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Abstract

In this review we will first look in detail at V.A. Plotnikov’s results on the substantiation of full and partial schemes of averaging
for differential inclusions in the standard form on final and infinite interval. Then we will consider the algorithms where there
is no average, but there is a possibility to find its estimation from below and from above. Such approach is also used when the
detection of an average is approximate. This situation is especially typical at consideration of differential inclusions with fast and
slow variables. In the last part we will give the results concerning the substantiation of the full and partial averaging method for
impulsive differential inclusions on final and infinite intervals.
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Introduction

Many important problems of analytical dynamics are de-
scribed by the nonlinear mathematical models that as a rule are
presented by the nonlinear differential or integro - differential
equations. The absence of exact universal research methods for
nonlinear systems has caused the development of numerous ap-
proximate analytic and numerically-analytic methods that can
be realized in effective computer algorithms.

All these methods are constructed by an iterative principle,
i.e. either consecutive approximations or chains of consecu-
tive transformations of phase variables or functional series with
members decreasing on size, etc. are used. It means that first
somehow the initial approximation is chosen then the additives
of various order are found using the iterations to approach the
true solution. This rule is especially effective at research of the
mathematical models described by regular on small parameters
nonlinear equations. Also there exist various methods of the
initial approximation choice: solving of some linear problem
(the linearization method) or solving of some nonlinear but es-
sentially more ”simple” system (often the averaging method).

Recently, the averaging methods combined with the asymp-
totic representations (in Poincare sense) began to be applied as
the basic constructive tool for solving the complicated prob-
lems of analytical dynamics described by the differential equa-
tions. It became possible due to the works of N.N. Bogolyubov,
Yu.A. Mitropolskij, A.M. Samojlenko, V.M. Volosov, E.A. Gre-
bennikov, M.A. Krasnoselskiy, S.G. Krein, A.N. Filatov, etc.
The application of the averaging method in optimal control prob-
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lems contains in the works of N.N. Moiseev, V.N. Lebedev,
F.L. Chernousko, L.D. Akulenko, V.A. Plotnikov, etc.

The development of the theory of differential inclusions be-
gan from the works of T. Wazewski and A.F. Filippov in which
the basic results on existence and properties of the solutions
of the differential inclusions have been received. The differen-
tial inclusions are valuable not only as the generalization of the
theory of the differential equations, but also for their numerous
applications to the research of optimal control problems, the
game theory and economics. The possibility of the application
of the averaging method in the theory of differential inclusions
was considered by V.A. Plotnikov.

Victor Aleksandrovich Plotnikov was born on January 5,
1938 in Leningrad (nowadays St. Petersburg). During the World
war II he was the inhabitant of blockade Leningrad. Then in
1944 the family moved to Odessa. In 1960 V.A. Plotnikov grad-
uated from Odessa State University named after I.I. Mechnikov,
where afterwards worked in positions of the assistant, associate
professor, department chief and the dean up to his death on
September 4, 2006. In 1969 V.A. Plotnikov defended the kan-
didat thesis ”Research of a class of optimal control problems
for systems with two degrees of freedom” in Odessa State Uni-
versity and in 1980 defended the doctoral thesis ”Asymptotical
methods in optimal control problems” in Leningrad State Uni-
versity. V.A. Plotnikov’s scientific works cover a wide range of
complex and actual problems in the theory of differential equa-
tions and optimal control that concern a new direction of these
theories - the differential equations with multivalued and dis-
continuous right-hand side, the quasidifferential equations in
the metric spaces. V.A. Plotnikov developed the algorithms
of asymptotic solving for quite a wide class of differential in-
clusions and proved deep theorems by N.N. Bogolyubov and
A.N. Tikhonov on a substantiation of the asymptotic methods
for the differential equations with the multivalued and discon-
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tinuous right-hand side and the quasidifferential equations, de-
veloped algorithms of numerically asymptotical solving of the
control problems, proved the theorems of existence and unique-
ness of solutions of the quasidifferential equations in locally
compact and full metric spaces. The achievements in this di-
rection initiated the mathematical researches of asymptotical
methods in the theory of the differential inclusions in Russia,
Belarus, Bulgaria, Poland, France, the USA, etc. V.A. Plot-
nikov published over 250 scientific nworks, including 6 mono-
graphes [1, 2, 3, 4, 5, 6].

In this review we will first look in detail at V.A. Plotnikov’s
results on the substantiation of full and partial schemes of av-
eraging for differential inclusions in the standard form on fi-
nal and infinite interval. Then we will consider the algorithms
where there is no average, but there is a possibility to find its
estimation from below and from above. Such approach is also
used when the detection of an average is approximate. This sit-
uation is especially typical at consideration of differential inclu-
sions with fast and slow variables. In the last part we will give
the results concerning the substantiation of the full and partial
averaging method for impulsive differential inclusions on final
and infinite intervals.

1. The averaging of differential inclusions

For differential inclusions the theorem which is the ana-
logue of the first N.N. Bogolyubov’s theorem has been proved
by V.A. Plotnikov in [3, 7, 8]. It became a push for the further
development of the given method for this type of the equations.

1.1. The full averaging scheme

1.1.1. The averaging on the finite interval
Consider the differential inclusion

ẋ ∈ εX(t, x), x(0) = x0, (1)

where t ∈ R+ is time, x ∈ Rn is a phase vector, ε > 0 is a small
parameter, X : R+×Rn → comp(Rn) is a multivalued mapping,
comp(Rn) (conv(Rn)) is the set of all nonempty compact (and
convex) subsets of Rn with Hausdorff metric:

h(A, B) = min{r ≥ 0 : A ⊂ B + S r(0), B ⊂ A + S r(0)},

S r(a) is the ball in Rn with radius r ≥ 0 and center in the point
a ∈ Rn.

Let us associate with the inclusion (1) the following aver-
aged differential inclusion

ξ̇ ∈ εX(ξ), ξ(0) = x0, (2)

where

X(x) = lim
T→∞

1
T

T∫
0

X(t, x) dt. (3)

Here the integral of the multivalued mapping is understood in
Aumann sense [9] and the convergence - in sense of the Haus-
dorff metric.

Theorem 1. [3, 7]. Let in the domain Q = {t ≥ 0, x ∈ D ⊂ Rn}
the following hold:

1) the mapping X(t, x) is continuous, uniformly bounded with
constant M, satisfies the Lipschitz condition in x with con-
stant λ;

2) uniformly with respect to x in the domain D the limit (3)
exists;

3) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion
(2) together with a ρ−neighborhood belong to the domain
D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any solution ξ(t) of the inclusion (2) there exists a solu-
tion x(t) of the inclusion (1) such that

∥x(t) − ξ(t)∥ ≤ η; (4)

2) for any solution x(t) of the inclusion (1) there exists a so-
lution ξ(t) of the inclusion (2) such that the inequality (4)
holds.

Thereby,

h(R(t), clR(t)) ≤ η, (5)

where R(t) is the section of the family of the solutions of the
averaged inclusion, clR(t) is the closure of the section of the
family of the solutions of the initial inclusion.

Proof. Using the conditions 1), 2) and the properties of Au-
mann’s integral we obtain that the set X(x) is convex and com-
pact. Besides

X(x) = lim
T→∞

1
T

T∫
0

coX(t, x) dt,

so the differential inclusion (2) is also averaged to the differen-
tial inclusion

ẋ ∈ εcoX(t, x), x(0) = x0. (6)

From the conditions 1), 2) follows that the multivalued map-
ping X̄(x) is uniformly bounded with constant M and satisfies
the Lipschitz condition with constant λ. Really in view of the
condition 2) of the theorem for any δ > 0 it is possible to find
T (δ) > 0 such that for all T > T (δ) the estimate is fair:

h

X(x),
1
T

T∫
0

X(t, x)dt

 < δ.
Then choosing T > T (δ) we obtain∣∣∣X(x)

∣∣∣ = h
(
X(x), {0}

)
≤

≤ h

X(x),
1
T

T∫
0

X(t, x)dt

 + h

 1
T

T∫
0

X(t, x)dt, {0}

 <
2



< δ +
1
T

T∫
0

h (X(t, x), {0}) dt ≤ δ + M,

h(X(x′), X(x′′)) ≤ h

X(x′),
1
T

T∫
0

X(t, x′)dt

+
+h

 1
T

T∫
0

X(t, x′)dt,
1
T

T∫
0

X(t, x′′)dt

+
+h

 1
T

T∫
0

X(t, x′′)dt, X(x′′)

 <
< 2δ +

1
T

T∫
0

h
(
X(t, x′), X(t, x′′)

)
dt ≤

≤ 2δ +
1
T

T∫
0

λ
∥∥∥x′ − x′′

∥∥∥ dt ≤2δ + λ
∥∥∥x′ − x′′

∥∥∥ .
As the value δ is chosen arbitrarily, in a limit we will re-

ceive: ∣∣∣X(x)
∣∣∣ ≤ M, h(X(x′), X(x′′)) ≤ λ

∥∥∥x′ − x′′
∥∥∥ .

The solutions of the inclusions (1), (2), (6) exist and are
continuable on an interval [0, Lε−1]. According to [10] the fam-
ily of solutions H1(x0) of the inclusion (1) is everywhere dense
in the compact set H(x0) of the family of solutions of the inclu-
sion (6).

Hence, it is enough to prove the theorem for the inclusions
with the convex right-hand side.

The families of the solutions of the inclusions (2) and (6),
and also their sections R(t) and clR(t) accordingly, are compact
sets [11].

Let us prove the first statement of the theorem and hence
the validity of the inclusion

R(t) ⊂ S η(clR(t)). (7)

Divide the interval [0, Lε−1] on the partial intervals with the
points ti = Li

mε , i = 0,m, m ∈ N. Let ξ(t) be a solution of the
inclusion (2). Then there exists a measurable selector v(t) ∈
X(ξ(t)) such that

ξ(t) = ξ(ti) + ε

t∫
ti

v(τ)dτ, t ∈ [ti, ti+1], ξ(0) = x0. (8)

Consider the function

ξ1(t) = ξ1(ti) + εvi(t − ti), t ∈ [ti, ti+1], ξ1(0) = x0, (9)

where vector vi satisfies the condition∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

L
mε

vi −
ti+1∫
ti

v(t)dt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = min

v∈X(ξ1(ti))

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

L
mε

v −
ti+1∫
ti

v(t)dt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ . (10)

The vector vi exists and is unique in view of the compact-
ness and convexity of the set X(ξ1(ti)) and the strong convexity
of the function being minimized.

