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ABSTRACT

This thesis proposes and presents several methods foificktssn problems.
Spatial and spatiotemporal classification problems haga bensidered in this
study. A novel integration between Evolving Spiking Neural Nate(ESNN)
and Particle Swarm Optimisation (PSO) is proposed for ESNN irogatami-
sation. ESNN, motivated by the principle of Evolving Conneadgb®ystem
(EC0S), is a relatively new classifier in the neural inform@afioocessing area.
Proper combination of ESNN parameters would influence the ES&ifop
mance. On the other hand, PSO is a bio-inspired optimiser assddewel-
oped based on a study of school of fish and flock of birds behavlatthis
framework, all ESNN parameters are optimised by the PSO tosbimal
parameter combination for the model. A wrapper approach is imgheed
in the ESNN-PSO frameworks and a few other integrated framentbat are
also proposed in this work. The classifier uses informatiowigeal by the
particles during learning and generates a fitness valueafdr solution candi-
date. Particles interact with each other and update theirnrdbon based on
the global best particlgbest and their own best solutiopbest. The learning
process continues until termination criteria are met.

When dealing with high dimensional problems, only some of tipeitifiea-
tures are relevant. In this case, selection of featuregjigmed. Since standard
PSO is not able to handle probability computation, the quardcamputation
principle is embedded into PSO. This combination is refetoeas Quantum-
inspired Particle Swarm Optimisation (QiPSO). The integratstiE-QiPSO
Is proposed in this study for simultaneous feature seleetr@ parameter opti-
misation. This combination provides promising resultg thay lead to better
and faster learning. However, several problems have been igentifat led
to the development of enhanced QiPSO and ESNN. A hybrid particle@amd n
search and update strategy is proposed for the QiIPSO and enpedsn the
Dynamic QiPSO (DQiPSO) model. Subsequently, an integrated franken

XX



DQIPSO and ESNN is proposed for efficient feature selection arahpseter
optimisation. The probabilistic element is also embeddéal EENN as part
of its enhancement. In the Probabilistic ESNN (PESNN), the evgleonnec-
tion is introduced. In the proposed integrated PESNN-DQIPSO, tissititx
works together with the optimiser where the connection, fesdnd parameter
components are optimised synchronously for better claasiin.

Real world problems are often spatiotemporal. Standard E&NNitec-
ture lacks the ability to process both spatial and temponalpoments in spa-
tiotemporal problems. This study proposes two new ESNN fraonies for
spatiotemporal classification utilising the reservoir potmg principle. The
Extended ESNN (EESNN) is proposed where a simple memory is used to ac
cumulate all spatial and temporal information before pagtiem to ESNN.
In the second approach, more complex Liquid State Machin#ju8servoir
is incorporated into the ESNN. The reservoir-based ESNN (RESN&Unag-
lates all information and generates the reservoir resgahs¢can be measured
at any simulation time. These responses are encoded into btabes before
sending them to ESNN for classification.

All proposed frameworks have been evaluated on synthetic ahevoskal
problems. This study also proposes a spatiotemporal synfiretitem called
Rotating Dot. The purpose of introducing this benchmark @ataso have a
spatiotemporal problem with controllable difficulty thahdae used for evalu-
ation of the methods. In this problem, the noise can be sesatadl value to
generate a simple problem or at a high value for more diffiaubfems. Re-
sults obtained with all proposed frameworks are promisirgy\aarrant future
exploration.
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INTRODUCTION

1.1 BACKGROUND

The human brain is a constant inspiration to scientists roua fields. The
highly complex human brain structure comprises billiongnsé&rconnected
neurons. Information between neurons is passed using dbottieal pulses,
also known as spikes. Various spikes strength received byran@roduce an
output spike and stimulate other neurons in the system. leti/to under-
stand how the brain works, researchers have developed ibspimed math-
ematical models that simulate the capability of the braihe Tost notable
model is the Artificial Neural Network (ANN). Many ANN applications have
been developed and most applications are for predictingdutuents based
on historical data. Processing power of ANN allows the network tonlead
adapt, in addition to making it particularly well suited tokasuch as clas-
sification, pattern recognition, memory recall, predicti@ptimisation, and
noise filtering (Luger, 2004). The primary significance of ANNthe abil-
ity of the network to learn from its environment and improvepié&sformance
through learning (Haykin, 1998). The well known ANN architecture is the
Multilayer Perceptron (MLP) (Rumelhart, Hintont, & Williams, 88). Better
understanding of how the biological brain works has led to theduction
of Spiking Neural Networks (SNN) (Maass, 1997). SNN can be consitlar
third generation Artificial Neural Network (ANN) whereby neuronag@nd
receive information based on spikes rather than on contisivariables. One
of the SNN architecture is Evolving SNN (ESNN). ESNN architecture was
first discussed by Wysoski, Benuskova, and Kasabov (200@bjadiowed up
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on the evolving concept suggested by Kasabov (1998a) threE@gis. ECoS
methods allow the structure of the network to evolve as path® training
process. This method is sensitive to the selection of itarpaters and the
correct choice of parameters allows the network to evolve toése structure
and ensure the best output. Therefore, an optimiser is deedend the best
combination of parameters.

Biologically-inspired techniques used to develop an gifemptimiser have
received numerous attention nowadays. The most famousiteesfor opti-
misation are the Genetic Algorithms (GA) (Holland, 1975), whichiaspired
by the evolution processes in biological chromosomes. Amotledi known
optimiser is the PSO (Eberhart & Kennedy, 1995), which is insping how
the biological swarm of animals works to achieve a desirabjeative for the
group. Since its introduction, PSO has been widely used to soluey real
world problems. Kennedy and Eberhart (1997) also introduke binary ver-
sion of PSO. There have been a lot of developments and impraovsnmethis
area, those suggested by Khanesar, Teshnehlab, and Shelo(2667) and
Yuan, Nie, Su, Wang, and Yuan (2009). Quantum computation haweece
more attention due to its dynamic characteristics useddoesg binary prob-
lems that involve probability, e.g. to select or not to setestain components.
Sun, Feng, and Xu (2004) introduced the quantum principle int® &l pro-
posed the QiIPSO specifically to tackle such problems.

Apart from efforts to solve the one dimensional spatial or terapprob-
lems, many endeavours are also made to solve spatiotengrokdéms. Spa-
tiotemporal problems are unique because both spatial angbotaelements
are important for making a decision. Real life spatioterapproblems in-
clude: cloud formation for rain forecasting, traffic moverh#r route identi-
fication based on Global Positioning System (GPS), motion antbim gesture
recognition, brain signals and their recognition, and mauoye. These prob-
lems prompted the need for an efficient information processiathod where
both spatial and temporal components can be captured eé#bcin order to
attain better recognition solutions.

