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Abstract 

The study of biosignals such as Electromyography (EMG) and Electrocardiography 

(ECG) signals is significant within the physiological and medical field for diagnosis and 

rehabilitation purposes.  The extraction of features from these signals by analysing them 

can be used to understand the possibilities of health and physiological status further.  The 

presence of ECG contamination within surface Electromyography signal (sEMG) has 

been a problem when analysing the muscle activity.  It has been shown that ECG 

contamination of the EMG signal in muscles of the trunk can influence time-based 

(amplitude) and frequency-based measures of the EMG signal.  This has important 

implications when interpreting the amount of muscle recruitment and the level of fatigue 

of trunk musculature. To date, there is little information showing the degree of 

contamination of the ECG when the trunk musculature is contracting at different 

intensities.  There is no clear information regarding whether the ECG signal can be 

effectively extracted from the EMG to detect other physiological variables such as heart 

rate and heart rate variability when the trunk muscles are contracting at different 

intensities.  The significance of the presence of ECG artefacts within sEMG signals at 

various levels of muscular activity is seen to be diminishing as the intensity of EMG 

signals increases as the activity across the muscle increases.  The different levels of EMG 

activity are measured by monitoring the degree of Maximum Voluntary Contractions 

(MVIC) of the muscle. 

This research involved the investigation of the ECG artefacts within sEMG signals that 

were obtained from the lower and upper lumbar erector spinae (ES) muscles of the back.  

This research involved the extraction of the ECG artefacts from sEMG signals using 

Continuous Wavelet Transforms (CWT) with thresholding.  This technique was applied 

to sEMG signals obtained from the lower lumbar erector spinae muscles during different 

levels of static contractions, spanning from 5%-50% of Maximum Voluntary Isometric 

Contraction (MVIC) at 5% intervals.  Surface EMG signals collected across a group of 

healthy participants within the age bracket of 18-35 with no previous history of back 

injury or surgeries within the last year. 

This research explored the difference in signal properties before and after extracting the 

ECG signals from the sEMG signals using the CWT.  The CWT provides a scalogram 

plot that indicates the power intensity at each scale for the extracted signal within the time 

domain.  The CWT scalogram can be replotted to show the corresponding pseudo-
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frequency-time based spectrum plot.  These plots were used to provide the scale values 

most suitable for the ECG extraction from the sEMG signals. 

Using the selected CWT scales, thresholding of these wavelet coefficients was performed 

prior to the reconstruction of the extracted information to diminish the presence of EMG 

signals within the reconstructed ECG signals.  This technique was used due to the 

similarity in nature of EMG signals to that of white Gaussian noise.  The reconstructed 

ECG signal is cross verified with an independent 3-lead ECG recording that was collected 

simultaneously from the same participant during the EMG data collection. 

The significance of the ECG signal before and after extracting the ECG signal from the 

sEMG signal was validated using Fourier power spectrums and finding the median 

frequencies within the selected time segment.  The ECG extraction from sEMG signals 

using the CWT technique with thresholding was shown to have been successful at lower 

percentages (5%-20% of MVIC) and was able to have extracted ECG components 

significantly lowering the median frequency of the EMG signal after the removal of ECG 

signal.  The research showed results demonstrating the extraction of ECG signals from 

sEMG signals collected from the back muscles at low values of MVIC. 
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Introduction 

Statement of the Problem 

Biomedical signals are generated by the human body in response to either a voluntary or 

involuntary event.   These are measurable signals which are generated at the site of the 

respective muscle or organ, along with other forms of interference from other nearby 

muscles or organs.  An example is biomedical signals collected from the upper and lower 

lumbar (back) muscles, which are likely to contain electromyography (EMG) signals 

from the muscular activity and interference from electrocardiography (ECG) signals from 

the heart [1].  The ECG signal might hamper the extraction of information from the EMG 

signals for monitoring and analysing muscle activity. 

Extraction of useful information from biomedical signals is a significant feature in the 

field of health and rehabilitation research.  The properties of EMG signals collected from 

the body in a region near the heart may have ECG signals embedded within them, which 

is often difficult to analyse.  Due to the complexity of the interference of the individual 

components in the EMG signals, digital signal processing techniques can be adapted to 

extract and separate the EMG and ECG signals [2-4] from these signals. 

Digital signal processing techniques have been used to extract useful information for 

quantifying the signal in the study of biomedical signals.  There are limitations to the 

digital signal processing methods and hence, the quality of result attainable.  This is 

mainly evident during the analysis of biomedical signals, which requires further research 

on these techniques. 

Purpose of the Study 

The overall aim of this research was focussed on separating the ECG and EMG 

components from biomedical signals collected from the lower lumbar erector spinae 

muscles of the participants at different levels of static Maximum Voluntary Isometric 

Contractions as a measure to the muscle activity output, applying Wavelet Transform 

with Thresholding to the Wavelet Coefficients.  Wavelet Transform is a digital signal 

processing technique used for performing analysis of a signal when its frequency varies 

over time.   
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 Significance of the Problem 

The study of biomedical signals with digital signal-processing techniques in order to 

extract information and characteristics quantifying the signal is an area of research where 

engineering and clinical expertise overlap.  The advancements in digital signal processing 

techniques have improved the quality of results of biomedical signals now outweighed 

those provided by analogue filtering of the signals. 

Digital signal processing techniques provide signal filtering, which is related to 

theoretical parameters, as compared to analogue filtering techniques that operate within 

constraints of the hardware device parameters and rounding compromises.  Analogue 

filter designs developed are based on magnitude and pulse response for ECG detection, 

which is required to be optimised through multiple stages while accounting for the 

limitations of the design [5].  Digital signal processing also provides the advantage of 

analysing the signal at different stages of implementations of the technique or algorithms, 

providing a better view of quantifying and truncating any possible errors, and providing 

efficient information extraction [6]. 

There has been limited research that has focussed on the extraction of the ECG signals 

and EMG signals from biomedical signals, or the filtering of either component.  These 

researches have concentrated primarily on signals that have been collected close to the 

heart in case of ECG, with minor EMG artefacts [3, 7-10].  Other researchers have used 

EMG signals collected from muscles and have simulated or added ECG components to 

these signals, to study the effectiveness of the signal-processing techniques in extracting 

the ECG from the EMG component [1, 11, 12].  This research primarily focusses on the 

ability and quality of the ECG extraction from the biomedical signals, collected at 

different levels of maximum voluntary static contraction. 

 Structure of the Thesis 

The general background of the thesis is structured in accordance with the research and its 

purpose described in chapter 1.  Chapter 2 presents the literature review that describes the 

background information associated with the muscles, its structure and information related 

to ECG and EMG signals.  This chapter also gives a brief overview of the recent 

developments associated with the extraction of either component and the techniques using 

signal-processing and analysis of ECG and EMG signals.  Chapter 3 provides a brief 

theoretical overview of the Continuous Wavelet Analysis and Thresholding applied to the 
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Wavelet Coefficients used in this research, along with the software development related 

to these techniques.  Chapter 4 presents the data acquisition, along with an overview of 

the protocols, equipment and the procedures implemented for the collection of the 

biomedical signals used for this research.  The results of the research obtained from the 

implementation of the Continuous Wavelet Transform with Thresholding on the acquired 

signals using the developed program are presented in Chapter 5.  Chapter 6 presents the 

conclusion and recommendations for future work related to this research. 
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Literature Review 

 Introduction 

This chapter presents the history and relevant literature related to this research for 

biosignals such as Electromyography (EMG) and Electrocardiography (ECG) signals, 

these signals are used in the study of muscular and cardiac activities respectively.  

Biosignals means a collective electrical signal that is acquired from an organ that 

represents a physical variable of interest [13].  This signal is usually a function of time 

and is describable in terms of its amplitude, frequency and phase [13]. 

Emil du Bois-Reymond in 1849 proposed the possibility of being able to record electrical 

activity during any form of voluntary activity [14].  However, it was in 1890 that the first 

recording of the activity was made by Marey, who also termed this activity as electrogram 

[15].  It was in 1922 that Gasser and Erlanger were able to present electromyography in 

the form of electrical signals using an oscilloscope, and the research involving these 

electrical signals has been a vital focus of study within the biomedical area of research 

[16]. 

The first electrocardiogram was recorded by Willem Eindhoven, using a string 

galvanometer that he invented in 1903 [17].  Advancements have followed this discovery 

detailing the electrical response and the nature of the activity of the heart muscles to 

identify and diagnose physiological conditions and responses to both medical and 

physiotherapy procedures. 

 Literature Search 

An extensive literature search was carried out to find relevant information and resources 

related to ‘electrocardiography’ and ‘electromyography’.  When using the word 

electrocardiography, other search terms such as ‘ECG’ and ‘QRS’ were used.  The term 

QRS was included as it is the primary component of the ECG signal that distinguishes 

the ECG signal from EMG signals.  For information relating to electromyography, the 

other search term used was ‘EMG’. 

The search terms used for obtaining the information for the research on digital signal 

processing were ‘wavelet’ and ‘thresholding’. These terms were used to collect any 
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information detailing these techniques being applied to ECG and EMG signals or other 

biomedical signals within the signal extraction context. 

The literature search comprised of journal articles related to information using the key 

terms mentioned above and was focused on the articles dated from 2007 and later.  This 

ensured that the information obtained during the research was contemporary. The 

literature review consisted of 12 articles involving the study of various techniques for the 

separation of ECG and EMG signals. These articles were limited to sEMG signals 

obtained from healthy individuals and any research studying a particular medical 

condition, or physical ailments were excluded.  The resources used for the literature 

search were obtained from peer-reviewed literature databases such as ScienceDirect, 

Scopus and IEEE, and were accessed through the Auckland University of Technology 

library website.  

The following section in this chapter discusses the background of muscle structure and 

signals relevant to this research.  

Muscles, Electromyography and Electrocardiography 

The muscular system enables the voluntary and involuntary functions and/or movement 

of the human body. Muscular contractions facilitating these mechanisms has been a 

primary focus of research and development within the biomedical sector today.  This 

section focusses on the striated muscles found within the human body that generate the 

ECG and EMG biomedical signals. 

2.3.1 Muscle Classification 

The muscles within the human body are classified based on their structure and are 

primarily classified as striated muscles and non-striated muscles.  Striated muscles are 

mainly responsible for the voluntary movement functions of the body except for cardiac 

muscles that are involuntary.  Non-striated muscles are responsible for the involuntary 

movement functions within the body. 

2.3.2 Striated Muscles 

Striated muscles are cylindrical multinucleated cells consisting of cylindrical structures 

known as myofibrils. The myofibrils are composed of myofilaments that are thick and 

thin filaments of protein such as actin, myosin and titin, shown in Figure 2-1 [18].  The 
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myofibrils are bundled and maintained within the parallel structure by sarcomeres, which 

are the functional units responsible for maintaining the muscle structure in striated 

muscles [18]. 

Figure 2-1: Structure of the Skeletal Muscle [18] 
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The sarcomere shows overlapping arrays of thick and thin filaments. The thin filaments 

are anchored perpendicularly to the Z lines, which are located on the two sides of the 

longitudinal axis of the sarcomere [19].  The thick filaments, with the myosin heads 

toward the Z lines, arise from both sides of a perpendicular line, named M line, at the 

centre of the sarcomere [19].  During contraction, the myosin heads form cross-bridges 

with actins and pull the thin filaments toward the M line [19]. Such an arrangement of the 

thick filaments is known as bipolar geometry, shown in Figure 2-2 [19]. 

Figure 2-2: Bipolar geometry structure of striated muscles, when they are in (a) state 

of relaxation and (b) state of contraction (bottom) [19]. 

The contraction of striated muscles in response to neural impulses has been a focus of 

study to observe the EMG signals.  Striated muscles are classified into skeletal muscles, 

which facilitate the voluntary movements of the human body and the cardiac muscles that 

facilitate the functioning of the heart. 

Skeletal muscles are attached to the human skeleton and are responsible for the reflexive. 

postural and voluntary responses of the human body.  The skeletal muscles are comprised 

of a number of motor units (a motor neuron and all the muscle fibres it innervates).  A 

motor neuron sends electrical signals (action potentials) to the neuromuscular junction 

that, will, in turn, induce impulses to muscles, to initiate the contraction of the muscle 

cells to facilitate the voluntary movement or response.  The motor neurons attached to the 

muscles are the primary factors that control the force produced by a muscle.   The 

bioelectrical signals generated at the skeletal muscles by the muscle cells during skeletal 

muscle contraction can be detected using electromyography signals.   
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Cardiac muscles are striated in structure. Unlike skeletal muscles, they are involuntary in 

their functional behaviour].  The functioning of the cardiac muscles (heartbeat) during 

the circulation of blood is controlled by the autonomic nervous system via the sinoatrial 

node.  The human heart has four chambers consisting of cardiac muscles that facilitate 

the functioning of the heart.  The contraction of the cardiac muscles makes the heart 

circulate blood throughout the body.  The bioelectrical signals generated in the heart is 

the response to the cardiac muscle activity are referred to as electrocardiography signals 

that represent electrical signal transmission across the atria (P-wave) and ventricles (QRS 

complex and T wave). 

2.3.3 Non-Striated Muscles 

Non-striated muscles (commonly known as smooth muscles) are made of thin and thick 

filaments.  The thin filaments of non-striated muscles are made of actin monomer double 

helixes, and the thick filaments of non-striated muscles are made of type 2 myosin that 

can interact with the actin and hydrolyse adenosine triphosphate (ATP) for muscle 

contraction. 

In smooth muscle, thin and thick filaments are arranged less orderly, so there is no clear 

appearance of the existence of sarcomere [19]. The myosin heads of the smooth muscle 

on one side of the thick filament face in one direction with myosin heads on the opposite 

side facing in the opposite direction [19]. Such an arrangement, termed side polar 

geometry, would enable a thin filament to slide unimpeded along a thick filament “side” 

until the end of the thin filament is reached, shown in Figure 2-3 [19]. 

Figure 2-3: Polar geometry structure of non-striated muscles or smooth muscles, 

when they are in (a) state of relaxation (top) and (b) state of contraction (bottom) [19]. 
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The non-striated muscles are mainly in the vascular walls of the blood vessels, 

gastrointestinal tract and airways.  These vascular smooth muscles are responsible for the 

circulation of blood within the human body by muscular contractions, and they are a 

significant influencer of the blood pressure. 

2.3.4 Electromyography 

Electromyography studies signals that measure the electrical current generated in muscles 

during contraction [13].  Electromyography provides information on the muscle activity 

and can be classified into two types (Surface EMG and fine-wire EMG), based on the 

type of electrode and procedure followed for the extraction of the EMG signals [20].  

Surface electromyography (sEMG) signals are collected using surface electrodes placed 

on the skin and can provide the EMG signal from a collection of muscle fibres (motor 

units) within the muscle below the site of electrode placement [20].  On the other hand, 

fine-wire or intramuscular, EMG detects the electrical signal of the muscle fibres of motor 

units located close to the end of a wire(s) inserted into the muscle [20]. 

Skeletal muscle signals typically contain electrical activity from multiple motor units that 

are responsible for the contraction of the muscle shown in Figure 2-4 [18].  The electrical 

response of a combination of these motor units known as compound motor action 

potentials (CMAP’s) that are collectively attained by the surface electrodes to be recorded 

as sEMG [20]. 
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Figure 2-4: Motor Unit consisting of a single motor neuron and the muscle fibres it 

innervates [18] 

The surface electromyography signals emitted by the muscles are weak, ranging from 0.1 

to 5 mV with a frequency spectrum of 0 to 1000 Hz [18, 20].  The frequency band of the 

EMG signals is primarily within the 10 ~ 500 Hz range, with 50 ~ 150 Hz being the 

dominant frequency band of the EMG power spectrum [20].  The individual motor unit 

action potentials (MUAPs) that collectively comprise the recorded sEMG signal vary 

within the frequency spectrum [20]. 

The sEMG signal provides information of the muscular activity but also contains other 

artefacts that are obtained from the skin and subcutaneous tissues, electrical noise and 

movement artefact, and in the trunk, electrical activity of the heart [21]. 
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The frequency components of the electromyography signal generated by the muscles have 

been used to study the fatigue of muscles, and both amplitude and frequency analysis can 

be used to detect muscular response during different intensities of muscular contractions 

[10, 22].  For example, patients with chronic low back pain show lower activation levels 

of lumbar back muscles when compared to those with no low back pain.  This patient 

groups also exhibit altered patterns of back muscle fatigue when compared to healthy 

subjects.  The MUAPs extracted from the electromyography signals may be used for 

classifying neuromuscular disorders and diseases.  For example, the dominant MUAPs 

from the EMG signal has been analysed using signal processing and disease classifying 

techniques to identify and analyse neuromuscular disorders [23].  Neuropathy and 

myopathy are common neuromuscular disorders that have been previously researched 

based on information extracted from the EMG signals [24, 25]. 

The study of electromyography signals has been integrated into movement control of 

artificial or robotic and prosthetic body parts [26-28].  The MUAPs pertaining to a single 

motor unit or the collecting MUAPs for multiple motor units have been a focus of study 

to decode and recreate the function or movement.  The EMG signals are used to identify 

the dominant MUAP to recognise the muscular movement or contraction that is required 

to be induced, as well as the underlying responses of other body parts or systems 

associated with it.  

2.3.5 Electrocardiography 

Electrocardiography studies signal that measure of the bioelectrical properties generated 

by the heart during cardiac muscle contraction, while it circulates the blood throughout 

the body.  These contraction cycles classified as beats are triggered by electrical impulses 

from the sinoatrial node.  The signals pertaining to the activation of the cardiac muscles 

are described as ECG signals.  ECG signals are important in diagnosis, as they comprise 

vital information relating to arrhythmias, ischemia, and myocardial infarction. 

