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ABSTRACT 

Recent computational innovations in horticulture are geared towards giving farmers 

reliable tools with which to predict disease before it happens. Such disease warning 

systems should enable farmers to take preventive measures before their crops are infected. 

One of the main inputs for plant disease warning systems is leaf wetness. Leaf wetness 

refers to the presence of water drops on leaf surface, and is caused by rainfall, dew, or 

guttation. Leaf wetness can be determined either by measurement or estimation using 

meteorological and other plant variables. 

Because leaf wetness or leaf wetness duration is so critical to the onset of many common 

fungal diseases in grapes there is a need, especially in wine growing countries like New 

Zealand, to find the most accurate way to determine leaf wetness. Leaf wetness sensors 

are not standard even in vineyards where sensors are deployed and these sensors are 

known to be costly to maintain and less than reliable. 

Leaf wetness measurements are taken using sensors that are placed in crop canopy and 

the data logged usually for later use rather than real time processing. There are different 

types of leaf wetness sensors with no universally accepted measurement standard. This 

thesis presents a comparative analysis of various sensors that are commercially available. 

The sensors used in the experiment have different sizes, shapes, and working principles. 

Visual observations were made and a sensor response time test was performed to evaluate 

sensors’ performance. Using a dielectric constant based sensor to measure leaf wetness 

was shown to be more effective than resistance-based sensors. Paint application to the 

sensor also proved to increase sensitivity in larger sized sensors.  

The rapid development and varied nature of these sensors have contributed to a lack of 

standardisation and the lack of a single accepted protocol for the use of sensors. An 

alternative to the use of sensors is the simulation or modelling of leaf surface wetness. 

Simulation enables surface wetness to be estimated from historical, forecast weather data, 

or both, rather than from monitoring and measurement using in-field leaf wetness sensors. 

The primary focus of this thesis was to develop and evaluate a novel Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) as an approach to modelling leaf wetness duration in 

vineyards. A comparative analysis of ANFIS with Classification and Regression 

Tree/Stepwise Linear Discriminant (CART), Number of Hours Relative Humidity 

Greater than 90% (NHRH>90%) model, Fuzzy Logic System (FLS) model, an Artificial 

Neural Network (ANN), the Penman-Monteith (P-M) model, and the Surface Wetness 

Energy Balance (SWEB) model is presented. The ANFIS model was found to have a 

higher accuracy than other models investigated. These findings indicate that ANFIS is a 

useful and practical solution for estimating leaf wetness duration using meteorological 

predictor variables. 
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CHAPTER 1 

INTRODUCTION 

An ongoing global problem for agriculture is increasing production costs, associated with 

the use of agrochemicals, fertilisers, and labour. The demand for agricultural products is 

always high and it is crucial to manage the cost of production while maintaining 

environmentally friendly and sustainable farming practices. In agricultural production, 

disease management is critical and over 13 billion dollars is spent on chemicals in the 

USA annually (Morton & Staub, 2008). 

Grapes are one of the biggest commodities in New Zealand, wine is one of the country’s 

largest global exports. In New Zealand’s horticultural industry, wine makes the most 

income (NZ$1.1B), followed by kiwifruit (NZ$0.9B), and apples (NZ$0.4B), these three 

comprise the largest contributor to New Zealand’s estimated annual 3.5 billion dollar 

exports (Aitken & Hewett, 2011). 

 

Figure 1. New Zealand wine export value 2000-2010 (Aitken & Hewett, 2011) 

Figure 1 shows that the growth of exports from wineries in the last decade has increased 

by roughly 20%. The export value shown in the bar graph has increased from slightly 

under $ 200 million in the year 2000 to $ 1 billion in 2010. Export value has had a 

quintuple growth in a decade, suggesting that New Zealand’s wine industry is growing 

rapidly. The growth of wine as an export and therefore the production of grapes is crucial 

to New Zealand’s economy. Crop loss in vineyards could cause in a serious decline in 

New Zealand’s income. Preventative measures to protect against yield loss and disease is 

a growing area of research both in New Zealand and Australia.  
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Because of the highly competitive wine industry any preventative measure must also 

contribute to reducing costs in grape production while maintaining industry standards.  

Research related to improving the economic value of grape production includes areas 

such as increasing fertiliser efficiency (Khurana et al., 2008) and yield loss minimisation 

(Gaunt, 1995). 

Disease control is another important viticulture management activity and recent work 

includes plant disease prediction and modelling. There are a plethora of different diseases 

in plants. In grapes the problem mostly lies with diseases caused by fungal infection 

(Fisher & Wicks, 2003). Fungal infections (e.g., Figure 2) can only occur when certain 

weather conditions exist such as prolonged periods of rain with warm temperatures.  

To reduce the risk of infection, growers traditionally use scheduled and regular 

preventative fungicide spraying. This practice means that vines are often sprayed with 

agrichemicals unnecessarily. Spraying fungicide is a huge cost to the industry. Fungicide 

usage has to be moderated as the usage of chemicals on crop is not environmentally 

friendly and there are always questions about their affect on human health. However, 

recent technologies and research in this area provide farmers with ways of predicting 

disease before it happens. These disease warning systems enable farmers to take 

preventive measures before their crops are infected (Gleason et al., 2008). The way they 

work is by suggesting fungicide application only when certain weather conditions 

favourable for disease development are present.  

An example of such as system is the Strawberry Advisory Systems (SAS) that has been 

developed and is currently used in Florida in the United States (Pavan et al., 2006). It is 

a web-based climate information and decision support system designed to help reduce the 

risks associated with climate variability and weather changes in the south-eastern region 

of the United States. SAS monitors temperature and leaf wetness data from six weather 

 

Figure 2. Fungal diseases (left to right): Botrytis cinerea, Downy Mildew, and Powdery Mildew. Image Credit: Laura 

Jones/UC Davis 
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stations and automatically calculates disease infection potential and provides spray 

recommendations for diseases affecting strawberry crop. 

One of the main inputs for any plant disease warning systems is leaf wetness. Leaf 

wetness refers to the presence of water drops on the leaf surface, and is caused by rainfall, 

dew, or guttation (the secretion of droplets of water from the pores of a plant). To predict 

plant disease especially in grapes, for which the major diseases are related to fungal 

infection, leaf wetness is an important variable to measure (Rowlandson et al., 2015). For 

centuries, relationships between leaf wetness and plant diseases have been studied. 

However, leaf wetness is still not a standard sensor/measurement found in weather 

stations. Unlike temperature which is commonly and reliably measured, leaf wetness 

measurement might not be as reliable. Leaf wetness sensors require very careful and 

regular calibration, specific deployment steps, and pre-installation treatment (Madeira et 

al., 2002). There are a number of commercially available leaf wetness sensors. The sensor 

technology and the recommendations for installation vary and there is no universal 

agreement or standard as to how leaf wetness is measured or how the sensors are 

deployed. 

To overcome reliability issues associated with leaf wetness sensors, researchers turned to 

developing mathematical models that can predict leaf wetness using weather variables as 

inputs. Such models enable leaf surface wetness to be estimated from historical and/or 

forecast weather data (Huber & Gillespie, 1992). There are more than 20 models that have 

been developed to estimate leaf wetness (Rowlandson, 2015). Different models take 

different inputs but all aim to estimate leaf wetness with an accuracy such that the 

estimates can be used as an input for disease warning systems. Using models to estimate 

leaf wetness can be an alternative solution to using physical sensors. Modelling requires 

less maintenance and less man hours to deploy sensors at stations. However in industry 

physical sensors are more widely used than leaf wetness models due to models being 

localised and their performance varying in different areas. There is lack of comprehensive 

research both in evaluating and comparing existing leaf wetness models and there is little 

work towards developing new models that are more accurate and generalizable. 

Moreover, leaf wetness models are typically evaluated and developed using data obtained 

from leaf wetness sensors. This brings into question the reliability of the models which 

are developed using a data driven approach. 
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In order to obtain reliable leaf wetness measurement it is important to know which sensors 

give the most accurate and reliable leaf wetness readings. Therefore there is a need for a 

comprehensive comparative analysis of commercially available leaf wetness sensors as 

well as improved leaf wetness models. 

This thesis aims to answer the following research questions: 

1. Which of the commercially available leaf wetness sensors gives the most accurate 

measurement? 

2. Which of the existing leaf wetness models give the most accurate estimation of 

leaf wetness for New Zealand vineyards? 

3. Can an adaptive neuro-fuzzy inference system be used as a leaf wetness model? 

1.1 Thesis Contribution 

This thesis proposes a new approach to leaf wetness duration modelling using an adaptive 

neuro-fuzzy inference system (ANFIS). Previously researchers have used Artificial 

Neural Networks (ANN) and Fuzzy Inference Systems (FIS) to estimate leaf wetness with 

reasonably high accuracy. ANFIS is a hybrid model that combines the strengths of ANN 

and FIS and tends therefore to improve classification accuracy. ANFIS also has the 

advantage of requiring less explanatory variables than commonly used physical models. 

ANFIS has not previously been used to estimate either leaf wetness or leaf wetness 

duration. In this research for the first time ANFIS is used and evaluated against existing 

models to estimate leaf wetness duration. 

1.2 Thesis Organisation 

Chapter Two provides an overview of the literature related to leaf wetness. It provides a 

discussion of many aspects of leaf wetness duration from its relationship with plant 

disease to its measurement and modelling. This chapter also presents in detail the existing 

models which will be investigated in this research to determine their applicability to New 

Zealand and also as benchmarks for evaluating the usefulness of the novel ANFIS model 

developed as part of this research. 

 

Chapter Three outlines the experimental methods used in this research. From 

experimental protocols for evaluating sensors to data acquisition, preparation and model 

evaluation. 
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Chapter Four presents and discusses the results of both the sensor evaluation 

experiments and the leaf wetness modelling. 

 

Chapter Five draws conclusions and provides suggestions for future research. 
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CHAPTER 2 

LEAF WETNESS DURATION OVERVIEW 

2.1 Importance of Leaf Wetness Duration 

Leaf wetness is an important agricultural variable to measure and is often used to predict 

occurrences of plant diseases. Mechanisms which cause plant disease such as sporulation 

and infection are commonly influenced by the presence of water on a plant’s surface 

(Yarwood, 1978; Rotem et al., 1978). Studies have found that a sustained period of water 

presence on a plants surface is necessary for plant disease development (Melching et al., 

1989). The length of time wetness remains visible or stays on surface of plants is referred 

to, in the literature, as Leaf Wetness Duration (LWD). It is important to monitor LWD in 

order to prevent plant disease outbreaks and to reduce the costs related to the use of 

agrochemicals for crop protection. 

Leaf wetness is a difficult variable to measure and estimate because it is driven by both 

atmospheric conditions and their interaction with the structure, composition and 

physiology of the crop canopy (Kudinha, 2014). In large plantations the high spatial 

variability of LWD requires multiple sensors to acquire accurate measurements. 

Measuring LWD is also labour sensitive and time consuming in terms of sensor setup and 

maintenance. Mathematical models to estimate LWD have been studied as an alternative 

to directly measuring LWD. Using LWD models removes the need for the installation of 

specialist sensors on site. 

2.1.1 Leaf Wetness Duration in Plant Disease 

The exploration of the relationship between plant diseases and leaf wetness began as early 

as 1853 when DeBary became one of the first researchers to associate the infection of 

Phytophthora infestans on potato crop with canopy leaf wetness (Yarwood, 1978). Since 

then leaf wetness has been identified as a risk factor in the development of many bacterial 

and fungal diseases in many types of crops. Furthermore, incidences of infection have 

also been linked with air temperature during wet periods which is necessary for the 

germination of most phytopathogenic fungi to infect plants (Jones, 1986). Leaf wetness 

and relative humidity influence germination, sporulation, and infection during the 

production and transport stages of infection (Schuepp & Peter, 1989). Standard weather 

station variables that are readily available such as air temperature, relative humidity, and 

rainfall are important indicators for plant disease. Leaf wetness is not included as standard 
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largely because there is no recognised standard method of measurement to verify the 

accuracy of leaf wetness sensors (WMO, 2008). 

The length of LWD required for plant disease infection varies globally from 0.5 h to >100 

h (Magarey, 2005).  The three major plant diseases that affect vineyards in New Zealand, 

namely Powdery mildew (Erysiphia necator), Downy Mildew (Plasmopara viticola), and 

Botrytis (Botrytis cinerea), are all known to be dependent on leaf wetness. These diseases 

are all fungal diseases where the infection of crops is weather-driven. For example, a 

primary infection of Downy mildew requires at least 10mm rainfall and a temperature of 

above 10°C occurring for over more than a 24 hour period. For the oospores to germinate 

the soil needs to be wet at least 16 hours with 3-5mm of rainfall as well as air temperature 

of above 10°C. For secondary infection such as leaf to leaf, leaf to berries, or leaf to shoot 

to occur there must be at least 98% relative humidity, air temperature of above 13°C, 

more than four hours of darkness, and two to three hours of leaf wetness near dawn 

(Magarey, 2010). The same meteorological parameters are used to indicate the likelihood 

of occurrence of other fungal plant diseases but with varied threshold values and time 

periods. In New Zealand, these diseases can occur at any stage of the growing season 

(spring to summer) due to the cool maritime climate (Mundy, Agnew, & Wood, 2012). 

Leaf wetness is a measurable parameter that can be used as an early warning system for 

many plant diseases. To measure or estimate leaf wetness it is necessary to understand 

the meteorological and physical factors that influence the formation of moisture on a leaf 

surface. Different causes of leaf wetness are associated with different physical processes 

and meteorological variables.  

2.1.2 Causes of Leaf Wetness  

To measure leaf wetness, it is necessary to understand the process of moisture formation 

on a leaf surface. Leaf wetness can be caused by irrigation, guttation, rainfall, or dew. Of 

these four causes rainfall and dew are the most common.  

When irrigation is applied by overhead or above-the-row sprinklers, it has direct effect 

on leaf wetness (Lomas, 1991). Other irrigation methods increase soil moisture and 

therefore indirectly cause leaf wetness by promoting the development of dew on the 

canopy. Guttation occurs when water from inside the leaf are extruded to the leaf surface 

as a result of an osmotic process produced by the hydathodes tissue (Hughes & 

Brimblecombe, 1994). Guttation occurs mostly during high relative humidity conditions. 

The contribution of guttation is minimal to the overall amount of water on a leaf, and is 
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typically ignored when estimating leaf wetness (Jacobs et al., 1994).  Wetness caused by 

irrigation is not easily measured with leaf wetness sensors. Irrigation is often measured 

in the same way as rainfall, however it requires calibration and different field placement 

of the sensor to measure overhead irrigation. Irrigation is often ignored in models as it is 

known to make a minimal contribution to overall leaf wetness.   

Leaf wetness caused by rain can last for several days, whereas dew formations usually 

occur during the night or early morning. Rain has direct effect on leaf wetness as it falls 

down onto the leaves and surrounding area, increasing soil moisture and possibly 

promoting dew events. Rainfall as a predictor of leaf wetness has two problems, it can be 

quite spatially variable and water distribution in tall and/or dense crops tends to be 

indeterminate (Linacre, 1992; Sellers & Lockwood, 1981).  

Dew formation is a result of radiative cooling when the leaf surface temperature drops 

under the atmospheric dew point. Moisture for dew formation arises from the atmosphere 

(dew fall) or from the soil (dew rise). Dew rise is most likely to occur when there is almost 

no wind and the soil is wet. Dew fall usually take place on cloudless nights with low wind 

speed (under 4 m/s) (Garratt & Segal, 1988). During cloudless nights the downward 

radiation is reduced and the canopy cools promoting dew deposition. Wind speed heavily 

influences the evaporation rate and hence dew deposition. When a crop canopy cools 

down to dew point temperature, slightly below the air temperature, the air around canopy 

area becomes saturated, forming dew on leaf surfaces. If the wind speed is substantially 

high (above 4 m/s), drier air moves along the canopy generating less humid condition and 

reducing the chance of dew deposition (Rowlandson, 2015).  