2
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1.2 MOTIVATION

SNN model has been proved to be computationally better in simglatfor-
mation processing in human brain than sigmoid and analogaheetworks
(Maass, 1996; Schrauwen & Campenhout, 2006). Despite recezdrobs
and development in the area of SNN, there is a significant gapdimfrthe
most effective methods for parameter optimisation and featalection tasks.
ESNN has been shown promising in terms of data processing buuiffo
find the optimal parameter value. Similarly to other neurtivork models,
the correct combination of parameters influence the pedona of the net-
work. On the other hand, using a higher number of features doesaces-
sarily translate into higher accuracy. In some cases, hdeingr significant
features could reduce processing time and still producefactisy results.
This research addresses this challenge with the developrhanmnore effec-
tive optimisation strategy based on PSO architecture withesided principle
of quantum computation. In addition, PSO for ESNN optimisation #ued
integrative environment is a novel work.

Because of the complexity of the ESNN network, there are astiat the
network can be optimised in order to have better resultsbdtistic com-
putation is one of the elements that can be adapted to the rietWbis new
element is expected to give some versatility to the netwimiesprobabilistic
computation allows some components to be selected based @gtheements
and conditions at a particular time.

Although there are various studies involving solutions fpatsotemporal
problems, developing such solutions using ESNN is a new relsegues-
tion. Spatiotemporal problems are more complex than nospatial prob-
lems (mainly classification and clustering) or temporalgbeas (mainly pre-
diction). In spatiotemporal problems, both elements nede tiaken seriously
into consideration during the learning process. This isabee both spatial
and temporal components provide the information requirexbtain more ac-
curate results. Thus, capturing both the spatial and teahpomponents is the
primary challenge in this research.

3
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1.3 RESEARCH OBJECTIVES

This research aims to improve spatial and spatiotemporssifieation prob-
lems by proposing an integrated framework structure. Fatiapproblems,
this thesis proposes an integrated framework that inclodésa classifier and
an optimiser. The optimiser simultaneously optimises aiti@l ESNN com-
ponents needed for classification. For spatiotemporallenady an additional
module and a reservoir is proposed to capture both spatiaieanporal infor-
mation components. Although plenty of computational intelligeneethods
have been developed to solve spatiotemporal problems, itihvweaploring
new methods to solve these problems more effectively. Ilitiaddusing PSO
for ESNN optimisation is novel. This study will explore the pbggy of us-
ing PSO as a model optimisation for ESNN. ESNN structure is completely
different from the more commonly used MLP. However, the stan@S80 is
inadequate for solving problems that require probabilaynputation such as
feature selection tasks. Therefore, probability compartah PSO will be also
studied in this research.

Based on the above considerations, this research addtbssesproblems
by developing a new optimisation strategy and utilisingrquen computation
principles. On the other hand, the ESNN (Wysoski et al., 2006lbpe mod-
ified and several novel integrated frameworks will be propgo3éis research
has the following objectives:

1. Propose novel methods, including:

e The development of a novel integrated framework for simultaseo
feature selection and model optimisation. This will allow the opti-
mal usage of the optimiser potential when solving a given proble
and to improve the classification results;

e The development of an improved optimiser for ESNN;
e The development of a new architecture of ESNN and a novel frame

work for solving spatial and spatiotemporal problems.

2. Conduct experimental analysis with comparison to the egstell known
methods and evaluate their performance, and
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3. Share research outcomes with the relevant research camgrthuough
publications and presentations.

There are three main directions of this study as shown in Figure The
study starts with furthering the understanding of ESNN as the obthis re-
search. As described in Wysoski et al. (2006b) and Schliedsj®latel, and
Kasabov (2009a), parameter optimisation is crucial for enguhat ESNN
can produce good results. Therefore, the first task in thidyssito develop
a new optimiser for parameter optimisation and feature seteéor ESNN.
The second task of this research aims to explore if ESNN cambaneed
further since no alterations to ESNN have been made since itsludtion in
2006 by Wysoski et al. (2006b). This may lead to a better undeistg of
this classifier. The final task is to solve spatiotemporabfams. This task re-
quires ESNN to be modified to suit the spatiotemporal data gsdeg which
currently ESNN is not able to handle.

Parameter
optimisation and
feature selection

Novel features
for ESNN

AN /

ESNN

l

Spatiotemporal
data
processing

Figure 1.1: Three directions of the research related to the ESNN core: parameter opti-
misation and feature selection, novel ESNN features and modified ESNN
for spatiotemporal data processing.
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1.4 SPECIFIC RESEARCH QUESTIONS

In line with the research objectives, the specific researastipns for this
study are as follows:

1. How to integrate and optimise ESNN with standard PSO and QiPSO?
This research is novel in a way that there has been no attempt to inte
grate ESNN and PSO or QiPSO. The interesting part of this question is
to find out how both optimisers work with the given problems, the p
rameter optimisation and feature selection. In order to feednput to
the network for feature selection, the main question is hoveprasent
the input features. This is crucial because the right mashawill allow
the feature to be selected or removed during the learningepsoc

2. Can the learning of ESNN be improved by introducing probabilistic
ements as suggested by Kasabov (2010)? By incorporating pliebab
elements to the ESNN, what component needs to be optimised and how
to optimise it?

3. How to extend the current ESNN in order to solve spatiotempaitétm
recognition problems? Does the input need to be encoded afitfg?
Should additional components be added to the framework t@ sbbse
types of problem effectively?

In summary, this research aims to develop an effective techrfmumodel
optimisation and to achieve better classification reswutsspatial and spa-
tiotemporal problems. Some major computational principles ballimple-
mented to achieve the research objectives. These prisdiptude:

1. ECoS,
2. Quantum computation,
3. Reservoir computing, and

4. Knowledge discovery.
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1.5 THESIS STRUCTURE
The thesis is organised in ten chapters and is briefly disclisslow:

CHAPTER 2  This chapter introduces biological neurons which have in-
spired the development of SNN. Three main components of SNN, Ipahee
encoding methods, neuron models and learning are also re\i&&NN, their
principles and their applications are also explained is thiapter.

CHAPTER 3  This chapter reviews the current research in QiPSO. EA and
PSO are also explained.

