions would provide a more reliable measure. The
answer is simple. We were fortunate enough to have been
provided with these 20 exams to analyse. It would be too
much to have also asked for student performance data on
each question of each exam. First, it is possible that for
many of the exams the only data now available is
students’ overall marks in the course, and perhaps even
that is no longer available. Second, ethics approval is
required before students’ results can be analysed for
research purposes, and we did not feel it appropriate to
ask everyone who gave us an exam to follow this up by
applying for ethics approval in order to give us their
students’ results as well.

However, we have conducted a separate study (Simon,
Sheard, Carbone, D'Souza, et al, 2012), on a set of
questions for which we do have access to student
performance data, and have confirmed the expected link
between our assessment of question difficulty and the
students’ performance on the same questions.

6.9 Relationship between Complexity and
Difficulty
Each of the measures of complexity focuses on particular
characteristics of a question which could be seen to
contribute to an overall complexity for the question,
whereas the degree of difficulty is a perception of how
difficult the average student at the end of the introductory
programming course would find the question. A
correlation test was performed to explore the relationship
between complexity and difficulty. As the measures of
complexity and difficulty are at the ordinal level, a
Spearman’s Rank order correlation was used. The results,
summarised in Table 3, show relationships between the
degree of difficulty and each measure of complexity, all
of which are significant at p < 0.01. The strongest
relationships with degree of difficulty are code length and
intellectual complexity: questions involving more
program code, and questions at the higher levels of
Bloom’s taxonomy, are more difficult questions.

To further explore the relationship between
complexity and difficulty, the levels of difficulty within
each complexity measure were determined. The
following results were found.
• Most questions with a low level of difficulty are

highly explicit (97%).
• Most questions with a low level of difficulty are of

low linguistic complexity (98%).

 Degree of
difficulty (r)

External domain references 0.197 *
Explicitness -0.408 *

Linguistic complexity 0.326 *
Conceptual complexity 0.412 *

Code length 0.564 *
Intellectual complexity 0.501 *

* all significant at p <0.01
Table 3: Relationship between degree of

difficulty and complexity measures

Figure 5: Intellectual complexity of questions in each
exam

Figure 6: Degree of difficulty of questions in each exam

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

151

• No questions with a high level of difficulty have a
low conceptual complexity.

• No questions with a high level of difficulty involve a
low amount of code or no code.

• No questions with low level of difficulty involve a
high amount of code.

• No questions with a high level of difficulty are
classified at the two lowest levels of Bloom’s
cognitive domain (Knowledge and Comprehension).
Figure 7 shows the breakdown of the degree of
difficulty within each level of Bloom’s taxonomy.

7 Discussion
We have found from our analysis that there is wide
variation in the final examinations of introductory
programming courses, with variations in all the
complexity measures and in the level of difficulty. As the
pressure grows to determine standards of assessment for
university courses, the framework that we have devised is
likely to prove extremely helpful. We do not propose that
all introductory programming courses should be identical,
or that they should all assess at the same level; what we
do propose is that there should be a means to determine
the extent of similarity between the courses and their
outcomes, a means to compare the levels at which they
assess their students. As we see it, the push to standardise
is not an attempt to impose uniformity but a desire to be
explicitly aware of the spread and variety of what is
taught and assessed.

An interesting consequence of our findings is that,
notwithstanding their substantial overlap, different
introductory programming courses do assess somewhat
different material at somewhat different levels. Students
migrating between programs, and academics charged
with assigning credit on the basis of courses completed
elsewhere, would do well to be aware of this.

Of the complexity measures addressed in this work, it
is useful to distinguish between ‘good’ complexity and
‘bad’ complexity. High-level external domain references

and high linguistic complexity can be undesirable, and we
were pleased to see little evidence of those in the exams
we assessed. Conceptual and intellectual complexity can
be intentional and purposeful, and it seems quite
reasonable to test these to some extent – through there is
still an open question as to what levels we can reasonably
expect students to attain in an introductory programming
course.

