Bornologies and Hyperspaces

Jiling Cao

School of Computing and Mathematical Sciences Auckland University of Technology Private Bag 92006 Auckland 1142 New Zealand

Email: jiling.cao@aut.ac.nz

2011 NZMS Colloquium, UOA and AUT 7 December 2011

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

E

What is a bornology?

Let X be a nonempty set.

A *bornology* on X is a family of subsets \mathfrak{B} of X satisfying the following three conditions:

- B is closed under taking finite unions;
- B is closed under taking subsets;
- \Im \mathfrak{B} forms a cover of X.

Examples

Example

- The power set of X, $\mathfrak{P}(X)$, is a bornology on X. This is the largest bornology on X.
- The family of all finite subsets of X, $\mathfrak{F}(X)$, is a bornology on X. This is the smallest bornology on X.
- Solution Let (X, d) be a metric space. The family of *d*-bounded subsets of X, $\mathfrak{B}_d(X)$, is a bornology on (X, d).
- Let X be a topological space. The family of subsets of X with compact closure, $\Re_c(X)$, is a bornology on X.

Examples

Example

- The power set of X, P(X), is a bornology on X. This is the largest bornology on X.
- The family of all finite subsets of X, $\mathfrak{F}(X)$, is a bornology on X. This is the smallest bornology on X.
- Solution Let (X, d) be a metric space. The family of *d*-bounded subsets of X, $\mathfrak{B}_d(X)$, is a bornology on (X, d).
- Let X be a topological space. The family of subsets of X with compact closure,
 κ_c(X), is a bornology on X.

Examples

Example

- The power set of X, P(X), is a bornology on X. This is the largest bornology on X.
- The family of all finite subsets of X, $\mathfrak{F}(X)$, is a bornology on X. This is the smallest bornology on X.
- Solution Let (X, d) be a metric space. The family of *d*-bounded subsets of X, $\mathfrak{B}_d(X)$, is a bornology on (X, d).
- Let X be a topological space. The family of subsets of X with compact closure, $\Re_c(X)$, is a bornology on X.

・ロ・・ 日・ ・ 日・ ・ 日・

Vector bornologies

Let *E* be a vector space over \mathbb{K} . A bornology \mathfrak{B} is said to a *vector bornology* on *E*, if \mathfrak{B} is closed under vector addition, scalar multiplication, and the formation of circled hulls, or in other words, the sets A + B, λA , $\bigcup_{|\alpha| \le 1} \alpha A$ belong to \mathfrak{B} whenever *A* and *B* belong to \mathfrak{B} and $\lambda \in \mathbb{K}$.

Example (Vector bornologies)

- Let p be a semi-norm, the subsets of E which are bounded for p form a vector bornology on E.
- If E is a topological vector space, the von Neumann bornology is the family of subsets that are absorbed by every neighbourhood of zero in E.

Vector bornologies

Let *E* be a vector space over \mathbb{K} . A bornology \mathfrak{B} is said to a *vector bornology* on *E*, if \mathfrak{B} is closed under vector addition, scalar multiplication, and the formation of circled hulls, or in other words, the sets A + B, λA , $\bigcup_{|\alpha| \le 1} \alpha A$ belong to \mathfrak{B} whenever *A* and *B* belong to \mathfrak{B} and $\lambda \in \mathbb{K}$.

Example (Vector bornologies)

- Let p be a semi-norm, the subsets of E which are bounded for p form a vector bornology on E.
- If E is a topological vector space, the von Neumann bornology is the family of subsets that are absorbed by every neighbourhood of zero in E.

Hyperspaces via bornologies

For a metric space (X, d), let CL(X) be the family of nonempty closed subsets of (X, d). If we equip CL(X) with a metric, a uniformity or a topology, the resulting object is called a *hyperspace*.

For each $A \in CL(X)$, the distance functional $d(A, \cdot) : X \to \mathbb{R}$ defined by

$$d(A, x) = \inf\{d(a, x) : a \in A\}, \quad \forall x \in X$$

is a continuous real-valued function. Thus, if A is identified with $d(A, \cdot)$, then $CL(X) \hookrightarrow C(X)$.

