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A B S T R AC T

This thesis proposes and presents several methods for classification problems.

Spatial and spatiotemporal classification problems have been considered in this

study. A novel integration between Evolving Spiking Neural Network (ESNN)

and Particle Swarm Optimisation (PSO) is proposed for ESNN model optimi-

sation. ESNN, motivated by the principle of Evolving Connectionist System

(ECoS), is a relatively new classifier in the neural information processing area.

Proper combination of ESNN parameters would influence the ESNN perfor-

mance. On the other hand, PSO is a bio-inspired optimiser and was devel-

oped based on a study of school of fish and flock of birds behaviour. In this

framework, all ESNN parameters are optimised by the PSO to achieve optimal

parameter combination for the model. A wrapper approach is implemented

in the ESNN-PSO frameworks and a few other integrated frameworks that are

also proposed in this work. The classifier uses information provided by the

particles during learning and generates a fitness value for each solution candi-

date. Particles interact with each other and update their information based on

the global best particlegbest and their own best solutionpbest. The learning

process continues until termination criteria are met.

When dealing with high dimensional problems, only some of the input fea-

tures are relevant. In this case, selection of features is required. Since standard

PSO is not able to handle probability computation, the quantum computation

principle is embedded into PSO. This combination is referredto as Quantum-

inspired Particle Swarm Optimisation (QiPSO). The integrated ESNN-QiPSO

is proposed in this study for simultaneous feature selection and parameter opti-

misation. This combination provides promising results that may lead to better

and faster learning. However, several problems have been identified that led

to the development of enhanced QiPSO and ESNN. A hybrid particle and new

search and update strategy is proposed for the QiPSO and is presented in the

Dynamic QiPSO (DQiPSO) model. Subsequently, an integrated framework of

xx



DQiPSO and ESNN is proposed for efficient feature selection and parameter

optimisation. The probabilistic element is also embedded into ESNN as part

of its enhancement. In the Probabilistic ESNN (PESNN), the evolving connec-

tion is introduced. In the proposed integrated PESNN-DQiPSO, the classifier

works together with the optimiser where the connection, feature and parameter

components are optimised synchronously for better classification.

Real world problems are often spatiotemporal. Standard ESNNarchitec-

ture lacks the ability to process both spatial and temporal components in spa-

tiotemporal problems. This study proposes two new ESNN frameworks for

spatiotemporal classification utilising the reservoir computing principle. The

Extended ESNN (EESNN) is proposed where a simple memory is used to ac-

cumulate all spatial and temporal information before passing them to ESNN.

In the second approach, more complex Liquid State Machine (LSM) reservoir

is incorporated into the ESNN. The reservoir-based ESNN (RESNN) accumu-

lates all information and generates the reservoir responses that can be measured

at any simulation time. These responses are encoded into liquidstates before

sending them to ESNN for classification.

All proposed frameworks have been evaluated on synthetic and real world

problems. This study also proposes a spatiotemporal syntheticproblem called

Rotating Dot. The purpose of introducing this benchmark dataset is to have a

spatiotemporal problem with controllable difficulty that can be used for evalu-

ation of the methods. In this problem, the noise can be set at asmall value to

generate a simple problem or at a high value for more difficult problems. Re-

sults obtained with all proposed frameworks are promising and warrant future

exploration.

xxi



Chapter1

I N T RO D U C T I O N

1.1 BAC K G RO U N D

The human brain is a constant inspiration to scientists in various fields. The

highly complex human brain structure comprises billions ofinterconnected

neurons. Information between neurons is passed using short electrical pulses,

also known as spikes. Various spikes strength received by a neuron produce an

output spike and stimulate other neurons in the system. Motivated to under-

stand how the brain works, researchers have developed brain-inspired math-

ematical models that simulate the capability of the brain. The most notable

model is the Artificial Neural Network (ANN). Many ANN applications have

been developed and most applications are for predicting future events based

on historical data. Processing power of ANN allows the network to learn and

adapt, in addition to making it particularly well suited to tasks such as clas-

sification, pattern recognition, memory recall, prediction, optimisation, and

noise filtering (Luger, 2004). The primary significance of ANN isthe abil-

ity of the network to learn from its environment and improve itsperformance

through learning (Haykin, 1998). The well known ANN architecture is the

Multilayer Perceptron (MLP) (Rumelhart, Hintont, & Williams, 1986). Better

understanding of how the biological brain works has led to the introduction

of Spiking Neural Networks (SNN) (Maass, 1997). SNN can be considered a

third generation Artificial Neural Network (ANN) whereby neurons send and

receive information based on spikes rather than on continuous variables. One

of the SNN architecture is Evolving SNN (ESNN). ESNN architecture was

first discussed by Wysoski, Benuskova, and Kasabov (2006b) and followed up

1
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on the evolving concept suggested by Kasabov (1998a) throughECoS. ECoS

methods allow the structure of the network to evolve as part of the training

process. This method is sensitive to the selection of its parameters and the

correct choice of parameters allows the network to evolve to thebest structure

and ensure the best output. Therefore, an optimiser is needed to find the best

combination of parameters.

Biologically-inspired techniques used to develop an effective optimiser have

received numerous attention nowadays. The most famous techniques for opti-

misation are the Genetic Algorithms (GA) (Holland, 1975), which areinspired

by the evolution processes in biological chromosomes. Another well known

optimiser is the PSO (Eberhart & Kennedy, 1995), which is inspired by how

the biological swarm of animals works to achieve a desirable objective for the

group. Since its introduction, PSO has been widely used to solvemany real

world problems. Kennedy and Eberhart (1997) also introduced the binary ver-

sion of PSO. There have been a lot of developments and improvements in this

area, those suggested by Khanesar, Teshnehlab, and Shoorehdeli (2007) and

Yuan, Nie, Su, Wang, and Yuan (2009). Quantum computation has received

more attention due to its dynamic characteristics used to address binary prob-

lems that involve probability, e.g. to select or not to select certain components.

Sun, Feng, and Xu (2004) introduced the quantum principle into PSO and pro-

posed the QiPSO specifically to tackle such problems.

Apart from efforts to solve the one dimensional spatial or temporal prob-

lems, many endeavours are also made to solve spatiotemporalproblems. Spa-

tiotemporal problems are unique because both spatial and temporal elements

are important for making a decision. Real life spatiotemporal problems in-

clude: cloud formation for rain forecasting, traffic movement for route identi-

fication based on Global Positioning System (GPS), motion and human gesture

recognition, brain signals and their recognition, and manymore. These prob-

lems prompted the need for an efficient information processing method where

both spatial and temporal components can be captured effectively in order to

attain better recognition solutions.
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1.2 M OT I VAT I O N

SNN model has been proved to be computationally better in simulating infor-

mation processing in human brain than sigmoid and analog neural networks

(Maass, 1996; Schrauwen & Campenhout, 2006). Despite recent research

and development in the area of SNN, there is a significant gap in finding the

most effective methods for parameter optimisation and feature selection tasks.

ESNN has been shown promising in terms of data processing but difficult to

find the optimal parameter value. Similarly to other neural network models,

the correct combination of parameters influence the performance of the net-

work. On the other hand, using a higher number of features does not neces-

sarily translate into higher accuracy. In some cases, havingfewer significant

features could reduce processing time and still produce satisfactory results.

This research addresses this challenge with the developmentof a more effec-

tive optimisation strategy based on PSO architecture with embedded principle

of quantum computation. In addition, PSO for ESNN optimisation andthe

integrative environment is a novel work.

Because of the complexity of the ESNN network, there are chances that the

network can be optimised in order to have better results. Probabilistic com-

putation is one of the elements that can be adapted to the network. This new

element is expected to give some versatility to the network since probabilistic

computation allows some components to be selected based on therequirements

and conditions at a particular time.

Although there are various studies involving solutions for spatiotemporal

problems, developing such solutions using ESNN is a new research ques-

tion. Spatiotemporal problems are more complex than normalspatial prob-

lems (mainly classification and clustering) or temporal problems (mainly pre-

diction). In spatiotemporal problems, both elements need tobe taken seriously

into consideration during the learning process. This is because both spatial

and temporal components provide the information required toobtain more ac-

curate results. Thus, capturing both the spatial and temporal components is the

primary challenge in this research.
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1.3 R E S E A R C H O B J E C T I V E S

This research aims to improve spatial and spatiotemporal classification prob-

lems by proposing an integrated framework structure. For spatial problems,

this thesis proposes an integrated framework that includesboth a classifier and

an optimiser. The optimiser simultaneously optimises all crucial ESNN com-

ponents needed for classification. For spatiotemporal problems, an additional

module and a reservoir is proposed to capture both spatial and temporal infor-

mation components. Although plenty of computational intelligence methods

have been developed to solve spatiotemporal problems, it is worth exploring

new methods to solve these problems more effectively. In addition, using PSO

for ESNN optimisation is novel. This study will explore the possibility of us-

ing PSO as a model optimisation for ESNN. ESNN structure is completely

different from the more commonly used MLP. However, the standardPSO is

inadequate for solving problems that require probability computation such as

feature selection tasks. Therefore, probability computation in PSO will be also

studied in this research.

Based on the above considerations, this research addressesthese problems

by developing a new optimisation strategy and utilising quantum computation

principles. On the other hand, the ESNN (Wysoski et al., 2006b)will be mod-

ified and several novel integrated frameworks will be proposed. This research

has the following objectives:

1. Propose novel methods, including:

• The development of a novel integrated framework for simultaneous

feature selection and model optimisation. This will allow the opti-

mal usage of the optimiser potential when solving a given problem

and to improve the classification results;

• The development of an improved optimiser for ESNN;

• The development of a new architecture of ESNN and a novel frame-

work for solving spatial and spatiotemporal problems.

2. Conduct experimental analysis with comparison to the existing well known

methods and evaluate their performance, and
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3. Share research outcomes with the relevant research community through

publications and presentations.

There are three main directions of this study as shown in Figure 1.1. The

study starts with furthering the understanding of ESNN as the core of this re-

search. As described in Wysoski et al. (2006b) and Schliebs, Defoin-Platel, and

Kasabov (2009a), parameter optimisation is crucial for ensuring that ESNN

can produce good results. Therefore, the first task in this study is to develop

a new optimiser for parameter optimisation and feature selection for ESNN.

The second task of this research aims to explore if ESNN can be enhanced

further since no alterations to ESNN have been made since its introduction in

2006 by Wysoski et al. (2006b). This may lead to a better understanding of

this classifier. The final task is to solve spatiotemporal problems. This task re-

quires ESNN to be modified to suit the spatiotemporal data processing which

currently ESNN is not able to handle.

ESNN

Parameter 

optimisation and

feature selection

Spatiotemporal

data

processing

Novel features

for ESNN

Figure 1.1: Three directions of the research related to the ESNN core: parameter opti-
misation and feature selection, novel ESNN features and modified ESNN
for spatiotemporal data processing.
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1.4 S P E C I FI C R E S E A R C H Q U E S T I O N S

In line with the research objectives, the specific research questions for this

study are as follows:

1. How to integrate and optimise ESNN with standard PSO and QiPSO?

This research is novel in a way that there has been no attempt to inte-

grate ESNN and PSO or QiPSO. The interesting part of this question is

to find out how both optimisers work with the given problems, the pa-

rameter optimisation and feature selection. In order to feedthe input to

the network for feature selection, the main question is how to represent

the input features. This is crucial because the right mechanism will allow

the feature to be selected or removed during the learning process.

2. Can the learning of ESNN be improved by introducing probabilisticel-

ements as suggested by Kasabov (2010)? By incorporating probabilistic

elements to the ESNN, what component needs to be optimised and how

to optimise it?

3. How to extend the current ESNN in order to solve spatiotemporal pattern

recognition problems? Does the input need to be encoded differently?

Should additional components be added to the framework to solve these

types of problem effectively?

In summary, this research aims to develop an effective technique for model

optimisation and to achieve better classification results for spatial and spa-

tiotemporal problems. Some major computational principles willbe imple-

mented to achieve the research objectives. These principles include:

1. ECoS,

2. Quantum computation,

3. Reservoir computing, and

4. Knowledge discovery.
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1.5 T H E S I S S T RU C T U R E

The thesis is organised in ten chapters and is briefly discussed below:

C H A P T E R 2 This chapter introduces biological neurons which have in-

spired the development of SNN. Three main components of SNN, namely the

encoding methods, neuron models and learning are also reviewed. ESNN, their

principles and their applications are also explained in this chapter.

C H A P T E R 3 This chapter reviews the current research in QiPSO. EA and

PSO are also explained.

C H A P T E R 4 Based on the reviews of ESNN and PSO, this chapter pro-

poses the first integrated structure of ESNN-PSO whereby the PSO acts as

an optimiser of ESNN parameters. In line with the research objectives, this

chapter explains the proposed integrated ESNN-QiPSO framework where the

quantum principle has been used to optimise both parameters and input fea-

tures. Analysis of the strengths and weaknesses of the proposed methods are

also discussed here.

C H A P T E R 5 Based on issues identified in the analysis of the proposed

method, an enhancement to the QiPSO optimiser is proposed. This chapter

also explains the modifications to QiPSO which are crucial for thelearning of

ESNN. This chapter also proposes a novel integrated frameworkconsisting of

enhanced QiPSO - Dynamic QiPSO (DQiPSO) with ESNN and explains why

the proposed method performs better than previous methods.

C H A P T E R 6 Another objective of this research is to investigate ESNN

with probabilistic behaviour. This chapter shows how the new structure of

evolving connections in ESNN can affect the performance of thenetwork. An

integrated framework is proposed where the connections, input features and

parameters can be optimised simultaneously during the learning process.
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C H A P T E R 7 This chapter proposes an extended version of ESNN for solv-

ing spatiotemporal pattern recognition problems. An additional module is

added to the ESNN framework in order to capture both the spatial and tem-

poral elements of the problem space.

C H A P T E R 8 Another framework for solving spatiotemporal classification

is proposed in this chapter. In this approach, the LSM acts as areservoir.

It captures the spatial and temporal information and feeds them to ESNN. A

modified encoding method for the reservoir is also discussedin this chapter.

C H A P T E R 9 Both methods proposed in Chapter 7 and Chapter 8 for solv-

ing spatiotemporal classification are applied to a case study dataset. The LI-

BRAS dataset is a video sequence containing 15 sign language movements.

The proposed methods are used to classify the movements in their respective

classes. Results from both methods are discussed in this chapter.

C H A P T E R 10 Conclusion and future research directions are discussed in

this chapter.

1.6 T H E S I S C O N T R I B U T I O N S

A summary of this thesis contributions is visualised in the 3-dimensional rep-

resentation depicted in Figure 1.2. The three axes represent the increasing

complexity of optimisers, classifiers and the datasets respectively. The red text

for some the optimisers, classifiers and datasets indicatesmethods or dataset

that have been proposed in this study. The red points indicatesthe proposed

novel integrated methods with the datasets used for testing.Specific chapters

where each method is discussed are also shown in the figure.
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Figure 1.2: A visual summary of contributions that include the proposed new classi-
fiers, optimisers, synthetic dataset and framework that integrate a different
combinations of classifiers and optimisers.

1.7 P U B L I C AT I O N S

During the three and half years of study, the following eight international blind

peer reviewed publications have been produced that include a book chapter,

journal and conference proceedings.

1. Book chapter

• Hamed, H.N.A., Kasabov, N., & Shamsuddin, S.M. (2011). Quantum-

inspired Particle Swarm Optimisation for Feature Selection andPa-

rameter Optimisation in Evolving Spiking Neural Networks for Clas-

sification Tasks. In Eisuke Kita (Ed.), Evolutionary Algorithm, ISBN

978-953-307-171-8. INTECH Publications.
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2. Journal papers

• Hamed, H.N.A., Kasabov, N., & Shamsuddin, S.M. (2011). Dy-

namic Quantum-inspired Particle Swarm Optimisation as Feature

and Parameter Optimiser for Evolving Spiking Neural Networks.

International Journal of Modeling and Optimisation (In Print).

• Kasabov, N. &Hamed, H.N.A. (2011). Quantum-inspired Particle

Swarm Optimisation for Integrated Feature and Parameter Optimi-

sation of Evolving Spiking Neural Networks. International Journal

of Artificial Intelligence, 7(11),114-124.

• Hamed, H.N.A., Kasabov, N., & Shamsuddin, S.M. (2010). Prob-

abilistic Evolving Spiking Neural Network Optimisation Using Dy-

namic Quantum-inspired Particle Swarm Optimisation. Australian

Journal of Intelligent Information Processing Systems, 11(1), 23-

28.

3. Papers in conference proceedings

• Schliebs, S.,Hamed, H.N.A., & Kasabov, N. (2011). Reservoir-

based Evolving Spiking Neural Network for Spatio-temporal Pat-

tern Recognition. Proceedings of the 18th International Conference

on Neural Information Processing, Shanghai, China, 160-168,Part

II, LNCS 7063.

• Hamed, H.N.A., Kasabov, N., Shamsuddin, S.M., Widiputra, H., &

Dhoble, K. (2011). An Extended Evolving Spiking Neural Network

Model for Spatio-Temporal Pattern Classification. Proceedings of

the 2011 International Joint Conference on Neural Networks, San

Jose, CA, 2653-2656, IEEE Press.

• Hamed, H.N.A., Kasabov, N., Michlovsk, Z., & Shamsuddin, S.M.

(2009). String Pattern Recognition Using Evolving Spiking Neural

Networks and Quantum-inspired Particle Swarm Optimisation. Pro-

ceedings of the 16th International Conference on Neural Informa-

tion Processing, Bangkok, Thailand, 611-619, Part II, LNCS 5864.

• Hamed, H.N.A., Kasabov, N., & Shamsuddin, S.M. (2009). Inte-

grated Feature Selection and Parameter Optimisation for Evolving
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Spiking Neural Networks using Quantum-inspired Particle Swarm

Optimisation. Proceedings of the 2009 International Conference of

Soft Computing and Pattern Recognition, Malacca, Malaysia, 695-

698, IEEE Press.

1.8 C H A P T E R S U M M A RY

This chapter introduces and explains the background, motivation, objectives

and research questions formulated for this research. This research will study

three main areas related to its ESNN core: the optimiser, enhanced ESNN

features and also spatiotemporal data processing. Thesis structure, thesis con-

tributions and publications during the course of this studyare also outlined in

the last three sections.

The next chapter reviews the main components in this research- the ESNN

which is derived from the SNN architecture.



Chapter2

R E V I E W O F E VO LV I N G S P I K I N G N E U R A L

N E T W O R K S

This chapter reviews the foundation of Evolving Spiking Neural Networks

(ESNN). The main discussion in this chapter is about the fundamental compo-

nents of ESNN which itself is derived from the standard SNN. This discussion

includes the data encoding, neuron models and learning algorithms. Finally,

the structure of ESNN is discussed.

2.1 I N T RO D U C T I O N TO S P I K I N G N E U R A L N E T W O R K S

The human brain has always been an inspiration for the neuralnetwork re-

search. Although current neural network models do not exactly model the

complex brain structure, some of its principles have been taken into consid-

eration when developing such artificial systems. Comprehensive explanation

of the structure, function, chemistry and physiology of human brain neurons

can be found in (Kandel, 2000). Many ANN models have been developed

and applied for learning from data and for generalisation to new data (Arbib,

1995). Their applications include: classification, time series prediction, asso-

ciative storage and retrieval of information, robot and process control, medical

and business decision support, and many others (Arbib, 1995;Kasabov, 1996).

Most of these ANN use simple and deterministic models of artificialneurons,

such as the McCulloch and Pitts model (Mcculloch & Pitts, 1943)introduced

in 1943. They also use rate coded information representation,where average

activity of a neuron or an ANN is represented as a scalar value. Despite the

large structural diversity of existing ANN, the limited functionality of the neu-

12
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rons and connections between them has constrained the scope of applications

of ANN and has limited their efficiency when modelling large scale,noisy,

dynamic and stochastic processes (Kasabov, 2010). According toKasabov

(2010), new knowledge on information processing in biologicalneurons have

explained several additional parameters also have to be considered for a neuron

to spike in addition to the input signals, such as gene and protein expression

(Kasabov, 2007; Kojima & Katsumata, 2009), the physical properties of con-

nections (Huguenard, 2000), the probabilities of spikes being received at the

synapses and the emitted neuro-transmitters or open ion channels (Ikegaya,

Matsumoto, Chiou, Yuste, & Aaron, 2008; Abbott & Nelson, 2000). Many of

these properties have been mathematically modelled and used to study biolog-

ical neurons such as in Gerstner and Kistler (2002a); Izhikevich (2004, 2006);

Izhikevich and Edelman (2008), but have not been properly utilised with more

efficient ANN for solving complex AI problems. The third generation neural

networks, the SNN models are made up of artificial neurons that use trains

of spikes to represent and process pulse coded information (Gerstner, Ritz, &

Hemmen, 1993; Gerstner & Hemmen, 1994; Gerstner, 2001; Maass, 1997,

1999; Gerstner & Kistler, 2002a; Kasabov, 2008). In biological neural net-

works, neurons are connected at synapses and electrical signals (spikes) pass

information from one neuron to another. SNN are biologically plausible and

offer some means for representing time, frequency, phase and other features of

the information being processed.

Figure 2.1: A schematic diagram of SNN neuron model.
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To illustrate the SNN model, a simplified schematic diagram is presented in

Figure 2.1. A neuron receives electrical spike stimulationthrough connections

from a number of pre-synaptic neurons. Every synapse has its ownsynaptic

weight. Once the accumulated Post-synaptic Potential (PSP) islarger than a

specific threshold, an output spike is emitted and propagatedvia the axon to

connected post-synaptic neurons. Figure 2.2 illustrates the process of PSP

computation in a neural model. As each input spike is received, it will stimu-

late the PSP until the PSP reaches a predefined threshold and the neuron emits

an output spike. Then the potential is reset for next spike computation.

Spikes

Time

Stimulus
0.0

0.2

0.4

0.6

0.8

1.0

PSP

Figure 2.2: Illustration of spiking neuron model. When enough input spikes are re-
ceived and the potential reaches the threshold, an output spike is emitted
and the potential is reset.

There are three main components that have to be considered in theSNN

architecture. Since all the information is propagated through spikes, an en-

coding method is necessary. The original form of data must beencoded into

spike trains to be recognised by the network. Model of a spikingneuron is

the second component in the SNN architecture. Several different neuron mod-

els have been introduced in the recent past. From the most complex model

that simulates the biological neuron as closely as possible tothe simple and

effective model. Every model has its own level of complexity and behaviour

that may affect the computation of output spike, thus making ita crucial com-

ponent of the system. The third component is the learning algorithm of the
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network. Since the information in the network is representedas spikes, a dif-

ferent learning mechanism is required for SNN. All three SNN components

will be reviewed in the next three sections.

2.2 DATA E N C O D I N G

Since data in SNN needs to be represented in spikes, it must be encoded in the

spike trains. In this section, the first component of SNN, the encoding method

for the SNN is discussed. There are two main neural encoding theories, the

pulse codes and the rate codes, where each generates a different spike charac-

teristic for the network.

2.2.1 Rate codes

In this approach, the mean firing rate of a neuron is assumed to hold most of

the information. However, there are two interpretation of the mean firing rate.

The first interpretation usually considers the ratio of the average number of

spikesnsp observed over a specific time intervalT as shown in Equition 2.1.

v =
nsp
T

(2.1)

The study of data encoding began as early as 1926 when Adrian (1926) suc-

cessfully applied the rate code approach in sensory and motorneural systems.

But this mean firing rate concept has been criticised for the slow transmission

of information between neurons because each neuron has to wait for new spike

activity for a certain period of timeT (Rieke, Warland, Steveninck, & Bialek,

1999). The second understanding of mean firing rate is definedas the aver-

age spike activity over a population of neurons. In this concept, a population

of pre-synaptic neurons produce a certain spike activityA that is then sent to

the post-synaptic neuron. Figure 2.3 illustrates the rate codes calculation from

Equation 2.2.
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Figure 2.3: Illustration of rate codes generation.

A =
1

∆t

nact(t, t+∆t)

N
(2.2)

wherenact(t, t+∆t) defines the number of active neurons within a short time

interval of [t, t + ∆t] andN is the total number of neurons in the population.

This method has been explained in Gerstner (2000).

2.2.2 Pulse codes

The second encoding method is called pulse or spike code. In this approach,

the exact spike time is considered as information for the network. A study by

Lestienne (1995) shows how the temporal component of the spike can be used

for learning. Thorpe, Fize, and Marlot (1996) have describedthis encoding as

dependent on the timing of the spikes, where the first spike hasa higher weight

than a later one. In this work, they argue that since a biological neuron only

uses a few milliseconds to process information, only a few spikes are required

and emitted. Therefore, the first few spikes with highest information can con-

tribute to the overall learning process. Thorpe et al. (1996) also proposed a

specific neuron model which is described in Section 2.3. A neural encoding

method has been explained in principle in (Rieke et al., 1999).

There are two well-known practical encoding techniques basedon this ap-

proach: the Rank Order Coding (ROC) and the Population Rank Order Coding

(POC). ROC was proposed by Thorpe and Gautrais (1998) and it encodes in-
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formation by using the order of the firing time. For example, for four neurons,

where N3< N1< N4< N2, the rank assigned to each neuron is Rank 0 = N2,

Rank 1 = N4, Rank 2 = N1 and Rank 3 = N3 as illustrated in Figure 2.4.

N1

N2

N3

N4

Rank

2

0

3

1

Time

Figure 2.4: ROC Encoding Method.

On the other hand, POC which was studied by Bohte, Kok, and Poutré

(2002) distributes a single input value to multiple input neurons denotes as

M . Each input neuron holds a firing time as input spikes. The firing time of an

input neuroni is calculated using the intersection of Gaussian function as de-

fined in Equation 2.3. The Gaussian centreµi is calculated using Equation 2.4

and its widthσ is computed using Equation 2.5 with the input variable inter-

val of [Imin, Imax]. [Imin andImax] defines the minimum and maximum input

values. The parameterβ controls the width of each Gaussian receptive field.

f(x) =
1

σ
√
2π
e−(x−µ)2/2σ2

(2.3)

µi = Imin +
2i− 3

2
· Imax − Imin

M − 2
(2.4)

and widthσ:

σ =
1

β
· Imax − Imin

M − 2
(2.5)
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where1 ≤ β ≤ 2. An illustration of this encoding process is shown in

Figure 2.5 used in Schliebs, Defoin-Platel, and Kasabov (2009a). For the dia-

gram,β = 2 was used, the input interval[Imin, Imax] was set to[−2.0, 2.0] and

M = 5 input neurons were used. In this example, the input value was defined

as 0.70 and five firing times were calculated based on the Gaussianintersec-

tions. Both spike encoding methods have been tested in several applications

such as visual recognition (Thorpe, Delorme, & Rullen, 2001)and (Wysoski

et al., 2006b), audio recognition (Wysoski, Benuskova, & Kasabov, 2007) and

speech recognition (Loiselle, Rouat, Pressnitzer, & Thorpe, 2005).
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Figure 2.5: Population Encoding Method. Redrawn from (Schliebs, Defoin-Platel, &
Kasabov, 2009a).

2.3 N E U RO N M O D E L S

Most of the SNN models have been explained by Gerstner and Kistler (2002a).

There are several SNN neuron models and the six most commonly used models

are discussed in the following six subsections.

2.3.1 Hodgkin Huxley Model

The Hodgkin Huxley model has been introduced by Hodgkin and Huxley

(1952) in their experiment on the giant axon of a squid. This complex model
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simulates the role of ionic mechanisms in calculation and propagation of po-

tentials in the neurons. In the study, they have discovered three ion channels in

a neuron, namely Sodium, Potassium and Leakage Channel.

Figure 2.6: Electrical circuit of the Hodgkin - Huxley model according to Hodgkin
and Huxley (1952).

The formula used to calculate the membrane potentialIion in the the standard

Hodgkin - Huxley model is as follows:

∑

Iion = GNa ·m3 ·h · (u−VNa)+GK ·n4 · (u−VK)+GL · (u−VL) (2.6)

whereGNa, GK andGL are Sodium, Potassium and a Leakage Channel re-

spectively, whileVNa, VK andVL are constants called reverse potentials. If

these channels are sometimes blocked, this is expressed by the additional vari-

ablesm, n andh. These gating variables are described by the following equa-

tions:
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m

dt
= αm(u)(1−m)− βm(u)m (2.7)

n

dt
= αn(u)(1− n)− βn(u)n (2.8)

h

dt
= αh(u)(1− h)− βh(u)h (2.9)

wherem andh control the sodium channel and variablen the potassium

channel.αx andβx, wherex ∈ {m,n, h}, are the empirical functions of the

capacitoru which control the voltage that needs to be adjusted in order to sim-

ulate a specific neuron. Despite this model being the common technique for

estimating the parameters of a neuron ionic channel, it alsohas some disadvan-

tages linked to the approximations required (SaÏghi et al., 2008). Therefore,

many improvements have been made to this model as shown in (Guckenheimer

& Labouriau, 1993; Fox, 1997; Willms, Baro, Harris-Warrick, &Gucken-

heimer, 1999).

2.3.2 Leaky Integrate and Fire Model

The Leaky Integrate and Fire (LIF) model is a simplified version of the Hodgkin

Huxley model, represented by all ion channels with only a single current (Gerstner

& Kistler, 2002a). Similarly to the Hodgkin Huxley model, LIF model is also

based on the idea of an electrical circuit. The schematic diagram in Figure 2.7

illustrates the model.

In this model, a neuron is represented by an electrical circuit and the current

potential is calculated using the appropriate equation. Thebasic circuit of LIF

consists of a capacitorC, parallel with a resistorR, and a currentI(t). The

currentI(t) can be split into two componentsIC and IR as shown in Equa-

tion 2.10.

I(t) = IC + IR (2.10)
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Figure 2.7: Electrical circuit of the LIF from Gerstner and Kistler (2002a).

whereIC charges the capacitorC andIR passes through the resistorR. Using

Ohm’s law, capacitance can be calculated asC = q/u whereq is the charge,u

is the voltage andIR = u/R, the capacitive currentIc = C · du/dt, therefore:

I(t) =
u(t)

R
+ C

du

dt
(2.11)

A time constantτm = R ·C is introduced by the leaky integrator. This yields

the standard form of the model:

τm
du

dt
= −u(t) +R I(t) (2.12)

whereu is the membrane potential andτm is the membrane time constant of

the neuron. The potential leak over the time when no input spikes are received.

When the membrane potential reaches the thresholdϑ, the neuron fires and the

potential is reset to a new value (resting value). This modelcan be considered

as a suitable model in representing the biological neuron operation and can be

applied to large networks due to its low computation load andsimplicity.