CHAPTER 4 Based on the reviews of ESNN and PSO, this chapter pro-
poses the first integrated structure of ESNN-PSO whereby the P8Gasic
an optimiser of ESNN parameters. In line with the research tibgs; this
chapter explains the proposed integrated ESNN-QIPSO frarkemigre the
quantum principle has been used to optimise both parametdrsput fea-
tures. Analysis of the strengths and weaknesses of the prdpostods are
also discussed here.

CHAPTER 5 Based on issues identified in the analysis of the proposed
method, an enhancement to the QiPSO optimiser is proposed. cfiipter
also explains the modifications to QiIPSO which are crucial fotehening of
ESNN. This chapter also proposes a novel integrated framewvaorkisting of
enhanced QiPSO - Dynamic QiPSO (DQiPSO) with ESNN and explains why
the proposed method performs better than previous methods.

CHAPTER 6  Another objective of this research is to investigate ESNN
with probabilistic behaviour. This chapter shows how the newcsiire of
evolving connections in ESNN can affect the performance oh#te/ork. An
integrated framework is proposed where the connectionst fieaiures and
parameters can be optimised simultaneously during thailegaprocess.
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CHAPTER 7  This chapter proposes an extended version of ESNN for solv-
ing spatiotemporal pattern recognition problems. An additionadule is
added to the ESNN framework in order to capture both the spatéhtem-
poral elements of the problem space.

CHAPTER 8  Another framework for solving spatiotemporal classification
is proposed in this chapter. In this approach, the LSM acts @Eservoir.

It captures the spatial and temporal information and feeesitto ESNN. A
modified encoding method for the reservoir is also discuss#ds chapter.

CHAPTER 9 Both methods proposed in Chapter 7 and Chapter 8 for solv-
ing spatiotemporal classification are applied to a caseysathset. The LlI-
BRAS dataset is a video sequence containing 15 sign languagements.
The proposed methods are used to classify the movements in thpéctae
classes. Results from both methods are discussed in thpsecha

CHAPTER 10 Conclusion and future research directions are discussed in
this chapter.

1.6 THESIS CONTRIBUTIONS

A summary of this thesis contributions is visualised in théifdensional rep-

resentation depicted in Figure 1.2. The three axes repréisenncreasing

complexity of optimisers, classifiers and the datasets@sly. The red text

for some the optimisers, classifiers and datasets indicagtisods or dataset
that have been proposed in this study. The red points inditla¢egroposed

novel integrated methods with the datasets used for tesHpgcific chapters
where each method is discussed are also shown in the figure.
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Figure 1.2: A visual summary of contributions that include the proposed new-class

fiers, optimisers, synthetic dataset and framework that integrate a different
combinations of classifiers and optimisers.

1.7 PUBLICATIONS
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e Hamed, H.N.A., Kasabov, N., & Shamsuddin, S.M. (2011). Quantum-
inspired Particle Swarm Optimisation for Feature SelectionRard
rameter Optimisation in Evolving Spiking Neural Networks for€la
sification Tasks. In Eisuke Kita (Ed.), Evolutionary Algorithi8BN
978-953-307-171-8. INTECH Publications.

During the three and half years of study, the following eightrimi¢ional blind
peer reviewed publications have been produced that includmla thapter,
journal and conference proceedings.
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e Hamed, H.N.A., Kasabov, N., Michlovsk, Z., & Shamsuddin, S.M.
(2009). String Pattern Recognition Using Evolving Spiking Néura
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Spiking Neural Networks using Quantum-inspired Particle Swarm
Optimisation. Proceedings of the 2009 International Confarari
Soft Computing and Pattern Recognition, Malacca, Malay4€&; 6
698, IEEE Press.

1.8 CHAPTER SUMMARY

This chapter introduces and explains the background, ntimtivaobjectives
and research questions formulated for this research. €kearch will study
three main areas related to its ESNN core: the optimiser, rer@thESNN
features and also spatiotemporal data processing. Thasisse, thesis con-
tributions and publications during the course of this stadyalso outlined in
the last three sections.

The next chapter reviews the main components in this reseahehESNN
which is derived from the SNN architecture.



REVIEW OF EVOLVING SPIKING NEURAL
NETWORKS

This chapter reviews the foundation of Evolving Spiking Néudatworks
(ESNN). The main discussion in this chapter is about the furestdiah compo-
nents of ESNN which itself is derived from the standard SNN. Thisudision
includes the data encoding, neuron models and learningitge. Finally,
the structure of ESNN is discussed.

2.1 INTRODUCTION TO SPIKING NEURAL NETWORKS

The human brain has always been an inspiration for the n@etalork re-
search. Although current neural network models do not exactgehthe
complex brain structure, some of its principles have beeartakto consid-
eration when developing such artificial systems. Compreverxplanation
of the structure, function, chemistry and physiology of launbrain neurons
can be found in (Kandel, 2000). Many ANN models have been develope
and applied for learning from data and for generalisationeto data (Arbib,
1995). Their applications include: classification, timeee prediction, asso-
ciative storage and retrieval of information, robot andgeiss control, medical
and business decision support, and many others (Arbib, 1#gbov, 1996).
Most of these ANN use simple and deterministic models of artifiegalrons,
such as the McCulloch and Pitts model (Mcculloch & Pitts, 1948pduced
in 1943. They also use rate coded information representatibare average
activity of a neuron or an ANN is represented as a scalar valuepifeethe
large structural diversity of existing ANN, the limited functediy of the neu-

12
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rons and connections between them has constrained the sicapplications
of ANN and has limited their efficiency when modelling large scaleisy,
dynamic and stochastic processes (Kasabov, 2010). Accordikggsabov
(2010), new knowledge on information processing in biologiealrons have
explained several additional parameters also have to tsdemed for a neuron
to spike in addition to the input signals, such as gene antgkiprexpression
(Kasabov, 2007; Kojima & Katsumata, 2009), the physical prioge of con-
nections (Huguenard, 2000), the probabilities of spikesgesceived at the
synapses and the emitted neuro-transmitters or open iamelg(lkegaya,
Matsumoto, Chiou, Yuste, & Aaron, 2008; Abbott & Nelson, 2000)ariy of
these properties have been mathematically modelled amtoiséudy biolog-
ical neurons such as in Gerstner and Kistler (2002a); 1zhikefd004, 2006);
Izhikevich and Edelman (2008), but have not been properly ulikgiéh more
efficient ANN for solving complex Al problems. The third generatioeural
networks, the SNN models are made up of artificial neurons thattiains
of spikes to represent and process pulse coded informa@erstner, Ritz, &
Hemmen, 1993; Gerstner & Hemmen, 1994; Gerstner, 2001; Maa8g, 19
1999; Gerstner & Kistler, 2002a; Kasabov, 2008). In biologicalraknet-
works, neurons are connected at synapses and electricalssigpikes) pass
information from one neuron to another. SNN are biologically pilale and
offer some means for representing time, frequency, phasethaer features of
the information being processed.