Set δi = ∥ξ(ti) − ξ1(ti)∥. As

|| ξ(t) − ξ(ti) || = ε

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t∫
ti

v(τ)dτ

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ εM(t − ti) ≤

ML
m

, (11)

then ∣∣∣∣∣∣ ξ(t) − ξ1(ti)
∣∣∣∣∣∣ ≤ || ξ(t) − ξ(ti) || + ∣∣∣∣∣∣ ξ(ti) − ξ1(ti)

∣∣∣∣∣∣ ≤
≤ δi + εM(t − ti),

h(X(ξ(t)), X(ξ1(ti))) ≤ λ[δi + εM(t− ti)], t ∈ [ti, ti+1].(12)

From (10) and (12) follows that∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

ti+1∫
ti

[v(t) − vi]dt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ h


ti+1∫
ti

X(ξ(t))dt,

ti+1∫
ti

X(ξ1(ti))dt

 ≤

≤
ti+1∫
ti

h(X(ξ(t)), X(ξ1(ti)))dt ≤

≤ λ
[
δi(ti+1 − ti) + εM

(ti+1 − ti)2

2

]
=

= λ

[
δi

L
εm
+

L2M
2εm2

]
. (13)

Then according to (8), (9) and (13) we get

δi+1 = ∥ξ(ti+1) − ξ1(ti+1)∥ ≤

≤ ∥ξ(ti) − ξ1(ti)∥ + ε

∥∥∥∥∥∥∥∥∥
ti+1∫
ti

[v(t) − vi]dt

∥∥∥∥∥∥∥∥∥ ≤
≤ δi + ελ

[
δi

L
εm
+

L2M
2εm2

]
=

=
λML2

2m2 +

(
1 +

λL
m

)
δi ≤

λML2

2m2 +

+

(
1 +

λL
m

) (
λML2

2m2 +

(
1 +

λL
m

)
δi−1

)
≤ . . . ≤

≤
(
1 +

λL
m

)i+1

δ0 +
λML2

2m2

i∑
k=0

(
1 +

λL
m

)k

≤

≤ ML
2m

[(
1 +

λL
m

)i+1

− 1
]
≤ ML

2m
(eλL − 1), (14)

i = 0,m − 1.

As

|| ξ1(t) − ξ1(ti) || = ε || vi || (t − ti) ≤
ML
m

, (15)

3



then from (11) and (14) follows that

|| ξ(t) − ξ1(t) || ≤ || ξ(t) − ξ(ti) || + || ξ(ti) − ξ1(ti) || +

+ || ξ1(ti) − ξ1(t) || ≤ ML
2m

(eλL + 3). (16)

From the condition 2) of the theorem follows that for any
η1 > 0 and fixed m the inequality holds

h

εm
L

ti+1∫
ti

X(t, ξ1(ti))dt, X(ξ1(ti))

 ≤ η1. (17)

Hence, there exists such measurable selector
vi(t) ∈ X(t, ξ1(ti)), i = 0,m − 1 that∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
εm
L

ti+1∫
ti

[vi(t) − vi]dt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ η1. (18)

Consider the family of functions

x1(t) = x1(ti)+ε

t∫
ti

vi(τ) dτ, t ∈ [ti, ti+1], x1(0) = x0. (19)

From (18),(19) and (9) follows that∣∣∣∣∣∣ x1(ti) − ξ1(ti)
∣∣∣∣∣∣ ≤ ∥x1(ti−1) − ξ1(ti−1)∥+

+ε

∥∥∥∥∥∥∥∥∥
ti∫

ti−1

[vi−1(t) − vi−1]dt

∥∥∥∥∥∥∥∥∥ ≤
≤ ∥x1(ti−1) − ξ1(ti−1)∥ + Lη1

m
≤ . . . ≤ Lη1, i = 1,m. (20)

As

∣∣∣∣∣∣ x1(t) − x1(ti)
∣∣∣∣∣∣ = ε

∥∥∥∥∥∥∥∥∥
t∫

ti

vi(τ)dτ

∥∥∥∥∥∥∥∥∥ ≤
ML
m

, t ∈ [ti, ti+1]

then from (15) and (20) we have∣∣∣∣∣∣ x1(t) − ξ1(t)
∣∣∣∣∣∣ ≤ 2ML

m
+ Lη1 (21)

and

h(X(t, x1(t)), X(t, ξ1(ti))) ≤ h(X(t, x1(t)), X(t, x1(ti)))+

+h(X(t, x1(ti)), X(t, ξ1(ti))) ≤ λ
ML
m
+ λLη1. (22)

Taking into consideration the choice of the function vi(t)
and (22) we have

ρ(ẋ1(t), εX(t, x1(t))) ≤ ελL
( M

m
+ η1

)
. (23)

According to [12] there exists such a solution x(t) of the
inclusion (1) that the A.F. Filippov’s theorem

∣∣∣∣∣∣ x(t) − x1(t)
∣∣∣∣∣∣ ≤ ελL

( M
m
+ η1

) t∫
0

eελ(t−τ)dτ ≤

≤ L
( M

m
+ η1

)
(eλL − 1). (24)

From the estimates (16), (21) and (24) follows that

||ξ(t) − x(t)|| ≤

≤ ||ξ(t) − ξ1(t)|| + ||x(t) − x1(t)|| + ||ξ1(t) − x1(t)|| ≤

≤ ML
2m

(eλL + 3) +
2ML

m
+ Lη1 + L

( M
m
+ η1

)
(eλL − 1) =

=
ML
2m

(3eλL + 5) + LeλLη1. (25)

Choosing

m >
ML
η

(3eλL + 5), η1 <
η

2LeλL

from (25) we get the first statement of the theorem.
The proof of the second part of the theorem is similar to the

proof of the first one.

Remark 1. If the condition 3) doesn’t hold it can be replaced
by the following condition:

3’) for any x0 ∈ D′ ⊂ D the solutions of the inclusion (2)
together with a ρ− neighborhood belong to the domain D
for τ ∈ [0, L∗], where τ = εt.

Then for any η ∈ (0, ρ] and L ∈ (0, L∗] there exists such
ε0(η, L) > 0 that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the state-
ments 1) and 2) of the theorem 1 fulfill.

In case when there is no uniform convergence in (3),
V.A. Plotnikov proved the following theorem, which is the gen-
eralization of A.N. Filatov’s result [13] on a case of differential
inclusions:

Theorem 2. [3, 7]. Let in the domain Q the following hold:

1) the mapping X(t, x) is continuous, locally satisfies the Lips-
chitz condition in x;

2) in every point x ∈ D the limit (3) exists;
3) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion

(2) together with a ρ− neighborhood belong to the domain
D.

Then for any η ∈ (0, ρ] and L > 0 there exists such
ε0(η, L, x0) > 0 that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the
statements 1) and 2) of the theorem 1 fulfill.

Proof. Consider the set D(L, x0) = S ρ(R(t)).
The set D(L, x0) ⊂ D is compact. Hence the limit (3) ex-

ists uniformly with respect to x ∈ D(L, x0). As at the proof
of the theorem 1 it is enough to consider the domain Q(L, x0) =
{t ≥ 0, x ∈ D(L, x0)} the statements of the theorem 2 follow from
the justice of the theorem 1 for the domain Q(L, x0).
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Remark 2. The estimates received in the theorem 2 qualita-
tively differ from the corresponding estimates of the theorem
1. The external coincidence of the statements of theorems 1
and 2 leads sometimes to their wrong understanding. Really,
the theorem 1 affirms that the inequality (4) holds uniformly
for all family of trajectories x(t) and ξ(t) with coincident initial
conditions, i.e. the existence of ε(η, L) is affirmed. The esti-
mate received in the theorem 2 is fair only for solutions x(t)
and ξ(t) beginning in the fixed initial point x0, i.e. the existence
of ε(x0, η, L) is affirmed.

Example 1. Consider the differential inclusion

ẋ ∈ {εax sin t, a ∈ [1, 2]}, x(0) = x0. (26)

The averaged system will be ξ̇ = 0, ξ(0) = x0.
Therefore

|x(t) − ξ(t)| =

∣∣∣∣∣∣∣∣x0e
εa

t∫
0

sin sds
− x0

∣∣∣∣∣∣∣∣ =
= |x0|

(
eεa(1−cos t) − 1

)
. (27)

It is easy to check that for the system (26) the conditions of
the theorem 1 do not fulfill and the conditions of the theorem 2
fulfill. Really the right-hand side is not uniformly bounded and

h

 1
T

T∫
0

X(t, x)dt, X(x)

 ≤

≤ 2|x|
T

T∫
0

sin tdt =
2|x|
T

(1 − cos T ) (28)

does not exceed 4|x |
T and converges to 0 when T → ∞, but the

value T (δ) depends on x, though T (δ) converges to infinity when
x → ∞. So the condition of the uniform convergence in (28) is
not fair.

From (27) follows that there exists ε0(η, L, x0) > 0 such that
for all ε ∈ (0, ε0] and t ∈ (0, Lε−1] the estimate |x(t) − ξ(t)| < ε
is fair. For example one can take ε0 =

1
2 ln

(
1 + η

|x0 |

)
. But for

fixed η and L the function ε0(η, L, x0) → 0 when |x0| → ∞, so
there is no uniform estimate (27) with respect to x0 ∈ R.

If the mapping X(t, x) is periodic in t, one can receive the
more exact estimate.

Theorem 3. Let in the domain Q the conditions 1), 3) of the
theorem 1 fulfill and besides the mapping X(t, x) is 2π−periodic
in t.

Then for any L > 0 there exist ε0(L) > 0 and C(L) > 0 such
that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following statements
fulfill:

1) for any solution ξ(t) of the inclusion (2) there exists a solu-
tion x(t) of the inclusion (1) such that

|| x(t) − ξ(t) || ≤ Cε; (29)

2) for any solution x(t) of the inclusion (1) there exists a so-
lution ξ(t) of the inclusion (2) such that the inequality (29)
holds.