・ロ・・ 日・ ・ 日・ ・ 日・

Hyperspaces via bornologies

For a metric space (X, d), let CL(X) be the family of nonempty closed subsets of (X, d). If we equip CL(X) with a metric, a uniformity or a topology, the resulting object is called a *hyperspace*.

For each $A \in CL(X)$, the distance functional $d(A, \cdot) : X \to \mathbb{R}$ defined by

$$d(A, x) = \inf\{d(a, x) : a \in A\}, \quad \forall x \in X$$

is a continuous real-valued function. Thus, if A is identified with $d(A, \cdot)$, then $CL(X) \hookrightarrow C(X)$.

(日) (圖) (E) (E) (E)

Structure of the hyperspace

Let \mathfrak{B} be a bornology on a metric space (X, d). For any $S \in \mathfrak{B}$ and $\varepsilon > 0$, consider

$$U_{\mathcal{S},\varepsilon} = \left\{ (A,B) : \sup_{x \in \mathcal{S}} |d(A,x) - d(B,x)| < \varepsilon
ight\}.$$

Now, $\{U_{S,\varepsilon} : S \in \mathfrak{B}, \varepsilon > 0\}$ is a base for some uniformity $\mathfrak{U}_{\mathfrak{B},d}$ on CL(X), which induces a topology $\tau_{\mathfrak{B},d}$ on CL(X). In this way, a hyperspace $(CL(X),\mathfrak{U}_{\mathfrak{B},d})$ or $(CL(X),\tau_{\mathfrak{B},d})$ is generated.

・ロト ・四ト ・ヨト ・ヨト

General issue

Using properties of (X, d) and \mathfrak{B} , determine properties of the hyperspace of $(CL(X), \mathfrak{U}_{\mathfrak{B},d})$ or $(CL(X), \tau_{\mathfrak{B},d})$.

Sample results

- $au_{\mathfrak{B},d} = \tau_{\mathfrak{C},d}$ iff \mathfrak{B} and \mathfrak{C} determine the same family of totally bounded sets in X.
- 2 If \mathfrak{B} has a countable base, then $(CL(X), \mathfrak{U}_{\mathfrak{B},d})$ is metrizable.
- (*CL*(X), $\tau_{\mathfrak{B},d}$) is compact iff (X, d) is compact.

General issue

Using properties of (X, d) and \mathfrak{B} , determine properties of the hyperspace of $(CL(X), \mathfrak{U}_{\mathfrak{B},d})$ or $(CL(X), \tau_{\mathfrak{B},d})$.

Sample results

- $\tau_{\mathfrak{B},d} = \tau_{\mathfrak{C},d}$ iff \mathfrak{B} and \mathfrak{C} determine the same family of totally bounded sets in X.
- 2 If \mathfrak{B} has a countable base, then $(CL(X), \mathfrak{U}_{\mathfrak{B},d})$ is metrizable.
- So $(CL(X), \tau_{\mathfrak{B},d})$ is compact iff (X, d) is compact.

(日) (圖) (E) (E) (E)

Special cases

- $\tau_{\mathfrak{P}(X),d}$ is the well-known *Hausdorff metric topology*, which is usually denoted by $\tau_{H(d)}$ [F. Hausdorff, 1914]
- 2 $\tau_{\mathfrak{F}(X),d}$ is called the *Wijsman topology*, which is usually denoted by $\tau_{W(d)}$ [R. A. Wijsman, 1966].
- T_{Bd}(X),d is the Attouch-Wets topology, which is usually denoted by τ_{AW(d)} [H. Attouch and R. J. B. Wets, 1983].
- O Note that $\tau_{\mathfrak{K}_{c}(X),d} = \tau_{W(d)}$ on CL(X).

Special cases

- $\tau_{\mathfrak{P}(X),d}$ is the well-known *Hausdorff metric topology*, which is usually denoted by $\tau_{H(d)}$ [F. Hausdorff, 1914]
- 2 $\tau_{\mathfrak{F}(X),d}$ is called the *Wijsman topology*, which is usually denoted by $\tau_{W(d)}$ [R. A. Wijsman, 1966].
- T_{Bd}(X),d is the Attouch-Wets topology, which is usually denoted by τ_{AW(d)} [H. Attouch and R. J. B. Wets, 1983].
- In the set $\tau_{\mathfrak{K}_{c}(X),d} = \tau_{W(d)}$ on CL(X).

