
Solving infinite games on trees with back-edges

Aniruddh Gandhi1 Bakhadyr Khoussainov2 Jiamou Liu3

1 Department of Computer Science, University of Auckland
Auckland, New Zealand.

Email: agan014@aucklanduni.ac.nz
2 Department of Computer Science, University of Auckland

Auckland, New Zealand.
Email: bmk@cs.auckland.ac.nz

3 School of Computing and Mathematical Sciences, Auckland University of Technology,
Auckland, New Zealand

Email: jiamou.liu@aut.ac.nz

Abstract

We study the computational complexity of solving the
following problem: Given a game G played on a fi-
nite directed graph G, output all nodes in G from
which a specific player wins the game G. We pro-
vide algorithms for solving the above problem when
the games have Büchi and parity winning conditions
and the graph G is a tree with back-edges. The
running time of the algorithm for Büchi games is
O(min{r ·m, ℓ+m}) where m is the number of edges,
ℓ is the sum of the distances from the root to all leaves
and the parameter r is bounded by the height of the
tree. The algorithm for parity has a running time of
O(ℓ + m).

1 Introduction

In the last 10-20 years, there has been an ex-
tensive study of infinite games played on directed
graphs. These games are natural models for reac-
tive systems(9), concurrent and communication net-
works (12), and have close interactions with model
checking, verification problems, automata and logic
(3, 8, 11, 14). In this paper, we study turned-based
games where both players have perfect information
and each move is deterministic. Each such game in-
volves a finite directed graph, whose nodes are parti-
tioned into two sets V0 and V1. There are two players:
Player 0 and Player 1. They play the game by mov-
ing a token that is initially placed on some starting
node u of the graph. The two players take turns to
move the token along the edges of the graph while
respecting the edge directions. If the token is placed
on a node u ∈ Vσ, σ ∈ {0, 1}, then Player σ chooses
an outgoing edge (u, v) and places the token on node
v. The players play the game indefinitely and thus
producing an infinite walk in the graph.

Player 0’s goal is to produce a walk that satisfies
the winning condition, while Player 1’s goal is the
opposite. If Player σ wins regardless of the moves by
the other player, we say that the starting node u is a
winning position of Player σ. An algorithm solves the
game if it detects all the winning positions of Player
0. Formally, the winning region problem is defined as
follows:

Given a game G played on a finite graph G, output
all nodes in G from which Player 0 has a strategy to
win the game G.

This paper studies the algorithms for solving the
determinacy problem for Büchi and parity games
played on trees with back-edges. Given a directed

graph G, a Büchi game played on G specifies a set of
target nodes T in G, and Player 0 win the game from
a node u if the player has a strategy to visit nodes in T
infinitely often starting from u. It is well-known that
the winning region problem for Büchi games can be
solved in polynomial time. A parity game on G asso-
ciates a priority ρ(u) ∈ N with every node u. Player 0
wins the game from a node u if the player has a
strategy such that the minimum priority amongst all
the nodes visited infinitely often in any play starting
from u is even. Though intensely studied, polynomial
time algorithms for solving the winning region prob-
lem for parity games remain unknown. Parity games
are known to be in NP ∩ Co− NP but not known to
be in P.

While Büchi games are solved in polynomial time
for arbitrary graphs, it is still unclear whether the
known algorithms are optimal for a given class of
games. This paper concentrates on algorithms for
solving the winning region problem for games with
Büchi winning conditions played on trees with back-
edges. In this paper we will demonstrate that, even
for this severely restricted subclass of infinite games,
the analysis for the winning region problem can still
be non-trivial and reveal a lot of structures about the
game. We then apply our analysis for the case of
Büchi games to solve the winning region problem for
games with the parity winning condition played on
trees with back-edges.

The classical algorithm for solving Büchi games
uses iterations: at iteration i, the algorithm computes
the set of nodes Ui from which Player 0 has a strategy
to visit the target set i times (see Section 2 for a
detailed description of the classical algorithm). It can
be shown that the set of winning positions for Player 0
is

⋂

i∈N
Ui (7). Each iteration of the algorithm takes

time O(n + m), where m and n are the number of
edges and nodes in G respectively. Since the algorithm
performs at most n iterations, the running time of the
algorithm is O(n · (n + m)).

The classical algorithm has a seemingly repetitive
nature as a node may be processed several times.
Hence, it makes sense to carry out a more detailed
analysis of Büchi games and see if the classical al-
gorithm can be improved. For instance, the paper
(5) investigates the class of graphs with constant out-
degrees and shows that solving Büchi games played
on such graphs takes O(n2/ log n) time. For graphs
with unbounded out-degrees, the paper (4) presents
an algorithm that runs in time O(n·m·log δ(n)/ log n)
where δ(n) is the out-degree of the game graph. These
investigations suggest the idea of designing more effi-
cient algorithms in specified classes of graphs such as

trees with back-edges.

Trees with back-edges are widely used and stud-
ied in computer science. The paper (6) studies coun-
terexamples in model checking whose transition di-
agrams are trees with back-edges. Furthermore, as
discussed in (1), they form a natural class of directed
graphs that has directed tree-width 1 and unbounded
entanglement. Also, consider the trees generated by
depth-first search. If the original graph has only tree-
edges and back-edges but no cross-edges, then the
algorithms described in this paper can be used. An-
other use of trees with back-edges is in µ-calculus
where the syntax graph of a µ-calculus formula is a
tree with back-edges (2). As pointed out in (2) a fi-
nite Kripke structure can be viewed as a tree with
back-edges by performing a partial unraveling of the
structure.

In our analysis, we use the notion of snares to clas-
sify the winning nodes of Player 0 as follows. In-
tuitively, a snare of rank 0 is a subtree from which
Player 0 has a strategy to stay in the subtree forever
and win the game. A snare of rank i, i > 0, is a
subtree from which Player 1 may choose between two
options: (a) staying in the subtree forever and losing
the game, or (b) going to an (i − 1)-snare. We show
that the collection of all snares corresponds exactly to
winning nodes of Player 0. In particular, we present
an efficient algorithm that solves a Büchi game played
on trees with back-edges. The algorithm runs in time
O(min{r · m, ℓ + m}) where r is the largest rank of
a snare and ℓ is the external path length, i.e., sum
of the distances from the root and all leaves, in the
underlying tree.

We then give an algorithm for solving parity games
played on trees with back-edges by reduction to Büchi
games on trees with back-edges and prove the fol-
lowing theorem: any parity game played on trees
with back-edges can be solved in time O(ℓ + m). J.
Obdržálek in his work (13) (Chapter 3) outlines a
proof that parity games played on trees with back-
edges are solved in polynomial time. The work does
not provide a detailed analysis of the algorithm but
rather concentrates on attacking the problem for the
class of all parity games. The algorithm detects
whether Player 0 wins the game from the root of the
tree and it is claimed that this can be done in time
O(m) (where m is the number of edges in the graph).

We would like to point out that the running time of
any algorithm for solving the winning region problem
is heavily dependent on the data structures and un-
derlying model of computation. In particular, under
the reasonable assumption that trees with back-edges
are encoded as binary strings it can be shown that
O(m · log(m)) bits are necessary to encode a tree with
back-edges with O(m) edges. This can be seen as fol-
lows: for a tree T , we determine the main branch by
starting from the root and always choosing the next
node v such that v has the most number of nodes be-
low it. Now consider a tree T with O(m) edges such
that the main branch has m/2 nodes and the first m/4
nodes of the main branch have exactly one offbranch-
ing leaf. Below the first (m/4)th nodes of the main
branch, there is a full binary tree with m/2 nodes and
m/4 leaves. If we now consider the class of trees with
back-edges that can be obtained from T by adding
exactly one back-edge per leaf, it can be seen that
there are O((m/4)(m/4)) trees with back-edges in this
class. Hence we need at least O(m · log(m)) bits to
encode a tree with back-edges with O(m) edges. This
fact shows that any algorithm to solve the winning
region problem for games on trees with back-edges

must have a running time of al least O(m · log(m)).
Hence it is not clear how the time bound of O(m) of
(13) can be achieved when trees with back-edges are
encoded using binary strings.