input spike trains

neuron

synaptic
weights

Figure 2.1: A schematic diagram of SNN neuron model.
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To illustrate the SNN model, a simplified schematic diagranrésented in
Figure 2.1. A neuron receives electrical spike stimulationugh connections
from a number of pre-synaptic neurons. Every synapse has itsspmaptic
weight. Once the accumulated Post-synaptic Potential (PS&)gisr than a
specific threshold, an output spike is emitted and propagagethe axon to
connected post-synaptic neurons. Figure 2.2 illustrategpthcess of PSP
computation in a neural model. As each input spike is recenedll stimu-
late the PSP until the PSP reaches a predefined thresholdeanduton emits
an output spike. Then the potential is reset for next spikepdation.

Spikes
1.0
0.8

psp 0-6f
0.4

0.2

0.0 ‘ 1 T 1
Stimulus || [l | ‘ .

Figure 2.2: lllustration of spiking neuron model. When enough input spikes are re-
ceived and the potential reaches the threshold, an output spike is emitted
and the potential is reset.

There are three main components that have to be considered BINNe
architecture. Since all the information is propagateduglospikes, an en-
coding method is necessary. The original form of data musino®ded into
spike trains to be recognised by the network. Model of a spikiegron is
the second component in the SNN architecture. Several ditf@euron mod-
els have been introduced in the recent past. From the mogtlearmodel
that simulates the biological neuron as closely as possibleetsimple and
effective model. Every model has its own level of complexity artidviour
that may affect the computation of output spike, thus makimagcitucial com-
ponent of the system. The third component is the learning idifigorof the
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network. Since the information in the network is represeitgdpikes, a dif-
ferent learning mechanism is required for SNN. All three SNN congmts
will be reviewed in the next three sections.

2.2 DATA ENCODING

Since data in SNN needs to be represented in spikes, it musicbeed in the
spike trains. In this section, the first component of SNN, the éimgomethod
for the SNN is discussed. There are two main neural encodingidsedhe
pulse codes and the rate codes, where each generates antigigikee charac-
teristic for the network.

2.2.1 Rate codes

In this approach, the mean firing rate of a neuron is assumedidonmost of
the information. However, there are two interpretation of treamfiring rate.
The first interpretation usually considers the ratio of tkierage number of
spikesn,, observed over a specific time interahs shown in Equition 2.1.

_ sp
V= (2.1)

The study of data encoding began as early as 1926 when Adria6)(492-
cessfully applied the rate code approach in sensory and metoal systems.
But this mean firing rate concept has been criticised for i Fansmission
of information between neurons because each neuron has to wagvicspike
activity for a certain period of tim& (Rieke, Warland, Steveninck, & Bialek,
1999). The second understanding of mean firing rate is defisetie aver-
age spike activity over a population of neurons. In this emtca population
of pre-synaptic neurons produce a certain spike actiitiat is then sent to
the post-synaptic neuron. Figure 2.3 illustrates the raties calculation from
Equation 2.2.

15
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At N

Postsynaptic 1 [ | \ \
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Figure 2.3: lllustration of rate codes generation.

1 nger(t, t + At)
AN N

A=

(2.2)

wheren,.(t,t+ At) defines the number of active neurons within a short time
interval of [t,t + A¢] and N is the total number of neurons in the population.
This method has been explained in Gerstner (2000).

2.2.2 Pulse codes

The second encoding method is called pulse or spike code.idmapiproach,
the exact spike time is considered as information for the oddwA study by
Lestienne (1995) shows how the temporal component of the spikbe used
for learning. Thorpe, Fize, and Marlot (1996) have describedencoding as
dependent on the timing of the spikes, where the first spika hagher weight
than a later one. In this work, they argue that since a biolbgiearon only
uses a few milliseconds to process information, only a felkespare required
and emitted. Therefore, the first few spikes with highest mfatron can con-
tribute to the overall learning process. Thorpe et al. ()30 proposed a
specific neuron model which is described in Section 2.3. Aaleamcoding
method has been explained in principle in (Rieke et al., 1999

There are two well-known practical encoding techniques basetthis ap-
proach: the Rank Order Coding (ROC) and the Population Rankr@ai#ing
(POC). ROC was proposed by Thorpe and Gautrais (1998) and it escod
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formation by using the order of the firing time. For example,féur neurons,
where N3< N1 < N4 < N2, the rank assigned to each neuron is Rank 0 = N2,
Rank 1 = N4, Rank 2 = N1 and Rank 3 = N3 as illustrated in Figure 2.4.

N1

N3

L
N2

|

L

N4

Time

Figure 2.4: ROC Encoding Method.

On the other hand, POC which was studied by Bohte, Kok, and &outr
(2002) distributes a single input value to multiple inputirens denotes as
M. Each input neuron holds a firing time as input spikes. Thefitime of an
input neuroni is calculated using the intersection of Gaussian function as de-
fined in Equation 2.3. The Gaussian centyrés calculated using Equation 2.4
and its widths is computed using Equation 2.5 with the input variable inter-
val of [Inin, Imaz]. [Imin @NdI,,q,] defines the minimum and maximum input
values. The parametgrcontrols the width of each Gaussian receptive field.

fla) = O_—;%e‘@‘“f/ 20" (2.3)

20—3 . [mam - Imin

Hi = [min + 9 M — 29 (24)
and widtho:
1 Im(m - Imin
o=l I (2.5)



2.3 NEURON MODELS 18

wherel < g < 2. An illustration of this encoding process is shown in

Figure 2.5 used in Schliebs, Defoin-Platel, and Kasabov (@D0%or the dia-
gram,3 = 2 was used, the input interval,;,,, In.] Was set tg—2.0, 2.0] and
M = 5 input neurons were used. In this example, the input value wiasede
as 0.70 and five firing times were calculated based on the Gausstasec-
tions. Both spike encoding methods have been tested inadeyaplications
such as visual recognition (Thorpe, Delorme, & Rullen, 20819 (Wysoski
et al., 2006b), audio recognition (Wysoski, Benuskova, &aas/, 2007) and
speech recognition (Loiselle, Rouat, Pressnitzer, & Tap005).

-2 1 0 1 2
- 1.of & B & B N
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8 0.6¢ /\/\ IN X Pr
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v 1.0f -— — —-—
£ 0.8}
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£ 04| - - Receptive Fields
£ 0.2]| === Input Value -

0.0 .