The most common ECG recording procedure involves the use of 12 electrode leads 

consisting of three bipolar limb leads (I, II and III), 3 augmented limb leads (aVR, aVL, 

and aVF), and 6 chest leads (V1 to V6), shown in Figure 2-5. 
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Figure 2-5: ECG signal and electrode placement [29] 

The placement of these electrode leads defines the structure of the ECG signal.  The chest 

leads provide the surface ECG signals which are referenced close to the heart. Therefore 

the placement and spacing of these electrodes on the torso influences the structure of the 

recorded ECG signal [29].  ECG signals can be decomposed as waves, segments or 

intervals.  Waves are the characteristic points of the ECG signal that can be defined as 

deviations from the isoelectric line, i.e. having or involving no net electric charge or 

difference in electrical potential.  These points are named successfully P, Q, R, S, T, U.  

Segments are the isoelectric line periods between waves. Intervals are the period between 

characteristic points of waves. 
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2.3.5.1 Waves 

The waves present in the ECG signal relate to the underlying action potentials of various 

cardiac tissues during polarisation and depolarisation [29].  The waves are denoted by the 

letters P, Q, R, S, and T were assigned by Willem Eindhoven [17].  The cardiac activity 

triggered by the depolarisation of the sinus node is minuscule, so it does not significantly 

affect the ECG signal recorded from the skin surface by clinically-used ECG machines 

[29, 30], shown in Figure 2-6 are: 

 P wave is the current generated by the sequential depolarisation of the atrial cells

of the right and left atria.

 Q wave represents the first downward deflection of the ventricular depolarisation.

 R wave represents the first upward deflection of the ventricular depolarisation.

 S wave the second downward deflection of the ventricular depolarisation.

 T wave represents the ventricular repolarisation following the depolarisation

during the QRS complex.

 U wave represents a small upward deflection following the T wave.  The exact

reason for the U wave is still uncertain and is seldom visible in ECG.

Figure 2-6: Characteristic points, Intervals and Segments of an ECG signal [30]. 
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2.3.5.2 Segments 

The segments are periods between waves within the ECG signal in the heart are isoelectric 

shown in Figure 2-6.  The most commonly documented segment is the S-T segment, 

which represents the period between the S wave and the T wave during which the atria 

are relaxed, and the ventricles are contracted.  However, there is no electrical activity 

recorded during this period.  The length of the ST segment is inversely affected by the 

heart rate [30]. Intervals 

The intervals within the ECG signals denotes the period between the characteristic points 

of the signal, including the waves and any complexes, shown in Figure 2-6 are: 

 PR interval lies between the onset of the P wave and the onset of the Q wave.  The 

PR interval denotes the time taken for the cardiac impulse from the sinus node 

and the right atrium to the ventricles. 

 RR interval denotes the period between the peaks of consecutive R waves.  The 

RR interval is commonly used for the computation of the heart rate. 

 QRS complex denotes the period of ventricular depolarisation.  The QRS complex 

lies between the onset of the Q wave and the end of the S wave.  The QRS complex 

is the most dominant feature within the ECG signal, due to the larger muscle mass 

of the ventricles in comparison to the atria. 

 QT interval denotes the period between the depolarisation and repolarisation of 

the ventricles.  The QT interval lies between the onset of the Q wave and the end 

of the T wave. 
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 Back Muscle Anatomy 

The back muscles are vital to maintaining the posture of the human body and can be 

defined as the muscles on the posterior part of the trunk extending from the neck to the 

pelvis [31].  The major group of back muscles are the back extensors and consist of the 

upper and lower erector spinae and multifidus. The back muscles provide support to the 

spine by being attached to the ribs, vertebrae and their lateral and posterior processes [31, 

32].  The back muscles are divided into two groups: 

1. Extrinsic muscles assist with the movement of the limbs and respiration [32]. 

2. Intrinsic muscles assist with the movement of the spine and posture maintenance 

[32]. 

2.4.1 Erector Spinae Muscles 

The erector spinae muscles are the largest group of back muscles. They are responsible 

for maintaining posture, extending the spine (or resisting flexion), and laterally bending 

the spine [33].  They are the most active trunk muscle during functional activities 

involving manual handling (lifting and lowering).  These muscles are the area of interest 

related to the collection of the biosignals used for this research, shown in Figure 2-7. 

 

Figure 2-7: Erector spinae muscles [33] 



Chapter 2 

16 

The upper erector spinae consists of the upper fibres of longissimus and iliocostalis 

lumborum, which originate from the thoracic transverse processes and lower seven ribs 

and form an aponeurosis that attaches to the posterior pelvis and sacrum (MacIntosh).  

Fibres tend to run parallel to the spine and SEMG of this muscle is typically recorded 

approximately 4-5 cm from the spinous process of T9 [34].  The lower erector spinae 

consists of the fascicles of longissimus thoracis and iliocostalis, and EMG data is typically 

recorded from electrodes located three cm lateral to the L3 spinous process [34]. Further 

detail information of the erector spinae group of back muscles is found in Appendix A of 

this thesis. 

Review of Recent Signal Processing Developments 

The extraction of ECG artefacts from EMG signals focuses on the signal acquisition 

procedures, surface electrodes, muscle activity and signal processing techniques.  This 

research focuses on the use of Continuous Wavelet Transform (CWT) for the extraction 

of ECG artefacts from EMG signals. This section discusses the recent research and 

developments of using the CWT technique for extraction of ECG features from the EMG 

signal. 

The research surrounding the extraction of ECG or EMG signals from sEMG signals 

focusses on an array of processing techniques.  Hashim et al. [3] have developed 

techniques for cancelling EMG artefacts from ECG signals by using modified normalized 

least mean square (NLMS) adaptive filters proving successful in mitigating the EMG 

artefacts of the ECG signal.  The implementation of least mean square (LMS) adaptive 

filtering on sEMG signals collected from the back muscles has been developed by 

Yaohang et al. [1]  to remove the ECG contamination from the sEMG signals from the 

right lower erector spinae muscle contraction of a single subject.  This research has also 

incorporated an adaptive powerline interference canceller alongside the LMS filter.  The 

ECG signal from the chest was used as a reference in the filter design for the extraction 

of the ECG contamination [1]. 

Taelman et al. [35] applied the concept of wavelet transform and Independent Component 

Analysis (ICA) on sEMG signals of shoulder muscles combining both these procedures, 

to overcome the overlapping frequency spectrum and lack of redundancy in a number of 

channels.  The results of this research were successful in eliminating the ECG 

contamination within the sEMG signal at lower levels of muscle activity.  However, 

during this research it was concluded when using raw ECG signal as raw data for the 
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wavelet Independent Component Analysis (wICA), the results outperformed the results 

obtained without the inclusion of the ECG as raw data [35].  The use of ICA with complex 

discrete wavelet transform (CDWT) was proposed by Horihata et al. [36].  This research 

also attempted the separation of ECG and EMG components from the biosignals 

analysed.  The research concluded that the proposed technique of produced excellent 

results that satisfied the objective of separating the ECG and EMG signals [36]. 

The procedure of combining discrete wavelet transforms (DWT), and ICA for removal of 

ECG signals from sEMG signals extracted from the thoracic back muscles was 

undertaken by Nougarou et al. [11].  This research applied a combination of these 

procedures to localize and cancel the ECG within the sEMG signals.  It involved the use 

of the DWT and ICA for the localization of ECG and the cancellation of this ECG signal, 

based on the electrode signals and the estimated cardiac pulses position.  The results 

concluded that it was able to provide better results in terms of relative error and coherence 

mean, compared to simulated methods aimed at direct cancellation of the ECG signal 

[11]. 

The research done by Smital et al. [37] focusing on the reduction of EMG in ECG signals 

using adaptive wavelet wiener filtering was implemented using an artificial noise 

generated to the ECG signal.  The noise for the research was generated using white 

Gaussian noise with the power spectrum being modified to that of EMG signals.  This 

research had concluded that the parameters of the technique for decomposition, filtering 

and thresholding were vital to improving the results [37]. 

Chaudhary et al. [38] compared the different wavelets for discrete wavelet transforms 

(DWT) and the impact of different thresholding methods that would be most effective for 

de-noising ECG signal.  The research compared the effect of ten different wavelets on de-

noising ECG in case of powerline interference, baseline drift and EMG noise.  The five 

thresholding methods of hard, soft, semi-soft, Stein and level-dependent threshold 

estimator based on neighbouring coefficients were applied to the coefficients obtained 

from the DWT process.  This research concluded that the various thresholding techniques 

were successful in improving the results obtained from the de-noising procedure.  The 

research also found that to denoise EMG signal from ECG signals, semi-soft thresholding 

is the most effective [38]. 

The detection of the QRS component has been significant towards ECG denoising and 

extraction of ECG information.  Zhou et al. [9] developed an adaptive threshold algorithm 
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based on wavelets for QRS detection.  This research implements the de-noising of the 

ECG signal from powerline interference, baseline drift and EMG noise prior to the 

detection of the QRS interval.  Zhou used DWT for the decomposition of the signal and 

applied the thresholding technique to the coefficients for the de-noising of the signal prior 

to reconstructing the signal for QRS detection.  Zhou et al. [9] concluded that there was 

a significant margin of difference in the signal de-noising quality comparing the hard, soft 

and adaptive thresholding methods with adaptive thresholding producing far better de-

noising results. 

The research on the method of ECG de-noising based on improved wavelet packet by 

Gang et al. [39] followed a similar scheme of de-noising the ECG signal as Zhou et al. 

[9]. However, Gang et al. [39] focused on decomposing the collected ECG signal using a 

Dyadic wavelet packet algorithm rather than DWT.  The research involved combining 

the wavelet packet to remove artefacts within the lower frequency range and the 

thresholding technique to remove the higher frequency noise artefacts.  It was concluded 

that the wavelet transforms have a filtering range in terms of frequency similar to digital 

filters; however, it proves to be a better ECG de-noising tool within both the time and 

frequency domain due to the delay of the digital filters.  The research also concluded that 

the implementation of the thresholding with the wavelet packet functions provided better 

results in terms of removal of the EMG interference within the ECG signals [39]. 

Verma et al. [8] used the thresholding function conjointly with wavelet decomposition 

and empirical mode decomposition for de-noising ECG signal.  Soft thresholding was 

used for the filtering purpose that was optimised for minimum distortion by minimising 

the consecutive mean-square error (CMSE) criterion.  This research produced better 

results in terms of de-noising the ECG signal in comparison to the EMD-based filtering 

method [8]. 

The extraction of ECG signals from EMG signals follow the removal of signal 

components. The reviewed research primarily focuses on the separation of the ECG or 

EMG signals from sEMG signals collected during minimal activation of the muscles. The 

signals used during these researches follow a similar pattern of having a dominant element 

of either the EMG or ECG signal that is sought to be the objective of their study. 

Investigations involving the use of simulated signals during the examination of signal 

separation techniques for the extraction of the ECG and EMG signals were also reviewed. 

The use of simulated signals in these researches involve the generation of signals based 



Chapter 2 

19 

on parameters or functions set by the researcher and lacks the implementation of the 

signal processing techniques proposed on real-world signals and assessing its 

effectiveness on these signals. The researches reviewed as part of the literature review 

had provided satisfactory outcomes confirming their conclusions to the studied signal 

processing technique. 

 Objectives and Methodology 

This research focused on the extraction of the ECG and EMG signals using sEMG signals 

collected from the lower and upper erector spinae muscles of the back.  The research used 

the digital signal processing application of continuous wavelet transform, along with 

thresholding to extract the ECG signal component.  

EMG signals, along with ECG signals, were collected from healthy individuals aged 

between 18 and 35 years of age with no back or neuromuscular injuries.  Bipolar surface 

electrodes (Nortrode) were placed on the skin surface superficial to the right upper erector 

spinae (5 cm lateral to the T9 spinous process) and lower erector spinae (approximately 

3 cm lateral to the L3 spinous process).  Surface EMG signals were amplified (×500) and 

band-pass filtered (10-500 Hz) at collected at a sample rate of 1500 Hz.  The participants 

were required to undergo a Maximum Voluntary Isometric Contraction (MVIC) and 

different levels of contractions, for the data collection used in this research. 

The extraction of the ECG artefacts from the sEMG signals for this research used a new 

signal processing algorithm developed using MATLAB, which utilized the continuous 

wavelet transform function.  The Continuous Wavelet transform used the Morlet mother 

wavelet to produce a scalogram to show the scales of the wavelet in the time domain with 

the intensity of the signal generated by the analysis.  This information provided a suitable 

foundation for the selection of the scales and the fine-tuning of the scale parameters for 

the extraction of the ECG.  The thresholding function is applied to the coefficients 

obtained from the wavelet transform prior to reconstruction to limit the higher frequency 

components that have a very low or insignificant presence in terms of amplitude within 

the whole frequency band analysed.  These results were compared with the ECG signal 

that is simultaneously collected from the individuals with the sEMG signals used. 
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Digital Signal Processing 

Introduction 

This chapter focuses on the digital signal processing techniques used for the analysis of 

the biosignals collected from the participants, who were part of this research.  The 

theoretical principles of the digital signal processing techniques used are discussed in this 

chapter, which covers Continuous Wavelet Transform (CWT) with Thresholding.  Also 

covered are the basics of biosignal acquisition and pre-processing of the biosignals used 

in this research. 

A biomedical signal is a phenomenon that carries information related to one or more 

biological systems involved [40].  Biosignals or biomedical signals are signals that show 

the bioelectrical activity of one or more biological systems within the body.   

3.1.1 Biosignal Classification 

Biosignals or Biomedical signals are classified into discrete and continuous signals, based 

on signal acquisition and processing.  Continuous signals are defined within any point of 

the time domain and are processed using analogue signal processing techniques.  The 

discrete signals are quantised digital signals that are discrete points reflecting the value 

of the amplitude at the time it is measured [41].  In this research, the signals used are 

discrete, which were analysed by digital signal processing techniques, using a personal 

computer. 

Signals are classified on the nature of the waveform recorded shown in Figure 3-1, either 

as: 

 Deterministic

 Stochastic
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Figure 3-1: Signal Classification [42] 

Deterministic signals can be represented by a mathematical expression, and they can be 

classified as periodic or non-periodic signals.  Periodic signals are considered to have 

repetitions of the waveform within the time domain.  These repetitions can be either 

sinusoidal or complex waveforms, that can contain more than a single waveform that can 

be represented by a Fourier series.  Non-periodic signals are signals that do not repeat 

themselves but can be represented by a mathematical expression.  These non-periodic 

signals are classified into transients and almost-periodic signals [41]. 

Stochastic signals have functions that are random in nature and cannot be expressed by 

using a mathematical expression but can only be expressed in terms of probabilities.  The 

collections of these random processes produced sample functions known as ‘ensembles’.  

These sample functions share the same distribution probabilities, even though they differ 

from the other in detail.  Stochastic signals are classified into stationary and non-

stationary [41]. 

The biosignals are never completely deterministic, and always have an unknown element 

within them that is stochastic in nature.  This is because of the complexity associated with 

the acquisition of the biosignals and the systems related to the generation of these signals. 

3.1.2 Biosignal Acquisition 

The acquisition of biosignals is determined by the standards of the equipment available 

and the technological advancements within the biomedical industry.  Biosignals are 

continuous in nature at the site of the collection of the signal, and they are collected in 
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terms of electric variables which are currents, voltages or field strengths.  The bioelectric 

signals are collected from the site using sensors such as electrodes, and these signals are 

directly used for further processing.   

There are various stages in the acquisition of biosignals from acquiring the analogue 

signal to converting it to a digital signal for analysis, shown in Figure 3-2. 

 

Figure 3-2: Biosignal Acquisition 

The data acquisition of the analogue signals has a pre-processing phase that involves the 

amplification and filtering of the signal.  The amplification and analogue filtering of the 

signals are based on the parameters of the input analogue signal, and the requirement set 

by the analogue-to-digital converter (A/D) for the digital signal used for processing.  The 

amplification and filtering are used to set the bandwidth limit for the signal prior to 

analogue-to-digital conversion, to reduce any aliasing while preserving signal 

information and quality. 

The amplification of the signal improves the resolution of the signal for the filtering of 

the signal.  Since the biosignals have a low signal-voltage amplitude, the amplification 

procedure is vital to avoid excessive filtering and truncating of the signal components.  

The amplification procedure also changes the amplitude of the continuous-time signal to 

match the input voltage range required for the analogue-digital converter.  The analogue 

filter’s primary objective is to eliminate external noise artefacts such as interference 

caused by the hardware (electrodes, signal collection cables, etc.), and other external 

sources such as lights or the movement of the surface and hardware. 

The conversion of the analogue signal to a digital signal is an important step in the signal 

acquisition process for digital processing and analysis. The analogue-to-digital 

conversion can be classified into signal sampling and quantisation procedures.  The signal 

sampling process converts the continuous signal to discrete points within the time domain 

that provides elements for quantisation.  The quantisation process assigns a value for the 



Chapter 3 

23 

amplitude corresponding to the continuous signal at the discrete-time element determined 

by sampling [43]. 

The sampling process is determined by the Nyquist-Shannon theorem, which indicates 

that a continuous-time representation of the signal can be recovered from the discrete-

time samples if the sampling rate (fs) is greater than twice the signal bandwidth (fb).   

 fs > 2fb (3.1) 

The sampling value is vital to assessing the frequency spectrum and reproducing the 

information previously held by the original signal.  For example, the frequency 

component of sEMG can be as low as 10-20 Hz and ranges to 400-500 Hz. When the 

sampling frequency is less than twice the signal bandwidth, the Nyquist-Shannon theorem 

is not satisfied, and this results in incorrect reconstruction of the signal, and that is known 

as aliasing.  Also, this undersampling of the signal results in some elements within the 

signal to not be recorded, giving loss of information within the signal [43].  Hence, the 

sEMG data collected from the trunk muscles are typically collected at a sampling rate of 

at least 1000 Hz [44].  