2.3.3 Spike Response Model

SRM uses a concept similar to the LIF model and has a simple description of

action potential generation in neurons. SRM models the neuron as respond-
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ing to an incoming pulse or spike from another neuron by generating its own

spike. The state of the neuron is represented by a single variableu. The model

uses a number of kernel functions that influence the input spikes, the external

stimulation ofu and the actual spike and its after-potential. An output spike

is generated when the stateu reaches a thresholdϑ. The difference between

SRM and LIF is that in SRM the thresholdϑ is not necessarily to be fixed. For

instance, the thresholdϑ might be increased after the neuron has spiked. The

membrane potentialu(t) is calculated using Equation 2.13.

u(t) = η(t− t̂i) +
∫

∞

0

ε(t− t̂i, s)I(t− s)ds (2.13)

wheret̂ is the last firing time of the neuron,η andε are the kernel functions

whereε is also called the linear filter of the membrane,I(t) is a stimulating

current. The simplified version of the SRM is normally referred to as Simpli-

fied SRM where only the last spike of a neuron is used for the calculation of

η. This model has been used for analysing the computational power of spiking

neurons by Maass (1994) and for modeling collective neuron excitations by

Kistler, Seitz, and Hemmen (1998).

2.3.4 Izhikevich Model

Izhikevich proposed a model that combines the dynamics of thebiologically

plausible of the Hodgkin-Huxley model with the computational efficiency of

integrate-and-fire models (Izhikevich, 2003). This model works with two vari-

ables:v is a variable representing the membrane voltage potential, andu is a

variable representing the membrane recovery (activation of potassium currents

and inactivation of sodium currents). This model is described by the following

formula:

dv

dt
= 0.04 · v2 + 5v + 140− u+ I (2.14)
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where

du

dt
= a(b · v − u) (2.15)

wheret represents time,a describes the time scale ofu, b describes the sen-

sitivity of u to v. When the voltagev exceeds a threshold value of 30mV, both

v andu are reset:

if v ≥ 30mV, then

{

v ← c

u ← u+ d
(2.16)

wherec andd describes the after spike reset value ofv. Izhikivech claimed

that his model can exhibit the firing patterns of all known typesof cortical

neurons with appropriate choices of parametersa, b, c andd (Izhikevich, 2004).

2.3.5 Thorpe Model

Thorpe (1997) proposed a simplified Integrate and Fire spikingneuron model

that has been simulated in SpikeNet software (Delorme & Thorpe, 2003). The

model inherits the main concept from LIF but simplifies the leaky operation of

the computational neuron. The neuron response depends entirely on the arrival

time of pre-synaptic input spikes. The earlier input spikesaffect the PSP more

strongly than later spikes. In this model, each neuron is allowed to fire only

once and then is disabled. The model equation is as follows:

ui(t) =

{

0 if fired
∑

wji Mod
order(j)
i else

(2.17)

wherewji is the weight of a pre-synaptic neuronj andMod is a parameter

called modulation factor within the interval[0, 1]. Functionorder(j) represents

the rank of the spike emitted by neuronj. Theorder(j) starts at 0 if the neuron

spikes first among all pre-synaptic neurons and then increases proportionally

to firing time. The potential is reset toui = 0 after the neuron emits an output
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spike. Threshold value is set toϑ = c · umax where0 < c < 1 andumax is the

maximum potential value can be reached by a neuron. Figure 2.8shows the

PSP computation for the Thorpe neural model when a series of input spikes

stimulates the neuron through different synapses. When the potential reaches

a thresholdϑ, an output spike is emitted and the PSP is reset to 0 for the rest

of the simulation.

Spikes

time t

Stimulus

u(t)

�

Figure 2.8: PSP calculations in Thorpe’s model. Redrawn from (Schliebs, Defoin-
Platel, & Kasabov, 2009b).

2.3.6 Kasabov Model

Recently Kasabov (2010) introduced the Probabilistic SpikingNeuron Model

(pSNM) which is an extension of the LIF model with three additional new

probabilistic parameters. It is illustrated in Figure 2.9 parameterpcj,i represents

the probability that a spike from neuronj will reach i, parameterpsj,i is the

probability that synapse(j, i) contributes to potentialui after it has received

a spike from neuronj, andpi is the probability that neuroni emits an output

spike when the total PSP reached the PSP threshold. The PSP calculation is

shown in Equation 2.18.
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ui(t) =
∑

p=t0,...,t

∑

j=1,...,m

ejg(p
c
j,i(t− p))f(psj,i(t− p))wj,i(t)

+η(t− t0) (2.18)

whereej = 1 if an output spike has been emitted from neuronj, g(pcj,i(t))

collapses into 1 if the spike is propagated andf(psj,i(t)) = 1 if the synapse

contributes to the potential.η(t − t0) representing the decay in PSP. If all

probabilities value are set to1, the model is equivalent to the traditional spike

response model.

neuron

Figure 2.9: Kasabov’s Probabilistic Neuron Model.

2.4 L E A R N I N G

This section describes several learning algorithms designed for SNN. Learning

in SNN is a complex process since information is represented in time depen-

dent spikes. Most of the SNN use recurrent network topologies where learning

is more difficult. Some of the learning algorithms are normallybeing applied

to a specific type of SNN due to its characteristic.

Similarly to learning in traditional neural network, learning in SNN is di-

vided into reinforcement, supervised and unsupervised. Supervised learning

is the most commonly used learning algorithm in SNN. Various supervised
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learning algorithms have been developed for SNN and have beenreviewed by

Kasinski and Ponulak (2006).

2.4.1 SpikeProp

There have been some attempts to copy the Backpropagation (BP) learning al-

gorithm often used for the MLP. The SNN version of BP algorithm is called

Spiking Backpropagation Algorithm or SpikeProp (Bohte, Kok,& Poutŕe,

2000). In MLP, training is the process to get the optimal set of connection

weights while SpikeProp objective is to obtain a set of desired firing timestdj
of all output neuronsj. The fitness function during learning is minimising the

errorE of the squared difference between training output timestoutj and desired

output timestdj :

E =
1

2

∑

j

(

toutj − tdj
)2

(2.19)

and the error is minimised based on the computation of the weightswk
ij of

each synaptic input:

∆wk
ij = −η

dE

dwk
ij

(2.20)

whereη represents the learning rate. Several extended versions of SpikeProp

have also been proposed such as the dynamic learning parameter (Xin & Em-

brechts, 2001) and an improvement of the backpropagation rule (Schrauwen &

van Campenhout, 2004).

2.4.2 One-Pass Algorithm

The One-Pass Algorithm is proposed by Sguier and Mercier (2002). It fol-

lows the time-to-first spike learning rule (Thorpe, 1997). Inthis algorithm,

each training sample creates a new output neuron in an output neuron repos-
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itory. The trained threshold values and the weight pattern forthat particu-

lar sample are stored in the repository. However, if the weight pattern of the

trained neuron closely resembles a neuron in the repository, it will merge into

the most similar neuron. The merging process involves modifying the weight

pattern and the threshold of the merged neurons to the average value. Other-

wise, it will be added to the repository as a newly trained neuron. The major

advantage of this learning algorithm is the ability of the trained network to

learn incrementally new samples without retraining the already trained samples

(Schliebs, Defoin-Platel, & Kasabov, 2009a). This algorithmhas been tested in

ESNN in several studies, such as for pattern recognition (Wysoski et al., 2006b;

Wysoski, Benuskova, & Kasabov, 2006a), speech recognition (Wysoski et al.,

2007), taste identification (Soltic, Wysoski, & Kasabov, 2008), synthetic and

ecological problems (Schliebs, Defoin-Platel, & Kasabov, 2009a; Schliebs,

Defoin-Platel, Worner, & Kasabov, 2009b, 2009a).

2.4.3 Spike Time Dependent Plasticity

Spike Time Dependent Plasticity (STDP) is a form of Hebbian Learning where

spike time and transmission time are used in order to calculatethe output of a

neuron. This unsupervised learning method was inspired from the Hebb’s law

(Hebb, 1949):.

When an axon of cell A is near enough to excite cell B and re-

peatedly or persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased.

The Hebb’s law was studied by Bliss and Lomo (1973). Since then, this

concept has been further researched and defined as the effectiveness of the

synaptic activity in the brain caused by timing of pre- and post-synaptic activ-

ity of a neuron. If a pre-synaptic spike arrives at the synapse before the post-

synaptic action potential, the synapse is potentiated as normally referred to as

long term potential (LTP); if the timing is the other way around, the synapse

is depressed and referred as long term depression (LTD) (Markram, Lubke,

Frotscher, & Sakmann, 1997; Bi & Poo, 2001). A functionW (tpre − tpost)
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describes the STDP and is also referred to as the STDP window. The change

of synaptic weight depends on the difference between the arrival time tpre of

a pre-synaptic spike and the timetpost of an action potential emitted by the

neuron.

W (tpre − tpost) =
{

A+ exp( tpre−tpost
τ+

) if tpre < tpost

A− exp(− tpre−tpost
τ
−

) if tpre > tpost
(2.21)

where parametersτ+ and τ− define the time interval of the pre- and post-

synaptic activity, andA+ andA− indicate the maximum fractions of synaptic

modification, iftpre − tpost is close to zero. More information on STDP can be

found in (Bi & Poo, 2001; Gerstner & Kistler, 2002a; Kempter, Gerstner, &

van Hemmen, 1999)

2.4.4 Other Learning Algorithms

Some other learning algorithms, such as the Reinforcement Learning mecha-

nism, can also be implemented in SNN. The learning process is influenced by

the interaction with the environment and is often used in robotic applications

(Florian, 2005, 2007; Seung, 2003; Xie & Seung, 2004).

On the other hand, Remote Supervised Method (ReSuMe) that is based on

the Hebbian concept is a new supervised learning method for SNN(Ponulak,

2005). The objective of ReSuMe is to generate a desired input-output spike

pattern in SNN. For example, to respond to a certain input stimulus, specific

target spike trains are generated. Figure 2.10(a) depicts three neurons. Neuron

nli acts as a learning neuron that receives spike sequences froma pre-synaptic

input neuronnink (i) and neuronnd(i) acts as a teacher for weightwki. If neuron

nink (i) releases a spike followed by a spike from teacher neuronnd(i), then the

synaptic weightwki is increased as shown in Figure 2.10(b). Figure 2.10(c)

shows the value ofwki decreases if neuronnink (i) spikes before the learning

neuronnli is activated. FunctionsW d(sd) andW l(sl) as shown in Figure 2.10(b)

and Figure 2.10(c) respectively determine the synaptic weight change where

sd represent the difference between the spike times of input neuronnink (i) and
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teacher neuronnd(i) andsl is the difference between the spike times of input

neuronnink (i) and learning neuronnli.

(a) (b) (c)

Figure 2.10: ReSuMe learning. Redrawn from (Ponulak, 2005).

2.5 L I Q U I D S TAT E M AC H I N E

LSM introduced by Maass, Natschläger, and Markram (2002) is a concept

based on information accumulation. It is a form of reservoir computing and is

constructed using recurrent network topology (Verstraeten, Schrauwen, D’Haene,

& Stroobandt, 2007). This method is following the concept of dropping an ob-

ject into a cup of still water. Different objects (input) will produce different

waves (output) in the water.

In LSM, the liquid is a component consisting of a large collectionof inter-

connected recurrent neurons that receive input and send output to each others.

The synaptic weights, connectivity and neural parameters are predefined and

fixed during simulation. The input spikeu(t) is propagated into the liquid and

this causes the neurons to respond and generate the liquid activity. The liquid

snapshots, or normally referred as liquid statesx(t), can be recorded at vari-

ous time points. Finally, a readout functionf is applied to convert the liquid
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state to a desirable input format for the chosen learning algorithm or classifier.

Because of the ability of the network to accumulate both spatial and time in-

formation, LSM can be used to solve spatiotemporal problems as reported in

(Goodman & Ventura, 2006; Buonomano & Maass, 2009; Schliebs, Nuntalid,

& Kasabov, 2010). Figure 2.11 depicts the architecture of the LSM.

Figure 2.11: The LSM architecture. The input is injected into the reservoir and the liq-
uid state is extracted from the neuron activity inside the reservoir. Then,
the readout function is applied to the liquid state and transformed into a
required input format for processing - such as classification or clustering.

The LIF neuron model described in Section 2.3 is a well known model for

LSM construction. Output spikes from neurons in LSM generate the LSM

responses that are crucial for the decision making algorithms. The threshold

value plays an important role in the output spike construction. Recent study

by Schliebs, Nuntalid, and Kasabov (2010) suggests that a probabilistic neuron

may replace or complement the deterministic LIF neuron in the traditional

LSM. In this model, threshold value changes over time and affects the output

spikes. Three probabilistic neurons have been proposed in their study. The first

model is calledstep-wise stochastic threshold(ST). The stochastic threshold

for this model is defined as

lim
t→t(f),t>t(f)

ϑ(t) = N (ϑ0, σST ) (2.22)
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wheret(f) is the firing time of the neuron andσST is a parameter of the model

that represents the standard deviation ofϑ(t). After an output neuron fires, a

new threshold is sampled according to theϑ0-centered Gaussian random vari-

able.

The second model is thestochastic resetor noisy reset(SR). The reset value

u is dynamically modified according to Equation 2.23:

lim
t→t(f),t>t(f)

u(t) = N (µr, σSR) (2.23)

whereN (µ, σ) is a Gaussian distributed random variable,µ is defined as the

mean andσ is the standard deviation. Parameter of the model is presentedby

variableσSR.

Continuous stochastic threshold(CT) is the third neuron model. This model

continuously updates the thresholdϑ(t) over time following the Ornstein Uh-

lenbeck principle (Kampen, 2007). Equation 2.24 explains the computation

of the new threshold in this model.

τϑ
dϑ

dt
= ϑ0 − ϑ(t) + σCT

√

2τϑξ(t) (2.24)

whereξ represents the Gaussian noise,σCT is the standard deviation of this

model andϑ0−ϑ(t) is the distance where the threshold drifted to. Details about

each model and the experimental results can be found in their paper (Schliebs,

Nuntalid, & Kasabov, 2010).

2.6 TO O L S A N D A P P L I C AT I O N S O F S N N

SNN can be used in two different types of applications. The first type is to

use SNN for the understanding the principles of biological neurons and brain

functions. The second type of applications are used for solving real world

problems. Hodgkin and Huxley (1952) pioneered the work in the area of neu-

roscience. The understanding and development of the neuronmodel has been

discussed in Section 2.3. Extensive reviews of the nervous system have been
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well documented in (Gerstner & Kistler, 2002a) and (Carnevale & Hines,

2006).

SNN has been successfully applied to many real world applications. One of

the applications is in robotic and control systems (Roggen,Hofmann, Thoma,

& Floreano, 2003; Alnajjar & Murase, 2005; Rocke, McGinley, Morgan, &

Maher, 2007; Pearson et al., 2007) and power system problems ofsystem iden-

tification (Johnson, Venayagamoorthy, & Mitra, 2009). In economics, SNN is

widely used as a tool for prediction, as in yield prediction (Lin & Zhongjian,

2011) and in electricity price prediction (Sharma & Srinivasan, 2010). SNN

have also been applied for image processing and detection (Perrinet & Samuelides,

2002; Wu, McGinnity, Maguire, Valderrama-Gonzalez, & Dempster, 2010;

Wysoski et al., 2006b) and speech recognition (Verstraeten,Schrauwen, &

Stroobandt, 2005; Wysoski et al., 2007). The medical field hasalso made use

of SNN, whereby problems such as breast cancer detection (McGinleyet al.,

2010) and sound source localisation (Liu, Perez-Gonzalez, Rees, Erwin, &

Wermter, 2010) have been tackled. Furthermore, SNN has been tested in large

scale problems (Iglesias, Eriksson, Grize, Tomassini, & Villa,2005; Maguire

et al., 2007) and in spatiotemporal problems (Jin, 2004). There have been

also some attempts to develop a practical SNN processor (Schoenauer, Ata-

soy, Mehrtash, & Klar, 2002; Pearson et al., 2005; Khan et al., 2008), and

hardware development has been summarised in (Cawley et al., 2011).

Several software tools and libraries are available for SNN simulation. The

intention is to understand and simulate the neuron behaviouras in GEneral

NEural SImulation System (GENESIS)1. GENESIS’s provides a general plat-

form for neural system simulation and can analyse the availablebiologically

plausible neuron models. Another tool for understanding the complex biolog-

ical neuron is NEURON2. This tool simulates an individual neuron or a net-

work of neurons. The graphical user interface helps users to easily create and

manipulate neuron models with a wide range of complexity. For SNN devel-

opment, Amygdala3 is one of the tools available and packaged as C++ library.

In this tool, several neuron models are offered to facilitate the development of

1 Available at http://www.genesis-sim.org/GENESIS
2 Available at http://www.neuron.yale.edu/neuron
3 Available at http://sourceforge.net/projects/amygdala
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an algorithm. SpikeNNS4 is an SNN tool that implements SRM neuron model.

Simulations of spiking self-organising maps and multi-layer architectures can

be done using this software. This simulation tool also provides several learning

algorithms for SNN. Neuro-computing Decision Support Environment (Neu-

Com)5software also has some modules with capabilities to simulate SNN. The

latest and most comprehensive SNN simulator is Brian6. This highly flexible

tool was written in Python which enables its integration with othertools. Nu-

merous neuron models and architectures can be rapidly developed and tested.

Brian provides more flexibility especially when dealing with non-standard neu-

ron models.

2.7 E VO LV I N G S P I K I N G N E U R A L N E T W O R K

The ESNN is a type of neural network that follows the principle of ECoS that

were first introduced by Kasabov (1998a). ECoS evolves its structure through

incremental learning. In ECoS, new connections and neuronsare created in the

process of learning and are modified to accommodate any new input data, fea-

tures or classes. The incremental one-pass learning algorithm is employed due

to the evolving characteristics of the network. Numerous variants and applica-

tions of ECoS have been developed over a decade long period. These include

the fuzzy neural network (Kasabov, 1998b), self-organising maps (Deng &

Kasabov, 2000) and dynamically evolving fuzzy systems (Kasabov & Song,

2002). More information on ECoS can be found in (Kasabov, 2007) and the

development of ECoS has been reviewed by Watts (2009).

Stimulated by ECoS and SNN, the ESNN architecture was introduced in

Wysoski et al. (2006b) whereby SNN evolves its structure through learning.

Like SNN, the ESNN architecture consists of a data encoding methodthat

transforms real value data to spike trains, neuron model andlearning method.

For the encoding methods, ESNN utilises the Rank Order PopulationCoding.

A real-value input is mapped into several pre-synaptic input neurons. Each pre-

synaptic input neuron holds a spike, which calculates based on the Gaussian

4 Available at http://cortex.cs.nuim.ie/tools/spikeNNS
5 Available at http://www.theneucom.com
6 Available at http://www.briansimulator.org
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Algorithm 1 Training an ESNN
Require: parameterModl, Cl, Siml for a class labell

1: initialise neuron repositoryRl = {} for classl data
2: for all samplesi belonging to classl do
3: Encode input samplesi into firing time of pre-synaptic neuronsj using

Equation 2.3
4: Calculate the connection weights using Equation 2.25
5: Calculate the maximum possible potential according to Equation 2.26
6: Calculate thresholdϑ based on Equation 2.27
7: if min(d(w(i), w(k))) < Siml, w(k) ∈ Rl then
8: w(k) ← mergew(i)andw(k) according to Equation 2.28
9: ϑ(k) ← mergeϑ(i)andϑ(k) according to Equation 2.29

10: else
11: Add the new neuronRl ← Rl ∪ {w(i)}
12: end if
13: end for

intersection as described in Equation 2.4. Figure 2.5 shows an example of how

an input value of 0.70 is encoded into five pre-synaptic neurons.

As for the learning, one-pass learning has been selected and it suits well

the purpose of ESNN, which is to have a fast learning algorithm thatis suit-

able not only for offline, but also for online applications. The objective of

the learning is to create a repository of output neurons with class labels. For

each input sample, one output neuron will be created during learning. How-

ever, output neurons in the repository evolve according to their weight vector

similarity with other output neurons. The learning process of ESNN is shown

in Algorithm 1 as described by Schliebs, Defoin-Platel, Worner, and Kasabov

(2009a).

The training starts with initialisation of three ESNN parameters - modulation

factor (Mod), proportion factor (C) and similarity value (Sim) in the interval

[0, 1]. Every samplei that belongs to the same classl is encoded into several

pre-synaptic input neuronsj. The value of weightwj is computed according

to theModl andorder(j). Modl is the modulation factor of the Thorpe neural

model. Theorder(j) represents the rank of the spike emitted by neuronj. For

example, the first spike will be assigned with0, second1... and so on.
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wj = (Modl)
order(j), ∀ j | j pre-synaptic neuron ofi (2.25)

Based on the weight computed, the maximum possible PSPumax is calcu-

lated using Formula 2.26

umax =
∑

j

wj(Modl)
order(j) (2.26)

The firing thresholdϑ is calculated as follows:

ϑ = Cl · umax (2.27)

whereCl is the proportion factor with a value between[0, 1].

As the training process continues, every sample produces an output neuron.

The similarity of output neurons is calculated according to the Euclidean dis-

tance between the weight vector of the neurons. The parameterSim controls

the similarity distance. If a certain neuron is considered too similar to others,

it will merge with the most similar one. The merging process involves the

calculation of the mean of the weight vector (Equation 2.28) as well as the

threshold value (Equation 2.29).N represents number of samples previously

used to update output neuronk.

w
(k)
j ←

w
(i)
j +Nw

(k)
j

1 +N
, ∀j | j pre-synaptic neuron ofi (2.28)

ϑ(k) ← ϑ(i) +Nϑ(k)

1 +N
(2.29)

Figure 2.12 shows a simplified architecture of ESNN where each input value

is encoded into multiple pre-synaptic neurons. This process will transform in-

put values into a high dimensional structure where each pre-synaptic neuron
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generates a certain spike at a firing time. The firing time is calculated using

the intersection of the Gaussian function with the input value.Based on the

firing time, a weight for each connection to the output neuron isgenerated. In

the training process, the output neuron stores the computed weight of all pre-

synaptic neurons, a threshold value to determine when the output neuron will

spike and the class label to which the input sample belongs. Inthe testing pro-

cess, similar to the training process, each testing sample isencoded to spikes

by the multiple pre-synaptic neurons. Then, the PSP of the output class neu-

rons is calculated. Once the neuron receives certain amount of spikes and the

PSP exceeds the threshold value, it fires an output spike and becomes disabled.

The testing sample belongs to the output class defined by the output neuron that

fires first among all output neurons. The major advantages of ESNN are its fast

learning and ability of the trained network to incrementallylearn new samples

without retraining (Schliebs, Defoin-Platel, & Kasabov, 2009a)
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Figure 2.12: A simplified architecture of ESNN.

ESNN is widely applied in classification tasks, such as face recognition

(Wysoski et al., 2006b), person authentication based on audiovisual informa-

tion (Wysoski et al., 2006a), taste recognition (Soltic et al., 2008), ecologi-

cal problems (Schliebs, Defoin-Platel, Worner, & Kasabov, 2009b) and has

achieved better results than traditional methods. ESNN and SNN in general
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have a potential for solving complex problems. They were also tested in Maass

(1997); Thorpe et al. (2001); Bohte and Kok (2005); Belatreche, Maguire, and

McGinnity (2006); Brette et al. (2007).

2.8 S U M M A RY

This chapter has discussed the principle elements of SNN that are also the core

elements of ESNN. ESNN inherits some SNN’s components, particularly data

encoding methods and neuron models. However, the unique evolving structure

of ESNN makes this classifier able to retrain on new data samples without

having to use the entire dataset. Another advantage of this method is the one-

pass learning that enables the classifier to learn quickly. However, it can direct

the classifier to unsatisfactory results because of the fixedparameter setting

during learning. If the parameter is incorrect, it is hard toachieve the optimal

result. Because of the optimal parameters are crucial in ESNN,the optimiser

is necessary.

In the next chapter, the optimiser for the classifier will be discussed. There

are many optimisers available and some with extensive modifications. Choos-

ing an optimiser is equally important to choosing the classifier itself. With

the right combination, they produce a stable architecture and more accurate

results.



Chapter3

R E V I E W O F Q UA N T U M - I N S P I R E D E VO L U T I O NA RY

A L G O R I T H M S A N D S P I K I N G N E U RO N M E T H O D S

This chapter discusses the Quantum-inspired PSO (QiPSO). Firstthe basics of

PSO are introduced and followed by a discussion of the fundamental elements

of quantum computing. Second, the concept of the Quantum-inspired Evolu-

tionary Algorithm (QEA) is explained followed by the explanation ofQiPSO

that inherits some elements from PSO and QEA.

3.1 I N T RO D U C T I O N TO E VO L U T I O NA RY A L G O R I T H M S

An Evolutionary Algorithm (EA) is essentially an algorithm inspired by the

principle of natural selection and natural genetics (Goldberg, 1989). EA is

a population-based search method that simulates the biological evolutionary

process and mechanisms such as selection, recombination, mutation and re-

production in order to solve optimisation problems. In EA, each individual in

a population plays a role as a candidate solution for the target problem. Each

individual is evaluated by a fitness function that determinesits quality. The

best individual will be selected as a parent for reproductionof new individuals

or solution candidates. Parents reproduce by undergoing operations such as re-

combination and mutation. Recombination sometimes referred as crossover, is

a process where two selected parents exchange chromosome information and

this results in one or two new candidate solutions. Mutation is areproduction

process that involves only one parent where information or genetic material is

randomly altered to produce new offspring, i.e. candidate solutions. The new

candidate will then compete with other candidates to achieve thebest fitness

38
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in the next generation (iteration). This process is repeated until a stopping cri-

terion is met such as maximum number of generations is reached or a targeted

solution has been found.

Several population-based algorithms that follow the EA concept have been

introduced. Amongst all, GA is arguably one of the most commonlyused

evolutionary techniques and it has been utilised in many applications. The GA

concept was first studied in 1960s and became popular after anarticle was pub-

lished by Holland (1975). The original idea came from the biological evolution

process. GA exploits the idea of the survival of fittest where best solutions are

recombined with each other to form new better solutions. The process in GA

starts when a population of chromosomes is created, then eachindividual’s fit-

ness is measured. There are two approaches for the reproduction stage. The

first approach, called mutation alters the current state of achromosome to pro-

duce a better candidate. The second approach is crossover, where the process

selects two chromosomes and the information from both chromosomes is ex-

changed to create two new chromosomes. The fitness of the new individual is

then evaluated. The process is repeated until the stop condition is met.

Another population-based technique that is attracting moreattention recently

is Swarm Intelligence (SI). SI is defined as any attempt to design algorithms

or distributed problem-solving devices inspired by the collective behaviour of

the social insect colonies and other animal societies, suchas ant colonies, bird

flocking and school of fish (Eberhart & Kennedy, 1995; Bonabeau, Dorigo,

& Theraulaz, 1999). This population system is made up from a population of

candidates interacting with each other in the swarm and leads toa global be-

haviour. Algorithms in this category are: Particle Swarm Optimisation (Eberhart

& Kennedy, 1995), Ant Colony Optimisation (Dorigo, Maniezzo, & Colorni,

1996), Fish School Algorithm (Li, Shao, & Qian, 2002), Bee Colony Opti-

misation (Karaboga, 2005) and Firefly Algorithm (Xin-She, 2009). However,

among all these algorithms, PSO that pioneered the SI, receives the most atten-

tion because of its relative simplicity and effectiveness (Bergh & Engelbrecht,

2000).
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3.2 PA RT I C L E S WA R M O P T I M I S AT I O N

3.2.1 Principle of PSO

PSO is one of the algorithms based on the EA concept and was first intro-

duced by Eberhart and Kennedy (1995). PSO is a biologically-inspired tech-

nique based around the study of collective behaviour in decentralised and self-

organised animal society systems. The systems are typically made up from a

population of candidates (particles) interacting with one another within their

environment (swarm) to solve a given problem. The particle is initialised by

assigning random positions and velocities to particles andpotential solutions

are then flown through the hyperspace. Unlike GA, PSO has no evolutionop-

erators such as crossover and mutation. In PSO, each particle hastheir own

fitness value calculated during the optimisation process and the best fitness

value achieved so far is stored and normally referred to as personal best or in-

dividual best (pbest). The overall best fitness value obtained by any particle in

the population so far is called global best (gbest) and it stores the best solu-

tion. The particles learn over time in response to their own experience and the

experience of the other particles in their group (Ferguson,2004). According

to Eberhart et al. (2001), each particle keeps track of its best fitness position

in hyperspace that has been achieved so far. During each iteration(or epoch),

every particle is accelerated towards its ownpbest as well as in the direction of

thegbest position. The value ofpbest andgbestwould influence the direction of

the particle in the next iteration (Bergh & Engelbrecht, 2000). This is achieved

by calculating a new velocity term for each particle based onthe distance from

its pbest, as well as its distance from thegbest position. Figure 3.1 shows the

basic PSO procedure.

In order to create a swarm ofn particles, at all time pointst, each particlen

has:

1. A current positionXn

2. A velocity directionVn

3. A record of its own previous best positionpbestn
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4. A record of the previous best position of any member in its group gbestn

Initialise population 

positions and velocities

 
Evaluate every

particle fitness

If particle fitness

better than personal

best (pbest)

If pbest

better than global

best (gbest)

Update particle 

velocity and position

No

Yes Update

pbest

Yes
If gbest

meets stopping

criteria

No No

Update

gbest

Yes

Exit learning

Maximum iteration

Yes

No

Figure 3.1: PSO flowchart.

Given the current position of each particle, as well as other information,

the problem is to determine the change in direction of the particles. As men-

tioned above, this is done by reference to each particle’s ownexperience and its

companions. Its own experience includes the directionVn and its ownpbestn
position. The experience of others is represented by the best previous position

of any member in its groupgbestn. This suggests that each particle might move

to the direction of:
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1. The same direction that it comes fromVn

2. The direction of its previous best positionpbest

3. The direction of the previous best position of any member inits group

gbest

The next trajectory vector of a particle is calculated usingEquation 3.1. This

is a formula modified by Shi and Eberhart (1998a) from the original proposed

formula where an inertia weightw is added to control the speed of the velocity

movement.rand1 andrand2 are two uniform random numbers in interval[0, 1].

c1 andc2 are constants called the cognitive and social parameters thatcontrol

the exploration direction betweenpbest andgbest.