Notwithstanding the above observations, the algo-
rithm of (13) can be modified to run in O(h·m) (where
h is the height of the underlying tree). In this paper
we give an alternative algorithm for solving parity
games on trees with back-edges based on our analy-
sis for Büchi games played on trees with back-edges
which has a running time of O(ℓ + m). Note that
since ℓ maybe much smaller as compared to h · m,
our algorithm performs better than the time bound
of O(h ·m) in many cases. Importantly, we clarify the
data structures and model of computation used (see
Section 3) and hence analyze the problem in greater
detail.

Since the worst case performance of our algorithm
for Büchi games is the same as that of the classi-
cal algorithm, we carried out experiments to compare
the actual performance of the two algorithms. The
experiments can be broadly divided into two cate-
gories: 1) comparing the average running times for
games with a small n (number of nodes) and 2) for
large n, we compare the running times of the two
algorithms on games whose underlying trees belong
to different classes of randomly generated trees. We
found that our algorithm has significantly better per-
formance than the classical algorithm in both these
categories. Our algorithm outperforms the classical
algorithm by an order of magnitude for even small val-
ues of n. The performance gap becomes even clearer
for large values of n, where our algorithm again has a
significantly better running time than the classical al-
gorithm in all the classes of randomly generated trees
used. In fact our algorithm has a linear growth in
running time as compared to the quadratic growth
in running time for the classical algorithm for all the
classes of randomly generated games.

To support the experimental evidence of the supe-
riority of our algorithm over the classical algorithm,
in appendix C we provide a concrete example of a
class of Büchi games on trees with back-edges where
our algorithm performs asymptotically better.

The rest of the paper is organized as follows.
Section 2 describes the known algorithm for solving
Büchi games. Section 3 lays out the basic frame-
work and proves a normal form lemma (Lemma 2)
for games played on trees with back-edges. Section 4
introduces the notion of snares and describes the al-
gorithm that uses snares to solve Büchi games played
on trees with back edges. In Section 5 we apply the
algorithm to parity games played on trees with back-
edges. Finally we present experimental results to sup-
port our claims in Section 6.

2 Games Played on Finite Directed Graphs

For background on games played on graphs, see e.g.
(7). A game is a tuple G = (V0, V1, E, Win) where
G = (V0 ∪V1, E) forms a finite directed graph (called
the underlying graph of G), V0 ∩ V1 = ∅ and the set
Win ⊆ (V0 ∪ V1)

ω. Nodes in the set V0 are said to be
0-nodes and nodes in the set V1 are said to be 1-nodes.
We use V to denote V0 ∪ V1 and E(u) to denote the
set {v | (u, v) ∈ E}. The game is played by Player 0
and Player 1 in rounds. Initially, a token is placed on
some initial node v ∈ V . In each round, if the token
is placed on a node u ∈ Vσ , where σ ∈ {0, 1}, then
Player σ selects a node u′ ∈ E(u) and moves the token
from u to u′. The play continues indefinitely unless

2

the token reaches a node u where E(u) = ∅. Thus, a
play starting from u is a (possibly infinite) sequence
of nodes π = v0v1 . . . such that v0 = u and for every
i ≥ 0, vi+1 ∈ E(vi). We use Plays(G) to denote the
set of all plays starting from any node in V . The
winning condition of G, denoted by Win, is a subset
of Plays(G) and Player 0 wins a play π ∈ Plays(G)
if π ∈ Win and Player 1 wins π otherwise. We use
Occ(π) to denote the set of nodes that appear in π
and Inf(π) to denote the set of nodes that appear
infinitely often in π.

A reachability game is a game G =
(V0, V1, E, Wreach). The winning condition Wreach

is determined by a set of target nodes T ⊆ V such
that

Wreach = {π ∈ Plays(G) | Occ(π) ∩ T 6= ∅}.

Hence, for convenience, we denote the reachability G
by (V0, V1, E, T).

A Büchi game is a game G = (V0, V1, E, Wbuchi).
As in the case of reachability games, we specify a
set of target nodes T ⊆ V . Then the Büchi winning
condition can be expressed as follows:

Wbuchi = {π ∈ Plays(G) | Inf(π) ∩ T 6= ∅}.

For convenience, we also denote a Büchi game by
(V0, V1, E, T). It will be clear from the context
whether reachability or Büchi games are considered.

A parity game is a game G = (V0, V1, E, Wparity)
along with a priority function ρ : V → N. The win-
ning condition is expressed as follows:

Wparity = {π ∈ Plays(G) |

min{ρ(v) | v ∈ Inf(π)} is even}.

We use the tuple (V0, V1, E, ρ) to denote a parity
game.

When playing a game, the players use strategies
to determine the next move from the previous moves.
Formally, a strategy for Player σ (or a σ-strategy),
where σ ∈ {0, 1}, is a function fσ : V ∗Vσ → V such
that if fσ(v1v2 . . . vi) = w then (vi, w) ∈ E (here
V ∗Vσ denotes the set of all finite paths in the graph
G with the last node in Vσ). A play π = v0v1 . . . is
consistent with fσ if vi+1 = fσ(v0v1 . . . vi) whenever
vi ∈ Vσ (i ≥ 0). A strategy fσ is winning for Player σ
on v if Player σ wins all plays starting from v consis-
tent with fσ. If Player σ has a winning strategy on u,
we say Player σ wins the game on u, or u is a winning
position for Player σ. The σ-winning region, denoted
by Wσ, is the set of all winning positions for Player
σ. Note that W0 ∩W1 = ∅. A strategy fσ for Player
σ is called memoryless if fσ(v1v2 . . . vi) = fσ(vi) for
all (v1v2 . . . vi) ∈ V ∗Vσ.

For the sake of simplicity, we assume E(u) 6= ∅
for all u ∈ V in any game G. This can be achieved
by performing the following whenever E(u) = ∅: we
add two extra vertices u1, u2 such that E(u) = u1,
E(u1) = u2 and E(u2) = u1. In the case of reacha-
bility and Büchi games we declare u1, u2 /∈ T and for
parity games we declare u1, u2 to have odd priorities.
Note that this does not change the winning region of
Player 0 for any of the winning conditions described
earlier. Hence we may assume that Plays(G) ⊆ V ω.

A game enjoys determinacy if W0 ∪W1 = V . The
determinacy result in the next theorem is a special
case of the well-known Borel determinacy theorem
which states all Borel games enjoy determinacy.

Theorem 1. (10)(7) Reachability, Büchi and par-
ity games enjoy memoryless determinacy. Moreover,
computing W0 and W1 takes time O(m + n) for a
reachability game and O(n·(m+n)) for a Büchi game,
where m, n are respectively the number of edges and
nodes in the underlying graph.

By the above theorem, we are justified in restrict-
ing ourselves to memoryless strategies for such games
and in this paper we shall only consider memoryless
strategies. By solving a game, we mean to provide
an algorithm that takes as input a game G, and out-
puts all nodes in W0. We briefly describe the classical
algorithms that solve reachability and Büchi games.

We first provides the algorithm for solving reach-
ability games. Suppose G is a reachability game. For
Y ⊆ V , let

Pre(Y) ={v ∈ V0 | ∃u : (v, u) ∈ E ∧ u ∈ Y }

∪ {v ∈ V1 | ∀u : (v, u) ∈ E → u ∈ Y }.

The algorithm computes a sequence of sets
T0, T1, T2... where T0 = T , and for i > 0, Ti =
Pre(Ti−1) ∪ Ti−1. Since the graph is finite, we have
Ts = Ts+1 for some s ∈ N. A node v is a winning posi-
tion for Player 0 if and only if v ∈ Ts. This algorithm
can be implemented to run in O(m + n) by perform-
ing a reverse breadth first search (starting from T)
to compute the out-degrees of the nodes followed by
a second reverse breadth first search to compute the
Ti’s exploiting the out-degrees computed previously.
The reader is directed to (7, Ch.2) for details. We
refer to this algorithm as the reach algorithm. Let
G be the underlying graph of the game. For any set
X ⊆ V , we use Reachσ(X, G) to denote the σ-winning
region for the reachability game (V0, V1, E, X). In
other words, from any node in Reachσ(X, G), Player σ
has a strategy that forces any play starting from this
node to visit X . Hence in the above algorithm we
have Ts = Reach0(T, G).