2.1.3 Leaf Wetness Measurement 

To measure leaf wetness there are three types of leaf wetness measurement instruments, 

static instruments, which only give an indication of wet or dry conditions; mechanical 

sensors, which records the changes of length, size, or weight of the sensor due to wetness; 

and electronic sensors, which measure the change of sensor impedance caused by 

wetness. Static leaf wetness instruments are the simplest of the three, with no mechanical 

or electronic parts. One example is the Duvdevani dew gauge, which is a wooden block 

that has standardised size and painted red (Duvdevani, 1947). Such devices are known to 

have a poor correlation with wetness caused by dew. Therefore, static leaf wetness 

instruments do not provide useful measurements for disease prediction as it does not 

provide a value for the period of dew duration (Rowlandson et al., 2015). Mechanical 
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sensors have hygroscopic properties and work by measuring changes in the length and 

weight of the sensor. Mechanical sensors are able to provide a period of dew duration 

values, which makes superior static sensors (Rowlandson, et al., 2015). Mechanical 

sensors were used intensively from the 1950s (Hirst, 1954) until around 1970 (Lomas and 

Shashoua, 1970).  

Measuring leaf wetness by employing flat plate electrical grids to record changes in 

electrical impedance was introduced by Davis and Hughes (1970). The development of 

these instruments was continued by Gillespie and Kidd (1978). They used mock leaf 

sensors constructed from electrical impedance grids using a light grey latex paint. They 

achieved an improvement in the accuracy of detection of leaf wetness onset and dry-off. 

Over the years more attempts at developing leaf wetness sensors have been attempted 

resulting in the development of various sensors with different principles and shape. The 

types of electronic leaf wetness sensors used in this study are discussed in Section 4.2. 

2.1.4 Leaf Wetness Measurement Standardisation 

According to the latest guide by the World Meteorological Organization (WMO) in 2008, 

leaf wetness may be described as light, moderate, or heavy and that it’s most important 

measurement is the period of moisture onset or dry-off duration (WMO, 2008). The 

amount of dew depends mainly on properties of the leaf surface, such as its radiative 

properties, size, and shape. A leaf wetness measurement standard consists of a set of steps 

for leaf wetness measurement and sensor installation. For a standard to be useful it must 

be widely accepted. Having a standard of measurements would be particularly useful for 

leaf wetness data exchange and allow for wider adoption of models, such as disease 

warning systems, that are reliant on leaf wetness measurements. 

In order to arrive at a widely adopted standard for the use of leaf wetness sensors more 

research must be undertaken in leaf wetness measurements and installation. To measure 

leaf wetness several methods are worth considering. The measurement of the amount of 

dew on a leaf sensor surface depends on properties of the sensor’s surface such as its size, 

radiative properties of sensor materials, and aspect (horizontal or vertical) (WMO, 2008). 

Leaf wetness may be measured by exposing a plate or surface, assessing dew amount by 

weighing it or by measuring quantitative properties such as electrical conductivity of the 

surface. The problem lies in choosing the surface type and installation location/placement 

in order to get the best representation of the leaf wetness (Papastamati et al., 2004).  
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The problems associated with leaf wetness measurement are not related only to the 

sensors themselves, but also to how the sensors are used (Rowlandson, et al., 2015). To 

achieve the optimal accuracy of a leaf wetness sensor, the physical development (size, 

shape, materials of the sensors) as well as installation protocols (calibration, height, angle, 

and orientation) need to be considered and specified in order to establish an accepted 

standard (Gleason, 2007; Sentelhas et al., 2004). Some of these aspects have been 

proposed by researchers as standards for leaf wetness sensors, however the results of 

applying these standards shows that the data obtained from the sensors is not reliable, 

Therefore, these standards haves not been adopted in practice (Lau et al., 2000; Sentelhas 

et al., 2004). 

Leaf wetness measurement standardisation can be categorised into three main steps 

(Figure 3); pre-calibration, calibration, and installation (Montone, 2013; Lau et al., 2000).  

 

Figure 3. LWS measurement standardisation steps (Montone, 2013; Lau et al., 2000). 

The initial pre-calibration step is only applicable to resistance based LWS; and includes 

standards for the coating and heat treatment of the sensor. It has been suggested that two 

layers of latex paint should be applied to the sensor in order to provide a surface which 

allows for the even spread of dew droplets. It is also suggested that the latex coating will 

make the connection between the bridges more sensitive to small droplets (Davis & 

Hughes, 1970). After the coating process, the sensor is heat treated at 70°C for 24 hours. 

This step is recommended as a means of deactivating any hygroscopic substances 

contained in the paint formula. Applying these standards was shown to reduced variability 

between sensors from 67% (without coating) to 9% (with coating) (Lau et al., 2000). 

The second step is calibration of the sensor. This calibration is performed in a laboratory 

and in the field. In the laboratory, calibration can be performed by observing the output 

values when 1 mm of water droplet applied on sensor’s surface (Lau et al., 2000; Rao et 

Latex painting: 2 layers 

Heat treatment: 70°C 

for 24h 

Determine 

threshold 

Develop formula 

Height: 30cm to 1m above 

the ground 

Surface: over turf grass 

Angle: 30° to 45° to 

horizontal 

Compass direction: south 

Pre-Calibration Calibration Installation 
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al., 1998). The water droplet causes a change in the impedance of the sensor which is 

recorded as the sensor’s threshold. To verify a laboratory calibration, field testing must 

to be conducted. Field testing involves visual observations of dew onset and dry-off to 

test the laboratory calibration in an outdoor environment (Royle & Butler, 1986). If the 

field testing does not agree with the laboratory calibration, then the sensors’ response 

from the field test are used to recalibrate the sensor. 

In the installation step the following deployment strategies are recommended (Montone, 

2013):  

 Sensor is placed over turf grass.  

 Sensor height is at least 30 cm above the ground.  

 Sensor is angled 30° to 45° horizontally. 

 Sensor is facing south (in the southern hemisphere).  

Instead of measuring leaf wetness above or under crop canopy, turf grass around 

particular crop has been suggested as a standard surface for leaf wetness measurements 

since the reading was found to strongly agree with the leaf wetness measured in the upper 

canopy of corn, cotton, and muskmelon crops (Lau et al., 2000; Rao et al., 1998).  Sensors 

should be deployed at least 30 cm from the ground, angled 30° to 45°, and directed to 

south if the location is in the southern hemisphere to minimise the interception of solar 

radiation (Gillespie & Kidd, 1978). 

Some of these standardisation steps have more influence on LWS measurement than the 

others. A sensor’s height has more influence than its angle. The greater the sensor’s 

installation height the higher the chance of false negatives being recorded, and the smaller 

the sensor’s installation angle, the higher the likelihood of false positives occurring 

(Sentelhas et al., 2004; Van Der Wal, 1978). Paint coating the sensor makes a much more 

significant difference to LWS measurements that the angle and orientation of its 

deployment. This conclusion is based on research that indicates that unpainted sensors 

fail to respond to dew onset in up to 30.8% of the cases when it was deployed at a 45° 

angle (Madeira et al., 2002). When possible, it is best to adopt all of the sensor 

standardisation when installing a sensor, and when it is not possible paint coating should 

be first priority as it has the highest impact on the sensor’s accuracy.  
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2.1.5 Leaf Wetness Duration Modelling 

An alternative to the use of physical sensors is the use of mathematical models to simulate 

or estimate LWD using meteorological data. Simulation enables the leaf surface wetness 

to be estimated from historical and/or forecast weather data, rather than from monitoring 

and measurement using in-field leaf wetness sensors (Huber & Gillespie, 1992; Weiss, 

1990).  

The problems associated with leaf wetness measurement using sensors led to the 

development of models to estimate LWD. There are more than 20 models that have 

developed to estimate LWD (Rowlandson, 2015). These models range from simple (a 

model that uses only one input variable) to models that require calculations of leaf surface 

condensation and evaporation in order to determine leaf wetness. More recent LWD 

models have been compared with sensors as a ‘reference’ and some of these models have 

been found to perform favourably (less than 1 misclassification per hour) when compared 

with sensors (Magarey et al., 2005; Sentelhas et al., 2004).  

Various approaches, such as fuzzy logic and neural networks, have been employed to 

model and characterise leaf wetness patterns. (Jang et al., 1997, Kim et al., 2004). Fuzzy 

logic and neural networks have proven to achieve higher accuracy and precision than 

classic statistical approaches (Weiland & Mirschel, 2008). Fuzzy logic and neural 

networks are known to be methods that are suitable for modelling complex nonlinear 

functions, dealing with prediction, classification, and pattern recognition problems 

(Zadeh, 1994, Mellit & Kalogirou, 2008) which make them good candidates for 

modelling LWD. 

In summary, leaf wetness is a difficult variable to measure and cannot be considered a 

true atmospheric variable as it is related to structural and surface optical properties and 

microclimate (Sentelhas et al., 2004). Physical changes to the surrounding of a leaf play 

an important role in the formation of leaf wetness. LWD is a variable that has a close 

relationship with plant disease, therefore its measurement is essential if we wish to be 

able to predict possible occurrences of plant disease.  However, physical sensor 

measurement is still unreliable and labour intensive in terms of both setup and 

maintenance. Mathematical and computational models, using readily available 

meteorological variables, are proving to provide a practical alternative to measurement 

of LWD using sensor estimated LWD. 
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2.2 Leaf Wetness Duration Models 

Leaf wetness duration models can be categorised into three classes; empirical, physical, 

and hybrid (Kim, 2003). Empirical models use meteorological data as their input. 

Variables which are commonly used in empirical models include air temperature, relative 

humidity, wind speed, solar radiation, and rainfall. Physical models simulate the physical 

system of dew formation and evaporation on the leaf surface. For example such a model 

might incorporate theories of energy balance and/or heat transfer. Hybrid models combine 

empirical and physical models in order to draw on the strengths of each of those model 

types.  

Empirical models are the most straightforward type of model to implement because they 

require the simplest inputs and generally these inputs are readily available either directly 

or as derived from other available inputs (Rowlandson, 2011). In contrast physical models 

typically require more complex variables but they are more generalizable in terms of 

geographical location because they rely solely on the physical energy balance system. 

This research requires a comparative analysis of existing leaf wetness duration modelling 

approaches and their applicability to the estimation of leaf wetness in the New Zealand 

context. Additionally, because this work will entail investigating alternative and possibly 

novel approaches to estimating leaf wetness duration it is necessary to use existing models 

as benchmarks for comparison with any new model developed. To date a comprehensive 

comparative analysis of leaf wetness models has not been reported. Typically newly 

reported models, regardless of type, are compared with only one or two empirical models. 

While there are many LWD models (for examples see Pedro and Gillespie, 1982a,b; 

Huber and Gillespie, 1992; Gleason et al., 1994; Rao et al., 1998; Sentelhas et al., 2004; 

Magarey et al., 2005) available many of these have not been widely adopted and are not 

currently in use. The majority of these models were developed as research models and as 

a consequence employ variables which are not readily available in practice (Montone, 

2013). The simpler models are usually localised and not applicable to different regions or 

areas unless a complex calibration of the model is undertaken (Sentelhas et al., 2005). 

The models selected for analysis were chosen based on the following criteria; data 

availability, level of acceptance, and model type (for comprehensive coverage). 

The following section discusses the selected models in detail. 
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2.2.1 Selected Models 

Empirical Models 

Two empirical models were selected: Number of Hours of Relative Humidity greater than 

or equal to 90% (NHRH≥ 90%) model and a Classification and Regression Tree (CART) 

based model. NHRH≥ 90% is the simplest possible model for estimating LWD. In 

NHRH≥ 90% relative humidity is essentially used as a proxy for leaf wetness. This model 

is founded on the assumption that when relative humidity is over a certain level or 

threshold (90% in most cases), then surface wetness is present (Sentelhas et al., 2008). 

This model is included because in a recent paper by Rowlandson et al. (2015) it was 

suggested that growers should adopt NHRH≥ 90% over leaf wetness sensors and other 

models due the simplicity and relatively low cost of implementation. This 

recommendation is made for US growers and the authors suggest that relative humidity 

measurements from the closest available national weather service station is adequate for 

the purposes of estimating LWD. For the purposes of this study NHRH≥ 90% is 

considered to be the benchmark standard. If any model does not outperform NHRH≥ 90% 

then it is considered to be of little use as an LWD estimation method. Applying Occam’s 

razor it is logical to assume that the simplest possible model which in this case is NHRH≥ 

90% is the best model, unless an alternate model is significantly more accurate. 

Gleason and Koehler (1994) developed an empirical CART/SLD model for estimating 

the occurrence and duration of dew points. The first step involved using CART (Breiman 

et al., 1984) to eliminate periods when dew was unlikely to occur. Their model used 

hourly readings of wind speed, relative humidity and dew point depression (D) to build a 

classification and regression tree (CART). 

D was a derived variable calculated as the difference between air temperature (Tair) and 

dew point temperature (Tdew).  

D =  T𝑎𝑖𝑟  −  𝑇𝑑𝑒𝑤       (1) 

Unlike air temperature, dew temperature is not commonly available from a standard 

weather station so for this model, Tdew was calculated using formula: 

𝑇𝑑𝑒𝑤 = (
𝑅𝐻

100
)

(
 1

8
 )

∗ (112 + 0.9 𝑇𝑎𝑖𝑟) + 0.1 ∗ 𝑇𝑎𝑖𝑟 − 112  (2) 
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Figure 4. Classification and regression tree generated by CART model (Gleason and Koehler, 1994, p1013) 

The resultant classification and regression tree (CART), shown in Figure 4, assigned the 

hourly data to one of four categories. A high proportion of the data was noted to have 

arisen in categories 1 and 2; these categories were classified as non-dew hours. However 

categories 3 and 4 were considered to be non-determinant because they could not be 

clearly classified into dew or non-dew hours using CART. Therefore, Gleason and 

Koehler undertook a stepwise linear discriminant (SLD) analysis step on the instances in 

categories 3 and 4 in order to establish discriminant functions (equations (3) and (4)) to 

classify these hours into dew and non-dew hours. 

For category 3 dew was assumed to occur if equation (3) is satisfied and for category 4 if 

equation (4) is satisfied. 

[(1.6064 √𝑇𝑎𝑖𝑟) + (0.0036 𝑇𝑎𝑖𝑟
2) + (0.1531 𝑅𝐻) − (0.4599 𝑊 ∗ 𝐷) − (0.0035 𝑇𝑎𝑖𝑟 ∗ 𝑅𝐻)] >

14.4674           (3) 

[(0.7921 √𝑇𝑎𝑖𝑟) + (0.0046 𝑅𝐻2) − (23889 𝑊) − (0.0390 𝑇𝑎𝑖𝑟 ∗ 𝑊) + (1.0613 𝑊 ∗ 𝐷)] > 37

           (4) 

Where, W is wind speed and RH is relative humidity. 

The authors compared the performance of CART/SLD with SLD alone and with NHRH≥ 

90%. SLD on its own was found to not be sufficient and the authors noted significant 
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improvement in the model performance when CART was used prior to SLD. They also 

noted that NHRH≥ 90% gave a much greater root mean square error than CART/SLD for 

the Iowa case study area. Therefore CART/SLD was found to be more reliable than 

NHRH≥ 90%. However, it should be noted that the CART/SLD model does not include 

rainfall and Gleason and Koehler (1994) at the time suggested that this model might need 

to be further refined in order to be used as an input for disease modelling. Moreover, 

given that this model is an empirical model it may limit its spatial and temporal portability 

meaning that it is not generalizable. Despite these limitations CART/SLD was selected 

for this research because it uses variables which can be obtained from standard weather 

stations and meteorological services. One reason for considering CART/SLD was that 

when compared with other empirical models CART/SLD requires relatively few input 

variables. This choice is also supported by the fact that CART/SLD is reported to 

outperform NHRH≥ 90% which is adopted in this study as the benchmark technique. 

More recently the CART/SLD model was reported to also outperform an Artificial Neural 

Network (ANN) with a backpropagation architecture (ANN is discussed later in this 

section) to predict wetness on wheat flag leaves using environmental variables (Francl 

and Panigrahi, 1997). 