Proof. If the multivalued mapping is 2π−periodic in t and uni-
formly bounded then

X(x) =
1

2π

2π∫
0

X(t, x)dt

is the uniform average for X(t, x).
Really for 2kπ ≤ T < 2(k + 1)π we have

h

 1
T

T∫
0

X(t, x)dt, X(x)

 =

= h

 1
T

k−1∑
i=0

2π(i+1)∫
2πi

X(t, x)dt +
1
T

T∫
2kπ

X(t, x)dt,

1
T

k−1∑
i=0

∫
2πi

2π(i + 1)X(x)dt +
1
T

T∫
2kπ

X(x)dt

 ≤
≤ 1

T

k−1∑
i=0

h


2π(i+1)∫
2πi

X(t, x)dt,

2π(i+1)∫
2πi

X(x)dt

+
+

1
T

(T − 2kπ) (|X(t, x)| + |X(x)|) ≤ 4Mπ

T
.

Hence for T > 4Mπ
δ

we have h
 1

T

T∫
0

X(t, x)dt, X(x)
 < δ for

all x ∈ D.
Let us prove the first statement of the theorem. Divide

the interval [0, Lε−1] on the partial intervals with the points
ti = 2πi, i = 0, 1 . . . Let x(t) be a solution of the inclusion (1).
Then there exists a measurable selector v(t) of the multivalued
mapping X(t, x(t)) such that

x(t) = x(ti) + ε

t∫
ti

v(τ)dτ, t ∈ [ti, ti+1], x(0) = x0. (30)

Consider the mapping

x1(t) = x1(ti) + ε

t∫
ti

v1(τ)dτ, t ∈ [ti, ti+1], x1(0) = x0.(31)

where v1(t) is the measurable selector of the multivalued map-
ping X(t, x1(ti)) such that

||v(t) − v1(t)|| = min
v1∈X(t,x1(ti))

||v(t) − v1||. (32)

Denote by δi = ||x(ti) − x1(ti)||, then we have

||v(t) − v1(t)|| ≤ h(X(t, x(t)), X(t, x1(ti))) ≤
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≤ λ||x(t) − x1(ti)|| ≤ λ
[
||x(t) − x(ti)|| + ||x(ti) − x1(ti)||

]
≤

≤ λ

ε
t∫

ti

||v(τ)||dτ + δi

 ≤ λ[δi + εM(t − ti)].

Therefore from (30), (31) and (32) follows

δi+1 = ||x(ti+1) − x1(ti+1)|| =

=

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣x(ti) + ε

ti+1∫
ti

v(τ)dτ − x1(ti) − ε
ti+1∫
ti

v1(τ)dτ

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤

≤ δi + ε

ti+1∫
ti

||v(τ) − v1(τ)||dτ ≤

≤ δi + ελ

ti+1∫
ti

[δi + εM(τ − ti)]dτ =

= δi(1 + 2πελ) + 2π2ε2λM.

Hence, as 2π(i + 1) ≤ Lε−1, we get

δi+1 ≤ (1 + 2πελ)δi + 2π2ε2λM ≤

≤ (1 + 2ελπ) ((1 + 2πελ)δi−1 + 2π2ε2λM ) + 2ε2λMπ2 ≤

≤ · · · ≤ (1 + 2πελ)i+1δ0 + 2π2ε2λM
i∑

k=0

(1 + 2πελ)k =

= 2π2ε2λM
i∑

k=0

(1 + 2πελ)k =

= εMπ
(
(1 + 2ελπ)i+1 − 1

)
≤ εMπ(eλL − 1),

i.e.

δi ≤ Mπ(eλL − 1)ε, i = 0, 1, ... . (33)

Taking into account that for t ∈ [ti, ti+1] the following in-
equalities hold

||x(t) − x(ti)|| ≤ ε
∥∥∥∥∥∥∥ t∫

ti

v(τ)dτ

∥∥∥∥∥∥∥ ≤
≤ εM(t − ti) ≤ 2πMε,

||x1(t) − x1(ti)|| ≤ ε
∥∥∥∥∥∥∥ t∫

ti

v1(τ)dτ

∥∥∥∥∥∥∥ ≤
≤ εM(t − ti) ≤ 2πMε,

(34)

using (33) we obtain

||x(t) − x1(t)|| = πM(eλL + 3)ε. (35)

Calculate the value of the mapping x1(t) in the points ti+1:

x1(ti+1) = x1(ti) + ε

ti+1∫
ti

v1(t)dt = x1(ti) + 2εviπ, (36)

where vi ∈ 1
2π

ti+1∫
ti

X(t, x1(ti))dt = 1
2π

2π∫
0

X(t, x1(ti))dt = X(x1(ti)).

Consider the mapping

ξ1(t) = ξ1(ti) + εvi(t − ti), t ∈ [ti, ti+1], ξ1(0) = x0. (37)

It is obviously that x1(ti) = ξ1(ti), i = 0, 1, . . . .
From (34), (37) we have

||x1(t) − ξ1(t)|| ≤ 4πMε. (38)

As for t ∈ [ti, ti+1], i = 0, 1, ...

||ξ1(t) − ξ1(ti)|| ≤ 2πMε,

h(X(ξ1(ti)), X(ξ1(t))) ≤ 2λπMε,

then

ρ
(
ξ̇1(t), εX(ξ1(t))

)
≤

≤ h
(
εX(ξ1(ti)), εX(ξ1(t))

)
≤ 2λπMε2. (39)

According to [12] from the inequality (39) follows that there
exists such a solution ξ(t) of the inclusion (2), that

||ξ(t) − ξ1(t)|| ≤

≤ 2ε2πλM

t∫
0

eλε(t−τ)dτ ≤ 2επM(eλL − 1). (40)

From (35), (38) and (40) follows that

||x(t) − ξ(t)|| ≤

≤ ||x(t) − x1(t)|| + ||x1(t) − ξ1(t)|| + ||ξ1(t) − ξ(t)|| ≤

≤ πMε
(
eλL + 3

)
+ 4πMε + 2επM

(
eλL − 1

)
=

= πMε
(
3eλL + 5

)
.

Denote by C1 = πM
(
3eλL + 5

)
, then

D(x(t), ξ(t)) ≤ C1ε. (41)

The first part of the theorem is proved.
Taking any solution ξ(t) of the inclusion (2) and making

the calculations similar to the previous, it is possible to find a
solution x(t) of the inclusion (1) such that inequality similarly to
(41) with some constant C2 is fair. Choosing C = max(C1,C2)
we will receive the justice of all statements of the theorem.
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1.1.2. The averaging on the infinite interval
For generalization of the theorem 1 on an infinite interval

V.A. Plotnikov has extended the concept of stability of solutions
of the differential equations on a case of differential inclusions
[4, 14]. In addition the concept of R-solution of the differential
inclusion introduced in [15, 16] was used.

Definition 1. [15, 16]. The absolutely continuous multival-
ued maping R : R → comp(Rn), R(0) = X0, is called the
R−solution of the differential inclusion

ẋ ∈ X(t, x), x(0) = x0 ∈ X0 ∈ comp(Rn) (42)

if for almost every t

lim
∆↓0

1
∆

h

R(t + ∆),
∪

x∈R(t)

x +

t+∆∫
t

X(s, x)ds


 = 0. (43)

Definition 2. [5] R− solution R(t), t ∈ [t0,+∞) of the differen-
tial inclusion

ẋ ∈ coX(t, x) (44)

is called stable if for any ε > 0 there exists such δ(ε) > 0 that
all R− solutions R̄(t) of the inclusion (44), satisfying the initial
condition

h
(
R(t0),R(t0)

)
< δ (45)

are defined for all t > t0 and h
(
R(t),R(t)

)
< ε.

Definition 3. [5] The R− solution R(t), t ∈ [t0,+∞) of the dif-
ferential inclusion (44) is called asymptotically stable if it is
stable and for any R− solution R̄(t) of the inclusion (44), satis-
fying the initial condition (45)

lim
t→∞

h
(
R(t), R̄(t)

)
= 0.

Theorem 4. [4, 14]. Let in the domain Q the following hold:

1) the mapping X(t, x) is continuous, uniformly bounded, sat-
isfies the Lipschitz condition in x;

2) uniformly with respect to t and x in the domain Q the limit

X(x) = lim
T→∞

1
T

t+T∫
t

X(t, x)dt (46)

exists;
3) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion

(2) together with a ρ− neighborhood belong to the domain
D;

4) the R−solution of the differential inclusion (2) is asymp-
totically stable.

Then for any η ∈ (0, ρ] there exists ε0(η) > 0 such that for
all ε ∈ (0, ε0] and t ≥ 0 the following statements fulfill:

1) for any solution ξ(t) of the inclusion (2) there exists a so-
lution x(t) of the inclusion (1) such that the inequality (4)
fulfills;

2) for any solution x(t) of the inclusion (1) there exists a so-
lution ξ(t) of the inclusion (2) such that the inequality (4)
holds.

Thereby,

h(R(t),R(t)) ≤ η, (47)

where R(t),R(t) are the R− solutions of the differential inclu-
sions (1) and (2) accordingly, R(0) = R(0) ⊂ D′.

The proof of the theorem is carried on similarly to the proof
of the Banfy’s theorem [17] with changing references to the first
N.N. Bogolyubov’s theorem with references to the theorem 1.

Example 2. Consider the following differential inclusion

ẋ ∈ ε(−x + [−1, 1] + cos t), x(0) ∈ [2, 3],

where x ∈ D = [−6, 6].
The averaged inclusion is

ξ̇ ∈ ε(−ξ + [−1, 1]), ξ(0) ∈ [2, 3].

The R−solution of the averaged inclusion

R(t) = [3e−εt − 1, 2e−εt + 1]

is asymptotically stable. The fulfillment of all other conditions
of the theorem 4 is checked evidently.

The R−solution of the initial inclusion is

R(t) =
[(

3 − ε2

1 + ε2

)
e−εt +

ε2

1 + ε2 cos t +
ε

1 + ε2 sin t − 1;

(
2 − ε2

1 + ε2

)
e−εt +

ε2

1 + ε2 cos t +
ε

1 + ε2 sin t + 1
]
.

Therefore

h(R(t),R(t)) ≤ ε2

1 + ε2 e−εt +
ε2

1 + ε2 +
ε

1 + ε2 < 3 ε.

Thus when ε0 =
η
3 the conclusion of the theorem 4 holds.

In V.A. Plotnikov’s works the possibility of averaging of the
differential inclusions on the infinite interval using the stability
of separate trajectories was also considered.

Definition 4. [18]. The solution ψ(t), t ∈ [t0,+∞) of the differ-
ential inclusion (42) is called stable if for any ε > 0 there exists
δ > 0 such that for all x̃0 : ||x̃0 − ψ(t0)|| < δ any solution x̃(t)
with the initial condition x̃(t0) = x̃0 exists for all t ∈ [t0,+∞)
and satisfies the inequality

||x̃(t) − ψ(t)|| < ε.