0 1 2 3 4
Neuron

Figure 2.5: Population Encoding Method. Redrawn from (Schliebs, Defoin-Platel, &
Kasabov, 2009a).

2.3 NEURON MODELS
Most of the SNN models have been explained by Gerstner and Kistl82&).

There are several SNN neuron models and the six most commadynusdels
are discussed in the following six subsections.

2.3.1 Hodgkin Huxley Model

The Hodgkin Huxley model has been introduced by Hodgkin and Huxley
(1952) in their experiment on the giant axon of a squid. Thimgex model
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simulates the role of ionic mechanisms in calculation arapagation of po-
tentials in the neurons. In the study, they have discovemee tion channels in
a neuron, namely Sodium, Potassium and Leakage Channel.

Extra-cellular Medium

Gr, Gk GnNa

Intra-cellular Medium

Figure 2.6: Electrical circuit of the Hodgkin - Huxley model according to Hodgkin
and Huxley (1952).

The formula used to calculate the membrane potentiain the the standard
Hodgkin - Huxley model is as follows:

Z[i(m:GNa‘mg'h'(u_vNa)+GK'n4'(U_VK)+GL'<U_VL) (2.6)

whereGy,, Gk andGy, are Sodium, Potassium and a Leakage Channel re-
spectively, whileVy,, Vi andV;, are constants called reverse potentials. If
these channels are sometimes blocked, this is expressed hgditional vari-
ablesm, n andh. These gating variables are described by the following equa-
tions:
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o= an()(l—m) = Bu(wm (2.7)
é% = ap(u)(1 —n) — Ba(u)n (2.8)
h

o= ()1 = h) = Bu(wh (2.9)

wherem and i control the sodium channel and variableghe potassium
channel. o, andg,, wherez € {m,n,h}, are the empirical functions of the
capacitor, which control the voltage that needs to be adjusted in order to sim-
ulate a specific neuron. Despite this model being the commdmigaee for
estimating the parameters of a neuron ionic channel, itedssome disadvan-
tages linked to the approximations requiredi¢®aet al., 2008). Therefore,
many improvements have been made to this model as shown in (Gheikeer
& Labouriau, 1993; Fox, 1997; Willms, Baro, Harris-Warrick, Gucken-
heimer, 1999).

2.3.2 Leaky Integrate and Fire Model

The Leaky Integrate and Fire (LIF) model is a simplified vensibthe Hodgkin
Huxley model, represented by all ion channels with only a singteenit (Gerstner
& Kistler, 2002a). Similarly to the Hodgkin Huxley model, LIF melds also
based on the idea of an electrical circuit. The schematiaamgn Figure 2.7
illustrates the model.

In this model, a neuron is represented by an electrical itiatd the current
potential is calculated using the appropriate equation.beséc circuit of LIF
consists of a capacitar, parallel with a resistoR, and a curreni(¢). The
current/(¢) can be split into two componenfg and Iz as shown in Equa-
tion 2.10.

It) = I + Ip (2.10)
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C

|
|

Figure 2.7: Electrical circuit of the LIF from Gerstner and Kistler (2002a).

wherel charges the capacitérand/; passes through the resisforuUsing
Ohm'’s law, capacitance can be calculated’as ¢q/u whereq is the chargey
Is the voltage andi = u/R, the capacitive current = C - du/dt, therefore:

1) = M0 o du 2.11)

A time constant,,, = R- C is introduced by the leaky integrator. This yields
the standard form of the model:

du
T = —u(t) + RI(1) (2.12)

whereu is the membrane potential angl is the membrane time constant of
the neuron. The potential leak over the time when no input ske received.
When the membrane potential reaches the threshdlte neuron fires and the
potential is reset to a new value (resting value). This modelbe considered
as a suitable model in representing the biological neur@naimn and can be
applied to large networks due to its low computation load sintplicity.

2.3.3 Spike Response Model

SRM uses a concept similar to the LIF model and has a simpleiggsaorof
action potential generation in neurons. SRM models theameas respond-

21
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ing to an incoming pulse or spike from another neuron by geimey its own
spike. The state of the neuron is represented by a singlebl@riaThe model
uses a number of kernel functions that influence the inpuespihe external
stimulation ofu and the actual spike and its after-potential. An output spike
is generated when the staieeaches a thresholél The difference between
SRM and LIF is that in SRM the thresholds not necessarily to be fixed. For
instance, the thresholéglmight be increased after the neuron has spiked. The
membrane potential(¢) is calculated using Equation 2.13.

~ ~

u(t) =n(t —t;) + /Ooo e(t —t;,s)I(t — s)ds (2.13)

wheret is the last firing time of the neuron,ande are the kernel functions
wherece is also called the linear filter of the membrarié;) is a stimulating
current. The simplified version of the SRM is normally regerto as Simpli-
fied SRM where only the last spike of a neuron is used for the caicolaf
n. This model has been used for analysing the computationapof spiking
neurons by Maass (1994) and for modeling collective neurmitagions by
Kistler, Seitz, and Hemmen (1998).

2.3.4 lzhikevich Model

Izhikevich proposed a model that combines the dynamics obitlegically
plausible of the Hodgkin-Huxley model with the computational efficy of
integrate-and-fire models (Izhikevich, 2003). This modetks with two vari-
ables:v is a variable representing the membrane voltage potential: ad
variable representing the membrane recovery (activafipotassium currents
and inactivation of sodium currents). This model is descritethe following
formula:

d
d_z:0_04-v2+5v—|—140—u+1 (2.14)
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where

du

p =a(b-v—u) (2.15)

wheret represents time;, describes the time scale of b describes the sen-
sitivity of « to v. When the voltage exceeds a threshold value of 30mV, both
v andu are reset:

if »>30mV, then{ voee (2.16)
u — u-+d

wherec andd describes the after spike reset value ofzhikivech claimed
that his model can exhibit the firing patterns of all known typégortical
neurons with appropriate choices of parameiebsc andd (I1zhikevich, 2004).