With regard to intellectual complexity, academics
from other disciplines might be surprised to see such a
preponderance of questions at the Application level in the
exam for an introductory course. In other disciplines it
might be expected that the first course will deal more
with Knowledge and Comprehension, with the higher
levels of the taxonomy reserved for higher-level courses.
If this is indeed the case, we need to be confident that this
high level of Application is a necessary consequence of
the nature of teaching programming; the alternative is to
recognise that we are asking too much sophistication of
students in our introductory courses.

Does it help students or hinder them to have a
practical, computer-based exam? Is it more acceptable in
a computer-based exam than a paper-based exam to have
a large question, worth 50% of the exam, that has high
linguistic complexity, high conceptual complexity, high
code length, a Bloom level of Evaluation, and a high
perceived overall difficulty? We do not propose answers
to these questions. Rather, we note that they have
emerged from our study of these exams, and that they are
worthy of consideration by the computing education
community.

The assignment of topics to low, medium, and high
conceptual complexity, while certainly not arbitrary, is
clearly open to debate. The choices appear to have been
reasonable, given the correlation between this measure
and the overall question difficulty. However, we need to
consider whether conceptual complexity is an intrinsic
feature of a topic, or more a function of what was taught
and how it was taught in each course. Just as the
conceptual complexity of recursion might be high in a
procedural programming course and low in a functional
programming course, might it be the case that the
conceptual complexity of any topic is dependent on when
and how that topic was taught in each specific course?
We also note in passing that while selection and iteration
appear as topics in the surveys on which our own lists of
topics were based, the topic of sequence is notable by its
absence, although it has been identified by Simon (2011)
and others as a topic that some students have difficulty
grasping. In retrospect, we accept that it would have been
wise to list sequence as a topic, assigning it a low level of
conceptual complexity.

With regard to the various complexity measures
described in this paper, is it possible and reasonable to
suggest what mix of low, medium, and high values
should normally be found in an introductory
programming exam? Can we use these measures to
suggest that particular exams are inappropriately complex
or inappropriately simple? Or do we accept that there is a
wide variety in the courses themselves, and simply note
where each exam fits into the broader picture?

For some of the measures it is possible to make clear
recommendations to the people who write exams. It

Figure 7: Degree of difficulty of questions within each
level of intellectual complexity

CRPIT Volume 136 - Computing Education 2013

152

would appear reasonable to expect exam questions to
have low linguistic complexity and not to rely on
students’ knowledge of domains outside what is being
taught. For other measures the choice is more personal.
For example, some examiners might like to be entirely
explicit about what students are required to do, while
others might prefer to test the students’ problem-solving
abilities by framing some questions with low explicitness
and leaving the students to fill in the gaps in the
specifications. However, in a couple of exams we
assessed, more than 75% of the questions were of
medium level explicitness; would most examiners
consider this a little high for an introductory
programming exam?

The analysis reported in this paper is exploratory: its
purpose is as much to identify questions as to answer
them. Its contribution is that it raises questions such as
those discussed above, at the same time providing a
framework in which the questions can be discussed, and
possibly, eventually, answered.

8 Conclusions and Future Work
In this study we analysed programming examination
papers across institutions, both national and international,
as a window into the levels of learning expected in
foundation programming courses. The complexity
measures applied in this study highlight the variability of
introductory programming exams. This could be taken as
reinforcing the suggestion that exams are highly personal;
but it leaves open the question: are the exams all
assessing the same or comparable things? If not, can we
be sure that each and every one of these exams is a valid
assessment instrument?

Future work will include exploring the thinking of the
people who write the exams, and whether they do so with
any awareness of the sorts of issue addressed in this
analysis. This will entail interviewing a number of exam
writers and conducting a qualitative analysis of the
interview transcripts.

In addition, we intend to analyse a number of
introductory programming exams that use functional
programming, and to extend our analysis to the exams for
second- and third-level programming courses.