Definition 5. [18]. The solution ψ(t), t ∈ [t0,+∞) of the dif-
ferential inclusion (42) is called weakly stable if for any ε > 0
there exists δ > 0 such that for all x̃0 : ||x̃0 − ψ(t0)|| < δ some
solution x̃(t) with the initial condition x̃(t0) = x̃0 exists for all
t ∈ [t0,+∞) and satisfies the inequality

||x̃(t) − ψ(t)|| < ε.
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Definition 6. [18]. The solution ψ(t), t ∈ [t0,+∞) of the differ-
ential inclusion (42) is called asymptotically stable if it is stable
and

lim
t→∞
||x̃(t) − ψ(t)|| = 0.

Definition 7. [18]. The solution ψ(t), t ∈ [t0,+∞) weakly asymp-
totically stable if it is weakly stable and

lim
t→∞
||x̃(t) − ψ(t)|| = 0.

Theorem 5. [19]. Let in the domain Q the conditions 1) – 3)
of the theorem 4 hold and besides

4) the solution ξ(t) of the inclusion (2) is weakly asymptotically
stable.

Then for any η ∈ (0, ρ] there exists ε0 > 0 such that for all
ε ∈ (0, ε0] there exists a solution x(t) of the inclusion (1) such
that the inequality (4) holds for t ≥ 0.

Proof. Let ξ(t) be a weakly asymptotically stable solution of
the inclusion (2). It means that for any t̄ > 0 and η there exist
ρ < η and the solution ξ1(t) of the inclusion (2) such that if at
the moment t̄ we have

||ξ(t̄) − ξ1(t̄)|| ≤ ρ,

then for any t > t̄ the inequality holds

||ξ1(t) − ξ̄(t)|| < η

2
.

For ξ(t) and ξ1(t) it is possible to find the constant L such
that for any t > t̄ + Lε−1 the inequality holds

||ξ(t) − ξ1(t)|| ≤ ρ

2
.

From the theorem 1 follows that for the given ρ and L it is
possible to choose ε0(ρ, L) > 0 such that there exists a solution
x(t) of the differential inclusion (1) such that for any ε ∈ (0, ε0]
and t ∈ [0, Lε−1] the inequality is true

∥ ξ(t) − x(t) ∥ < ρ < η. (48)

Let us prove that the inequality (4) fulfills on an infinite
interval. We will assume that the theorem statement is incorrect
and on the infinity an inequality (4) is not true, i.e. there exists
a moment of time t∗ > Lε−1 such that

min
x(t)∈R(t∗)

||ξ(t∗) − x(t∗)|| = η

and for any t < t∗ we have

min
x(t)∈R(t)

||ξ(t) − x(t)|| < η,

where R(t) is the section of the set of solutions of the differential
inclusion (1) and t∗ is the first moment of time in which the
inequality (4) fails.

Then from the inequality (48) and our assumption follows
that there is a moment tρ when the following equality holds

min
x(tρ)∈R(tρ)

||ξ(tρ) − x(tρ)|| = ρ. (49)

Let us consider that tρ is the maximum point in which the equal-
ity (49) fulfills. Then for any t > tρ we have

min
x(t)∈R(t)

||ξ(t) − x(t)|| > ρ. (50)

As it is possible to take tρ as the moment t̄ there exists a
solution ξ0(t) of the averaged inclusion such that

ρ = ∥x(tρ) − ξ(tρ)∥ = ∥ξ0(tρ) − ξ(tρ)∥,

||ξ(t) − ξ0(t)|| ≤ η

2
for t > tρ

and
||ξ(t) − ξ0(t)|| ≤ ρ

2
for any t > tρ + Lε−1.

Now it is possible to find ε1

(
ρ

2
, L

)
∈ (0, ε0] such that for

any tρ ≤ t < tρ + Lε−1 and ε ∈ (0, ε1] there exists a solution
x(t) of the differential inclusion (1) that satisfies the following
inequality

||ξ(t) − x(t)|| ≤ ρ

2
.

From the other side if t ∈
[
tρ, tρ + Lε−1

]
then

||x(t) − ξ(t)|| ≤ ||x(t) − ξ0(t)|| + ||ξ0(t) − ξ(t)|| ≤

≤ ρ

2
+
η

2
< η.

Thus, we receive that tρ + Lε−1 < t∗. But for t̃ = tρ + Lε−1
1 >

tρ it is possible to write down the following estimate

||x(t̃) − ξ(t̃)|| ≤ ||x(t̃) − ξ0(t̃)|| + ||ξ(t̃) − ξ0(t̃)|| <

<
ρ

2
+
ρ

2
= ρ.

The received estimate contradicts the inequality (50). Hence,
our assumption is incorrect.

Remark 3. The conclusion of the theorem 5 concerns not to
all solutions of differential inclusion (2), but only to the solu-
tion ξ(t). Therefore the differential inclusion (2) can have non -
continuable solutions for t ≥ 0 and the solutions which are not
weakly asymptotically stable.

Thus, from this theorem the closeness of the R−solutions of
the initial and the averaged inclusions does not follow.

Example 3. Consider the following differential inclusion

ẋ ∈ ε([−2, 2]x + e−t), x(0) ∈ [1, 2]. (51)

The averaged inclusion is

ξ̇ ∈ ε[−2, 2]ξ, ξ(0) ∈ [1, 2].

The R−solution of the averaged inclusion R(t) = [e−2εt, 2e2εt]
is not asymptotically stable as

h(R1(t),R (t)) = h(R1(0),R (0)) e2εt,

where R1(t) is the R−solution of the averaged differential inclu-
sion with the initial set R1(0).
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Thus for the solution ξ(t) = 2e2εt of the averaged inclusion
the closest solution of the initial inclusion is

x(t) =
(
2 − ε

1 + 2ε

)
e2εt +

ε

1 + 2ε
e−t

and

lim
T→∞
∥ξ(t) − x(t)∥ = lim

T→∞

ε

1 + 2ε
(e2εt − e−t) = ∞.

At the same time, for example, the solution ξ1(t) = 1.5eεt is
weakly asymptotically stable and it is directly checked that this
solution is also the solution of the inclusion (51).

Remark 4. In the theorem 5 it is possible to replace the condi-
tion 4) with the following:

4’) the solution ξ(t) of the inclusion (2) is asymptotically sta-
ble.

Then the conclusion of the theorem will be the following:
for any η ∈ (0, ρ] there exist ε0 > 0 and σ > 0 such that for
all ε ∈ (0, ε0] for all solutions x(t) of the inclusion (1) with the
initial conditions

∥∥∥x(t0) − x0
∥∥∥ ≤ σ the inequality (4) holds for

all t ≥ t0.
When the condition 4’) holds the closeness of the R−solutions

of the initial and the averaged inclusions follows from the the-
orem.

Example 4. Consider the following differential inclusion

ẋ ∈ ε ( [−2,−1] x + 2 cos t ) , x(0) = x0. (52)

For any solution ξ(t) of the averaged inclusion

ξ̇ ∈ ε [−2,−1] ξ, ξ(0) = x0

the following estimate fulfills:

x0e−2εt ≤ ξ(t) ≤ x0e−εt. (53)

According to (53) the solution ξ(t) ≡ 0 of the averaged in-
clusion is asymptotically stable.

For the solutions of the initial inclusion (52) the following
inequality holds:(

x0 −
4ε2

1 + 4ε2

)
e−2εt +

4ε2

1 + 4ε2 cos t +
2ε

1 + 4ε2 sin t ≤ x(t) ≤

≤
(
x0 −

2ε2

1 + ε2

)
e−εt +

2ε2

1 + ε2 cos t +
2ε

1 + ε2 sin t.

Thus for all solutions x(t) of the initial inclusion we have
∥ x(t) − ξ(t) ∥ ≤ η for ε0 ≤ η

5
.

1.1.3. Differential inclusions with semicontinuous right-hand
sides

In V.A. Plotnikov’s works the often meeting in the applica-
tions case, when the right-hand side is not continuous but only
upper semicontinuous in a phase variable was considered.

Theorem 6. [5]. Let in the domain Q the following hold:

1) the mapping X : Q → conv(Rn) is measurable in t, up-
per semicontinuous in x, uniformly bounded by a summable
function M(t) such that for all t2 > t1 ≥ 0 the inequality
holds

t2∫
t1

M(t) dt ≤ M0(t2 − t1);

2) the mapping X(x) satisfies the Lipschitz condition;
3) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion

(2) together with a ρ− neighborhood belong to the domain
D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] for any solution
x(t) of the inclusion (1) there exists a solution ξ(t) of the inclu-
sion (2) such that

∥ξ(t) − x(t)∥ ≤ η. (54)

Remark 5. The theorem affirms that R(t, ε) ⊂ R(t, 0) + S η(0),
where R(t, ε) is the R-solution of the inclusion (1) correspon-
ding to the parameter ε. The validity of the inclusion R(t, 0) ⊂
R(t, ε)+S η(0) is not affirmed, i.e. only the upper semicontinuity
in ε of the multivalued mapping R(t, ε) at the point ε = 0 is
proved.

1.1.4. The approximation of the solution bunches in case when
the average does not exist

In [5, 19] V.A. Plotnikov considered the case when the limit
(3) does not exist but there exist multivalued mappings X−, X+ :
D→ conv(Rn) such that

lim
T→∞

β

X−(x),
1
T

T∫
0

X(t, x)dt

 = 0, (55)

lim
T→∞

β

 1
T

T∫
0

X(t, x)dt, X+(x)

 = 0, (56)

where β(·, ·) is the semideviation of the sets in the sense of
Hausdorff:

β(A, B) = sup
a∈A

inf
b∈B
∥a − b∥.