During the course of the study, after the modelling experiments had been completed, a 

paper was published which investigated the use of CART for LWD modelling in New 

Zealand (Henshall, Hill and Beresford 2015). The researchers compared the results of the 

model with that of several different types of leaf wetness sensors deployed at seven sites 

across New Zealand from Clyde in the south to Kerikeri in the north. They found that 

CART consistently underestimated leaf wetness. Their conclusion was that the use of 

modelled and measured wetness inputs into a grape botrytis bunch rot prediction model 

indicated that estimated leaf wetness using CART was unsuitable for use in New Zealand 

without being calibrated for local conditions. 

Physical Models 

Physical methods for measuring LWD are based on dew deposition and evaporation or 

intercepted rain and have been shown to have low spatial variability, good portability, 

and sufficient accuracy for operational use (Gillespie and Barr, 1984; Rao et al., 1998; 

Dalla Marta et al., 2005). Physical models of LWD include maize, soybean, and apple 

(Pedro and Gillespie, 1982a, b), onion (Gillespie and Barr, 1984), maize ears (Rao et al., 

1998), and grapes (Magarey, 2006, and Dalla Marta et al., 2005). All of these models 
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require net radiation, which is rarely measured, as an input variable (Madeira et al., 2002). 

Estimations of net radiation can be derived using a combination of incoming solar 

radiation, air temperature, relative humidity, cloud cover, and cloud height (Madeira et 

al., 2002). The two physical models selected for this research are Penman-Monteith (P-

M) and Surface Wetness Energy Balance (SWEB).  

The P-M model is based on an equation that estimates latent heat flux (LE) which is then 

used to classify surface wetness (SW). The P-M equation (Monteith and Unsworth, 1990; 

Monteith and Unsworth, 2015) is easier to implement than most physical models because 

it does not require an air temperature measurement at crop (leaf) level (Sentelhas et al., 

2006). Instead the P-M model assumes that air temperature measured at a given height 

above turf grass, at a standard weather station, is equivalent to the temperature at the top 

of the crop canopy. An adjustment resistance (ra) was added to the model in order to 

account for the air layer from air temperature measurement height to the level of the 

canopy (Rao et al., 1998). 

Like other physical models, the P-M model requires net radiation as an input. Net 

radiation is almost always an estimated variable and is estimated from other more readily 

available weather parameters. 

The P-M model has been tested on various climate conditions such as tropical area of 

Philippines (Lou and Goudriaan, 1999), Mediterranean region (Jacobs et al., 2002), 

southern Canada (Rao et al., 1998), and tropical region of Brazil (Sentelhas et al., 2004), 

the results have shown that P-M model performs well under different climate conditions. 

In a study by Sentelhas et al. (2005), P-M model was reported to overestimate LWD by 

1.33 hours in average across three locations. 
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In the rare cases when the LE value is known, SW can be determined by using equations 

(5) & (6).  

SW = 1, when LE > 0 or rain begins       (5) 

SW = 0, when LE < 0 and/or estimated rain < evaporation   (6) 

When LE is unknown it can be estimated for each interval of time using the P-M formula 

(7) for leaf wetness: 

𝐿𝐸 = −
{𝑠𝑅𝑛+[1200(𝑒𝑠−𝑒𝑎)/(𝑟𝑎+𝑟𝑏)]

𝑠+𝛾
     (7) 

Where: 

 s is slope of the saturation vapour pressure (h Pa), 

ae  is actual air vapour pressure (h Pa),  

se  is saturated vapour pressure at the weather station temperature (h Pa), 

𝛾 is psychrometric constant (0.64 kPa K-1 during dew or 1.28 kPa K-1 after rain), 

nsR  is canopy net radiation (J min-1 cm-2), 

ar  is additional resistance which is formulated by equation (8), 

𝑟𝑎 =
ln [(𝑍𝑠−𝑑)/𝑍0]

0.4𝑢∗       (8) 

Where: 

sZ is height of wetness sensor (m), 

d is displacement height (-0.65 Zc), 

cZ is crop height (assumed 0.1 m), 

0Z  is roughness length (=0.13 Zc), 

*u is friction velocity (m s-1) which is calculated according to equation (9), 
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𝑢∗ =
0.4𝑢𝑍𝑇

ln[(𝑍𝑇−𝑑)/𝑍0]
     (9) 

Where: 

TZ is weather station height (m), and 

TuZ is wind speed at ZT. 

And br  is the boundary layer resistance for heat transfer (s m-1), calculated by equation 

(8): 

 

𝑟𝑏 = 307(
𝐷

𝑢
)1/2     (10) 

Where: 

D is effective dimension of mock leaf (= 0.07m), and 

𝜇 is wind speed (m s-1). 

 

In a study by Sentelhas et al. (2005), the P-M model was found to overestimate leaf 

wetness duration by 1.33 hours on average across three different locations. Despite this 

overestimation P-M was included in this research as part of the comparative analysis due 

to it being a model that can be implemented using widely available meteorological 

variables and because it has been shown to be relatively reliable and generalizable across 

various crop types, including grapes, and diverse geographic locations.  

As an addendum, a paper was published (in May 2016 after this research was completed) 

which evaluated four LWD models (Montone et al, 2016). The models were CART, dew 

point depression (Gillespie et al. 1993), NHRH ≥ 90% and the P-M model. The aim of 

the evaluation was to establish which LWD estimation model provided the best input for 

the Strawberry Advisory System (SAS). SAS is a system used by strawberry growers in 

the state of Florida in the USA. Growers use the output of the model to assist in deciding 

when to spray strawberry fields to control diseases such as Botrytis fruit rot. The data 

used in the models included air temperature, RH, wind speed, solar radiation, and rainfall 

collected at heights of 1.5- to 2.0-m in the field. It was reported that the P-M model 

estimated LWD most accurately at a weather stations which had high precision RH, solar 

radiation and temperature sensors. However at sites where lower precision sensors were 

installed the P-M model was found to be the least accurate LWD estimator. The authors 

concluded that the CART model provided the most robust solution for estimating LWD. 
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The SWEB model was developed by Magarey (2006) and employs an energy balance 

principle. The SWEB model is essentially a canopy water budget model. This model is 

also called “Big Leaf” because it works on the assumption that the whole crop is one big 

leaf. SWEB consists of four modules, a water distribution module, a canopy water budget 

module, an energy balance module, and a transfer coefficient module which is calibrated 

to surface wetness. These later three modules are used to calculate and supply input 

variables to the first model (the water distribution module). In the first module, the index 

of the fraction of canopy wet surface area (Wind) is compared with the surface wetness 

threshold (Wth) in order to classify surface wetness (SW) as given by equations (11) and 

(12): 

SW = 1, for Wind > Wth,     (11) 

SW = 0, for Wth > Wind     (12) 

A value of 0.1 for Wth was selected based on observations in a grape canopy (Magarey, 

2006) that indicated this value was appropriate to minimise the influence of large drops 

that dry several hours after the rest of the canopy has dried. 

𝑊𝑖𝑛𝑑 = (
𝑆

𝐶
)

0.67

     (13) 

Where: 

S is canopy water storage (cm) and 

C is maximum water storage (cm). 

In the canopy water budget module, the maximum water storage (C) is calculated using 

equation (14): 

𝐶 = 𝐿𝐴𝐼 𝑥 𝐶1      (14) 

Where: 

𝐿𝐴𝐼 is the leaf area index, and 

1C is the maximum water storage for an average leaf (=0.02) (cm). 

The LAI for a certain crop canopy can be measured or estimated from a model and the 

maximum water storage for leaf (𝐶1), is a function of the age and species of the plant. 

Different plants at different ages may have a different value. However, a commonly 

accepted value for C1 is 0.02 cm (Noilhan and Planton, 1989). The canopy water storage 

(𝑆) can be calculated by equation (15): 

𝑆 = (𝐼 + 𝐷𝑝 − 𝐸), 𝑓𝑜𝑟 0 < 𝑆 < 𝐶    (15) 
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Where: 

𝑆 is water storage (cm), 

𝐷𝑝 is potential condensation of dew (cm), 

𝐸 is evaporation (cm), and 

𝐼 is intercepted precipitation (cm) and is calculated  using equation (16): 

𝐼 = (1 − exp(−0.5𝐿𝐴𝐼))𝑃     (16) 

Where 𝑃 is the precipitation/rainfall (cm). 

The interception of precipitation estimation formula (16) was derived from the work of 

Norman and Campbell (1983) and is one of the simplest interception models available. 

The energy balance module is employed to compute the condensation and evaporation 

processes in the canopy water budget model. The formula used to calculate the potential 

condensation of dew ( pD ) is: 

𝐷𝑝 =
∆

λ(∆+𝛿)
0.5𝑅𝑛𝑐       (17) 

Where:  

𝑅𝑛𝑐  is canopy net radiant flux density (J min-1 cm-2), 

λ is latent heat of vaporisation (J g -1), 

𝛿 is psychrometric constant (mbar C-1), and 

∆ is slope of the saturation vapour pressure curve (mbar C-1). 

 

In the SWEB model it is assumed that daytime radiation does not contribute to 

evaporation in the shaded grape canopy. Therefore, the water-loss potential from a wet 

surface area (𝐸𝑝) is calculated according to equation (18): 

𝐸𝑝 =  
∆

λ(∆+𝛿)
 {𝜌𝐶𝑝 (

ℎ

∆
) (𝑒𝑎∗ − 𝑒𝑎)}    (18) 

Where: 

Rn is net radiant flux density (J min-1 cm-2), 

ρ is density of air (g cm-3),  

Cp is specific heat of air (J g-1 C-1), 

h = transfer coefficient for heat and vapour from the surface to the atmosphere (cm min-1), 

ea = water vapour pressure of the atmosphere (mbar), and 

ea* = saturated water vapour pressure of the atmosphere (mbar). 
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The calculation for evaporation, the total moisture loss from the entire canopy, (𝐸) is 

given by equation (19): 

𝐸 = 𝐸𝑝𝑊      (19) 

Where: 

W is actual fraction of wet area to total canopy surface area, and 

Ep is potential latent heat flux density (evaporation) (cm min-1), and 

W is actual fraction of canopy wet surface area obtained from formulas (20) and (21): 

 

𝑊 = 𝑊𝑖𝑛𝑑 𝑥      (20) 

𝑊𝑚𝑎𝑥 =  𝑝𝑊𝑓 + (1 − 𝑝)𝑊𝑑         (21) 

Where  

𝑝 is fraction of wettable leaves to total leaves in canopy, 

𝑊𝑓 is average fraction of wet area to total area of wettable leaves, and 

𝑊𝑑 is average fraction of wet area to total area of non-wettable leaves. 

A 𝑊𝑚𝑎𝑥 value of 0.5 was used in this study. This value is based on the observation that 

immature grape leaves are wettable and that mature leaves are non-wettable and a canopy 

is assumed to be comprised of 50% mature and 50% immature leaves (Magarey, 2006). 

The transfer coefficient (h) in equation (18) originated from the basic transfer coefficient 

(Bird et al., 1960) which was later modified, equation (22), to take into account wind 

speed and an object’s shape and size: 

ℎ = 𝑐𝑈𝑐
0.5

      (22) 

Where: 

𝑈𝑐 is canopy wind speed (cm min-1), and 

𝑐 is shape scale constant of an object (cm0.5 min -0.5). 

In SWEB the shape scale constant (c) becomes a variable. When the leaf surface becomes 

wetter, the moisture transfer behaves as if the water forms a film. In contrast, when the 

surface becomes drier, it behaves as if the water is a droplet. To take these shape changes 

into account, a shape scale variable is calculated by means of equation (23): 

𝑐 = 𝑊𝑐𝑓 + (1 + 𝑊)𝑐𝑑     (23) 

Where: 

cf is shape scale constant for film (cm0.5 min -0.5), and 

cd is shape scale constant for drops (cm0.5 min -0.5). 
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The height and density of the canopy plays an important role in determining canopy wind 

speed (Uc). Canopy wind speed is calculated from a logarithmic wind profile equation 

and an analytical wind speed profile as shown in equation (24): 

𝑈𝑐 = 𝑈𝑧 (
ln [(𝑍𝑐−𝐷𝑍)/𝑍0]

ln [(𝑍−𝐷𝑍)/𝑍0]
) [1 + 𝛼 (

1−𝑍𝑐

𝑍
)]

−2

    (24) 

Where: 

Uc is wind speed at average height of the canopy (cm min-1), 

Zc is the height of canopy (cm), 

Uz is wind speed (cm min-1), 

Dz is zero plane displacement (= 2/3 Zc) (cm), 

Z0 is roughness length (=1/10Z) (cm), 

Z = reference height (cm), and 

α = wind speed profile. 

 

A value of 1.3 is selected for α because the wind speed profile is dependent upon whether 

or not the wind blowing parallel or perpendicular to the direction of vine rows (Heilman 

et al., 1994). 

The water storage function in SWEB enables the simulation of both dew and rain events. 

Unlike other physical models, SWEB takes rainfall into account when classifying leaf 

wetness. SWEB has the ability to adapt to physical characteristics of particular plants 

through the adjustment of four crop parameters: leaf area index (LAI ), crop height, 

maximum fraction of canopy allowed as wet surface area (Wmax), and maximum water 

storage per unit area (C1). SWEB’s adaptability makes the model easily scalable and 

results in low spatial variability. This model was reported to give under one hour of error 

(such a degree of error is considered to be low for LWD estimation models) in two out of 

three sites tested and these two sites were located in different hemispheres. SWEB was 

validated with visual observations of grape canopies in the three sites. The mean absolute 

error (MAE) of the model varied between sites from 0.7 to 1.5 hours (Magarey, 2006).  

SWEB relies on input variables that are calculated from standard weather parameters. 

Some of the derived variables are calculated employing constant values that are assumed, 

such as net radiation, based on particular conditions. The use of these assumed constants 

can lead to uncertainty in the model Uncertainties of 5% or more are expected as a result 

of using these estimated variables (Oke, 1988). This uncertainty may lead to inaccuracy 

in the leaf surface wetness classification. Despite these limitations, SWEB was chosen as 
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one of the physical models in this research because it is one of the most recently developed 

leaf wetness models, it has been validated in the southern hemisphere, and has been 

shown to have low spatial variability (Magarey, 2006). 

Hybrid Models 

The two hybrid models selected for this research are Fuzzy Logic System (FLS) and an 

Artificial Neural Network with a backpropagation architecture (ANN). Both models were 

categorised as hybrid models because they use both meteorological variables and energy 

balance principles as inputs to estimate LWD. 

Both FLS and ANN were chosen because they will provide a good baseline for 

comparison with the novel implementation and adaptation of an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) for LWD estimation which is proposed as part of this research. 

ANFIS is itself a hybrid model and combines ideas from Fuzzy logic and ANN (for 

further details on ANFIS please refer to Section 2.2.2).  

In Boolean logic a given statement can only be either true (1) or false (0), it cannot be 

anything in between (this is known as the law of the excluded middle). This means that 

logical reasoning is exact, there is no uncertainty. On the other hand, fuzzy logic truth is 

presented in relative terms (non-exact) but may also include 0 and 1 as extreme cases of 

truth. 

Truth in fuzzy logic can be presented in linguistic terms, such as “low”, “moderate”, or 

“high” to symbolise physical processes. These linguistic terms form a fuzzy set called a 

membership function (μ).  A membership function assigns a membership degree from 0 

to 1 to a given variable. The set of input values that gives valid degrees of membership 

function (> 0) is called a domain.  

In a fuzzy logic approach to measuring leaf wetness, relationships between 

meteorological variables and wetness occurrence can be expressed in a form of rules. 

These rules can be used to define specific conditions in which wetness is likely to be 

present or absent. Once a set of rules has been created, the membership functions of each 

variable can be defined heuristically. 

Fuzzy logic was used as a model to estimate leaf wetness by Kim et al. (2004), they called 

their method the Fuzzy Logic System (FLS). The model is essentially an empirical model 

that complies with energy balance principles. The FLS classifies leaf wetness utilising 

meteorological variables, membership functions for each of the variables, and rules to 
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determine whether wetness is present or absent on leaf surface. Three variables were 

selected by Kim et al. in the study; vapour pressure deficit (VPD), wind speed, and net 

radiation (pRn). The inputs were selected because of their high correlation with to leaf 

wetness occurrences. Wind speed is a direct variable that is available in most weather 

stations, pRn may be available but can be estimated when it is not, and VPD is a derived 

variable that can be calculated using equation (25): 

𝑉𝑃𝐷 =  𝑒𝑠 − 𝑒𝑎     (25) 

𝑒𝑠 = 𝑒0𝑒𝑥𝑝 [
1

𝑅
(

1

273
−

1

𝑇+273
)]     (26) 

𝑒𝑎 = 𝑅𝐻 𝑒𝑠/100         (27) 

Where: 

es is the saturated vapour pressure of the air (kPa),  

ea is the partial pressure of water vapour in the air (kPa),  

e0 is the vapour pressure constant (=0.611) (kPa),  

R is the gas constant for water vapour (=461 J kg -1 K-1), and 

T is the air temperature (°C), and RH is the percentage relative humidity (%). 