With regard to the increasing role of standardisation,
further aspects of the BABELnot project (Lister et al,
2012) include the establishment of a repository of fully
classified programming exam questions with
accompanying performance data, and the benchmarking
of a subset of these questions across multiple institutions.

9 Acknowledgements
The authors would like to thank the Learning and
Teaching Academy of the Australian Council of Deans of
ICT for its support of the ACE 2012 workshop, and also
the Australian Federal Government’s Office for Learning
and Teaching for its support of the BABELnot project.

10 References
Anderson, L. W. and Sosniak, L., A. (1994): Excerpts

from the "Taxonomy of Educational Objectives, The
Classification of Educational Goals, Handbook I:
Cognitive Domain. In L. W. Anderson & L. Sosniak,
A. (Eds.), Bloom's Taxonomy: A Forty Year

Retrospective (pp. 9-27). Chicago, Illinois, USA: The
University of Chicago Press.

Australian Council for Educational Research. (2011):
Assessment of Higher Education Learning Outcomes
(AHELO) Retrieved 24 August, 2012, from
http://www.acer.edu.au/aheloau

Banerjee, M., Capozzoli, M., McSweeney, L. and Sinha,
D. (1999): Beyond kappa: a review of interrater
agreement measures. Canadian Journal of Statistics,
27, 3-23.

Bexley, E., James, R. and Arkoudis, S. (2011): The
Australian academic profession in transition.
Canberra: Department of Education, Employment
and Workplace Relations, Commonwealth of
Australia.

Braarud, P. (2001): Subjective task complexity and
subjective workload: Criterion validity for complex
team tasks. International Journal of Cognitive
Ergonomics, 5(3), 261-273.

Cameron, I. and Hadgraft, R. (2010): Engineering and
ICT Learning and Teaching Academic Standards
Statement. Strawberry Hills, NSW, Australia:
Australian Learning and Teaching Council.

Campbell, D. (1988): Task complexity: A review and
analysis. Academy of Management Review, 13(1),
40-52.

Carbone, A. (2007): Principles for Designing
Programming Tasks: How task characteristics
influence student learning of programming. PhD,
Monash University, Melbourne, Australia.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., Simon, B. and Thompson, E. (2008):
Reliably classifying novice programmer exam
response using the SOLO taxonomy. Paper presented
at the 21st Annual Conference of the National
Advisory Committee on Computing Qualifications
(NACCQ 2008), Auckland, New Zealand.

Coates, H. and Edwards, D. (2008): The 2008 Graduate
Pathways Survey. Canberra: Department of
Education, Employment and Workplace Relations,
Commonwealth of Australia.

Crisp, G., Barrie, S., Hughes, C. and Bennison, A.
(2012): How can I tell if I am assessing learning
outcomes appropriately? Paper presented at the
Higher Education Research and Development
Society of Australasia (HERDSA), Macquarie Hotel,
Hobart. http://conference.herdsa.org.au/2012/

Dale, N. (2006): Most difficult topics in CS1: Results of
an online survey of educators. inroads - The SIGCSE
Bulletin, 38(2), 49-53.

Evans, C. (2011): Professor Alan Robson to take on key
higher education quality role Media Release
Retrieved 24 August, 2012, from
http://ministers.deewr.gov.au/evans/professor-alan-
robson-take-key-higher-education-quality-role

Gluga, R., Kay, J., Lister, R., Kleitman, S. and Lever, T.
(2012): Coming to terms with Bloom: An online
tutorial for teachers of programming fundamentals.
Paper presented at the 14th Australasian Computing
Education conference, Melbourne, Australia.

Goldfinch, T., Carew, A. L., Gardner, A., Henderson, A.,
McCarthy, T. and Thomas, G. (2008): Cross-
institutional comparison of mechanics examinations:

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

153

A guide for the curious. Paper presented at the
Australasian Association for Engineering Education
conference (AAEE), Yeppoon.

Haerem, T. and Rau, D. (2007): The influence of degree
of expertise and objective task complexity on
perceived task complexity and performance. Journal
of Applied Psychology, 92(5), 1320-1331.