Vn,t+1 = w ·Vn,t+ c1 · rand1 · (pbest−Xn,t)+ c2 · rand2 · (gbest−Xn,t) (3.1)

Then, the new position of the particle will simply be:

Xn,t+1 = Xn,t + Vn,t (3.2)

Given the initial values ofXn, Vn, pbest andgbest, Equation 3.1 and Equa-

tion 3.2 will determine the subsequent path that each particle in the swarm

will follow. To avoid particles flying beyond the boundary, thevelocities are

clamped to a maximum velocityVmax (Eberhart, Shi, & Kennedy, 2001). If

the sum of accelerations causes the velocity of that dimension to exceedVmax,

which is a pre-defined parameter, then the velocity is limited toVmax.

3.2.2 A Computation Example

Figure 3.2 and the following computation demonstrates how a particle (Particle

A) moves to the solutiongbest in a 2D space problem and is recalculated from

an example in Jones (2005). In this example, parameterw = 1.0, c1 = 0.5

and c2 = 1.0. Since the value ofc2 is higher thanc1, Particle A will give

more weight to the global solution. Assume that Particle A velocityvalue
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calculated in previous iteration isVA,t = (0, 1). Particle A current position at

coordinate(x, y) is (10, 5) as shown in Figure 3.2(a),pbest value (5, 13) and

gbest at (15, 13). First, the velocity vector must be updated for the current

iteration using Equation 3.1.

Calculate the velocityVx,t+1 of Particle A:

Vx,t+1 = w · Vx,t + c1 · rand1 · (pbest−Xx) + c2 · rand2 · (gbest−Xx)

= 1.0 · 0.0 + 0.5 · 0.10 · (5.0− 10.0) + 1.0 · 0.35 · (15.0− 10.0)

= 1.0 · 0.0 + 0.05 · (−5.0) + 0.35 · (5.0)
= 1.0 · 0.0 + (−0.25) + 1.75

= 1.5

Calculate the velocityVy,t+1 of Particle A:

Vy,t+1 = w · Vy,t + c1 · rand1 · (pbest−Xy) + c2 · rand2 · (gbest−Xy)

= 1.0 · 1.0 + 0.5 · 0.45 · (13− 5.0) + 1.0 · 0.20 · (13.0− 5.0)

= 1.0 · 1.0 + 0.225 · (8.0) + 0.20 · (8.0)
= 1.0 · 1.0 + 1.80 + 1.60

= 4.4
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Based on current velocity value of Particle AVA = (1.5, 4.4), the particle

position is updated using Equation 3.2

xA,t+1 = xA,t + VA

= 10.0 + 1.5

= 11.5

yA,t+1 = yA,t + VA

= 5.0 + 4.4

= 9.4

The new position for Particle A (11.5, 9.4) is shown in Figure 3.2(b).

� � � � � � � � 	 
 � �  � �
pbest


 �  � � �
gbest


 � �  � � �
����
�� �� �� �

� � � � � � �
x

y

pbest(
�  � � �

gbest

 � �  � � �

����
�� �� �� �

� � � � � � �
x

y � � � � � � � � 	 
 � �  � �� � � � � � � � 	 
 � � � �  � � � �
� � � � � � �  

 t
� � � � � � �  

 t+1

(a)                                                                                  (b)

Figure 3.2: Particle movement in 2D space problem.

It is apparent that PSO shares many common features with GA. Both algo-

rithms start with a randomly generated population, and use a fitness function to

evaluate the population. Both methods update the populationand all individual

search for the optimum solutions. However, PSO particles updatethemselves

with the internal velocity, and have memory as storage of history. In PSO,

gbest shares the information with others in the population. This makes parti-
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cles in PSO more intelligent due to the information sharing mechanism and all

the particles tend to converge to the solution represented by gbest quickly.

3.2.3 Applications
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Figure 3.3: A diagram of neural network learning using PSO.

Initially PSO was tested on parameter and function optimisation (Shi &

Eberhart, 1999; Angeline, 1998; Clerc, 1999). Later, the algorithm has been

widely applied for the neural network learning such as in Bergh (1999); Bergh

and Engelbrecht (2000); Zhang, Shao, and Li (2000); Mendes,Cortez, Rocha,

and Neves (2002); Gudise and Venayagamoorthy (2003); Meissner, Schmuker,

and Schneider (2006). The particle’s position represents the problem to be op-

timised such as weight in neural network learning. The particle moves within

the weight space attempting to minimise the learning error. Changing the posi-

tion implies updating the weight of the network in order to reduce the error of

the current iteration. The new position thus uses a set of newweights to obtain

the new error. The particle with the lowest error is normally considered as the

global best solution. The training process continues untilsatisfactory error is
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achieved by the best particle, or when computational limits are reached. When

the training ends, the weights are used to calculate the classification error for

the training patterns. The same set of weights is used then to testthe net-

work using the test patterns. A diagram representing ANN with PSO learning

process is shown in Figure 3.3. Figure 3.4 shows the particle movement dur-

ing learning when the ANN-PSO is applied to a simple Exclusive OR (XOR)

problem. All particles are trying to reach the lowest error possible. !
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Because of its efficiency and simplicity, PSO has also been applied as an

optimiser in many other applications such as in engineering control systems

(Yoshida, Kawata, Fukuyama, Takayama, & Nakanishi, 2000; Khodier & Chris-

tod, 2005; Valle, Venayagamoorthy, Mohagheghi, Hernandez,& Harley, 2008),

multiobjective optimisation (Coello, Pulido, & Lechuga, 2004; Hu & Eberhart,

2002), biomedical applications (Wachowiak, Smolikova, Zheng, Zurada, & El-

maghraby, 2004; Zainud-Deen, Hassen, Ali, Awadalla, & Sharshar, 2008), im-

age classification and clustering (Omran, Engelbrecht, & Salman, 2006; Peng-

Yeng, 2004) and others. However, despite recent research and development,
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there is still an opportunity to enhance the methods for parameter optimisation

and feature selection tasks.

3.3 Q UA N T U M - I N S P I R E D A L G O R I T H M S

Information in the physical world is represented by some physical system.

Quantum information represented by quantum physical systemsdiffers from

its classical counterpart in many notable ways. For example,quantum infor-

mation cannot be cloned arbitrarily (Wootters & Zurek, 1982). Since classical

computing can be described as manipulating classical information, quantum

computing is, in the same spirit, manipulation of quantum information. It is

possible that the properties of quantum information can helpto resolve some

computational tasks more efficiently than when classical information repre-

sentation is used. In fact this was suggested already in Feynman (1982), but

the most interesting example was given in a very remarkable discovery where

Shor (1994) demonstrated that quantum computers would allow efficient inte-

ger factorisation, a task assumed impossible for classicalinformation process-

ing. Several notable quantum algorithms are presented in Hirvensalo (2001)

and Nielsen and Chuang (2000). It is worth emphasising here that the effi-

ciency of quantum computing comes from the ingenious use of the superposi-

tion principle, not from the high ”clock frequency” of quantum computers.

While there are certain technological limitations and accessibility problems

related to quantum computers, the quantum information principles have been

proved to be useful for the development of new evolutionary optimisation al-

gorithms that run on contemporary computers (Nielsen & Chuang, 2000; Hir-

vensalo, 2001; Han & Kim, 2002; Jang, 2004; Talbi, Draa, & Batouche, 2006;

Defoin-Platel, Schliebs, & Kasabov, 2007; Abs Da Cruz, Vellasco, &Pacheco,

2007; Luitel & Venayagamoorthy, 2010). As shown in Narayanan (1999) in

relation to classical neural networks and Kasabov (2007, 2009) in relation to

spiking neural networks, quantum computing principles havebeen seen as a

source of inspiration for novel computational methods. Twofamous quan-

tum applications are the factorisation problem (Shor, 1994) and the Grover’s

database search algorithm (Grover, 1996).



3.3 Q UA N T U M - I N S P I R E D A L G O R I T H M S 48

3.3.1 Quantum Computation Principles

In classical computing, information is represented in bitswhere each bit must

hold a value of either 0 or 1. However, in quantum computing, information

is instead represented by a quantum bit (qubit) where the value of a single

qubit could be 0, 1, or a superposition of both (Hey, 1999). Superposition is

a state that represents both 0 and 1 simultaneously based on their probability.

The quantum state is modelled by the Hilbert space of wave functions and is

defined as:

|ψ〉 = α|0〉+ β|1〉 (3.3)

whereα andβ are complex numbers defining probabilities at which the cor-

responding state is likely to appear when a qubit collapses, for instance, when

reading or measuring the state. Probability fundamentals state that|α|2+|β|2 =
1, where|α|2 gives the probability that a qubit is in the OFF (0) state and|β|2

gives the probability that a qubit is in the ON (1) state.

3.3.2 Quantum Gates

The probability ofα andβ can be modified by applying quantum gates. Sim-

ilarly to classical logic gates that perform conversion operations in classical

logic computation, quantum gates execute conversion operation on qubits.

Several quantum gates are available and some are designed for a specificn-bit

problems. The NOT-gate is the most commonly used gate in classical circuits.

This gate simply inverts the qubit value, changing it from 0 to1 or from 1 to

0. For qubit problems, a NOT gate has the capability to exchange the prob-

ability in the superpositioned states. For example, changing the probability

that the qubit will collapse at|0 > with the probability of collapse at|1 >,

α|0 > +β|1 > becomesβ|0 > +α|1 >.

The Walsh-Hadamard Transformation Gate is simply refered to asthe Hada-

mard Gate. This gate is designed for one bit transformation problems and is

widely used in quantum computation problems. The objective is to place the
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un-superpositioned qubit into a superposition of|1 > and |0 > states. The

transformation is defined by the Hadamard matrix in Equation 3.4. The role of

Hadamard gates in quantum computation is discussed in Shepherd (2006).

H =
1√
2

[

1 1

1 −1

]

(3.4)

The second quantum gate is the general-purpose Rotation Gate. The Rota-

tion Gate is dependent on the valueθ and the transformation is conducted using

Equaition 3.5.θ is the quantum angle that will be discussed in Section 3.4.2.

In Zhang, Zhang, Rong, and Cheng (2010), the authors presentsix types of

rotation gates that are derived from the standard architecture. An interesting

investigation is conducted to compare all gates on image sparse decomposition

problems. The experimental result shows that the QR-Gate5 givesthe best re-

sults in term of the best visual quality and the highest peak signal to noise ratio

on the constructed images.

Uθ =

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

(3.5)

Apart from these two commonly used gates, there are some other gates, for

example, the Phase shift Gate where one component is changed when there is

dissimilarity between two events. The Toffoli gate (Toffoli,1980) applies NOT

operation and is mostly used in reversal tasks where input andoutput matrix

must be of the same dimension. This gate is normally formed in three qubit

format and only reverses the third qubit if the two qubits arein the |1 > state.

Similarly to the Toffoli gate, the Fredkin gate (Fredkin & Toffoli, 1982) is also

designed for reversal operation. This three-qubit gate swaps the last two qubit

if the first qubit is in the|1 > state. However, there is no swap operation if

the first qubit is|0 >. There are a few other quantum gates such as Controlled

NOT gate, Square-Root-NOT gate, Pauli gate and Swap gate. All thesegates

are explained in many quantum computation publications such as Barenco et

al. (1995) and Nielsen and Chuang (2000).
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3.4 Q UA N T U M E VO L U T I O NA RY A L G O R I T H M

QEA was inspired by the concept of quantum principle and was popularised

by Han and Kim (2000). Since then, this technique has attracted the atten-

tion of many researchers around the world due to its many advantages when

compared to the classical EA. Building up on the basic EA concept, QEA is a

population-based search method that simulates a biological evolution process

and mechanisms, such as selection, recombination, mutationand reproduction.

Each individual in a population plays a role as a candidate solution and its fit-

ness to solve a given task is evaluated. However, instead of using real number,

information in QEA is represented in qubit. The value of a singlequbit could

be 0, 1, or a superposition of both. A single qubit is the smallest information

unit and can be defined as
[

α
β

]

which satisfies the probability fundamentals

stating that|α|2 + |β|2 = 1 as explained in Section 3.3.1. A QEA individual is

represented as a qubit vector
[

α1,α2,...,αN

β1,β2,...,βN

]

whereα andβ are complex numbers

defining probabilities at which the corresponding states are likely to appear

when a qubit collapses, for instance, when reading or measuringits value.N

represents the problem dimension. Figure 3.5 describes QEA as it was origi-

nally explained in Han and Kim (2002) and later applied in Defoin-Platel et al.

(2007).

The three levels of QEA are the individual, group and population level. An

individual i generated at timet holds a string of qubit ofN number -Qi(t) as

in Equation 3.6.

The probability value of|βNi |2 will determine the state when a qubit col-

lapsed.Ci(t) represents the collapsed value that will be used to determine the

fitness ofi. AttractorAi(t) always keeps the best solution for a particular indi-

vidual i. In every iteration, the fitness ofCi(t) andAi(t) are compared. If the

fitness value ofAi(t) is better thanCi(t), then the qubit ofQi(t) will be updated

using the rotation gate update technique described by Equation 3.7. In this sit-

uation, the value ofQi(t) will be moving to attractorAi(t). In contrast, ifCi(t)

fitness is better thanAi(t), Ai(t) will simply be replaced byCi(t). The rotation

angleθ determines the direction of rotation (clockwise for negativevalues and

bounded in the range of[0, π/2](Han & Kim, 2003). In the second level which

is referred to as a quantum group, there will be severalk individuals. The
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Figure 3.5: The three levels of QEA: individual (at bottom), group (in the middle) and
population (at top).
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best attractor from the groupBgroup, will be stored and used to update another

individual attractor in the group. Finally, in the top population level several

groups create a population and the best attractor among the groupsBglobal is

stored.Bgroup, andBglobal will be evaluated periodically during the optimisa-

tion process. QEA have been reported to be successful for solving complex

benchmark problems (Feng, Wang, Ge, Zhou, & Liang, 2006; Abs Da Cruz et

al., 2007), multiobjective optimisation (Talbi et al., 2006; Kim, Kim, & Han,

2006) and several real world problems (Jang, 2004; Fan, Brabazon, O’Sullivan,

& O’Neill, 2007; Gu, Gu, Cao, & Gu, 2010).

Qi = Q1
iQ

2
i . . . Q

N
i =

[

α1
i α2

i . . . αN
i

β1i β2i . . . βNi

]

(3.6)

[

αj
i (t+ 1)

βji (t+ 1)

]

=

[

cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)

][

αj
i (t)

βji (t)

]

(3.7)

Several modification on QEA have been proposed. Some new elements have

been added to improve search robustness and to provide better convergence

during optimisation (Han & Kim, 2004; You, Liu, & Shuai, 2006; Sun, Xu,

& Fang, 2006; Xiao, Xu, Chen, Zhang, & Pan, 2009). Defoin-Platel et al.

(2007) and Schliebs, Defoin-Platel, Worner, and Kasabov (2009a) proposed

an extended version of QEA called Versatile QEA (vQEA) and applied itinto

ESNN optimisation. The result produced a faster convergenceto the optimal

solution with better accuracy when compared to traditional neural networks

such as MLP and Naı̈ve Bayesian Classifier (NBC). Some principles of quan-

tum computation and QEA have been also implemented in other well known

optimisers such as GA and PSO.

3.4.1 Quantum Genetic Algorithm

Adapting the principle of GA and quantum computation, the Quantum-inspired

Genetic Algorithm (QiGA) was first discussed in Narayanan and Moore(1996).
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Algorithm 2 QiGA procedure
1: Create population withn-number of qubit chromosome

Do
2: Evaluate each individual’s fitness
3: Select two individual with the best fitness
4: Execute the quantum crossover operation
5: Execute the quantum mutation operation
6: Check for termination criteria

While (stopping criteria not met)

The development of QiGA has been described in Zhang, Li, Jin, and Hu(2006),

starting with the introduction of QiGA concept and theory (Narayanan & Moore,

1996), implementation of quantum operator (Han & Kim, 2000), introduction

of parallel QiGA (Han, Park, Lee, & Kim, 2001), improving performance with

quantum crossover and quantum mutation (Li & Zhuang, 2002),multiqubit

encoding and dynamic rotation angle mechanism (Yang, Li, & Zhuang, 2003)

plus other improvements on QiGA such as in Zhang et al. (2006); Jian, Li-juan,

Ru-chuan, and Zhong-gen (2009).

The solution candidates or the chromosomes are presented as astring of

qubits and the quantum operations are applied to the chromosomes. A series of

chromosomes assemble the population. Then, every chromosome is guided by

the classifier or other algorithms to solve the given problem. The chromosome

update strategy is based on the standard GA. The parents are selected based

on their fitness to create new offspring chromosomes. Algorithm 2explains

the general QiGA procedure and further detail about QiGA algorithms can be

found in Li and Wang (2007); Layeb and Saidouni (2007); Gu, Gu, and Gu

(2009).

Several advantages of QiGA, such as good searching capability, rapidcon-

vergence, required small population size and short computation time are dis-

cussed in Narayanan and Moore (1996); Han and Kim (2000); Li and Zhuang

(2002); Zhang, Jin, and Li (2003); Jian et al. (2009). The first application of

QiGA was to solve travelling salesman problem (Narayanan & Moore, 1996).

Other applications of QiGA are engineering problems (Vlachogiannis & ster-

gaard, 2009; Lee, Lin, Liao, & Tsao, 2011), image processing (Talbi, Ba-
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touche, & Draa, 2004; Benatchba, Koudil, Boukir, & Benkhelat, 2006) and

scheduling (Li & Wang, 2007; Gu et al., 2009).

3.4.2 Quantum-inspired Particle Swarm Optimisation

Quantum principles have been embedded into PSO as a mechanism for the

probability calculation and normally referred to as QiPSO. TheQiPSO con-

cept was first introduced in Sun et al. (2004). This concept has been extended

in Gao and Diao (2009) who employed the quantum principles explainedby

Han and Kim (2002). The main idea of QiPSO is to use the standard PSO

function to update the particle position represented as a quantum angle (θ).

The quantum angleθ has normally been used in quantum-inspired optimisa-

tion algorithms to calculate and update probability and is represented as
[

α
β

]

. θ

corresponds to the angle in the trigonometry and is bounded tothe first quad-

rant. Figure 3.6 shows an example where the probability is computed when the

θ = 40◦. Coordinates x and y represent the cosine (cos) and sine (sin) value re-

spectively.
[

α
β

]

=
[cos(θ)
sin(θ)

]

satisfies the probability fundamental of|α|2+ |β|2 = 1

and can be substituted with Equation 3.8.

|sin(θ)|2 + |cos(θ)|2 = 1 (3.8)

For θ = 40◦, cos(θ) = 0.766 andsin(θ) = 0.643. Following the consideration

of Equation 3.8, new probability ofα obtained is 0.587 andβ is 0.413.

In QiPSO, changes of theθ during learning process is crucial to measure

next qubit collapse state. The formula for velocity update in standard PSO is

modified to get a new quantum angle which is translated to the newprobability

of the qubit by using Equation 3.9. Theθgbest represents the best angle stored

in asgbest andθpbest is the best angle found by the particle.

∆θn,t+1 = w ·∆θn,t+c1 ·rand1 · (θpbest−θn,t)+c2 ·rand2 · (θgbest−θn,t) (3.9)
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Figure 3.6: Quantum computation of probability.

There are two approaches to updating the currentθ. In the first approach, the

new quantum angle is determined by using a modified standard PSO position

update formula (Equation 3.10). Then, based on the newθ angle, the new

probability ofα andβ can be calculated using Equation 3.8.

θn,t+1 = θn,t +∆θn,t (3.10)

The second approach uses a quantum gate to compute the newθ. The most

commonly used quantum gate in quantum probability computationis the ro-

tation gate. Based on the newθ velocity, the new probability ofα andβ is

calculated using a rotation gate as shown in Equation 3.11.

[

αt+1

βt+1

]

=

[

cos(∆θ) −sin(∆θ)
sin(∆θ) cos(∆θ)

]

·
[

αt

βt

]

(3.11)

Figure 3.7 presents an example of the qubit update in QiPSO usingrotation

gate. In this scenario, the previous angleθ at time t was assumed to be22◦.

After computing direction changes using Equation 3.9, change in the angle∆θ
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is found18◦. The new probability ofα andβ is calculated after applying the

Rotation Gate in Equation 3.11

Δθ
 = 1

8°

0°

90°

sin (θ)

cos (θ)

22°

1

1

0.375

0.927

Figure 3.7: Quantum angle update in Trigonometry.

[

αt+1

βt+1

]

=

[

cos(∆θ) −sin(∆θ)
sin(∆θ) cos(∆θ)

]

·
[

αt

βt

]

=

[

cos(18◦) −sin(18◦)
sin(18◦) cos(18◦)

]

·
[

0.927

0.375

]

=

[

0.951 −0.309
0.309 0.591

]

·
[

0.927

0.375

]

=

[

0.766

0.643

]

Derived from Equation 3.8, the final probability is:
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[

αt+1

βt+1

]2

=

[

0.766

0.643

]2

=

[

0.587

0.413

]

After the probability ofα andβ is obtained, a random value within the in-

terval [0, 1] is generated to observe the collapse state. A collapse state is deter-

mined using the rule described in Equation 3.12 and is used to solve the given

problems. Similarly to the standard PSO, the particle with the best fitness in

the entire swarm will be assigned asgbest particle. The best fitness found dur-

ing learning for every individual particle is stored aspbest. These two solutions

will be used for newα andβ probability computation in the next iteration.

C =







0, if random> |α|2

1, if otherwise
(3.12)

QiPSO has been tested with promising results on several problems such as

benchmark functions (Yang, Wang, & Jiao, 2004; Wang & Zhou, 2007; Pant,

Thangaraj, & Abraham, 2008; Liu & Ma, 2008), benchmark problems (Yu,

Tian, & Yin, 2006; Wang, Zhang, Niu, & Yao, 2011), control systems (Mikki

& Kishk, 2005; Ma, Liu, & Lin, 2007; Jeong, Park, Jang, & Lee, 2009), eco-

nomic applications (Meng, Wang, Dong, & Wong, 2010), image segmentation

(Lu, Liao, & Chen, 2007) and fuzzy system (Wang, Yang, Xu, & Sun, 2007;

Tang & Xue, 2008)

3.5 P R I N C I P L E S O F Q UA N T U M- I N S P I R E D S N N

The quantum computation principles are explained in Section 3.3.1. Qubit in-

formation representation can be applied to the applications that require changes

in its states during learning. The principle of feature selection and parameter

optimisation of SNN using quantum representation and quantumoperations
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was first introduced by Kasabov (2009). As illustrated in Equation 3.13, a

string of qubits (Qt) is used to represent the whole feature set (xt) and each

feature is mapped into a single qubit.αt defines the probability of the collapse

state measured using Equation 3.12. Collapse value of 1 represents the fea-

ture is used for the learning process while 0 means the feature isdiscarded.

The same representation is employed for parameter optimisation. A popula-

tion of qubits is used to represent a real value parameter. The collapse qubit

states correspond to a set of binary strings, which are later translated into a real

value. Further discussion on the implementation of QiSNN principles with the

proposed integrated framework between ESNN, PSO and QiPSO, wherebypa-

rameters and features are optimised simultaneously is discussed in Chapter 4

and Chapter 5.

Qt,1 Qt,2 . . . Qt,N

↓

αt,1 αt,1 . . . αt,N

βt,1 βt,2 . . . βt,N
(3.13)

↓

xt,1 xt,1 . . . xt,N

Quantum operation can also be applied for spike representations. This prin-

ciple has been applied in PSNM as explained in Section 2.3.6. The probability

of spike emission depends on the evaluation of the qubit states.A collapse

value of 1 means the spike is present while value of 0 means otherwise. Two

other probability elements, the probability of connectionexistence and that of

spike contribution to PSP calculation in pSNM can also be represented using

qubit operations as explained in Kasabov (2010). Chapter 6 will explain the

implementation of PSNM in ESNN framework.
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3.6 S U M M A RY

This chapter presented a review of quantum-inspired PSO. It first discussed the

concept of a biologically-inspired optimiser, the PSO. The strategy is simple

yet very efficient. Unlike GA, each particle in a swarm interacts with each

other and contributes to the solution throughgbest particle. Every particle has

its chance to begbest particle and thegbest information is shared with other

particles. At the same time, every particle memorises its own best solution

called pbest. gbest and pbest transform a swarm of particles to an effective

and intelligent solution finder. Second, the chapter explains the QiSPO that is

derived from PSO where the main objective is to solve binary problems. The

QiPSO update the quantum angle to determine a particular state.

With the understanding of ESNN, PSO and QiPSO methods and together

with the concept of ECoS and quantum probability, the first integration be-

tween these methods will be discussed in Chapter 4. Since ESNN requires

optimisation in order to work effectively, the PSO and QiPSO optimisers will

be investigated for this task.



Chapter4

P RO P O S E D M E T H O D S F O R I N T E G R AT I N G E S N N , P S O

A N D Q I P S O

Many real world problems require optimisation for several reasons. Two com-

mon reasons are difficulty in tuning the optimal values and speeding up the

learning process. The same is also valid for ESNN where parameter optimisa-

tion is necessary as explained by Wysoski et al. (2006b) and Schliebs, Defoin-

Platel, Worner, and Kasabov (2009a). In this chapter, novel methods for the

integration of PSO and QiPSO with ESNN are introduced for the firsttime

and results are compared with well known classifier algorithms. The chapter

explains first the integration of ESNN and PSO and then explains the integra-

tion of ESNN and QiPSO. Discussion of the method and obtained results is

presented later in the chapter.

4.1 I N T E G R AT E D E S N N-P S O F O R PA R A M E T E R O P T I M I S AT I O N

In neural network models, an optimal combination of parameters can influ-

ence their performance. It is not feasible to manually adjustthe parameters,

particularly when dealing with different combinations for different datasets.

Consequently, parameter optimisation is vital and much research has been con-

ducted on it (B̈ack & Schwefel, 1993). Like other models, ESNN is sensitive

to its parameters. Optimal combinations of parameters lead tobetter classifi-

cation accuracy. It is inappropriate to manually adjust theparameters to find

the correct combination since this process would be inefficient and unsystem-

atic. The performance, advantages and capabilities of PSO insolving problems

effectively, have drawn much attention to this technique. Therefore, this chap-

60
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ter proposes how PSO can be used for ESNN optimisation. ESNN is known

as a fast and efficient online processing method and its first application is for

fast visual processing application (Wysoski et al., 2006b). For all proposed

integrated frameworks in this study, the optimisation of the ESNN classifier is

performed in offline mode before the optimised ESNN can be usedfor online

classification.

4.1.1 Framework
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Figure 4.1: The integrated framework of ESNN-PSO.

The proposed ESNN-PSO framework is shown in Figure 4.1. The frame-

work integrates ESNN (the classifier) and PSO (the parameter optimiser for
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ESNN). The middle part of the diagram represents ESNN as comprehensively

explained in Chapter 2. Since information in ESNN is represented as spikes,

input data must be encoded in spike pulses. Population Encoding in ESNN dis-

tributes a single input value to multiple pre-synaptic input neurons. Each pre-

synaptic neuron generates a spike at a certain firing time using Equation 2.4

and the illustration of this encoding process is shown in Figure 2.5. ESNN

utilises the Thorpe’s neuron model (Thorpe, 1997) because of its effectiveness

and simplicity. The fundamental concept of this model is thatthe earlier spikes

received by a neuron have a stronger weight compared to the later spikes. Once

the potential reaches a certain amount of spikes and the PSP exceeds the thresh-

old value, the neuron fires and becomes disabled. The neuron inthis model can

only fire once. The computation of the PSP in this model is explained in Equa-

tion 2.17. Since the first intention of ESNN is to introduce a fast classifier for

online classification, the one-pass learning has been utilised in the classifier.

P
a
ra
m
e
te
rs

Mod

Sim

C

Figure 4.2: The particle structure in ESNN-PSO framework.

The integration is performed using the well known Wrapper approach. This

approach was first introduced in John, Kohavi, and Pfleger (1994) and com-

prehensively discussed later in Kohavi and Sommerfield (1995) and in Kohavi

and John (1997). The Wrapper approach combines the classifier withan op-

timisation algorithm. In this case, PSO interacts with ESNN to optimise the

ESNN parameters, namely modulation factor (Mod), proportion factor (C) and

neuron similarity value (Sim). All particles are initialised with a set of random

values and they subsequently interact with each other based on classification

accuracy. Every particle holds certain parameter values asshown in Figure 4.2

and uses these values to construct ESNN. Then, the constructed ESNN takes

the input samples and classifies them according to their targeted classes. A

fitness function to evaluate particle’s performance is calculated based on the
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classification accuracy. Valko, Marques, and Castelani (2005) identified the

fitness function as an important element in such integrated approach. A par-

ticle with the best classification accuracy among all particleswill be saved as

gbest particle. The parameter value ingbest is later used by other particles to

update its position. However, each particle also keeps track ofits own best

solution found during the learning. This value is calledpbest and is also an

important attractor in the particle’s next position update. The learning stops ei-

ther when the system reaches the predefined maximum number of iterations or

when one of the particles finds the desired classification accuracy. Algorithm 3

explains the proposed integrated ESNN-PSO and the detailed descriptions are

presented in Appendix A.

Algorithm 3 Integrated ESNN-PSO
1: for all particledo
2: initialise all ESNN parameters
3: initialise fitness
4: end for
5: while not reaching maximum iterationdo
6: for all particledo
7: get fitness from ESNN (Algorithm 1)
8: if current fitness better thanpbest fitnessthen
9: assign current particle aspbest

10: if currentpbest fitness better thangbest fitnessthen
11: assignpbest asgbest
12: end if
13: end if
14: for all ESNN parametersdo
15: calculate velocity using Equation 3.1
16: update parameter using Equation 3.2
17: end for
18: end for
19: end while
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4.1.2 Experimental Datasets

Two synthetic datasets, the Uniform Hypercube dataset and Two Spirals prob-

lems have been used to evaluate the performance of the proposed framework.

Uniform Hypercube

The proposed integrated ESNN-PSO method was tested on a Uniform Hy-

percube dataset (Estévez, Tesmer, Perez, & Zurada, 2009). Thirty features

were created where only 10 made up the relevant features vector(r1, r2, ..., r10),

whereby a sample belongs to class 1 whenri < γi−1 ∗ α for i = 1 to 10. The

chosen parameters wereγ = 0.8 andα = 0.5. The features that were not rel-

evant to determine the output class consisted of 10 random features with the

random value in interval [0,1], and 10 redundant features were copied from

relevant features with an addition of noise calculated from Gaussian function.