 

When net radiation (pRn) is not available from weather station, an estimation formula (28) 

can be used:  

𝑝𝑅𝑛 = 𝜀𝑎𝜎(𝑇 + 273)4 − [𝜀𝑎𝜎(𝑇𝑑𝑒𝑤 + 273)4 + (1 − 𝜀𝑠)𝜀𝑎𝜎(𝑇 + 273)4]   (28) 

𝜀𝑎 = 1 − 0.261 exp(−7.77𝑥10−4𝑇2)     (29) 

Where: 

εa is the emissivity of the atmosphere,  

εs is the emissivity of the sensor surface (=0.98),  

σ is the Stefan Boltzmann constant (=5.67 x 10-8 W m-2 K-4), and 

Tdew is the dew point temperature (°C).  

 

Surface temperature can be assumed to be the same as the dew point temperature when 

estimating outgoing radiation in this model. The value for εs was assumed to be 0.98 (Idso 

and Jackson, 1969).  

After the inputs were obtained, the values were fuzzified into linguistic terms. The process 

of translating crisp values to linguistic terms with membership functions is called 

fuzzification. The fuzzified input was then compiled into rules and weights were assigned 

to each rule. For example “if VPD is high then wetness is absent” is a rule the weight of 
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which can be assigned based on the opinion of domain expert, in the case of VPD a weight 

of 0.55 was assigned. In most cases there will be multiple statements, therefore logical 

operators are used to obtain a single degree membership. In the FLS developed by Kim 

et al. (2004), they used two logical operators, AND and OR to create a single degree 

membership function (equations (30) and (31)):  

𝜇𝐴(𝑥) 𝐴𝑁𝐷 𝜇𝐵(𝑦) = 𝜇𝐴(𝑥)𝜇𝐵(𝑦)    (30) 

𝑁𝑂𝑇 𝜇𝐴(𝑥) = 1 − 𝜇𝐴(𝑥)    (31) 

Where 𝜇𝐴(𝑥) is membership function of fuzzy set 𝐴 for 𝑥 ∈  [−∞, ∞]. 

Given that the degree of the antecedent has a value between 0 and 1 the result of applying 

the fuzzy rule was obtained in the fuzzy set form using the implication operator IF-then 

(32): 

𝐼𝐹 − 𝑇ℎ𝑒𝑛 (𝑎, 𝜇𝐶(𝑥)) = min (𝑎, 𝜇𝐶(𝑥))     (32) 

Where a is the degree of antecedent, and 

𝜇𝐶(𝑥) is a membership function of consequence over 𝑥 ∈  [0, 1].  

According to Kim et al. (2004), LWD estimation error using the FLS model was less than 

one hour per day and this is comparable to sensor measurements in terms of overall 

accuracy. FLS tended to have a smaller error rate and a superior accuracy when compared 

to a CART model in terms of mean average error and hourly classification error across 

different sites (Kim et al., 2004). 

The main challenge in implementing the FLS model is in determining the rules and the 

membership functions for each variable; the user needs to understand the characteristics 

of each variable. If they do not, often an arbitrary number is employed introducing a 

source of uncertainty to the model. This uncertainty may cause a suboptimal model to be 

developed for a particular dataset. However, for leaf wetness a set of membership 

functions and rules has already been established by domain experts (Kim et al., 2004) and 

therefore the likelihood of error in determining the rules and membership functions is 

minimal. 

The final approach selected for comparative analysis was an ANN. There are many 

variants of ANN’s reported in the literature and descriptions of these different forms of 

ANN’s can be found in Bishop’s seminal paper (1995). ANNs are inspired by biological 

neural networks and are used to estimate or approximate functions that depend on a large 

number of inputs, are generally unknown and often indeterminate. ANN’s have been used 
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successfully to estimate and predict other environmental variables using meteorological 

variables for example; particulate matter (McKendry, 2002), and rainfall (Cleofé, 2005). 

This makes ANNs a viable candidate for the estimation of LWD.  

The ANN discussed here is one designed by Fancl and Panigrahi (1997) for the prediction 

of dew duration and is the most relevant. In later work, Chtioui, Panigrahi and Francl 

(1999) investigated the use of a generalised regression neural network (GRNN). In this 

work they compared the performance of GRNN with that of a standard Multiple Linear 

Regression (MLR) approach. They found that GRNN outperformed MLR but that GRNN 

required more computational time. Because most LWD methods reported in the literature 

are usually compared with NHRH ≥ 90% and because no other researchers have reported 

comparing MLR with other accepted dew duration (or LWD) models it was decided not 

to include the more recent GRNN method in this research. 

Fancl and Panigrahi’s ANN for leaf wetness prediction was a feed-forward, multilayer 

perceptron with back-propagated error Neural Network (NN). They used wheat flag 

leaves from a North Dakota (USA) plantation as their model. The variables included in 

their model were air temperature, relative humidity, wind speed, wind direction, solar 

radiation and rainfall (precipitation). These variables are normally measured by standard 

weather stations so data is readily available for input into the network. Fancl and 

Panigrahi also developed a second NN model which used as input these meteorological 

variables as well as ‘remote wetness’ measured by a leaf wetness sensor that was located 

above the crop canopy. They found that the ANN models predicted wetness with 82-96% 

accuracy and that all models improved when remote wetness was included. They also 

performed a sensitivity analysis and found that both remote wetness and relative humidity 

were highly significant inputs to the model. The best performing ANN model performed 

favourably (1 hour/day error) with previously developed models for the prediction of dew 

duration CART/SLD and other physical models. The authors also note that this ANN 

approach had the added advantage of predicting leaf wetness from both dew and rain 

which means that it is a particularly useful method for determining the LWD for input 

into disease forecasting models. 

2.2.2 ANFIS Overview 

ANFIS is essentially a hybrid model which combines two intelligent models, Artificial 

Neural Network (ANN) and Fuzzy Inference System (FIS) (Alves et al., 2011). ANN 

maps an input space to an output space through a collection of neurons that are 
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interconnected. ANN have the ability to learn and are data driven, and thus benefit from 

being able to find and learn from patterns in the information presented to the network. 

FIS is based on fuzzy logic, If-THEN fuzzy rules, and fuzzy reasoning. These features 

allows the model to make inferences using the rules and known facts to obtain reasonable 

decision (Jang, 1993). The combination of both intelligent models to form ANFIS 

incorporates the individual advantages of the models and should result in higher leaf 

wetness estimation accuracy than previously developed models. 

ANFIS is a class of adaptive networks that are functionally equivalent to fuzzy inference 

systems. An adaptive network is a network structure that consists of nodes and directional 

links through which the nodes are connected. ANFIS architecture consists of layers that 

involve nodes that are adaptive. The output of an adaptive node depends on the 

parameter(s) that are related to these nodes, and the learning rule stipulates how these 

parameters should be changed to minimise predicted error. 

To understand the operation and structure of ANFIS an example of ANFIS is presented, 

which consists of a five layer feed-forward neural network with backpropagation and a 

Sugeno-type FIS (Sugeno, 1985). The example model is a 2-input1-output ANFIS 

model. In general, an n-input-1 output ANFIS model is an n+1 dimensional input spaces. 

Therefore the example is a three dimensional input-output space.  

Figure 5 shows the three dimensional ANFIS structure, and equations (33) and (34) 

provide the model’s rule, where the IF part is referred to as the antecedent, and the THEN 

part as the consequent: 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then f1 = p1x + q1y + r1   (33) 

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then f2 = p2x + q2y + r2   (34) 

Where: 

𝑥 and 𝑦 are the inputs and  

𝐴 and 𝐵 are the fuzzy sets in the antecedent.  
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Figure 5. The architecture of 2 inputs ANFIS network (Jang, 1993 p4) 

To model a system with ANFIS, representative data from the target system must be 

presented as input to the model. The crisp value of the data is entered into the system 

which then corresponds to the first layer, fuzzifying layer, to be fuzzified. 

In Layer 1, the fuzzifying layer; the inputs are fuzzified or translated into linguistic labels, 

and a membership grade generated for each label.  

Every node i in this layer node is a square node with a node function (35): 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥)      (35) 

Where:  

𝑥 is the input to node i , and 

Ai is the linguistic label associated with node i . 

1

iO the membership function of iA , specifies the degree to which x satisfies the 

quantifier iA .  
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Usually the membership function is chosen to be a bell-shaped function with a 

maximum value of 1 and minimum value of 0, as presented in equation (36): 

𝜇𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
)

2

]

𝑏𝑖
     (36) 

Where: 

{ai, bi, ci} is the parameter set. 

As the values of these parameters change, the bell curve membership function may vary 

accordingly. The parameters to the membership function are referred to as the premise 

parameters. 

In layer 2, the implication layer, every node multiplies the incoming signals and returns 

the product, according to equation (37).  

𝑤𝑖 = 𝜇𝐴𝑖(𝑥)×𝜇𝐵𝑖(𝑦), 1 = 1, 2    (37) 

This layer contains the fuzzy rules, and each node's firing strength for a given rule. There 

are Ab number of rules in ANFIS, where A is the number of membership functions of 

every input, and b is the number of inputs. The number of nodes in this layer is reliant on 

the number of rules, and is fixed. 

In layer 3, the normalising layer, the ratio of each rule’s firing strength is scaled according 

to the total of all the rules’ firing strength, equation (38).  

𝑤̅𝑖
𝑤𝑖

𝑤1+𝑤2
, 𝑖 = 1, 2     (38) 

In layer 4, the defuzzifying layer, the output of each node is weighted and computed 

towards the overall output. The output of this layer is a crisp value.  

𝑂𝑖
4 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)    (39) 

Where iw  is the output of layer 3 and  iii rqp ,,  is the parameter set. 

The parameters in this layer are referred to as consequent parameters. 

Layer 5 is called the combining layer and in this layer the overall output from the previous 

layer is computed as the summation of every rule’s contribution.  

𝑂1
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤̅𝑖𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
𝑖    (40) 

The learning algorithm proposed for ANFIS is a hybrid learning algorithm that minimises 

error between ANFIS model and target system. (Pabreja, 2011). The proposed hybrid 



 
 

31 
 

learning algorithm consists of least squares estimate and gradient descent method. Once 

input-output data is presented to ANFIS model, this data is propagated forward from layer 

1 to 3, and the least squares estimate is employed to update the consequent parameters. 

Then an error value is calculated and propagated backwards and a gradient descent is used 

to update the non-linear or premise parameters (Jang, 1993). 

ANFIS has shown to be successful as a model for estimating a number of different plant 

diseases and environment factors but has not to date been evaluated as a means of 

predicting or estimating leaf wetness duration. Two of the most relevant applications of 

ANFIS are detailed below. 

The ANFIS model has been shown to be capable of describing the severity of soybean 

rust, under the effects of leaf wetness, temperature, and days after fungi inoculation as 

input variables (Alves et al., 2011). Alves et al. developed a four dimensional ANFIS 

model input-output space with three inputs, 27 rules, and nine Gaussian membership 

functions. Their model was developed to characterise the relationship between leaf 

wetness, temperature and days after fungi inoculation in order to estimate the severity of 

soybean rust. The model was trained with three and 3000 epochs. They found that ANFIS 

was able to describe higher soybean rust severity occurrences between 20°C and 25°C, 

when leaf wetness persisted for over above six hours, with higher values 10 hours, and 

15 days after fungi inoculation. A higher overall accuracy (81.6%) was achieved when 

the system was trained with 3000 epochs than training with only three epochs (72.5%) 

for all three case study sites. However, a maximum accuracy was reached with only three 

epochs in one of the sites (89.9%) (Alves et al., 2011). 

ANFIS has also been used for forecasting solar radiation data from weather parameters. 

Solar radiation is used in many agricultural models, such as leaf wetness prediction, and 

also in renewable energy applications, such as the sizing of photovoltaic systems. Because 

solar radiation is not always available in weather stations, particularly in remote areas, 

Mellit and colleagues (2007) introduced an ANFIS approach to forecasting daily solar 

radiation by using ambient temperature and sunshine duration as inputs. In the study, nine 

years of solar radiation data were used to train ANFIS with the aim of developing a 

network that was ready to accept and could handle a number of rare/unusual or infrequent 

cases. Once satisfactory input-output mapping had been achieved, the trained ANFIS 

model was frozen and exposed to a test dataset for validation. This approach resulted in 

a high accuracy, of less than 1% mean relative error between the actual data and predicted 
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values, with 98% of the correlation coefficient for the validation dataset. The trained 

ANFIS model which reached optimum solar radiation forecasting error included one 

hidden layer with 15 neurons (Mellit et al., 2007). 

This chapter has outlined the two principle means of determining LWD, direct sensor 

measurement and modelling. Because of the wide availability of different sensors a 

comparative analysis of these instruments is useful in order to establish which 

commercially available instruments are the most accurate and with a longer term view of 

establishing a practical sensor calibration and installation standard. Additionally, because 

of the limitations of these instruments leaf LWD models were also discussed and six 

LWD models selected for a comparative analysis and of their suitability for use in 

modelling the LWD in New Zealand vineyards. The adaptation of ANFIS as a potential 

and novel model for predicting leaf wetness duration is proposed in this research. 
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CHAPTER 3 

EXPERIMENT DESIGN 

3.1 Research Methodology 

This research is undertaken from a largely positivist perspective. This type of research is 

characterised by “an emphasis on internal validity through tight experimental control and 

quantitative methods” (Fitzgerald & Howcroft, 1998, p10).  

The work undertaken involves two different methods. 

For the leaf wetness sensor evaluation a systematic experimental approach will be 

employed in which empirical measurements and scientific observations are made. Sensor 

variability is controlled both by in laboratory calibrations and infield calibration 

verification steps. Sensor location and installation variables are controlled by employing 

a set of precise standards for installation. Experimental procedures are put in place, as 

detailed in section 3.2.3, to remove any potential error or bias in the measurements. 

For the comparative evaluation of leaf wetness models a quantitative approach is taken in 

which the output of each of the models are compared with the real world measurements 

(aka sensor measurements) of the leaf wetness phenomena (Figure 6). With this type of 

methodological approach it is important to acknowledge any constraints, assumptions, 

uncertainties and potential sources of error which might be introduced to the model. Each 

leaf wetness model is then compared with the other using statistical techniques in order 

to establish the best performing model. 

Real World Model 
Phenomena

(LWD)

Simplified Model
(LWD Model)

Difference to Reality
(Sensor Measurement 
- LWD Model output)

 

Figure 6. Modelling method 
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3.2 Materials and Methods 

This section details the materials and methods of two separate experiments conducted in 

this study; leaf wetness sensors comparison and LWD model comparison. Since both 

have different requirements and objectives, both will be discussed in different sections. 

The scope covers what is required to do the experiments, experimental design, and the 

method of evaluation.  

3.2.3 Leaf wetness sensor comparison experiments 

One of the objectives of this experiment is to evaluate the performance of various 

commonly used commercially available leaf wetness sensors. To do so, several leaf 

wetness sensors were obtained, including three from well-known manufacturers: 

Decagon Devices, Inc. (DD), model 237 sensor from Campbell Scientific, Inc. (CS), Pessl 

Instruments GmbH (PI), and one from a generic manufacturer Hobby Boards (HB).  

Both CS and HB are flat plate resistance based sensors with dimension of 102mm x 58mm 

x 58mm with 0.5mm electrode gap and 40mm x 20mm x 20mm with 0.25mm electrode 

gap, respectively. These sensors work based on the measure of impedance change on the 

sensor’s surface. Conductive electrode gaps on the sensor’s surface lowers the impedance 

when exposed to water. The CS and HB resistance based sensors are supplied unpainted. 