We now present the classical algorithm for solving
Büchi games. Suppose G is a Büchi game. Com-
pute the sequences of sets T0, T1, . . ., R0, R1, . . . and
U0, U1, . . . as follows: Let T0 = T . Suppose Ti
is defined for i ≥ 0. Set Ri = Reach0(Ti, G) and
Ui = V \ Ri. Set Ti+1 = Ti \ Reach1(Ui, G). Hence
we have T0 ⊇ T1 ⊇ T2 ⊇ The process termi-
nates when we have Ts = Ts+1 for some s ∈ N.
A node v is a winning position for Player 0 if and
only if v ∈ Reach0(Ts, G). The algorithm takes time
O(n · (m + n)). See (7, Ch.2) for details.

3 Trees with back-edges

We consider rooted directed trees where all edges are
directed away from the root. All terminologies on
trees are standard. The ancestor relation on a tree
T is denoted by ≤T and the root is its least element.
For u ≤T v, let Path[u, v] = {x | u ≤T x ≤T v}.
The level lev(u) of a node u ∈ V is the length of the
unique path from the root to u. The height h of the
tree is max{lev(v) | v ∈ V }. The external path length
ℓ is

∑

{lev(v) | v is a leaf in T }.

Definition 1. A directed graph G = (V, E) is a tree
with back-edges if its edge relation E can be parti-
tioned into two sets ET and EB where T = (V, ET)
is a rooted directed tree and all edges in EB are of
the form (v, u) where u <T v. Edges in EB are
called back-edges. We denote a tree with back-edges
by (V, ET ∪EB). We refer to leaves of T as leaves of

3

G. A Büchi game is played on a tree with back-edges
if its underlying graph is a tree with back-edges.

Let G = (V, ET ∪ EB) be a tree with back-edges.
A subtree of G is a subgraph of G that is also a tree.
In particular, all the edges of a subtree are from ET

and the root of the subtree is not necessarily the root
of G. A subtree with back-edges consists of a subtree
and all induced back-edges on the subtree. We use
B to denote the class of all Büchi games played on
trees with back-edges. A game G ∈ B is denoted by
the tuple (V0, V1, E

T, EB, T) where T ⊆ V are target
nodes. Recall that we may assume without loss of
generality that for any node u ∈ V , we have ET(u) ∪
EB(u) 6= ∅.

In the rest of the paper we will present our al-
gorithm for solving the winning region problem for
games in B. Our claim on the running time of the al-
gorithm depends on the following assumptions on the
data structures and the underlying model of compu-
tation. A node u in a game G ∈ B is stored as the
tuple

(p(u), tar(u), pos(u), Ch(u), InBk(u), OutBk(u)),

where p(u) is a pointer to the parent of u, tar(u) is
true if and only if u ∈ T , pos(u) = σ if and only
if u ∈ Vσ, Ch(u) is a list of children of u, InBk(u)
is a list of incoming back-edges into u, OutBk(u)
is a list of outgoing back-edges from u. We assume
that the underlying model of computation is a ran-
dom access machine (RAM) and that manipulating
registers (of logarithmic lengths) takes constant time.
Hence, accessing p(u), tar(u), pos(u) as well as the
first elements of Ch(u), InBk(u) and OutBk(u) takes
constant time. In the following we define a canonical
form for all games G ∈ B.

Definition 2. A Büchi game G ∈ B is reduced if the
following conditions hold:

• For all (u, v) ∈ EB, u is a leaf in the underlying
tree with back-edges (V, ET ∪ EB).

• All target nodes are leaves.

• Each leaf in (V, ET ∪EB) has exactly one outgo-
ing back-edge.

The following lemma is easy to see.

Lemma 1. Suppose G is a reduced Büchi game and
π is a play in G. Let R be the set of leaves that are
visited infinitely often by π. Then we have

Inf(π) =
⋃

{Path[v, u] | (u, v) ∈ EB, u ∈ R}.

The next lemma reduces solving games in the class
B to solving games that are reduced.

Lemma 2. Given a Büchi game G =
(V0, V1, E

T
1 , EB

1 , T) ∈ B, there exists a reduced
game Rd(G) = (U0, U1, E

T
2 , EB

2 , S) such that

• V ⊆ U and |U | ≤ |V |+ |EB
1 |.

• A node v ∈ V is winning for Player 0 in G if and
only if v is winning for Player 0 in Rd(G).

• Rd(G) is constructed from G in time O(|ET
1 ∪

EB
1 |).

Proof. The game Rd(G) is constructed from G as fol-
lows :

1. For each back-edge (u, v) ∈ EB
1 , add a new

leaf α(u, v) and subdivide the edge (u, v) into
(u, α(u, v)) and (α(u, v), v).

2. S = {α(u, v) | Path[v, u] ∩ T 6= ∅}.

See Fig. 1 for an example. It is easy to see that Rd(G)
is a reduced game and that V ⊆ U and |U | ≤ |V | +
|EB

1 |. We now need to prove that a node v ∈ V is
winning for Player 0 in G if and only if v is winning
for Player 0 in Rd(G). The proof for this is quite
technical and is included in appendix A.

The target level of a node u ∈ V is the number of
target nodes that occur on the unique path from the
root to u. To construct Rd(G) from G, we first com-
pute the levels and target levels for all nodes in V0∪V1.
This can be done by a preorder traversal of the tree
starting from the root. We use k(u) and ℓ(u) to de-
note resp. the target level and level of u. The value
of k(u) and ℓ(u) are set to 0 when u is the root. We
increment the ℓ-value by 1 as the tree traversal visits
a node of a higher level. If a target node u is visited,
we increase the k-value by 1; see Algorithm 1. The
algorithm is executed with parameters (r, 0) where r
is the root of (V, ET

1 ∪ EB
1).

Algorithm 1 AssignLabel(u, i).

1: if tar(u) then k(u)← i + 1
2: else k(u)← i end if
3: for v ∈ Ch(u) do
4: ℓ(v)← ℓ(u) + 1
5: Run AssignLabel(v, k(u)).
6: end for

The algorithm then copies the nodes and edges in
the tree (V, ET

1) to Rd(G). When a back-edge (u, v)
is detected, the algorithm creates a new node α(u, v),
and connects u (resp. α(u, v)) with α(u, v) (resp. v).
Finally, the node α(u, v) is set as a target in S if u
and v have different target levels. Algorithm 1 runs
in time O(|V |) because the algorithm visits each node
in the tree exactly once. The construction of Rd(G)
takes O(|ET

1 ∪EB
1 |) time because each edge (tree edge

or back-edge) in G is visited exactly once.

4 Solving Büchi games played on trees with
back-edges

Our goal is to describe an algorithm that solves a
Büchi game played on trees with back-edges. By
Lemma 2, it suffices to describe an algorithm that
solves reduced Büchi games.

4.1 Snares

Let G = (V0, V1, E
T, EB, T) be a reduced Büchi game.

Let u be a leaf in the tree T = (V, ET). Since G
is reduced, we abuse the notation by writing EB(u)
for the unique node v such that (u, v) ∈ EB. We
will often identify a subset S ⊆ V with the subgraph
of G = (V0 ∪ V1, E

T ∪ EB) induced by S. Recall
that W0 denotes the 0-winning region of G. We now
give a refined analysis of the set W0 by introducing
the notion of snares. Essentially, we will construct a
sequence S0 ⊆ S1 ⊆ S2 ⊆ . . . of subsets of nodes in V
that contain all nodes in W0.

Definition 3. For a subset S ⊆ V , a snare strat-
egy in S is a strategy for Player 0 such that all plays
consistent with the strategy starting from a node in

4

Figure 1: Example of a Büchi game played on a tree with back edges and the equivalent reduced game.

1

2

3

4

5

1

2

3

4

α(4, 1)

5

α(4, 2)

α(2, 1)

Player 0’s nodes

Player 1’s nodes

targets

S stay in S forever. A 0-snare is a subtree S of the
tree (V, ET) such that all leaves in S are targets and
Player 0 has a snare strategy in S.

Note that by definition, Player 0 wins the Büchi
game G from any nodes in a 0-snare. On the other
hand, there can be winning positions of Player 0 that
do not belong to any 0-snares. To capture the entire
winning region W0 of Player 0, we inductively define
the notion of i-snares for all i ∈ N. Let S0 be the set
{u | u belongs to a 0-snare in G}, and let T0 = T . For
i > 0, define the set

Ti = {x | EB(x) ∈ Si−1},

where the sets S1, S2, . . . are defined inductively as
follows.