The quantisation of the signal primarily depends on the resolution of the analogue-to-

digital signal.  However, the quantization of the signal limits the value that can be 

assumed by the amplitude of the continuous-time signal, and this process of the signal 

requires it to be truncated or rounded to the nearest quantisation level [43].   

The discrete-time signal generated from the digitisation of the continuous-time signal is 

used for the extraction of features from the signal.  In this research, the sEMG signal 

obtained from the hardware is sampled at a frequency of 1,500 Hz, to record the 

components within the frequency bandwidth up to 750Hz.  The major sEMG signal 

frequency components are present up to a value 500Hz [44], which is well within the 

frequency bandwidth for the sampling frequency at which the signal is acquired. 

3.1.3 Biosignal Digital Signal Processing of ECG and EMG 

Biosignal digital signal processing involves the extraction of the signal features, signal 

parameters and evaluation of the extracted information.  This is the second phase of the 

research, which involved taking the entire signal processing and using MathWorks® 

MATLAB version 2017b. 
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For this research, the digital signal processing techniques were applied to the sEMG 

signal to extract the ECG artefacts contained within the sEMG signal.  Due to the 

overlapping amplitude and frequency values of ECG and sEMG signals shown in 

Figure 3-3, the extraction of ECG signals from sEMG signals is challenging.   
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Figure 3-3: Range of amplitude and frequency components of ECG and sEMG 

signals 

3.1.4 EMG and ECG feature extraction 

The focus of this research was to be able to extract the ECG component from the sEMG 

signal for the back muscles at different levels of Maximum Voluntary Isometric 

Contraction for a predetermined task.  The Fourier power spectra of the original biosignal 

collected that retained sEMG and ECG components were analysed, to investigate the 

difference between the sEMG component prior and post-removal of the ECG artefact 

signal. 

The extraction of the ECG artefacts from the sEMG signals can be achieved using the 

wavelet transform techniques.  This literature review discusses previous research that has 

been carried out over the past 10 years for the extraction or separation of ECG and EMG 

signals, and the removal of one signal from the other using the wavelet transform and 

Fourier Transform (FT) techniques.  The Continuous Wavelet Transform (CWT) and 
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Discrete Wavelet Transform (DWT) techniques are commonly used for the feature 

extraction of the ECG and EMG signals.  Fourier Transform (FT) is used for analysing 

the frequency spectrum of the signals.  The theoretical overview of both the FT and the 

CWT are discussed in sections 3.2 and 3.3, along with the concept of thresholding. 

Fourier Transform Analysis 

Fourier Transform (FT) is a mathematical technique for representing a signal as the sum 

of constituent sinusoidal functions with different frequencies.  Fourier transforms express 

the Fourier series in a generalised format using exponentials and complex numbers, in 

contrast to the Fourier series that express the signal function as the sum of sine and cosine 

functions at different frequencies. 

The Fourier transform F(ω) of a time-domain signal x(t) can be expressed as an integral 

function given by: 

F(ω) = ∫ x(t)e−jωtdt

∞

−∞

(3.2) 

where the angular frequency ω = 2πf given using the signal input frequencies f. FT is 

used for spectral analysis, as it can express all the frequencies and amplitudes of the 

sinusoidal components of a time-domain signal. 

3.2.1 Fourier Transform 

The Fourier Transform (FT) can theoretically only be applied to signals of continuous-

time and infinite duration.  The signals that are acquired and stored on the computer are 

referred to as ‘discrete’, meaning that the acquired digital signals have data points that 

are sampled and quantised.  Discrete signals have a finite number of data points and are 

not continuous in nature. This makes the use of the general Fourier Transform expression 

given in equation (3.2) for spectral analysis unsuitable for discrete signals.  So Discrete 

Fourier Transform (DFT) is used to convert the discrete-time signal from the time domain 

x[n] to the frequency domain signal X[k]. 
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 X[k] =  ∑ x[n]e−j2πkt/N

N−1

n=0

 (3.3) 

The discrete angular frequency 2πk can be calculated using the signal frequency k.  The 

number of samples in both the discrete-time and discrete-frequency domain N is used to 

set the limits for the discrete Fourier transform function. 

The DFT of a discrete signal is found using the MATLAB function ‘fft’.  For this research, 

the sEMG signals were acquired and stored on a computer are discrete-time signals.  The 

Fourier Transform of the sEMG signals were computed using MATLAB, and the 

frequency response of the discrete-time signal is generated.  The raw sEMG signal 

collected from an isometric contraction at 50% Maximum Voluntary Isometric 

Contraction (MVIC) of the lower erector spinae muscle group sampled at 1,500 Hz is 

shown in Figure 3-4 (top plot), with the spectral analysis of the sEMG signal shown in 

Figure 3-4 (bottom plot).  The Fourier Transform shows the dominant frequency, as well 

as the amplitude of each frequency component present within the signal. 
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Figure 3-4: Raw sEMG signal (top) from the lower erector spinae muscle at 50% 

Maximum Voluntary Isometric Contraction (MVIC) and the Fourier Transform plot of 

the sEMG signal (bottom). 

The exact time-localised distribution of the frequency components of the original signal 

cannot be defined using FT. This is because the FT of the signal provides the power 

spectra of the signal within the frequency domain.  The FT frequency spectrum plot of 

the signal is a measure of the amplitude of each sinusoidal value at different frequencies.  

FT transforms the signal from the time domain to the frequency domain, and the signal is 

assumed to be stationary in nature.  This results in the FT not being able to detect non-

stationary and transient features, such as any drifts or abrupt changes within the signal.  

sEMG signals have those characteristics, and they are considered to be important features.  

FT is not an ideal technique for the extraction of features within sEMG signals.  However, 

FT is ideal for assessing the power spectrum of the signal, and it can be used to observe 

the amount of power preserved post and pre-filtering of sEMG signals. The time 

resolution is better for the signal analysed within a narrow window using the Short-Time 

Fourier Transform (STFT), but it also has a poor frequency resolution.  On the other hand, 

if a wide window is used for STFT, the frequency resolution tends to be better, but the 

time resolution of the signal is poor.   
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 Wavelet Transform 

The Wavelet Transform (WT) is a technique that is applied for the analysis of heart-

activity monitoring, compression of video and medical images and signals.  WT is the 

analysis of signals using localized wavelets with the presence of a time frame. WT is able 

to preserve the information of the time localisation for each frequency components that 

are observed to be present in the time-domain of the signal.  This information can be used 

to analyse the instantaneous characteristics and features of the signals such as abrupt 

changes.  The wavelet analysis uses a time-scale analysis that provides a flexible time-

frequency resolution.  It is not affected by the limitations of the size of window or data 

like that of time-frequency-based analysis techniques such as Short Time Fourier 

Transform (STFT) [45]. 

The WT is an expression of the signal in the form of an infinite series or linear 

combination set of wavelet functions that are constructed, based on the mother wavelet.  

The mother wavelet is the original window function that is manipulated to obtain the 

wavelet functions required for the extraction of signal features shown in Figure 3-5.  The 

mother wavelet can be manipulated using two methods: (a) the first method is the dilation 

or compression of the mother wavelet known as scaling shown in Figure 3-5 (top plot) 

and (b) the second method is the movement of the mother wavelet along the time domain 

of the signal known as translating or shifting shown in Figure 3-5 (bottom plot).  The 

translating and scaling processes of the mother wavelets produce sets of wavelet functions 

known as daughter wavelets that form the wavelet functions used for the signal analysis 

[46]. 
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Figure 3-5: ‘Wavelet Scaling’ - the dilation of the mother wavelet (top) and ‘Wavelet 

Translating’ - the wavelet being moved within the time domain (bottom) [47]. 

The higher scales on the mother wavelet results in the dilation of the mother wavelet 

producing daughter wavelets with low frequency and the lower scales, on the other hand, 

compresses the mother wavelet producing daughter wavelets with higher frequency.  The 

scale value for the scaling of the mother wavelet inversely affects the frequency of the 

daughter wavelets generated using the mother wavelet.  The WT uses these daughter 

wavelets, which are shifted in the time domain as they are superimposed on each other in 

synchronisation.  Mathematically, the interpretation of the wavelet can be identified as 

the convolution of these daughter wavelets to the original signal to generate a scalogram 

plot representing the amplitude of the value resulting from the matching of the wavelet to 

the window of the original signal shown in Figure 3-6.  This procedure is repeated through 
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the whole signal, and the computation of the transform value is calculated for various 

scales at each location on the time domain.  The WT uses the scaling value to have the 

daughter wavelets scaled to the frequency value known as the pseudo frequency [47]. 

 

Figure 3-6: Wavelet matching with the original signal (top plot) to produce a wavelet 

transform plot called a Scalogram (bottom plot) [47]. 

Wavelet analysis is used for feature extraction and analysis of biosignals, as it can provide 

an almost perfect reconstruction of the signal from its transform coefficients without 

having the need to oversample the original signal.  This means that wavelet transforms 

preserve time and frequency resolution.  In contrast, the frequency resolution of STFT is 

dependent on the length of the window being used.  The use of wavelet transform provides 

a time-scale analysis that uses varying scales providing a better time resolution in 
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comparison to the STFT technique, which is limited to using a fixed resolution set by the 

window size throughout the signal [48]. 

The normalised mathematical expression of the daughter wavelets Ψa,τ produced from 

the mother wavelet by scaling and shifting of the mother wavelet Ψ(t) can be 

demonstrated using the equation (3.5): 

 Ψa,τ(t) =
1

√a
Ψ (

t − τ

a
) (3.4) 

where a represents the scaling parameter and τ represents the shifting parameter. 

When the value of a is changed, the scaling of the mother wavelet changes.  The wavelet 

becomes dilated when the scaling factor increases, resulting in the daughter wavelet Ψa,τ 

becoming a stretched version of the mother wavelet Ψ.  On the other hand, the wavelet 

becomes compressed when the scaling factor decreases, resulting in the daughter wavelet 

Ψa,τ becoming a compressed version of the mother wavelet Ψ.  The value of the shifting 

parameter τ is used to move the daughter wavelets along the time domain that is required 

for the convolution of the wavelet function for identifying the matching regions of the 

original signal to the wavelet.  The wavelet function produces the scalogram that is a 

representation of the signal regions that fulfil the matching criteria for the Wavelet 

Transform.  The wavelet transform technique could be considered a bandpass filter, for 

the finite range of frequencies set by the scales and the mother wavelet.  This 

implementation of the bandpass filter is based on the pseudo-frequency of the daughter 

wavelet that can change based on the value of the scale implemented, providing a wider 

or narrow frequency resolution.  The time-scale representation of the signal using 

wavelets has an equivalent time-frequency expression using the value of the scale.  Note 

that the use of 1 √a⁄  as the factor in the equation (3.4) of the daughter wavelets is for 

normalising the wavelet to preserve energy [47]. 

The normalised mathematical expression for the conversion of the scale of the wavelet to 

its equivalent pseudo-frequency fa is given by equation (3.5): 

 fa =
f0

a
 (3.5) 
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where a represents the scaling parameter and f0 is the centre frequency. 

The mother wavelet is localised on a non-zero centre frequency f0 at scale = 1.  The 

inverse relation between the scale and the frequency of the wavelet is denoted by the 

expression.  The pseudo frequencies of the daughter wavelets can be changed to the 

frequency of the signal for spectral analysis using the sampling frequency fs. 

 fa =
fs × f0

a
 (3.6) 

The selection of a mother wavelet is vital to the wavelet transform when assessing the 

scale and hence the pseudo frequency values.  The different types of wavelet families that 

are commonly used in practice include Gaussian (first-order Gaussian derivative), 

Mexican Hat (second-order Gaussian derivative), Morlet (or Gabor), Haar, Coiflet, and 

Daubechies.  The type of mother wavelet affects the wavelet selection procedure with its 

compatibility and shape of the wavelet required for signal processing.  The shape of these 

wavelet families depends on the localisation of the wave features and the structure of the 

wave.  Some of the wavelet families such as Coiflet and Daubechies have wavelet 

subclasses that are mother wavelets, which differ from the other wavelets within the same 

family based on the number of coefficients and the level of iteration [49]. 

The decomposition of a signal using WT produces coefficients known as wavelet 

coefficients that are used for reconstruction purposes as well as generation of the 

scalogram.  The values of the wavelet coefficients are produced based on the matching of 

the wavelet with the original signal.  The abrupt changes within the signal and the low-

frequency components of the signal can be identified using the wavelet coefficients.  The 

wavelet transform technique provides a better time resolution at high frequency and a 

better frequency resolution at low frequency.  The signal can be reconstructed as a linear 

combination of the wavelet function based on its wavelet coefficients.  The number of 

wavelet coefficients determines the level of detail during the reconstruction of the signal.  

The level of reconstruction of the signal is better or in more detail with the higher number 

of coefficients.  In order to reconstruct the signal, enough coefficients are required to 

provide sufficient information for the reconstruction. 

The two types of wavelet transform used are (a) continuous wavelet transform and (b) 

discrete wavelet transform.  This research focuses only on the continuous wavelet 

transform, which is discussed in the following section. 
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3.3.1 Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform (CWT) is the computation of the signal by 

continually shifting the wavelet function over the entire time domain of the analysed 

signal.  The CWT can operate at any scale and position within the time domain that is 

determined during the signal analysis.  The CWT is not computed at arbitrary dilations 

nor at an isolated location, but rather over a continuous range defined between two points. 

The CWT function for a signal can be defined as an integral function in the equation (3.7): 

CWTx(a, τ) = ∫ x(t)Ψa,τ
∗ (t)dt

∞

−∞

(3.7) 

The scaling parameter is represented by a, τ defines the translation parameter by which 

the wavelet is shifted in the time domain of the signal.  The wavelet function Ψa,τ
∗  is

obtained from the conjugate of the function obtained from the mother wavelet 

manipulated using the scaling parameter a and translation diameter τ.  The conjugate of 

the wavelet function is used for all continuous wavelet transforms, apart from the 

Mexican Hat wavelet that is made of real functions and is not a complex function.  Since 

the wavelet function Ψa,τ is defined in the equation (3.4), the equation (3.7) for CWT can 

be modified as: 

CWTx(a, τ) =
1

√a
∫ x(t)Ψ∗ (

t − τ

a
) dt

∞

−∞

 (3.8) 

The scalogram plot of the CWT analysis provides the time-scale view of the signal.  It 

shows information similar to the STFT spectrogram of the magnitude of the signal, but 

in the case of the spectrogram, the magnitude is analysed in relation to frequency.  

However, for the scalogram, the magnitude is assessed in relation to the scale for an 

instant within the time domain of the signal.  The scalogram coefficients hold the 

information regarding the presence of the signal features and their scales, that can be 

assessed using pseudo-frequency values within the time domain of the signal.  This helps 

in identifying the dominant frequencies within the signal and also the time localisations, 

detecting when they occur in the time domain. 
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The scalogram can be represented as the power by the squaring the magnitude of the 

coefficients obtained from the CWT [47]. 

 |CWTx(a, τ)|2 = ||
1

√a
| ∫ x(t)Ψ∗ (

t − τ

a
) dt

∞

−∞

|

2

 (3.9) 

Figure 3-7 shows the analysis of the sEMG signal.  The sEMG signal in Figure 3-7 (a) is 

the same as that in Figure 3-4, which is obtained from the activity of the lower erector 

spinae muscle group at 50% MVIC.  Figure 3-7 (b) shows the reconstruction of a wavelet 

signal that has been obtained from the coefficients of the transform, using Morlet Wavelet 

scales from 1 to 1500.  Figure 3-7 (c) shows the scalogram of the signal based on the 

coefficients generated from the CWT.  Figure 3-7 (d) shows the equivalent power 

spectrum obtained on a time-frequency plot, with the pseudo-frequency values obtained 

using the scales. 
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Figure 3-7: (a) sEMG signal from the lower erector spinae muscles at 50% MVIC.

(b) CWT reconstruction of the sEMG signal using the Morlet Wavelet, scales

from 1 to 1500. 

(c) Scalogram of the sEMG signal shown in (a).

(d) Distribution of power plotted using the CWT coefficients against the pseudo

frequency values calculated using the scale. 

(a) 

(b) 

(c) 

(d)
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Thresholding 

Thresholding is the manipulation of the values based on a limit or threshold that is 

determined during the analysis process.  The estimation of the threshold value is based 

on the threshold function selection and the data.  The thresholding process is used in 

processing statistical data when the data itself is either removed or manipulated based on 

the threshold parameter.  In signal processing, the thresholding function is directly 

implemented on the signal itself for noise mitigation or elimination of features within the 

signal that are not required during processing [50, 51]. 

Research has been done using thresholding functions to implement it on variables that are 

used to develop the functions [38, 50-52].  The use of threshold functions on signal 

processing provides an approximation of the original signal that has been distorted by the 

noise signal.  In this research, the thresholding procedure was used on the wavelet 

coefficients generated from the CWT prior to its reconstruction. 

The thresholding process involves the estimation of the threshold value and the 

implementation of the thresholding process. 

3.4.1 Threshold Value Estimation 

The threshold value estimation is vital for the development of the thresholding process.  

Donoho [53] proposed the Length Modified Universal Thresholding that uses a threshold 

value λ calculated using the equation (3.10).   

λ =
σ√2log (N)

√N
(3.10) 

where σ represents the noise level, and N is the length of the analysed signal.  This 

threshold value estimation was adopted because of the stochastic nature of the EMG 

signal, like noise.   
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The noise level σ is calculated using the equation (3.11). 

σ = MAD/0.6745 (3.11) 

where MAD is the median absolute deviation estimated using the median of the 

coefficients generated by the wavelet transform, the mathematical expression for MAD 

is given by equation (3.12). 