2.3.5 Thorpe Model

Thorpe (1997) proposed a simplified Integrate and Fire spikewgon model
that has been simulated in SpikeNet software (Delorme & Th@p@3). The
model inherits the main concept from LIF but simplifies the&kieaperation of
the computational neuron. The neuron response dependd\eatirine arrival
time of pre-synaptic input spikes. The earlier input spik#ésct the PSP more
strongly than later spikes. In this model, each neuron is atloledire only
once and then is disabled. The model equation is as follows:

(1) = 0 iffired 2.17)
e > " wj Mod?™ else '

wherew;; is the weight of a pre-synaptic neurgrand M od is a parameter
called modulation factor within the intervgl 1]. Functionorder(j) represents
the rank of the spike emitted by neurgnTheorder(j) starts at O if the neuron
spikes first among all pre-synaptic neurons and then inesspoportionally
to firing time. The potential is reset ig = 0 after the neuron emits an output
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spike. Threshold value is set to= c - u;,., Whereo < ¢ < 1 andu,,,, IS the
maximum potential value can be reached by a neuron. Figursh2®8s the
PSP computation for the Thorpe neural model when a series of smikes
stimulates the neuron through different synapses. Whendtenpal reaches

a thresholdy, an output spike is emitted and the PSP is reset to O for the rest
of the simulation.

Spikes

smus| | (111 LT w1l

time ¢

Figure 2.8: PSP calculations in Thorpe’s model. Redrawn from (Schliebs, Defoin-
Platel, & Kasabov, 2009b).

2.3.6 Kasabov Model

Recently Kasabov (2010) introduced the Probabilistic Spikegron Model
(pPSNM) which is an extension of the LIF model with three additionak ne
probabilistic parameters. Itis illustrated in Figure 2s88ametep; ; represents
the probability that a spike from neurgnwill reach i, parametep;, is the
probability that synapséj, i) contributes to potential; after it has received
a spike from neurorj, andp; is the probability that neurohemits an output
spike when the total PSP reached the PSP threshold. The P%iataltis
shown in Equation 2.18.
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w(t) = Y Z ej9(P5i(t = p))f(PFi(t = p))w;i(t)

plf()7 t] 1,...,

+n(t —to) (2.18)

wheree; = 1 if an output spike has been emitted from neuyon(p;,(t))
collapses into 1 if the spike is propagated afigh ;(¢)) = 1 if the synapse
contributes to the potentialy (¢t — #y) representing the decay in PSP. If all
probabilities value are set tig the model is equivalent to the traditional spike
response model.

p] i
= el

| >
>

time ¢

Figure 2.9: Kasabov's Probabilistic Neuron Model.

2.4 LEARNING

This section describes several learning algorithms deslifisr SNN. Learning
in SNN is a complex process since information is represented im diepen-
dent spikes. Most of the SNN use recurrent network topologiesenbarning
is more difficult. Some of the learning algorithms are normbakyng applied
to a specific type of SNN due to its characteristic.
Similarly to learning in traditional neural network, learg in SNN is di-

vided into reinforcement, supervised and unsupervisegheSised learning
Is the most commonly used learning algorithm in SNN. Variousestiped
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learning algorithms have been developed for SNN and haveregewed by
Kasinski and Ponulak (2006).

2.4.1 SpikeProp

There have been some attempts to copy the Backpropagatiome@Ring al-
gorithm often used for the MLP. The SNN version of BP algorithmaHea
Spiking Backpropagation Algorithm or SpikeProp (Bohte, K&k Poutre,
2000). In MLP, training is the process to get the optimal $etamnection
weights while SpikeProp objective is to obtain a set of desirmgﬁlrimest;?

of all output neurong. The fitness function during learning is minimising the
error £ of the squared difference between training output tiﬂﬁésand desired
output timesJ:

B3 (ot -y’ (2.19)

J

and the error is minimised based on the computation of the weigﬂmsf
each synaptic input:

(2.20)

a dwfj
wherern represents the learning rate. Several extended versiomskafSop

have also been proposed such as the dynamic learning pargiet& Em-

brechts, 2001) and an improvement of the backpropagatlerf®hrauwen &

van Campenhout, 2004).

2.4.2 One-Pass Algorithm

The One-Pass Algorithm is proposed by Sguier and Mercier (20@Zol-
lows the time-to-first spike learning rule (Thorpe, 1997). thrs algorithm,
each training sample creates a new output neuron in an ouspubdm repos-
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itory. The trained threshold values and the weight patterrttat particu-
lar sample are stored in the repository. However, if the weigtiepaof the
trained neuron closely resembles a neuron in the repositavitl merge into
the most similar neuron. The merging process involves modjfthe weight
pattern and the threshold of the merged neurons to the aveedge. Other-
wise, it will be added to the repository as a newly trained neufidre major
advantage of this learning algorithm is the ability of thertea network to
learn incrementally new samples without retraining the aly¢eained samples
(Schliebs, Defoin-Platel, & Kasabov, 2009a). This algoritias been tested in
ESNN in several studies, such as for pattern recognition §dki®t al., 2006b;
Wysoski, Benuskova, & Kasabov, 2006a), speech recognitiors¢déki et al.,
2007), taste identification (Soltic, Wysoski, & Kasabov, 8)Gynthetic and
ecological problems (Schliebs, Defoin-Platel, & KasaboW)24) Schliebs,
Defoin-Platel, Worner, & Kasabov, 2009b, 2009a).

2.4.3 Spike Time Dependent Plasticity

Spike Time Dependent Plasticity (STDP) is a form of Hebbian Liegrwhere
spike time and transmission time are used in order to calctiiateutput of a
neuron. This unsupervised learning method was inspired the Hebb'’s law
(Hebb, 1949)..

When an axon of cell A is near enough to excite cell B and re-
peatedly or persistently takes part in firing it, some growtitpss

or metabolic change takes place in one or both cells such teat A
efficiency, as one of the cells firing B, is increased.

The Hebb’s law was studied by Bliss and Lomo (1973). Since thes, th
concept has been further researched and defined as theveffiests of the
synaptic activity in the brain caused by timing of pre- andtpgynaptic activ-
ity of a neuron. If a pre-synaptic spike arrives at the syrdmfore the post-
synaptic action potential, the synapse is potentiated amaity referred to as
long term potential (LTP); if the timing is the other way anaol) the synapse
is depressed and referred as long term depression (LTD) ¢starkLubke,
Frotscher, & Sakmann, 1997; Bi & Poo, 2001). A functiof(t, . — tpost)
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describes the STDP and is also referred to as the STDP window. hEmgje
of synaptic weight depends on the difference between theaatimae ¢,,. of

a pre-synaptic spike and the timg,; of an action potential emitted by the
neuron.

tpre —tpos 1
Ay exp(pT—ft) if tpre < tpost

2.21
A_ eXp(—tme;#) if tp?”e > tpost ( )

W (tpre — tpost) = {
where parameters, andr_ define the time interval of the pre- and post-
synaptic activity, andi, andA_ indicate the maximum fractions of synaptic
modification, ift,,.. — t,0. IS close to zero. More information on STDP can be
found in (Bi & Poo, 2001; Gerstner & Kistler, 2002a; Kempter, Gaes, &
van Hemmen, 1999)

2.4.4 Other Learning Algorithms

Some other learning algorithms, such as the Reinforcemeartriing mecha-
nism, can also be implemented in SNN. The learning process iemdad by
the interaction with the environment and is often used in tickapplications
(Florian, 2005, 2007; Seung, 2003; Xie & Seung, 2004).