(日) (圖) (E) (E) (E)

Special cases

- $\tau_{\mathfrak{P}(X),d}$ is the well-known *Hausdorff metric topology*, which is usually denoted by $\tau_{H(d)}$ [F. Hausdorff, 1914]
- 2 $\tau_{\mathfrak{F}(X),d}$ is called the *Wijsman topology*, which is usually denoted by $\tau_{W(d)}$ [R. A. Wijsman, 1966].
- τ_{𝔅d}(X),d
 is the Attouch-Wets topology, which is usually denoted by τ_{AW(d)} [H. Attouch and R. J. B. Wets, 1983].
- In the second state $au_{\mathfrak{K}_{c}(X),d} = au_{W(d)}$ on CL(X).

・ロト ・四ト ・ヨト ・ヨト

Special cases

- $\tau_{\mathfrak{P}(X),d}$ is the well-known *Hausdorff metric topology*, which is usually denoted by $\tau_{H(d)}$ [F. Hausdorff, 1914]
- 2 $\tau_{\mathfrak{F}(X),d}$ is called the *Wijsman topology*, which is usually denoted by $\tau_{W(d)}$ [R. A. Wijsman, 1966].
- 3 $\tau_{\mathfrak{B}_d(X),d}$ is the *Attouch-Wets topology*, which is usually denoted by $\tau_{AW(d)}$ [H. Attouch and R. J. B. Wets, 1983].
- On Note that $\tau_{\mathfrak{K}_{c}(X),d} = \tau_{W(d)}$ on CL(X).

(日) (圖) (E) (E) (E)

Completeness

Note that {*X*} is a countable base for $\mathfrak{P}(X)$. So $(CL(X), \tau_{H(d)})$ is metrizable with the compatible metric

$$H(d)(A,B) = \sup_{x\in X} |d(x,A) - d(x,B)|.$$

Then $(CL(X), \tau_{H(d)})$ is complete iff (X, d) is complete.

For any fix any point $x_0 \in X$, note that $\{S(x_0, n) : n \in \mathbb{N}\}$ is a countable base for $\mathfrak{B}_d(X)$. Thus, $(CL(X), \tau_{AW(d)})$ is metrizable.

Theorem (Attouch, Lucchetti and Wets, 1991)

If (X, d) is complete, then $(CL(X), \tau_{AW(d)})$ is completely metrizable.

Completeness

Note that {*X*} is a countable base for $\mathfrak{P}(X)$. So $(CL(X), \tau_{H(d)})$ is metrizable with the compatible metric

$$H(d)(A,B) = \sup_{x\in X} |d(x,A) - d(x,B)|.$$

Then $(CL(X), \tau_{H(d)})$ is complete iff (X, d) is complete.

For any fix any point $x_0 \in X$, note that $\{S(x_0, n) : n \in \mathbb{N}\}$ is a countable base for $\mathfrak{B}_d(X)$. Thus, $(CL(X), \tau_{AW(d)})$ is metrizable.

Theorem (Attouch, Lucchetti and Wets, 1991)

If (X, d) is complete, then $(CL(X), \tau_{AW(d)})$ is completely metrizable.

Theorem (Costantini, 1995)

If X is Polish, then $(CL(X), \tau_{W(d)})$ is Polish for any compatible metric d on X.

Example

- There is a 3-valued metric d on \mathbb{R} such that $(CL(\mathbb{R}), \tau_{W(d)})$ is not Čech-complete [Costantini, 1998].
- **2** There is metric d on $(\omega_1^{\omega})_0$ such that $((\omega_1^{\omega})_0, d)$ is of the first category, but $(CL((\omega_1^{\omega})_0), \tau_{W(d)})$ is countably base compact [C and Junnila, 2010].

A space X is countably base compact if there is a base \mathfrak{B} such that each countable centered family $\mathfrak{F} \subseteq \mathfrak{B}$ has a cluster point.

Theorem (Costantini, 1995)

If X is Polish, then $(CL(X), \tau_{W(d)})$ is Polish for any compatible metric d on X.