MAD = median(|ω − median(ω)|) (3.12) 

where ω denotes the data points. 

The threshold value is calculated for a set of coefficients for the CWT of each sample of 

the signal.  The thresholding method proposed by Johnstone and Silverman [54] uses a 

level-dependent threshold that uses the threshold obtained at each level of transform in 

the DWT implemented in their research. 

For this research, the Length Modified Universal Thresholding method was adopted for 

the coefficients of the CWT at each sample of the signal.  The value for each sample 

calculated based on this method provides a threshold for that particular sample within the 

sEMG signal. 

3.4.2 Threshold Implementation 

The thresholding function is implemented based on the threshold value estimated.  For 

this research, the hard thresholding method was used for the elimination or truncation of 

the EMG signal components from the sEMG signals when isolating the ECG signal. 

Hard Thresholding function uses a predetermined threshold value to manipulate the 

values, to mitigate or remove values below the threshold.  The threshold value for the 

hard thresholding provides the cutoff for the signal such that all elements of the function 

below the threshold value are removed. 

y = f(x) = {
0, x ≤ λ
x, x > λ

(3.13) 
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This is applied to the coefficients of the CWT to remove the components of the lower 

scale values that are made of the higher-frequency components of the sEMG signal.  Since 

the threshold value is calculated for each sample, it can preserve any abrupt changes 

within the signal that is detected using the wavelet.  The lower frequency components 

obtained from the CWT that is primarily dominated by the ECG signal is preserved during 

the thresholding procedure. This thresholding method aids in the removal of the sEMG 

components within the ECG signal that is detected using the CWT. 

 Quantitative Measures in Feature Selection 

In this research, the signal features before and after the removal of the ECG artefacts were 

observed using the median frequency values from the power spectrum. The median 

frequency was selected as it is done in most EMG researches using the Fourier transform 

method. The median frequency provides information on the spectral nature of the signal 

as well as the changes in the frequency spectrum within the time domain.   

The power spectrum using STFT provides the individual frequency components within 

the window of the signal analysed. The power spectrum with linear scales is measured in 

volts square per hertz (V2 Hz⁄ ). The area of the graph under the power spectrum provides 

the total power within the signal window being analysed. The median frequency is the 

frequency where there is 50% of the total power is present on the frequency distribution. 

The median frequency is shown in equation (3.14) [55]: 

∫ P(ω)dω
MDF

0
= ∫ P(ω)dω

∞

MDF
   (3.14) 

Where MDF is the median frequency, and P(ω) is the power spectrum of the signal 

window being analysed. 
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Data Acquisition and SEMG Signal Processing 

 Introduction 

This chapter gives an overview and discusses the procedures for the data acquisition, and 

digital signal analysis for the extraction of the Electrocardiography (ECG) features from 

the signals collected from the sEMG signals used in this research.  This includes the 

description of the procedures associated along with the equipment used for the collection 

of data involving the experimental setup and the physical preparation of the individuals 

for the collection process.  Also covered is the development of the signal processing 

program using MATLAB along with the results from the processing of the signals from 

one participant are presented in this chapter.  These results are discussed in terms of the 

detection of the ECG signal, removal of the signal and the power spectrum analysis of the 

signals before and after the removal of the ECG signals from the sEMG signals using 

Continuous Wavelet Transform (CWT) analysis. 

This research will develop a technique for extracting the ECG and EMG components the 

surface Electromyography (EMG) signals from the erector spinae muscles of healthy 

participants.  This was carried out for varying levels of activity of Maximum Voluntary 

Isometric Contraction (MVIC) for the lower erector spinae muscles to provide an 

appreciation of how much the ECG artefact influences the power of the EMG signal 

during different levels of muscle effort.  The development of the algorithm and program 

code are done using sEMG signals obtained from the study for this research. 

To fulfil the aims and objectives of this research, it was structured using the following 

four stages: 

Stage 1. Software Development Stage 

Stage 2. Data Collection and Acquisition 

Stage 3. Signal Pre-processing 

Stage 4. Feature Extraction and Signal Analysis 

All the four stages of the research are summarised in the block diagram shown in  

Figure 4-1. 
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Figure 4-1: Block Diagram outlining the Stages of the Research 

 Software Development 

This stage of the research involved the process of developing the program code using 

MATLAB for FT and CWT along with Thresholding.  The CWT program developed used 

all the MATLAB supported wavelet families for CWT, to identify the wavelet most 

suitable for the extraction of the ECG from the sEMG signals. For this stage, EMG signals 

from the left UES and LES muscle groups of a single healthy subject were collected at a 

sample rate of 1500 Hz during muscle contractions between 10 and 30 percent of MVIC. 

These levels of muscle contraction were chosen because ECG artefact could be visually 

detected within the EMG signal, and this range of muscle contraction is typically 

observed during a number of activities of daily living. The 3-lead ECG data were 

collected simultaneously, using the same software and sampling rate (1500 Hz) for cross-

validation purposes.  Details of EMG and ECG set-up and collection are detailed in a later 

chapter (4.3 Data Collection and Signal Acquisition).   

When comparing the various wavelets, all the parameters of extraction must be similar.  

Each wavelet family and its subclasses have different centre frequency values that 

determine the scales-frequency relation.  Since the transform for the CWT is represented 

by time-scale domain and not in the time-frequency domain, there is a need to convert all 

the scale values to frequency to provide a nominal value of the frequency range along 

which the CWT is performed. 

The scalogram provided in the CWT on MATLAB does not provide the time-frequency 

plot of the signal and hence does not provide the frequency equivalent value at which the 
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dominant power spectrum features from the CWT are present.  Due to the variation of the 

centre frequency between the mother wavelets of different families, the frequency 

parameter is used for setting the parameters of the CWT.  The mathematical expression 

is given by the equation (3.7) in chapter 3 was used for the conversion of scale values to 

the pseudo frequency values.  To obtain a better resolution of the frequency spectrum, 

power values of the frequencies were obtained by squaring the coefficients from equation 

(3.10) given in chapter 3 and plotting these on the time-frequency domain using the 

pseudo frequency values as a reference in for the corresponding scales.  This makes it 

possible to identify the dominant frequency components in the signal and its time 

localisation using the CWT. 

The validation of this step was done using sample sEMG signal obtained from a 

participant collected at 20% from the lower erector spinae muscle.  This signal was 

analysed using CWT using MATLAB for each of the mother wavelets available to obtain 

complete reconstructions of the signal.  This involved setting the scale values from 1 to 

the equivalent scale value or the closest value for the frequency of 1 Hz.  The time-

frequency plot generated from the CWT coefficients were used to observe the frequency 

range along which the QRS equivalent ECG artefact within the sEMG signal would be 

present.  This information was observed across all the mother wavelets, and a nominal 

frequency range was selected for the signal.  This frequency range was converted into the 

corresponding scale values for each of the mother wavelets, and the CWT of the signal 

was obtained, and a comparison made. 

This analysis showed using the CWT with the Morlet mother wavelet produced 

satisfactory results.  So, the Morlet mother wavelet was used for the later stages of signal 

processing when analysing sEMG signals from the lower erector spinae muscles at 

different levels of MVIC.  The concept of thresholding was then introduced in order to 

reduce the EMG artefacts that were extracted along with the ECG artefacts from the 

sEMG signals during the implementation of the CWT. 

 Software Development Concept 

The primary purpose of this section was to develop code on MATLAB for the extraction 

of the ECG artefacts from the sEMG signals. The associated signal processing techniques 

and the output of the results are shown in Figure 4-2.  
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Start Analysis

Read stored excel 
data file into MATLAB

Select the data ranges of the EMG 
and ECG data from the excel file

Enter the sampling frequency 
value for the selected signal

Select the Mother Wavelet

Enter the sampling frequency 
value for the selected signal

Selection of the suitable range of 
scales for extracting the ECG signal

Demean the sEMG and ECG signals

Implementation of threshold 
function on the coefficients

Implementing the CWT function on the 
sEMG signal to obtain coefficients

Plotting Scalogram and Time-Frequency 
Spectrum using the coefficients from CWT

Inverse CWT for the reconstruction 
of the ECG artefacts

Removal of the ECG artefacts from the 
sEMG signal to obtain EMG signal

Plotting the reconstruction ECG 
signal and filtered EMG signal

Validation of the ECG artefacts by cross 
referencing with the ECG signal loaded

Calculation of Power Spectrums for 
the sEMG and filtered EMG signal

Detection of peaks 
in the ECG signal

Calculation of Power Spectrums for the window between QRS components 
of the sEMG and its corresponding window in the filtered EMG

Plotting the Power Spectrums

Finished Analysis
 

Figure 4-2: MATLAB program flow chart for the extraction of ECG from sEMG and 

the display of the results using CWT  



Chapter 4 

43 

The 3 lead ECG and sEMG signal were collected simultaneously to ensure that there is 

an equal number of data points to cross-reference the ECG artefact reconstructed from 

the CWT of the sEMG signal and the ECG data collected during the activity.  The 

conversion of the scales to pseudo frequency was done using the centre frequency value 

obtained using the information on the wavelet available within MATLAB using the 

‘centfrq’ function.  Both the ECG and EMG signals were demeaned to remove the DC 

offset or bias that may be present. 

The ‘cwt’ function in MATLAB was used to apply the CWT on the sEMG signal and 

obtain the wavelet coefficients.  The threshold function was implemented with the 

threshold value being calculated using the equation (3.11) given in chapter 3.  The 

coefficients from the CWT after thresholding were used to plot the scalogram and the 

time-frequency spectrum.  The coefficients were then used to reconstruct the signal using 

the ‘icwtlin’ function that provides the inverse continuous wavelet transform. 

The signal obtained from the reconstruction of the CWT coefficients was compared with 

the actual 3-lead ECG signal initially loaded into the program.  Then validation of the 

signal was done through visual inspection.  The reconstructed ECG signal was then 

removed from the original sEMG signal (EMG and ECG artefact), and it was plotted to 

observe the remaining EMG signal.  The R-peaks of the 3-lead ECG signal that was 

initially loaded into the program were identified using the ‘findpeaks’ function in 

MATLAB.  These R-peaks were aligned with the ECG artefacts present on the 

reconstructed signal and were used as reference points to identify the windows between 

the consecutive QRS complexes present in the signal.  The power spectrum of the whole 

sEMG signal and the signal obtained after the removal of the ECG signal were calculated 

and plotted.  This was done using the ‘fft’ function in MATLAB, followed by squaring 

all the values of the coefficients generated.  The same procedure was repeated for each 

window present in the signal to observe the difference in the power across the signal. 

The ‘cwt’ function and the ‘icwtlin’ functions are built-in functions of the MATLAB 

Signal Processing Toolbox that process and analyse signals based on the analysis scheme 

appointed for the function.  The ‘cwt’ function in MATLAB can perform the CWT using 

other mother wavelets than the ones listed during the pre-processing stage.  However, the 

reconstruction of the signal using the ‘icwt’ function that computes the Inverse 

Continuous Wavelet transform using the coefficients does not support the manipulation 

of its scale parameters.  It uses a scale determining function based on the coefficients 
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being provided to automatically assign scale values that do not prove to be successful 

when the coefficients are obtained using the ‘cwt’ function with the scales being set 

manually.  On the other hand, the ‘icwtlin’ can provide the reconstruction of the signals 

from the coefficients based on the scale parameters being manually assigned during the 

reconstruction process.  However, the reconstruction of the signals using the ‘icwtlin’ 

function with coefficients of CWT, is only supported for certain wavelets.  The selection 

of the mother wavelets was based on the available wavelets with the reconstruction 

function in MATLAB that is listed in the pre-processing stage. 

Data Collection and Signal Acquisition 

This section covers the description of the participants, equipment, procedures, and 

protocols used for the data collection of the sEMG signals for the different levels of 

Maximum Voluntary Isometric Contraction (MVIC), as well as the maximal strength test 

for identifying the MVIC. 

Since the sEMG signals and the ECG signals were collected from human participants, the 

ethics approval was mandatory for the experimental part of this research.  The application 

for ethical approval to proceed with the experimental procedure and collection of the data 

from the participants was submitted and approved by the Auckland University of 

Technology (AUT) Ethics Committee (AUT ethics number: 18/219). 

4.3.1 Participants 

Seven participants with no previous history of back injury or any other form of 

musculoskeletal ailments participated in this research.  The participants were students 

from the Auckland University of Technology North Shore campus.  The participants for 

the research were selected from individuals who responded to advertisement notices that 

requested the voluntary participation of individuals for this research.  Male and female 

participants between the ages of 18 and 35 with no history of back injury within the last 

year participated in the study.  Individuals were excluded from participating in this 

research if they had a back injury within the last year, had any previous back surgery or 

had any current cardiovascular, neurological, cognitive and musculoskeletal ailments.  

This research is designed to establish normative data in a healthy population. 

The participants who had responded to the advertisement were screened for the inclusion 

and exclusion criteria to determine if they were suitable to participate in this study.  They 
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were provided with a written and verbal explanation of the details of this study.  The 

information sheet provided included the procedure and practices involved in the data 

collection process, see Appendix C.  The participants were provided with the opportunity 

to have any of their questions to be answered before obtaining the written consent for 

their participation in the study and were advised that they could withdraw from the study 

at any point. 

4.3.2 Procedure 

The preparation of the EMG signal collection, maximal strength test, and submaximal 

sustained voluntary isometric back extension test procedures and protocols of the 

participants are presented in this section. 

4.3.2.1 EMG preparation 

After obtaining the written consent of the participant to agree to participate in the study, 

the participant was prepared for the data collection procedure.  The participants were 

shaved on the skin surface of the back superficial to left upper erector spinal (UES), 5 cm 

lateral to the T9 spinous process and left lower erector spinal (LES), 3 cm lateral to the 

L3 spinous process shown in Figure 4-3 (left).  The region around the chest where the 

ECG electrodes (right arm (RA), left arm (LA) and left leg (LL) were placed was also 

shaved shown in Figure 4-3 (right).  This step was necessary to ensure good skin-electrode 

contact, and the skin surface was then cleaned using 70% isopropyl alcohol swabs prior 

to the electrode is attached.  The bipolar silver/silver chloride surface electrodes were 

then attached to the back muscles for the detection of the sEMG signals. Interelectrode 

impedance was then measured, and an impedance of less than 5 k ohms was considered 

acceptable [56].  
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Figure 4-3: Placement of EMG electrodes (left) and ECG electrodes (right) 

4.3.2.2 Maximal Strength Test 

The participant performed a five-minute standardised warm-up exercise, which included 

riding an exercise bike that was self-paced to suit the participant.  Following the exercise 

bike ride, the participants performed a warm-up that targeted the back muscles.  This 

involved the participant lifting and lowering a 3 kg box from the floor to mid-thigh to the 

beat of a metronome (10-15 lifts per minute) for 1-2 minutes.  The lifting technique was 

self-selected by the participant to ensure their comfort during the warmup exercise. 

Upon completion of the warmup exercise, the participant was positioned in an upright 

standing posture on the Active Therapeutic Movement (ATM) back device with the pelvis 

fixated using quick-release harness shown in Figure 4-4.  Fixation of the harness ensured 

that the participant is not moving or lifted from the ground during the data collection 

process.  A quick-release chest harness was then attached to the participant around the 

mid-chest area at the T6 level.  The chest harness was then attached to a force gauge 

located at the end of a pulley cable.  This force gauge measured the voluntary contraction 

force exerted by the participant, and the sliding end of the pulley system was locked in 

place. 
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Figure 4-4: AMT back device (left) and experimental setup (right) 

After the participant was positioned on the ATM device, they performed a series of 3 to 

5 short five-second submaximal isometric back extensions to familiarise themselves with 

the procedure and also to ensure that the back muscles were successfully warmed up.  

Approximately three minutes after the warm-up, each participant performed three 

Maximal Voluntary Isometric Contraction (MVIC) back extensions.  This required the 

participants to try and extend their trunk against the locked pulley system as hard as 

possible for a period of five seconds.  A three-minute rest period was given between each 

MVIC back extension.   The highest peak force recorded during the three MVIC back 

extensions recorded was selected as the participant’s MVIC value. 

4.3.2.3 Submaximal Sustained Voluntary Isometric Back Extension 

Test 

After the participants completed the maximal strength test to identify the MVIC force, 

they were given a three-minute break before proceeding to the sustained submaximal 

Voluntary Isometric extension tests.  The value was used to calculate the submaximal 

forces required for the participant at 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 

and 50% of the MVIC. 
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These tests were conducted by unlocking the other end of the pulley system and attaching 

weights to until the appropriate submaximal force was recorded on the force gauge.  The 

participant was instructed to maintain the same static upright posture and whilst resisting 

this force for a period of 15 seconds shown in Figure 4-5. 

 

Figure 4-5: Participant performs the task for collection of EMG and ECG signals for 

different MVIC 

The sEMG signals from the upper and lower erector spinae muscles along with the ECG 

signal from the participant were simultaneously recorded for each of submaximal force 

values.  The participants were then given a 2-minute rest period between each recording 

of the submaximal force.  The order of submaximal forces was randomly allocated to 

each participant to avoid muscle learning. 
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4.3.3 Equipment  

The equipment used for the collection of the signals from the participants is detailed in 

Table 4-1, along with their purpose. 

Table 4-1: List of equipment used for data collection of sEMG signals from the upper 

and lower erector spinae muscles and the ECG signals from the chest. 

Equipment Type Source Purpose 

Noraxon Desk 

Receiver 

Noraxon TeleMyo 

DTS 

Noraxon Signal Receiver with 

built-in amplifier, 

filter, and A/D 

converter to transmit 

signals to the 

computer 

Noraxon EMG 

Transmitter 

Noraxon EMG 

Transmitter 

Noraxon Wireless EMG 

signal transmitter to 

measure EMG 

signals and transmit 

to the signal 

receiver, shown in 

Figure 4-6. 