Along with the differential inclusion (1) we will consider
the following differential inclusions:

ẋ− ∈ εX−(x−), x−(0) = x0, (57)

ẋ+ ∈ εX+(x+), x+(0) = x0. (58)
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Theorem 7. [19]. Let in the domain Q the following hold:

1) the mapping X(t, x) is uniformly bounded with constant M,
measurable in t, satisfies the Lipschitz condition in x with
constant λ;

2) the mapping X−(x) is uniformly bounded with constant M,
satisfies the Lipschitz condition in x with constant λ;

3) uniformly with respect to x in the domain D the limit (55)
exists;

4) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion
(57) together with a ρ− neighborhood belong to the domain
D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] for any solution
x−(t) of the inclusion (57) there exists a solution x(t) of the in-
clusion (1) such that

∥ x−(t) − x(t) ∥ ≤ η. (59)

Proof. Divide the interval [0, Lε−1] on the partial intervals with
the points ti = Li

mε , i = 0,m, m ∈ N. Let x−(t) be a solution
of the inclusion (57). Then there exists a measurable selector
u(t) ∈ X−(ξ(t)) such that

x−(t) = x−(ti)+ε

t∫
ti

u(τ)dτ, t ∈ [ti, ti+1], x−(0) = x0 .(60)

Consider the following function

ξ1(t) = ξ1(ti) + εui (t − ti), t ∈ [ti, ti+1], ξ1(0) = x0, (61)

where∥∥∥∥∥∥∥∥∥
L

mε
ui −

ti+1∫
ti

u(t)dt

∥∥∥∥∥∥∥∥∥ = min
u∈X−(ξ1(ti))

∥∥∥∥∥∥∥∥∥
L

mε
u −

ti+1∫
ti

u(t)dt

∥∥∥∥∥∥∥∥∥ .(62)

As in (62) the function being minimized is strongly convex
and the set X−(x−(ti)) is compact and convex then there exists
the unique vector ui.

Let δi = ∥ x−(ti) − ξ1(ti) ∥, then for t ∈ [ti, ti+1] we have

∥ x−(t) − ξ1(ti) ∥ ≤ ∥ x−(t) − ξ(ti)∥ + ∥x−(ti) − ξ1(ti) ∥ ≤

≤ δi + εM(t − ti); (63)

h
(
X−(x−(t)), X−(ξ1(ti))

)
≤ λ[δi + εM(t − ti)]. (64)

From (62),(64) and the properties of the support function
[20] follow that ∥∥∥∥∥∥∥∥∥

ti+1∫
ti

u(t)dt −
ti+1∫
ti

uidt

∥∥∥∥∥∥∥∥∥ ≤

≤ h


ti+1∫
ti

X−(x−(t))dt,

ti+1∫
ti

X−(ξ1(ti))dt

 =

= max
∥ψ∥=1

∣∣∣∣∣∣∣∣∣C


ti+1∫
ti

X−(x−(t))dt, ψ

 −C


ti+1∫
ti

X−(ξ1(ti))dt, ψ


∣∣∣∣∣∣∣∣∣ =

= max
∥ψ∥=1

∣∣∣∣∣∣∣∣∣
ti+1∫
ti

[
C(X−(x−(t)), ψ) −C(X−(ξ1(ti)), ψ)

]
dt

∣∣∣∣∣∣∣∣∣ ≤
≤

ti+1∫
ti

max
∥ψ∥=1

∣∣∣C(X−(x−(t)), ψ) −C(X−(ξ1(ti)), ψ)
∣∣∣ dt =

=

ti+1∫
ti

h(X−(x−(t)), X−(ξ1(ti)))dt ≤

≤ λ
[
δi(ti+1 − ti) +

εM(ti+1 − ti)2

2

]
=

= λ

[
δi

L
εm
+

L2M
2εm2

]
. (65)

Taking into account (60),(61) and (65) we get the following
estimate:

δi+1 ≤ δi + ελ

[
δi

L
εm
+

ML2

2εm2

]
=
λML2

2m2 +

(
1 +

λL
m

)
δi ≤

≤ ML
2m

[(
1 +

λL
m

)i+1

− 1
]
≤ ML

2m

(
eλL − 1

)
. (66)

As

∥x−(t) − x−(ti)∥ = ε

∥∥∥∥∥∥∥∥∥
t∫

ti

u(τ)dτ

∥∥∥∥∥∥∥∥∥ ≤
ML
m

,

∥ ξ1(t) − ξ1(ti) ∥ ≤
ML
m
,

so then using (66) we obtain

∥ x−(t) − ξ1(t) ∥ ≤ ML
m
+

ML
m
+

ML
2m

(eλL − 1) =

=
ML
2m

(eλL + 3). (67)

From the condition 2) of the theorem follows that for any
η1 > 0 there exists ε0(L, η1) > 0 such that for all ε ≤ ε0 the
inclusion holds

X−(ξ1(ti)) ⊂
εm
L

ti+1∫
ti

X(τ, ξ1(ti))dτ + S η1 (0). (68)

So there exists a measurable function u1(t) ∈ X(t, ξ1(ti)),
t ∈ [ti, ti+1] such that∥∥∥∥∥∥∥∥∥

εm
L

ti+1∫
ti

[u1(t) − ui]dt

∥∥∥∥∥∥∥∥∥ ≤ η1.
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Consider the function

x1(t) = x1(ti)+ε

t∫
ti

u1(τ)dτ, t ∈ [ti, ti+1], x1(0) = x0.(69)

Then from (68),(69) follows that

∥ x1(ti) − ξ1(ti) ∥ ≤ Lη1.

As
∥ x1(t) − x1(ti) ∥ ≤

ML
m

,

we obtain the following inequalities:

∥ x1(t) − ξ1(t) ∥ ≤ 2ML
m
+ Lη1, (70)

h
(
X(t, x1(t)), X(t, ξ1(ti))

)
≤ λML

m
+ λLη1 =

= λL
( M

m
+ η1

)
. (71)

From the inequality (71) and the way of choosing the func-
tion u1(t) we get

ρ
(
ẋ1(t), εX(t, x1(t)

)
≤ ελL

( M
m
+ η1

)
.

According to [21] there exists such a solution x(t) of the
inclusion (1) that

∥ x(t) − x1(t) ∥ ≤ ελL
( M

m
+ η1

) t∫
0

eελ(t−τ)dτ ≤

≤ L
( M

m
+ η1

) (
eλL − 1

)
. (72)

From (67), (70), (72) follows that

∥ x−(t) − x(t) ∥ ≤ (3eλL + 5)
ML
2m
+ Lη1eλL.

Choosing m ≥ (3eλL + 5) ML
η

and η1 ≤ η
2LeλL , we get

∥ x−(t) − x(t) ∥ ≤ η

and the theorem is proved.

Theorem 8. [19]. Let in the domain Q the following hold:

1) the mapping X(t, x) is uniformly bounded, measurable in t,
satisfies the Lipschitz condition in x;

2) the mapping X+(x) is uniformly bounded, satisfies the Lips-
chitz condition in x;

3) uniformly with respect to x in the domain D the limit (56)
exists;

4) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclusion
(58) together with a ρ− neighborhood belong to the domain
D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] for any solution
x(t) of the inclusion (1) there exists a solution x+(t) of the inclu-
sion (58) such that

∥ x+(t) − x(t) ∥ ≤ η. (73)

The proof of the theorem is carried on similarly to the proof
of the theorem 7.

Remark 6. If R(t), R−(t), R+(t) are the sections of the families
of the solutions of the inclusions (1), (57) and (58) accordingly
then

R−(t) ⊂ R(t) + S η(0), R(t) ⊂ R+(t) + S η(0). (74)

Remark 7. In the capacity of the mappings X−(x) and X+(x)
one can use the superior and inferior limit of the sequence of
sets [22]:

X
−
(x) = lim

T→∞

1
T

T∫
0

X(t, x)dt, X
+
(x) = lim

T→∞

1
T

T∫
0

X(t, x)dt.

The sets X
−
(x) and X

+
(x) are the maximum and the min-

imum with respect to the inclusion among the sets X−(x) and
X+(x), that is for any X−(x) and X+(x) the inclusions hold

X−(x) ⊂ X
−
(x), X

+
(x) ⊂ X+(x).

Remark 8. If the limit (3) exists then X
−
(x) = X

+
(x) = X(x)

and from theorems 7,8 the theorem 1 follows.

Remark 9. If the limit (3) exists, its calculation is usually car-
ried out by means of support function. Thus it is often impossi-
ble to calculate the exact value of the support function and the
sets X−(x) and X+(x) appear as the result of the approximate
calculation of the set X(x).

Example 5. Consider the linear differential inclusion

ẋ ∈ ε
[(

2 cos2 t 0
0 2 sin2 t

)
x + S r(t)(0)

]
, x(0) = x0,(75)

where r(t) = 2 + e−t + 0.5
√

2 sin(ln(t + 1)).
It is obvious that the matrix

A = lim
T→∞

1
T

T∫
0

(
2 cos2 t 0

0 2 sin2 t

)
dt =

(
1 0
0 1

)
.

Let us average the multivalued mapping U(t) = S r(t)(0). As

1
T

T∫
0

S r(t)(0)dt =

= S 1(0)
[
2T − e−T

T +
(T + 1)

√
2

4T (sin(ln(T + 1))−

− cos(ln(T + 1))) +

√
2 + 4
4T

 ,
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then the average U(t) in this case does not exist, but obviously
there exist such sets U− = S r1 (0), 0 ≤ r1 ≤ 1.5 and U+ =
S r2 (0), r2 ≥ 2.5 that the following hold

lim
T→∞

β

U−, 1
T

T∫
0

U(t)dt

 = 0, (76)

lim
T→∞

β

 1
T

T∫
0

U(t)dt,U+

 = 0. (77)

Then the inclusions (57) and (58) assume the form:

ẋ− ∈ ε [
x−(t) + S r1 (0)

]
, x−(0) = x0,

ẋ+ ∈ ε [
x+(t) + S r2 (0)

]
, x+(0) = x0.

Let us find the R−solutions of these inclusions with the help
of the Cauchy formula

R−(t) = eεt x0 + ε

t∫
0

eε(t−s)S r1 (0)ds = eεt x0 + (eεt − 1)S r1 (0).

Similarly

R+(t) = eεt x0 + (eεt − 1)S r2 (0).

It is obvious that

U
−
= lim

T→∞

1
T

T∫
0

U(t) dt = S 1.5(0),

U
+
= lim

T→∞

1
T

T∫
0

U(t) dt = S 2.5(0).

Then
R−(t) ⊂ R

−
(t), R

+
(t) ⊂ R+(t),

where

R
−
(t) = eεt x0 + (eεt − 1)S 1.5(0), R

+
(t) = eεt x0 + (eεt − 1)S 2.5(0).

For the initial inclusion (75) all the conditions of the the-
orems 7,8 hold. So for any η ∈ (0, ρ] and L > 0 there exists
ε0(η, L) > 0 such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the
inclusions (74) are true.