In this experiment they were used in both unpainted and painted form. 

The DD sensor is a flat plate dielectric based sensor with a dimension of 112mm x 58mm 

x 0.75mm. The DD sensor is made from fibreglass and comes painted with white latex 

paint. It is also the only sensor which has a shape that is similar to a real leaf. 

The PI sensor is a filter paper conductivity based sensor with acrylic housing in the 

dimension of 127mm x 254mm x 508mm. PI sensor works by measuring the impedance 

change based on two metal bars connection that is bridged by a single absorptive filter 

paper.  

Experimental setup 

In order to conduct the experiments the sensors must be installed and calibrated. In order 

to ensure that this process is consistent across the sensors a set of standards, discussed in 

the chapter 2, will be applied. The core steps are firstly a laboratory based sensor 

calibration step, then the sensors are installed in the field, and finally sensor calibration 

is verified in the field. 
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In lab sensor calibration 

All sensors in this research were calibrated using the same method. Each sensor was 

connected to a digital multimeter (Digitech QM1539) and a baseline reading taken. The 

sensor was then exposed to a 1mm diameter droplet of water. The voltage change was 

measured, the sensor surface was wiped clean and then left to dry. The sensor was 

considered to be dry when the multimeter gave a reading that was equal to the baseline 

voltage reading. This process was repeated three times for each sensor and the average 

value was taken to be the sensors threshold.  

In Field Sensor Installation 

The factors which need to be considered when installing the leaf wetness sensors in the 

field are deployment angle, compass orientation, and height (Lau et al, 2000; Sentelhas 

et al., 2006). 

Research has shown that the deployment angle should be between 30 and 45 degrees to 

horizontal. A protractor was used to measure the angle when the sensor was installed. 

Because the study area is in the southern hemisphere the sensor was oriented due south 

in order to minimise solar radiation interception (Madeira et al., 2002). The sensor was 

located 1 meter above the turf grass. This height is within the tolerances recommended 

by Lau and colleagues (2000). 

One of each type of flat plate resistance based sensor (HB and CS) was coated with two 

layers of off-white water based latex paint (Lau et al., 2000). The paint used was DULUX 

prepcoat® water based acrylic primer in white (colour: 630-01851). Off white is 

recommended because it gives a similar evaporation rate to that of real leaves (Gillespie 

and Kidd, 1978; Sentelhas et al., 2004). After the paint is applied the sensor was treated 

with heat at 70 degrees Celsius for 24 hours as recommended by Sentelhas et al. (2006). 

This heat treatment is required to reduce the hygroscopic materials from the latex paint 

in order to allow water to be detected on the sensor surface. 

The six sensors were then connected to a custom weather station node which was in turn 

connected to a wireless base station. This node was produced as part of this research and 

used because commercially available nodes do not have the capabilities to integrate non-

proprietary sensors and only support the manufacturer’s sensors. The weather station 

node was built on a libelium Wasp Mote which was attached to a libelium Agriculture 

Board which extended the Wasp Mote which allowed for the installation of all six sensors 
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in a single node. The connection of the node to the base station used a ZigBee network 

protocol (XBeePro™ Series 2). 

An Intel® NUC (NUC5i3RYH) stand-alone computer was used as the base station, 

connected to a ZigBee network receiver to retrieve information from the node. Base 

station was tasked to receive the logged data from the node and store it. The base station 

is also connected to the internet via Wi-Fi connection to enable real-time monitoring and 

remote maintenance. Sensor node management software (SeNoMa) was installed in the 

base station to record the data from nodes (Ghobakhlou, 2014). Variable names and 

calibration was modified to fit the 6 leaf wetness sensors included in the experiment. 

The overall configuration of the sensor network is shown in Figure 7. 

Post installation calibration 

Verification of the calibration of the sensors was undertaken in the field after installation. 

This verification process was carried out on a rainy day and involved visual observation 

of each sensor’s response to exposure to moisture. The check verified that the sensor was 

reading as wet when it was wet and reading dry when it had not been exposed to rain. If 

a sensor is not reading as expected it must be uninstalled and returned to the lab for 

recalibration, then reinstalled in the field and a post installation calibration undertaken 

again. 

Experimental Design: Sensor performance evaluation  

To observe the sensor’s performance, visual observation was undertaken at two different 

times of the day. Firstly, the time from an hour before sunrise until the sensors are 

completely dry to measure the dew dry-off period, and secondly an hour before sunset 

until the sensors are wet to observe dew onset (Lau et al., 2000). Both must be done on a 

day which has little or no-rain. Because the identification of a dry sensor is done by eye, 

and therefore not entirely accurate the dew dry-off and dew onset measurements were 

undertaken 8 times to minimise any potential error. The visual observation was 

undertaken every five minutes increments, the interval for the sensor readings, in order to 

match the visual observation with the sensor’s reading. A visual observation of the leaf 

surface, on the grape vine canopy, was also recorded with the same time interval. 
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There are two main objectives of the visual observation, the first is to compare the wetness 

between the sensor and actual grapevine leaf surfaces, and the second is to compare the 

sensor surfaces wetness and the sensor’s logged reading. The first objective’s purpose is 

to observe which of the sensors evaluated best represents real leaves in terms of the 

wetness of the actual leaf. This first evaluation considers the physical appearance, size, 

composition, and shape of the vine leaf and therefore evaluates how well the sensor 

represents a real leaf. The second objective is to observe the level of agreement between 

a sensor’s physical wetness and its own reading. 

Another performance evaluation test is a measure of the sensor’s response delay. This test 

was conducted by comparing the sensors readings when dew was present. All of the 

sensors were placed next to each other, it is assumed that by placing the sensors close to 

each other the timing for dew formation should be similar. The first sensor to log a wet 

response was used as the benchmark response time (t0). The other sensors response delays 

were then calculated as the difference between the sensor recording a response and the 

response time (ts) according to equation (41). This test was undertaken for both the dew 

onset and the dew dry-off. 

 

 

 

Figure 7. Leaf wetness sensor experiment setup 
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Evaluation method 

A quantitative approach is used to evaluate and compare sensor performance. For each 

sensor, the reading is compared with a visual observation and the mean error (ME) and 

mean average error (MAE) were calculated. ME was computed by averaging the 

differences between measured and estimated LWD for a 24 hour period. ME determines 

the tendency of a sensor to overestimate or underestimate LWD. MAE was calculated by 

averaging the absolute values of hourly errors. MAE determines the overall accuracy of 

the sensor. 

To evaluate the LWS response delay time, the response times of wetness onset and 

wetness dry-off period were calculated. The first sensor’s onset time to denotes the water 

presence and the response time delay for this sensor is set to zero. The onset response for 

all the other sensors are calculated according the equation 41. 

∆o = ts-to      (41) 

Where: 

t0 is the first sensor’s onset time,  

ts is sensor onset time,  

∆o is onset response time. 

The first sensor’s dry-off time (td) denote the water absence and the response time delay 

for this sensor set to be zero. The dry-off response for all the other sensors are calculated 

according the following equation 2. 

∆d = ts-to      (42) 

Where: 

td is the first sensor’s dry-off  time, 

ts is sensor dry-off time, 

∆d is dry-off response time. 
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3.2.4. Leaf wetness model comparison  

This research required weather data, see 

Appendix A for a full list of the required 

variables and maps of the stations for the two 

datasets used (see Chapter 4.2 for further 

details) for the development of the LWD 

models. The case study area included a range 

of grape growing regions in New Zealand from 

Crownthorpe to Pukekohe in the north (Figure 

8). These stations are located at least 150km 

apart to ensure that each station has different 

micrometeorological characteristics in order to 

be able to evaluate the spatial variability of each of the LWD models. Additionally, the 

stations chosen were selected due to the comprehensiveness of the data. Many of the 

sixteen weather stations, which log both meteorological variables and leaf wetness, lack 

a continuous set of data for the time period(s) investigated in this research.  

Data Acquisition 

The data used in this experiment was obtained from Plant & Food Research New Zealand 

(P&F) in the form of an excel spreadsheet. The variables in the data consisted of hourly 

measurements including: air temperature, relative humidity, rainfall, and leaf wetness. 

Three stations were chosen for this experiment they were: Pukekohe Research Station 

(PKE), Hexton (HXT), and Cornwall (CRN), in the selected period of time in the year 

2012 with months as follows: January, April, July, and October. The selected months 

were chosen in order to have one month from each season in New Zealand, starting in 

summer 2012. The year, 2012 was chosen as the most recent year with the most complete 

data from the available P&F. The data was chosen to include all the seasons to make 

neural network approaches to be able to generalise in various conditions. 

 

 Figure 8. Map of all stations used in the experiment 
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Most models require one crucial variable which is missing from the P&F data, namely 

wind speed. In this study, wind speed was obtained from adjacent weather stations data 

provided by the National Institute of Water and Atmospheric Research (NIWA). The data 

was downloaded from the CliFlo website (cliflo.niwa.co.nz) as a comma delimited file. 

The NIWA stations were chosen based on their proximity to the P&F stations in order to 

provide the closest possible ‘reference’ wind speed measurements. Table 1 shows the 

distance between P&F and NIWA stations. The wind speed measured by NIWA is 

provided in meters per second (ms-1), which matches the requirements of the leaf wetness 

models used in this research, therefore no data conversion is required 

Data preparation 

The P&F leaf wetness is recorded in a range between 0 (driest) and 100 (wettest) but 

LWD models are only interested in if it is wet or dry; therefore the P&F leaf wetness data 

was classified into either wet or dry hours using a threshold of 50 if the reading was >50 

then it was classified as wet. For any day where the day was missing more than 2 hourly 

readings the day’s data was removed. 

Model evaluation method 

For each model ME, MAE and Estimation Accuracy (EA) were calculated. ME and 

MAE were described in leaf wetness sensors evaluation method. The EA represents the 

degree of closeness of the estimated and measured LWD as a percentage, calculated 

according to equation 43. 

Where N is the total number of data points. 

EA = (1 – 
Σ |Actual –  Estimated|

𝑁
) ×100 

  (43) 

Plant & Food 

station name 
Coordinates 

NIWA 

station 

name 

Coordinates 
Distance 

(km) 
Area 

Pukekohe 
Research 

Station 

(PKE) 

-37.20° N 

174.86° W 

Pukekohe 

Ews 

-37.20°N 

174.86° W 
0.8 Auckland 

Hexton 
(HXT) 

-38.62° N 
177.97° W 

Gisborne 
Ews 

-38.62° N 
177.92° W 

4.3 Gisborne 

Crownthorpe 

(CRN) 

-39.57° N 

176.55° W 

Napier Aero 

Aws 

-39.46° N 

176.85° W 
29.1 Hawke’s Bay 

 

Table 1. Plant & Food Research and Adjacent NIWA stations 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

In this chapter two sets of experimental results are presented. The first section presents a 

leaf wetness sensor comparison, and the second an implementation and evaluation of leaf 

wetness modelling. To complement the second set of experiments, this chapter also 

includes an exploration of the data, used for leaf wetness modelling, using statistics in 

order to understand the relationships between the explanatory variables and to explore the 

data distribution.  

4.1 Leaf Wetness Sensors Comparison 

Visual observation of four different leaf wetness sensors, with two of the sensors treated 

with paint and heat, totalling six sensors was undertaken by comparing real leaves with 

sensor readings (see photo’s in Figure 9 which show the experimental and deployment of 

the sensors for this research).   

Visual observation of sensor’s surface and real 

leaves’ surface was done and the result is 

presented in Figure 10. The purpose of the result 

presented in Figure 10a) is to examine whether 

the LWS physical attributes such as size, shape, 

and thickness are affecting the amount of time 

free water stay on the sensor’s surface. Figure 

10a) shows the average delay in minutes observed 

for each of the tested sensors. Three real leaves 

on a living plant that are leaning on the same 

angle as the sensor are flagged as observed. 

According to Figure 10 a) among the sensors, the 

DD sensor (for sensor name references see 

section 3.2) has the shortest delay time. The DD 

sensor has a mean delay time of 7.5 minutes measured from the point that the real leaves 

are dry. The PI sensor is the worst performer in this experiment, with an average 60 

minutes delay.  

The four remaining sensors dried quicker than the real leaves. The behaviour of the HB 

and CS sensor’s painted sensors was found to be quite different. Painting gave an 

 
Figure 9. Experimental deployment of the 

sensors for this research 
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improvement for the CS sensor but actually resulted in less accuracy in the HB sensor. 

This lower accuracy of the HB sensor may be because it holds less water on the surface 

due to the size of the sensor. Sensor size influences how much water a sensor can possibly 

hold. The other sensors evaluated have a size that is closer to the size of a real leaf. 

 

Figure 10. Two days dry-off visual observation on 6 LWS, a) against real leaves, and b) against sensor 

measurements 

A comparison of visual observation with sensor reading was also undertaken to examine 

the delay between when actual water droplets dry on a sensor’s surface and the sensor 

reading log time. Figure 10b) presents the result of the visual observation, the closer the 

number to zero the shorter the sensor delay. The DD sensor is the best performer, in this 

test, by an average delay of 2.5 minutes between the water having dried on its surface and 

the time recorded in its log. 

The painted and non-painted HB sensor, in this test, gave an inverse result, the painted 

HB sensor still detects wetness state on average 22.5 minutes after the leaves dried. This 

delay in recording dry-off tends to happens if the sensor is too sensitive to small water 

droplets. In general sensors that are painted have higher hygroscopic materials which 

mean that they detect smaller water droplets than unpainted sensors. The unpainted HB 

sensor record log shows a leaf wet state up to on average 22.5 minutes before it was dry. 

This suggests that the unpainted sensor is less sensitive than the painted one. 

The same was observed for the CS sensor, although not as significant as HB sensor, the 

result for CS sensor indicates that the painted sensor is more sensitive, it records wetness 

with a five minute average delay. However, Figure 10b) shows both painted and 

unpainted CS sensor gave false readings of wetness up to on average 17.5 minutes after 

the sensor was actually dry. 
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The PI sensor was the worst performer in both tests shown in Figure 10b). It has an 

average 60 minutes wetness detection delay compared to real leaves. The PI sensor was 

also found to record wetness with average 27.5 minutes delay after the sensors are visually 

dry. 

 

Figure 11. Average onset and dry-off delays of 6 sensors observed in 36 days 

Figure 11 shows the average onset and dry-off response time delay for six leaf wetness 

sensors. The figure shows a result from 36 days of observation on days that either rain, 

dew, or both occurred. This test undertaken to determine which sensor reading responds 

the quickest when water droplets fall on its surface (onset) and when the sensor’ surface 

is dry (dry-off). 

The DD sensor has always been the initial onset responder in this experiment, thus the 

“0” value in average onset. The rest of the sensors followed behind the DD sensor in onset 

response time. The CS and HB sensors were the second and third to record onset, at 11 

and 18 minutes average delay respectively. The painted version of the CS and HB sensors 

had longer delays than their unpainted counterparts. The painted HB recorded on average 

25 minutes delay while the painted CS sensor was delayed by 27 minutes. The PI sensor 

was the last to detect onset by an average of 32 minutes response time. 

Dry-off period evaluation is represented by the red bars Figure 11, with the painted CS 

sensor as the initial sensor dry-off to respond hence the “0” value. The unpainted CS 

sensor was the second with an 8 minute response to drying of the surface. The CS sensor 

has the largest surface size, compared to the rest of the sensors, which means more surface 

for sunlight and wind to help evaporate water drops. On the contrary the HB sensor, which 

has the smallest surface size in this group, recorded a longer delay compared to unpainted 
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HB sensor, 46 and 34, respectively. The DD sensor on the other hand recorded 25 minutes 

average delay, putting itself in between CS and HB sensors. The PI sensor recorded the 

longest average delay, 68 minutes. When this test was performed, a wind speed of 

between 2 to 9 m/s was recorded at all initial dry-off stages. This may contribute to the 

quick dry-off responses of the flat plate based sensors. Wind speed doesn’t tend to affect 

the PI sensor to the same degree. This is due to PI sensors being filter based and protected 

by the enclosure from wind speed. 