Noraxon ECG 

Transmitter 

Noraxon ECG 

Transmitter 

Noraxon Wireless ECG signal 

transmitter to 

measure ECG 

signals and transmit 

to the signal 

receiver, shown in 

Figure 4-6 
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Table 4.1 (continued) 

Equipment Type Source Purpose 

Standing 

platform with 

back support 

with the 

attached 

resistance load 

suspension for 

the back-muscle 

resistance  

Active Therapeutic 

Movement (ATM) 

back device 

Courtesy of the 

Department of 

Physiotherapy 

within the School 

of Clinical 

Sciences, AUT 

North Shore 

campus 

Special standing 

platform with 

harnesses to support 

the posture of the 

participants when 

performing the tests 

Bipolar Surface 

electrodes EMG 

Norotrode 20TM 

Bipolar Silver/Silver 

Chloride EMG 

electrodes 

Myotronics-

Noromed, Inc. 

Sensors to detect the 

sEMG signal from 

the upper and lower 

erector spinae 

muscles during the 

tests 

Surface 

electrodes ECG 

Ambu BlueSensor SP 

ECG electrodes 

Ambu Sensors to detect the 

ECG signal from the 

chest during the 

tests 

Laptop PC 

installed with 

Noraxon M3 

Software 

Noraxon M3 platform 

with myoMUSCLE™ 

module 

Noraxon To acquire the 

signal from the 

Noraxon Desk 

Receiver. 

Exercycle Monark Ergomedic 

828E 

Courtesy of the 

Department of 

Physiotherapy 

within the School 

of Clinical 

Sciences, AUT 

North Shore 

campus 

For participants to 

do the initial warm-

up before having to 

perform the activity 

Disposable 

shavers 

BIC BIC To shave the hair 

around the area of 

the muscle for 

electrode placement 
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Table 4.1 (continued) 

Equipment Type Source Purpose 

Alcoholic swabs Medi-SwabTM 70% v/v 

isopropyl alcohol 

Smith+Nephew To cleanse and 

prepare the skin of 

the shaved area for 

electrode placement 

Figure 4-6 Noraxon ECG Transmitter (left) and Noraxon EMG Transmitter (right) 

4.3.4 Signal Acquisition Settings 

The signals were collected using the wireless Noraxon transmitters that were attached to 

the EMG and ECG electrodes.  The data from the Noraxon transmitters were received 

using the Noraxon Desk Receiver that is equipped with built-in signal amplification and 

filter.  The Noraxon Desk Receiver is also equipped with an Analogue to Digital (A/D) 

converter that has been pre-programmed to operate within the voltage output range of ±10 

V from the amplifier.  This information is transmitted to the computer using a USB cable, 

and the data is displayed and recorded using the Noraxon M3 Software.  The Noraxon 

M3 Software provides the flexibility of setting certain data collection parameters such as 

the low pass filter cut-off. 

The sEMG signal from the surface electrodes was amplified (x 500), filtered using a 10 

Hz cut-off high pass filter that was prebuilt within the hardware of the Noraxon Desk 
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Receiver and further filtered with a low pass filter set at 1500 Hz cut-off set by the 

Noraxon M3 software.  The signal was received by the computer and displayed on the 

channels of the Noraxon M3 software.  The ECG signal collected from the three chest 

electrodes was not filtered to ensure better ECG signal detection.  The ECG and sEMG 

signals acquired and recorded simultaneously by the Noraxon M3 system at a sampling 

frequency of 1500 Hz.  As the equipment was electrically isolated, there was no risk of 

electric shock to either the data collector or the participant. 

 Signal Pre-processing 

This section covers the pre-processing of the signals collected. One sample sEMG signal 

from the lower erector spinae muscle contracting at 50% was used in the CWT to 

determine the most suitable mother wavelets available in MATLAB.  The mother 

wavelets used during the pre-processing stage were Morlet, Mexican Hat, Coiflets (1, 2, 

3, 4, 5), Biorthogonal (2.2, 2.4, 2.6, 2.8, 4.4, 5.5, 6.8), Reverse Biorthogonal (2.2, 2.4, 

2.6, 2.8, 4.4, 5.5, 6.8), Gaussian (2, 4, 6, 8) and Complex Gaussian (2, 4, 6, 8).  This was 

done using the processes outlined in Figure 4-7 to determine a nominal frequency range 

for the CWT analysis. 
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Figure 4-7: Mother Wavelet Selection Flowchart for the selection of the wavelet most 

suitable for the extraction of the ECG from the sEMG signal 

The most satisfactory results were obtained from using the Morlet waveform when 

implementing the CWT function using the mother wavelets in the program developed in 

stage 1.  The Morlet waveform was the most satisfactory wavelet for analysis as it was 

able to provide a better reconstruction of the ECG artefacts present within the sEMG 

signal.  The scalogram for the CWT of the sEMG signal using the Morlet wavelet 

produced better intensity values for the scales at the time locations where the ECG 

components (QRS waveform) were detected.  The Morlet wavelet was selected to provide 

the most satisfactory results as the reconstruction of the ECG artefacts had minimal effect 

in the area between the QRS waveforms in comparison to the other mother wavelets. 
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For further analysing the quality of extraction of the ECG artefacts of the sEMG signal, 

other functions that were implemented on the sEMG signals and the filtered EMG signals 

included the power spectrum analysis and total power calculations.  The implementation 

of the window-based calculation of the power spectrum is discussed in section 4.5. 

 Feature Extraction and Signal Analysis 

This stage of the research covers the signal processing and the analysis of data.  The 

extraction of the ECG artefacts was done by implementing the CWT function using the 

Morlet wavelet. 

The CWT analysis was performed on sEMG signals obtained from the lower erector 

spinae muscle group of each participant at different submaximal levels of MVIC.  

Although recorded, the data from the 100% was not included in the analysis as this level 

of muscle activation seldom occurs during activities of daily living.  The 100% condition 

was mainly intended for the calculation of the force required to obtain the equivalent 

submaximal levels of MVIC for each participant.  

The output of CWT analysis using the Morlet waveform produced the scalogram using 

the coefficients from the transform that provided the power intensities of each scale index 

over the time domain.  This scalogram data was used to fine-tune the scales for the 

extraction of the ECG artefacts.  The CWT function was implemented using an interface 

developed using the MATLAB code shown in Figure 4-8.  The data files containing the 

sEMG and ECG signal data were stored in Microsoft Excel worksheets.  These 

worksheets were then loaded into the MATLAB program to employ the CWT function 

and the signal analysis processes on the sEMG signals. 
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Figure 4-8: Interface developed in MATLAB for the implementation of the CWT on the signals, CWT implemented on sEMG signal from participant 2 at 50% MVIC 
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For the extraction of the ECG artefacts from the sEMG signals, the CWT function was 

implemented based on the scales analysed using the scalogram.  The frequency spectrum 

that was generated using the pseudo frequency calculated using the centre frequency of 

the mother wavelet.  The frequency spectrum plot provided information on the dominant 

frequencies of the extracted signal features and the time localisations of the extracted 

features. 

The coefficients were then manipulated using the threshold function by removing the 

lower scale (high frequency) components based on the threshold that was calculated for 

that sample.  This was done for the removal of the EMG components that were present in 

the extracted signal.  The implementation of the threshold function on the coefficients of 

the CWT is illustrated in Figure 4-9. 

Figure 4-9: Implementation of the Threshold function on the CWT coefficients 
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The ECG artefacts were reconstructed using the coefficients obtained from the CWT of 

the sEMG signal.  The reconstruction of the signal was set with the sampling frequency 

of 1500 Hz, the same frequency of the input signal.  This was done to ensure that the time 

domain of the reconstructed signal was the same as the original sEMG signal that was 

collected from the participant.  The ECG data were sampled at 1500 Hz simultaneously 

when collecting the sEMG data for analysis.  The ECG artefacts extracted using the CWT 

functions were overlapped with the ECG signal to validate the observed ECG artefacts in 

the reconstructed signal. 

The filtered EMG signal was obtained from subtracting the reconstructed ECG artefacts 

from the raw sEMG signal.  The power spectrums of the collected sEMG signals and the 

filtered EMG signals were obtained using the FFT of the signals.  The power spectrum 

for the window between consecutive QRS coefficient artefacts was observed for the raw 

sEMG and filtered EMG signal, as shown in Figure 4-10.  This was done to observe the 

amount of power remaining in the signal after the removal of the reconstructed ECG 

artefacts.  These windows were used to observe the amount of power that is removed 

from the signal when there is a lesser influence of the ECG artefacts as QRS being the 

dominant component of the ECG signal. 
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Figure 4-10: Power spectrum of the window between consecutive QRS components 
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The ECG artefact extraction and signal analysis process are summarized as follows: 

1. The original sEMG signal from the lower erector spinae muscle group and the 3-

lead ECG signal collected simultaneously for cross-referencing (comparison) 

from the participant. 

2. Implementation of the CWT function on the sEMG signal. 

3. The formation of the scalogram and the conversion of scales to pseudo frequencies 

for the formation of the frequency-time based spectrum plot. 

4. The fine-tuning of the scale values based on the scalogram and frequency-time 

spectrum plot. 

5. The reconstruction of the ECG artefacts from the sEMG signal. 

6. Cross-referencing of extracted ECG artefacts with the 3-lead ECG signal collected 

from the participant. 

7. The removal of the ECG artefacts from the sEMG signal to produce the filtered 

EMG signal. 

8. Formation of the power spectrum and the calculation of the total power for the 

sEMG and filtered EMG signal. 

9. The identification of QRS complex (estimated using the R peak) 

10. The isolation of the equivalent windows between consecutive QRS complexes on 

the sEMG signal and filtered EMG signals. 

11. Formation of the power spectrum and the calculation of the total power for the 

isolated windows of the sEMG and filtered EMG signal. 

12. The median frequency with epochs of half of a second form the sEMG and filtered 

EMG signals were calculated and plotted. 

The next section of the chapter details the results of the signal processing and the CWT 

analysis performed on the signals collected at various levels of submaximal MVIC from 

one of the participants. 

 Signal Analysis Results  

This section presents the results for the analysis performed on one set of the data acquired 

from one of the seven participants.  This includes the presentation of the following 

information: 

1. The original sEMG signal collected from the lower erector spinae muscle. 

2. The scalogram of the CWT implemented on the signal. 
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3. The frequency-time spectrum plot developed from the scale-frequency 

conversion using centre frequency. 

4. The reconstruction of the ECG signal using the selected scales. 

5. The cross-referencing of the ECG signal acquired from the participant and the 

ECG artefact signal from the reconstruction. 

6. The filtered EMG signal produced from the removal of the ECG artefact signal 

from the sEMG signal. 

7. The power spectrum of the sEMG signal and the filtered EMG signal. 

8. The median frequency of the sEMG signal and the filtered EMG signal 

The power spectrum of the filtered EMG signal and sEMG signal acquired from the 

participant is shown in Figure 4-11 to Figure 4-20.  The total power of the windows 

between the QRS complexes are tabulated in Table 4-2 and plotted to compare the 

difference in power observed with the removal of the ECG artefacts from the signal. This 

was done to reinstate the influence of the ECG signal on the sEMG signal and the 

percentage of EMG signal left within the sEMG signal by observing the windows not 

influenced by the ECG artefacts.  The graphs detailing the remaining power of the EMG 

in comparison to sEMG is shown in Figure 4-21. 

Visual inspection of sEMG data shown in subplot (a) in Figure 4-11to Figure 4-20 from 

LES muscle contractions at between 5 and 20% MVIC clearly show a regular ECG 

artefact that corresponds to the QRS complexes detected by the 3-lead ECG shown in 

subplots (b) and (c) in Figure 4-11 to Figure 4-20.  The presence of the ECG artefact in 

the original sEMG led to a power spectrum that was dominated by the low-frequency 

components (ECG artefact) of the signal shown in subplot (h) in Figure 4-11 to  

Figure 4-20.  This resulted in median frequency values as low as 30Hz in some of the 

low-level contractions shown in subplot (g) in Figure 4-11 to Figure 4-20. When the ECG 

artefact was removed, and the SEMG signal was reconstructed shown in subplot (d) in 

Figure 4-11 to Figure 4-20 there was a decrease of between 54 and 64% of the total power 

from the signal.  Most of this power was removed from the low-frequency portion of the 

power spectrum shown in subplot (i) in Figure 4-11 to Figure 4-20.  This led to a 2-3-fold 

increase in the median frequency of the filtered signal when compared to the original 

signal shown in subplot (g) in Figure 4-11 to Figure 4-20.  

ECG artefacts were difficult to be determined visually from the sEMG signals collected 

at contraction levels of the LES from 25% to 40% shown in subplot (a) in Figure 4-11 to 



Chapter 4 

61 

Figure 4-20.  However, decomposition of the signal via wavelet analysis clearly identified 

ECG artefacts within the signal the corresponded to the 3-lead ECG complexes shown in 

subplots (b) and c in Figure 4-11 to Figure 4-20. The removal of these artefacts from the 

sEMG signal shown in subplot (d) in Figure 4-11 to Figure 4-20 substantially changed 

the power spectrum shown in subplots (h) and (i) in Figure 4-11 to Figure 4-20 and 

median frequency shown in subplot (g) in Figure 4-11 to Figure 4-20.  Figure 4-11 shows 

the difference in the total power remaining in the signal after the removal of the ECG 

artefacts in the EMG signal shown subplot (d) in Figure 4 11 to Figure 4 20 in comparison 

to the original sEMG signal collected subplot (a) in Figure 4-11 to Figure 4-20. 
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Figure 4-11: Signal output for 5% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) Filtered 

EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum of the 

sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) (i) 
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Figure 4-12: Signal output for 10% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal. 
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(c) 
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(f) 

(g) 

(h) (i) 
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Figure 4-13: Signal output for 15% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal   
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(c) 

(d) 

(e) 

(f) 

(g) 
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Figure 4-14: Signal output for 20%  MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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Figure 4-15: Signal output for 25% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal. 
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(f) 

(g) 

(h) (i) 
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Figure 4-16: Signal output for 30% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal.  
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(f) 

(g) 

(h) (i) 



Chapter 4 

68 

 

Figure 4-17: Signal output for 35% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) Filtered 

EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum of the 

sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal.  
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(f) 

(g) 
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Figure 4-18: Signal output for 40% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal. 
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(f) 
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Figure 4-19: Signal output for 45% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal.  
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(f) 
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Figure 4-20: Signal output for 50% MVIC (a) Raw sEMG signal collected from participant, (b) Reconstructed ECG signal, (c) Reconstructed ECG signal cross-referenced with collected ECG signal, (d) 

Filtered EMG signal, (e) Scalogram of the CWT, (f) Frequency-time spectrum plot from the CWT, (g) Median Frequency of the sEMG signal before and after the removal of the ECG signal, (h) Power spectrum 

of the sEMG signal collected from participant and (i) Power spectrum of the filtered EMG signal. 
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(g) 

(h) (i) 
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Table 4-2: Percentage of power remaining in the EMG signal after the removal of the ECG artefacts (window-wise tabulation) 

Window 

Percentage of power left in EMG signal after removal of the ECG artefacts 

5%  10%  15%  20%  25%  30%  35%  40%  45%  50%  

1 33.27% 37.47% 46.56% 49.92% 70.17% 81.86% 70.74% 78.35% 88.17% 86.30% 

2 37.28% 43.29% 43.56% 45.21% 78.36% 80.50% 81.91% 77.01% 86.85% 87.90% 

3 38.03% 45.36% 50.61% 42.87% 78.08% 84.70% 82.29% 72.77% 91.38% 89.43% 

4 33.88% 48.13% 41.29% 46.73% 77.50% 75.47% 77.85% 79.91% 93.17% 92.23% 

5 34.41% 43.68% 50.15% 46.96% 80.32% 80.58% 81.11% 73.49% 90.16% 78.89% 

6 31.27% 41.25% 36.60% 49.40% 71.99% 75.02% 78.56% 70.27% 86.86% 86.70% 

7 34.57% 33.99% 41.99% 46.73% 77.34% 77.87% 81.51% 76.00% 92.97% 83.94% 

8 36.27% 39.20% 41.84% 45.11% 69.36% 77.02% 70.10% 76.34% 89.92% 86.79% 

9 36.05% 44.13% 39.71% 46.13% 75.00% 76.32% 82.23% 80.66% 87.99% 80.96% 

10 39.37% 35.96% 34.18% 52.25% 71.12% 81.77% 76.59% 78.18% 91.97% 86.64% 

11 44.46% 34.16% 40.43% 44.09% 74.46% 88.20% 76.54% 78.09% 92.43% 86.95% 

12 32.80% 39.31% 43.66% 41.28% 67.43% 85.83% 70.89% 78.02% 91.53% 89.52% 

13 35.54% 31.06% 35.42% 58.39% 72.25% 75.83% 79.88% 74.45% 83.65% 88.64% 

14 30.06% 40.60% 40.55% 38.42% 79.73% 78.40% 82.18% 78.66% 90.73% 86.08% 

15 31.43% 40.34% 46.01% 39.30% 70.47% 81.65% 75.74% 76.85% 93.54% 88.13% 

16 36.94% 40.60% 53.46% 41.26% 72.32% 72.25% 76.98% 79.35% 87.93% 87.12% 

17 28.57% 51.36% 46.15% 43.65% 67.17% 82.36% 74.02% 72.55% 91.75% 85.46% 

18 31.16% 34.49% 42.12% 40.44% 72.74% 82.44% 74.52% 84.84% 93.39% 89.39% 

19 32.98% 38.59% 47.51% 36.59% 79.85% 85.00% 76.92% 81.98% 87.45% 88.61% 

20 33.29% 40.03% 50.10% 47.53% 72.15% 82.79% 74.01% 76.35% 93.83% 92.04% 

21 30.89% 37.94% 44.08% 42.53% 63.45% 73.74% 79.63% 85.32% 89.22% 90.43% 

22 33.80% 41.29% 36.96% 45.92% 75.38% 80.99% 75.76% 73.51% 90.35% 94.19% 

23 45.85% 41.75% 47.12% 38.55% 70.36% 81.85% 80.53% 80.89% 88.95% 93.32% 

24 31.42% 35.09% 42.11% 40.38% 70.42% 84.14% 78.82% 82.29% 87.50% 89.91% 

25 29.74% 38.32% 41.97% 49.22% 65.19% 87.34% 80.07% 75.09% 87.60% 87.76% 

26 34.37% 39.68% 37.28% 38.65% 74.06% 78.40% 78.24% 71.01% 87.10% 84.53% 

27 29.87% 44.74% 38.66% 45.59% 72.07% 78.70% 79.27% 73.39% 91.61% 89.32% 

28  41.97%  39.59% 60.74%  84.40% 88.82% 88.49% 90.24% 

29  32.43%  38.27%   84.68% 78.18% 88.90% 90.44% 

30  43.96%  42.26%   73.87% 78.12% 95.23% 80.07% 

31       81.70% 74.56% 83.62% 79.20% 

32       84.13%  91.42% 82.98% 

33       80.38%  92.49% 86.28% 

34         90.52% 79.13% 

35         93.54% 88.11% 

36         96.73% 87.98% 

37         92.80%  

Average 33.98% 39.98% 42.81% 44.39% 73.19% 80.20% 78.43% 77.59% 90.20% 87.18% 

Signal 2.98% 5.03% 5.69% 11.29% 32.82% 54.78% 58.99% 56.24% 71.21% 68.82% 
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Figure 4-21: Plot showing the difference in power in power remaining in the EMG signal after the removal of ECG artefacts 
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Discussion and Conclusions 

 Introduction 

The aim of this research was to develop a graphical interface using MATLAB for the 

extraction of ECG artefacts from the EMG signal of the erector spinae (ES) muscles at 

varying levels of voluntary contractions.  This chapter discusses findings from the 

different stages of this research, which consisted of different stages ranging from software 

development, signal acquisition, including data collection and conversion, signal pre-

processing, and feature extraction.  Each step of the research has been analysed and 

discussed further to observe the contributions and benefits of each stage as well as any 

possible flaws associated with each step that may have influenced this research in any 

manner. 