Definition 4. For i > 0, an i-snare is a subtree S of
the tree (V, ET) such that

• All leaves of S are in T ∪ Ti.

• From any node v ∈ S, Player 0 has a snare strat-
egy in S ∪ Si−1.

We let Si denote the set of all nodes that are in an
i-snare.

Note that the sequence of nodes S0, S1, . . . satisfies
that

S0 ⊆ S1 ⊆ S2 ⊆ · · ·

The snare rank of the node u ∈ V is min{i | u ∈ Si}.
The snare rank of the Büchi game G is the maximum
snare rank of the nodes in G. From now on we always
use r to denote the snare rank of G. Note that the
definition requires that G is a reduced game. When
G is not reduced, the snare rank of G is defined on
the game Rd(G). We use the term snare to refer to
an i-snare for some i ∈ {0, . . . , r}.

As an example, consider the Büchi game shown in
Fig. 2. The 0-snares and 1-snare are shown in the
figure. Note that the subtree with back-edges rooted
at 5 and containing 7, 8, 11, 12 is not a 0-snare. Node
13 is the root of a 1-snare. Note that from 13, Player 1

has two options: 1) move to 15 and lose the game
since 16 is a target node or 2) move to 14 and lose
the game since the play must move to the 0-snare
rooted at 3.

Figure 2: Example of a Büchi game with snares
shown.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0-snare 0-snare 1-snare

Proposition 1. The snare rank r of G is bounded by
the height h of the tree (V, ET).

Proof. Let Hr be a snare of rank r with root ur. It is
clear from the definition of an i-snare that there must
be a leaf x ∈ Hr such that there is a back-edge from
x to some node v ∈ Sr−1. Also note that all nodes in
Path[ur, x] belong to Hr and therefore v <T ur.

Let ur−1 be the root of the snare Hr−1 which con-
tains v (ur−1 ≤T v <T ur). Since ur−1 <T ur,
we have lev(ur−1) < lev(ur). We can apply a sim-
ilar argument to the snare Hr−1 to find a snare

5

Hr−2 which has a root ur−2 <T ur−1 (lev(ur−2) <
lev(ur−1)). In this manner we find a sequence of nodes
ur, ur−1, ur−2, .. such that each ui is the root of an
i-snare and for each i we have lev(ui−1) < lev(ui).
Since the tree (V, ET) has height h, the value of r is
bounded by h.

The following lemmas reduce the problem of solv-
ing a reduced Büchi game to computing snares.

Lemma 3. If u0 ∈ Si for some i ∈ {0, . . . , r}, then
u0 ∈ W0.

Proof. We prove the lemma by induction on i. Sup-
pose u0 belongs to an i-snare S for some i > 0. Let f
be a snare strategy in S ∪ Si−1. Then a play starting
from u0 that is consistent with f either stays in S for-
ever or goes to an (i − 1)-snare. If all plays starting
from u0 consistent with f reach Si−1, then u0 ∈ W0
by the inductive assumption.

Suppose π = u0, u1, .. is a play consistent with
f that does not reach Si−1. Since the game G is
reduced, the play π eventually reaches a leaf node.
Let uj0 be the first leaf node visited by π. Then
uj0 ∈ Ti ∪ T . If EB(uj0) ∈ Si−1, then uj0+1 ∈ Si−1
which is impossible by assumption. Hence, by defini-
tion, uj0 is a target node. Now applying the same
argument to the play starting from uj0+1, we ob-
tain uj1 which is the second leaf node visited by
π. Continuing this argument, we obtain a sequence
of target nodes uj0 , uj1 , uj2 , . . . of nodes in π where
j0 < j1 < j2 < · · · . Hence π is a winning play for
Player 0. This concludes the proof that u0 ∈ W0.

Now our goal is to show that every node in W0
belongs to some snare. We need the following defini-
tion:

Definition 5. Let f be a winning strategy for
Player 0 on a node u. We define the tree induced
by f on u as a subtree T f

u = (V f
u ,≤T) of the underly-

ing tree (V, ET) such that the root of T f
u is u and for

every node w >T u, w ∈ V f
u whenever

• w = f(x) for some x ∈ V0 ∩ V f
u , or

• w ∈ ET(x) for some x ∈ V1 ∩ V f
u .

The edge relation Eu,f is ET restricted to V f
u .

Lemma 4. If u ∈ W0 then u ∈ Si for some i ∈
{0, . . . , r}.

Proof. Suppose u does not belong to any snare. As-
sume for the sake of contradiction that u ∈ W0. Let
f be the winning strategy for Player 0 starting from
u. Consider the tree T f

u induced by f on u. If for
all leaves v in T f

u we have EB(v) ∈ Si for some
i ∈ N, then by definition T f

u is a (j + 1)-snare where
j = max{i | v is a leaf in T f

u and EB(v) has snare
rank i}. This is in contradiction with the assumption.
Therefore, let L be the non-empty set containing all
leaves v of T f

u such that EB(v) does not belong to
any snare. We define a node u1 as follows.

• If all nodes in L are targets, then there is some
v ∈ L with EB(v) <T u as otherwise T f

u is a
0-snare. In this case, let u1 = EB(v).

• Suppose a node v ∈ L is not a tar-
get. If EB(v) ≥T u, then the path
u, v, EB(v), v, EB(v), · · · defines a play consis-
tent with f but is winning for Player 1. Thus
EB(v) <T u and we let u1 = EB(v).

Note that in both cases, u1 <T u and u1 does not
belong to any snare. Also since f is a winning strategy
for Player 0 , u1 is a winning position for Player 0.
Applying the same argument as above, we obtain the
sequence u >T u1 >T u2 >T · · · such that no node in
this sequence is in a snare. The sequence is finite and
let uk be the last node in it. Any play consistent with
f starting at uk stays in the induced tree T f

uk
forever.

Therefore if all leaves in T f
uk

are targets, uk belongs
to a 0-snare which is impossible. Hence let y be the
leaf in T f

uk
that is not a target. Then the sequence

uk, y, EB(y), y, EB(y), · · · defines a winning play that
is consistent with f and is winning for Player 1. This
is in contradiction with the fact that f is a winning
strategy for Player 0.

Combining Lemma 3 and Lemma 4, we have the
following:

Theorem 2. For any reduced Büchi game G, the win-
ning region W0 of Player 0 coincide with the set Sr,
where r is the snare rank of G.

4.2 Finding Snares

Our goal is to present an algorithm that computes all
snares in the reduced game G. Let T = (V, ET). Re-
call from Section 2 that for any X ⊆ V , Player 0 has a
strategy to force any play into X from Reach0(X, T)
by using only tree-edges. For simplicity, we denote
Reach0(X, T) by Reach(X). Note that if v ∈ S0 then
v ∈ Reach(T).

For every node v ∈ Reach(T), we define a value
b0(v) ∈ N inductively as follows:

• If v is a leaf, let b0(v) = lev(EB(v)). Notice that
v ∈ T .

• If v is an internal node and v ∈ V0, let b0(v) =
max{b0(u) | u ∈ ET(v) ∩ Reach(T)}.

• If v is an internal node and v ∈ V1, let b0(v) =
min{b0(u) | u ∈ ET(v)}.

Intuitively, the value b0(v) represents the level in
the tree the game may arrives in if the play starts from
v and goes through one back-edge, when the players
adopt the following strategy:

- Player 0 would like to stay as close to the leaves
as possible.

- Player 1 would like to stay as close to the root
as possible.

For any node v ∈ V , and a strategy f for Player 0,
let

b0(f, v) = min{lev(EB(w)) | w is a leaf

in the tree T f
v }.

Intuitively, b0(f, v) is the largest number k with the
following property: the first leaf w that appears in
any play starting from v and consistent with f has
lev(EB(w)) ≥ k. In other words if Player 0 adopts
the strategy f starting from v, then b0(f, v) is the
closest level to the root that Player 1 can guarantee to
move to after following exactly one back-edge. Note
that when v is itself a leaf, b0(f, v) = lev(EB(v)) for
any strategy f . For any X ⊆ V and v ∈ Reach(X),
let SReach(X, v) denote the set of all 0-strategies that
force any play into X from v. The next lemma relates
b0(v) with b0(f, v) for all f ∈ SReach(T, v).