The results presented above indicate that the DD sensor is more accurate for detecting 

leaf wetness presence when compared to the other sensors used in this study. The key 

differences between the DD sensor and the other five sensors tested are that it has a 

dielectric measurement principle and came from the supplier already fabricated with 

painted surface that is also rust free. However, the CS sensors, both painted and 

unpainted, were better for dry-off detection than the DD sensor. 

The painted HB sensor underestimates water presence more than unpainted HB sensor, 

while the painted CS underestimated wetness to a lesser degree than the unpainted CS 

sensor. Painting the sensor did not show any improvement for the HB sensor, however 

CS sensor did benefit from sensor painting. The only difference between both sensors is 

the surface size, the CS sensor is more than twice the size of HB sensor. This suggests 

that sensor dimensions and surface size needs to be considered prior paint application. 

In both visual observations, the PI sensor was the least accurate to detect wetness presence 

and dry-off. It holds water for more than an hour longer than real leaves, and did not agree 

with its visual water presence (see Figure 3). PI sensors use filter paper to absorb water 

and tend to hold wetness longer and this tends to lead to false positives. In practice, this 

sensor needs close monitoring and maintenance to ensure proper filter placement and it 

is in good condition.  

The DD sensor was found to be the most accurate leaf wetness sensor. It has the closest 

representation to real leaves in terms of detecting wetness presence. It is also has the 

physical attributes that are required for detecting leaf wetness better. DD sensors are the 

most recent leaf wetness sensor developed, and were first announced in 2006 (Decagon 

Devices, 2006). It was built based previous research on leaf wetness sensors, which points 

to that fact that a material of fibreboard coated with latex paint using a heat treatment 

leads to better accuracy (Lau et al., 2000). 
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To evaluate the mathematical models for estimating leaf wetness, there is a need to use 

one of the leaf wetness sensor as reference. The sensor data that was used as the reference 

data for all the models in this thesis was recorded by a CS sensor. CS sensors were 

available decades before DD sensor was introduced. Past data was used to test and 

evaluate the leaf wetness estimation models and CS sensors were used to collect that data. 

CS sensors have been used in industry and research facilities for more than 10 years. 

Moreover, CS sensors have survived as the sensor of choice prior to the introduction of 

DD sensors despite the introduction of other leaf wetness sensors. The results from the 

experiments performed as part of this research shows that CS sensors are an appropriate 

second choice and also suggest that any future data logging of leaf wetness should make 

use of DD sensor technology.  

To our knowledge this is the first comprehensive leaf wetness comparison study involving 

commonly used leaf wetness sensors. This study indicates DD sensor is more accurate 

than other commonly used leaf wetness sensor. 

4.2 Data Exploration 

This section presents an exploratory data analysis of the variables available in the data 

used in this research for developing leaf wetness estimation models. 

In the second experiment, there are two dataset included: 

A) Two months of data from five stations –January – February 2012 

B) Four months of data from three stations – January, April, August, October 

2012 

The primary variables included in these datasets are: 

- Temperature 

- Relative humidity 

- Rainfall 

- Wind speed 

- Leaf Wetness (CS sensor readings) 

The initial dataset A only included two summer months and during this period there was 

less rainfall but more complete station data was available than for dataset B. Dataset B 

has more months of data and includes months with more rain but data was available for 

only three stations. 
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Dataset B contains data from January, April, August and October; these months are, in a 

typical year, times at which the vines have not yet lost their leaves. Grapevine annual 

cycle includes a period when new leaves, shoots, flowers and fruit are produced, and a 

dormant period when they lose their leaves. In winter (June–August), the vines are bare 

but at some point in August buds begin to appear. In spring (September–November) buds 

on the vine swell and turn into a leafy canopy. Bunches of grapes develop in summer 

(December–February) and are picked in autumn (March–May). During autumn the leaves 

being to colour and by late autumn the leaves have fallen. 

4.2.1 Feature Evaluation 

In order to explore which of the explanatory variables have the strongest predictive power 

a simple Correlation-based Feature Subset Selection (CfsSubsetEval) attribute evaluator 

method was used (Hall, 1999) which is available in Weka (Hall et al., 2009). This method 

evaluates the value of potential explanatory variables by measuring the individual 

predictive power ability of each of the variables (or features). Features that are highly 

correlated with the leaf wetness binary class (dry or wet) that also have a low correlation 

(with the other explanatory variables) are favoured. The search method used was a greedy 

hill climbing search with back tracking (BestFirst) and a 10 fold cross validation method 

was used. The explanatory variables considered were station, temperature, relative 

humidity, rainfall, and wind speed.  

Table 2. Feature selection 10 fold cross-validation results for the data sets 

 Dataset A Dataset B 

Feature number of folds (%) attribute 

Station 10(100%) 0(0%) 

Temperature 10(100%) 0(0%) 

Relative Humidity 10(100%) 10(100%) 

Rainfall 10(100%) 10(100%) 

Wind speed 1(10%) 0(0%) 

 

The results for datasets A and B are given in Table 2. For dataset A, all the features were 

found to have predictive power but wind speed was the least predictive. Interestingly the 

station ID is a relevant feature which suggests that the location of the stations where the 

data is collected is important and that models might need to be determined or tuned for 

each location in order to find the best performing leaf wetness estimation model. The 

reason both dataset are included was to allow models that requires training to generalise 

better.  
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In order further explore the relationship between the variables in each dataset a simple 

Kendal’s tau_b (two tailed) correlation was performed. Kendal’s tau_b is suitable for data 

that is not normally distributed and is continuous. Correlation coefficients range in value 

from –1 (a perfect negative relationship) and +1 (a perfect positive relationship) with zero 

indicating no linear relationship. For dataset A most of the coefficients are small but 

significant (Table 3. Kendal’s tau_b correlation coefficients for dataset A). For large samples 

such as this (N = 7128), it is easy to achieve significance, and the strength of the 

correlation is important. Relative Humidity (RH) had the strongest correlation with sensor 

wetness readings (Wet) which was statistically significant (τb = .531, p < 0.001). The 

next most significant relationship was that of RH (τb = .507, p < 0.001) and temperature 

(Temp). 

Table 3. Kendal’s tau_b correlation coefficients for dataset A 

 Temp RH Rainfall Wind speed Wet 

RH -.507** 1.000 .265** -.429** .532** 

Rainfall -.084** .265** 1.000 -.037** .267** 

Windspeed .320** -.429** -.037** 1.000 -.371** 

Wet -.365** .532** .267** -.371** 1.000 

**. Correlation is significant at the 0.01 level (2-tailed), N = 7128. 

For dataset B, the strongest correlation is again the relationship between RH and Wet 

(τb = 0.550, p < 0.001). The second strongest is a negative correlation between RH and 

Temp. This relationship is the reverse of that for dataset A where a moderate positive 

relationship was observed between RH and temperature. 

Table 4. Kendal’s tau_b correlation coefficients for dataset B 

 Temp RH Rainfall Wind speed Wet 

Temp 1.000 -.425** -.128** .162** -.319** 

RH -.425** 1.000 .269** -.321** .550** 

Rainfall -.128** .269** 1.000 .084** .313** 

Wind speed .162** -.321** .084** 1.000 -.210** 

Wet -.319** .550** .313** -.210** 1.000 

**. Correlation is significant at the 0.01 level (2-tailed), N = 8679. 
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4.2.2. Dataset A: Exploration 

Dataset A contains five recorded variables at five different stations over two months from 

January to February 2012.  

Table 5. Basic statistics for Wind Speed in 5 stations 

Wind Speed (m/s) 

                 Stations 

Statistic TRI RPU HXT PKE MTB 

Min value 0.50 0.00 0.00 0.00 0.20 

Max value 9.90 13.10 10.80 7.10 19.30 

Mean 2.86 3.91 2.95 2.22 4.19 

Variance 2.79 6.45 3.16 2.34 11.62 

Standard deviation 1.67 2.54 1.78 1.53 3.41 

Total recorded hours 1440 1436 1439 1368 1440 
 

Inspecting Table 5, MTB station had the highest recorded wind speed (19.30 m/s). MTB 

station also scored the highest mean wind speed (4.19 m/s), which indicates that MTB 

station is the windiest station in dataset A. Wind speeds higher than 4 m/s are known to 

directly affect moisture evaporation on leaf surfaces (Rowlandson et al., 2015).  

Table 6.Basic statistics for Relative Humidity in 5 stations 

Relative Humidity (%) 

                  Stations 

Statistic TRI RPU HXT PKE MTB 

Min value 28.45 25.10 30.85 36.89 32.00 

Max value 96.30 103.50 100.00 95.00 98.00 

Mean 70.44 68.84 72.71 76.80 73.22 

Variance 357.71 273.43 280.73 157.20 219.42 

Standard deviation 18.91 16.54 16.75 12.54 14.81 

Total recorded hours 1440 1436 1439 1368 1440 

 

Table 6 shows the relative humidity basic statistics for the five stations of dataset A. 

Average humidity in four stations scored above 70%. RPU station recorded the lowest 

mean relative humidity with 68.84%. PKE station had the highest mean relative humidity 

and the lowest variance. Suggesting that at the PKE station relative humidity shifts within 

a smaller range of values than the other stations. A score above 100% in relative humidity 

is possible when supersaturation occurs. 100 percent of relative humidity is produced at 

a certain temperature and air pressure, given the maximum amount of water vapour in the 
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air. In supersaturation, the air contains more water vapour than is needed to cause 

saturation. 

Table 7. Basic statistics for Temperature in 5 stations 

Temperature (°C) 

                       Stations 

Statistic TRI RPU HXT PKE MTB 

Min value 5.24 5.24 7.50 10.39 2.30 

Max value 29.95 29.07 29.60 25.68 26.50 

Mean 17.80 16.79 18.20 17.96 15.91 

Variance 20.38 18.08 16.73 7.73 19.61 

Standard deviation 4.51 4.25 4.09 2.78 4.43 

Total recorded hours 1440 1436 1439 1368 1440 
 

 

Looking at Table 7, the highest temperature value was recorded at TRI station with 

29.95°C, and the lowest temperature recorded at MTB station with 2.30°C. In terms of 

temperature, PKE station had the lowest variance and thus the smallest range of 

temperatures. This indicates the temperature change in particularly PKE station is not as 

volatile as for the other stations. 

Table 8. Basic statistics for Rainfall in 5 stations 

Rainfall (mm) 

                 Stations 

Statistic TRI RPU HXT PKE MTB 

Min value 0.00 0.00 0.00 0.00 0.00 

Max value 12.10 6.80 17.40 13.20 7.40 

Total Rainfall 216.60 65.80 207.70 148.49 95.00 

Variance 0.75 0.15 0.70 0.47 0.20 

Standard deviation 0.87 0.38 0.84 0.68 0.45 

Total recorded hours 1440 1436 1439 1368 1440 
 

 

Table 8 shows the rainfall statistics for all five stations. The wettest station based on 

rainfall readings is TRI station with 216.60 mm of rainfall in 2 months. This dataset was 

taken in New Zealand summer time, hence the relatively low rainfall readings across all 

the stations. The driest station according to the total rainfall is RPU station with 65.80 

mm rainfall. HXT station is the second wettest station with the highest single hour rainfall 

recorded, 17.40 mm. This suggests that HXT can also be considered a wet station during 
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January and February 2012. To better see the recorded rainfall comparison a monthly 

view is presented in Figure 12. 

 

Figure 12. Monthly total rainfall in 5 stations for dataset A 

In the monthly view, TRI had the highest rainfall in January and HXT in February. This 

makes both stations considered wet among the rest of the other stations. RPU and MTB 

are considered dry with total rainfall less than 65 mm each month, which is a quarter of 

the maximum rainfall in the wettest station.  
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Figure 13. Histogram of temperature, wind speed, and relative humidity in 5 stations 
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Figure 13 gives histograms showing the distribution of all variables by station. The 

temperature appears to have a normal distribution for all five stations. Temperature has a 

peak frequency of around 20°C. However, a Kolmogorov-Smirnov test for normality the 

combined dataset found that none of the variables were normally distributed, see 

Appendix B. 

Relative humidity variable at TRI, RPU, and HXT stations had a bimodal distribution. In 

this case the mean relative humidity of three stations is around 70%, but there are a 

number of 50-60% relative humidity readings as well. On the other hand, relative 

humidity in PKE and MTB stations are left skewed. Left skewness indicates the mean of 

all these stations are less than the median. In this case, both PKE and MTB stations’ mean 

relative humidity is less than the median. This suggests that there are higher relative 

humidity readings in both stations. 

Wind speed in all stations except MTB stations are left skewed with outliers. In MTB 

station the mean wind speed is greater than the median. This caused by the large number 

of low wind speed readings in the station. Wind speed mean value in 5 stations are ranging 

from 2.22 to 4.19 m/s, while MTB reading shows up to 19.1 m/s. MTB station’s highest 

recorded wind speed was 6 m/s higher than the next station’s maximum reading. 

A closer look at rainfall reading correlation with leaf wetness duration in dataset A. 

In the next figures the correlation between rainfall and leaf wetness readings is presented. 

In the graphs, the hourly leaf wetness are denoted by black dots and the left y-axis as hour 

in the day. Daily total rainfall is presented with bar graphs with the right y-axis as the 

millimetres of rain. The blue line, with numeric labels, indicates the trend in total number 

of wetness hours per day. Grey areas in the graph indicates night and the white area 

indicates daylight hours. The graphs (Figure 14 to Figure 19) show data logged for a 

period of 10 days. The days shown are selected to illustrate periods that have some 

wetness activity. For more leaf wetness and rainfall graphs, see Appendix B 
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1-10 January period 

 

Figure 14. Daily total rainfall and hourly leaf wetness reading in TRI station 1-10 January 2012 

 

In the first ten days of January at TRI station, leaf wetness was observed every night, even 

on days without rainfall. TRI station had weather highly conducive to dew formation in 

this period of time. The highest total wet hours were observed when rainfall was 

occurring. Daylight leaf wetness was only promoted by rainfall, as shown for the 7th and 

8th of January.  
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Figure 15.Daily total rainfall and hourly leaf wetness in RPU station 1-10 January 

Figure 15 shows what is considered to be a 10 day dry period at RPU station. There were 

2 days that had rainfall under 1mm, and the rainfall doesn’t appear to directly affect 

daylight leaf wetness. The small amount of rainfall which fell during the night only 

contributed to one additional hour of wetness after sunrise. The only day with rainfall 

above 5 mm was on the 8th of January, same as the peak rainfall in Figure 14. At RPU 

station, prior to the 8th there was no recorded wetness. The rain on 8th of January lead to 

6 hours of daylight wetness and 1 hour of wetness when the sun had set. 
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Figure 16. Daily total rainfall and hourly leaf wetness in MTB station 1-10 January 

Figure 16 shows 3 days of rainfall with the peak on the 8th January. On the 8th there is a 

spike of total wetness from 2 hours on the previous day until 10 in the evening. This is 

due to total rainfall of 20mm that was spread throughout the day. The other days that 

don’t have rainfall shows daylight wetness one to three hours onset due to the previous 

night’s wetness. 
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21-31 January period 

 

Figure 17. Daily total rainfall and hourly leaf wetness in TRI station 21-31 January 

In the last 10 days of January at TRI station, 6 hours of daylight wetness was observed 

on the 27th which was the highest rainfall reading of the week. However, on the 27th the 

total rainfall was not the highest (9 hours). The two highest daylight total wetness values 

were recorded on the 22nd and 30th, both days were rainy. The other days had no rainfall 

and night time wetness was most likely caused by dew formation. 