The analysis presented in this thesis involved the use of continuous wavelets for feature 

extraction.  The outcomes of the Continuous Wavelet Transform (CWT) procedure for 

feature extraction and the power spectrums generated from the Fourier Transform (FT) 

analysis of the signals are further analysed and discussed.  The findings of the practical 

aspects during the signal acquisition stage are discussed.  A brief discussion outlining the 

potential aspects of any future work that could be implemented for further research is also 

presented. 

 Software Development Phase 

The software development stage involved the use of MATLAB that formed the core of 

the research for the development of the signal processing and analysis tools used in this 

research.  The development of the generating windows of data was done using the signal 

feature identification tools available within MATLAB. 

The software development stage used signals obtained from ES muscles during various 

MVIC as part of the pilot study for developing the program using MATLAB software.   

This was used to test the performance of the program code as it was being developed. The 

code was further refined alongside the data collection procedure to ensure improved 

performance during analysis. The graphical interface is presented in chapter 4. 
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A significant aspect of this research was the requirement of setting the parameters such 

as the CWT scale values for optimising the analysis of the signal.  To achieve this, the 

program was required to be executed multiple times with having to manually update the 

parameters within the program code as needed.  This problem was overcome by 

developing a graphical interface, which provided the flexibility of having to set the 

necessary settings by selection or entering the value, making it user-friendly.   

 Data Collection and Signal Acquisition Phase 

The data collection of bio-signals was a significant part and was crucial to this research.  

EMG data were collected using standardised procedures from the erector spinae muscles 

of human subjects performing muscle efforts in a range that would be typically used in 

exercises and activities of daily living. The amplification, conditioning, analogue to 

digital conversion of the signals collected was done using the Noraxon equipment and 

data acquisition software.  So, any interference in the signal such as movement artefacts 

were minimised by using these wireless EMG and ECG sensors.  The signal acquisition 

and the data collection parameters like filtering (bandpass (10 Hz to 500 Hz)), 

amplification and sampling frequency were pre-set by the Noraxon hardware used.  The 

signals were visually generated on the Noraxon collection software to inspect the signal 

before recording and storing them. 

The signals acquired from the pilot study show there was a DC offset bias during the data 

collection this was removed using developed MATLAB code. 

 Signal Pre-processing Phase 

The graphical interface developed using MATLAB for the implementation of CWT was 

limited to the available mother wavelets that included the Morlet, Mexican Hat, Coiflets 

(1, 2, 3, 4, 5), Biorthogonal (2.2, 2.4, 2.6, 2.8, 4.4, 5.5, 6.8), Reverse Biorthogonal (2.2, 

2.4, 2.6, 2.8, 4.4, 5.5, 6.8), Gaussian (2, 4, 6, 8) and Complex Gaussian (2, 4, 6, 8) 

wavelets.  Comparisons between the ECG extraction from the implementation of the 

CWT function using each of this mother wavelet and the 3-lead ECG signal obtained 

from a single the participant in the pilot study found that the Morlet wavelet produced the 

most satisfactory results for the extraction and reconstruction of the ECG signal that could 

be obtained from the original sEMG signal.  This was due to QRS equivalent components 

within the sEMG signals were extracted in more detail using the Morlet wavelet. 
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The conversion of wavelet scales to the pseudo frequencies was an essential step in 

finding the most suitable mother wavelet. This was because the CWT does not provide a 

frequency-time spectrum that can be related to the signal in the time domain. Hence the 

need for conversion of the wavelet scales to the pseudo-frequencies. The pseudo-

frequency-time spectrum power plot was observed for the selection of the nominal 

frequency range for extraction of the signal features using each of the mother wavelets.  

This frequency-time plot provided the details on the amount of power present at each 

frequency value in the time domain localisation using each mother wavelet. 

The percentage of remaining power within each window shown in Figure 4-9 in chapter 

four was the other aspect for the selection of the suitable mother wavelet.  The amount of 

power that was preserved in the windows post extraction of the ECG artefacts using CWT 

was the Morlet mother wavelet.  Some of the other mother wavelets such as Coiflets, 

Gaussian and Complex Gaussian produced good reconstructions of the ECG artefacts 

with reasonable QRS detection.  However, the power preservation within the windows of 

the EMG signal from the CWT using these wavelets was lower than the Morlet wavelet. 

As discussed in chapter 4, when using Morlet wavelet for CWT, the decrease in power 

within the window of the EMG signal between consecutive QRS was lower in comparison 

with the window containing the QRS artefact. 

 Feature Extraction and Signal Analysis Phase 

The implementation of the CWT function using the Morlet mother wavelet was 

performed on the signals acquired from the various to extract the ECG artefacts if 

possible. The results for one of the participants obtained from the implementation of the 

CWT analysis using the code developed in MATLAB is presented in section 4.6 of 

chapter four. The results obtained for the seven participants shown in Appendix B are 

summarised in Table 5-1 with ‘Yes’ indicating successful extraction of ECG artefacts and 

‘No’ indicating unsatisfactory results.  
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Table 5-1: ECG artefact extraction from sEMG signals for all participants from 5% 

MVIC to 50% MVIC 

MVIC Participant 
1 

Participant 
2 

Participant 
3 

Participant 
4 

Participant 
5 

Participant 
6 

Participant 
7 

5% No Yes No Yes Yes Yes Yes 

10% No Yes No Yes Yes No Yes 

15% No Yes No Yes Yes No Yes 

20% No Yes No Yes Yes No Yes 

25% No Yes No Yes No No Yes 

30% No Yes No Yes No No No 

35% No Yes No Yes No No No 

40% No Yes No Yes No No No 

45% No Yes No Yes No No No 

50% No Yes No No No No No 

The selection of the scaling parameters for the CWT was based on the scalogram 

generated for the signal.  This was done for each of the signals collected since the power 

distribution for the signals acquired from each participant at different levels of MVIC 

were subject to variations such as the nature and activity of the muscle of the participant.  

The identification of the dominant frequency components using the scalogram and the 

frequency-time spectrum plot was vital to identify the required scale values.  The 

implementation of the threshold function, as presented in chapter 3 was used to remove 

the lower scales (high frequency) EMG components that may be present in the CWT 

coefficients obtained prior to the ECG reconstruction.  The reconstructed ECG artefacts 

were validated by visual comparison of the reconstructed ECG artefact cross-referenced 

by overlapping the signal on the ECG signal collected from the participant. The median 

frequency was observed to identify the changes in the frequency components of the signal 

before and after the removal of the ECG artefacts. 

The level of muscle activation showed a direct relation to the EMG components within 

the sEMG signal.  The level of EMG activity was found to be more significant at the 

higher MVIC which can also be seen in the EMG signal that is obtained after the removal 

of the ECG artefacts from the collected sEMG signal.  The power preservation from the 

signals obtained from the participant showed that there is a significant difference between 

the power preservation of the whole signal (filtered EMG: sEMG with the ECG artefacts) 

and the power preservation from the average of the signal windows (the filtered EMG: 

sEMG without the ECG artefacts).  This is shown in Figure 4-21; it indicates that the QRS 
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equivalent component of the ECG artefacts in the sEMG signal has a significant influence 

in terms of the total signal power. 

After the performing CWT on the sEMG and filtered EMG signals showed the power was 

preserved in the EMG signal after the removal of the ECG artefacts was higher at higher 

levels of MVIC, this can be seen in Figure 4-21 as reference for both the whole signal as 

well as the average of the signal windows.  This was due to the increased EMG activity 

recorded when the ECG component collected with the sEMG signal did not have a 

significant variation.  This showed that the implementation of the CWT with the 

thresholding gave results that were satisfactory in terms of feature extraction.  However, 

future work to develop an extension programming code for the automated detection of 

the QRS equivalent components for the extracted ECG signal at different MVIC could be 

done to improve validation procedures. 

The signal processing technique involving the implementation of the CWT and 

thresholding on the sEMG signals across all the participants were analysed. The results 

showed that for more than half of the participants, the EMG and ECG signals could be 

successfully extracted for levels of MVIC up to 20%. Considering the previous researches 

reviewed in the literature in Section 2.5, the analysis provided satisfactory outcomes. The 

investigations considered in the literature focused on studies involving signals with 

minimal muscle activity or consisted of a simulated element. The use of sEMG signals 

from the back muscle of participants at varying levels of MVIC provided the opportunity 

to assess the effectiveness of the proposed technique. The researches reviewed in Section 

2.5 discusses the efficacy of various signal processing methods with low muscle activity 

that can be compared to that of the lower levels of MVIC. The findings of this research 

show that the proposed signal processing technique was successful in the separation of 

the ECG and EMG signals from sEMG signals collected at lower levels of MVIC. 

 Conclusions 

This research has investigated the various aspects involved in the implementation of 

signal processing techniques of Wavelet and Fourier transforms.  The extraction of ECG 

artefacts from the sEMG signal and analysing them was the focus of this research.  The 

acquire signals from seven participants with healthy back muscles for analysis was a 

significant part of this research. 

The summary of the research covered included: 
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 The development of the code using MATLAB was the CWT with thresholding to 

extract the ECG artefacts from the sEMG signal. 

 Understanding the collection of the sEMG and ECG signals with the develop 

procedures and protocol. 

 The selection of a mother wavelet to be used with CWT implementation for the 

extraction of the ECG artefacts from the acquired sEMG signals at various 

submaximal levels of MVIC. 

This research produced results that demonstrated the developed technique is promising, 

and some future work may be done to improve the extraction quality and implementation 

of more validation methods. 
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Appendix A 

Figure A.1 (repeated from Figure 2.7) shows the erector spinae muscles of the back and 

Table A.1 gives the origin and insertion of each muscle [33]. 

 

Figure A-1: Erector Spinae Muscles 

Table A-1: Erector spinae group of muscles 
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Appendix B 

 

Figure B-1: Participant 2 results 5% MVIC 
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Figure B-2: Participant 2 results 5% MVIC 
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Figure B-3: Participant 2 results 15% MVIC 



 

89 

 

Figure B-4: Participant 2 results 20% MVIC 
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Figure B-5: Participant 2 results 25% MVIC 
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Figure B-6: Participant 2 results 30% MVIC 
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Figure 0-7: Participant 2 results 35% MVIC 
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Figure B-8: Participant 2 results 40% MVIC 
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Figure B-9: Participant 2 results 45% MVIC 
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Figure B-10: Participant 2 results 50% MVIC 
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Figure B-11: Participant 4 results 5% MVIC 
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Figure B-12: Participant 4 results 10% MVIC 
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Figure B-13: Participant 4 results 15% MVIC 
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Figure B-14: Participant 4 results 20% MVIC 
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Figure B-15: Participant 4 results 25% MVIC 
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Figure B-16: Participant 4 results 30% MVIC 
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Figure B-17: Participant 4 results 35% MVIC 
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Figure B-18: Participant 4 results 40% MVIC 
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Figure B-19: Participant 4 results 45% MVIC 
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Figure B-20: Participant 5 results 5% MVIC 
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Figure B-21: Participant 5 results 10% MVIC 
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Figure B-22: Participant 5 results 15% MVIC 
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Figure B-23: Participant 5 results 20% MVIC 



109 

Figure B-24: Participant 7 results 5% MVIC 
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Figure B-25: Participant 7 results 10% MVIC 
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Figure B-26: Participant 7 results 15% MVIC 
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Figure B-27: Participant 7 results 20% MVIC 
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Figure B-28: Participant 7 results 25% MVIC 
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Appendix D  

%This program creates the interface for the selection of Parameters and the 

%signal for analysis 

function cwavanalysis 

global waveletsel; 

global wavelet; 

global scales; %higher scale limit 

global scales0;%lower scale limit 

global ordsc; 

global pseufreq; 

global pseufreq0; 

global Fs; 

global Fc; 

global window; 

global wnn; 

global kk; 

rr = 0; 

N = 0; 

rawdata = []; 

%creation of initial interface 

f = figure('Visible','off'); 

f.Units = 'normalized'; 

        val = uicontrol('Style','text','Units','normalized',... 

            'FontSize', 8,'Position',[0.05 0.82 0.04 0.022],'Visible', 'off',... 

            'HandleVisibility','off'); 

        val0 = uicontrol('Style','text','Units','normalized',... 

            'FontSize', 8,'Position',[0 0.82 0.04 0.022],'Visible', 'off',... 
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            'HandleVisibility','off'); 

        valf = uicontrol('Style','text','Units','normalized',... 

            'FontSize', 8,'Position',[0.05 0.8 0.04 0.022],'Visible', 'off',... 

            'HandleVisibility','off'); 

        valf0 = uicontrol('Style','text','Units','normalized',... 

            'FontSize', 8,'Position',[0 0.8 0.04 0.022],'Visible', 'off',... 

            'HandleVisibility','off'); 

        val2 = uicontrol('Style','text','Visible', 'off',... 

            'HandleVisibility','off','Units','normalized','FontSize', 10,... 

            'Position',[0.05 0.015 0.2 0.03]); 

        sld0 = uicontrol('Style', 'slider','Units','normalized',... 

            'Position', [0.015 0.2 0.008 0.6],'Visible', 'off',... 

            'HandleVisibility','off','BackgroundColor', [0 0 0],... 

            'Callback', {@sca0,val0,valf0}); 

        sld = uicontrol('Style', 'slider','Units','normalized',... 

            'Position', [0.065 0.2 0.008 0.6],'Visible', 'off',... 

            'HandleVisibility','off','BackgroundColor', [0 0 0],... 

            'Callback', {@sca,val,valf}); 

        winerrtxt =  uicontrol('Style','text',... 

            'Visible', 'off','HandleVisibility', 'off',... 

            'FontSize', 8,'Units','normalized',... 

            'Position', [0.005 0.10 0.287 0.022],... 

            'HorizontalAlignment','left'); 

        ordtxt = uicontrol('Style','text',... 

            'FontSize', 8,'HandleVisibility', 'off','Units','normalized',... 

            'Visible', 'off','Position', [0 0.87 0.057 0.022],... 

            'HorizontalAlignment','left','String','Order:'); 

        popupord = uicontrol('Style', 'popup','Units','normalized',... 

            'String', {'Morlet','Mexican Hat',... 

            'Coiflets','Biorthogonal','Reverse Biorthogonal',... 
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            'Gaussian','Complex Gaussian'},... 

            'Position', [0.025 0.9 0.03 0],'Visible', 'off',... 

            'HandleVisibility','off'); 

        popup = uicontrol('Style', 'popup','Units','normalized',... 

            'String', {'Morlet','Mexican Hat','Coiflets','Biorthogonal',... 

            'Reverse Biorthogonal','Gaussian','Complex Gaussian'},... 

            'Position', [0 0.935 0.09 0],'Visible', 'off',... 

            'HandleVisibility','off','Callback', {@wav,popupord,ordtxt}); 

        betartxt = uicontrol('Style','text',... 

            'FontSize', 8,'HandleVisibility', 'off','Units','normalized',... 

            'Visible', 'off','Position', [0.01 0.125 0.057 0.022],... 

            'HorizontalAlignment','left'); 

        betarval = uicontrol('Style','edit',... 

            'FontSize', 8,'Visible', 'off','HandleVisibility', 'off',... 

            'Units','normalized','Visible', 'off',... 