1.2. The partial averaging scheme
It is also possible to use the partial averaging of the differen-

tial inclusions, i.e. to average only some summands or factors.
Such variant of the averaging method also leads to the simpli-
fication of the initial inclusion and happens to be useful when
the average of some functions does not exist or their presence
in the system does not complicate its research.

Along with the differential inclusion (1) we will consider
the partially averaged differential inclusion

ξ̇ ∈ εX(t, ξ), ξ(0) = x0, (78)

where

lim
T→∞

1
T

h


T∫

0

X(t, x) dt,

T∫
0

X(t, x) dt

 = 0. (79)

Theorem 9. [8]. Let in the domain Q the following hold:

1) the mappings X(t, x), X(t, x) are continuous, uniformly boun-
ded with constant M, satisfy the Lipschitz condition in x with
constant λ;

2) uniformly with respect to x in the domain D the limit (79)
exists;

3) for any x0 ∈ D′ ⊂ D, ε ∈ (0, σ] and t ≥ 0 the solutions of
the inclusion (78) together with a ρ− neighborhood belong
to the domain D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈
(0, σ] such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any solution ξ(t) of the inclusion (78) there exists a solu-
tion x(t) of the inclusion (1) such that

∥x(t) − ξ(t)∥ ≤ η; (80)

2) for any solution x(t) of the inclusion (1) there exists a solu-
tion ξ(t) of the inclusion (78) such that the inequality (80)
holds.

Thereby, h(R 1(t),R 2(t)) ≤ η, where R 1(t), R 2(t) are the
closures of the sections of the families of the solutions of the
initial and the averaged inclusions.

Proof. Without loss of generality when proving the theorem we
can suppose that the sets X(t, x) and X(t, x) are convex.

Really if it is not true we will consider to the inclusions

ẋ ∈ εcoX(t, x), x(0) = x0, (81)

ξ̇ ∈ εcoX(t, ξ), ξ(0) = x0. (82)

According to [10] the families of solutions of the inclusions
(78), (79) are everywhere dense in the compact sets of the fam-
ilies of solutions of the inclusion (81),(82). Hence, it is enough
to prove the theorem for the inclusions with the convex right-
hand side.

Let us prove the second statement of the theorem and there-
fore the validity of the inclusion

R 1(t) ⊂ S η(R 2(t)). (83)

Divide the interval [0, Lε−1] on the partial intervals with the
points ti = Li

mε , i = 0,m, m ∈ N. Let x(t) be a solution of the
inclusion (78). Then there exists a measurable selector v(t) ∈
X(t, x(t)) such that

x(t) = x(ti) + ε

t∫
ti

v(τ) dτ, t ∈ [ti, ti+1], x(0) = x0. (84)
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Consider the function

y1(t) = y1(ti)+ ε

t∫
ti

z1(τ) dτ, t ∈ [ti, ti+1], y1(0) = x0,(85)

where

∥v(t) − z1(t)∥ = min
z∈X(t,y1(ti))

∥v(t) − z∥. (86)

The measurable function z1(t) exists [21] and is unique in
view of the compactness and convexity of the set X(t, y1(ti))
and the strong convexity of the function being minimized.

From (84) - (86) we have

∥x(t) − y1(ti)∥ ≤ ∥x(t) − x(ti)∥+

+∥x(ti) − y1(ti)∥ ≤ δi + εM(t − ti), (87)

∥v(t) − z1(t)∥ ≤ h(X(t, x(t)), X(t, y1(ti))) ≤

≤ λ(δi + εM(t − ti)), (88)

where δi = ∥x(ti) − y1(ti)∥, t ∈ [ti, ti+1], i = 0,m − 1.
From (84) - (88) follows the estimate

δi+1 ≤ δi + ε

ti+1∫
ti

∥v(t) − z1(t)∥ dt ≤

≤ δi+ελ

[
δi(ti+1 − ti) + εM

(ti+1 − ti)2

2

]
=
λML2

2m2 +

(
1 +

λL
m

)
δi.

Therefore

δi+1 ≤
ML
2m

[(
1 +

λL
m

)i+1

− 1
]
≤ ML

2m
(eλL − 1). (89)

As for t ∈ [ti, ti+1]

∥x(t) − x(ti)∥ ≤
ML
m

, ∥y1(t) − y1(ti)∥ ≤
ML
m

, (90)

then using (89) we obtain

∥x(t) − y1(t)∥ ≤ ∥x(t) − x(ti)∥ + ∥x(ti) − y1(ti)∥+

+∥y1(ti) − y1(t)∥ ≤ ML
2m

(eλL + 3). (91)

Consider the function

y2(t) = y2(ti)+ ε

t∫
ti

z2(τ)dτ, t ∈ [ti, ti+1], y2(0) = x0,(92)

where

∥z1(t) − z2(t)∥ = min
z∈X(t,y1(ti))

∥z1(t) − z∥. (93)

From the condition 2) of the theorem follows that for any
η1 > 0 there exists ε0(L, η1) > 0 such that for all ε ≤ ε0 the
inequality holds

εm
L

h


ti+1∫
ti

X(t, y1(ti))dt,

ti+1∫
ti

X(t, y1(ti))dt

 ≤ η1.

Hence
ti+1∫
ti

∥z1(t) − z2(t)∥dt ≤ Lη1

εm

and
∥y1(ti+1) − y2(ti+1)∥ ≤

≤ ε
ti+1∫
ti

∥z1(t) − z2(t)∥dt + ∥y1(ti) − y2(ti)∥ ≤

≤ ∥y1(ti) − y2(ti)∥ + η1
L
m
≤ . . . ≤ Lη1, i = 0,m − 1. (94)

As for t ∈ [ti, ti+1]

∥y2(t) − y2(ti)∥ ≤
ML
m

, (95)

then taking into account (90) and (94) we get

∥y1(t) − y2(t)∥ ≤ Lη1 +
2ML

m
. (96)

According to the condition 1) of the theorem and the in-
equalities (95), (96) we have

h
(
X(t, y2(t)), X(t, y1(ti))

)
≤ h

(
X(t, y2(t)), X(t, y2(ti))

)
+

+h
(
X(t, y2(ti)), X(t, y1(ti))

)
≤ λ

( ML
m
+ Lη1

)
and therefore using (93) we get

ρ(ẏ2(t), εX(t, y2(t))) ≤ ελL
( M

m
+ η1

)
. (97)

According to [12] from (97) follows the existence of such a
solution ξ(t) of the inclusion (78) that

∥y2(t) − ξ(t)∥ ≤ ελL
( M

m
+ η1

) t∫
0

eελ(t−τ)dτ ≤

≤ L
( M

m
+ η1

)
(eλL − 1). (98)

From the estimates (91), (96), (98) we get

∥x(t) − ξ(t)∥ ≤ ML
2m

(3eλL + 5) + LeλLη1.

Choosing m ≥ ML(3eλL + 5)
η and η1 ≤ η

2LeλL we get the
second statement of the theorem.

The proof of the first part of the theorem is similar to the
proof of the second one.

Remark 10. If one of the sets X(t, x) or X(t, x) degenerates into
a point then the corresponding inclusion becomes the differen-
tial equation which has the unique solution defined for t ≥ 0.
In this case the whole family of solutions of the second inclu-
sion belongs to the η- neighborhood of the given solution.
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Remark 11. If the convergence in (79) takes place in every
point x ∈ D then similarly to the theorem 2 one can prove the
existence of such ε0(η, L, x0) > 0 that for all ε ∈ (0, ε0] the con-
clusions of the theorem 9 are true.

Remark 12. If the mappings X(t, x) and X(t, x) are periodic in
t then in the estimate (80) it is possible to replace η with Cε.

Remark 13. If X(t, x) ≡ X(x) then the substantiation of the full
averaging scheme (theorem 1) follows from the theorem 9.

Remark 14. Let the mapping X(t, x) be

X(t, x) =

Xi(x) =
1
T

(i+1)ω∫
iω

X(t, x)dt,

iω < t ≤ (i + 1)ω, i = 0, 1, . . .

 .
Dividing the interval [0, Lε−1] on partial intervals with the step
ω, it is possible to show that the estimate (80) holds with η =
Cε.

Remark 15. Similarly to the above the various schemes of av-
eraging for integro - differential inclusions

ẋ ∈ εX

t, x,
t∫

0

φ(t, s, x(s))ds

 , x(0) = x0,

where X : R × Rn × Rm → comp(Rn), φ : R × R × Rn → Rm

have been considered in [4, 23].

2. The averaging of impulsive differential inclusions

2.1. Differential inclusions with impulses in fixed moments of
time

In this section we will discuss V.A.Plotnikov’s results on
the substantiation of the method of full and partial averaging on
finite and infinite intervals for the differential inclusions which
are exposed to impulse influence in the fixed moments of time.

2.1.1. The full averaging scheme
The averaging on the finite interval. Consider the differen-

tial inclusion with multivalued impulses

ẋ ∈ εX(t, x), t , τi, x(0) = x0, (99)

∆x|t=τi ∈ εIi(x).

If for any x ∈ D there exists the limit

Y(x) = lim
T→∞

 1
T

t+T∫
t

X(t, x)dt +
1
T

∑
t≤τi<t+T

Ii(x)

 , (100)

then in the correspondence to the inclusion (99) we will set the
following averaged inclusion

ẏ ∈ εY(y), y(0) = x0. (101)

Theorem 10. [6]. Let in the domain Q the following hold:

1) the mappings X : Q → conv(Rn), Ii : D → conv(Rn)
are continuous, uniformly bounded and satisfy the Lipschitz
condition in x;

2) uniformly with respect to t and x in the domain Q the limit
(100) exists and

1
T

i(t, t + T ) ≤ d < ∞,

where i(t, t + T ) is the quantity of points of the sequence {τi}
on the interval (t, t + T ];

3) for any x0 ∈ D′ ⊂ D and t ≥ 0 the solutions of the inclu-
sion (101) together with a ρ− neighborhood belong to the
domain D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any solution y(t) of the inclusion (101) there exists a so-
lution x(t) of the inclusion (99) such that

||x(t) − y(t)|| ≤ η; (102)

2) for any solution x(t) of the inclusion (99) there exists a solu-
tion y(t) of the inclusion (101) such that the inequality (102)
holds.

Proof. From the conditions 1), 2) follows that the multivalued
mapping Y : D → conv(Rn) is uniformly bounded with con-
stant M1 = M(1 + d) and satisfies the Lipschitz condition with
constant λ1 = λ(1 + d).