Hattie, J. and Purdie, N. (1998): The SOLO model:
Addressing fundamental measurement issues. In M.
Turpin (Ed.), Teaching and Learning in Higher
Education (pp. 145-176). Camberwell, Victoria,
Australia: ACER Press.

Lister, R., Corney, M., Curran, J., D'Souza, D., Fidge, C.,
Gluga, R., Hamilton, M., Harland, J., Hogan, J., Kay,
J., Murphy, T., Roggenkamp, M., Sheard, J., Simon
and Teague, D. (2012): Toward a shared
understanding of competency in programming: An
invitation to the BABELnot project. Paper presented
at the 14th Australasian Computing Education
conference, Melbourne, Australia.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008):
Relationships between reading, tracing and writing
skills in introductory programming. Paper presented
at the Fourth International Computing Education
Research workshop (ICER 2008), Sydney, Australia.

Mennin, S. (2007): Small-group problem-based learning
as a complex adaptive system. Teaching and Teacher
Education, 23, 303-313.

Morrison, B., Clancy, M., McCartney, R., Richards, B.
and Sanders, K. (2011): Applying data structures in
exams. Paper presented at the 42nd ACM Technical
Symposium on Computer Science Education
(SIGCSE'11), Dallas, Texas, USA.

Petersen, A., Craig, M. and Zingaro, D. (2011):
Reviewing CS1 exam question content. Paper
presented at the 42nd ACM Technical Symposium
on Computer Science Education (SIGCSE'11),
Dallas, Texas, USA.

Schulte, C. and Bennedsen, J. (2006): What do teachers
teach in introductory programming? Paper presented
at the Second International Computing Education
Research workshop (ICER'06), Canterbury, UK.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E. and Whalley, J. (2008): Going SOLO to assess
novice programmers. Paper presented at the 13th
Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE'08), Madrid,
Spain.

Sheard, J., Simon, Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Harland, D.,

Lister, R., Philpott, A. and Warburton, G. (2011):
Exploring programming assessment instruments: a
classification scheme for examination questions.
Paper presented at the Seventh International
Computing Education Research workshop (ICER
2011), Providence, Rhode Island, USA.

Simon (2011): Assignment and sequence: why some
students can't recognise a simple swap. Paper
presented at the 10th Koli Calling International
Conference on Computing Eduction research,
Finland.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J. and Warburton, G. (2012):
Introductory programming: Examining the exams.
Paper presented at the 14th Australasian Computing
Education conference, Melbourne, Australia.

Simon, Sheard, J., Carbone, A., D'Souza, D., Harland, J.
and Laakso, M.-J. (2012): Can computing academics
assess the difficulty of programming examination
questions? Paper presented at the 11th Koli Calling
International Conference on Computing Education
Research, Finland.

Simon, B., Clancy, M., McCartney, R., Morrison, B.,
Richards, B. and Sanders, K. (2010): Making sense of
data structure exams. Paper presented at the Sixth
International Computing Education Research
workshop (ICER 2010), Aarhus, Denmark.

Stahl, E., Pieschl, S. and Bromme, R. (2006): Task
complexity, epistemological beliefs and
metacognitive calibration: An exploratory study.
Journal of Educational Computing Research, 35(4),
319-338.

Sweller, J. (1988): Cognitive load during problem
solving. Effects on learning. Cognitive Science,
12(2), 257-285.

Tertiary Education Quality and Standards Agency.
(2012): Higher Education Standards Framework,
from http://www.teqsa.gov.au/higher-education-
standards-framework

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.
and Robbins, P. (2008): Bloom's taxonomy for CS
assessment. Paper presented at the 10th Australasian
Computing Education Conference (ACE 2008),
Wollongong, Australia.

Williams, G. and Clarke, D. (1997): Mathematical task
complexity and task selection. Paper presented at the
Mathematical Association of Victoria 34th Annual
Conference - 'Mathematics: Imagine the
Possibilities', Clayton, Victoria, Australia.

CRPIT Volume 136 - Computing Education 2013

154