            'Position', [0.035 0.125 0.04 0.03]); 

        popup2 = uicontrol('Style', 'popup','Units','normalized',... 

            'String', {'No window','Bartlett','Blackman','Boxcar','Chebyshev',... 

            'Hamming','Hanning','Kaiser','Taylor','Triangular'},... 

            'Position', [0.01 0.19 0.07 0],'Visible', 'off',... 

            'HandleVisibility','off','Callback', {@wind,betartxt,betarval,winerrtxt}); 

        btn = uicontrol('Style', 'pushbutton','String','Run',... 

            'FontName' , 'Georgia','FontSize', 12,'Units','normalized',... 

            'Visible', 'off','HandleVisibility','off',... 

            'Position', [0.02 0.02 0.05 0.04],... 

            'Callback', {@exel,val2,popup2,betarval,winerrtxt}); 

        fstxt = uicontrol('Style','text',... 

           'FontSize', 8,'HandleVisibility', 'off','Units','normalized',... 

           'Visible', 'off','Position', [0.004 0.94 0.057 0.022],... 

           'HorizontalAlignment','left','String','Sampling Rate:'); 
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        sampf = uicontrol('Style','edit',... 

'FontSize', 8,'Visible', 'off','HandleVisibility', 'off',... 

'Units','normalized','Visible', 'off',... 

'Position', [0.06 0.938 0.04 0.03]); 

        chkbw = uicontrol('Style', 'checkbox', 'Units','normalized',... 

'Visible', 'off','HandleVisibility', 'off',... 

'Position', [0.09 0.91 0.015 0.019],... 

'Callback', {@chboxw,val,val0,valf,valf0,sld0,sld,popup,... 

btn,popupord,val2,popup2,betartxt,betarval}); 

        chkb = uicontrol('Style', 'checkbox', 'Units','normalized',... 

'Visible', 'off','HandleVisibility', 'off',... 

'Position', [0.1 0.94 0.015 0.019],... 

'Callback', {@chbox,sampf,val,val0,valf,valf0,sld0,sld,... 

popup,btn,betartxt,betarval,popup2,popupord,ordtxt,... 

val2,chkbw,winerrtxt}); 

        uicontrol('Style', 'pushbutton', 'String', 'Load Signal',... 

'FontName' , 'Georgia', 'FontSize', 10,... 

       'HandleVisibility', 'off','Units','normalized',... 

'Position', [0.015 0.97 0.1 0.03],... 

'Callback', {@load,val,val0,valf,valf0,sld0,sld,popup,btn,... 

fstxt,sampf,chkb,betartxt,betarval,popup2,popupord,... 

ordtxt,val2,chkbw,winerrtxt}); 

f.Visible = 'on';

plotwindow();

%Load the signal from file and access to more parameter controls

function load (~,~,val_handle,val0_handle,valf_handle,...

valf0_handle,sld0_handle,sld_handle,popup_handle,btn_handle,... 

fstxt_handle,sampf_handle,chkb_handle,betartxt_handle,... 

betarval_handle,popup2_handle,popupord_handle,ordtxt_handle,... 

val2_handle,chkbw_handle,winerrtxt_handle) 
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        clf; 

        set(val_handle,'Visible','off'); 

        set(val0_handle,'Visible','off'); 

        set(valf_handle,'Visible','off'); 

        set(valf0_handle,'Visible','off'); 

        set(sld0_handle,'Visible','off'); 

        set(sld_handle,'Visible','off'); 

        set(popup_handle,'Visible','off'); 

        set(btn_handle,'Visible','off'); 

        set(fstxt_handle,'Visible','off'); 

        set(sampf_handle,'Visible','off'); 

        set(chkb_handle,'Visible','off'); 

        set(betartxt_handle,'Visible','off'); 

        set(betarval_handle,'Visible','off'); 

        set(popup2_handle,'Visible','off'); 

        set(popupord_handle,'Visible','off'); 

        set(ordtxt_handle,'Visible','off'); 

        set(val2_handle,'Visible','off'); 

        set(chkbw_handle,'Visible','off'); 

        set(winerrtxt_handle,'Visible','off'); 

        %execution of file and data collection subfunctions 

        [filename,sheets] = excelfile(); 

        if filename == 0 

        return 

        end 

        [sheetx] = selsheet(sheets); 

        if isempty(sheetx) 

        return 

        end 

        rawdata = sample(filename,sheetx); 
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        if rawdata == 0 

        return 

        end 

%computation of scale limit based on the data length 

N = length(rawdata); 

if N~=0 

    m2 = 0; 

    while ((2^m2) < (N/2)) 

        m2 = m2+1; 

    end 

    max = 2^(m2-1); 

    scales0 = 1; 

    scales = 1; 

        set(sld0_handle,'Min',1,'Max',max,'Value',1,... 

           'SliderStep',[(1/(max-1)) (10/(max-1))]); 

        set(sld_handle,'Min',1,'Max',max,'Value',1,... 

           'SliderStep',[(1/(max-1)) (10/(max-1))]); 

        set(fstxt_handle,'Visible', 'on'); 

        set(sampf_handle,'String','','Enable','on','Visible', 'on'); 

        set(chkb_handle,'Value',0,'Visible', 'on'); 

end 

end 

%Sampling frequency input and error check 

function chbox(checkbox,~,sampf_handle,val_handle,val0_handle,valf_handle,... 

               valf0_handle,sld0_handle,sld_handle,popup_handle,btn_handle,... 

               betartxt_handle,betarval_handle,popup2_handle,popupord_handle,... 

               ordtxt_handle,val2_handle,chkbw_handle,winerrtxt_handle) 

    aa = checkbox.Value; 

    if aa == 1 

        set(sampf_handle,'Enable','Off'); 
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        Fs = str2double(get(sampf_handle,'String')); 

    clf; 

    if isnan(Fs) || (Fs<0) || floor(Fs)~=Fs 

        uicontrol('Style','text','FontSize', 8,'Units','normalized',... 

         'Position', [0.005 0.915 0.3 0.022],'HorizontalAlignment','left',... 

         'string','Sampling Frequency incorrect (please enter an integer number greater than 0)'); 

    elseif Fs>N 

        uicontrol('Style','text','FontSize', 8,'Units','normalized',... 

         'Position', [0.005 0.915 0.287 0.022],'HorizontalAlignment','left',... 

         'string','Please load a signal with a sample size of at least 1 second'); 

    else 

        waveletsel = 'Morlet'; 

        wnn = 'morl'; 

        ordsc = 0; 

        kk = 0; 

        set(popup_handle,'Value',1,'Visible','on','Enable','on'); 

        set(popupord_handle,'Enable','On'); 

        set(chkbw_handle,'Value',0,'Visible','on'); 

    end 

    else 

        clf; 

        set(sampf_handle,'Enable','On'); 

        set(val_handle,'Visible', 'off'); 

        set(val0_handle,'Visible', 'off'); 

        set(valf_handle,'Visible', 'off'); 

        set(valf0_handle,'Visible', 'off'); 

        set(sld0_handle,'Visible', 'off'); 

        set(sld_handle,'Visible', 'off'); 

        set(popup_handle,'Visible', 'off'); 

        set(btn_handle,'Visible', 'off'); 
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        set(betartxt_handle,'Visible','off'); 

        set(betarval_handle,'Visible','off'); 

        set(popup2_handle,'Visible','off'); 

        set(popupord_handle,'Visible','off'); 

        set(ordtxt_handle,'Visible','off'); 

        set(val2_handle,'Visible','off'); 

        set(chkbw_handle,'Visible','off'); 

        set(winerrtxt_handle,'Visible','off'); 

    end 

end 

%Window function display for FFT window selection 

function wind(source,~,betartxt_handle,betarval_handle,winerrtxt_handle) 

        windn = source.String; 

        windv = source.Value; 

        window = windn{windv}; 

        clf; 

   set(winerrtxt_handle,'Visible','off'); 

switch window 

    case {'No window','Bartlett','Blackman','Boxcar','Hamming',... 

          'Hanning','Taylor','Triangular'} 

        set(betartxt_handle,'Visible','off'); 

        set(betarval_handle,'String','','Visible','off','Enable','off'); 

        rr = 0; 

    case 'Chebyshev' 

        set(betartxt_handle,'String','Ripple:','Visible','on'); 

        set(betarval_handle,'Visible','on','Enable','on'); 

        rr = 1; 

    case 'Kaiser' 

        set(betartxt_handle,'String','Beta:','Visible','on'); 
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        set(betarval_handle,'Visible','on','Enable','on'); 

        rr = 2; 

end 

end 

%Display of wavelet function available for selection 

function wav(source,~,popupord_handle,ordtxt_handle) 

        wavn = source.String; 

     wavv = source.Value; 

        waveletsel = wavn{wavv}; 

        kk = 0; 

switch waveletsel 

    case 'Morlet' 

        ordsc = 0; 

        wnn = 'morl'; 

    case 'Mexican Hat' 

        ordsc = 0; 

        wnn = 'mexh'; 

    case 'Coiflets' 

        ordsc = 1:5; 

        wnn = 'coif'; 

    case 'Biorthogonal' 

        ordsc = [2.2 2.4 2.6... 

2.8 4.4 5.5 6.8]; 

        wnn = 'bior'; 

    case 'Reverse Biorthogonal' 

        ordsc = [2.2 2.4 2.6... 

2.8 4.4 5.5 6.8]; 

        wnn = 'rbio'; 

    case 'Gaussian' 
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        ordsc = [2 4 6 8]; 

        wnn = 'gaus'; 

    case 'Complex Gaussian' 

        ordsc = [2 4 6 8]; 

        wnn = 'cgau'; 

end 

if ordsc ~= 0 

        set(popupord_handle,'Visible','On'); 

        set(ordtxt_handle,'Visible','On'); 

        set(popupord_handle,'string', cellfun(@num2str,num2cell(ordsc),'UniformOutput',false)); 

        set(popupord_handle,'value',1); 

else 

        set(popupord_handle,'Visible','Off'); 

        set(ordtxt_handle,'Visible','Off'); 

end 

end 

 

%computation of pseudo-frequency for display 

function chboxw(checkboxw,~,val_handle,val0_handle,valf_handle,valf0_handle,... 

                sld0_handle,sld_handle,popup_handle,btn_handle,popupord_handle,... 

                val2_handle,popup2_handle,betartxt_handle,betarval_handle) 

    clf; 

    ab = checkboxw.Value; 

    if ab == 1 

        set(popup_handle,'Enable','Off'); 

        set(popupord_handle,'Enable','Off'); 

            if ordsc ~=0 

                ordn = get(popupord_handle,'String'); 

                ordv = get(popupord_handle,'Value'); 

                order = ordn{ordv}; 
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wavelet = strcat(wnn,order); 

else 

wavelet = wnn; 

end 

Fc = centfrq(wavelet); 

scales0 = 1; 

scales = 1; 

pseufreq = Fs*(Fc/scales); 

pseufreq0 = Fs*(Fc/scales0); 

set(val_handle,'String',['Max:',num2str(scales)]); 

set(val0_handle,'String',['Min:',num2str(scales0)]); 

set(valf_handle,'String',['f:',(sprintf('%.3f',round(pseufreq,3)))]); 

set(valf0_handle,'String',['f:',(sprintf('%.3f',round(pseufreq0,3)))]); 

set(val_handle,'Visible', 'on'); 

set(val0_handle,'Visible', 'on'); 

set(valf_handle,'Visible', 'on'); 

set(valf0_handle,'Visible', 'on'); 

set(sld0_handle,'Value',scales0,'Visible','on'); 

set(sld_handle,'Value',scales,'Visible','on'); 

set(popup2_handle,'Value',1,'Visible','on'); 

set(btn_handle,'Visible','on'); 

    else 

        set(popup_handle,'Enable','On'); 

        set(popupord_handle,'Enable','On'); 

        set(val_handle,'Visible', 'off'); 

        set(val0_handle,'Visible', 'off'); 

        set(valf_handle,'Visible', 'off'); 

        set(valf0_handle,'Visible', 'off'); 

        set(sld0_handle,'Visible', 'off'); 

        set(sld_handle,'Visible', 'off'); 
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        set(btn_handle,'Visible','off'); 

        set(popup2_handle,'Visible','off'); 

        set(val2_handle,'Visible','off'); 

        set(betartxt_handle,'Visible','off'); 

        set(betarval_handle,'Visible','off'); 

    end 

end 

%scale display based on the current selection of display 

function sca (source,~,val_handle,valf_handle) 

    scales = round(source.Value,0); 

    pseufreq = Fs*(Fc/scales); 

    set(val_handle,'String',['Max:',num2str(scales)]); 

    set(valf_handle,'String',['f:',(sprintf('%.3f',round(pseufreq,3)))]); 

end 

function sca0 (source,~,val0_handle,valf0_handle) 

    scales0 = round(source.Value,0); 

    pseufreq0 = Fs*(Fc/scales0); 

    set(val0_handle,'String',['Min:',num2str(scales0)]); 

    set(valf0_handle,'String',['f:',(sprintf('%.3f',round(pseufreq0,3)))]); 

end 

%Execution of selected parameters and CWT with error catching 

function exel(~,~,val2_handle,popup2_handle,betarval_handle,winerrtxt_handle) 

    if scales > scales0 

        set(winerrtxt_handle,'Visible','off'); 

        windown = get(popup2_handle,'String'); 

        windowv = get(popup2_handle,'Value'); 

        windowx = windown{windowv}; 

        br = str2double(get(betarval_handle,'String')); 
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        if rr == 0 

br = 0; 

        elseif (isnan(br) && rr==1) || br<0 

set (val2_handle,'Visible','off'); 

set(winerrtxt_handle,'string',... 

'Chebyshev stopband ripple invalid','Visible','on'); 

return 

        elseif (isnan(br) && rr==2) || br<0 

set (val2_handle,'Visible','off'); 

set(winerrtxt_handle,'string',... 

'Kaiser parameter beta invalid','Visible','on'); 

return 

        end 

        tic; 

        set (btn,'enable','off'); 

        pause(0.0000001); 

        clf; 

        Calculations (waveletsel,wavelet,scales,scales0,N,rawdata,Fs,br,windowx); 

        tim = sprintf('%.3f',round(toc,3)); 

        set (val2_handle,'String',['Runtime: ', tim,'seconds'],'Visible','on'); 

        set (btn,'enable','on'); 

    else 

        msgbox(sprintf('Error: Minimum scale > Maximum scale')); 

    end 

end 

end 



 

132 

%This program creates the plot window required for interface 

function plotwindow() 

warning('off', 'MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); 

pause(0.00001); 

frame_h = get(handle(gcf),'JavaFrame'); 

set(frame_h,'Maximized',1); 

end 

 

%This program includes the implementation of CWT and the display of plots 

function [] = Calculations(waveletsel,wavelet,scale,scale0,N,rawdata,Fs,br,windowx) 

t = 1/Fs:1/Fs:N/Fs;    % set time scale for plot 

freq = 0:Fs/N:Fs/2;     % set frequency scale for plot 

%demeaning the sEMG and ECG 

rawdat1 = rawdata(:,1); 

rawdata1 = rawdat1 - mean(rawdat1); 

rawdat2 = rawdata(:,2); 

rawdata2 = rawdat2 - mean(rawdat2); 

%Implementation of CWT 

scales = scale0:scale; 

[coeff,pseufreq] = cwt(rawdata1,scales,wavelet,(1/Fs)); 

%Calculation of threshold value 

thresh = []; 

coeffx = abs(coeff); 

medofdev = mad(coeffx,1,1); 

sdev = medofdev/0.6745; 

thresh = (sdev*(sqrt(2*log10(Fs))))/(sqrt(Fs)); 
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%Implementation of threshold function 

for rx = 1:N 

    for ry = 1:((scale-scale0)+1) 

       if coeffx(ry,rx)<thresh(rx) 

           coeff(ry,rx) = 0; 

       end 

    end 

end 

%Reconstruction of the CWT function 

sigwavinv = icwtlin(wavelet,0,coeff,scales,(1/Fs)); 

sigwavx = transpose(sigwavinv); 

 

maxr = max(rawdata1); 

minr = min(rawdata1); 

maxr2 = max(rawdata2); 

minr2 = min(rawdata2); 

 

graaa2 = []; 

var21=[]; 

var22=[]; 

 

for xx = 2:N 

    grad2 = (rawdata2(xx)-rawdata2(xx-1))/(1/Fs); 

    graaa2 = [graaa2 grad2]; 

end 

 

%ECG peak detection 

[pks2,locs2] = findpeaks(rawdata2); %finding peaks minimse data points to analyse 

for ax2 = 1:length (pks2) 

    v21 = pks2(ax2); 
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    v21l = locs2(ax2); 

    grcount2 = 0; 

    mm2 = 0; 

    %detection of the R peak in the ECG signal 

    for aa2 = v21l:(v21l+ceil(0.02*Fs)) 

    if aa2<N 

        vg2 = graaa2(aa2); 

        if vg2<0 

            grcount2 = grcount2+1; 

            if vg2<(10*(minr2-maxr2)) && mm2 == 0 

                mm2 = 1; 

            end 

            if grcount2 < 12 && mm2 == 1 

                v21x = v21; 

                v21lx = v21l; 

            end 

            if grcount2 == 12 && mm2 == 1 

                if (v21l-v21lx)<(ceil(Fs/300)) && v21x>v21 

                    var21 = [var21 v21x]; 

                    var22 = [var22 v21lx]; 

                else 

                    var21 = [var21 v21]; 

                    var22 = [var22 v21l]; 

                end 

                mm2 = 0; 

            end 

        else 

            grcount2 = 0; 

        end 

    end 
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    end 

end 

 