Let y(t) be a solution of the inclusion (101). Divide the
interval [0, Lε−1] on the partial intervals with the step γ(ε) such
that γ(ε)→ ∞ and εγ(ε)→ 0 when ε→ 0. Then there exists a
measurable selector v(t) of the mapping Y(y(t)) such that

y(t) = y(t j) + ε

t∫
t j

v(s)ds, t ∈ [t j, t j+1], y(0) = x0, (103)

where t j = jγ(ε), j = 0,m, mγ(ε) ≤ Lε−1 < (m + 1)γ(ε).
Consider the function

y1(t) = y1(t j) + εv j(t − t j), t ∈ [t j, t j+1], y1(0) = x0, (104)

where the vectors v j satisfy the condition∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣γ(ε)v j −

t j+1∫
t j

v(s)ds

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ =

= min
v∈Y(y1(t j))

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣γ(ε)v −

t j+1∫
t j

v(s)ds

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ . (105)

The vector v j exists and is unique in view of the com-
pactness and convexity of the set Y(y1(t j)) and the strong con-
vexity of the function being minimized.
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Denote by δ j = ||y(t j) − y1(t j)||. For t ∈ [t j, t j+1] using (103)
and (104) we have

||y(t) − y(t j)|| ≤ M1ε(t − t j) ≤ M1εγ(ε),

||y1(t) − y1(t j)|| ≤ M1ε(t − t j) ≤ M1εγ(ε).
(106)

Therefore for t ∈ [t j, t j+1] the following inequalities hold

||y(t)− y1(t j)|| ≤ ||y(t j)− y1(t j)||+ ||y(t)− y(t j)|| ≤ δ j+εM1(t− t j),

h(Y(y(t)),Y(y1(t j)) ≤

≤ λ1||y(t) − y1(t j)|| ≤ λ1(δ j + εM1(t − t j)). (107)

From (105) and (107) follows that∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t j+1∫
t j

[v(s) − v j]ds

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤

t j+1∫
t j

h(Y(y(s)),Y(y1(t j)))ds ≤

≤ λ1

(
δ jγ(ε) + εM1

γ2(ε)
2

)
. (108)

Considering (103) and (104) we obtain

δ j+1 ≤ δ j + ελ1

(
δ jγ(ε) + εM1

γ2(ε)
2

)
=

= (1 + λ1εγ(ε))δ j + λ1M1
ε2γ2(ε)

2
. (109)

From the inequality (109) taking into account that
δ0 = 0 we get

δ1 ≤ λ1M1
ε2γ2(ε)

2
,

δ2 ≤ (1 + λ1εγ(ε))δ1 + λ1M1
ε2γ2(ε)

2
≤

≤ λ1M1
ε2γ2(ε)

2
((1 + λ1εγ(ε)) + 1)

and so on

δ j+1 ≤ λ1M1
ε2γ2(ε)

2
((1+λ1εγ(ε))i+ (1+λ1εγ(ε))i−1+ ...+1) =

=
M1εγ(ε)

2

(
(1 + λ1εγ(ε))i+1 − 1

)
≤

≤ M1εγ(ε)
2

(
(1 + λ1εγ(ε))

L
εγ(ε) − 1

)
≤

≤ M1εγ(ε)
2

(eλ1L − 1). (110)

So in view of the inequalities (106) the estimate is true:

||y(t) − y1(t)|| ≤

≤ ||y(t) − y(t j)|| + ||y(t j) − y1(t j)|| + ||y1(t j) − y1(t)|| ≤

≤ 2M1εγ(ε)+
M1εγ(ε)

2
(eλ1L−1) ≤ M1εγ(ε)

2
(eλ1L+3).(111)

From the condition 2) of the theorem follows that for any
η1 > 0 exists ε1(η1) > 0 such that for ε ≤ ε1(η1) the inequality
holds

h

Y(y1(t j)),
1
γ(ε)

t j+1∫
t j

X(s, y1(t j))ds+

+
1
γ(ε)

∑
t j≤τi<t j+1

Ii(y1(t j))

 < η1. (112)

Hence, there exist measurable selector u j(t) ∈ X(t, y1(t j))
and vectors pi j ∈ Ii(y1(t j)) such that∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣vi −
1
γ(ε)


t j+1∫
t j

u j(s)ds +
∑

t j≤τi<t j+1

pi j


∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ < η1. (113)

Consider the family of functions

x1(t) = x1(t j) + ε
t∫

t j

u j(s)ds + ε
∑

t j≤τi<t
pi j,

t ∈ (t j, t j+1], x1(0) = x0.

(114)

From (104), (113) and (114) using that x1(0) = y1(0) fol-
lows that for j = 1,m

||x1(t j) − y1(t j)|| ≤ ||x1(t j−1) − y1(t j−1)|| + η1εγ(ε) ≤ ... ≤

≤ jη1εγ(ε) ≤ Lη1. (115)

As for t ∈ (t j, t j+1] we have

||x1(t) − x1(t j)|| ≤ M(1 + d)εγ(ε) = M1εγ(ε),

taking into account the inequality (106) we get

||x1(t) − y1(t)|| ≤ Lη1 + 2M1εγ(ε), (116)

||x1(t) − y1(t j)|| ≤ Lη1 + M1εγ(ε).

Let us show that there exists a solution x(t) of the inclusion
(99) that is sufficiently close to x1(t).

Let θ1, ..., θp be the moments of impulses τi, that get into the
semiinterval (t j, t j+1]. For convenience denote by θ0 = t j, θp+1 =

t j+1. Let µ+k = ||x1(θk + 0) − x(θk + 0)||, µ−k = ||x1(θk) − x(θk)||,
k = 0, p.

Using the Lipschitz condition we have

ρ
(
ẋ1(t), εX(t, x1(t))

)
≤ h

(
εX(t, y1(t j)), εX(t, x1(t))

)
≤

≤ ελ||x1(t) − y1(t j)|| ≤ ελ(M1εγ(ε) + Lη1) = η∗,

ρ
(
∆x1|t=θk , εIi(x1(θk))

)
≤ h

(
εIi(y1(t j)), εIi(x1(θk))

)
≤

≤ ελ||y1(t j) − x1(θk)|| ≤ ελ(M1εγ(ε) + Lη1) = η∗.

According to A.F. Filippovs theorem [21] between the im-
pulse points there exists a solution x(t) of the inclusion (99)
such that for t ∈ (θk, θk+1] the estimate holds

||x(t) − x1(t)|| ≤ µ+k eελ(t−θk) + ε

t∫
θk

eελ(t−s)η∗ds.
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Denote by γk = θk+1 − θk ≤ γ(ε), γ0 + ... + γp = γ(ε). Then

µ−k+1 ≤ µ+k eελγk +
η∗

λ

(
eλεγ(ε) − 1

)
. (117)

When getting over the impulse point we have

µ+k+1 ≤ µ−k+1 + εh
(
Ii(y1(t j)), Ii(x(θk+1))

)
≤

≤ µ−k+1+εh
(
Ii(x1(θk+1)), Ii(x(θk+1))

)
+εh

(
Ii(y1(t j)), Ii(x1(θk+1))

)
≤

≤ µ−k+1 + ελµ
−
k+1 + εh

(
Ii(y1(t j)), Ii(x1(θk+1))

)
≤

≤ (1 + ελ)µ−k+1 + η
∗. (118)

From (117) and (118) follows that

µ+k+1 ≤ (1 + ελ)eελγkµ+k + β, β =
η∗

λ
(1 + ελ)

(
eλεγ(ε) − 1

)
+ η∗.

Hence
µ+1 ≤ (1 + ελ)eλεγ0µ+0 + β ≤

≤ (1 + ελ)eλεγ(ε)µ+0 + β,

µ+2 ≤ (1 + ελ)eελγ1µ+1 + β ≤
≤ (1 + ελ)2eελ(γ0+γ1)µ+0 + β(1 + ελ)eελγ1 + β ≤

≤ (1 + ελ)2eλεγ(ε)µ+0 + β
(
(1 + ελ)eλεγ(ε) + 1

)
etc.

µ+k+1 ≤ (1 + ελ)k+1eελγ(ε)µ+0+

+β
(
eλεγ(ε)((1 + ελ)k + ... + (1 + ελ)) + 1

)
=

= (1 + ελ)k+1eλεγ(ε)µ+0 + β

(
eλεγ(ε) (1 + ελ)k − 1

ελ
(1 + ελ) + 1

)
≤

≤ eλ(1+d)εγ(ε)µ+0 + η
∗
(

1 + ελ
λ

(eλεγ(ε) − 1) + 1
)
×

×
(
eλεγ(ε) eλdεγ(ε) − 1

ελ
(1 + ελ) + 1

)
=

= αµ+0 + β1,

where α = eλεγ(ε)(1+d),

β1 = (εγ(ε)M1 + Lη1)
(

1 + ελ
λ

(eλεγ(ε) − 1) + 1
)
×

×
(
eλεγ(ε)

(
eλdεγ(ε) − 1

)
(1 + ελ) + ελ

)
.

So
δ+j+1 = ||x(t j+1) − x1(t j+1)|| ≤ αδ+j + β1.

We obtain the sequence of the inequalities

δ+0 = 0, δ+1 ≤ β1, δ
+
2 ≤ αβ1 + β1 = (α + 1)β1, ...,

δ+j+1 ≤ (α j + ... + 1)β1 =
α j+1 − 1
α − 1

β1 ≤

≤ eλL(1+d) − 1
eλ(1+d)εγ(ε) − 1

(M1εγ(ε) + Lη1)
(

1 + ελ
λ

(eλεγ(ε) − 1) + 1
)
×

×
(
eλεγ(ε)

(
eλdεγ(ε) − 1

)
(1 + ελ) + ελ

)
.

As

lim
ε↓0

(
1 + ελ
λ

(eλεγ(ε) − 1) + 1
)
= 1

and

lim
ε↓0

eλεγ(ε)
(
eλdεγ(ε) − 1

)
(1 + ελ) + ελ

eλ(1+d)εγ(ε) − 1
=

= lim
ε→0

eλεγ(ε) eλdεγ(ε)−1
λεγ(ε) +

1
γ(ε)

eλ(1+d)εγ(ε)−1
λεγ(ε)

=
d

1 + d
,

then
δ+j+1 ≤ C(M1εγ(ε) + Lη1)

for ε ≤ ε2.
Therefore for t ∈ (t j, t j+1] the inequality holds

||x(t)− x1(t)|| ≤ ||x(t)− x(t j)||+ ||x(t j)− x1(t j)||+ ||x1(t)− x1(t j)|| ≤

≤ M(1 + d)εγ(ε) + M1εγ(ε) +C(M1εγ(ε) + Lη1) =

= M1(2 +C)εγ(ε) +CLη1. (119)

In view of the inequalities (111),(116) and (119) we get that
||x(t) − y(t)|| can be done less than any preassigned η by means
of choosing ε ≤ ε0 and η1.