6

Lemma 5. For every v ∈ Reach(T), b0(v) =
max{b0(f, v) | f ∈ SReach(T, v)}.

The proof of the above lemma is by induction on
the level of v and is included in appendix B.

For every u ∈ Reach(T), let

S0(u) = {v ≥T u | ∀w ∈ Path[u, v] : b0(w) ≥ lev(u)}.

The following lemma provides a way to check if a node
belongs to a 0-snare.

Lemma 6. For every v ∈ Reach(T), v belongs to a
0-snare if and only if v ∈ S0(u) for some u ≤T v such
that b0(u) ≥ lev(u).

Proof. Suppose v belongs to a 0-snare S that is
rooted at some node u. Let f be the snare strat-
egy in S. Since all leaves of S are targets, for all
w ∈ Path[u, v], f ∈ SReach(T, w), and by definition
of a snare strategy, all plays starting from w that
are consistent with f will stay in S forever. In par-
ticular, we have b0(f, u) ≥ lev(u). By Lemma 5,
b0(u) ≥ b0(f, u) ≥ lev(u). Furthermore, for all nodes
w ∈ Path[u, v], b0(w) ≥ b0(f, w) ≥ lev(u). Hence,
v ∈ S0(u).

Conversely, let u ∈ Reach(T) be such that b0(u) ≥
lev(u). We prove that the set S0(u) forms a 0-snare.
It is clear that all leaves in S0(u) are targets. By
Lemma 5, for every node v ∈ S0(u), there is a strat-
egy fv such that any leave w in the tree T fv

v is a target
and lev(EB(w)) ≥ b0(u). Therefore we define a strat-
egy for Player 0 such that g(v) = fv(v) for all node
v ∈ V0 ∩ S0(u). Now let π be a play starting from
some v ∈ S0(u) and consistent with g. Whenever π
reaches a leaf w, we have lev(EB(w)) ≥ lev(u) and
thus EB(w) ∈ S0(u). Hence any play starting from
S0(u) and consistent with g will stay in S0(u) forever.
This means S0(u) is a 0-snare.

Lemma 6 gives us a way to check if a node be-
longs to a 0-snare. In particular, the following equal-
ity holds:

S0 =
⋃

{

S0(u) | u ∈ Reach(T), b0(u) ≥ lev(u)
}

.

We now apply our reasoning above to i-snares where
i > 0. For i > 0, recall that Ti = {w | EB(w) ∈
Si−1}. Note that a node belongs to an i-snare only
if it belongs to Reach(T ∪ Ti). Recall that h is the
height of the tree T . We inductively define a function
bi : Reach(T ∪Ti)→ {0, . . . , h} in the same way as b0
with the following difference: If v ∈ Ti, let bi(v) = h.

For any node v ∈ V and a strategy f , let bi(f, v) =
h if all leaves in the tree T f

u belong to Ti and let
bi(f, v) = b0(f, v) otherwise. In other words, bi(f, v)
is the largest number k ∈ {0, . . . , h} with the follow-
ing property: the first leaf w that appears in any
play starting from v and consistent with f has either
EB(w) ∈ Si−1 or lev(EB(u)) ≥ k. In the same way
as the proof of Lemma 5, we can prove the following
lemma:

Lemma 7. For every v ∈ Reach(T ∪ Ti), bi(v) =
max{bi(f, v) | f ∈ SReach(T ∪ Ti, v)}.

For every u ∈ Reach(T ∪ Ti), let

Si(u) = {v ≥T u | ∀w ∈ Path[u, v] : bi(w) ≥ lev(u)}.

We can prove the next lemma similarly as proving
Lemma 6 with every appearance of Lemma 5 replaced
by Lemma 7.

Lemma 8. For any node v ∈ Reach(Ti∪T), v belongs
to an i-snare if and only if v ∈ Si(u) for some u ≤ v
such that bi(u) ≥ lev(u).

Hence, we obtain the following equality for every
i ∈ {0, . . . , r}.

Si =
⋃

{

Si(u) | u ∈ Reach(T ∪ Ti), bi(u) ≥ lev(u)
}

.

(1)

4.3 An algorithm for solving Büchi games on
trees with back-edges

Recall that for a tree T , the external path length ℓ is
∑

{lev(v) | v is a leaf in T }. For any game G played
on trees with back-edges (not necessarily reduced),
by the height and external path length of G we respec-
tively mean the height and external path length of
the underlying tree of G.

Theorem 3. There exists an algorithm that solves
any Büchi game G played on trees with back-edges in
time O(min{r ·m, ℓ + m}) where r is the snare rank,
m is the number of edges and ℓ is the external path
length of G.

Proof. By Lemma 2, we first compute in time O(m)
the reduced game Rd(G). The rest of the algorithm
works on Rd(G), which we simply write as G. For i ≥
0, assume Si−1 has been computed. By Lemma 8 and
(1), Algorithm 2 computes the set Si. By Lemma 3

Algorithm 2 FindSnare[i](G). (Outline)

1: Compute the set Ti = {w | EB(w) ∈ Si−1}.
2: Compute Reach(T ∪ Ti).
3: For all u ∈ Reach(Ti ∪ T) do:
4: Compute bi(u)
5: If bi(u) ≥ lev(u), compute Si(u) and add

Si(u) to Si.

and Lemma 4, we obtain that W0 = Sr. Hence, to
compute the entire winning region W0, it suffices to
run FindSnare[0](G), Findsnare[1](G),. . ., in order. The
algorithm terminates after running FindSnare[r+1](G)
where Sr = Sr+1 (and thus r is the snare rank).

In FindSnare[i](G), i ∈ {0, . . . , r + 1}, we compute
bi(u) for all u ∈ Reach(Ti∪T) in order: we only com-
pute bi(u) when bi(v) for all v ∈ ET(u)∩Reach(Ti∪T)
have been computed. When bi(u) ≥ lev(u), we apply
a depth-first search on the subtree rooted at u to com-
pute the set Si(u). After Si(u) has been computed,
we contract all the nodes in Si(u) into a meta-node
MSi(u) and redirect edges as follows: any edge (u, v)
where u ∈ Si(u) and v /∈ Si(u) is substituted by an
edge (MSi(u), v) and conversely any edge (v, u) where
v /∈ Si(u) and u ∈ Si(u) is substituted by (v, MSi(u)).
Hence, each edge in G is visited a fixed number of
times and the FindSnare[i](G) algorithm takes time
O(m).

To further reduce the running time of the al-
gorithm, we maintain a variable b(u) for every
node u throughout the entire algorithm. When
FindSnare[i](G) is executed, b(u) will store the value
of bi(u). During the first iteration (when FindSnare[0]
is performed), b(u) = b0(u) for all u ∈ Reach(T) and
undefined for all other nodes. In the subsequent iter-
ations, we do the following to compute bi(u) for i > 0
and u ∈ Reach(T ∪ Ti):

1. If u is a leaf in Ti, set b(u) = h. If u is a leaf in
T , the value of b(u) remains unchanged.

7

2. Then “propagate” the value of b(u) to ancestors
of u as follows: let v be the parent of u. If v ∈ V1
and b(v) > b(u), then set b(v) = b(u). If v ∈
V0 and b(v) < b(u), then set b(v) = b(u). This
process continues until we reach a node w <T u
such that b(w) does not need to be updated or w
is the root.

Hence, at any iteration of the algorithm, we only
change the value of b(v) when b(u) is changed for
some leaf u ≥T v. Also, for any leaf u, if the value
of b(u) is set to h, it is never changed again. There-
fore, the number of times we visit a node v ∈ V is at
most the number of leaves in the subtree rooted at v.
This means that the algorithm runs in time O(ℓ+m)
(since the external path length of Rd(G) is at most
ℓ + m). By the arguments above, we conclude that
the algorithm runs in time O(min{r ·m, ℓ + m}).

5 Solving parity games played on trees with
back-edges

We now apply Theorem 3 to obtain an algorithm for
solving parity games on trees with back-edges. Recall
the definition of parity games from Section 2: In a
parity game G, each node u ∈ V is associated with
a priority ρ(u) ∈ N and Player 0 wins π = v0v1 · · ·
if and only if min{ρ(v) | v ∈ Inf(π)} is even. Also
recall that we may assume that E(u) 6= ∅ for any
u ∈ V . The following lemma reduces the problem of
solving parity games played on trees with back-edges
to solving reduced Büchi games.