These redundant dimensions were generated by adding a Gaussiannoise using

standard deviation ofσ = |p| ∗ s with |p| being the absolute value of vectorp

while s is a parameter controlling the noise strength to the original data.s was

set to 0.3 for this dataset. The features were arranged randomly to simulate

a real world problem, and the relevant features were scattered inthe dataset

as presented in Table 4.1. The problem consisted of 500 samples that were

equally distributed into two classes. Details of Hypercube data generation can

be found in Est́evez et al. (2009).

Table 4.1: Uniform hypercube feature arrangement

Features Arrangement

Relevant 02 04 09 10 11 15 19 20 26 30
Redundant 03 07 12 14 17 18 21 25 27 28
Random 01 05 06 08 13 16 22 23 24 29
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Figure 4.3: The Two Spirals data. Colours represent different class labels. Redundant
data are copied from the original data with added noise while the random
data is generated randomly. As noise was added, the data became more
difficult to be distinguished between classes.

Two Spirals

The second synthetic dataset is the one from Two Spirals problem, well known

to be a difficult non-linear separation problem first introduced in Lang and

Witbrock (1988). In order to evaluate the performance in feature selection

task, two relevant data were copied with some noise added to the original data.

These redundant data were generated similarly to redundant data in Hypercube

dataset by adding a Gaussian noise to the original spiral pointsp = (x, y)T .

The noise increased linearly according to the distance fromthe spiral origin
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(0, 0)T . The noise value was calculated as thepi centered Gaussian distributed

random variableN(pi, σ
2). The information available in a feature decreased

when a higher level of noise was applied as shown in Figure 4.3. In addition

to this, several irrelevant features with random dimension values within the

interval [0,1] were also added to the dataset. The dataset in thisexperiment

consisted of 20 features with two relevant features, 14 redundant features with

the noise levels from 0.2 to 0.8 and four random features. Detailed explanation

of the data generation can be found in Schliebs, Defoin-Platel, and Kasabov

(2009a). The features were then arranged in a random order to simulate a

scenario where relevant features were scattered in the dataset,as shown in

Table 4.2. Four hundred samples that were equally distributed between two

classes were generated.

Table 4.2: Two Spirals feature arrangement

Position Features

01 Redundant 0.3
02 Original
03 Redundant 0.7
04 Redundant 0.5
05 Random
06 Redundant 0.4
07 Redundant 0.4
08 Random
09 Redundant 0.2
10 Redundant 0.3
11 Random
12 Redundant 0.6
13 Redundant 0.2
14 Redundant 0.6
15 Redundant 0.7
16 Random
17 Redundant 0.8
18 Original
19 Redundant 0.8
20 Redundant 0.5
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4.1.3 Setup

Receptive fields were used to produce a weight pattern or weight vector of a

particular sample that could identify the output class. Different numbers of

receptive fields for each dataset influenced the accuracy of the results. From

preliminary experiments and as suggested by Schliebs, Defoin-Platel, Worner,

and Kasabov (2009a), 20 receptive fields were chosen.

There is no definite answer on how many particles should be used tosolve a

certain problem. Generally, higher numbers of particles arerequired for more

complex problems and lower number of particles for simple problems. Ad-

ditionally, the balance between solution exploration (searching for good solu-

tions) and exploitation (refining the solutions by combininginformation gath-

ered during the exploration phase) must be taken into account (Shi & Eberhart,

1998b). In this experiment, 20 particles were used to explorethe solution. Both

PSO parametersc1 andc2 were set to 1.2, which meant a balanced exploration

betweenpbest andgbest as well as the inertia weightw = 2.0. The integrated

ESNN-PSO was tested on the Uniform Hypercube and Two Spirals datasets

and the average result was computed in 1000 iterations using 10 fold cross

validation.

These datasets were also used for obtaining test results fromMLP and Sup-

port Vector Machine (SVM) with the same conditions for comparison pur-

poses. Details of MLP with BP learning procedure is described in Appendix G

and also can be found in Chauvin and Rumelhart (1995). The computation ex-

ample is explained in Jones (2005). In this study. the NeuCom software is used

to simulate the MLP for the given problems. The software has been described

in Section 2.6. After preliminary experiments with tuning the parameters, the

following values are found to be the optimal setting for this experiment: the

learning rate was set to 0.3 and the momentum rate at 0.9. Number of hidden

units for Hypercube data was set to 30. Because of the high level of noise

injected into the Two Spirals problem, 40 hidden neurons wereused. Both

problems have been trained for 1000 iteration with 10-fold cross validation

procedure.

The Hypercube and Two Spirals datasets were also applied to SVM using the

NeuCom software. SVM is a statistical method and was originally designed
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for linear separable problems. Nevertheless, the introduction of kernel function

gives the method the capability of handling non-linear separable problems.

Support vector is the data points that form a decision line forclassification

problem that helps classify the data in specific output classes. During learning,

this method tries to formulate an equation to represent all data points with

respect to their classes. The key features of SVMs are the use ofkernels,

the absence of local minima, the sparseness of the solution andthe capacity

control obtained by optimising the margin (Shawe-Taylor & Cristianini, 2004).

Comprehensive description and review of SVM can be found in Shawe-Taylor

and Cristianini (2000). Polynomial kernel function has been selected in both

experiments. The only parameter in polynomial kernel is the kernel degree that

was set to 1 after several attempts of fine-tuning.

4.1.4 Performance Analysis

In both experiments conducted on two separate datasets, the three ESNN pa-

rameters as explained in Section 2.7 evolve steadily until reaching certain op-

timal values. The combination of these values leads to better classification

results. As shown in Figure 4.4 and Figure 4.5, for both datasets,the value

of Mod is in the range of 0.9 and 1.0. The parameter is important because it

represents the connection weight in the ESNN and should not be too low. If a

low value was selected, it would end up with most connections assigned with

the weight value of 0 due to the nature of weight computation as shownin

Equation 2.25. In contrast, a higher value means most weights will have a con-

nection value, which can be translated into well-presented weight patterns ac-

cording to their output class. On the other hand, the proportionvalueC which

controls the PSP threshold value is between 0.55 and 0.85. As for the evolving

part, value ofSim is observed to be between 0.3 and 0.6. Higher value means

there are many neurons within the similarity range that are merged while lower

value means otherwise. The similarity is calculated using Euclidean distance.

It can be concluded that based on the value with 20 receptive fields used, most

of the neurons are within the similarity range and are merged.
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Figure 4.5: Evolution of accuracy and parameters on Two Spirals dataset.

The testing accuracy recorded from the proposed integrated method is 93.81%

for the Hypercube dataset and 73.26% for the Two Spirals. MLP gives 89.40%

and 52.40% respectively, while SVM achieves results comparable with those

from the proposed method at 93.60% for the Hypercube and 62.00% for the

Two Spirals. Table 4.3 shows the overall testing results. Both MLP and SVM
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parameters also have been manually tuned to get the best settingin this exper-

iment. Nevertheless, the result shows that ESNN with optimised parameters

gives better classification accuracy than these two traditional methods.

Table 4.3: Comparison of classification accuracy

Method Hypercube Two Spirals

ESNN-PSO 93.81%± 3.49 73.26%± 7.33
MLP 89.40%± 4.12 52.40%± 7.11
SVM 93.60%± 4.76 62.00%± 7.12

Due to a higher number of irrelevant features in both datasets which may

lead to misclassification of some samples and subsequently resulted lower

classification accuracy, feature selection is necessary toselect only few rel-

evant features that are significant for the classification. Afeature optimisation

method utilising the principle of quantum computation in PSO is proposed in

the next experiment.

Table 4.4: Comparison of computational time

Method Time in Sec Computational relative to ESNN

ESNN 5 1.0%
MLP 18 3.6%
SVM 2 0.4%

Table 4.4 shows the computational time required to run these three algo-

rithms. The unoptimised ESNN is used for this comparison since two other

algorithms are not optimised. All methods have been tested using the Hyper-

cube dataset. In order to execute a single run, ESNN requires 5 seconds while

MLP and SVM need 18 seconds and 2 seconds respectively. Therefore, MLP

needs 3.6% more while SVM used 0.4% less computational time compared

to ESNN. MLP requires more computational time compared to ESNN and
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SVM because learning mechanism in MLP involves cycle of iteration.One-

pass learning in ESNN framework involves only single feed forward learning

which requires less computational time. SVM is a statistical method and does

not require any repetition in learning which make the learningfast.

4.2 I N T E G R AT E D E S N N-Q I P S O F O R S I M U LTA N E O U S F E AT U R E S E-

L E C T I O N A N D PA R A M E T E R O P T I M I S AT I O N

The proposed framework of ESNN-PSO used in the previous experiment is

able to obtain the best combination of ESNN parameters and better results

compared to the traditional methods. However, due to the high number of

irrelevant features in the datasets, results are believed to be much better if these

features can be removed. In contrast, classification with onlyrelevant features

may lead to better outcomes. This section proposes a novel ESNN-QiPSO

framework that integrates ESNN with QiPSO where features and parameters

are optimised simultaneously into a single framework.

4.2.1 Framework

The proposed ESNN-QiPSO framework is very similar to the previousframe-

work. However, the major difference is in the particle structure. Since there are

two components to be optimised, each particle is divided into two parts. The

first part of each particle holds the feature mask value for feature optimisation,

while the other part holds a binary string for parameter optimisation.

The binary string mask is introduced in this experiment for the feature se-

lection task. The mask determines which feature is going to be selected from

the entire sample. Every feature is represented by a qubit in themask. The

probability of selecting features depends on the final valueto which the qubit

collapses. Collapse value 1 means that the feature is selectedwhile value 0

means it is not selected. The selected features are then transformed into spike

trains using Population encoding as described in the previous framework.

For parameter optimisation, a set of qubits represents the parameters values.

Because the information held by particles is in binary representation, conver-
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Figure 4.6: A Framework of ESNN-QiPSO. The real value input features are coupled
with a qubit feature mask. Final qubit value when collapsed is 1 or 0 indi-
cating a feature being selected or non-selected respectively. The selected
features are then mapped into spike trains for learning. For parameter opti-
misation, the string of collapsed values are then translated into real values
using the Gray code function.

sion into real value is required. For this task, the Gray code method is chosen

since it is proven to be a simple and effective way to convert abinary repre-

sentation into a real value (Gray, 1953). Following the procedure of one-pass

learning, the connection weights in ESNN are trained accordingto the param-

eters obtained by the particles. All particles are initialised with a random set

of binary values and subsequently interact with each other based on their fit-

ness in classification accuracy. Figure 4.6 illustrates theproposed framework.

Algorithm 4 describes the proposed integrated ESNN-QiPSO framework and

the detailed implementations are described in Appendix B.
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Algorithm 4 Integrated ESNN-QiPSO
1: for all particledo
2: for all ESNN parametersdo
3: for all qubit do
4: initialise θ
5: get collape state using Equation 3.12
6: end for
7: convert binary string to real value using Gray code
8: end for
9: for all feature qubitdo

10: initialise θ
11: get collape state using Equation 3.12
12: end for
13: initialise fitness
14: end for
15: while not reaching maximum iterationdo
16: for all particledo
17: get fitness from ESNN (Algorithm 1)
18: if current fitness better thanpbest fitnessthen
19: assign current particle aspbest
20: if currentpbest fitness better thangbest fitnessthen
21: assignpbest asgbest
22: end if
23: end if
24: for all ESNN parametersdo
25: for all qubit do
26: calculate velocity using Equation 3.9
27: apply rotation gate in Equation 3.11
28: get collape state using Equation 3.12
29: end for
30: convert binary string to real value using Gray code
31: end for
32: for all feature qubitdo
33: calculate velocity using Equation 3.9
34: apply rotation gate in Equation 3.11
35: get collape state using Equation 3.12
36: end for
37: end for
38: end while
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4.2.2 Setup

The QiPSO utilised the same searching method as the PSO and used a set of

candidates in a population. Twenty particles were defined to findthe solution.

The number of features mask was set to the same number of input features.

Since all three ESNN parameters ranged between 0 and 1, each parameter is

represented by six qubits and were sufficient to represent the real value.

The proposed ESNN-QiPSO method was tested using the same datasets as

before - the Uniform Hypercube and the Two Spirals. All other parameters

were set to the same value as in previous experiments. Twenty receptive fields

were chosen for data encoding,c1 andc2 were set to 0.05 for this binary optimi-

sation and inertia weightw = 2.0. Particle dimension vector refers to the num-

ber of variables to be optimised by QiPSO. Therefore, the Hypercube problem

dimension had three ESNN parameters and 30 features. On the otherhand,

there were 23 dimensions for the Two Spirals dataset.

A total of 1000 iterations were performed for learning with 10-fold cross val-

idation was used. The datasets were applied to ESNN-QiPSO for comparison

with the previous proposed methods.

4.2.3 Performance Analysis

All particles were initialised with a random set of binary valuesand they sub-

sequently interacted with each other based on classificationaccuracy. The two

main elements that contributed to classification accuracy were feature and pa-

rameter optimisation and they are discussed below.

Feature Selection

Figure 4.7 illustrates the average number of selected features during the learn-

ing process on the Hypercube dataset. The colours in the diagrams reflect how

frequently the features were selected at a specific iteration. The brighter colour

means the corresponding samples were selected more often, while the darker

colour means otherwise. The bar chart simplifies the final number of samples

being selected from 10 runs of 10 folds cross validations. For the Hypercube
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Figure 4.7: Feature selection evolution on the Hypercube dataset. Ten relevant fea-
tures are selected as indicated by the bright colour representation. At the
same time, the redundant and random features are gradually been removed
by QiPSO during learning.

dataset, it is evident that in the early learning phase more features were used

by the particles. This contributed to the low accuracy, as shown in previous

experiments when many irrelevant features were used for classification. The

irrelevant features that consisted of random and redundantfeatures were con-

sistently discarded during the learning process. The final result shows that all

10 relevant features were selected between seven and nine times from the 10

runs. Meanwhile the irrelevant features, especially the random ones that con-

tained no information to distinguish between classes, were rarely selected in

the final stage of learning.
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Figure 4.8: Feature selection on the Two Spirals dataset. Two relevant features were
selected nine and eight times from 10 cross validation runs, while other
features were removed by QiPSO during learning.

On the other hand, because of the different levels of noise that was injected

into the Two Spirals dataset, QiPSO was not able to simply removethe ir-

relevant features. Samples with noise level of 0.2, 0.3 even 0.4 still contain

information that can be used to differentiate between classes, as shown in Fig-

ure 4.3. At noise level of 0.5, the starting point of the spirals can still be

distinguished and datasets with higher noise levels were considered as irrele-

vant and began to scatter. Figure 4.8 shows that while the two original features

were selected in almost all experiment runs, the redundant features were also

selected often. In contrast, the random features were steadilyremoved during

learning. However, due to the reduced number of features and thefinal selected
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features mostly containing information for the classification, the accuracy of

the result shows some improvement in this experiment compared to a previous

experiment that was using all features, as depicted in Figure 4.10.

Parameter Optimisation

The correlation between feature selection and classification accuracy are clearly

observed in the previous section. However, it is also clear thatthe result is not

only affected by feature selection, but also by parameter optimisation. Fig-

ure 4.9 and Figure 4.10 show the parameter optimisation by QiPSO for the

Hypercube and Two Spirals datasets. The results show that all parameters are

optimised into the same range, as observed in the previous experiment. All

parameters are dependent on each other for optimal solution. Often, changes

in a certain parameter require changes in other parameters as well.

The modulation factorMod is optimised in the range of 0.9 to 1.0 by QiPSO.

The value evolves steadily to a certain optimal value, especially in Hypercube

data, where the optimal value after the learning is almost similar. When ex-

amining value of firing thresholdC, it starts almost at the same value at the

beginning and then advances towards an optimal value. Finally,for the simi-

larity thresholdSim, the value is significantly different compared to the value

optimised by PSO. This is because the connection similarity is low when a

high number of connections exists. In ESNN-PSO experiments, all features

are used. In contrast, when the feature selection process reduces the number of

features, number of pre-synaptic neurons and connections decreases as well.

This improves the chance that more connections are in the similarity range and

subsequently improves the results.

The average accuracy for ESNN-QiPSO with simultaneous feature selection

and parameter optimisation is 94.74% for Hypercube and 84.09%for Two Spi-

rals. This clearly shows that results can be improved not only by optimising

the parameters. Better results have also been achieved by reducing the problem

noise by eliminating the irrelevant features and selectingfeatures that contain

the most information for classification. The accuracy duringearly learning

is relatively low for ESNN-QiPSO. The reason is that the random selection

approach by particles selects features that contain littleinformation to enable
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Figure 4.9: Evolution of accuracy and parameters on Hypercube dataset from the in-
tegrated ESNN-QiPSO framework.
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Figure 4.10: Evolution of accuracy and parameters on Two Spirals dataset from the
integrated ESNN-QiPSO framework.

better classification. Gradually, learning is improved and the particles start to

find better features and parameter combinations. In addition to parameter opti-

misation, this experiment also demonstrates that better classification accuracy
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can be achieved by selecting relevant features and eliminatingthe irrelevant

ones. The overall results are shown in Table 4.5 for easy comparison.

Table 4.5: Comparison of classification accuracy

Method Hypercube Two Spirals

ESNN-QiPSO 94.74%± 4.34 84.09%± 6.43
ESNN-PSO 93.81%± 3.49 73.26%± 7.33
MLP 89.40%± 4.12 52.40%± 7.11
SVM 93.60%± 4.76 62.00%± 7.12

Knowledge Discovery

Machine learning techniques involve the development of algorithms and com-

puter programs that would enable the machine to learn and produce solutions

to the given problems. Analysis of the results obtained from the learning pro-

cess is performed in order to understand the problems.

In feature selection task, the features selected in this case by QiPSO are nor-

mally considered as the relevant features. From this outcome, feature selection

expresses some knowledge on which features that are important indecision

making process. This is important for understanding the problems and espe-

cially for achieving a good classification result. Some high-dimensional real

world problems consist of a large number of variables. Correlation between

variables can also be identified based on the final selected features. Running

the experiment 10 times shows that some features will be selectedonly when

certain other features are selected as well. For instance, asshown in Figure 4.7,

whenever Feature 9 is selected, almost certainly Feature 20 and Feature 26 are

also selected. Therefore, it can be concluded that these three features are rele-

vant and also interrelated. It also shows that the selected features are important

in order to get higher classification accuracy.

Knowledge discovery from parameter optimisation can be foundin the range

of optimal value. The higherMod value represents early connections have

higher weight and more importance in deciding the output class of a sam-
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ple. On the other hand, the smaller value means early connections have lower

weight. Therefore, more spikes are required to decide the output class. For

the thresholdC, it has been discovered that if the value is higher, more spikes

and time are required to make a decision. However, if smaller valueis se-

lected, few spikes are enough to fire an output spike and determine the class

of the sample. Merge rate of output neurons is controlled by theparameter

Sim. A higherSim value means more output neurons are merged. This leads

to the creation of a robust network architecture, where a smallnumber of out-

put neurons represent entire samples in the dataset. From both experiments,

the optimal range ofMod is between 0.9 and 1.0. On the other hand,C and

Sim range from 0.5 to 0.9 and 0.3 to 0.7, respectively. It can be concluded that

each ESNN parameter converges towards a certain range of values. However,

there is no specific value range that can be applied to all problems where each

problem will have its own combination of parameters.

In general, every dataset requires specific analysis in order to understand

the problems it represents. Comprehensive understanding of the problem may

improve efficiency in decision making and also make future decision making

easier and faster. Knowledge can be extracted from many sources such as

time prediction result, visualisation, classification, clustering and others. Many

studies have examined data mining and knowledge discovery subject (Fayyad,

Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996; Bramer, 1999; Cios, Pedrycz,

Swiniarski, & Kurgan, 2007).

4.3 I M P L E M E N TAT I O N I S S U E S

4.3.1 Qubit Representation of Parameters

Some problems persisted when using QiPSO algorithms for parameter optimi-

sation and feature selection The problems include the possibility of missing the

optimal parameter value when using only binary QiPSO. As the information is

represented in a binary structure, the conversion from binary to real value can

cause such problems, especially if the selected number of qubits representing

the parameter value is insufficient.



4.3 I M P L E M E N TAT I O N I S S U E S 81

Table 4.6: Example of conversion from qubit to real value

Qubit Real value

[00] 0.0
[01] 0.3
[10] 0.7
[11] 1.0

Table 4.6 shows an example where two qubits represent parametervalues

within the interval [0,1]. In this example, if the optimal value is 0.8, there

will be no chance for the optimiser to obtain this value. An easysolution is

to increase the number of qubits to cover more real values. However, this will

lead to longer computation time.

4.3.2 Feature Selection

In addition, QiPSO’s search strategy is based on random selectionof features

at the beginning of the process. Each particle will update itself based on the

best solution subsequently found. A major problem with this approach is that

the randomly selected features at the beginning may not be therelevant. Other

particles that take part in the entire process are thus affected. This is due to

each particle updating its information without relevant features as illustrated

in Figure 4.11.

Particle A

Fitness = 30%

Particle B

Fitness = 80%

Unevaluated

feature

Relevant feature

Irrelevant feature

Figure 4.11: Example of feature evaluation.
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The best solution is to explore all possibilities, but it is unrealistic for high

dimensional problems. Figure 4.12 shows the search tree whereall possibil-

ities are taken into account. These24 problems resulted in 16 possibilities.

For a problem with 20 features, the search tree have 1,048,576possibilities, a

number that would make the computation far too slow.

0,0,0,0

0,1,0,0 0,0,0,10,0,1,01,0,0,0

0,1,1,0 0,1,0,11,0,1,0 1,0,0,11,1,0,0 0,0,1,1

1,1,1,0 1,0,1,11,1,0,1 0,1,1,1

1,1,1,1

Figure 4.12: Search tree for four qubits with 16 possible combinations.

4.3.3 Number of Connections

The study of the feature selection process shows that the network performs

well when the number of features is reduced, which also reduces the number

of connections. In the experiment, fewer connections result infaster learn-

ing process with better accuracy. This suggests that reducingthe number of

connections can be used to enhance the learning.

Motivated by this finding, a new enhancement to the optimiser andESNN

will be introduced in the next two chapters. A new search strategy will be

introduced for the optimiser and this enhancement is discussed in Chapter 5.

The new evolving connection structure will be proposed in Chapter 6 as it
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appears that not all connections are necessary. This finding also aligns with

the probabilistic neuron model as discussed in Chapter 2.

4.4 E X T E N D E D E S N N-Q I P S O F R A M E W O R K F O R S T R I N G PAT T E R N

C L A S S I FI C AT I O N

In a collaboration between Knowledge Engineering and Discovery Research

Institute (KEDRI) where this research has been studied and the National In-

stitute of Information and Communications Technology (NiCT,Japan), the

proposed ESNN-QiPSO method has been tested on a string pattern recogni-

tion problem. String pattern recognition is an approach fordetermining which

group of a string belongs to, based on analysing its contents.This task, despite

being quite challenging, is very important to certain areassuch as internet secu-

rity and virus detection. Strings can be texts, musical symbols or others that are

not necessarily in numerical formats. Since most classifieralgorithms can only

accept numerical values, transformation from strings to numerical values is re-

quired. String kernels are a well-known method for transforming string input

values into high dimensional input vectors (Lodhi, Saunders, Shawe-Taylor,

Cristianini, & Watkins, 2002). The kernel provides the classifier algorithm

with the capability of mapping the original non-linear separable data into a

higher-dimensional space which is linearly separable. There are several well-

known string kernels such as Bag of Words andn-grams. The output from the

kernel process is the kernel matrix which is used as input to the algorithm for

classification, clustering or ranking tasks. This technique is quite simple yet

effective in transforming the input from string format intonumerical values.

4.4.1 Framework

This experiment has extended the ESNN-QiPSO framework for stringpattern

recognition with the addition of a string kernel. The aim is to investigate the

efficiency of QiPSO when it is used for optimising ESNN parametersas well

as for selecting the most relevant features from the string kernel matrix, both

of which have direct influence on classification accuracy. In order to allow the
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proposed method to operate on string data,n-grams string kernels were used to

transform the input data into the desired input format. Then-grams approach

has been chosen wheren-grams are n adjacent characters (substring) from an

alphabetA (Lodhi et al., 2002). For example, ifn=3 for the string ”KEDRI”,

the trigrams output will be KED, EDR, DRI. Based on this approach, the sim-

ilarity between strings is calculated and the result is the kernel matrix. This

process is illustrated in Figure 4.14. Figure 4.13 despicts the proposed frame-

work.
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Figure 4.13: An extended ESNN-QiPSO framework for string classification.

The labeled and reformatted Reuters 21578 string dataset1 is selected for

this experiment. Only relevant information from tags topic, titleand body text

were extracted and some unknown tags such as ”&”, ”$” were removed. Fi-

nally, all characters were changed to lowercase. The problem consisted of 150

samples from four classes: 38 from acquisition, 36 from corn, 38 from crude

and 38 from earn. Parameters chosen weren = 4 andλ was set at the optimised

1 Reuters-21578 Text Categorization Collection Data Set, UCI Machine Learning Repository.
http://www.ics.uci.edu/ mlearn/MLRepository.html
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String 1 String 2 String 3

A B C

CAB

C C A

Class 1

Class 1

Class 2

String 1

String 2

String 3

Figure 4.14: Kernel matrix from three strings. String 1 and 2 are class 1 and String3 is
class 2. Comparison between same strings will give the highest similar-
ity value of A. The similarity calculation between the same classes will
give a value B that is slightly lower than A, while the similarity between
different classes is C, which is the lowest value. Based on this similarity
values, a feature pattern between input samples can be produced.

value of 0.5 inn-gram kernels.λ ∈ [0, 1] is the weight to penalising the dis-

tance between substrings. If the appearances of substrings are more coherent

they receive a higher weighting than appearances with larger gaps (Saunders,

Tschach, & Taylor, 2002). Twenty particles have been used to explore the so-

lution with six qubits to represent the real value. Parameterc1 and c2 were

set to 0.05 and the inertia weightw = 2.0. The dataset was applied to two

frameworks - ESNN with feature and parameter optimisation and ESNN with

only parameter optimisation. To limit the computation complexity, 10 recep-

tive fields were chosen, the experiment was run for six continuous times and

the average result was computed in 300 iterations for both algorithms.

4.4.2 Results

Figure 4.15 shows the evolution of classification accuracy. The average accu-

racy for ESNN with feature optimisation is above 70%, comparedto ESNN

using all features with average accuracy of 55%. The poor accuracy of ESNN

with all features is due to several input features from the kernel matrix con-

taining information that cannot be used to differentiate output classes. These

irrelevant features act as a noise that leads to low classification accuracy. How-

ever, ESNN with feature optimisation is able to reduce these irrelevant fea-

tures; hence higher classification accuracy is obtained. From the total number

of 150 input features, QiPSO is capable of reducing the features to 70 in 300

iterations. These 70 features are the significant features because of their capa-
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Figure 4.15: Result of string classification using ESNN-QiPSO with feature optimi-
sation and ESNN-QiPSO with all features. The top left graph shows the
evolution of connections until 70 features subset was found. Three ESNN
parameters for both experiments fall into certain ranges. The ranges
found are aligned to what has been discovered in previous experiment.
The right graph shows the evolution of accuracy.

bility to produce higher accuracy. Since the 20 particles started the evaluation

process by picking random features, the average number of initial features se-

lected by thegbest particle is around 80. Thegbest particle always keeps the

best information and the best accuracy. Other particles updated their positions

according togbest as well aspbest until the new best particle was met. This

procedure was repeated to eliminate irrelevant features for better identification

of the most relevant features. A similar procedure was also used to find the best

combination of ESNN parameters. In this study, QiPSO manages tooptimise

ESNN parameters in binary string format to a certain optimal values. These

parameters are in pairs and are very closely related to each other. Overall, all

three ESNN parameters evolve steadily towards a certain optimal value, which

helps to produce better classification accuracy. This investigation continued

with an experiment that fed the string kernel matrix into MLP.After manual

parameters tuning, the optimal value was found and set at 0.1for the learn-

ing rate and the momentum rate was set to 0.9 with 120 hidden neurons. The

training classification accuracy is 55.4% in 300 iterations withtesting result of

50.6%.
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In this experiment, the data was transformed into another high-dimensional

form of representation. For such difficult problems, some improvements of the

framework can be investigated in future to enhance its learning capability. In

addition, the string kernel can also be improved by discovering the best setting

of the kernels.

4.5 S U M M A RY

This chapter has proposed two novel frameworks, the integrated ESNN-PSO

and ESNN-QiPSO. The integration between ESNN and PSO allows the opti-

miser to find the optimal parameter for ESNN automatically ratherthan hav-

ing to adjust the parameters manually. In the second extendedframework,

the QiPSO can optimise both parameters and features simultaneously. The

proposed method for feature selection is more effective compared to the pre-

processing feature selection technique. The reason for that is because the pa-

rameter can be directly optimised and tuned based on selectedfeatures. Results

show that both optimisers, the PSO and QiPSO are able to optimise ESNN pa-

rameters with QiPSO can also select the relevant features. These capabilities

of QiPSO contribute to its higher classification accuracy.

This chapter also discusses the extention of the proposed ESNN-QiPSO for

string classification. The nature of string classification involves an additional

component (or kernel) to translate the problem into a high-dimensional prob-

lems which poses another challenge. However, the structure of ESNN can

easily adapt to the high-dimensional problem and also the one-pass learning

allows fast learning of the given problem. In addition to this,the feature selec-

tion in the proposed framework allows the problem dimension to be reduced,

thus faster processing and better accuracy can be achieved.Overall, the re-

sults show that ESNN with parameter optimisation and using a small number

of features produces promising results that can be exploredin future studies.

The evaluation of the proposed integrated framework revealed several issues

with the optimiser and the classifier. Therefore, some enhancement to both

optimiser and the classifier are proposed in the next two chapters. The mod-

ification will be integrated with the main framework proposed inthis study.
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The same dataset will be used to evaluate the performance with comparison to

results found in this chapter.



Chapter5

A N OV E L DY NA M I C Q UA N T U M I N S P I R E D PA RT I C L E

S WA R M O P T I M I S AT I O N M E T H O D

In order to address the problems identified in Chapter 4, this chapter introduces

a new structure for QiPSO. First, a hybrid particle structure is proposed for

solving the problem of missing parameter value. Then, a state of the art new

evaluation strategy is employed for feature selection. Theimproved search

strategy selects the most relevant features and eliminatesthe irrelevant ones.

This new QiPSO structure will be integrated within ESNN where features and

parameters will be optimised simultaneously and more efficiently.