 
 

57 
 

 

Figure 18. Daily total rainfall and hourly leaf wetness in RPU station 21-31 January 

RPU station is considered located in a relatively dry location, see Figure 12. The graph 

above shows the last 10 days of January 2012 at the RPU station. Two days out of ten 

had significant rainfall, namely the 22nd and 27th. This rainfall assisted leaf wetness in the 

daylight totalling 7 and 12 hours of wetness, respectively. Rainy days tend to have 

continuous leaf wetness duration. Days that have wetness without rainfall do not show 

continuous leaf wetness durations of more than 3 hours. This is a good example of station 

where leaf wetness is dependent on rainfall. 
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Figure 19. Daily total rainfall and hourly leaf wetness in MTB station 21-31 January 

Figure 19 shows the last ten days of January 2012 at the MTB station. The rainfall pattern 

follows that of the TRI and RPU stations with peak total rainfall on the 22nd and 27th. The 

rainfall on the 22nd was responsible for all the daylight wetness of the day, as well as on 

the 27th. In this station, both days had no dew formation in the early morning. On the no-

rain-days there is very little daylight leaf wetness observed. 
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4.2.3. Dataset B: Exploration 

Table 9. Basic statistics for Wind Speed in 3 stations 

Wind Speed (m/s) 

                          Stations 

Statistic PKE HXT CRN 

Min value 0.00 0.00 0.00 

Max value 10.30 10.80 17.00 

Mean 2.44 3.28 4.12 

Variance 3.32 4.40 5.77 

Standard deviation 1.82 2.10 2.40 

Total recorded hours 2751 2952 2976 

 

Looking at Table 9, CRN scored the highest recorded wind speed in the four months 

covered by this dataset. CRN station has the highest mean wind speed value (4.12 m/s). 

This suggests that CRN station is in a windy location. 

Table 10. Basic statistics for Relative Humidity in 3 stations 

Relative Humidity (%) 

                           Stations 

Statistic PKE HXT CRN 

Min value 31.91 24.02 18.52 

Max value 95.90 109.00 100.00 

Mean 77.63 77.17 71.30 

Variance 160.94 301.77 319.62 

Standard deviation 12.69 17.37 17.88 

Total recorded hours 2751 2952 2976 

 

Table 10 shows that CRN recorded the lowest relative humidity (18.52%). While the 

highest recorded relative humidity is that of the HXT station (109%). For this dataset the 

highest mean relative humidity is scored at the PKE station (77.63%). 
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Table 11. Basic statistics for Temperature in 3 stations 

Temperature (°C) 

                          Stations 

Statistic PKE HXT CRN 

Min value 4.29 2.13 -3.80 

Max value 25.68 33.88 33.63 

Mean 14.43 13.65 12.30 

Variance 15.88 34.17 41.15 

Standard deviation 3.99 5.85 6.42 

Total recorded hours 2751 2952 2976 
 

 

Inspecting Table 11, CRN station has the lowest recorded temperature in the period (-

3.8°C). The highest recorded temperature was at HXT station (33.88°C), very similar to 

CRN station’s maximum reading (33.63°C). Both CRN and HXT exhibited a high 

variance in temperature. PKE station, on the other hand, had low variance (15.88) and the 

highest mean temperature of 14.43°C. Low variance with high minimum and low 

maximum means that temperature distribution in PKE station is more to the centre, see 

Figure 21. 

Table 12. Basic statistics for Rainfall in 3 stations 

Rainfall (mm) 

                          Stations 

Statistic PKE HXT CRN 

Min value 0.00 0.00 0.00 

Max value 10.35 12.70 17.00 

Total Rainfall 342.29 585.80 237.2 

Variance 0.38 0.80 5.77 

Standard deviation 0.62 0.89 2.40 

Total recorded hours 2751 2952 2976 
 

Table 12 shows the highest total rainfall was scored in HXT station (585.8 mm). 

Suggesting HXT station to be the wettest station in dataset B. The driest station according 

to the table above is CRN station with 237.2 mm of rainfall in 4 months. More detailed 

rainfall reading per month is presented in Figure 20.  
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Figure 20. Monthly total rainfall in 3 stations for dataset B 

In the figure above, it is clear that HXT station is the wettest station in dataset B. HXT 

station had a higher total rainfall every month when compared to the other stations. The 

rainfall in CRN is incrementally increasing over the months closer to winter. The peak 

total rainfall for PKE and HXT stations was in August. 
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Figure 21. Histogram of temperature, wind speed, and relative humidity in 3 stations 

Inspecting Figure 21, histogram for temperature, wind speed, and relative humidity for 

dataset B in all 3 stations. Temperature variable shows the closest to normal distribution 

compared to other variables. However, according to the normality test none of the 

variables had normal distribution (see Appendix B). Temperature frequency in all three 

stations peaked in the range of 10 to 20°C. 
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Relative humidity in all three stations is left skewed. This concurs with the previous 

histogram in Figure 13. In all three stations the mean relative humidity is higher than the 

median indicating that there are more high readings. The histogram above shows that 

wind speed readings are mostly focused around 2-6 m/s. There are a lot of outliers, which 

are caused by isolated wind gusts. The figure shows a mostly right skewed histogram, 

suggesting there are lower wind speeds recorded.  

A closer look at rainfall reading correlation with leaf wetness duration in dataset B. 

1-10 January period 

 

Figure 22. Daily total rainfall and hourly leaf wetness in PKE station 1-10 January 

PKE station had highest mean relative humidity and also mean temperature, which makes 

this station is more dynamic than the other two. Relative humidity promotes dew fall, but 

high temperature responsible for evaporation of moisture on leaf surface. Rainfall activity 

in PKE station on January 2012 is substantial. In the first ten days period there was only 

one no-rain-day. Dew keeps forming throughout the dusk until dawn at PKE station. 

However, the daylight meteorological conditions are such that any surface wetness on the 

leaf will quickly dry off.  
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Figure 23. Daily total rainfall and hourly leaf wetness in HXT station 1-10 January 

HXT station can be considered a relative wet station location, according to Figure 20. 

However the first ten days of January were mostly dry. With the exception of rainfall on 

the 3rd of January. There are no leaf wetness readings in the daylight at this station. 

Rainfall in the 10th was a small amount (<1 mm) and occurred during the night resulting 

in the night wetness reading. 
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Figure 24. Daily Total Rainfall and Hourly Leaf Wetness in CRN Station 1-10 January 2012 

CRN station scored the lowest monthly total rainfall. However, CRN also had the lowest 

minimum and mean temperature and there is a higher chance of dew formation when 

temperature readings are low. In Figure 24 above, dew forms ten days straight from dusk 

until dawn. Leaf wetness duration peaks on the 3rd and 10th, with 24 hours of wetness 

readings. This is regardless of the amount of rain which fell on those days. This suggests 

the weather conditions are more suitable for dew formation at this station when compared 

to the other two stations. An extreme example is on the 5th of January even without rainfall 

up to 23 hours leaf wetness duration was reached. 
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21-31 January period 

 

Figure 25. Daily total rainfall and hourly leaf wetness in PKE station 21-31 January 

Figure 25. Daily total rainfall and hourly leaf wetness in PKE station 21-31 January shows leaf wetness 

and rainfall activity for the last 10 days of January at the PKE station. Two rainy days 

were recorded on the 22nd and 27th. Both rainy days promoted longer daylight wetness. 

On no rain days, leaf wetness was present at night. 
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Figure 26. Daily total rainfall and hourly leaf wetness in HXT station 21-30 January 

Leaf wetness and rainfall activity of the last ten days in HXT station are shown in Figure 

26. There are two days where the amount of rain fall is less than 1 mm. On both days the 

wetness continued until sunrise and evaporated once the sun was up. This is considered 

to be a dry period because there was almost no daylight leaf wetness. Dew formed on a 

number of days in this period, with a maximum of 7 hours of leaf wetness during the 

hours of daylight. 
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Figure 27. Daily Total Rainfall and Hourly Leaf Wetness in CRN Station 21-31 January 2012 

HXT station is the station with the lowest temperature reading. The graph in Figure 27 

ten no rain days in CRN station. There is a large amount of wetness during this period. 

This is presumably due to the low temperature that leads to dew formation. The peak 

number of wetness hours is 22 recorded on the 26th of January. Humid conditions that last 

for this long can lead to the formation fungi on the leaf surface that eventually leads to 

plant (leaf and fruit) diseases. 

4.3 Leaf Wetness Model Evaluation 

The datasets, described in the previous section, were used to generate leaf wetness models 

for each station. All of the models were validated with actual leaf wetness sensor readings 

and their performance was compared. For each model the Mean Error (ME), Mean 

Absolute Error (MAE), and Accuracy was calculated. ME was computed by averaging 

the differences between measured and estimated LWD for 24 hours period. ME 

determines the tendency of a model to overestimate or underestimate LWD. MAE was 

calculated by averaging the absolute values of hourly errors. MAE determines absolute 

accuracy of the model. The degree of closeness of estimated and measured LWD as a 

percentage was also calculated according to equation (1). 
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Dataset A) results 

Inspecting the results in Table 13, ANFIS (Adaptive Neuro Fuzzy Inference System) 

model tended to underestimate LWD on average 0.06 h/day. Other models that that also 

tended to underestimate LWD were FLS (Fuzzy Logic System) model and P-M (Penman-

Monteith) model. Most of the models showed the same trend in all five stations, except 

for SWEB (Surface Wetness Energy Balance) model that was found to underestimate for 

three stations (RPU, HXT and PKE), but overestimated for the other stations (up to 0.19 

h/day). This result suggests that the portability of SWEB model is low when the physical 

attributes of canopy as inputs the model are not directly measured. In this research the 

canopy attributes (leaf size etc.) were set the SWEB models defaults. These default values 

were measured for a single vineyard in the USA. The NHRH≥ 90% (Number of Hours 

Relative Humidity ≥ 90%) model overestimated LWD as did CART (Classification and 

Regression Tree) model, and NHRH≥ 90% performed the worst of all the models 

overestimating by an average of 0.22 h/day.  

Table 13. Mean Error of 7 models in 5 stations 

Sites 
MEa (h/day) 

ANFIS FLS ANN CART NHRH≥ 90% SWEB P-M 

RPU -0.13 -0.13 0.08 0.18 0.16 -0.05 -0.12 

HXT 0.00 -0.03 0.03 0.16 0.12 -0.05 -0.07 

MTB 0.00 -0.18 0.02 0.15 0.19 0.02 -0.09 

PKE -0.11 -0.09 0.01 0.14 0.29 -0.05 -0.11 

TRI -0.03 0.03 0.01 0.16 0.31 0.19 0.09 

Overall -0.06 -0.08 0.03 0.16 0.22 0.01 -0.06 
a ME = Mean error      

 

Table 14 shows the MAE for the models developed using dataset A, it shows that ANFIS 

has the best overall MAE followed by P-M. The best MAE recorded is also given by 

ANFIS at the MTB station. FLS model with a predefined membership function performed 

poorly on this dataset, with a MAE of 0.28 h/day and the lowest MAE score 0.35 h/day 

at the RPU station. ANN on the other hand has a similar result (0.17 h/day) to that of the 

ANFIS model (0.14 h/day) both overall and by station. The overall mean absolute errors 

were similar for both physical models − 0.16 and 0.15 h/day for SWEB and P-M, 

EA = (1 – 
Σ |Actual –  Estimated|

𝑁
) ×100 

  (1) 
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respectively. For the empirical models there is a gap in the performance of NHRH≥ 90% 

and CART which scored 0.24 and 0.16 h/day. NHRH≥ 90% model being the simplest 

model outperformed the FLS model based on the overall MAE for this dataset. This is 

possibly due to training of the FLS model. This dataset was relatively small and training 

usually requires more data to generalise the model. 

Table 14. Mean Absolute Error of 7 models in 5 stations 

Sites 
MAEa (h/day) 

ANFIS FLS ANN NHRH≥ 90% CART SWEB P-M 

RPU 0.20 0.35 0.22 0.20 0.18 0.11 0.13 

HXT 0.16 0.29 0.18 0.16 0.16 0.19 0.18 

MTB 0.05 0.30 0.09 0.24 0.15 0.09 0.09 

PKE 0.18 0.31 0.16 0.30 0.14 0.22 0.23 

TRI 0.10 0.17 0.20 0.31 0.16 0.20 0.11 

Overall 0.14 0.28 0.17 0.24 0.16 0.16 0.15 
a MAE = Mean absolute error 

Table 15 shows the performance evaluation based on percentage accuracy. The results 

portrayed in this table show that ANFIS gave the highest overall accuracy of all the 

models (86.04%). ANFIS’s lowest accuracy was recorded for the RPU station (79.55%) 

and the highest accuracy at the MTB station (94.76%). 

Both physical models gave greater than 80% accuracy, SWEB with 81.51% and P-M with 

80.79% accuracy. CART performed in line with the physical models with 84.26% 

accuracy and remarkably stable across stations suggesting that CART in general has less 

spatial variability. The NHRH≥ 90% model outperformed the FLS model by 4%, making 

FLS the least accurate model for estimation of LWD. However, the FLS model had the 

best accuracy for the TRI station in both Table 14 and Table 15. TRI station had the 

wettest location according to total rainfall records Considering that the dataset was 

imbalanced, it might be that the higher rainfall readings of the TRI station provided a 

more balanced data for training and therefore the FLS model was more accurate for that 

station. 

Table 15. Accuracy of 7 models in 5 stations 

Sites 
Accuracy (%) 

ANFIS FLS ANN NHRH≥ 90% CART SWEB PM 

RPU 79.55 65.45 78.65 80.00 82.27 76.46 75.12 

HXT 83.61 70.83 80.33 84.44 84.17 81.39 82.50 

MTB 94.76 70.48 88.43 76.43 85.00 91.45 80.56 

PKE 82.28 69.47 76.82 69.65 85.61 77.89 76.67 

TRI 90.00 82.56 86.85 68.59 84.23 80.38 89.10 

Overall 86.04 71.76 82.22 75.82 84.26 81.51 80.79 
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Table 16 gives the overall summary of results for the evaluation of models for estimating 

LWD based on dataset-A. These results show that ANFIS was the most precise model for 

predicting leaf wetness. It had an accuracy of well over 80% and the lowest overall 

absolute error of 0.14 h/day. 

Integrating the aspects of FLS and 

ANN model into one model 

therefore has proven to lead to better 

accuracy for leaf wetness prediction. 

However ANFIS outcome was only 

slightly better than CART, ANN, 

and the two physical models.  

ANN, CART, SWEB, and P-M also 

scored under 0.2 h/day MAE and 

accuracy above 80%. Both physical models show good portability in this dataset, with 

the tendency of overestimation, agreeing with the results from Magarey (2006) for SWEB 

and Sentelhas (2006) for the P-M model. In both research, both models are overestimating 

up to 0.7 and 1.3 h/day, respectively. CART model was developed in Ames, Iowa, which 

was wetter than the 7 locations tested New Zealand, this might explain the overestimation 

of CART in this study (Gleason et al, 1994). Nonetheless, CART model shows low 

variability between stations that suggests that this model have good portability. 

NHRH≥ 90% model had the second to worst result overall, as low as 75% accuracy and 

with a tendency to overestimate LWD. FLS performed the worst. In this study the results 

for the NHRH≥ 90% and the FLS model did not agree with the results obtained by Kim 

(2006). Kim’s study showed that the NHRH≥ 90% model underestimated leaf wetness 

and was also less precise than the FLS model (Kim et al, 2006). Of course Kim used a 

different data set and this disagreement of results illustrated the localisation issues which 

may be associated with estimation models. This discrepancy also indicates the need for 

an evaluation with a larger and a more balanced leaf wetness class in order to achieve 

optimal accuracy.  

Evaluation results for dataset-A indicate that the ANFIS, FLS, and ANN models, which 

require training and tuning of parameters may benefit from a larger and more balanced 

dataset, hence there a second evaluation was performed using a different dataset. 

Table 16. Overall result of 2 months dataset in all stations 

Models 

Overall 

MEa 

(h/day) 

MAEb 

(h/day) 

Accuracy 

(%) 

ANFIS -0.06 0.14 86.04 

FUZZY -0.08 0.28 71.76 

ANN 0.03 0.17 82.22 

NHRH≥90% 0.16 0.24 75.82 

CART 0.22 0.16 84.26 

SWEB 0.01 0.16 81.51 

P-M -0.06 0.15 80.79 
a ME = Mean error  
b MAE = Mean absolute error 
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Dataset B) results 

Table 17 indicates that the ANFIS model generated for dataset-B is mainly 

underestimated LWD, in agreement with the results for dataset-A (Table 13), but with a 

value that is closer to zero (-0.05 h/day). FLS and ANN model both also underestimated 

LWD by 0.1 and 0.07 h/day respectively. The FLS model actually performed more poorly 

on this larger dataset consistently underestimating leaf wetness regardless of location. 