On the other hand, Remote Supervised Method (ReSuMe) thatesl logis
the Hebbian concept is a new supervised learning method for @¥Nulak,
2005). The objective of ReSuMe is to generate a desired ingipid spike
pattern in SNN. For example, to respond to a certain input stimsjuscific
target spike trains are generated. Figure 2.10(a) depicts heurons. Neuron
nl acts as a learning neuron that receives spike sequences fpoeasynaptic
input neurom{" (i) and neurom?(i) acts as a teacher for weight;. If neuron
ni"(i) releases a spike followed by a spike from teacher neuf@n, then the
synaptic weightwy; is increased as shown in Figure 2.10(b). Figure 2.10(c)
shows the value ofy,; decreases if neuront” (i) spikes before the learning
neurona! is activated. Functionig’¢(s?) andiv!(s!) as shown in Figure 2.10(b)
and Figure 2.10(c) respectively determine the synaptic vwaighnge where
s? represent the difference between the spike times of inpubneti* (i) and
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teacher neuron?(i) ands'’ is the difference between the spike times of input
neuronni (i) and learning neuron.

Wi(s) Wi(sh
input ni" () teacher n?(i) \

"’ \
L,

L,

0

) | i) |

nd(i) n!

I Whi Wi
1

learner n

@ ®) ' ©
Figure 2.10: ReSuMe learning. Redrawn from (Ponulak, 2005).

2.5 LIQUID STATE MACHINE

LSM introduced by Maass, Natséger, and Markram (2002) is a concept
based on information accumulation. It is a form of reservomputing and is
constructed using recurrent network topology (Verstmaedehrauwen, D’Haene,
& Stroobandt, 2007). This method is following the conceptmixbing an ob-
ject into a cup of still water. Different objects (input) will pfoce different
waves (output) in the water.

In LSM, the liquid is a component consisting of a large collectidimter-
connected recurrent neurons that receive input and sendtdatpach others.
The synaptic weights, connectivity and neural parameterpeedefined and
fixed during simulation. The input spike&t) is propagated into the liquid and
this causes the neurons to respond and generate the ligilyad he liquid
snapshots, or normally referred as liquid stat&$, can be recorded at vari-
ous time points. Finally, a readout functigns applied to convert the liquid
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state to a desirable input format for the chosen learningrahgn or classifier.
Because of the ability of the network to accumulate both spatid time in-
formation, LSM can be used to solve spatiotemporal problesnrgjorted in
(Goodman & Ventura, 2006; Buonomano & Maass, 2009; SchliebstaNdn
& Kasabov, 2010). Figure 2.11 depicts the architecture of tB&IL

Liquid

Cl >
7 .

\J

Liquid State x(t)
Readout f
output v(-)

Figure 2.11: The LSM architecture. The input is injected into the reservoir and the lig-
uid state is extracted from the neuron activity inside the reservoir. Then,
the readout function is applied to the liquid state and transformed into a
required input format for processing - such as classification or clustering.

The LIF neuron model described in Section 2.3 is a well known rhfaie
LSM construction. Output spikes from neurons in LSM generageliSM
responses that are crucial for the decision making algosthime threshold
value plays an important role in the output spike constructi@acent study
by Schliebs, Nuntalid, and Kasabov (2010) suggests that apiigdiic neuron
may replace or complement the deterministic LIF neuron in thditional
LSM. In this model, threshold value changes over time anectgfthe output
spikes. Three probabilistic neurons have been proposediirstindy. The first
model is calledstep-wise stochastic threshol8T). The stochastic threshold
for this model is defined as

lim I(t) = ./\/’(190, osT) (2.22)

1D 1> 1(0)
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wheret/) is the firing time of the neuron and is a parameter of the model
that represents the standard deviatioW@j. After an output neuron fires, a
new threshold is sampled according to thecentered Gaussian random vari-
able.

The second model is thetochastic resetr noisy rese{SR). The reset value
v is dynamically modified according to Equation 2.23:

t_}ﬂ}ﬁ){itm u(t) = N(pr, osr) (2.23)
whereN (i, o) is a Gaussian distributed random variahiés defined as the
mean andr is the standard deviation. Parameter of the model is preségted

variableogp.

Continuous stochastic threshal@T) is the third neuron model. This model
continuously updates the threshal@d) over time following the Ornstein Uh-
lenbeck principle (Kampen, 2007). Equation 2.24 explains treputation
of the new threshold in this model.

Tﬂ% =99 — ﬁ(t) + ocTA/ 27‘195(15) (224)

where¢ represents the Gaussian noisgy is the standard deviation of this
model andj, —v(¢) is the distance where the threshold drifted to. Details about
each model and the experimental results can be found in thear§&chliebs,
Nuntalid, & Kasabov, 2010).

2.6 TOOLS AND APPLICATIONS OF SNN

SNN can be used in two different types of applications. The fyjse is to
use SNN for the understanding the principles of biologicalroes and brain
functions. The second type of applications are used for splveal world
problems. Hodgkin and Huxley (1952) pioneered the work in tha aefeeu-
roscience. The understanding and development of the nenodel has been
discussed in Section 2.3. Extensive reviews of the nervosteisyhave been
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well documented in (Gerstner & Kistler, 2002a) and (Carnevale &ehBlin
2006).