5.1 T H E DY NA M I C Q UA N T U M I N S P I R E D PA RT I C L E S WA R M O P T I-

M I S AT I O N

The proposed enhancement consists of two parts. The first part is to address

the parameter problems caused by selecting an insufficient number of qubits.

The conversion from qubit to the real value may lead to the possibility of miss-

ing optimal value as described in Chapter 4. At the same time, feature selec-

tion depends on qubit representation for the selection computation. Since two

types of representation are required, hybridisation of information representa-

tions may solve these problems. Hence, the efficiency of the optimiser and the

whole proposed framework can be improved.

89
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5.1.1 Hybrid Particle

The features are modeled as a qubit vector, where probability computation is

added to perform the feature selection task. Updating this valueguides the

optimiser to decide whether a feature is going to be selected orshould be con-

sidered irrelevant. On the other hand, parameter values are presented as real

numbers. As discussed earlier, the major problem using only QiPSO for pa-

rameter optimisation is that it may miss the optimal value. Toovercome this

problem, a simple yet effective hybrid particle structure withthe combination

of QiPSO and conventional PSO is proposed for these two different data types.

The hybrid DQiPSO particle is divided into two parts: the first part uses quan-

tum probability computation for feature selection and the second part holds

the real value for parameters as shown in Figure 5.1. This methodnot only

effectively solves this problem, but also eliminates the parameter that holds

number of qubits representing the parameter value. Fewer parameters lead to

an algorithm that is simple to use and control.

5.1.2 Enhancement of Feature Selection Strategy

The search strategy of QiPSO is based on random selection at the beginning

of the process. Each particle will update itself based on the best solution sub-

sequently found. A major problem with this approach is the possibility of not

selecting the relevant features at the beginning of learning; other particles tak-

ing part in the entire process are thus affected. An improved search strategy

has been introduced to find the most relevant features and eliminate irrele-

vant features. Blum and Langley (Blum & Langley, 1997) have classified the

feature selection techniques into three basic approaches:Embedded approach

(Almuallim & Dietterich, 1991) adds or removes features in response to pre-

diction errors on new instances; Filter approach (Liu & Setiono, 1996) is a pre-

processing method; and the Wrapper approach (John et al., 1994) which uses a

learning algorithm to evaluate features. In this study, theWrapper approaches

is used with embedding of some concepts from the Filter and Embedded ap-

proach to utilise the advantages of these approaches. Generally, using a higher
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Figure 5.1: The proposed hybrid particle structure in DQiPSO. Compared with the
QiPSO particle structure used in Chapter 4 (a), a particle in the proposed
method (b) is divided into two parts where the first part holds quantum
information and the second part holds real value information that is repre-
sented by theR symbol.

number of features does not necessarily translate into betterclassification ac-

curacy. However, better accuracy can be acheived when a higher number of

relevant features are selected.

A new strategy is proposed where five types of particles are used inthe

DQiPSO. Apart from the normal particle, referred to as the Update Particle,

which renews itself based on andgbest andpbest information, four new types

of particles are added to the swarm. The first type is the Random Particle,

which randomly generate new sets of features and parameters in every iter-

ation to increase the robustness of the search. The second type is the Filter

Particle, which selects one feature at a time and feeds it to the network and

calculates the fitness value. This process is repeated for each feature. Then,

the average fitness is calculated. Any features with above average fitness will

be considered as relevant. This method is targeted at linearseparation prob-

lems. The third particle type is the Embed In Particle in which input features

are added to the network one by one. If a newly added feature improves the
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Figure 5.2: DQiPSO feature selection strategy. Update Particle next value depends on
values of thegbest andpbest; Random Particle selects features randomly
while the other three particle types evaluate each feature to determine fea-
ture relavancy.

particle fitness, it will be considered as a relevant feature.Otherwise, the fea-

ture will be removed. The final particle type is the Embed Out Particle which

starts the identification process with all features fed to thenetwork to get the

initial fitness value. These features are gradually removedone by one. If re-

moving a feature causes decrement of the fitness value, then thisfeature will

be considered as relevant and hence will be kept. Otherwise, the feature will

be considered as irrelevant and removed.

The main idea behind Filter, Embed In and Embed Out particles is to identify

the relevance of each feature and to reduce the number of candidates until only

a small subset remains. For subsequent iterations, features considered relevant

will be selected randomly to find the best combination of relevant features.

This strategy helps to solve unevaluated relevant features, while reducing the

search space and facilitating the optimiser to find relevantfeatures faster. Sim-

ilar to the standard PSO in updating particles, if a new particleis found to be

the best solution, then it will be stored as agbest. In this scenario, a newgbest

update rule has been implemented. A solution candidate will be assigned as
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gbest if it meets one of the following two criteria. The first criterion isa particle

will be assigned asgbest if its accuracy better than the currentgbest particle.

The second rule for appointing a newgbest is when both the candidate and

the existinggbest particle have the same fitness but the candidate has fewer

features selected. This criteria guarantees that at all iteration cycles,gbest al-

ways has the best fitness with the lowest number of features. The smallest

feature subset will determine the most relevant features in the given problem.

Due to the enhanced search strategies provided by DQiPSO, fewer particles

are needed to perform the optimisation tasks. Hence, shorter processing time

can be achieved. The summary of this strategy is illustratedin Figure 5.2.

5.2 I N T E G R AT I N G D Q I P S O W I T H E S N N F O R S I M U LTA N E O U S F E A-

T U R E A N D PA R A M E T E R O P T I M I S AT I O N

The proposed DQiPSO is able to simultaneously select relevant features and

optimise the ESNN parameters. In this integrated environment, the features of

the model are represented probabilistically as a qubit vector. On the other hand,

parameter values are represented as real numbers. The principle of quantum

superposition is used to accelerate the search for an optimal set of features. In

contrast, the real value part of the particle will be updated using standard PSO

update procedure.

Like all earlier frameworks, for a given classification taska swarm of parti-

cles is used to find the classification model with the best accuracy. The simula-

tion starts with random values assigned to each particle in theswarm. Informa-

tion held by the particle will be used to train the network. Then, the particles

interact with each other and exchange the optimal information which ensures

a faster optimisation process. The proposed integrated framework is shown in

Figure 5.3. Algorithm 5 explains the integration and the pseudo code of the

proposed ESNN-DQiPSO is presented in Appendix C.

The proposed ESNN-DQiPSO method was tested on the Hypercube and

Two Spirals datasets, which are the same datasets employed in previous ex-

periments. Most of the parameters are derived from the previous experiments.

For the encoding, 20 receptive fields were chosen with their centers uniformly
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Algorithm 5 Integrated ESNN-DQiPSO
1: for all particledo
2: initialise all ESNN parameters
3: for all feature qubitdo
4: initialise θ
5: get collape state using Equation 3.12
6: end for
7: initialise fitness
8: end for
9: while not reaching maximum iterationdo

10: for all particledo
11: get fitness from ESNN (Algorithm 1)
12: if (current fitness better thanpbest fitness) or ((current fitness ==pbest

fitness) and (feature selected less than feature selected bypbest)) then
13: assign current particle aspbest
14: if (currentpbest fitness better thangbest fitness) or ((currentpbest

fitness ==gbest fitness) and (feature selected bypbest less than fea-
ture selected bygbest)) then

15: assignpbest asgbest
16: end if
17: end if
18: for all ESNN parametersdo
19: calculate velocity using Equation 3.1
20: update parameter using Equation 3.2
21: end for
22: for all feature qubitdo
23: calculate velocity using Equation 3.9
24: apply rotation gate in Equation 3.11
25: get collape state using Equation 3.12
26: end for
27: end for
28: end while

distributed between the maximum and minimum values of the data.The con-

trolling parameterβ is set to 1.5. Eighteen DQiPSO particles were used, con-

sisting of six Update, three Filter, three Random, three Embed In and three

Embed Out Particles. The inertia weight was set to 2.0.θ c1 and θ c2 for

probability update were set to 0.05 andc1 andc2 were set to 1.2 for real value

update for balance exploration ofgbest andpbest. Ten-fold cross validations

were used and the average result was computed based on 1000 iterations to
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Figure 5.3: An integrated ESNN-DQiPSO framework for feature selection and param-
eter optimisation.

estimate the classification accuracy which determines the fitness of the model.

In the next section, the result obtained for the proposed framework will be

compared with results obtained in previous experiments.

5.3 P E R F O R M A N C E A NA LY S I S

The performance of DQiPSO when selecting relevant features, removing ir-

relevant features and optimising the parameters is discussed in this section.

These crucial tasks have a direct effect on the final classification outcomes.

Results from DQiPSO optimisation are compared to the previous experiments

to evaluate its efficiency.

Feature selection

Figure 5.4 illustrates the comparison of selected featuresfrom DQiPSO and

QiPSO for Hypercube dataset during the learning process. Lighter colours
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correspond to features that are selected more often. In contrast, darker colours

represent features that are eliminated during the 10 runs ofthe experiment.

Figure 5.4(a) shows the result from a previous experiment with theintegrated

ESNN-QiPSO framework, while Figure 5.4(b) shows the results obtainedwith

the new proposed integrated ESNN-DQiPSO framework.

The top diagrams illustrate the feature evolution. All ten relevant features

being selected during learning by DQiPSO are clearly shown. From the fig-

ure, ten Hypercube relevant features that contain the most information can be

clearly identified and are constantly being selected by DQiPSO. In contrast,

the redundant and random features are completely rejected during the optimi-

sation process. DQiPSO takes around 600 iterations to identify therelevant

and irrelevant features.

All features have been ranked based on the number of selected features from

10 runs to determine their relevance after learning as shown inthe bottom di-

agrams. Based on the feature ranking, the features found most relevant are

Feature 15, Feature 19, Feature 26 and Feature 30, all of which have been se-

lected nine times in the 10 simulation runs. They are followed byFeature 9,

Feature 20, Feature 2, Feature 10, Feature 11 and Feature 4. Although the rel-

evant features are not selected together during all 10 simulation runs, the result

shows that the few combinations of relevant features are sufficient to give good

classification results in a run. In addition, the major achievement of DQiPSO

in this experiment is its ability to completely reject the redundant and random

features. In contrast, the ability of the QiPSO to reject the irrelevant features

is unsatisfactory. As shown in Figure 5.4(a), most of the irrelevant features are

still being selected, which contributes to the low classification accuracy and

increased computation time.

For the Two Spirals problem, Figure 5.5(b) clearly shows that the two rel-

evant features which contained the most information, are constantly being se-

lected at most of the time by DQiPSO. In contrast, the random valuefeatures

are rejected during the learning process together with most of the redundant

features. Interestingly, Feature 9 which is the redundant feature has been con-

sidered as the most relevant in the final feature ranking by DQiPSO. The reason

is simply because this feature contains almost the same information as the orig-

inal feature as shown in Figure 4.3. This feature is complemented by Feature
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Figure 5.4: Evolution of feature selection on the Hypercube dataset. The bar graphs
show the final features selected in 10 runs. (a) for ESNN-QiPSO and (b)
for ESNN-DQiPSO integrated framework.

2, Feature 13 and Feature 18 in the feature ranking, all selected eight times

in the 10 simulation runs. These four features contain the most information

available to distinguish between two output classes. In addition, some redun-

dant features that contain information with a noise level of 0.3 and 0.4 are still

occasionally selected. Other features that are only occasionally selected or not

selected at all can be considered as irrelevant features.

This situation is not much different for this dataset when compared to QiPSO.

In the previous experiment, QiPSO also selected and considered features with

noise level of 0.2, 0.3 and 0.4 as relevant in addition to the original features.

However, the ability of QiPSO to reject the irrelevant features was unsatis-

factory. Most of the redundant and random features were still selected. Also,

some irrelevant features were regarded as relevant as shown byhigh number of

times they were selected, for instance, Feature 14, Feature 19 and Feature 20 in

Figure 5.5(a). This situation has affected the results and the overall classifica-



5.3 P E R F O R M A N C E A NA LY S I S 98

tion performance of the ESNN-QiPSO. This give slightly lower accuracy and

increased computing times since more features have been selected. Because of

QiPSO has no mechanism to stimulate the particle if there is no better solution

found, the algorithm may converge prematurely without obtaining the optimal

results.
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Figure 5.5: Evolution of feature selection on the Two Spirals dataset. The bar graphs
show the final features selected in 10 runs. (a) for ESNN-QiPSO and (b)
for ESNN-DQiPSO integrated framework.

Parameter optimisation

Parameter optimisation for the Hypercube problem is illustrated in Figure 5.6.

In the experiment with ESNN-DQiPSO, theMod value has converged to al-

most the same value as reported in the two previous experiments. The high
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value of this parameter is due to the higher number of connections in the net-

work. The weight assignment in ESNN as described by Equation 2.25 requires

a higher value if many connections exist. Otherwise, some connections may

have a weight value of 0.0. This will severely affect the networkperformance,

especially when accumulating the PSP. BecauseMod corresponds to the ESNN

weight, a higher value is required to make sure all connections have weights

associated to them. Both parametersC andSim evolve to a certain optimal

value.
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Figure 5.6: Comparison between the accuracy and parameter optimisation of the three
frameworks when tested on the Hypercube dataset.

The same situations happen for the Two Spirals problem. In Figure 5.7,Mod

value steadily decreases because of a lower number of generated connections

due to the feature selection task. This time, DQiPSO managed to remove a

significant number of irrelevant features. In line with the previous argument,

a lower number of features produce a lower number of connections,therefore

it requires a lowerMod value. In this experiment, the proportion parameterC

is found to be high. Meaning that more input spike trains are required in order

to reach the firing threshold. Lastly, theSim parameter evolves between the
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values obtained in the last two experiments to achieve the optimal combination

for all ESNN parameters. ESNN parameters behaviour has been extensively

studied (Wysoski et al., 2006b; Schliebs, Defoin-Platel, Worner, & Kasabov,

2009a). The results of this experiment support the finding of those studies in

term of the optimal range of the parameters.
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Figure 5.7: Comparison between the accuracy and parameter optimisation of the three
frameworks when tested on the Two Spirals dataset.

In terms of the classification result, the average accuracy for ESNN-DQiPSO

is improved by 1.00% for the Hypercube problem and 7.87% for theTwo Spi-

rals problem. Results of every single run are consistently above 80% for both

problems. Table 5.1 shows a comparison of the accuracy results compared

to those in the previous experiments. The results show the proposed inte-

grated ESNN-DQiPSO outperformed results obtained with ESNN-QiPSO and

ESNN-PSO, with a particularly large margin for the Two Spirals problem. The

main reason for this achievement is that DQiPSO managed to selectmore rel-

evant features and remove more irrelevant features in the Two Spirals dataset.

For the Hypercube dataset, both DQiPSO and QiPSO methods were able to se-

lect the ten relevant features. However, DQiPSO managed to removeall irrele-
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vant features which QiPSO failed to do. This experiment clearly demonstrates

that the proposed DQiPSO enables the network to discover more relevant fea-

tures, eliminate more irrelevant and noise features and to better optimise the

parameters. For ESNN-PSO, the algorithm is entirely dependenton the pa-

rameter optimisation, which is inadequate and has affected theresults. It has

the lowest accuracy among all three methods proposed in this study.

Table 5.1: Comparison of classification accuracy

Method Hypercube Two Spirals

ESNN-DQiPSO 95.74%± 2.69 91.96%± 3.73
ESNN-QiPSO 94.74%± 4.34 84.09%± 6.43
ESNN-PSO 93.81%± 3.49 73.26%± 7.33

DQiPSO Performance Remarks

As demonstrated, the performance of DQiPSO is overall better than the perfor-

mance of the standard QiPSO and PSO. Interestingly, DQiPSO uses a smaller

number of particles in contrast to the other tested optimisers. Because of the

robust search strategy, all particles in the swarm perform well both in fea-

ture selection and parameter optimisation problems. The new update strategy,

which is crucial forgbest selection, shows that the optimiser is continuously

keeping the number of selected features at the lowest rate possible. DQiPSO

managed to completely remove all irrelevant features in the linear problems.

Although in DQiPSO every particle has been assigned with a differentsearch

strategy and also new selection approach, the proposed optimiser is not able

to remove all irrelevant features especially in difficult problems such as Two

Spirals. However, the number of irrelevant features is significantly reduced in

this case.

In term ofgbest assignment, almost all types of particles have been selected

asgbest during learning. However, Update particle managed to search the best

solution and selected asgbest at most of the time. Other types of particles, are

occasionally selected asgbest. Nevertheless, this shows that all proposed par-
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particle.

ticles are able to search better solutions which contribute toa better learning

mechanism in the swarm. Figure 5.8 illustrates an example ofgbest assignment

during learning in two validation runs. Motivated by results from this exper-

iment, the DQiPSO was tested on a problem with greater dimension where a

probabilistic element is introduced to the ESNN. Chapter 6 discusses the prob-

abilistic ESNN architecture.

5.4 S U M M A RY

This chapter has introduced a new DQiPSO model and has shown how this op-

timiser can be implemented for feature selection and parameter optimisation

tasks. The optimiser has been applied to ESNN can be used in any problems
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that require binary and the real value data to be optimised simultaneously. In

addition to the particle structure, each type of particle has its own way to dis-

cover the relevant features. Some particles in this model stilluse the normal

random selection at the beginning of the learning process. Other particles eval-

uate every feature to determine the relevancy. The proposedmethod results in

the design of faster and more accurate classification models than the ones op-

timised with the use of standard evolutionary optimisation algorithms.

Future work is planned to apply the proposed optimiser to the modified

ESNN. The modified ESNN, which will be discussed in the next chapter, re-

quires an optimiser in order to work. DQiPSO optimises the evolved con-

nections which may enhance the ESNN model and its classification accuracy.

Only selected connections will be used during learning. It is believed that the

proposed DQiPSO will be able to perform optimisation in an efficient way.



Chapter6

A N OV E L P RO BA B I L I S T I C E S N N A R C H I T E C T U R E

A N D I T S O P T I M I S AT I O N W I T H T H E U S E O F D Q I P S O

This chapter proposes a novel ESNN based on Kasabov’s PSNM (Kasabov,

2010). In this modified ESNN, the connections are evolved based on the

information it holds. Since the connections are dynamic, someprobability

computation is required, similarly to the process of feature selection task. An

integrated structure is proposed, in which DQiPSO is used to optimise simul-

taneously connections, features and parameters. Featuresand connections are

modeled as a qubit vector while the parameter values are presented as real

numbers. The proposed method is evaluated using the datasets used for evalu-

ating the frameworks as discussed in previous chapters. Results are compared

with those obtained in previous experiments.

6.1 T H E P E S N N A R C H I T E C T U R E

Kasabov (2010) introduced the probabilistic concept to the spiking neuron

models to simulate biological neurons and also to enhance themodel capa-

bility. This chapter introduces the extended version of theESNN that embeds

Kasabov’s PSNM and is named the Probabilistic ESNN (PESNN). One major

problem in ESNN is that a large number of pre-synaptic neuronsare needed

for each input feature. By introducing probability into theESNN connections,

the network can identify which connections are needed during the learning

process. If PESNN can produce better results than ESNN, it shows that not all

connections are needed. Thus, selecting certain connections and spike trains

104
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not only leads to better results but also demonstrates that the internal learning

process occurs during the selection of connections.

There are three probabilities in PSNM. The first one is the probability that a

spike is emitted by pre-synaptic neurons if the connection exists. The second

one is the probability of the transmitted spike to be used for PSP computation.

The final probability is the probability for the output neuronto emit an output

spike once the total PSP has reached the threshold. However, in thisstudy,

only the first probability is studied and applied to the Thorpe’s neuron model

in ESNN. In this PESNN, not only features are represented by a qubit vector,

but also all connections between the neurons. A neuronal connection is either

existent (1) or nonexistent (0), or in another interpretation either propagating a

spike or not propagating it. A qubit vector would be a suitable representation

of all connections that can be optimised using DQiPSO. In the proposed frame-

work, each particle is divided into three parts: the first twoparts use quantum

probability computation for feature and connection selection and the last part

holds the real value of the parameters. The PESNN structure is illustrated in

Figure 6.1.
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selected.
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The main idea is to get the best connections for the network. Byselect-

ing a different connection arrangement, a different firing time is generated for

the pre-synaptic neurons and this might give a different output as shown in

Figure 6.2. The figure provides a detailed illustration on how the proposed

network works. There are two levels of selection, starting with selection of

features and followed by selection of connections. Selected features are en-

coded into spike trains using population encoding. Similar tothe feature se-

lection task, all the connections are mapped into a qubit mask. Every particle

in the swam selects a string of connections based on the qubit collapsed states.

In the figure, two particles, Particle A and Particle B, have been assigned to

select the connections during learning. The right diagramsshow the example

of connections selected by both particles and subsequentlyused for the classi-

fication. Different connections and number of selected connections may lead

to different classification outcomes and accuracy.
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Figure 6.2: Example of connection selection task in PESNN.

6.2 A P RO P O S E D I N T E G R AT E D P E S N N-D Q I P S O F O R S I M U LTA N E-

O U S C O N N E C T I O N, F E AT U R E A N D PA R A M E T E R O P T I M I S AT I O N

The proposed integrated PESNN-DQiPSO framework is almost identical to

the previous ESNN-DQiPSO. However, the induction method is replaced by
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Figure 6.3: Integrated PESNN-DQiPSO framework.

the PESNN, which has evolving connections. The connections will be opti-

mised by DQiPSO. Therefore in this framework, each particle has three parts.

Two parts hold the quantum probability computation for connections and fea-

tures while the third part holds the parameter optimisation.Connections and

features are mapped into a string of qubits. In this case, the collapse value 1

represents the connection or feature being selected, otherwise a value 0 is as-

signed. Like in the previous frameworks, DQiPSO interacts with classifier and

in this case PESNN, to identify the best connection structure,the most relevant

features and best set of parameters. The learning starts with random probabil-

ity values for connections and features and random real values for parame-

ter. Every particle’s information will be used to train the network to achieve

the highest classification accuracy for a given dataset. Subsequently, every

particle updates its position based ongbest andpbest found during learning.
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Algorithm 6 Integrated PESNN-DQiPSO
1: for all particledo
2: initialise all ESNN parameters
3: for all feature qubit and connection qubitdo
4: initialise θ
5: get collape state using Equation 3.12
6: end for
7: initialise fitness
8: end for
9: while not reaching maximum iterationdo

10: for all particledo
11: get fitness from ESNN (Algorithm 1)
12: if (current fitness better thanpbest fitness) or ((current fitness ==pbest

fitness) and (feature selected less than feature selected bypbest)) or
((current fitness ==pbest fitness) and (feature selected == feature se-
lected bypbest) and (connection selected less than connection selected
by pbest)) then

13: assign current particle aspbest
14: if (currentpbest fitness better thangbest fitness) or ((currentpbest

fitness ==gbest fitness) and (feature selected bypbest less than
feature selected bygbest)) or ((currentpbest fitness ==gbest fit-
ness) and (feature selected bypbest == feature selected bygbest)
and (connection selected bypbest less than connection selected by
gbest)) then

15: assignpbest asgbest
16: end if
17: end if
18: for all ESNN parametersdo
19: calculate velocity using Equation 3.1
20: update parameter using Equation 3.2
21: end for
22: for all feature qubit and connection qubitdo
23: calculate velocity using Equation 3.9
24: apply rotation gate in Equation 3.11
25: get collape state using Equation 3.12
26: end for
27: end for
28: end while

Learning continues until a termination criterion is met. Since the architecture

of PESNN is derived from ESNN, the same population encoding is employed
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for the data encoding, the Thorpe’s model for PSP calculations witha fast

one-pass learning algorithm. Algorithm 6 explains the proposed integrated

PESNN-DQiPSO, Appendix D provides a detailed description of the frame-

work and Figure 6.3 illustrates the proposed framework.

In DQiPSO, a new approach of selectinggbest has been discussed in Sec-

tion G.10. Any particle will only be assignedgbest if its current fitness is

better or with fewer selected features than the currentgbest. However, an addi-

tional rule is appended to the optimiser for connection selections and assigned

the gbest particle in PESNN. The new rule imposes that any particle will be

crowned asgbest if it has the same accuracy and number of selected features,

but lower number of selected connections thangbest. This is to ensure that the

optimiser always holds the best set of features and connections in the lowest

possible number in order to identify the optimal features and connections.

6.2.1 Setup

Thirty receptive fields will be assigned to every selected feature. A higher

number of receptive fields is chosen here than in previous experiments in order

to give more space for the optimiser to optimise PESNN’s connections. As a

control measure, the minimum number of connections requiredfor a feature

was set to 2. This is needed to avoid a selected connection to end up with no

assigned connections. Eighteen DQiPSO particles were assignedconsisting of

six Update, three Filter, three Random, three Embed In and three Embed Out

particles. c1 andc2 were set to 0.05 for probability computation and 1.2 for

real value update. The inertia weightw was set to 2.0. Ten-fold cross valida-

tion was used and the average result was computed in 1000 iterations. This

method was tested on the Hypercube and the Two Spirals datasets.The result

of the proposed method has been compared with result obtained in previous

experiments.
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6.2.2 Performance Analysis

The performance of PESNN will be evaluated based on connection, feature

and parameter optimisation.

Evolving connections

Figure 6.4 and Figure 6.5 show the results of the evolution ofPESNN connec-

tions for both Hypercube and Two Spirals problems. The results are compared

with the connections selected in ESNN-DQiPSO and ESNN-QiPSO. The total

number of selected connections for the previous experimentsare calculated by

multiplying the total number of features selected by the optimiser with the total

number of pre-synaptic neurons selected (which is 20) and divided by 10 runs.

In contrast, the total number of selected connections for PESNN are collected

directly from DQiPSO.
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Figure 6.4: Evolving connections on Hypercube problem as derived from three pro-
posed methods in this study. PESNN-DQiPSO algorithm steadily elimi-
nates connections during the learning process. The method starts with a
high number of selected connections and gradually decreases that number
during learning. In comparison to the ESNN-DQiPSO and ESNN-QiPSO,
number of selected connections is based on a number of features selected
during the learning process for both algorithms. A lower number of fea-
tures selected leads to a lower number of connections used.

For the proposed PESNN-DQiPSO framework, the initial number of con-

nections randomly selected at the beginning of the learning process is 217.7
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connections for the Hypercube problem. Then the connections are steadily

evolved and their number starts to decrease, aligning themselves with the most

informative features during learning. The final average number of connections

recorded after the learning is 123.50. In a problem space with tenrelevant fea-

tures and 20 presynaptic neurons used, it is equivalent to 200 connections if

all features have been selected. Corresponding to the final accuracy result, it

demonstrates that even after almost half of the connection have been removed,

the remaining connections are still able to produce a resultcomparable to pre-

vious ESNN results.

� � � � � � � � � � � � � �� �� � �� � �� � �� � �

Iterations

N
u
m

b
e
r 

o
f 

c
o
n
n
e
c
ti
o
n
s

Evolution of connections �
E � NN � � 	 i

� � 

E � NN � � 	 i

� � 

E � NN � 	 i

� � 

E NN

Figure 6.5: Evolving connections for Two Spirals problem with comparison between
the three proposed methods. PESNN-DQiPSO optimises the connections
during the learning process. The high number of features selected by
ESNN-QiPSO can be translated into a high number of selected connec-
tions.

Similar results have been recorded for the Two Spirals problem as shown in

Figure 6.5. The number of connections gradually decreases from the initially

selected 160.10, along with the total number of selected features. The num-

ber of evolved connections in PESNN-DQiPSO and number of connections in

ESNN-QiPSO was very similar due to the number of selected featuresby both

algorithms are almost identical and fewer in number as shown in Figure 6.7.

The final average number of connections selected by DQiPSO for thisprob-

lem is 68.60. In contrast, the total number of connections ofESNN-QiPSO is

very high due to the large number of features selected during learning. The
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final classification accuracy for Two Spirals is improved dueto connections

evolving in line with feature and parameter optimisation.

This experiment demonstrates that ESNN with evolving connections is able

to produce improved results. More importantly, the evolving connections in

PSNM improves the learning capability of the standard ESNN. However, due

to the sensitivity of each connection that holds some spike information, a cor-

rect combination and sufficient number of connections are crucial. Otherwise,

the results may be worse than those obtained with the standardESNN due to

insufficient information supplied to the output neurons forfinal PSP computa-

tion.

Feature selection

The previous experiment discussed in Section 4.2 shows the accuracy of the

algorithm without feature optimisation is low compared to the algorithm with

feature optimisation. Figure 6.6 shows the evolution of feature selection dur-

ing 1000 learning iterations and the final selected features. For the Hypercube

problem, the same DQiPSO is able to select all 10 relevant features and elimi-

nates all redundant and random features. In this specific experiment, it shows

although the size of the particle is large due to three components needed to be

optimised simultaneously, the feature selection ability has not been affected. In

addition, the DQiPSO optimiser also managed to remove all irrelevant features

around 600 iterations, the same time as in previous experiment. More iterations

are required because of the problem size that each particle holds. For PESNN-

DQiPSO, the most relevant features are found in Feature 4, Feature 10 and

Feature 19 with nine selected time from 10 runs. They are followedby Feature

2, Feature 11, Feature 20, Feature 26, Feature 15, Feature 30and Feature 9. In

feature selection mechanism of DQiPSO, after the relevant features are found,

the particles then try to reduce the number until the smallest subset of relevant

features are found. This is the reason why there are still someactivities after

10 relevant features are found. Overall, the duty of finding thebest and small-

est subset of relevant features has been successfully complied by DQiPSO for

both PESNN and ESNN classifiers. For the QiPSO performance, the optimiser
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has managed to select and give high ranking of all 10 relevant features even

when some irrelevant features were still occasionally been selected together.
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Figure 6.6: Evolution of feature selection on the Hypercube dataset. The bar graph at

the bottom show the final features selected in 10 runs from: (a) ESNN-
QiPSO framework, (b) ESNN-DQiPSO framework and (c) PESNN-
DQiPSO integrated framework.

In the Two Spirals problem, two original features and features with the noise

level of 0.2 were selected by DQiPSO. Results are depicted in Figure 6.7. In

these two experiments conducted for DQiPSO optimised PESNN andESNN,

the four features - pair of original and features with noise 0.2 have been con-

sidered relevant. Due to the small noise value, features with noise level of 0.2

is very hard to be removed. Both features are almost identical and contain a

lot of information that can be used to distinguish between output classes. This

experiment also shows that DQiPSO is not able to remove completely other

redundant features, similar to previous experiments. The irrelevant features,

some with noise levels of 0.5, 0.6 and 0.7 were still occasionally selected after

1000 learning iterations. Although DQiPSO is not able to completelyelimi-

nate the irrelevant features in Two Spirals problem, its abilityto significantly

reduce the number of irrelevant features when compared to QiPSO issatis-
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Figure 6.7: Evolution of feature selection on the Two Spirals dataset. The bar graph at

the bottom show the final features selected in 10 runs from: (a) ESNN-
QiPSO framework, (b) ESNN-DQiPSO framework and (c) PESNN-
DQiPSO integrated framework.

factory. The final features ranked highest by DQiPSO in this experiment are

Feature 2, Feature 18, Feature 9 and Feature 13 which all containsthe most

information. Features that have been selected less than halfthe times in the

10-fold cross validation runs can be considered irrelevant.