ANN was consistently overestimating leaf wetness for dataset-A (Table 13). Dataset-B 

resulted in ANN underestimating leaf wetness. Dataset-B is larger than dataset-A and 

overall has a higher total rainfall and more leaf wetness hours, this change in data explains 

the changes result magnitude in some models such as ANN where the larger dataset 

allows for a larger training set.  

CART again gave a similar outcome to ANFIS and ANN (0.08 h/day) with a better result 

than for dataset-A (Table 13), which where the mean error was 0.16 h/day. NHRH≥90% 

was found to overestimate LWD by 0.18h/day overall. SWEB was the worst performing 

model in terms of magnitude of error, and overestimated leaf wetness by 0.19 h/day. 

Table 17. Mean Error of 7 models in 3 stations within 4 months 

Sites Na 
AWDb MEc (h/day) 

(h/day) ANFIS FLS ANN NHRH≥ 90% CART SWEB P-M 

PKE 114 3 -0.09 -0.10 -0.09 0.21 0.10 0.14 -0.07 

HXT 123 3 0.00 -0.13 -0.03 0.18 0.05 0.19 -0.13 

CRN 124 4 -0.05 -0.07 -0.08 0.15 0.08 0.25 -0.11 

Overall 361 3 -0.05 -0.10 -0.07 0.18 0.08 0.19 -0.10 
a N = Number of data 
b AWD = Average wetness / day 
c ME = Mean error 

 

Table 18 shows the overall absolute errors of the models generated using dataset-B. 

ANFIS had the lowest MAE. ANFIS model result in dataset-B was also improved from 

dataset-A, from 0.14 to 0.10 h/day. ANN was a close second with 0.14 h/day while FLS 

had 0.21 h/day. Both physical models gave close results with low variability between 

stations. MAE for SWEB and P-M was slightly better than the MAE of the CART model, 

0.16, 0.17, and 0.18, respectively. NHRH≥ 90% had the worst MAE for estimating LWD, 

0.29 h/day in dataset-B. Among the approaches investigated, only NHRH≥ 90% model 

gave a worse performance when introduced to the larger dataset.  

  



 
 

73 
 

Table 18. Mean Absolute Error of 7 models in 3 stations within 4 months 

Sites Na 
AWDb MAEc (h/day) 

(h/day) ANFIS FLS ANN NHRH≥ 90% CART SWEB P-M 

PKE 114 3 0.10 0.18 0.15 0.24 0.11 0.18 0.18 

HXT 123 3 0.05 0.28 0.09 0.30 0.22 0.15 0.22 

CRN 124 4 0.16 0.17 0.19 0.34 0.20 0.16 0.11 

Overall 361 3 0.10 0.21 0.14 0.29 0.18 0.16 0.17 
a N = Number of data 
b AWD = Average wetness / day 
c MAE = Mean absolute error 

 

Table 19 shows the performance evaluation in percentage of accuracy of dataset-B. The 

ANFIS model was the only model which had more than 90% overall accuracy. ANFIS 

had improved performance on the new dataset (86% to 90%). The same improvement 

was seen for the FLS and ANN models, 71% to 79%, and 82% to 86%, respectively. The 

larger dataset improved the outcomes of these models. Both ANFIS and ANN clearly 

benefited from using a larger training set and the FLS model can better generalise with 

larger dataset. 

NHRH≥ 90% accuracy was just over 70%, this result is worse than that of the smaller 

dataset. This high degree of error suggests that the NHRH≥ 90% model needs to be 

calibrated in order to find an appropriate relative humidity threshold based on local 

conditions. 

Table 19. Accuracy of 7 models in 3 stations within 4 months 

Sites Accuracy (%) 

 ANFIS FLS ANN NHRH≥ 90% CART SWEB PM 

PKE 90.71 82.15 85.63 76.25 89.20 82.43 82.12 

HXT 95.23 72.42 91.44 70.16 78.74 85.20 78.55 

CRN 84.24 83.53 81.85 66.00 80.59 84.62 89.93 

Overall 90.06 79.37 86.31 70.80 82.84 84.08 83.53 
 

 

Table 20 shows overall result of MAE, ME and ACCURACY for all the models. The 

ANFIS model is a definite winner in the group with accuracy over 90%. FLS and ANN 

models benefit from larger dataset with better accuracy, but they were both still 

outperformed by ANFIS. 

Physical models show the best consistency of performance for different datasets with only 

slight differences in the overall results between dataset-A and B and also low variability 
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in between stations. The CART model outcome was slightly worse than for dataset-A, 

together with NHRH≥ 90% which was the worst performer in the group with 70.8% 

accuracy. 

Table 20. Overall results of 4 months dataset in 3 stations 

Models 

Overall 

MEa 

(h/day) 

MAEb 

(h/day) 

Accuracy 

(%) 

ANFIS -0.05 0.10 90.06 

FLS -0.10 0.21 79.37 

ANN -0.07 0.14 86.31 

NHRH≥ 90% 0.18 0.29 70.80 

CART 0.08 0.18 82.84 

SWEB 0.19 0.16 84.08 

P-M -0.10 0.17 83.53 
a ME = Mean error 
b MAE = Mean absolute error 

 

In these experiments, ANFIS, FLS, and ANN showed significant improvement for 

dataset-B. ANFIS and ANN performed with good results on the HXT station. In dataset-

A the best result using ANN and ANFIS methods was with data from the TRI station. 

HXT and TRI stations are the stations with most rainfall in each dataset; other stations 

had little rainfall during the same period. 

It is important for the FLS logic model to generalise to the dataset in order to achieve an 

optimal result. Defining the membership function is an important step in FLS model 

development. In this study the membership function established by Kim (2004) for LWD 

was used in the FLS model. This membership function was used in order to provide a 

benchmark comparison with ANFIS. In ANFIS the membership function is generated 

using an ANN. 

Physical models, SWEB, and P-M performed with slightly better result (overall above 

80%) with the same low variance between stations. This indicates that physical models 

have higher portability than empirical and hybrid models. PKE station had the highest 

mean relative humidity that helps dew formation. It also prolongs moisture presence on 

leaf surface. PKE station also had the highest mean temperature, which responsible for 

water evaporation. This balanced variable dynamic makes PKE station data suitable for 

optimal models result. 

Both empirical models, CART and NHRH≥ 90% suffer from a loss of accuracy when 

introduced to the larger dataset. NHRH≥ 90% model gave the lowest result for the CRN 



 
 

75 
 

station which has the lowest average relative humidity. LWD is not as simple as 

considering only RH. Based on the feature evaluation given in section 5.2 there are other 

explanatory variables which also have leaf wetness predictive power.  

CART is also developed using thresholds for variables such as relative humidity, wind 

speed, and dew point depression. These thresholds might have to be adjusted when the 

model is applied in a different region. Therefore in the case of empirical models, when 

applied to New Zealand region datasets, it appears that it is important for empirical 

models to be calibrated locally. This is supported by a recent paper published in New 

Zealand using CART model as inputs for botrytis bunch rot prediction system. The study 

found that CART consistently underestimated leaf wetness across seven stations and 

concluded that CART model is not suitable for use without local calibration (Henshall, 

2015). 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Monitoring leaf wetness is a crucial component to the management of many plant 

diseases. Leaf wetness measurement or estimation has its own limitations that needs to 

be acknowledged. Leaf wetness sensors are labour sensitive. They require maintenance 

to some extent, some types need to be treated to increase sensitivity, particular placement 

in crop canopy, and also calibrations variability for different sensors. To date, there has 

been no standardisation for leaf wetness sensor production, usage, and measurement. This 

fact leads to inability to compare results among research. There was a need for a 

comprehensive comparative analysis on commercially available leaf wetness sensors. To 

the author’s knowledge this is the first research that includes four different sensor types 

and two of which are treated with paint and heat, totalling six leaf wetness sensors 

involved. This research found that of the commonly used commercial leaf wetness 

sensors DD (Decagon Devices) sensor is superior to the three other sensor types 

evaluated, regardless of any treatment of the other sensors. Thus answering research 

question one “Which of the commercially available leaf wetness sensors gives the most 

accurate measurement?”. 

DD sensors were found to have the highest accuracy when compared with other sensors 

that have been used for decades. It benefits from its dielectric principle design, fibreboard 

surface, and also latex paint coating. Previous research has suggested that the physical 

features of the sensor are beneficial (Sentelhas, 2004). Painting sensors has also proven 

to improve sensitivity in larger sensor sizes such as CS (Campbell Scientific) sensors. 

However, smaller sensors such as HB (Hobby Board) sensor tend to suffer from 

overestimation when painting was applied to the surface. This is likely to be due to the 

sensor surface to water droplet ratio being high resulting in water droplets joining to form 

larger droplets. Painting assisted the grouping of water droplets which makes it too 

sensitive for the sensor. Rust was also prevented or at least slowed down when painting 

was applied which slows deterioration of the sensor in the field. 

Filter paper based sensor such as PI (Pessl Instrument) sensor is strongly recommended 

that this type of sensor is not used in industry. It holds water for a longer time as it is 

absorbed in the paper. The shape of the sensor also intercepted wind blowing to the filter 

paper, leading to overestimation of leaf wetness. This research indicates that a DD sensor 

is a stellar choice for industry use. Industries that are already using other sensors such as 
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CS sensor should consider using DD sensor. The next time they need to change their 

deployed sensor due to rust they should consider a DD sensor as a replacement. DD 

sensors come painted which means that they typically have a longer life span than 

unpainted sensors and require less maintenance. 

It should be noted that in this research the sensor calibration experiments, to determine 

which type of sensor measures leaf wetness the most accurately, were undertaken 

independently of the LWD modelling experiments. The modelling was undertaken using 

historical data and the leaf wetness was measured using CS sensors. 

Simple mathematical models have been suggested in some studies to be a preferable 

alternative to sensor measurements for determining LWD. Empirical models such as 

NHRH≥ 90% require one variable, relative humidity, and are often used in practice to 

estimate LWD but the accuracy of the model can be compromised by considering only 

one explanatory variable. NHRH≥ 90% model only takes into account one variable, in a 

complex system and arguably does not represent the system sufficiently. Portability is 

also an issue for empirical models, when the model is applied to a region with different 

climates, it tends to give false estimates. These problems led to the development of 

physical models that take into account the physical attributes of the crop canopy as an 

additional variable.   

Physical models are developed around an energy balance principle and evaporation rate. 

Some models also take into account variables such as leaf physical shape, water threshold, 

and size as calibration features. In this research physical models turned out to be better in 

terms of portability when compared with empirical models. However, they require a large 

number of inputs and often such information will not be available. To reduce the amount 

of variables needed as input but still considering important physical variables, a hybrid 

model was proposed as a preferable alternative. Hybrid models combine empirical and 

physical models in order to draw on the strengths of each of those model types. One of 

the hybrid models, FLS model takes vapour pressure deficit, wind speed, and net radiation 

as its inputs. These inputs were chosen because of their high correlation with leaf wetness. 

FLS model in the latest reported research is claimed to estimate leaf wetness with high 

accuracy (Kim, Taylor, & Gleason, 2004). However, membership functions to address 

the values of the inputs need to be defined locally.  

This study has found that an FLS model without locally defined membership functions is 

not optimal (see Chapter 4). This site dependency is known to be an issue for LWD 
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modelling. This leads to difficulty in applying the model to multiple stations in different 

areas due to the different meteorological data collected. Different weather stations use 

different sensors and collect different variables and datasets are often not complete. It is 

difficult to compare locally specific models or to come up with a more generalised model 

due to such inconsistencies in the data. 

In this study, ANFIS was proposed for estimating leaf wetness. The study points out that 

ANFIS system benefits from the training process to generate membership functions. In 

this research ANFIS was developed and the results of estimating leaf wetness was 

evaluated against six different existing leaf wetness models. The first comparison, using 

Dataset A resulted in only slightly higher accuracy than the other models. The 

insignificant improvement found in the first comparative analysis was believed to be 

mainly caused by the small amount of data which was available. It prevents ANFIS model 

to train the data optimally. The second comparative analysis shows ANFIS model has 

higher accuracy compared to all six models. ANFIS system allows any kind of variable 

to be taken as input. ANFIS also allows any dataset to have tailored membership functions 

thus providing a portable model. ANFIS omits the need of defining membership functions 

manually and trains using a neural network instead. 

In this research the dataset used was small and consisted on data from one growing season 

and for only five sites. While the researcher had access to historical data covering up to a 

maximum of ten years for 25 stations the data was not continuous and was incomplete. 

While the variables were consistent, different stations had data for different periods of 

time within that ten years. The data was often missing for several weeks or even months 

due to sensor failure and time for repair. Thus it was difficult to find complete data from 

the same time period. This does to some extent limit the findings of this research because 

only one growing season was involved. However the data was sufficient to undertake 

validation of the models using ten-fold cross validation and ANIFS was found to give the 

most accurate LWD estimates for four of five stations. A physical model which required 

more variables gave better estimation for the other station. However these variables are 

often not available and therefore it is more practical to adopt ANFIS which was the second 

best model at this station. 

 

Further research on ANFIS should be conducted in order to optimise the models. 

Investigation into alternative methods to determine the membership functions and further 
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tuning of the parameters should be undertaken. Empirical models are known for only 

being valid at a local scale and require a large amount of data. In order to test the ANFIS 

model’s portability further different sites with different climates should be included. A 

larger dataset would also allow for improved training in order to establish the membership 

functions.  

Although NHRH≥ 90% is simpler to use with adequate results, the model does not 

consider other equally important variables affecting leaf wetness and is not entirely 

reliable. Therefore, it is not suitable to use as a leaf wetness estimator for creating input 

for disease warning systems. On the other hand, ANFIS appears to be a practical 

alternative to existing models or the use of leaf wetness sensors. The outcome of this 

research suggests that ANFIS offers the potential to be a robust leaf wetness estimation 

system with high accuracy answering research question three “Can an adaptive neuro-

fuzzy inference system be used as a leaf wetness model?”. 

Regardless of how leaf wetness is determined, either measured or estimated, the 

limitations has to be acknowledged. For smaller crops and when a sensor installation is 

possible, measurement would be more suitable. Larger crops or crops that require 

frequent maintenance would benefit more from models to estimate leaf wetness. 

In conclusion this study has found that for measurement DD sensor is superior to other 

sensors and for estimation ANFIS model provides higher accuracy than previously 

developed leaf wetness models. 
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APPENDIX A 

Variables and stations 

Here is a list of models used in this research and the variables we used in the experiments as 

the model’s input. Please refer to section 2.2.1 for model naming convention. 

Table XXI. Leaf wetness models variable requirements 

Model 
Variable 

T RH WS Rainfall DPD Net Rad. VPD 

ANFIS        

FLS        

ANN        

NHRH>90%        

CART        

SWEB        

P-M        

 

Variables included: Temperature (T), relative humidity (RH), wind speed (WS), rainfall, net 

radiation (Net Rad.), and vapour pressure deficit (VPD). These are the variables that are used 

as input for leaf wetness models. The first four were available as measurements/observations 

from our dataset. The remaining variables were derived from available meteorological 

variables. 

Here is the map of all the stations that are in dataset A: 

  

    

Figure XXVIII. Maps showing station locations: (left) five stations in Dataset A, (right) three stations in Dataset 
B. 
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APPENDIX B 

Normality tests for the combined stations for datasets A and B. Using Kolmogorov-

Smirnov test because the combined datasets are both larger than N = 2000. The null 

hypothesis is normality if you accept the null hypothesis then you assume normality. 

Guidelines suggest that of p < then 0.05 then you should reject the null hypothesis and 

the data is not normally distributed. It can be seen that for all the variables in each dataset 

the significant p < 0.0001 and therefore if the data from the stations is combined none of 

the variables have a normal distribution. 

 

Kolmogorov-Smirnova 

Statistic df Sig. 

Temp .024 7128 .000 

RH .068 7128 .000 

Rainfall .480 7128 .000 

Wind speed .100 7128 .000 

a. Lilliefors Significance Correction 

 

Kolmogorov-Smirnova 

Statistic df Sig. 

Temp .031 8679 .000 

RH .079 8679 .000 

Rainfall .466 8679 .000 

Wind speed .078 8679 .000 

a. Lilliefors Significance Correction 

 

 

 


