In-process Strain Measurement in Roll Forming

Florian Kern
N. Stiegler
Prof. Thomas Neitzert

Roll Forming

- Bending process
- Angle introduced continuously along straight line
- Set of contoured rolls
- Strip motion applied by rotation of rolls (friction)
- Alternatively, pulling of strip
- Unlimited length

Motivation

- Geometric defects a frequent occurrence in roll forming
- Largely caused by plastic deformation outside the intended forming zone

Continuous, non-contact strain measurement in flange area

Source: Halmos

Strain Measurement Methods I

Mechanical Strain Gauge

Mechanic longitudinal strain device

Electric conductor changes resistance when being compressed or elongated

Strain Measurement Methods II

Photoelasticity

iso-chromatic and isoclinic lines in a specimen under load

Moiré effect of two rotated superimposed line pattern

Source: Onera

Fibre Bragg Grating

Laser Speckle

$$\Delta \varepsilon = \frac{1}{1 - p_e} \cdot \left(\frac{\Delta \lambda_B}{\lambda_B} - (\alpha - \zeta) \cdot \Delta T \right)$$

Principle geometry for strain measurement with objective Speckles

Strain Measurement Methods IV

X-ray Diffraction

Optical

Set-up to measure strain in the surface zone of a specimen

Source: Ziebs

Vickers micro hardness indentations

Line camera

Strain Measurement Methods IV

Grid Analysis

Etched (left) and laser (right) grids shown at 50x magnification, circle radius of 2.5mm

Undeformed Ø 2.5mm laser grids with straight laser lines

$$e_{major}(\%) = \frac{a - d_0}{d_0} \times 100$$

$$e_{\min or}(\%) = \frac{b - d_0}{d_0} \times 100$$

Deformation of a circle grid

Source: Hsu

Fitted ellipses

a: automatic grid acquisition

b: elliptic grid for a MRA

Strain Measurement - Conclusions

Balance between accuracy and cost

Compromise: Strain gauge

laborious preparation, but:

- continuous data
- •inexpensive (in comparison)
- well established
- accurate (compared to other inexpensive solutions)
- delivers full set of data (3 directions)

Problem: How to acquire bending strain with one side of the strip inaccessible?

Spacer Plate – Principle I

$$\varepsilon_{O}(z) = z \left(\frac{\varepsilon_{II} - \varepsilon_{I}}{z_{II} - z_{I}} \right) + \left(\varepsilon_{I} - z_{I} \frac{\varepsilon_{II} - \varepsilon_{I}}{z_{II} - z_{I}} \right)$$

Spacer Plate – Principle I

$$\varepsilon_{O}(z) = z \left(\frac{\varepsilon_{II} - \varepsilon_{I}}{z_{II} - z_{I}} \right) + \left(\varepsilon_{I} - z_{I} \frac{\varepsilon_{II} - \varepsilon_{I}}{z_{II} - z_{I}} \right)$$

Spacer Plate – Principle II

Trend of the strain in a cross-section of sheet and spacer plate

 $\epsilon_{\parallel}\dots$ strain of the gauge on the top of the spacer plate

 $\epsilon_{|}\dots$ strain of the gauge between sheet and spacer plate

 $\epsilon_{\scriptscriptstyle T} \dots$ tensile strain

 $\epsilon_{\text{B}}\dots$ bending strain

 ε_0 ... tensile + bending strain

Strain measurement from one side of the sheet

Design of Spacer Plate

ABS spacer plate

Simulation of Spacer Plate I

tensile

bending

tensile + bending

Simulation of the strain layout during deformation with and without applied spacer plate on the sheet

Simulation of Spacer Plate II

Strain in x direction (xy-plane, centre) 3.5N shear force, 1625N tensile force, 14mm long spacer plate

Accuracy of Measurement

Bending, one strain gauge on each side

Bending, two strain gauges and spacer plate on one side of the specimen

Bending strain can be measured with accuracy of ±3%

Spatial Constraints in Roll Former

Application of strain gauge device

Measured Longitudinal Strain

Simulated Longitudinal Strain

Simulated flange strain in rolling direction

Longitudinal Strain

Principal Strain

$$\varepsilon_{\text{I,II}} = \frac{\varepsilon_A + \varepsilon_C}{2} \pm \frac{1}{2} \sqrt{2} \sqrt{\left(\varepsilon_A - \varepsilon_B\right)^2 + \left(\varepsilon_B - \varepsilon_C\right)^2}$$

$$\tan 2\phi = \frac{\varepsilon_A - 2\varepsilon_B + \varepsilon_C}{\varepsilon_A - \varepsilon_C}$$

Principal Strain - Measured

Principal Strain - Simulated

Summary and future work

- Review of strain measurement methods
- Design of strain gauge device that acquires all desired data from one side of the strip
- Agreement between measurements and simulation

Gather data under conditions that generate geometric

deviations

 Develop rules for corrective intervention