Parameter Optimisation

Figure 6.8 and Figure 6.9 show the evolution of parameter optimisation and ac-

curacy for Hypercube and Two Spirals problems, respectively.All parameters

converge to a certain value that is within the range of values from previous ex-

periments. ParameterMod for Hypercube dataset once again converges around

the value obtained from the previous experiments. From the current and previ-

ous experimental findings, it can be concluded that the optimalrange forMod

is between 0.985 to 0.990, forC is between 0.65 and 0.95 and forSim is be-

tween 0.3 to 0.7. This means thatMod should be as high as possible,C is

between the other two parameters andSim is the lowest. Lower similarity pro-

portion value means that fewer outputs neuron converged. Thiscould happen
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to high-dimensional and non-linear separable problems dueto the complexity

of their structure.
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Figure 6.8: Evolution of accuracy and parameters on Hypercube dataset from the in-
tegrated PESNN-DQiPSO framework.

In both problems, a slight improvement of accuracy is achieved in compari-

son to the ESNN-DQiPSO experiment. The accuracy obtained for Hypercube

problem is 96.29% and for the Two Spirals problems is 92.68%.Generally, a

steady improvement of about 1.00% can be observed for each ofthe proposed

methods when applied on the Hypercube dataset. When comparing PESNN-

DQiPSO with ESNN-QiPSO, a significant improvement can be noticed espe-

cially for the Two Spirals problem which contains variable level of noise. This

experiment has demonstrated that apart from optimising the features and pa-

rameters, classification accuracy also can be improved by selecting the right

connections in the ESNN architecture.
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Figure 6.9: Evolution of accuracy and parameters on Two Spirals dataset from the
integrated PESNN-DQiPSO framework.

Table 6.1: Comparison of classification accuracy

Method Hypercube Two Spirals

PESNN-DQiPSO 96.29%± 2.99 92.68%± 3.67
ESNN-DQiPSO 95.74%± 2.69 91.96%± 3.73
ESNN-QiPSO 94.74%± 4.34 84.09%± 6.43

6.3 C O M P U TAT I O NA L C O S T

The average computational time for a single run when the proposed methods

are applied to the Hypercube dataset is depicted in Table 6.2.ESNN-QiPSO

and ESNN-DQiPSO optimises parameters and executes feature selection si-

multaneously during learning. The number of selected features may affect

the computational time. Less feature selected, faster processing time can be

achieved because of the fewer connections exist in ESNN. Since more fea-

tures are selected by QiPSO, this resulted more computational timerequired

compared to DQiPSO. In addition, the number of particles in QiPSO is also

more than the number of particles in DQiPSO which requires more timeto

perform the optimisation. PESNN-DQiPSO takes significantly more computa-

tional time than other proposed methods. This is because it optimises not only
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parameters and features, but also the high dimensional of ESNN connections.

Although the increment of accuracy is only about 1% when PESNN-DQiPSO

is tested in 10 fold cross validation for both datasets as shown in Table 6.1, the

optimisation is run offline for a single time to optimise the network. The op-

timised network is then ready to be applied as an online classifier. It is worth

to have higher computation time during learning so that the network is well

trained for the online usage in the later stage.

Table 6.2: Comparison of computational time

Method Time in minutes

PESNN-DQiPSO 49
ESNN-DQiPSO 18
ESNN-QiPSO 24

It is explicitly noted that the execution time is not the bestway to compare

the performance between algorithms since it may run in a different hardware

specification and also different software or programming tools. Nevertheless,

the discussion will be very informative when the identical hardware configu-

rations and tools are used between all algorithms.

6.4 S U M M A RY

This chapter presents a novel PESNN framework, where connections evolve

based on spike information it held. The PESNN architecture allowsthe most

informative connections to be exploited. This method does not only produce

a better classification accuracy, but also enhances the learning capability and

speeds up learning due to the lower number of selected connections.

Since it is unrealistic to determine manually which connections are the best,

DQiPSO has been used as an optimiser for PESNN. The connections are mapped

to the particle’s quantum mask to determine whether a particularconnection is

selected or removed. Every particle has its specific selectedfeatures, parame-

ters and connections. The particle with the best connectionsselected, together
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with the best features and parameters that give the highest accuracy is then

set asgbest. Other particles update their positions including their connections

based on information supplied bygbest and itspbest. From the conducted ex-

periment, it becomes apparent that the proposed integrated PESNN-DQiPSO

method has demonstrated promising results and is worthy forfurther explo-

ration. The results have shown that DQiPSO is able to simultaneously iden-

tify relevant features, recognise a suitable number of connections and opti-

mise parameters. PESNN provides accuracy that is better than theaccuracy

achieved with other tested methods. Thus, reveals that evolving connections

improves the learning capability to the ESNN. However, this experiment has

also addressed some problems regarding PESNN, especially the necessity for

a suitable number of connections for better results. The lowernumber of se-

lected connections produces poorer results as found in someparticles during

the learning process.

In the next chapter, ESNN will be modified and tested on some of themost

common types of real world problems. In spatiotemporal problems, both spa-

tial and temporal components are important for decision making. It is believed

that ESNN will be suitable for solving such problems because ofthe temporal

component found in the architecture. However, some modificationsare neces-

sary to accommodate both spatio and temporal information components.



Chapter7

A N E W M E T H O D F O R S PAT I OT E M P O R A L PAT T E R N

R E C O G N I T I O N BA S E D O N A N E X T E N D E D E S N N

Often real world problems are spatiotemporal. Such problemsconsist of space

(or spatial) and time (or temporal) components, both equally important for de-

cision making. A standard classifier is normally capable of processing only one

of the components, either spatial or temporal. In this chapter, a new framework

is proposed on an ESNN for spatiotemporal problems. An additionalcompo-

nent is added to capture all information in spatiotemporal problems. The ad-

ditional module exploits the principle of reservoir computing to capture both

spatial and temporal information and transforms it into another data represen-

tation form that enables ESNN to classify the data efficiently. This chapter

also proposes a synthetic spatiotemporal benchmark dataset used to evaluate

the proposed Extended ESNN (EESNN) framework.

7.1 S PAT I OT E M P O R A L P RO B L E M S

Spatiotemporal data relates to objects whose position, shape and size change

over time (Theodoridis & Nascimento, 2000). Spatiotemporalproblems nor-

mally deal with a sequence of events within a given time frame. The problem

is defined by a time-evolving spatial object represented by aset of triplets

(oid, si, ti) whereoid is an object with the identification number, andsi is the

location of theoid at timeti (Theodoridis, Sellis, Papadopoulos, & Manolopou-

los, 1998). When solving spatiotemporal problems, spatial information is

needed to represent the position of the object in space together with the tempo-

ral information indicating when an event has occurred. One of the most com-

119
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mon spatiotemporal problems is Electroencephalography (EEG) signal pro-

cessing and object recognition.

t1t2t3t4t5

Figure 7.1: A swing ball is an example of spatiotemporal data. The figure shows the
spatial position of the ball at five time points.

Figure 7.1 shows an example of spatiotemporal data. Five events occurred

in a sequence of time. In spatiotemporal problems, one eventis insufficient

to describe the problem. For instance, no decision can be made at the single

framet2 alone. However, when all events accumulate, then the problem can be

described. In this case, the problem is portrayed as a swing ball.

There are a number of algorithms and approaches for dealing with spa-

tiotemporal problems such as Time Delay Neural Networks (Waibel,1989)

and recurrent Elman networks (Elman, 1990). However, more biologically-

inspired methods have been introduced for solving spatiotemporal problems.

Many of the biological neuron properties have been studied asexplained in

Gerstner and Kistler (2002a), but have not been fully utilisedfor the creation of

more efficient models for solving complex spatiotemporal problems. SNN are

biologically plausible and offer some means for representingtime, frequency,

phase and other features of the information being processed. The main reason

to study SNN for spatiotemporal problems is due to its ability to internally

represent and process both spatial and temporal informationadequately.

Recently, a reservoir-based method has been proposed as a solution for spa-

tiotemporal problems (Verstraeten et al., 2007). Initial study of the combina-

tion of the SNN variant, the ESNN with the LSM has found to be promising

for solving spatiotemporal problems (Schliebs, Nuntalid, &Kasabov, 2010).

The study emphasises on the reservoir response after the spatiotemporal in-
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put pattern is injected to the reservoir. Inspired by the findings of that study,

Chapter 7 and Chapter 8 present an extended structure of the ESNN, where an

additional component is introduced to deal with spatiotemporal problems. In

this chapter, a simplified structure is proposed where a new module is added to

capture spatiotemporal data sequence that needs to be further classified. This

module utilises the standard ESNN encoding method of populationrank order

encoding to turn spatiotemporal input pattern into a spiking input pattern. Out-

put from this module is then passed on to the evolving classification module

that completes the classification task.

7.2 T H E E E S N N F R A M E W O R K

The framework for the proposed EESNN is shown in Figure 7.2. EESNN in-

corporates two modules for information processing. The first module acts as

a memory that captures the whole spatiotemporal data patterns that need to

be classified. The second module is a standard ESNN used for the classifi-

cation task. In the first module, both spatial and temporal components of the

spatiotemporal problem are captured and transformed into high-dimensional

spiking patterns. Every spatial variable value at every discrete time unit is en-

coded using the standard ESNN population rank-order encodingscheme. The

encoded information for every time point is stored in a memory. The obtained

memory of spikes is then fed into the second module for classification.

A fast one-pass time-to-first-spike learning algorithm is used that enables the

new model to be more suitable for learning from the spatiotemporal streams

in an adaptive and incremental manner. The high-dimensionalspatiotemporal

patterns are learned and classified in the evolving classification module. The

Thorpe neuron model fires an output spike after sufficient spatiotemporal spike

trains are received. Output from the learning for every sampleis compared

with the targeted output for classification accuracy computation. The proposed

EESNN algorithm is described in Algorithm 7 and its detailed implementations

are presented in Appendix E.
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Figure 7.2: Extended ESNN framework with two modules.

Algorithm 7 EESNN
1: for all samples belonging to classl do
2: for all time pointsdo
3: encode input samples into firing time using Equation 2.3
4: end for
5: accumulate all firing time for entire time points in a spike memory
6: end for
7: apply spike memory into ESNN (Algorithm 1)

7.3 A P P L I C AT I O N O N S PAT I OT E M P O R A L DATA S E T

In order to evaluate the proposed EESNN on spatiotemporal problems, this

study proposes a synthetic spatiotemporal dataset. The mainreason for propos-

ing this benchmark dataset is the need to have a problem whose complexity

can be controlled. Thus, the proposed EESNN can be tested on various spa-

tiotemporal noise levels. The efficiency of the proposed EESNN to adapt to

the various noise levels is evaluated.

7.3.1 Rotating Dot Problem

The Rotating Dot dataset is a two-class synthetic spatiotemporal problem. The

objective of this problem is to determine the moving directionof a dot. Two

original patterns are created in a matrix with predefined dimension; the first
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Figure 7.3: Rotating dot spatiotemporal synthetic dataset. Six datasets with different
noise level are created from the original spike trains. The two colours
represent the two classes.

dot rotates on clockwise direction and the second dot rotates inanticlockwise

direction. Both dots use the same path when rotating. This makes the problem

more interesting because at any individual time point or event, no decision can

be made about whether the point turns clockwise or anticlockwise.Several or

whole events have to be considered to determine the trajectories of the dot. In
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this experiment, a matrix of5× 5 has been created with the dot completes two

rotations for each direction.

The two original patterns have been encoded into spike trains using the pop-

ulation encoding method. A desired number of samples have been generated

based on these spike trains. In order to control the difficulty of the problem,

a uniformly distributed noise is added to the spike trains. The original data

were jittered in a specific time interval. Figure 7.3 shows six datasets that

have been generated each with 100 samples, 50 samples for eachclass. The

colours indicate the two classes, one for each direction of the rotation. The

problem has been sampled at 60 milliseconds simulation time. The first top

diagram illustrates the spike trains with the lowest level of noise applied at 0.5

millisecond, thus the easiest problem. Increasing noise value indicates higher

difficulty problems. For example, at the noise level of 5.00 milliseconds, the

spike trains between two classes have been blended together and it is difficult

to distinguish between the classes. The proposed method has been tested on all

six problems and this is explained in the following section and also discussed

in Chapter 8.

7.3.2 Setup

The proposed EESNN has been tested on the six Rotating Dot datasets. A

rotation matrix of5 × 5 with 48 frames was generated and every frame repre-

sented one millisecond of simulation time and was encoded with five receptive

fields. The smaller number of receptive fields balances out thelarge number

of rotation matrices and frames. In total, 6000 spike trainswere generated and

stored in the memory.

No optimiser has been embedded to the proposed framework to avoid further

complexity. The high problem dimension would make the optimiser less effec-

tive, and more computation time and resources would be needed. Therefore, all

parameters were manually adjusted based on the results obtained from param-

eter optimisation in the previous experiments. Following these considerations,

Mod was set to 0.99 in this experiment. In terms of proportion factorvalue,

the optimal values were found to be in the range from 0.65 to 0.95. However,
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eightC values were tested in the range between 0.2 and 0.9 in this experiment.

This was mainly because different problems might need different proportions

of spike trains for better results. These eight experiments were ran withSim

set at 0.1 and 0.3 to evaluate how the similarity factor affects the problems.

Lower Sim value resulted in lower merged number of output neurons, while

higher value indicated otherwise. Ten-fold cross validation rule was followed

in all sets of the experiments.

7.3.3 Results

The proposed EESNN was first tested problems were first tested on theRo-

tating Dot dataset with theSim set to 0.3. The value was obtained from the

parameter optimisation when DQiPSO was used in the previous experiments.

From the optimalSim range, the lowest value was selected to give some ability

to the network to evolve and merge. In general, datasets with lowernoise level

achieved higher classification accuracy regardless of theC value. However,

the value ofC started to affect the accuracy when more difficult dataset were

applied and higher accuracy was achieved whenC was set to a higher value.

On the other hand, the accuracy dropped severely when the smaller value for

C was used for all datasets. For instance, atC = 0.2, the dataset with noise

level 0.5 achieved 100% accuracy. The accuracy dropped down to53% when

EESNN was tested with a dataset with noise level 5.0. In contrast, asmall

decrease was recorded when a higher value forC was used. The overall results

for this experiment are presented in Table 7.1.

The results for different settings of the proportion factorC for spatiotempo-

ral problems show the best result can be obtained whenC is set at around 0.6

to 0.9, confirming the range found by the optimiser on the spatial Hypercube

and Two Spirals problems in previous experiments. In addition,this experi-

ment also found that good results could also be gained whenC was set to 0.4

for certain datasets. Generally, the accuracy for smallerC was lower than the

accuracy achieved with a largerC value. SmallerC value showed that a lower

number of spike trains were used to generate an output spike. Asa result, lower

accuracy was recorded when less information was supplied to theclassifier.
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Table 7.1: Overall result for Rotating Dot spatiotemporal problem. EESNN was tested
with six datasets with different noise level.Mod was set to 0.99,C was set
to values in the range of 0.2 till 0.9. Both values assigned toSim (0.1 and
0.3) produced the same result.

Values of C

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

0.9

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

0.80.70.60.50.40.30.2

Level of

noise 

(msec)

0.5

1.0

2.0

3.0

4.0

5.0

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

100.00%

± 0.00

95.00%

± 5.27

99.00%

± 3.16

100.00%

± 0.00

97.00%

± 4.83

100.00%

± 0.00

100.00%

± 0.00

99.00%

± 3.16

100.00%

± 0.00

53.00%

± 10.59

63.00%

± 8.23

62.00%

± 7.88

63.00%

± 10.59

85.00%

± 7.07

90.00%

± 11.54

78.00%

± 13.16

93.00%

± 8.23

92.00%

± 6.32

100.00%

± 0.00

83.00%

± 12.51

99.00%

± 3.16

97.00%

± 4.83

100.00%

± 0.00

96.00%

± 5.16

77.00%

± 9.48

95.00%

± 5.27

74.00%

± 15.05

62.00%

± 10.32

73.00%

± 9.48

94.00%

± 8.43

99.00%

± 3.16

88.00%

± 10.32

100.00%

± 0.00

This experiment was repeated forSim = 0.1. Surprisingly, the results for all

values ofC produced the same accuracy as previous experiment withSim =

0.3. The similarity value of 0.1 creates the same arrangementof output neu-

rons as when it is set to 0.3. More output neurons are created whenSim value

is low. This situation leads to the new sample to resemble with oneof the

trained output neuron. However, this also leads to a higher number of out-

put neurons being created. For large problems with thousandsor hundreds of

thousands of input samples, more merged neurons lead to moreeffective clas-

sification. Although storage capacity is not an issue due to improvements in

current hardware and storage capabilities, the method thatuses fewer resources

is preferable especially when dealing with online applicationsthat require fast

processing that uses minimal resources. Optimal parametersfound in this ex-

periment on the tested spatiotemporal problem will be considered in the next

experiment where a new framework for spatiotemporal classification is pro-

posed.
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7.4 S U M M A RY

This chapter has proposed an extended structure of ESNN for spatiotemporal

problems along with a spatiotemporal data encoding method. This combina-

tion provides spike representation for the input patterns that are required for

the classification process. The method accumulates all spatial components in

the sequence of time into a memory. This method allows the classifier to eas-

ily classify the given problems. Its capability is demonstrated on a proposed

benchmark dataset. Results show the proposed data encoding method is able to

capture all necessary information leading to promising classification accuracy

achieved by ESNN.

In the next chapter, a new version of the extended ESNN is proposed to clas-

sify spatiotemporal problems. This new framework employs the LSM for more

complex reservoir construction. Both EESNN and the new extended ESNN

proposed in Chapter 8 will be tested on a case study dataset forperformance

result comparison presented in Chapter 9.



Chapter8

R E S E RVO I R - BA S E D E S N N F O R S PAT I O - T E M P O R A L

PAT T E R N R E C O G N I T I O N

In this chapter, a novel reservoir-based ESNN (RESNN) framework utilising

LSM is presented. Its suitability as a classification method istested in the

computer simulations. The goal of the study is to gain some insights into the

working of the reservoir-based ESNN for classification. Its feasibility as a

spatiotemporal classification method will also be evaluatedin this chapter.

8.1 R E S N N

Reservoir is an intermediate structure that maps an input to itshigh dimen-

sional output after accumulating all the input information. A readout function

is used to transform reservoir responses to the desirable output that can be used

for decision making. This chapter explains how the reservoiris constructed

from LIF neurons according to the preliminary study in Maasset al. (2002)

and Schliebs, Nuntalid, and Kasabov (2010). The structure of LIF reservoir is

studied in Section 2.3.

8.1.1 The Reservoir

The LIF neural model is based on an electrical circuit containing a capacitor

with capacitanceC and a resistor with a resistanceR, where bothC andR are

assumed to be constant. The dynamics of a neuroni are then described by the

following differential equation:

128
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τm
dui
dt

= −ui(t) +R Isyni (t) (8.1)

The constantτm = RC is called the membrane time constant of the neuron.

Whenever the membrane potentialui crosses a thresholdϑ from below, the

neuron fires a spike and its potential is reset to a reset potential ur. The firing

time t(f)i of a neuroni is defined in Equation 8.2, as described in Gerstner and

Kistler (2002b).

t
(f)
i : ui(t

(f)) = ϑ, f ∈ {0, . . . , n− 1} (8.2)

wheren is the number of spikes emitted by neuroni. The synaptic current

Isyni of neuroni is modeled using anα-kernel:

Isyni (t) =
∑

j

wij

∑

f

α(t− t(f)j ) (8.3)

wherewij is the synaptic weight describing the strength of the connection

between neuroni and its pre-synaptic neuronj. Theα-kernel itself is defined

as

α(t) = e τ−1
s t e−t/τsΘ(t) (8.4)

whereΘ(t) refers to the Heaviside function in Equation 8.5 and parameter

τs is the synaptic time constant.

Θ(s) =

{

0 if s < 0

1 if s ≥ 0
(8.5)
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8.1.2 Spatiotemporal data encoding
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Figure 8.1: Spatiotemporal data encoding.

The first step in the framework is to encode spatiotemporal data into spike

trains. Figure 8.1 illustrates the process. Each real-value of the data vector is

transformed into a spike train using a population encoding.In this approach,

a single input value is encoded into multiple neurons, each witha specific

spike trains calculated using intersection of Gaussian function, as described in

previous experiments. All frames or events in the data are encoded in the same

way. As a result, a sequence of spike trains for all pre-synapticinput neurons

is produced. Based on the time order, the whole series of spike trains will be

injected into the reservoir. Spikes with the earliest time will be injected first

followed by later ones.

8.1.3 Framework

Figure 8.2 shows the architecture of the proposed RESNN framework. There

are four major components - spatiotemporal encoding, reservoir, liquid states

as a reservoir output and the ESNN classifier.
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Figure 8.2: Architecture of the extended ESNN capable of processing spatio-temporal
data. The coloured boxes indicate novel parts in the original ESNN archi-
tecture.

Each pre-synaptic input neuron is attached to a reservoir’s input neuron.

The generated spike trains are propagated into the reservoir. Since each pre-

synaptic neuron has a series of spikes, the spikes are continuously being in-

jected into the reservoir neuron. According to the LIF neuronprinciple, an

output spike will fire and propagate a spike to the next connected neurons after

it reaches its firing threshold. This process is repeated untilall spike trains are

completely injected.

An output spike generated by a neuron may activate other connected neu-

rons. This activity can cause the reservoir to produce unique accumulated neu-

ron responses. Different input spike trains from different input samples may

produce different responses that could be used for discerning the sample ac-

cording to its class. After the simulation is completed basedon the pre-defined

simulation time, the neuron responses are evaluated.

In order to perform the classification, readout functions are required to trans-

form the reservoir responses into liquid states. Liquid states can be extracted at

all time points. However, due to little available informationand because some

readouts require more information for the calculation, liquidstates are nor-

mally calculated at certain time intervals. Different readouts produce different

quality of liquid states, which affects the outcomes. The liquidstates then are

fed into the ESNN for classification into a desired class label. Algorithm 8

explains the proposed RESNN and the detailed descriptions arepresented in

Appendix F.
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Algorithm 8 RESNN
1: construct reservoir with interconnected neurons using Equation 9.1
2: for all samples belonging to classl do
3: for all time pointsdo
4: encode input samples into firing time using Equation 2.3
5: end for
6: store as spiketrains
7: end for
8: for all spiketrainsdo
9: feed into reservoir

10: calculate responses based on neuron spikes using Equation 8.2
11: construct liquid states from reservoir responses
12: end for
13: apply liquid states into ESNN (Algorithm 1)

8.2 M E T H O D S F O R R E S E RVO I R S TAT E S R E P R E S E N TAT I O N

In order to understand the suitability of the RESNN classification method, the

proposed framework was first implemented using simple synthetic spike trains.

The objective of this experiment was to investigate the reservoir responses

when spike trains were injected into the reservoir. The reservoir should be

able to produce different responses between different outputclasses. Theo-

retically, higher dissimilarity means that better classification can be reached.

Because the responses accumulate from the reservoir, this task is crucial for

the classification phase.

8.2.1 Dataset

In this experiment, two random spike trains were generated to represent a syn-

thetic two class problem. The original spike trains were jittered using a Gaus-

sian function with the width of 1 millisecond where 50 samples werecreates

for each class. All spikes were uniformly distributed between 0and 300 mil-

liseconds, meaning that every sample contained the same number of spikes.

The problem was simulated in 500 milliseconds simulation time. Figure 8.3

illustrates the generated spike trains.
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Figure 8.3: A simple two class synthetic dataset. The original data in each class were
jittered to produce 50 samples.

8.2.2 Setup

In this experiment, the LSM reservoir was constructed with threedimensional

network grid4×4×4, which is equivalent to 64 interconnected neurons. In the

network, two neuronsA andB were interconnected with a connection proba-

bility according to Equation 9.1

P (A,B) = C × e
−d(A,B)

λ2 (8.6)

whered(A,B) denotes the Euclidean distance between two neurons andλ

corresponds to the density of connections which was set toλ = 2. Higher

or smaller values ofλ represented higher or lower probability that a connec-

tion exists between the two neurons. The reservoir contained 80% excitatory

(ex) neurons and 20% inhibitory (inh) neurons, which were randomly assigned
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to neurons. ParameterC depends on the type of the neurons,Cex−ex = 0.3,

Cex−inh = 0.2, Cinh−ex = 0.5 andCinh−inh = 0.1. The connection weights have

been randomly selected by a uniform distribution in the interval [−8, 8]nA.

The neural parameterτm represents the decrease of the potential was set to 30

milliseconds, the firing thresholdϑ = 5mV and reset valueur = 0mV. Further-

more, a refractory period of 5 milliseconds and a synaptic transmission delay

of 1 millisecond was used. Most of the parameters were directly adopted from

a study by Grzyb, Chinellato, Wojcik, and Kaminski (2009).

For the ESNN classifier, parameterMod was set to 0.99,C = 0.6 andSim

= 0.1. These values were based on the optimal range found in the previous

experiment.

8.2.3 Results Analysis

Figure 8.4 shows the responses after the input spike trains have been injected

into the constructed reservoir. The top two diagrams represent the averaged

responses for 50 samples from each class, A and B respectively.The fig-

ure clearly shows that some of the neurons were still activated after all input

spikes had been completely fed into the reservoir in 300 milliseconds. How-

ever, the difference between classes is hard to notice due to thedensity of the

responses. In order to investigate the quality of both responses, in terms of dis-

tinguishability between classes, these two average responses were subtracted.

The diagram at the bottom represents the whole responses. Theblank area

means no response while the colours correspond to the value after the sub-

traction operation. The figure shows that the responses from each of the two

classes are dissimilar; this may lead to easier classification process later.

In order to perform classification, the state of the liquid ata given timet has

to be read out from the reservoir. The way the liquid state is defined is critical

for the proper working of the method. In this experiment, three different types

of readouts have been investigated - cluster, frequency andanalog readouts.
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Figure 8.4: Reservoir response on synthetic dataset.

Cluster Readout

The first type of readout is called cluster readout. In this method, neurons

in the reservoir are grouped into clusters and then the activityof the neurons

in the clusters is determined. The population activity is defined as the ratio

of neurons being active in a given time interval[t − ∆ct, t]. This follows the

same principle as explained in Section 2.2.1 and also described in Gerstner

and Kistler (2002b). In this experiment, 16 clusters were collected in a time

window of∆ct = 10 milliseconds. Similar readouts have also been employed

in previous related studies such as in Norton and Ventura (2010).

Figure 8.5 shows the continuous accuracy when the readout was fed into

the ESNN classifier. The top diagrams show the cluster readoutconstructed

at three different time points. The readouts are sorted according to the sample

class. Based on the readout setup, every sample produced a new format of
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Figure 8.5: Classification accuracy from cluster readout. Three time points are se-
lected and the readout from each point is shown on the top. At time point
t = 160, the highest accuracy is obtained from the readout that is more
distinguishable between classes compared to other time points.

data. This new data was used in the classification process. Therefore, the con-

struction of the readout is crucial to the samples being distinguishable between

classes. The same condition applies to the next two readouts.

In this experiment, although the input spike trains were spotted in only 300

milliseconds, neurons were still accumulating the spikes and activating after

all input spikes trains were fed into the reservoir. These responses contained

information that could be used for classification, as shown in the bottom dia-

gram. Some accuracy can be obtained after 300 milliseconds input spike trains.

This condition is referred to as the fading memory effect. Three random points

of accuracy have been selected in order to visualise the readout or liquid state

at t = 40, 120 and 340. It can be seen that higher accuracy requires abetter

distinguishable state between output classes. In this example, liquid state at

t = 40 gives the highest accuracy of 100%. This corresponds to better liquid

state compared to the state att = 120 with accuracy of 95%. Surprisingly, the

fading memory effect at timet = 340 still produced good accuracy at 82%.
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Frequency Readout

The second readout is principally very similar to the first one. In the interval

[t−∆f t, t], the firing frequency of all neurons in the reservoir were determined.

According to the reservoir setup, this frequency readout produces a single vec-

tor with 64 continuous elements; each element refers to a singleneuron over

collected time window of∆f t. In this experiment, a time window of∆f t = 30

was used.
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Figure 8.6: Classification accuracy from frequency readout. A more stable accuracy is
achieved over time because a larger time window is required in this read-
out. Three time points were selected to illustrate the readout. Readouts at
t = 30 andt = 312 are more distinguishable between classes and there-
fore provide a high accuracy. However, att = 437, the fading memory
effect took place and reduced the accuracy.

Similar to the previous readout, three random accuracy pointswere selected

to investigate the quality of the reservoir readout, as shownin Figure 8.6. Low

density appears att = 30 because of the low number of responses, as can be

seen in Figure 8.4. However, because the response patterns fordifferent classes

at this time are different, accuracy is high at 100%. The high density readout



8.2 M E T H O D S F O R R E S E RVO I R S TAT E S R E P R E S E N TAT I O N 138

at t = 312 represents many responses available for the readout. However, the

accuracy slightly decreases because most of the information from the readout

is resembled between two classes. Att = 437, the sharp decrease of accuracy

is due to the fading memory effect where not many responses areavailable at

the given time point. Thus, this affects the construction of the readout and the

accuracy.

Analog Readout

Finally, in the analog readout, every spike is convolved by an alpha kernel

function derived from Equation 8.4. A convolved spike trains̃(t) is then given

as

s̃(t) =
∑

tf

κ(t− tf )

=
∑

tf

e τ−1 (t− tf ) e− (t−tf )
τ Θ(t− tf )

(8.7)

whereΘ(t) refers to the Heaviside function (Equation 8.5) andτ ∈ R is a

real-value time constant.

The responses are sampled using a time step of∆at = 10 milliseconds result-

ing in 50 time series. Similar readout has been used for example in Schrauwen,

D’Haene, Verstraeten, and Campenhout (2008) for a speech recognition prob-

lem.