Lemma 9. Given a parity game G =
(V0, V1, E

T
1 , EB

1 , ρ) played on trees with back-
edges, there is a reduced Büchi game H =
(U0, U1, E

T
2 , EB

2 , T) such that

• V ⊆ U and |U | ≤ |V |+ |EB
1 |.

• A node u ∈ V is winning for Player 0 in G if and
only if u is winning for Player 0 in H.

• H is constructed in time O(ℓ + m) where ℓ is the
external path length of G.

Proof. To define the sets U0, U1, E
T
2 and EB

2 , we use
the same construction as in the proof of Lemma 2.
The target set T in the game H is defined as

T = {α(u, v) | (u, v) ∈ EB
1 , min{ρ(x) | x ∈ Path[v, u]}

is even}.

We prove the following claim.

Claim. A node u ∈ V is winning for Player 0 in G if
and only if u is winning for Player 0 in H.

Fix u ∈ V . Suppose u is a winning position of
Player 0 in G. Let f be the winning strategy for
Player 0 at u. By Theorem 1 we know that f is a
memoryless strategy. Define the strategy g in the
same way as in the proof of Lemma 2. Any play π
starting from u and consistent with g in H defines a
play π′ starting from u and consistent with f in G
such that Inf(π′) = Inf(π) ∩ V . Since f is a winning
strategy for Player 0, min{ρ(x) | x ∈ Inf(π′)} is even.
Let e = min{ρ(x) | x ∈ Inf(π)}. There must be a
back edge (x, y) ∈ EB

1 that is visited infinitely often by
π′ and min{ρ(z) | z ∈ Path[y, x]} = e. By definition,
the node α(x, y) ∈ T and appears in π infinitely often.
Hence π is winning for Player 0.

Conversely, suppose u is winning position of
Player 0 in H. Then u belongs to a snare by The-
orem 2. Let i be the snare rank of u and let S be
the i-snare containing u. Let f be a snare strategy
for Player 0 in S ∪ Si−1 (recall that Si−1 denotes all
nodes in H that are in an (i − 1)-snare). Define the
strategy g : V0 → V in the same way as in the proof of
Lemma 2. Let π be a play consistent with g starting
from u in G. Our goal is to prove that π is a win-
ning play for Player 0 in G. Suppose for the sake of
contradiction that π is winning for Player 1.

Note that π corresponds to a play π′ consistent
with f such that Inf(π) = Inf(π′) ∩ V . By definition
of an i-snare, each leaf in the snare S is either a target
or has a back edge that goes to Si−1. Assume π′ never
visits Si−1. In this case, all leaves visited by π′ are
targets. Let R be the set of leaves visited by π′, then
by Lemma 1, Inf(π′) =

⋃

{Path[x, α(y, x)] | α(y, x) ∈
R}. Therefore

Inf(π) = Inf(π′) ∩ V =
⋃

{Path[x, y] | α(y, x) ∈ R}.

Since R ⊆ T , for all α(y, x) ∈ R, min{ρ(z) | z ∈
Path[x, y]} is even. Hence min{ρ(z) | z ∈ Inf(π)} is
also even and π is winning for Player 0. This is in
contradiction with the assumption that π is winning
for Player 1.

Hence π′ (and π) must visit a node u1 <H u that
belongs to an (i − 1)-snare. Now apply the same ar-
gument on u1. Continuing this process, we obtain a
sequence of nodes u = u0 >H u1 >H u2 >H · · · such
that for all j ∈ N, uj+1 has snare rank strictly smaller
than the snare rank of uj. Contradiction.

Hence the claim is proved.

We use the depth-first search (DFS) algorithm on
the underlying tree T of G. Consider a path P in T
from the root to a leaf. We represent the length of P
by |P |. We use the algorithm of (17) to preprocess P
in time O(|P |) such that for any u, v ∈ P (u <T v),
we may find the value of min{ρ(x) | x ∈ Path[u, v]}
in constant time. Then it is clear that preprocessing
every such path in T takes O(ℓ) time (where ℓ is the
external path length of G) and subsequently finding
min{ρ(x) | x ∈ Path[u, v]} for any nodes u <T v takes
constant time.

Hence for every back edge (u, v) ∈ EB
1 , min{ρ(x) |

x ∈ Path[v, u]} maybe found in constant time after
the above preprocessing has been completed. There-
fore the algorithm constructs the reduced Büchi game
H as follows:

1. Preprocess every path P of T from the root to a
leaf using the algorithm of (17).

2. For each back edge (u, v) ∈ EB
1 , create a new

leaf α(u, v) by subdividing (u, v). Set α(u, v) as
a target if and only if min{ρ(x) | x ∈ Path[v, u]}
is even (note that this takes constant time now).

The above procedure takes time O(ℓ + m).

By Lemma 9, we obtain the following theorem.

Theorem 4. Any parity game G played on trees with
back-edges can be solved in time O(ℓ + m) where ℓ is
the external path length of G and m is the number of
edges in G.

6 Experimental results

In order to compare the performance of our algorithm
with that of the classical algorithm, we implemented

8

both the algorithms using the Sage mathematics soft-
ware system (18). All the experiments were per-
formed on an Intel Core 2 Duo processor (2.4 GHz)
with a L2 cache of 4 MB and RAM of 3 GB.

The experiments can be broadly divided into two
categories:

1. Average case running time comparison: We sys-
tematically enumerate all games on trees with
back-edges with order n ∈ N nodes. For each
game, we compare the running times of the clas-
sical algorithm and our algorithm.

2. Running time comparison with random sam-
pling: We considered three classes of rooted
trees: (a) rooted trees with unbounded out-
degree (denoted by RANUD) , (b) rooted bi-
nary trees (denoted by RANBT) and (c) rooted
trees where all internal nodes have only a single
child node (denoted by RANDL) We consider
the class RANDL since it is the simplest class
of rooted trees.

Whenever we refer to a random Büchi game G
from one of these classes of trees, we mean that
the underlying tree of G is a randomly gener-
ated tree from that class. Since for a given
n ∈ N , there is a unique tree of order n from
RANDL, we describe how we generate random
samples of order n from the classes RANUD
and RANBT:

• RANUD : We first construct a random free
tree Tfree of order n by generating a sequence
of (n− 2) random integers chosen indepen-
dently and uniformly from {0, 1, . . . , n− 1}
and then applying a reverse Prüfer trans-
formation to this sequence (15). We then
randomly select a root from the nodes of
Tfree, hence obtaining rooted tree T .

• RANBT: We construct a random rooted
binary tree by the algorithm of (16).

Given a random rooted tree T from RANUD or
RANBT, we generate a random reduced Büchi
game G from T as follows:

• For each leaf v of T , we make a random
choice of an ancestor u of v and declare a
back-edge from v to u. In this manner we
obtain a random tree with back-edges Tb.

• From the nodes of Tb, we randomly select
nodes of Player 0 and target nodes to obtain
a random Büchi game G on trees with back-
edges. Note that G is reduced.

Given a rooted tree T from RANDL, for every
node v of T we randomly choose an ancestor u
of v and add a back-edge from v to u. Then we
randomly choose nodes of Player 0 and target
nodes as before to obtain a random game G. We
then use the procedure described in Lemma 2 to
convert G to a reduced game.

In our experiment, we generated random Büchi
games from the three classes described above and
then compared the running times of the classical
algorithm and our algorithm.

Results: Average case running time comparison:
Figure 3 (bottom right) shows the average running
time of the classical algorithm and our algorithm for
games of size n ∈ {5, 6, . . . , 13}. It is clear that our al-
gorithm performs better than the classical algorithm
in all cases. Moreover as n increases, the difference in

average case running time between the two algorithms
increases. This is particularly evident for n = 13,
where our algorithm performs an order of magnitude
better than the classical algorithm.

The picture becomes even clearer when we ana-
lyze the results of the experiments with random sam-
pling. In order to enable a more convenient com-
parison between the two algorithms we have scaled
down the running times of the classical algorithm by
a factor of 102 for all experiments with random sam-
pling. The sizes of the random games are in the range
n ∈ {100, . . . , 10000}.