%window function to select the window for the FFT of the signal 

sigwavxa = rawdata1-sigwavx; 

switch windowx 

    case 'No window' 

        sigxx = sigwavxa; 

        rawdata1x = rawdata1; 

    case 'Bartlett' 

        winx = bartlett(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Blackman' 

        winx = blackman(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Boxcar' 

        winx = rectwin(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Hamming' 

        winx = hamming(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Hanning' 

        winx = hann(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Taylor' 
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        winx = taylorwin(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Triangular' 

        winx = triang(N); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Chebyshev' 

        winx = chebwin(N,br); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

    case 'Kaiser' 

        winx = kaiser(N,br); 

        sigxx = winx.*sigwavxa; 

        rawdata1x = winx.*rawdata1; 

end 

%FFT of EMG and ECG signal 

xdft = fft(sigxx);      % fft of signal to obtain frequency components 

xdft = xdft(1:(floor(N/2)+1));% increments of signal frequency upto nyquist frequency (N/2+1) 

psda = (1/(Fs*N));  % obtaining the epoch from the time period and number of samples 

psdb = abs(xdft).^2;% squaring the absolute values to obtain power (V^2) 

psdx = psda.*psdb;  % total power spectrum 

psdx(2:end-1) = 2*psdx(2:end-1);% positive and negative components are enhanced by 

                                % multiplying frequencies by a factor of 2, apart 

                                % from the Nyquist and 1st frequency values. 

xdftr = fft(rawdata1x);      % fft of signal to obtain frequency components 

xdftr = xdftr(1:(floor(N/2)+1));% increments of signal frequency upto nyquist frequency (N/2+1) 

psdar = (1/(Fs*N));  % obtaining the epoch from the time period and number of samples 

psdbr = abs(xdftr).^2;% squaring the absolute values to obtain power (V^2) 

psdxr = psdar.*psdbr;  % total power spectrum 
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psdxr(2:end-1) = 2*psdxr(2:end-1);% positive and negative components are enhanced by 

                                % multiplying frequencies by a factor of 2, apart 

                                % from the Nyquist and 1st frequency values. 

psdxt = sum(psdx); 

psdxrt = sum(psdxr); 

CC1 = {}; 

CCf1 = {}; 

CC2 = {}; 

CCf2 = {}; 

%Isolation function to extract windows between consecutive QRS waveforms 

for swt = 2:length(var22) 

    pkx11 = var22(swt-1)+90; 

    pkx12 = var22(swt)-90; 

    datpx = []; 

    datpx2 = []; 

    if pkx12>pkx11 

        for nn = pkx11:pkx12 

        datp = sigwavxa(nn); 

        datpx = [datpx datp]; 

        datp2 = rawdata1(nn); 

        datpx2 = [datpx2 datp2]; 

        end 

        xN = length(datpx); 

        xdftk = fft(datpx);      % fft of signal to obtain frequency components 

        xdftk = xdftk(1:(floor(xN/2)+1));% increments of signal frequency upto nyquist frequency (N/2+1) 

        psdak = (1/(Fs*xN));  % obtaining the epoch from the time period and number of samples 

        psdbk = abs(xdftk).^2;% squaring the absolute values to obtain power (V^2) 

        psdxk = psdak.*psdbk;  % total power spectrum 

        psdxk(2:end-1) = 2*psdxk(2:end-1);% positive and negative components are enhanced by 

                                % multiplying frequencies by a factor of 2, apart 
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% from the Nyquist and 1st frequency values. 

        freqk = 0:Fs/xN:Fs/2; 

        CC1 = [CC1;psdxk]; 

        CCf1 = [CCf1;freqk]; 

        xN2 = length(datpx2); 

        xdftk2 = fft(datpx2);      % fft of signal to obtain frequency components 

        xdftk2 = xdftk2(1:(floor(xN2/2)+1));% increments of signal frequency upto nyquist frequency (N/2+1) 

        psdak2 = (1/(Fs*xN2));  % obtaining the epoch from the time period and number of samples 

        psdbk2 = abs(xdftk2).^2;% squaring the absolute values to obtain power (V^2) 

        psdxk2 = psdak2.*psdbk2;  % total power spectrum 

        psdxk2(2:end-1) = 2*psdxk2(2:end-1);% positive and negative components are enhanced by 

% multiplying frequencies by a factor of 2, apart 

% from the Nyquist and 1st frequency values. 

        freqk2 = 0:Fs/xN2:Fs/2; 

        CC2 = [CC2;psdxk2]; 

        CCf2 = [CCf2;freqk2]; 

    end 

end 

scff1=[]; 

scff2=[]; 

for coecount1 = 1:length(CC1) 

    scff1(coecount1,:) = sum (cell2mat(CC1(coecount1,:))); 

    scff2(coecount1,:) = sum (cell2mat(CC2(coecount1,:))); 

end 

coeff2 = abs(coeff).^2; 

coeff2 = 100*coeff2./sum(coeff2(:)); 

rwx = ((maxr-minr)/(maxr2-minr2)); 

rw2 = rwx*rawdata2; 
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%Plot generation with selection for the Raw sEMG signal, Reconstructed ECG 

%signal, Filtered EMG signal and Acquired ECG signal 

chb1 = 1; 

chb2 = 1; 

chb3 = 1; 

chb4 = 1; 

hold on 

clf 

uicontrol('Style', 'checkbox', 'Units','normalized',... 

          'value',1,'Position', [0.44 0.955 0.015 0.019],... 

          'Callback',@chv1); 

uicontrol('Style', 'checkbox', 'Units','normalized',... 

          'value',1,'Position', [0.44 0.935 0.015 0.019],... 

          'Callback',@chv2); 

uicontrol('Style', 'checkbox', 'Units','normalized',... 

         'value',1,'Position', [0.55 0.955 0.015 0.019],... 

          'Callback',@chv3); 

uicontrol('Style', 'checkbox', 'Units','normalized',... 

          'value',1,'Position', [0.55 0.935 0.015 0.019],... 

          'Callback',@chv4); 

uicontrol('Style','text','FontSize', 8,... 

          'Units','normalized','Position', [0.455 0.95 0.09 0.022],... 

          'HorizontalAlignment','left','String','Raw Signal'); 

uicontrol('Style','text','FontSize', 8,... 

          'Units','normalized','Position', [0.455 0.93 0.09 0.022],... 

          'HorizontalAlignment','left','String','Reconstructed Signal'); 

uicontrol('Style','text','FontSize', 8,... 

          'Units','normalized','Position', [0.565 0.95 0.09 0.022],... 

          'HorizontalAlignment','left','String','ECG Signal'); 

uicontrol('Style','text','FontSize', 8,... 
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          'Units','normalized','Position', [0.565 0.93 0.09 0.022],... 

          'HorizontalAlignment','left','String','Filtered Signal'); 

subplot(3,3,[1 2]) 

plot(t,rawdata1,'b',t,sigwavx,'r',t,rw2,'g',t,sigwavxa,'m'); 

yaxis = ylim; 

legend({'Raw Signal','Reconstructed Signal','ECG Signal',... 

       'Filtered Signal'},'Location', 'northeast','FontSize',8,... 

       'Orientation','Horizontal') 

xlim([min(t) max(t)]); 

grid on 

title({['EMG Signal: ',waveletsel];['(',wavelet,')']}) 

xlabel('Time (s)') 

ylabel('Signal (uV)') 

 

function chv1(chval1,~) 

        chb1 = chval1.Value; 

        replot(chb1,chb2,chb3,chb4,yaxis,t,... 

               rawdata1,sigwavx,rw2,sigwavxa,waveletsel,wavelet); 

end 

 

function chv2(chval2,~) 

        chb2 = chval2.Value; 

        replot(chb1,chb2,chb3,chb4,yaxis,t,... 

               rawdata1,sigwavx,rw2,sigwavxa,waveletsel,wavelet); 

end 

 

function chv3(chval3,~) 

        chb3 = chval3.Value; 

        replot(chb1,chb2,chb3,chb4,yaxis,t,... 

               rawdata1,sigwavx,rw2,sigwavxa,waveletsel,wavelet); 
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end 

 

function chv4(chval4,~) 

        chb4 = chval4.Value; 

        replot(chb1,chb2,chb3,chb4,yaxis,t,... 

               rawdata1,sigwavx,rw2,sigwavxa,waveletsel,wavelet); 

end 

 

%Scalogram plot 

subplot(3,3,[4 5]) 

surf(t,scales,coeff2); 

shading interp 

view(0,90) 

cb1 = colorbar; 

cb1.Location = 'manual'; 

cb1.Position = [0.63 0.41 0.005 0.215]; 

xlim([min(t) max(t)]); 

ylim([0 max(scales)]); 

title(['Scalogram - ',waveletsel,' (',wavelet,')',' (Scale:',num2str(scale0),'-',num2str(scale),')']) 

xlabel('Time (s)') 

ylabel('Scales') 

 

%Frequency-time spectrum plot 

sbp = subplot(3,3,[7 8]); 

surf(t,pseufreq,coeff2); 

shading interp 

view(0,90) 

cb2 = colorbar; 

cb2.Location = 'manual'; 

cb2.Position = [0.63 0.11 0.005 0.215]; 
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axis xy; 

xlim([min(t) max(t)]); 

ylim([0 max(pseufreq)]); 

slda = uicontrol('Style', 'slider','Units','normalized',... 

        'Min',1,'Max',1000,'Value',1,... 

        'SliderStep',[1/1000 10/1000],... 

        'Position', [0.08 0.11 0.007 0.215],... 

        'BackgroundColor', [0 0 0],... 

        'Callback', @zm); 

function zm(source,~) 

        set(sbp, 'YLim', [0 (max(pseufreq)/source.Value)]); 

end 

title(['Frequency-Time Spectrum - ',waveletsel,' (',wavelet,')',' (Scale:',num2str(scale0),'-',num2str(scale),')']) 

xlabel('Time (s)') 

ylabel('Frequency (Hz)') 

 

%Power spectrum of the whole raw sEMG signal 

subplot(3,3,9) 

plot(freq,psdxr); 

uicontrol('Style','text','FontSize', 8,... 

          'Units','normalized','Position', [0.92 0.155 0.09 0.022],... 

          'HorizontalAlignment','left','String',[' Total Power:',num2str(psdxrt)]); 

grid on 

title('Power Spectrum - Whole signal (raw)') 

xlabel('Frequency (Hz)') 

ylabel('Power (uV2)') 

yp1 = ylim; 

xp1 = xlim; 

 

%Power spectrum of the whole filtered EMG signal 
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subplot(3,3,6); 

plot(freq,psdx);        % plotting the spectrum 

uicontrol('Style','text','FontSize', 8,... 

          'Units','normalized','Position', [0.92 0.455 0.09 0.022],... 

          'HorizontalAlignment','left','String',[' Total Power:',num2str(psdxt)]); 

grid on 

title('Power Spectrum - Whole signal (filtered)') 

xlabel('Frequency (Hz)') 

ylabel('Power (uV2)') 

ylim(yp1); 

xlim(xp1); 

 

%Selection of QRS-QRS window and display of power spectrum for sEMG and 

%filtered EMG signal 

windn = length(CC1); 

winddd = {'Whole Signal'}; 

for windnum = 1:windn 

    wdn = num2str (windnum); 

    windnumb = strcat('Window',wdn); 

    winddd = [winddd;windnumb]; 

end 

popupw = uicontrol('Style', 'popup','Units','normalized',... 

        'String', winddd,... 

        'Position',[0.913 0.253 0.08 0.06],... 

        'Callback', @wvv); 

    function wvv(Source,~) 

        windowv = Source.Value; 

        subplot(3,3,9) 

        cla 

        if windowv == 1 
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            plot(freq,psdxr); 

            uicontrol('Style','text','FontSize', 8,... 

            'Units','normalized','Position', [0.92 0.155 0.09 0.022],... 

            'HorizontalAlignment','left','String',[' Total Power:',num2str(psdxrt)]); 

            title('Power Spectrum - Whole signal (raw)') 

        else 

           CCx2 = cell2mat(CC2((windowv-1),:)); 

           CCfx2 = cell2mat(CCf2((windowv-1),:)); 

           CCx2t = sum(CCx2); 

           plot(CCfx2,CCx2); 

            uicontrol('Style','text','FontSize', 8,... 

            'Units','normalized','Position', [0.92 0.155 0.09 0.022],... 

            'HorizontalAlignment','left','String',[' Total Power:',num2str(CCx2t)]); 

           title(['Power Spectrum - window ',num2str(windowv-1),' (raw)']) 

        end 

        grid on 

        xlabel('Frequency (Hz)') 

        ylabel('Power (uV2)') 

        yp1 = ylim; 

        xp1 = xlim; 

 

        subplot(3,3,6) 

        cla 

        if windowv == 1 

            plot(freq,psdx); 

            uicontrol('Style','text','FontSize', 8,... 

            'Units','normalized','Position', [0.92 0.455 0.09 0.022],... 

            'HorizontalAlignment','left','String',[' Total Power:',num2str(psdxt)]); 

            title('FFT - Whole signal (filtered)') 

        else 
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CCx1 = cell2mat(CC1((windowv-1),:)); 

CCfx1 = cell2mat(CCf1((windowv-1),:)); 

CCx1t = sum(CCx1); 

plot(CCfx1,CCx1); 

uicontrol('Style','text','FontSize', 8,... 

'Units','normalized','Position', [0.92 0.455 0.09 0.022],... 

'HorizontalAlignment','left','String',[' Total Power:',num2str(CCx1t)]); 

title(['FFT - window ',num2str(windowv-1),' (filtered)']) 

        end 

        grid on 

        xlabel('Frequency (Hz)') 

        ylabel('Power (uV2)') 

        ylim(yp1); 

        xlim(xp1); 

    end 

hold off 

end 
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%This program replots the signal based on selection 

function replot(chb1,chb2,chb3,chb4,yaxis,... 

                t,rawdata1,sigwavx,rw2,sigwavxa,waveletsel,wavelet) 

subplot(3,3,[1 2]) 

                cla; 

                hold on 

                leg = strings; 

                if chb1 == 1 

                    plot(t,rawdata1,'b'); 

                    leg = [leg 'Raw Signal']; 

                end 

                if chb2 == 1 

                    plot(t,sigwavx,'r'); 

                    leg = [leg 'Reconstructed Signal']; 

                end 

                if chb3 == 1 

                    plot(t,rw2,'g'); 

                    leg = [leg 'ECG Signal']; 

                end 

                if chb4 == 1 

                    plot(t,sigwavxa,'m'); 

                    leg = [leg 'Filtered Signal']; 

                end 

                leglen = length(leg); 

                lege = leg(2:leglen); 

                lgd = legend(lege,'Orientation','Horizontal'); 

                lgd.FontSize = 8; 

                ylim(yaxis); 

                xlim([min(t) max(t)]); 

                grid on 
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                title({['EMG Signal: ',waveletsel];['(',wavelet,')']}) 

                xlabel('Time (s)') 

                ylabel('Signal (uV)') 

                hold off 

end 

 

 

%This program selects the file and checks if the selection is valid 

function [filename,sheets] = excelfile() 

filechk = 0; 

while filechk == 0 

    [file,path] = uigetfile({'*.xlsx;*.xls','Excel Files (*.xlsx,*.xls)'},'Select Data File'); 

    filename = fullfile(path, file); 

    [status,sheets] = xlsfinfo(filename); 

if file == 0 

    filename = false; 

    return; 

elseif isequal(status,'Microsoft Excel Spreadsheet') 

    filechk = 1; 

else 

    filechk = 0; 

end 

end 

end 
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%This program creates a list of excel sheets for selection 

function [sheetx] = selsheet(sheets) 

[indx,tf] = listdlg('PromptString','Select a sheet:',... 

                    'SelectionMode','single',... 

                    'ListString',sheets); 

if tf == 1 

    sheetx = sheets(indx); 

else 

    sheetx = []; 

end 

end 

 

%This program selects the sample for the sEMG and ECG signals and compares for equal selection 

function sampl = sample(filename,sheetx) 

sheetxx = char(sheetx); 

smp = 0; 

while smp == 0 

    prompt = {'EMG Starting Cell:','EMG Ending Cell:','ECG Starting Cell:','ECG Ending Cell:'}; 

    dlg_title = 'Data Input'; 

    num_lines = 1; 

    input = inputdlg(prompt,dlg_title,num_lines); 

    inpp = isempty(input); 

    if inpp == 1 

        sampl = 0; 

        smp = 1; 

    else 
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    c1 = char(input(1)); 

    c2 = char(input(2)); 

    c3 = char(input(3)); 

    c4 = char(input(4)); 

    try 

        st1 = strcat(c1,':',c2); 

    catch 

        st1 = []; 

    end 

    try 

        st2 = strcat(c3,':',c4); 

    catch 

        st2 = []; 

    end 

    try 

        sam1 = xlsread(filename,sheetxx,st1); 

    catch 

        sam1 = []; 

    end 

    try 

        sam2 = xlsread(filename,sheetxx,st2); 

    catch 

        sam2 = []; 

    end 

    samp = isempty(sam1) || isscalar(sam1) || ~isfloat(sam1) ||... 

           isempty(sam2) || isscalar(sam2) || ~isfloat(sam2); 

    if samp == 1 

        waitfor(msgbox('Please enter a valid data range','Error','modal')); 

        smp = 0; 

    elseif length(sam1) ~= length(sam2) 
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        waitfor(msgbox({'Both signal ranges are not equal';... 

'Please make sure the sample sizes of both signals are equal.'}... 

,'Error','modal')); 

        smp = 0; 

    else 

        [~,sch1] = size(sam1); 

        [~,sch2] = size(sam2); 

        if sch1>1 || sch2>1 

waitfor(msgbox('Please enter a valid data range','Error','modal')); 

smp = 0; 

        else 

sampl(:,1) = sam1; 

sampl(:,2) = sam2; 

smp = 1; 

        end 

    end 

    end 

end 

end 