The accuracy of this readout is consistently high most of the time as can be

seen in Figure 8.7. However, when there are fewer responses after all input

spikes have been fed into the reservoir, the accuracy starts todecrease which

is evident in all readouts. When the accuracy was measured, itwas 100% at

almost all time points, including att = 30 andt = 150. The liquid states for

both time points show different patterns for the two classes. At t = 410, the dif-

ference between the two classes is hardly noticeable due to the small number

of activities. However, when the state was applied to the ESNN, a good classi-

fication result with accuracy of 89% was achieved. This is because the decay

of alpha kernel function still provides some information even after several mil-

liseconds of neuron activity. Figure 8.4 shows that after 400milliseconds sim-
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Figure 8.7: Classification accuracy from analog readout. Readouts from the selected
time points are displayed at the top of the diagram. Accuracyis more stable
even when few responses are left as shown att = 410.

ulation time, very few responses were recorded. However, some information

can still be extracted when the kernel is applied, as shown in Figure 8.7.

8.2.4 Discussion

Overall, three readouts came out with the highest accuracy of 100%. Among

all, cluster readout results fluctuated significantly. At certain time points, clus-

ter readout produced a high accuracy, but a few millisecondslater, a very poor

one was recorded. At the time when when the input spike trains were stillbe-

ing injected into the reservoir (before 300 milliseconds),the other two readouts

were able to generate very high accuracy. However, the cluster readout failed

to utilise the responses, which consequently produced poor outcomes.

On the other hand, even though the frequency readout gave a good accuracy

almost at all time points, the larger sampling time caused some delay in the ac-

curacy measure. Figure 8.6 clearly shows that the first accuracy measurement

could only be made only after 30 milliseconds. As a result, this readout would

be unsuitable for rapid, online and real-time processing.
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Similarly to the frequency readout, the analog readout also gave consistently

high accuracy in almost the entire simulation time. But the main advantage of

analog readout compared to the frequency readout is the smallsampling time

at only 10 milliseconds. Sampling time is important as it ensures that there

is some neuron activity to be measured. The fading memory effect on this

readout is also small, and therefore this readout is able to give good accuracy

due to information available from the alpha kernel function.

Based on the findings in this experiment, the analog readout willbe used for

further analysis in the next section.

8.3 A P P L I C AT I O N O N S Y N T H E T I C S PAT I OT E M P O R A L DATA S E T S

In order to further evaluate the performance of the proposedmethod, the RESNN

framework was applied to the Rotating Dot dataset that is proposed in Chap-

ter 7. All parameters in this experiment were derived from the settings in the

previous experiment as described in Section 8.2.2. The LSM reservoir was

adjusted to accumulate the given problem and gridded to5× 5× 5. The reser-

voir utilised 125 neurons with 80% excitatory (ex) neurons and 20% inhibitory

(inh) neurons. All other reservoir parameters were left unchanged. The sim-

ulation time period was set to at 200 milliseconds. Similar to theprevious

ESNN setup,Mod, C andSim were set to 0.99, 0.6 and 0.1, respectively.

8.3.1 Performance Analysis

In this experiment, the reservoir responses were only mapped into liquid states

using analog readout. The experiment shows that this readoutis more stable

and gives better outcomes compared to other readouts.

Figure 8.8 shows the example of average Rotating Dot responsesfor the two

classes, clockwise and anticlockwise. Similarly to the previous experiment,

the subtraction operation was performed on the both responses and the results

of the operation is shown in the bottom diagram. For the first 20 millisec-

onds, half of the rotation can be clearly seen by the curve shaped responses.

After other neurons were excited, more activity was recorded.The difference



8.3 A P P L I C AT I O N O N S Y N T H E T I C S PAT I OT E M P O R A L DATA S E T S 141

� � � � � � � � �
t im e in m sec

�� �� �� �� �� � �� � �
n

e
u

ro
n

 

�
�

verage response to � lass 
�

 sam ples

� � � � � � � � �
t im e in m sec

�� �� �� �� �� � �� � �

n
e

u
ro

n
 

�
�

verage response to � lass �  sam ples

� � � � � � � � �
t im e in m sec

�� �� �� �� �� � �� � �

n
e

u
ro

n
 

�
�

ifference bet � een average responses

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
��� ��

Figure 8.8: Rotating dot responses.

between output classes can be clearly identified due to data with noise of 1.0

millisecond was used.

In analog readout, the decay of the Gaussian signal that is represented by

the parameterτ is very important. In this experiment, the impact ofτ and the

several levels of problem difficulty to the accuracy is studied. Three values

for the τ parameter were selected to be studied: 2.0, 5.0 and 10.0. Results

are presented in Figure 8.9. The three x-axis columns represent the different

values forτ which controls the alpha kernel decay, while six rows in y-axis

represent the noise levelε.

The first three top diagrams show the results for dataset with noise level of

0.5, which is the easiest data. It clearly shows thatτ does not affect the results.

the experiment gave consistent high accuracy over the simulation time for all

values ofτ . Results at noise level 1.0 millisecond also show the same accuracy

pattern andτ has no effect on the results. The next two rows of diagrams
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Figure 8.9: Analog readout accuracy over simulation time. The problem is presented
with different level of difficulty (ε)andτ value for kernel to evaluate the
correlation between these two aspect.

represent the problem with difficulty of 2.0 milliseconds and3.0 milliseconds,

where the smallestτ gave a lower accuracy over time compared to higherτ

values. For the more difficult problems (ε is 4.0 and 5.0), the highestτ provides

a better accuracy.

Interestingly, good results were obtained for simulation timebetween 30 and

60 milliseconds in all experiments. This is when the input spikes were injected
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into the reservoir. It can be concluded that the responses from the reservoir are

sufficient to classify the data after partial input was fed intothe reservoir. The

Rotating Dot dataset consisted of several rotations of the dot. From Figure 7.3,

it is apparent that the classifier should be able to identify the movement of the

dot, i.e. to distinguish between the two classes, clockwise and anticlockwise

in the first rotation. The accuracy starts to drop when the process of feeding

input spikes is completed. However, smaller decrement can be retained when

higher value forτ are used. Thus, it produces higher accuracy compared to

lower values ofτ .

It can be concluded thatτ has no effect on accuracy in simple problems.

However, when the problems have higher difficulity,τ starts to play an im-

portant role. The kernel function continuously provides some information de-

pending on theτ value. Smaller values mean that the decay is very short and

less information is available in the next several milliseconds. In contrast, long

time of decay provides more information for the next few milliseconds when

the value forτ is larger and might cause the liquid state poured with massive

information. Therefore, a careful selection ofτ value is necessary for optimal

outcomes.

8.3.2 Comparison of results obtained with EESNN

The overall results for the EESNN and the RESNN methods are presented in

Figure 7.1 and in Figure 8.9 respectively. A discussion on these results and the

related findings are presented in Chapter 7 and Chapter 8. WhileEESNN only

provides the final accuracy after the learning process is completed, RESNN

provides the accuracy continuously during the simulation time. The explana-

tion in this section refers to both figures.

Classification accuracy of 100% is obtained when the EESNN method is ap-

plied to the Rotating Dot dataset with noise level of 0.5 and 1.0. The RESNN

method achieved 99% to 100% accuracy at almost all time points except for

the first and last few milliseconds when no responses were available for classi-

fication. In fact, this situation occurred in all experiments with RESNN. Gen-

erally, both methods can achieve high accuracy for simple datasets with low
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noise level at anyC value for EESNN andτ value for RESNN. When EESNN

was tested with the dataset with noise level 2.0, the smallestC value gave the

lowest accuracy compared to others. Similarly to RESNN, results recorded

from the smallestτ value shows that the accuracy at most of the time points is

low compared to higherτ value.

When EESNN is tested with a more difficult dataset with noise levels of

3.0, 4.0 and 5.0, a largerC value gives a good accuracy most of the time.

However, there is also a certain time when a high accuracy can be obtained

and whenC is set to 4.0 as shown in the results when a dataset with noise level

of 3.0 and 4.0 is tested. Therefore, tuning theC value in EESNN for difficult

problems has to be done carefully since not only the high valueof C, but some

lower values could also give a good accuracy. Largerτ value provides better

accuracy compared to the smallerτ value as shown in the results when RESNN

is tested with a dataset with noise level of 3.0, 4.0 and 5.0. Only afew settings

achieved 100% accuracy. It can be concluded that the RESNN method always

needs to use largerτ value when dealing with the more difficult problems. It

can be concluded that largerτ value always provide high accuracy. In contrast,

largerC values do not necessarily mean that EESNN can achieve high accuracy

results with difficult problems, since lower values may give a good result as

well. This makes finding the optimalC value more difficult in EESNN.

The advantage of EESNN method over the RESNN method is that it is faster

as it has the simple spike trains memory construction that does not require any

internal computation. On the other hand, RESNN has a more complex reser-

voir structure with the integrated recurrent network and LIFneurons. The

method also requires more computational time and resourcesto perform clas-

sification. Nevertheless, the advantage of the RESNN method is that it has the

capability to do classification at any selected time point. The fading memory

effect gives the network an extra ability to classify the given problem even af-

ter all spike trains are fed to the reservoir. Interestingly, all experiments with

RESNN deliver 100% classification accuracy at certain time points. It can be

concluded that each of the two methods has its strengths and weaknesses that

need to be further explored.
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8.4 S U M M A RY

This study has proposed an extension of the ESNN architecture,called RESNN,

that enables the method to process spatiotemporal data. Usinga reservoir

computing approach, a spatiotemporal signal is projected into a single high-

dimensional pattern that can be learned by the ESNN training algorithm. Con-

figuring the reservoir is not an easy task. However, once the reservoir is con-

figured properly, ESNN can be an efficient classifier of liquid states extracted

from the reservoir.

This chapter has also discussed three types of the readouts. The readout

construction is a crucial task that can affect the classification accuracy. The

study found that the analog readout has some advantages and has been chosen

for the next experiment. In the analog readout experiment, several scenarios

have been set up to investigate the optimal value forτ - the analog alpha kernel

that provides information to the classifier. Results show that a higher value is

required for difficult problems, while any values can solve simple problems.

The next chapter will discuss the implementation of RESNN together with

EESNN in a case study. Results of both proposed methods will be compared

and analysed.



Chapter9

A C A S E S T U DY O N A S PAT I OT E M P O R A L P RO B L E M

- S I G N L A N G UAG E G E S T U R E R E C O G N I T I O N

In order to investigate the performance of both novel EESNN and RESNN

methods for classification of spatiotemporal data, a real-world spatiotemporal

dataset is studied in this chapter. In the next few sections,the LIBRAS sign

language dataset is explained. The experimental setup and the obtained results

are discussed in the last part of this chapter.

9.1 T H E DATA S E T

LIBRAS is the acronym for LIngua BRAsileira de Sinais, which is the offi-

cial Brazilian sign language. The LIBRAS dataset contains data describing 15

hand movements (signs) that can be learned and classified by the two studied

methods. The movements data are obtained from recorded videos of four dif-

ferent people performing the movements in two sessions. In total 360 videos

have been recorded, where each video recorded one movement that lasts for

about seven seconds. Forty five frames have then been extractedfrom the

videos according to uniform distribution. In each frame, thecentroid pixels of

the hand are used to determine the movements. All samples have been organ-

ised in 10 sub-datasets, each representing a different classification scenario.

Datasets 1 to 7 contain all samples while Datasets 8, 9 and 10 contain selected

samples. More comprehensive details about the datasets canbe found in Dias,

Madeo, Rocha, B́ıscaro, and Peres (2009). The data can be obtained from the

UCI machine learning repository1.

1 Available at http://www.ics.uci.edu/ mlearn/
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In this experiment, Dataset 10 has been chosen. It contains the hand move-

ments recorded from three different people. The objective of using this dataset

is to train and test the proposed model for user-independentmovement classi-

fication and recognition, where the hand movement of one or several persons

can be used to train the system to identify the same movements of other peo-

ple. This dataset consists of 270 videos with 18 samples for each of the 15

classes. An illustration of the dataset is given in Figure 9.1. The diagrams

show a single sample of each class.

curved swing horizontal swing vertical swing anti-clockwise arc clockwise arc

circle horizontal straight-line vertical straight-line tremble horizontal zigzag

vertical zigzag horizontal wavy vertical wavy face-up curve face-down curve 

Figure 9.1: The LIBRAS data set. A single sample for each of the 15 classes is shown.
The colours indicate the time frame of a given data point (black/white
corresponds to earlier/later time points).
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9.2 E X P E R I M E N T S E T U P

The LIBRAS dataset is used to evaluate and compare the performance of

ESNN and RESNN. The results will be also compared with the results ob-

tained from MLP when used on the same LIBRAS dataset. All three algo-

rithms have different sets of parameters that need to be defined as shown in the

three subsections below.

9.2.1 EESNN

The three ESNN parameters,Mod, C andSim, were set to 0.99, 0.65 and 0.05,

respectively based on considerations derived from previous experiments in this

study and also in Schliebs, Defoin-Platel, and Kasabov (2010). Parameterβ,

which controlled the Gaussian width was set to 1.5. The two LIBRAS spatial

variables, x and y, represent the coordinates of each frame centroid. All 45

frames formed an input pattern related to one of the 15 classes (signs or move-

ments). The input data range was normalised and set to values inthe interval

[-0.5, 1.5]. Each of the spatiotemporal input patterns of 90spatiotemporal vari-

ables was encoded using population encoding. Every variable was encoded

using 20 Gaussian receptive fields. The EESNN was trained and tested in a

9-fold cross-validation mode.

9.2.2 RESNN

As described in Chapter 2, population encoding is used to transform the input

data into spike trains. This method is characterised by the number of receptive

fields used for encoding along with the widthβ of the Gaussian receptive fields.

After some initial experiments, 30 receptive fields were selected and a width

β = 1.5. More details of the method can be found in Bohte et al. (2002).

In this experiment, a liquid with a small-world inter-connectivity pattern

was constructed as described in Maass et al. (2002). A recurrent SNN was

generated by aligning 100 neurons in a three-dimensional grid of size4×5×5.
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Two neuronsA andB in this grid were connected with a connection probability

of:

P (A,B) = C × e
−d(A,B)

λ2 (9.1)

whered(A,B) denotes the Euclidean distance between two neurons andλ

corresponds to the density of connections which was set toλ = 2 in all sim-

ulations. ParameterC depends on the type of the neurons. The neurons were

discriminated into excitatory (ex) and inhibitory (inh) neural types resulting in

the following parameters forC: Cex−ex = 0.3, Cex−inh = 0.2, Cinh−ex = 0.5

andCinh−inh = 0.1. The network contained 80% excitatory and 20% inhibitory

neurons. The connections weights were randomly selected by a uniform dis-

tribution and scaled in the interval[−8, 8]nA. The neural parameters were set

to τm = 30ms, ϑ = 5mV, ur = 0mV. Furthermore, a refractory period of

5ms and a synaptic transmission delay of 1ms was used. Using this config-

uration, the recorded liquid states did not exhibit the undesired behaviour of

over-stratification and pathological synchrony - effects that are common for

randomly generated liquids (Norton & Ventura, 2006). Similarlyto the experi-

ments conducted in Chapter 8, three reservoir readouts were evaluated, namely

the cluster, frequency and analog readouts.

9.2.3 MLP

The results were compared with results obtained from an experiment with a

traditional Time Delay MLP, trained and tested in the same way. From the

preliminary experiments with some parameter tuning to find thebest combi-

nations, the optimal number of hidden nodes in the MLP was found to be 45,

learning rate 0.3. The original unprocessed LIBRAS dataset was used and the

learning in MLP was performed in 500 iterations. Similarly to EESNN and

RESNN, 9-fold cross validation was performed to the dataset.
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9.3 P E R F O R M A N C E A NA LY S I S

Both algorithms are evaluated to find out how well they can capture the spa-

tiotemporal data and transformed it into information that the classifier is able

to process. The overall accuracy results are also compared.

9.3.1 EESNN

Since in spatiotemporal problems both the spatial and temporal components

are needed for decision making, the entire dataset was translated into spike

trains and fed into a spike train memory, as mentioned in Chapter 7. The entire

spike trains from the memory were then fed into ESNN for classification. The

average training accuracy of the EESNN in this experiment was99.35%±0.30,
while for the testing, accuracy of 88.15%±6.26 was achieved.

Results show that although EESNN is a relatively simple approach, it can

perform very well, considering that this is a 15-class problem. In addition

to this, every sample that represents a movement within a classsometimes

contains incomplete information to represent the movement.For instance in

the circle movement, each person produced six samples in a movement class.

However, not all samples made a complete circle movement. This problem is

more complicated since Dataset 10 contained movements performed by three

persons. Thus, there are a lot of movement varieties although they are in the

same movement class. The proposed EESNN demonstrated that it canbe ap-

plied not only on a user dependent dataset, which means recognising the move-

ments of only one person, but also on user independent datasetthat contains

movements of more than one person. This is because the extended first layer of

the EESNN captures the entire information in the first phase ofthe operation,

so that the complex patterns are better classified in the second layer.

9.3.2 RESNN

The LIBRAS dataset was encoded into spike trains and then fed into the reser-

voir. Different samples produced different spike trains whichgenerated dif-
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ferent sets of reservoir responses. Figure 9.2 shows the responses from four

different samples, each corresponding to a different class. Responses from the

samples were extracted to form the readout for classification.
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Figure 9.2: Raster plot of some typical neural responses recorded from a reservoir
of 100 neurons. Each diagram shows the response when stimulated by
samples belonging to different classes. It can clearly be seen that different
response patterns were recorded for different classes.

All readouts extracted at a given time were fed to the standard ESNN for

classification. Based on preliminary experiments, some initial ESNN parame-

ters were chosen. The modulation factor was set toMod = 0.99, the proportion

factorC = 0.46 and the similarity thresholdSim = 0.01. Using this setup, the

extracted liquid states over all possible readout times wereclassified.

The evolution of accuracy over time for each of the three readout methods

is presented in Figure 9.3. Clearly, the cluster readout (a)is the least suitable

readout among the three methods. The best accuracy found is 60.37% for

the readout extracted at time 40ms, the marked time point in thediagram The

readouts extracted at time 40ms are presented in the bottom diagram (a). Each

row in this diagram presents the readout vector of one of the 270 samples, the

colour indicating the real value of the elements in that vector. Darker colour

represents higher readout value, while lighter colour represents lower value.

The samples are ordered in a way that allows a visual discriminationof the

15 classes. The first 18 rows belong to class 1 (curved swing), the next 18

rows to class 2 (horizontal swing) and so on. Given the extracted readout

vector, it is possible to even visually distinguish between certain classes of
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samples. However, there are also some significant similarities between classes

of readout vectors, which clearly has a negative impact on the classification

accuracy.
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Figure 9.3: Classification accuracy of ESNN for three readouts extracted at different
times during the simulation of the reservoir (top row of diagrams). The
best accuracy obtained is marked with a small (red) circle. For the marked
time points, the readout of all 270 samples of the data are shown (bottom
row).

The situation improves when the frequency readout is used resulting in a

maximum classification accuracy of 78.51% for the readout vector extracted

at time 120ms, as shown in Figure 9.3(b). It clearly shows that thereadout

vectors are much better discriminationed into output classes as shown in bot-

tom diagram (b): The intra-class distance between samples belonging to the

same class is small, but inter-class distance between samplesof other classes

is large. However, the best accuracy is achieved using the analog readout ex-

tracted at time 130ms as shown in Figure 9.3(c). Patterns of different classes

are clearly distinguishable in the readout vectors resulting in a good classifica-

tion accuracy of 82.22%.
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Off-line parameter and feature optimisation of RESNN

The discussion above already demonstrates that many parameters of the RESNN

need to be selected optimally in order to achive satisfactory results. This is a

difficult task since the number of these parameters is high and also that some

of them are correlated to each other. To further improve the classification accu-

racy of the analog readout vectors, DQiPSO proposed in Chapter 5is used. The

parameters of the ESNN classifier are optimised along with the inputfeatures

(the vector elements that represent the state of the reservoir). The readout vec-

tors were extracted at time 130ms, since this time point had reported the most

promising classification accuracy in the experiment shown in Figure 9.3(c).

In DQiPSO, 20 particles were used, consisting of eight update, three filter,

three random, three embed-in and three embed-out particles. Parametersc1
andc2 which control the exploration corresponding to thepbest and thegbest

respectively, were both set to 0.05 for probability update and 1.2 for real value

update. The inertia weight was set tow = 2.0. Eighteen-fold cross validations

were used and results were averaged in 500 iterations in order toestimate the

classification accuracy of the model.

Figure 9.4 presents the evolution of the selected features during the opti-

misation process. The colour of a point in this diagram reflects how often a

specific feature was selected at a certain generation. The lighter the color, the

more often the corresponding feature was selected at the given generation. It

can clearly be seen that a large number of features have been discarded during

the evolutionary process (the darker colour). The pattern of relevant features

matches the elements of the readout vector that have larger values,cf. the dark

points in Figure 9.3 and compared to the selected features in Figure 9.4.

The evolution of accuracy obtained from the global best particle during the

PSO optimisation process is presented in Figure 9.5. The optimisation clearly

improves the classification abilities of ESNN. After the DQiPSO optimisation,

accuracy of 88.59%(±2.34%) is achieved.
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Figure 9.4: Evolution of feature subsets. The objective is to obtain input vectors that
contain the most information. Compared with Figure 9.3, this figure shows
the feature selection process is able to select vectors in the range of 15 to
25 milliseconds and 40 to 55 milliseconds which contain most informa-
tion. Other vectors that hold less information are also occasionally being
selected during the learning process.
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Figure 9.5: Evolution of the accuracy based on the global best solution during the
optimisation with DQiPSO.

9.3.3 Overall Comparison

The test accuracy of an MLP under the same conditions of trainingand testing

As those used for EESNN and RESNN is found to be 82.96%(±5.39%). In



9.3 P E R F O R M A N C E A NA LY S I S 155

comparison, EESNN achieves 88.15%±6.26, while RESNN obtains 88.59%

(±2.34%). Although it is clear that both proposed methods performed better

than MLP, there are some issues that need to be addressed.

In terms of computational speed, it is clear that EESNN is fasterthan RESNN

because of the advantages of one-pass learning that is fullyutilised in EESNN.

However, in order to obtain the best results, several adjustments to the param-

eters have to be made manually. This is because the EESNN is not embedded

with any optimiser. The main objective of EESNN is to propose a method to

classify spatiotemporal problems faster. The method is intended to be used for

online data processing that requires faster computation capability.

In contrast, RESNN is more complicated and slower than EESNN. However,

the main advantages of this methods is the ability to classifyat any time even

while the input trains are still being fed into the reservoir.As shown in Fig-

ure 9.2, although reservoir responses to the LIBRAS input spikes are within

300 milliseconds, the RESNN method is able to start classifyingthe problems

immediately from when the data are fed into the reservoir (virtually at 1 mil-

lisecond as shown in Figure 9.3). The classification accuracyat the beginning

is low because the system is supplied with very little information. As soon as

the information is sufficient, the method is able to give goodresults without

waiting for all spike trains to be fed into the reservoir in 300 milliseconds. The

fading memory effect is also another advantage of RESNN. The reservoir is

able to produce some responses that can be used to classify even after all spike

trains have been completely fed into the reservoir, as shown for the last 30

milliseconds in Figure 9.3. Interconnected recurrent neurons in the reservoir

keep activating other neurons when they receive enough spikesto generate the

responses and the fading memory effect.

Generally, the advantages of the proposed methods when compared to the

MLP and other traditional NNs are:

1. Fast, one-pass, incremental learning, rather than multiple and batch learn-

ing, i.e. hundreds and thousands of iterations for MLP.

2. Evolvability - both models can be incrementally trained onnew data and

new classes without the need to be retrained on old data.
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On the other hand, setting the parameters for the reservoir is a complex pro-

cess. For the offline classification, the DQiPSO optimiser has been used for

feature and classifier optimisation. This is the first attempt to apply this method

to real spatiotemporal problems and some improvements could be made to

solve this issue. These improvements are discussed in the next chapter.

9.4 S U M M A RY

This chapter describes and discusses how two proposed methods, EESNN and

RESNN are tested on a LIBRAS sign language dataset. The aim is to demon-

strate how these two methods can be used for a real-world spatiotemporal clas-

sification problem. The movement recognition is crucial whendeveloping a

system that will be used by a disabled person. For instance, such a system

can be built into a computer interface that enables deaf people to interact with

computers. The result from this experiment shows that the accuracy of identifi-

cation is satisfactory, even though the movement has been recorded from three

different actors. Every actor has different hand movement even for the same

sign class. In addition, the dataset also contains a few imperfect movements

such as incomplete movement of circle and other shapes.

Both methods have their advantages and disadvantages. In addition, each

method is intended for different use - EESNN for online and RESNN for of-

fline classification. From the experimental analysis, it canbe concluded that

the suitable setup of the reservoir is not an easy task and future studies should

identify ways to automate or simplify this procedure. However, once the reser-

voir is configured properly, the ESNN classifier is shown to be an efficient

classifier of the liquid states extracted from the reservoirand satisfying classi-

fication results can be achieved.

The next chapter presents a summary of this study and discusses directions

for some future work.



Chapter10

C O N C L U S I O N A N D F U T U R E D I R E C T I O N

This chapter summarises the work that has been done to achievethe research

objectives as specified in Chapter 1 and to answer the researchquestions posed

in Chapter 1. Several suggestions for future work are also discussed in this

chapter.

10.1 C O N C L U S I O N

This thesis has studied two major areas of computational intelligence: the neu-

ral information processing and bio-inspired evolutionarycomputation. Each

of these two areas has its own direction and is exciting to explore. Recent

findings by researchers around the world have made these areas even more

interesting and many applications have been proposed. Combination and hy-

bridisation of methods is a current trend that is commonly practiced. Yet, there

is no absolute answer to which method is the best to solve the problems that

the scientific community faces. Hopefully, this research hascontributed small

but significant pieces of knowledge to the community and can beused as a

useful reference for future research.

Aligned with the research objectives, the ultimate goal of this research is to

develop an effective method for spatial and spatiotemporalpattern recognition

by proposing integrated frameworks. This method integratesseveral compu-

tational principles - ECoS, quantum computation and reservoir computing to

address some specific problems of:

• Parameter optimisation,
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• Feature selection,

• Model optimisation,

• Adaptation to new data,

• Spatial classification, and

• Spatiotemporal pattern recognition.

In order to carry out the research, the first crucial step is to understand the

ESNN architecture. Most of the literature review presented in Chapter 2 is

focussed on understanding this unique ECoS-inspired classifier. The review

started by introducing the SNN from which ESNN inherits most of itscompo-

nents. These components include the data encoding methods,neuron models

and learning algorithms. The chapter also explains that the construction of

LSM is based on the recurrent spiking neurons. All tools and applications

of SNN are also described in this chapter. The need for parameter optimisa-

tion is identified as some unsatisfactory results caused by inaccurate parameter

combinations are explained in Chapter 3. This chapter also describes the PSO

algorithm and its variant, the QiPSO, which is used for binary optimisation.

The first attempt in this thesis to build an integrated structure is discussed

in Chapter 4. It integrates the standard PSO with ESNN. The main purpose

is to understand how the ESNN model can be optimised by tuning its param-

eters. Every particle in the PSO optimiser holds the ESNN parameters that

need to be optimised. Utilising the Wrapper approach, the particles interact

with each other based on their fitness function and share the best information

found trough thegbest particle. This method was tested using two synthetic

datasets, namely the Hypercube and the Two Spirals which is explained in de-

tail in Section 4.1.2. The results from the proposed method were compared

with two commonly used classifiers, the MLP and SVM. The analysis of this

framework shows that the optimised model can produce better classification

accuracy.

Very often in real world problems, not all input features arerelevant for good

classification. Therefore, a feature selection process canbe considered com-

pulsory along with parameter optimisation. In the next step ofthis study, the
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quantum principle is added to the optimiser for the probability computation in

the feature selection task as explained in the second framework proposed in

Chapter 4. This time, both parameters and input features aresimultaneously

optimised in the integrated environment. The particle is divided into two parts,

where one part holds the ESNN parameter values and another part holds the

qubit information for feature selection. This leads to a better classification re-

sult than the one obtained with the previous framework where only the param-

eters are optimised. The classification result (Table 4.5) shows that only some

of the features are needed in order to achieve better accuracy results. Normally,

only some of the features contain relevant information thatcan help to produce

better outputs. For high dimensional problems, feature selection also helps to

reduce both the processing time and the complexity of the problems. Analysis

of the selected features leads to a better understanding of the problem at hand

and enables the discovery of new knowledge as explained in Section 4.2.3. In

collaboration with NICT, the proposed method was applied for string pattern

recognition. An additional component, a string kernel is added into the pro-

posed framework to transform string data to numerical valuesrequired by the

classifier. The framework is depicted in Figure 4.13. A promising result is ob-

tained with the proposed framework as it managed to optimise the parameter

and to reduce the problem size.

A few problems have been identified when analysing the experiments in

Chapter 4. Section 4.3 explained the issues. This includes the possibility of

missing the optimal parameter value due to data representation. The second

problem is the lack of ability of the optimiser to find the relevant features

because of the random evaluation method. Therefore, several enhancements

have been proposed involving both the optimiser and the classifier. For the

optimiser, a hybrid particle structure is proposed in Chapter 5 where standard

PSO particles and QiPSO particles are combined in order to solvethe prob-

lem effectively. This allows the standard PSO to optimise the parameter as a

real value while the QiPSO part handles feature and connection optimisation

that involves probability computation. A new strategy for finding the relevant

features is also proposed and it involves several types of particles. Each parti-

cle has its own way to identify the relevant features. With the combination of

these types of particles, the relevant features can be identified and the irrelevant
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ones can be eliminated earlier, as shown in Figure 5.4 and Figure5.5. These

improvements allow the proposed framework to achieve better classification

results.

On the other hand, it appears that adding some probabilistic elements in the

classifier may lead to a model that is more efficient than a deterministic model.

In Chapter 6, the ESNN is extended based on the concept of the probabilistic

neuron model, whereby probabilistic connection is introduced. This proba-

bilistic connection can also be considered as an evolving connection where

two principles, namely ECoS and quantum computation are combined. This

experiment is conducted mainly to find out if the ESNN learning can be en-

hanced. In this method, the connections are not static, but rather evolve based

on information that the connections hold as shown in Figure 6.1 and Figure 6.2.

A connection is selected if the firing time information it holds is significant for

the classification. Connections with least information will not be selected by

the optimiser. The results show a slight improvement when this probabilistic

principle is applied into the ESNN connections. The results also show that the

optimiser is able to reduce a significant number of connectionswhich leads to

a faster learning for the PESNN.