Random games from RANUD : Figure 3 (top left)
shows the graph comparing the running time of the
classical algorithm versus our algorithm for random
Büchi games from the class RANUD. The sam-
ple sizes are as follows: 106 random games for
n ∈ {100, . . . , 2000}, 105 random games for n ∈
{4000, . . . , 6000}, 5·104 games for n = 8000 and 4·104

games for n = 10000.
As the graph shows, the classical algorithm ex-

hibits quadratic growth in running time whereas our
algorithm has linear growth in running time (with re-
spect to n). This is better than the worst case bound
of O(min{r ·m, l}) mentioned in Theorem 3.

Random games from RANBT: Figure 3 (top right)
shows the graph comparing the running time of the
classical algorithm versus our algorithm for random
Büchi games from the class RANBT. The sample
sizes are as follows: 105 games for n ∈ {100, . . . , 2000}
and 104 games for n ∈ {4000, 10000}. Again the clas-
sical algorithm shows a quadratic growth in running
time as compared to our algorithm which has a lin-
ear growth in running time (w.r.t. n) which is better
than the worst case bound of O(min{r ·m, ℓ}).

Random games from RANDL: Figure 3 (bottom left)
shows the graph comparing the running time of the
classical algorithm versus our algorithm for random
Büchi games from the class RANDL. The sample
sizes are identical to the RANBT case. Here also,
our algorithm shows a linear growth as compared to
the quadratic growth shown by the classical algo-
rithm.

Hence the experiments demonstrate that our algo-
rithm outperforms the classical algorithm in all the
three classes. In particular, for n > 4000, our algo-
rithm performs two orders of magnitude better than
the classical algorithm for all three classes of Büchi
games. The experiments clearly show that, in prac-
tice, not only our algorithm is much more efficient
asymptotically but it also performs better for games
with small number of nodes on the set of trees with
back-edges.

9

Figure 3: The top left graph shows the comparison of algorithms for RANUD, the top right graph for
RANBT and the bottom left for RANDL. The bottom right table compares the average running times of
the two algorithms. The running time of the classical algorithm has been scaled down by 102 in the graphs.

References

[1] Berwanger, D., Grädel, E.: Entanglement - a mea-
sure for the complexity of directed graphs with
applications to logic and games. In: Proceedings
of LPAR’04, pp. 209-223, 2004.

[2] Berwanger, D., Grädel, E., Lenzi, G.: The vari-
able hierarchy of the µ calculus is strict, In: The-
ory of Computing Systems 40, no. 4, 2007, 437-
466.

[3] Chatterjee, K., Henzinger, T., Jurdzinski, M.:
Mean-Payoff Parity Games. In: Proc. of LICS’05,
pp.178–187, 2005.

[4] Chatterjee, K., Henzinger, T., Piterman, N.: Al-
gorithms for Büchi games. In: Proc. of the 3rd
Workshop of Games in Design and Verification
(GDV’06), 2006.

[5] Chatterjee, K., Jurdziński, M., Henzinger, T.:
Simple stochastic parity games. In: Proc. of
CSL’03. LNCS 2803:100-113. Springer, 2003.

[6] Clarke, E., Lu, Y., Veith, H., Jha, S.: Tree-Like
counterexamples in model checking. In: Proc. of
LICS’02, pp.19-29, IEEE Computer Society, 2002.

[7] Grädel, E., Thomas, W., Wilke, T. (Eds.): Au-
tomata, Logics, and Infinite Games: A Guide to
Current Research. LNCS 2500. Springer, 2002.

[8] Immerman, N.: Number of quantifiers is better
than number of tape cells. In: Journal of Com-
puter and System Sciences, 22, 1981, 384–406.

[9] Mang, F.: Games in Open Systems Verification
and Synthesis, PhD thesis, University of Califor-
nia at Berkeley, 2002.

[10] Martin, D.: Borel determinacy, Ann. Math. 102,
No. 2(Sep., 1975), pp. 363-371.

[11] Murawski, A.: Reachability games and game se-
mantics: Comparing nondeterministic programs.
In: Proc. of LICS’08, pp. 353–363, 2008.

[12] Nerode, A., Yakhnis, A., Yakhnis, V.: Concur-
rent programs as strategies in games, in: Logic
from Computer Science (Y. Moschovakis, ed.),
Springer, 1992.

[13] Obdržálek, J.: Algorithmic Analysis of Parity
Games, PhD thesis, Univ. of Edinburgh, 2006.

[14] Thomas, W.: Infinite games and verification.
In: Proc. of the International Conference on
Computer Aided Verification (CAV’02), LNCS
2404:58-64, 2002.

[15] Cho, M., Kim, D., Seo S., and Shin, H.: Colored
Prüfer Codes for k−Edge Colored Trees, Electron.
J. Combin. 11 no. 1, #N10, 2004.

[16] Arnold, D.B., and Sleep, M.R.: Uniform random
generation of balanced parenthesis strings, ACM
Trans. Program. Lang. Syst. 2. 1980, 122-128.

[17] Fischer, J., and Heun, V.: A New Succinct Rep-
resentation of RMQ-Information and Improve-
ments in the Enhanced Suffix Array, LNCS
4614:459-470, 2007.

[18] Sage open source mathematical software, http:
//www.sagemath.org/.

10

Appendix

A Proof of lemma 2

Lemma 2. Given a Büchi game G =
(V0, V1, E

T
1 , EB

1 , T) ∈ B, there exists a reduced game
Rd(G) = (U0, U1, E

T
2 , EB

2 , S) such that

• V ⊆ U and |U | ≤ |V |+ |EB
1 |.

• A node v ∈ V is winning for Player 0 in G if and
only if v is winning for Player 0 in Rd(G).

• Rd(G) is constructed from G in time O(|ET
1 ∪

EB
1 |).

Proof. The game Rd(G) is constructed from G as fol-
lows :

1. For each back-edge (u, v) ∈ EB
1 , add a new

leaf α(u, v) and subdivide the edge (u, v) into
(u, α(u, v)) and (α(u, v), v).

2. S = {α(u, v) | Path[v, u] ∩ T 6= ∅}.

See Fig. 1 for an example. It is easy to see that
Rd(G) is a reduced game and that V ⊆ U and |U | ≤
|V | + |EB

1 |. Suppose v ∈ V is winning for Player 0
in G. Let f be the winning strategy for Player 0 in
G from v. We define a strategy g for Player 0 in the
game Rd(G) such that

g(u) =

{

f(u) if f(u) ∈ ET
1 (u),

α(u, f(u)) if f(u) ∈ EB
1 (u).

Let π be a play starting at v that is consistent with g.
Then π can be written as a sequence in the following
form:

u0, u1, · · · , ui0 ,α(ui0 , ui0+1), ui0+1, · · · , ui1 ,

α(ui1 , ui1+1), ui1+1, · · ·

where u0 = v, u1, u2, . . . are nodes in V . Note fur-
ther that u0, u1, . . . forms a play π′ in G that is con-
sistent with f . Consider a node uj ∈ T occurring
in π′ and let uj+k be the first node that occurs in
π′ after uj such that (uj+k, uj+k+1) ∈ EB

1 . There
are two cases: (a) uj+k+1 ≤T uj in which case the
node α(uj+k, uj+k+1) ∈ S occurs in π after uj . (b)
uj+k+1 >T uj in which case there must be a target
node in Path[uj+k+1, uj+k] in G. If this were not the
case, π′ would be a winning play for Player 1 contra-
dicting our assumption that f is a winning strategy
for Player 0. Hence the node α(uj+k, uj+k+1) ∈ S
occurs in π after uj .

In both the cases, whenever a target node uj oc-
curs in π′, a node α(uj+k, uj+k+1) ∈ S occurs in π.
By the assumption that f is a winning strategy for
Player 0, we have Inf(π′)∩T 6= ∅. It then follows that
Inf(π) ∩ S 6= ∅.

On the other hand, suppose v0 ∈ V is winning for
Player 0 in Rd(G). Let f : U0 → U be the winning
strategy for Player 0 starting from v. We define a
strategy g : V0 → V for Player 0 in G such that

g(u) =

{

f(u) if f(u) ∈ V ,
w if f(u) /∈ V and w ∈ EB

2 (f(u)).