The second statement of the theorem is proved similarly.

The corollary of the given theorem is the following state-
ment:

Theorem 11. [6, 24]. Let in the domain Q the conditions 1),
2) of the theorem 10 hold and besides

3) for any X0 ⊂ D′ ⊂ D and t ≥ 0 the R−solutions of the
inclusion (101) together with a ρ−neighborhood belong to
the domain D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0
such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any R−solution R(t) of the inclusion (101) there exists an
R−solution X(t) of the inclusion (99) such that

h(X(t),R(t)) < η; (120)

2) for any R−solution X(t) of the inclusion (99) there exists an
R−solution R(t) of the inclusion (101) such that the inequal-
ity (120) holds.

The averaging on the infinite interval. Consider the initial
inclusion (99) and the averaged inclusion (101).

Theorem 12. [6, 24]. Let in the domain Q the conditions 1) -
3) of the theorem 10 hold and besides

4) the R- solutions of the inclusion (101) are uniformly asymp-
totically stable.
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Then for any η ∈ (0, ρ] there exists such ε0(η) > 0 that for
all ε ∈ (0, ε0] and t ≥ 0 the inequality holds

h
(
R(t, ε), R̄(εt)

)
≤ η,

where R(t, ε) is the R-solution of the inclusion (99), R(εt) is the
R-solution of the inclusion (101), R(0, ε) = R̄(0) = X0.

Theorem 13. [6, 24]. Let in the domain Q the statements 1),2)
of the theorem 10 hold and besides

3) the inclusion (101) has a periodic R- solution R̄(τ), τ = εt,
which trajectory C is asymptotically orbital stable and to-
gether with a ρ−neighborhood belongs to the domain D.

Then for any η ∈ (0, ρ] there exist such ε0 > 0 and η0 ∈
(0, η] that for all ε ∈ (0, ε0], η1 ∈ (0, η0] and t ≥ 0 the inequality
holds

h(R(t),C) ≤ η,
where R(t) is the R- solution of the inclusion (99), satisfying the
initial condition h(R(0),C) ≤ η1.

Theorem 14. [6, 24]. Let in the domain Q the statements 1),2)
of the theorem 10 hold and besides

3) the inclusion (101) has an asymptotically stable equilibrium
state R̄0, that together with a ρ−neighborhood belongs to the
domain D.

Then for any η ∈ (0, ρ] there exist such ε0 > 0 and η0 ∈
(0, η] that for all ε ∈ (0, ε0], η1 ∈ (0, η0] and t ≥ 0 the inequality
holds

h(R(t), R̄0) ≤ η,
where R(t) is the R-solution of the inclusion (99), satisfying the
initial condition h(R(0), R̄0) ≤ η1.

2.1.2. The partial averaging scheme
Along with the impulsive differential inclusion (99) we will

consider the impulsive differential inclusion

ẏ ∈ εX̄(t, y), t , ν j, y(0) = x0, (121)

∆y|t=ν j ∈ εK j(y),

where for any (t, x) ∈ Q the limit

lim
T→∞

1
T

h


t+T∫
t

X(t, x)dt +
∑

t≤τi<t+T

Ii(x),

t+T∫
t

X̄(t, x)dt +
∑

t≤ν j<t+T

K j(x)

 = 0 (122)

exists.

Theorem 15. [6, 24]. Let in the domain Q the following hold:

1) the mappings X, X̄ : Q → conv(Rn) I j,K j : D → conv(Rn)
are continuous, uniformly bounded and satisfy the Lipschitz
condition in x;

2) uniformly with respect to t and x in the domain Q the limit
(122) exists and

1
T

i(t, t + T ) ≤ d < ∞, 1
T

j(t, t + T ) ≤ d < ∞,

where i(t, t+ T ) and j(t, t+ T ) are the quantities of points of
the sequences {τi} and {s j} on the interval (t, t + T ];

3) for any x0 ∈ D′ ⊂ D, ε ∈ (0, σ] and t ≥ 0 the solutions of
the inclusion (121) together with a ρ−neighborhood belong
to the domain D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈
(0, σ] such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any solution y(t) of the inclusion (121) there exists a so-
lution x(t) of the inclusion (99) such that

||x(t) − y(t)|| ≤ η; (123)

2) for any solution x(t) of the inclusion (99) there exists a solu-
tion y(t) of the inclusion (121) such that the inequality (123)
holds.

Theorem 16. [6, 24]. Let in the domain Q the statements 1),
2) of the theorem 15 hold and besides

3) for any X0 ⊂ D′ ⊂ D, ε ∈ (0, σ] and t ≥ 0 the R−solutions
of the inclusion (121) together with a ρ−neighborhood be-
long to the domain D.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈
(0, σ] such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1] the following
statements fulfill:

1) for any R−solution Y(t) of the inclusion (121) there exists an
R−solution X(t) of the inclusion (99) such that

h(X(t),Y(t)) ≤ η, (124)

where X(0) = Y(0) = X0;
2) for any R−solution X(t) of the inclusion (99) there exists an

R−solution Y(t) of the inclusion (121) such that the inequal-
ity (124) holds.

2.2. Differential inclusions with impulses in non-fixed moments
of time

Consider the differential inclusion with impulses in non-
fixed moments of time

ẋ ∈ F1(t, x, ε), x(0) = x0, t , ετ1
i (x), t , σ1

i (x), (125)

∆x|t=ετ1
i (x) ∈ εI1

i (x), (126)

∆x|t=σ1
p(x) ∈ K1

p(x). (127)

Let us assign to the inclusion (125) - (127) the following
differential inclusion

ẏ ∈ F2(t, y, ε), y(0) = x0, t , ετ2
i (x), t , σ2

i (y), (128)

∆y|t=ετ2
i (y) ∈ εI2

i (y), (129)
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∆y|t=σ2
p(y) ∈ K2

p(y), (130)

where t ∈ [0, L] is time, x ∈ D ⊂ Rn is a phase vector, ε > 0
is a small parameter, the impulse surfases τ j

i , σ
j
i : D → R, the

multivalued mappings F j : [0, L] × D × (0, ϵ] → conv(Rn),
I j
i ,K

j
p : D→ conv(Rn), i = 1, k, p = 1, r, j = 1, 2.

Let TD(x) be the Bouligard contingent cone for x ∈ D, i.e.

TD(x) =
{

y ∈ Rn : lim
s↓0

s−1 inf
z∈D
|x + sy − z| = 0

}
.

Theorem 17. [6, 25]. Let in the domain Q = [0, L]×D×(0, ε]
the following conditions fulfill:

1) the mappings F j(t, x, ε), I j
i (x) and functions τ j

i (x) are con-
tinuous in t, satisfy the Lipschitz condition in x and
F j(t, x, ε) ⊂ TD(x), x + I j

i (x) ⊂ D;
2) the mappings F j(t, x, ε) I j

i (x) are uniformly bounded with
constant M;

3) uniformly with respect to (t, x) ∈ Q

lim
ε→0

1
∆

h

 t+∆∫
t

F1(t, x, ε) dt + ε
∑

t<ετ1
i (x)<t+∆

I1
i (x) ,

t+∆∫
t

F2(t, x, ε) dt + ε
∑

t<ετ2
i (x)<t+∆

I2
i (x)

 = 0;

4) the numbers J j(t, t+∆), j = 1, 2 of the asymptotically small
impulses of the solutions of the inclusions (125), (126) and
(128), (129) satisfy the following inequalities on the interval
(t, t + ∆]

1
∆

J j(t, t + ∆) ≤ A
ε
< ∞;

5) the surfaces t = ετ
j
i (x) do not intersect each other and for

all x ∈ D, z ∈ εI j
i , j = 1, 2, the following inequalities hold

τ
j
i (x) ≥ τ j

i (x + z), |τ j
i+1(x) − τ j

i (x)| ≤ M;

6) the mappings K j
i (x) and functions σi

j(x) satisfy the Lipschitz

condition with constant µ and x + K j
i (x) ⊂ D, x ∈ D;

7) the surfaces t = σi
j(x) do not intersect each other and for

all x ∈ D, z ∈ K j
i , j = 1, 2 the following inequalities hold

σi
j(x) ≥ σi

j(x + z);
8) µM < 1, h(K1

i (x),K2
i (x)) ≤ ξ, |σ1

i (x) − σ2
i (x)| ≤ ξ.

Then for any η > 0 there exist ξ > 0 and δ > 0 such that
for any solution x(t) of the inclusion (125) - (127) there exists
a solution y(t) of the inclusion (128) - (130) with the initial
condition ∥y0 − x0∥ ≤ δ such that

∥x(t) − y(t)∥ ≤ η,

t ∈ [0, L]\
∪

p

[s2
p − δp, s2

p + δp]
∪

i

[t2
i − ∆i, t2

i + ∆i]

 ,
where s2

p = σp(y((s2
p)), t2

i = τi(y((t2
i )),

∑
p
δp +

∑
i
∆i < Cη.

Remark 16. To obtain the classical N.N. Bogolubov’s integral
continuity condition we converge ε to zero and T to infinity in
the condition 3). In this sense this theorem generalizes the first
N.N. Bogolyubov’s theorem for the method of partial averag-
ing.

Remark 17. In this review we have not considered the V.A.
Plotnikov’s results devoted to the averaging of the differential
equations with discontinuous right-hand side in case of the slid-
ing mode [5, 26, 27], to the application of the averaging method
and differential inclusions to the research of control problems
[1, 2, 4, 7, 28, 29, 30, 31, 32, 33], to averaging of discrete in-
clusions [34], to questions of asymptotical researches of sin-
gularly perturbed differential inclusions and to the generaliza-
tion of the A.N. Tikhonov theorem on differential inclusions
[4, 35, 36, 37].

Conclusion

For now the questions of the construction of the higher ap-
proximations for R-solutions of differential inclusions, the pos-
sibility of application of the averaging method for differential
inclusions with discontinuous right-hand side, differential equa-
tions and inclusions in semilinear metric spaces with fast and
slow variables, etc. are open. It is caused by the basic difficul-
ties connected with nonlinearity of the spaces.
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