Example

- There is a 3-valued metric d on \mathbb{R} such that $(CL(\mathbb{R}), \tau_{W(d)})$ is not Čech-complete [Costantini, 1998].
 - There is metric d on $(\omega_1^{\omega})_0$ such that $((\omega_1^{\omega})_0, d)$ is of the first category, but $(CL((\omega_1^{\omega})_0), \tau_{W(d)})$ is countably base compact [C and Junnila, 2010].

A space X is countably base compact if there is a base \mathfrak{B} such that each countable centered family $\mathfrak{F} \subseteq \mathfrak{B}$ has a cluster point.

Theorem (Costantini, 1995)

If X is Polish, then $(CL(X), \tau_{W(d)})$ is Polish for any compatible metric d on X.

Example

- There is a 3-valued metric d on \mathbb{R} such that $(CL(\mathbb{R}), \tau_{W(d)})$ is not Čech-complete [Costantini, 1998].
- 2 There is metric d on $(\omega_1^{\omega})_0$ such that $((\omega_1^{\omega})_0, d)$ is of the first category, but $(CL((\omega_1^{\omega})_0), \tau_{W(d)})$ is countably base compact [C and Junnila, 2010].

A space X is countably base compact if there is a base \mathfrak{B} such that each countable centered family $\mathfrak{F} \subseteq \mathfrak{B}$ has a cluster point.

The Baire property

A space *T* is *Baire* if for any sequence $\{G_n : n \in \mathbb{N}\}$ of dense open sets in *T*, $\bigcap_{n \in \mathbb{N}} G_n$ is still dense in *T*. In addition, if every nonempty closed subspace of *T* is Baire, then *T* is called hereditarily Baire.

Theorem (Zsilinszky, 1996)

If (X, d) is separable and Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

Theorem (C and Tomita, 2010)

If (X, d) is hereditarily Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

The Baire property

A space *T* is *Baire* if for any sequence $\{G_n : n \in \mathbb{N}\}$ of dense open sets in *T*, $\bigcap_{n \in \mathbb{N}} G_n$ is still dense in *T*. In addition, if every nonempty closed subspace of *T* is Baire, then *T* is called hereditarily Baire.

Theorem (Zsilinszky, 1996)

If (X, d) is separable and Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

Theorem (C and Tomita, 2010)

If (X, d) is hereditarily Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

・ロッ ・雪 ・ ・ ヨ ・ ・

The Baire property

A space *T* is *Baire* if for any sequence $\{G_n : n \in \mathbb{N}\}$ of dense open sets in *T*, $\bigcap_{n \in \mathbb{N}} G_n$ is still dense in *T*. In addition, if every nonempty closed subspace of *T* is Baire, then *T* is called hereditarily Baire.

Theorem (Zsilinszky, 1996)

If (X, d) is separable and Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

Theorem (C and Tomita, 2010)

If (X, d) is hereditarily Baire, then $(CL(X), \tau_{W(d)})$ is Baire.

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Continuous selections

A function $f : (CL(X), \tau_{\mathfrak{B},d}) \to (X, d)$ is called a selection on $(CL(X), \tau_{\mathfrak{B},d})$ if $f(A) \in A$ for all $A \in CL(X)$.

Theorem (Bertacchi and Costantini, 1998)

Let (X, d) be a separable complete metric space, where d is non-Archimedean. Then $(CL(X), \tau_{W(d)})$ admits a continuous selection iff $(CL(X), \tau_{W(d)})$ is totally disconnected.

An observation

Let (X, d) be a separable complete metric space, where d is non-Archimedean. Then $(CL(X), \tau_{AW(d)})$ admits a continuous selection.

・ロ > ・ (日 > ・ (日 > ・ (日 > ・

E

Continuous selections

A function $f : (CL(X), \tau_{\mathfrak{B},d}) \to (X, d)$ is called a selection on $(CL(X), \tau_{\mathfrak{B},d})$ if $f(A) \in A$ for all $A \in CL(X)$.

Theorem (Bertacchi and Costantini, 1998)

Let (X, d) be a separable complete metric space, where d is non-Archimedean. Then $(CL(X), \tau_{W(d)})$ admits a continuous selection iff $(CL(X), \tau_{W(d)})$ is totally disconnected.

An observation

Let (X, d) be a separable complete metric space, where *d* is non-Archimedean. Then $(CL(X), \tau_{AW(d)})$ admits a continuous selection.