Take a play π = v0, v1, . . . consistent with g. If we
subdivide all back edges (vi, vi+1) in this sequence

by the node α(vi, vi+1), we obtain a play π′ consis-
tent with f and Inf(π′) ∩ V = Inf(π). By Lemma 1,
Inf(π′) =

⋃

{Path[v, u] | u ∈ R, (u, v) ∈ EB
2 } where R

is the set of leaves in Rd(G) that π′ visits infinitely of-
ten. Since π′ is a winning play for Player 0, there is a
node α(u, v) ∈ R∩S. This means that Path[v, u]∩T 6=
∅. Hence we have Inf(π) = Inf(π′) ∩ V ⊇ Path[v, u]
and π is a winning play for Player 0 in G.

The target level of a node u ∈ V is the number of
target nodes that occur on the unique path from the
root to u. To construct Rd(G) from G, we first com-
pute the levels and target levels for all nodes in V0∪V1.
This can be done by a preorder traversal of the tree
starting from the root. We use k(u) and ℓ(u) to de-
note resp. the target level and level of u. The value
of k(u) and ℓ(u) are set to 0 when u is the root. We
increment the ℓ-value by 1 as the tree traversal visits
a node of a higher level. If a target node u is visited,
we increase the k-value by 1; see Algorithm 1. The
algorithm is executed with parameters (r, 0) where r
is the root of (V, ET

1 ∪ EB
1).

The algorithm then copies the nodes and edges in
the tree (V, ET

1) to Rd(G). When a back-edge (u, v)
is detected, the algorithm creates a new node α(u, v),
and connects u (resp. α(u, v)) with α(u, v) (resp. v).
Finally, the node α(u, v) is set as a target in S if u
and v have different target levels. Algorithm 1 runs
in time O(|V |) because the algorithm visits each node
in the tree exactly once. The construction of Rd(G)
takes O(|ET

1 ∪EB
1 |) time because each edge (tree edge

or back-edge) in G is visited exactly once.

B Proof of lemma 5

Lemma 5. For every v ∈ Reach(T), b0(v) =
max{b0(f, v) | f ∈ SReach(T, v)}.

Proof. The lemma is clear when v is a leaf in
Reach(T). Now suppose v is an internal node and
the lemma holds for all nodes u ∈ ET(v) ∩ Reach(T).
If v ∈ V0, by the inductive hypothesis we have

b0(v) = max{b0(u) | u ∈ ET(v) ∩ Reach(T)}

= max
{

max{b0(f, u) | f ∈ SReach(T, u)}

| u ∈ ET(v) ∩ Reach(T)
}

= max
{

max{b0(f, v) | f ∈ SReach(T, v),

f(v) = u} | u ∈ ET(v) ∩ Reach(T)
}

= max{b0(f, v) | f ∈ SReach(T, v)}.

Suppose v ∈ V1. Below we need the following equality
for any sets F1, . . . , Fm ⊆ N:

max{min{xi | 1 ≤ i ≤ m} | x1 ∈ F1, . . . , (*)

xm ∈ Fm} = min{max{Fi} | 1 ≤ i ≤ m}.

Let ET(v) = {u1, . . . , um} and let Fi = {b0(f, ui) |
f ∈ SReach(T, ui)} for i ∈ {1, . . . , m}. Note that for
any 0-strategy f , f ∈ SReach(T, v) if and only if the
subtree of T f

v rooted at ui, 1 ≤ i ≤ m, is of the form
T fi

ui
for some fi ∈ SReach(T, ui). Let f ∈ SReach(T, v)

and f1, . . . , fm be the 0-strategies as described above.
By definition,

b0(f, v) = min{b0(fi, ui) | 1 ≤ i ≤ m} (**)

11

Then by the inductive hypothesis and (*),(**) we
have

b0(v) = min{b0(ui) | 1 ≤ i ≤ m}

= min
{

max{b0(fi, ui) | fi ∈ SReach(T, ui)}

| 1 ≤ i ≤ m
}

= min{max{Fi} | 1 ≤ i ≤ m}

= max{min{xi | 1 ≤ i ≤ m}

| x1 ∈ F1, . . . , xm ∈ Fm}

= max{min{b0(fi, ui) | 1 ≤ i ≤ m}

| f1 ∈ SReach(T, u1), . . . ,

fm ∈ SReach(T, um)}

= max{b0(f, v) | f ∈ SReach(T, v)}

C Examples where our algorithm performs
better than the classical algorithm

We would like to support the positive results of the
experiments described in section 6 by providing some
concrete examples of Büchi games where our algo-
rithm outperforms the classical algorithm. In this sec-
tion, we present a class of Büchi games on trees with
back-edges, E , where our algorithm performs asymp-
totically better than the classical algorithm.

We first describe the game G0 with the small-
est number of nodes in this class and then use G0
as a basic unit to construct larger games from E .
Consider the game G0 shown in Fig. 4. We have
V0 = {3, 4, 5, 6, 7, 8, 9} and V1 = {1, 2} and the target
nodes T = {5, 7}. It is not hard to see that Player 0
has no winning nodes since Player 1 can force any
play from the target nodes to node 1 which is clearly
a winning node for Player 1.

Figure 4: The game G0.

1

2

3 4

5 6 7 8

9

Let us now analyze the running time of the clas-
sical algorithm on G0. In the first iteration, we have
T0 = {5, 7}, R0 = Reach0(T0,G) = {2, 3, 4, 5, 6, 7}
and U0 = V \ R0 = {1, 8, 9}. Then we set T1 =
T0 \ Reach1(U0,G) = {7} and compute R1 and U1.
The algorithm terminates at the end of the second
iteration since T2 = ∅. By contrast, our algorithm
needs only one iteration to compute the set W0.

Before we proceed to describe the construction of
the other games in E , we first give a definition which
will help capture the behavior of the classical algo-
rithm on the games in E .

Definition 6. Given a Büchi game
(V0, V1, E

T, EB, T) ∈ E, for x ∈ T , we define

χ(x) = max{n ∈ N | Player 0 has a strategy to visit

at least n target nodes from x}.

Hence in the game G0, we have χ(5) = 0 and
χ(7) = 1. We now define the games in E inductively:

1. The game G0 is as described earlier. Let C denote
a copy of the subtree rooted at node 2 in G0. We
denote a node in C by vc where v is a node in
G0.

2. For k > 0, we construct the game Gk from Gk−1
as follows: Let x0, . . . , xk−1 be the path in the
underlying tree of Gk−1 such that x0 is the left
child of the root and for every i > 0, xi is the
right child of xi−1. We replace the right subtree
rooted at xk−1 by C and add back-edges from 5c
and 8c to xk−1. We declare the nodes 5c and 7c
to be target nodes in addition to all the target
nodes of Gk−1.

Figure 5 shows the construction of G1 from G0.
Note that a game Gk ∈ E has k + 2 target nodes and
for every n ∈ {0, . . . , k + 2} there is a target node x
in Gk such that χ(x) = n. The following proposition
is not hard to prove:

Proposition 2. Given a Büchi game Gk ∈ E, the
classical algorithm terminates after exactly k+2 iter-
ations. Our algorithm performs exactly one iteration
on Gk.

Intuitively due to the nature of the construction,
given a game Gk ∈ E , the classical algorithm needs
to perform one iteration for every target node x ∈ Gk
i.e. for every i > 0, Ti = Ti−1 ∪ {x} where x is a
target node with χ(x) = i − 1. On the other hand,
our algorithm performs exactly one iteration just as
in the case of G0.

By the above proposition and the fact that a game
Gk has exactly k+2 target nodes, we can see that the
classical algorithm has a running time of O(n · (n +
m)) for the games in E where n, m are the number
of nodes and edges respectively. Since our algorithm
performs exactly one iteration for any game Gk ∈ E
and n + m increases only linearly with k, we see that
our algorithm has a running time of O(n + m). The
following proposition expresses this fact:

Proposition 3. For the class of Büchi games E, the
classical algorithm has a quadratic running time of
O(n · (n + m)) whereas our algorithm has a linear
running time of O(n + m).

12

Figure 5: The construction of the game G1 from G0.

1

2

3 4

5 6 7 8

9

G0

1

2

3

5 6

9

2c

3c 4c

5c 6c 7c 8c
G1

13