The next phase in this study is extending ESNN to solve spatiotemporal

classification problems. Two approaches have been proposed: EESNN and

RESNN. Chapter 7 starts with an explanation of the spatiotemporalproblems

and this is followed by proposing the EESNN framework. This method cap-

tures both the spatial and temporal information and stores both types of in-

formation in an additional memory. This information is then propagated to

the second module for classification. This chapter also proposes a synthetic

spatiotemporal dataset as a benchmark dataset to test the framework. The Ro-

tating Dot dataset explained in Section 7.3.1 is based on a two-class problem

to determine the movement of a dot either clockwise or anticlockwise where

the same path is used by the dot in both directions. The result from the exper-

iments demonstrates that EESNN is able to classify the spatiotemporal data.

High classification results are obtained when correct parameters are used even

when datasets with high noise rates are used for testing. Quite a similar ap-

proach is used in RESNN. However, this approach applies the complexLSM

as a reservoir to capture both spatial and temporal information as explained
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in Chapter 8. The RESNN framework is depicted in Figure 8.2. Thespa-

tiotemporal data is encoded into a sequence of spike trains and then injected

into the reservoir. The responses from the reservoir is measured by the readout

functions and translated into liquid states for the classification process.

Section 8.2.1 describes a simple series of spike trains and applied to RESNN

for the feasibility study of the proposed framework as spatiotemporal classi-

fier. In this experiment, three readouts are evaluated: Cluster, Frequency and

Analog readout. The results show the Analog readout is more stable and con-

sistently produces high classification accuracy over the entire simulation time.

Analog readout is further studied when RESNN is tested on the Rotating Dot

dataset proposed in Chapter 7. Figure 8.9 shows the result when the Analog

readout is tested on the dataset with different levels of difficulty and with dif-

ferent parameter values for the Analog readout. It can be concluded that higher

τ value provides better classification accuracy. The result on the Rotating Dot

dataset obtained by RESNN is compared with that obtained by EESNN in the

last part of the chapter. Each method has its own strength: EESNNis a fast

algorithm while RESNN is capable of classifying continuously atany time

point. The fading memory effect in RESNN helps the algorithm to perform

classification even after all spike trains have been injected into the reservoir.

Chapter 9 discusses the results from testing both EESNN and RESNN on a

case study with spatiotemporal problems. The dataset for the case study is LI-

BRAS, which contains 15 sign language movements that need to be classified.

An example of the movement for each class recorded is shown in Figure 9.1.

Both methods show good capabilities to classify the given case study prob-

lems effectively. EESNN gives good classification accuracy withfast learning

capability. On the other hand, all three RESNN readouts are studied for the

LIBRAS dataset. The result is consistent with findings in Chapter8 where

Analog readout gives the best accuracy as shown in Figure 9.3. The specific

liquid states are then further tested with offline RESNN optimisation with an

improved result is recorded as described in Section 9.3.2. The summary of

contributions is depicted in Figure 1.2. Based on the objectives and the work

done in this study, the contributions of this study are described in the next

section.
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Along with achieving the research objectives, this study has also been aimed

at finding the answers to the related research questions. The following para-

graphs provide brief and concise answers to the research questions.

1. How to integrate and optimise ESNN with PSO and QiPSO?

PSO can act as an optimiser for ESNN parameters. On the other hand,

QiPSO can be used not only for parameter optimisation, but also for si-

multaneous feature optimisation. To integrate these methods, the Wrap-

per approach has been applied. In the Wrapper approach, the optimiser

supplies the information to the induction algorithm which is ESNN, or

PESNN, in this case. The induction algorithm use the information pro-

vided by the optimiser solution candidates and return the fitness function

to be evaluated by the optimiser. Detailed explanations are provided in

Chapter 4.

2. Can the learning of ESNN be improved by introducing probabilisticele-

ments?

The experiments have proven that some improvements of the classifi-

cation results can be obtained from the modified ESNN - the PESNN.

Evolving connections in PESNN allows the network to select the most

informative connections that can contribute significant spikes to achieve

better results as explained in details in Chapter 6.

3. How may the current ESNN be extended in order to solve spatiotemporal

pattern recognition problems?

In order to conduct classification on spatiotemporal problems, both time

and space have to be considered. Therefore, an additional component

has to be added into the framework to capture both types of informa-

tion. This study has proposed two solutions. The first solution isthe

framework proposed in Chapter 7, where a spike memory is introduced

to collect all information before sending it to the classifier. The second

solution is the framework proposed in Chapter 8, where the LSM has

been introduced to accumulate all spatiotemporal information for classi-

fication. The responses from the reservoir are measured and transformed

into a liquid state format that can be interpreted by the classifier.
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10.2 T H E S I S C O N T R I B U T I O N S

Contributions of this study are described as follows:

1. A major contribution of this study is the development of thefollowing

algorithms:

• The development of DQiPSO. This thesis has developed a new PSO

structure and has shown how this optimiser can be implemented for

model optimisation of both parameters and connections and forfea-

ture selection. The proposed optimiser provides a more efficient

classification with optimal features selection, parameter and con-

nection optimisation as explained in Chapter 5.

• The study presents a new ESNN structure as described in Chapter 6 -

the PESNN, which introduces the evolving connections that provide

the internal learning capability to ESNN.

• This study has proposed an extension of the ESNN architecture that

enables the method to process spatiotemporal data. The spatiotem-

poral data signal is transformed into a single high-dimensional net-

work state that can be learned by the ESNN training algorithm. This

study proposes in Chapter 7 EESNN as an extended structure of

ESNN, where an additional module is integrated with ESNN to pro-

vide spike representation of the input patterns required forthe clas-

sification task.

• This study also proposed the RESNN framework for spatiotemporal

pattern recognition explained in Chapter 8. The LSM has beenex-

perimentally demonstrated as reservoir that accumulates bothspa-

tial and temporal data components and transforms it into the liq-

uid states that can be learned by the classifier. Furthermore,the

framework also shows an enhanced capability to separate the output

classes which leads to better classification.

2. This study has proposed and developed several novel integrated frame-

works for simultaneous feature selection and model optimisation, which

are:
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• Integrated ESNN-PSO where PSO optimises all ESNN parameters

to get the optimal values (Chapter 4).

• Integrated ESNN-QiPSO, a novel integration between ESNN and

QiPSO. This framework allows features and ESNN parameters to be

optimised simultaneously to improve classification accuracy. The

extended version with string kernel allows the string dataset to be

classified by the proposed framework. (Chapter 4).

• Integrated ESNN-DQiPSO framework for simultaneous feature and

ESNN parameter optimisation. The improvements proposed in the

optimiser allow this framework to optimise features, parameters and

connections effectively and lead to better classification accuracy

(Chapter 5 and Chapter 6).

• Integrated PESNN-DQiPSO, where evolving connections were in-

troduced in the ESNN as part of the internal learning mechanism.A

novel integration between PESNN and DQiPSO is proposed for si-

multaneous connection, feature and ESNN parameter optimisation

(Chapter 6).

3. This study has developed two new solutions to the real worldproblems

based on ESNN. The application of string classification has been ex-

plained in Chapter 4. LIBRAS hand movement recognition might lead

to the development of a system that helps members of the deaf commu-

nity to interact with computers has been discussed in Chapter 9.

4. In additon, a synthetic spatiotemporal dataset called Rotating dot is pro-

posed in this study. The difficulty of the dataset can be controlled. This

contributes to the better analysis of results obtained fromthe proposed

EESNN and RESNN method (Chapter 7).

5. As intended in the objective of the study, all experiments in thisstudy

have been shared with the scientific community by producing eight blind

peer-review international academic papers as listed in Chapter 1.
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10.3 F U T U R E D I R E C T I O N

While the methods proposed in this study deliver promising results, efforts to

improve their performance should still continue. Below aresome suggestions

for future work in the researched area:

10.3.1 Optimisation Strategy

As explained in chapter 6, optimisation of connections, features and parame-

ters for PESNN is quite slow because of the large dimension of theproblems.

This situation does not only happen to the PSO, but also to other optimisers

when dealing with high dimensional problems. Several approaches are sug-

gested to deal with PESNN optimisation. The first approach is to allow only

certain connections or a cluster area for optimisation. Thisis because not all

connections have enough weight information to be used. For instance, if an

input is distributed into 20 pre-synaptic neurons, normally the first five and the

last five neurons hold insignificant weight values. Thus, this connection can be

eliminated and the rest can be used for optimisation. This approach not only

manages to reduce significantly the number of connections to be optimised,

but also eliminates unnecessary connections that contain less information.

The second approach is to use the parallel computing as a possible solu-

tion to this problem. A problem can be divided into several sub-tasks with

each task solved a specific problem. This approach may produce faster and

effective method that can be applied in real world high dimensional problems.

Another approach is to use theBlueFern supercomputer1 which is currently

available in New Zealand for research purposes. Using a supercomputer for

neural information processing as in the Blue Brain Project (Markram, 2006)

is an option on problems involves huge computation time and requirements.

In terms of feature optimisation strategy, although the proposed DQiPSO opti-

miser is able to enhance the selection of relevant feature compared to QiPSO,

there is still a gap to improve the strategy. Future works could focus on finding

more effective methods for eliminating less relevant features. These may in-

1 More information about BlueFern is available at http://www.bluefern.canterbury.ac.nz
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clude applying the three levels optimisation as proposed inQEA Defoin-Platel

et al. (2007).

10.3.2 Classifier

This study has demonstrated the proposed ESNN framework in spatial and

spatiotemporal classification problems. Future studies inthis area should fo-

cus on the characteristics of ESNN and PESNN and how to apply them toother

possible problems such as prediction and clustering. ESNN is well known for

its fast learning and is very suitable for online or real timeproblems. Further-

more, the concept of recurrence in ESNN can also be an interesting subject to

be explored. A recurrent network allows the network to memorise some of the

previous information that could be used to solve the given problems.

One of the main challenges in ESNN application is to determine the optimal

number of pre-synaptic neurons for a given dataset. Number ofpre-synaptic

neurons is required before the ESNN structure can be constructed. This prob-

lem is similar to identify the number of hidden nodes in MLP. Lower number

of pre-synaptic neurons causes less input spikes generatedand subsequently

may affect learning accuracy, while higher number increasescomputational

time. Although the ESNN uses the Thorpe model for its neuron model, there

are some other potential neuron models to be explored. In addition to this, one

of the probabilistic elements from Kasabov’s model has been applied which

is the probabilistic connection for the development of PESNN.There are two

other probabilistic elements that can be further explored as explained in Sec-

tion 2.3.6.

10.3.3 Reservoir

The LSM reservoir is a rather complex structure and future studies could in-

vestigate how to simplify it. The dynamic threshold (Schliebs, Nuntalid, &

Kasabov, 2010) in the reservoir is interesting to investigate.Applying the

dynamic threshold into the reservoir may create a differentset of responses,

which could lead to better classification. Future directionsinclude the devel-
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opment of new learning algorithms for the reservoir and the application of the

method on other spatiotemporal real-world problems such asvideo or audio

pattern recognition tasks. Furthermore, future studies could also focus on de-

veloping and implementating specialised SNN hardware (Indiveri, Chicca, &

Douglas, 2009; Indiveri, Stefanini, & Chicca, 2010) to allowthe classification

of spatio-temporal data streams in real time.

10.3.4 Neurogenetic optimisation

One of the future applications to be considered is in the area of neurogenet-

ics. The majority of existing models of neural development are molecular

and biochemical models that do not take into account the role and dynamics

of genes (Benuskova & Kasabov, 2007). Kasabov, Benuskova, andWysoski

(2004) introduced a novel connectionist approach to neuralnetwork modelling

by integrating a neural network model with dynamic gene networks. Interac-

tion of genes in the neurons affect the whole neural network. Therefore, the

optimisation of the gene interaction network and the gene expression values

are necessary for achieving the optimal state of neural network. Future studies

could investigate the suitability of the proposed optimiser in this study for such

problems.



AppendixA

D E S C R I P T I O N O F T H E I N T E G R AT E D E S N N - P S O

This section formalise the description of the proposed integrated ESNN-PSO.

The pseudo code is split into several sub functions.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
parNo number of particle in the swarm
w inertia weight
c1 control exploration towardspbest
c2 control exploration towardsgbest
rec number of receptive fields for input neurons
β for gaussian width

constructpbest, gbest andparNo of particle with a structure of:
parameter array to store ESNN parameters for optimisation
R array for constructed output repository
fitness value forparticle

define functions:
readData()encode dataset to spike trains
pso()particle update for training
training() get fitness value from ESNN
storeBest()storegbest andpbest
testing()
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readData()

for all n do
pso()
testing()

end for

Pseudocode 2 readData()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all input data fielddo

createrec number input neurons using Gaussian function in Equation 2.3
bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parameterβ is applied
store input neurons inspiketrains

end for
end for

allocatespiketrains according ton, and store innfoldspikes
allocateoutput according ton, and store innfoldoutput

Pseudocode 3 pso()function

for all particle do
initialise all parameter
initialise fitness

end for

while not reaching maximumi do
for all particle do

training()
if fitness better than fitness of pbest then

storeBest()
end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
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w, c1, c2, gbest andpbest
updateparameter position using Equation 3.2

end for
end for

end while

Pseudocode 4 storeBest()function

replace pbest with particle

if fitness of pbest better than fitness of gbest then
replace gbest with pbest

end if

Pseudocode 5 training() function

retrieveparameter from particle

initialise neuron repositoryR = {}

for all output classdo
for all nfoldspikes do

calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27
if min(d(weight, weight(k)) < sim, weight(k) ∈ R then

weight(k) ← mergeweight andweight(k) according to Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if
end for

end for

compare training output withnfoldoutput and calculate accuracy
fitness← accuracy
return fitness
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Pseudocode 6 testing()function

retrieveR andparameter from gbest

for all testingnfoldspikes do
calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for

compare testing output withnfoldoutput and calculate accuracy
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D E S C R I P T I O N O F T H E I N T E G R AT E D E S N N - Q I P S O

The proposed integrated ESNN-QiPSO is described in this section.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
Q number of qubit
parNo number of particle in the swarm
w inertia weight
c1 control exploration towardspbest
c2 control exploration towardsgbest
rec number of receptive fields for input neurons
β for gaussian width

constructpbest, gbest andparNo of particle with a structure of:
for all parameter do

assignQ sizepar θ to store parameter probability
assignQ sizepar col to store parameter collape bit

end for
for all feature do

assignfeat θ array to store feature probability
assignfeat col array to store feature collape bit

end for
R array for constructed output repository
fitness value forparticle

define functions:
readData()encode dataset to spike trains
qipso()particle update for training
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training() get fitness value from ESNN
storeBest()storegbest andpbest
testing()

readData()

for all n do
qipso()
testing()

end for

Pseudocode 2 readData()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all input data fielddo

createrec number input neurons using Gaussian function in Equation 2.3
bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parameterβ is applied
store input neurons inspiketrains

end for
end for

allocatespiketrains according ton, and store innfoldspikes
allocateoutput according ton, and store innfoldoutput

Pseudocode 3 qipso()function

for all particle do
for all parameter do

for all Q do
initialise par θ
get collape bitpar col using Equation 3.12

end for
convert binary stringpar col to real value

end for
for all feature do

initialise feat θ
get collape bitfeat col using Equation 3.12
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end for
initialise fitness

end for

while not reaching maximumi do
for all particle do

training()
if fitness better than fitness of pbest then

storeBest()
end if

for all parameter do
for all Q do

calculatepar θ velocity using Equation 3.9 with consideration
of w, c1, c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitpar col using Equation 3.12

end for
convert binary stringpar col to real value

end for

for all feature do
calculatefeat θ velocity using Equation 3.9 with consideration of
w, c1, c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat col using Equation 3.12

end for

end for
end while

Pseudocode 4 storeBest()function

replace pbest with particle

if fitness of pbest better than fitness of gbest then
replace gbest with pbest

end if
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Pseudocode 5 training() function

retrieveparameter from particle

initialise neuron repositoryR = {}

for all output classdo
if feat col == 1 then

getnfoldspikes of selectedfeature and store inselectspikes
for all selectspikes do

calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27

if min(d(weight, weight(k)) < sim, weight(k) ∈ R then
weight(k) ← mergeweight andweight(k) according to
Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if

end for
end if

end for

compare training output withnfoldoutput and calculate accuracy
fitness← accuracy
return fitness
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Pseudocode 6 testing()function

retrieveR andparameter from gbest

if feat col in gbest == 1 then
get testingnfoldspikes of selectedfeature and store inselectspikes
for all selectspikes do

calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for
end if

compare testing output withnfoldoutput and calculate accuracy



AppendixC

D E S C R I P T I O N O F T H E I N T E G R AT E D E S N N - D Q I P S O

This section describe the proposed integrated ESNN-DQiPSO.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
parNo number of particle in the swarm
w inertia weight
c1 control exploration towardspbest for real value
c2 control exploration towardsgbest for real value
θ c1 control exploration towardspbest for quantum angle
θ c2 control exploration towardsgbest for quantum angle
rec number of receptive fields for input neurons
β for gaussian width

constructpbest, gbest andparNo of particle with a structure of:
parameter array to store ESNN parameters for optimisation
for all feature do

assignfeat θ array to store feature probability
assignfeat col array to store feature collape bit

end for
R array for constructed output repository
fitness value forparticle

define functions:
readData()encode dataset to spike trains
dqipso()particle update for training
training() get fitness value from ESNN
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storeBest()storegbest andpbest
testing()

readData()

for all n do
dqipso()
testing()

end for

Pseudocode 2 readData()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all input data fielddo

createrec number input neurons using Gaussian function in Equation 2.3
bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parameterβ is applied
store input neurons inspiketrains

end for
end for

allocatespiketrains according ton, and store innfoldspikes
allocateoutput according ton, and store innfoldoutput

Pseudocode 3 dqipso()function

for all particle do
initialise all parameter
for all feature do

initialise feat θ
get collape bitfeat col using Equation 3.12

end for
initialise fitness

end for

while not reaching maximumi do
for all particle do
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training()

if (fitness better than fitness of pbest) or
((fitness == fitness of pbest) and
(selectedfeature less than selectedfeature of pbest)) then

storeBest()
end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
w, c1, c2, gbest andpbest
updateparameter position using Equation 3.2

end for

for all feature do
calculatefeat θ velocity using Equation 3.9 with consideration of
w, θ c1, θ c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat col using Equation 3.12

end for

end for
end while

Pseudocode 4 storeBest()function

replace pbest with particle

if (fitness of pbest better than fitness of gbest) or
((fitness of pbest == fitness of gbest) and
(selectedfeature of pbest less than selectedfeature of gbest)) then

replace gbest with pbest

end if

Pseudocode 5 training() function

retrieveparameter from particle

initialise neuron repositoryR = {}

for all output classdo
if feat col == 1 then

getnfoldspikes of selectedfeature and store inselectspikes
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for all selectspikes do
calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27

if min(d(weight, weight(k)) < sim, weight(k) ∈ R then
weight(k) ← mergeweight andweight(k) according to
Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if

end for
end if

end for

compare training output withnfoldoutput and calculate accuracy
fitness← accuracy
return fitness

Pseudocode 6 testing()function

retrieveR andparameter from gbest

if feat col in gbest == 1 then
get testingnfoldspikes of selectedfeature and store inselectspikes
for all selectspikes do

calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for
end if

compare testing output withnfoldoutput and calculate accuracy



AppendixD

D E S C R I P T I O N O F T H E I N T E G R AT E D P E S N N - D Q I P S O

This section describe the proposed integrated PESNN-DQiPSO.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
parNo number of particle in the swarm
w inertia weight
c1 control exploration towardspbest for real value
c2 control exploration towardsgbest for real value
θ c1 control exploration towardspbest for quantum angle
θ c2 control exploration towardsgbest for quantum angle
rec number of receptive fields for input neurons
β for gaussian width

constructpbest, gbest andparNo of particle with a structure of:
parameter array to store ESNN parameters for optimisation
for all feature do

assignfeat θ array to store feature probability
assignfeat col array to store feature collape bit

end for
for all connection do

assigncon θ array to store connection probability
assigncon col array to store connection collape bit

end for
R array for constructed output repository
fitness value forparticle
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define functions:
readData()encode dataset to spike trains
dqipso()particle update for training
training() get fitness value from ESNN
storeBest()storegbest andpbest
testing()

readData()

for all n do
dqipso()
testing()

end for

Pseudocode 2 readData()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all input data fielddo

createrec number input neurons using Gaussian function in Equation 2.3
bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parameterβ is applied
store input neurons inspiketrains

end for
end for

allocatespiketrains according ton, and store innfoldspikes
allocateoutput according ton, and store innfoldoutput

Pseudocode 3 dqipso()function

for all particle do
initialise all parameter
for all feature do

initialise feat θ
get collape bitfeat col using Equation 3.12
if (feat col == 1) then

initialise con θ

get collape bitcon col using Equation 3.12
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end if
initialise fitness

end for

while not reaching maximumi do
for all particle do

training()

if (fitness better than fitness of pbest) or
((fitness == fitness of pbest) and
(selectedfeature less than selectedfeature of pbest)) or
((fitness == fitness of pbest) and
(selectedfeature == selectedfeature of pbest)) and
(selectedconnection less than selectedconnection of pbest)) then

storeBest()
end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
w, c1, c2, gbest andpbest
updateparameter position using Equation 3.2

end for

for all feature do
calculatefeat θ velocity using Equation 3.9 with consideration of
w, θ c1, θ c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat col using Equation 3.12

if (feat col == 1) then
for all connection do

calculatecon θ velocity using Equation 3.9 with consideration
of w, θ c1, θ c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitcon col using Equation 3.12

end for
end if

end for

end for
end while
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Pseudocode 4 storeBest()function

replace pbest with particle

if (fitness of pbest better than fitness of gbest) or
((fitness of pbest == fitness of gbest) and
(selectedfeature of pbest less than selectedfeature of gbest)) or
((fitness of pbest == fitness of gbest) and
(selectedfeature of pbest == selectedfeature of gbest)) and
(selectedconnection of pbest less than selectedconnection of gbest)) then

replace gbest with pbest

end if

Pseudocode 5 training() function

retrieveparameter from particle

initialise neuron repositoryR = {}

for all output classdo
if feat col == 1 then

getnfoldspikes of selectedfeature and store inselectspikes
for all selectspikes do

if con col == 1 then
getselectspikes and store infinalspikes

end if
end for

for all finalspikes do
calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27
if min(d(weight, weight(k)) < sim, weight(k) ∈ R then

weight(k) ← mergeweight andweight(k) according to
Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if

end for
end if
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end for

compare training output withnfoldoutput and calculate accuracy
fitness← accuracy
return fitness

Pseudocode 6 testing()function

retrieveR andparameter from gbest

if feat col in gbest == 1 then
get testingnfoldspikes of selectedfeature and store inselectspikes
for all selectspikes do

if con col in gbest == 1 then
getselectspikes and store infinalspikes

end if
end for

for all finalspikes do
calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for
end if

compare testing output withnfoldoutput and calculate accuracy



AppendixE

D E S C R I P T I O N O F T H E I N T E G R AT E D E E S N N

This section formalise the description of the proposed integrated EESNN for

spatiotemporal pattern recognition.

Pseudocode 1 main()function

initialise:
n fold cross validation
mod modulation factor
c proportion factor
sim similarity value
inpMin minimum input value
inpMax maximum input value
rec number of receptive fields for input neurons
β for gaussian width

define functions:
memory()encode dataset to spike trains
training() get fitness value from ESNN
testing()

memory()

for all n do
training()
testing()

end for
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Pseudocode 2 memory()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all time pointdo

for all input data fielddo
createrec number input neurons using Gaussian function in
Equation 2.3 bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with parameterβ is applied

end for
end for
accumulate all input neurons for entire time points inspikeMemory

end for

allocatespikeMemory according ton, and store innfoldspikeRsv
allocateoutput according ton, and store innfoldoutput

Pseudocode 3 training() function

requiremod, c, andsim
initialise neuron repositoryR = {}

for all output classdo
for all nfoldspikeRsv do

calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27
if min(d(weight, weight(k)) < sim, weight(k) ∈ R then

weight(k) ← mergeweight andweight(k) according to Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if
end for

end for

compare training output withnfoldoutput and calculate accuracy
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Pseudocode 4 testing()function

requiremod
retrieveR

for all testingnfoldspikeRsv do
calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for

compare testing output withnfoldoutput and calculate accuracy



AppendixF

D E S C R I P T I O N O F T H E I N T E G R AT E D R E S N N

This section describe the proposed RESNN.

Pseudocode 1 main()function

initialise:
n fold cross validation
matrix dimension of reservoir
mod modulation factor
c proportion factor
sim similarity value
inpMin minimum input value
inpMax maximum input value
rec number of receptive fields for input neurons
β for gaussian width

define functions:
spiketrains()encode dataset to spike trains
lsmreservoir()accumulate spike trains
training() get fitness value from ESNN
testing()

spiketrains()
lsmreservoir()

for all n do
training()
testing()

end for
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Pseudocode 2 spiketrains()function

read input samples and store insample array
read output file and store inoutput array

for all sample do
for all time pointdo

for all input data fielddo
createrec number input neurons using Gaussian function in
Equation 2.3 bounded betweeninpMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with parameterβ is applied

end for
store input neurons inspiketrains

end for
end for

Pseudocode 3 lsmreservoir()function

constructmatrix sizereservoir with interconnected neurons using Equation 9.1

for all sample do
for all spiketrains do

feed intoreservoir
calculate neuron spikes using Equation 8.2 and record intoresponse

constructliquidstates from response

end for
end for

allocateliquidstates according ton, and store innfoldliquidstates
allocateoutput according ton, and store innfoldoutput

Pseudocode 4 training() function

requiremod, c, andsim
initialise neuron repositoryR = {}

for all output classdo
for all nfoldliquidstates do

calculate the connectionweight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time thresholdϑ based on Equation 2.27
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if min(d(weight, weight(k)) < sim, weight(k) ∈ R then
weight(k) ← mergeweight andweight(k) according to Equation 2.28
ϑ(k) ← mergeϑ andϑ(k) according to Equation 2.29

else
add the new neuronR← R ∪ {weight}

end if
end for

end for

compare training output withnfoldoutput and calculate accuracy

Pseudocode 5 testing()function

requiremod
retrieveR

for all testingnfoldliquidstates do
calculate the connectionweight using Equation 2.25
while PSPless than ϑ do

calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first

end for

compare testing output withnfoldoutput and calculate accuracy



AppendixG

D E S C R I P T I O N O F T H E M L P

MLP can be considered the most established machine learning algorithm avail-

able and is widely used in many real world applications. All neurons in MLP

are interconnected and organised in several layers - input, hidden and output

layers. BP is the common learning algorithm in the MLP network. The algo-

rithm starts with assigning random weights to all connections. The goal is to

adjust the weight so that the targeted output can be achieved.In the first phase

of learning, samples presented to the input layer are propagate to the hidden

and output layers. Output for every neuron in the hidden and output layers

is obtained from the summation of all its connection weights using network

activation function. Sigmoid activation function is widely adopted into BP

learning. Equation G.1 shows the Sigmoid activation function. Equation G.2

and Equation G.3 explain the computation from input neurons (i) to hidden

neurons (j) and hidden neurons(j) to output neurons (k), respectively.

f(x) =
1

1 + e−x
(G.1)

xj = (
∑

wijIi)φj (G.2)

wherexj is the output at the hidden layer,wij is the weight between input

and hidden layers,Ii is the input data andφj is the bias.
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xk = (
∑

wjkIj)φk (G.3)

wherexk is the output at the output layer,wjk is the weight between input

and hidden layers,Ij is the output computed at hidden layer andφk is the bias

at output neuron. The error between feed forward output neuron and actual

desired output is calculated using Equation G.4. The mean square error is

normally used for computing the network error.

error =
1

2
(Ot −Oc)

2 (G.4)

whereOd is the target output andOc is the computed output during the feed

forward phase.

In the second phase, the computed error is propagated backward from the

output to the input layers. Weights are modified in order to reduce the error.

Equation G.5 shows the modification of the weights between output and hid-

den layers.

wjk ← wjk +∆wjk (G.5)

where

∆wjk ← wjk + ηδkIj + α∆wjk (G.6)

δk = Oc(Od −Oc)(1−Oc) (G.7)

andwjk is the weight between hidden and output layer,∆wjk is the weight

adjustment,η andα are the control parameters (learning rate and momentum

rate respectively),Ij is the output at hidden layer,δk is the computed error at

output neuron,Od is the desired output andOc is the computed output at output
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layer. Then the error is computed at the hidden neurons and weights between

input and hidden layers are adjusted using Equation G.8:

wij ← wij +∆wij (G.8)

where

∆wij ← wij + ηδjIi + α∆wij (G.9)

δj = Oj(
∑

δkwjk)(1−Oj) (G.10)

andwij is the weight between input and hidden layer,∆wij is the weight

adjustment,η is the learning rate,α represents momentum rate,Ii is the input

data,δj andδk are the errors at hidden and output neurons respectively,Od is

the desired output andOj is the computed output at hidden layer. Details of BP

procedure can be found in Chauvin and Rumelhart (1995) and thecomputation

example is explained in Jones (2005).



References 195

R E F E R E N C E S

Abbott, L. F., & Nelson, S. B. (2000, November). Synaptic plasticity: taming

the beast.Nature neuroscience, 3 Suppl, 1178–1183.

Abs Da Cruz, A. V., Vellasco, M. M. B. R., & Pacheco, M. A. C. (2007).

Quantum-inspired evolutionary algorithm for numerical optimization.

2006 IEEE International Conference on Evolutionary Computation,

37(1), 2630–2637.

Adrian, E. D. (1926). The impulses produced by sensory nerve endings.Jour-

nal of Physiology (London), 61, 49–72.

Almuallim, H., & Dietterich, T. G. (1991). Learning with many irrelevant

features. InProceedings of the ninth national conference on artificial

intelligence (aaai-91)(Vol. 2, pp. 547–552). AAAI Press.

Alnajjar, F., & Murase, K. (2005, nov.). Self-organization of spiking neu-

ral network generating autonomous behavior in a real mobile robot. In

Computational intelligence for modelling, control and automation, 2005

and international conference on intelligent agents, web technologies and

internet commerce, international conference on(Vol. 1, p. 1134 -1139).

Angeline, P. J. (1998). Evolutionary optimization versus particle swarm op-

timization: Philosophy and performance differences. InProceedings of

the 7th international conference on evolutionary programmingvii (pp.

601–610). London, UK: Springer-Verlag.

Arbib, M. A. (1995). The handbook of brain theory and neural networks(1st

ed.). Cambridge, MA, USA: MIT Press.
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