SNN has been successfully applied to many real world applicat@ns of
the applications is in robotic and control systems (Rogégkrimann, Thoma,
& Floreano, 2003; Alnajjar & Murase, 2005; Rocke, McGinley, Mamng &
Maher, 2007; Pearson et al., 2007) and power system problesystein iden-
tification (Johnson, Venayagamoorthy, & Mitra, 2009). loeomics, SNN is
widely used as a tool for prediction, as in yield predictiom(& Zhongjian,
2011) and in electricity price prediction (Sharma & Srirsiga, 2010). SNN
have also been applied forimage processing and detectemir{ét & Samuelides,
2002; Wu, McGinnity, Maguire, Valderrama-Gonzalez, & Dempsg&10;
Wysoski et al., 2006b) and speech recognition (Verstragdehrauwen, &
Stroobandt, 2005; Wysoski et al., 2007). The medical fielddtss made use
of SNN, whereby problems such as breast cancer detection (McGihkdy,
2010) and sound source localisation (Liu, Perez-Gonzalegs,Rerwin, &
Wermter, 2010) have been tackled. Furthermore, SNN has bsiedl e large
scale problems (Iglesias, Eriksson, Grize, Tomassini, & VAR0)5; Maguire
et al.,, 2007) and in spatiotemporal problems (Jin, 2004)er&thave been
also some attempts to develop a practical SNN processor ¢8aher, Ata-
soy, Mehrtash, & Klar, 2002; Pearson et al., 2005; Khan et aD820and
hardware development has been summarised in (Cawley et 41).20

Several software tools and libraries are available for SNNukitron. The
intention is to understand and simulate the neuron behaasun GEneral
NEural Simulation System (GENESISIGENESIS's provides a general plat-
form for neural system simulation and can analyse the availaiblegically
plausible neuron models. Another tool for understanding tmepdex biolog-
ical neuron is NEUROR! This tool simulates an individual neuron or a net-
work of neurons. The graphical user interface helps useradiyecreate and
manipulate neuron models with a wide range of complexity. For Sk\¢id
opment, Amygdafis one of the tools available and packaged as C++ library.
In this tool, several neuron models are offered to facdithie development of

1 Available at http://www.genesis-sim.org/GENESIS
2 Available at http://www.neuron.yale.edu/neuron
3 Available at http://sourceforge.net/projects/amygdala
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an algorithm. SpikeNNSs an SNN tool that implements SRM neuron model.
Simulations of spiking self-organising maps and multidagrchitectures can
be done using this software. This simulation tool also presiseveral learning
algorithms for SNN. Neuro-computing Decision Support Environtr{dleu-
ComYsoftware also has some modules with capabilities to simulate SN&. T
latest and most comprehensive SNN simulator is Bridrhis highly flexible
tool was written in Python which enables its integration with otoets. Nu-
merous neuron models and architectures can be rapidly gemeknd tested.
Brian provides more flexibility especially when dealing witrstandard neu-
ron models.

2.7 EVOLVING SPIKING NEURAL NETWORK

The ESNN is a type of neural network that follows the principle obBGhat
were first introduced by Kasabov (1998a). ECoS evolves its streittuough
incremental learning. In EC0S, new connections and newansreated in the
process of learning and are modified to accommodate any newdlapa, fea-
tures or classes. The incremental one-pass learning dgoistemployed due
to the evolving characteristics of the network. Numerousaveis and applica-
tions of ECoS have been developed over a decade long periegeTihclude
the fuzzy neural network (Kasabov, 1998b), self-organisingsri®eng &
Kasabov, 2000) and dynamically evolving fuzzy systems (Kesab Song,
2002). More information on ECoS can be found in (Kasabov, 2@0d the
development of ECoS has been reviewed by Watts (2009).

Stimulated by ECoS and SNN, the ESNN architecture was introduced in
Wysoski et al. (2006b) whereby SNN evolves its structure thindegrning.
Like SNN, the ESNN architecture consists of a data encoding methetd
transforms real value data to spike trains, neuron modelearding method.
For the encoding methods, ESNN utilises the Rank Order Popul@baing.
Areal-value input is mapped into several pre-synapticimgurons. Each pre-
synaptic input neuron holds a spike, which calculates basetieo Gaussian

4 Available at http://cortex.cs.nuim.ie/tools/spikeNNS
5 Available at http://www.theneucom.com
6 Available at http://www.briansimulator.org
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Algorithm 1 Training an ESNN
Require: parametei/od;, C;, Sim; for a class label
1: initialise neuron repository; = {} for class/ data
2: for all samples belonging to classdo
3:  Encode input samplesanto firing time of pre-synaptic neuronsusing
Equation 2.3

4.  Calculate the connection weights using Equation 2.25

5. Calculate the maximum possible potential according to EquaB.26
6: Calculate threshold based on Equation 2.27

7:if min(d(w®,w®)) < Sim;, w® € R, then

8: w®) + mergew®andw® according to Equation 2.28

o: ?*) « mergevandy®) according to Equation 2.29

10: else

11: Add the new neuro®; < R; U {w®}

12:  endif

13: end for

intersection as described in Equation 2.4. Figure 2.5 shovesample of how
an input value of 0.70 is encoded into five pre-synaptic nesiro

As for the learning, one-pass learning has been selected andsitveell
the purpose of ESNN, which is to have a fast learning algorithmishsifiit-
able not only for offline, but also for online applicationshel objective of
the learning is to create a repository of output neurons withsditsels. For
each input sample, one output neuron will be created duringilear How-
ever, output neurons in the repository evolve accordingéo thieight vector
similarity with other output neurons. The learning procelSE®NN is shown
in Algorithm 1 as described by Schliebs, Defoin-Platel, Woraed Kasabov
(2009a).

The training starts with initialisation of three ESNN param&tanodulation
factor (Mod), proportion factor () and similarity value §:m) in the interval
[0,1]. Every sample that belongs to the same clasis encoded into several
pre-synaptic input neurons The value of weightv; is computed according
to the Mod; andorder(j). Mod; is the modulation factor of the Thorpe neural
model. Theorder(j) represents the rank of the spike emitted by neyrdfor
example, the first spike will be assigned withrsecond... and so on.
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w; = (Mody)°r ") v j | j pre-synaptic neuron of (2.25)

Based on the weight computed, the maximum possible B3P is calcu-
lated using Formula 2.26

Umar = Y wj(Mod;)*r ) (2.26)

J

The firing threshold is calculated as follows:

v = Cl'umam (227)

where(; is the proportion factor with a value betwegni|.

As the training process continues, every sample producestpatmeuron.
The similarity of output neurons is calculated according ®Huclidean dis-
tance between the weight vector of the neurons. The pararsietecontrols
the similarity distance. If a certain neuron is considereddimnilar to others,
it will merge with the most similar one. The merging process e the
calculation of the mean of the weight vector (Equation 2.28Wwell as the

threshold value (Equation 2.29)N represents number of samples previously

used to update output neurén

w o wptNe? -
w;” i Vj | j pre-synaptic neuron of (2.28)

) k
e 90 + Noyk)

T (2.29)

Figure 2.12 shows a simplified architecture of ESNN where eaclt iglue
Is encoded into multiple pre-synaptic neurons. This preeal transform in-
put values into a high dimensional structure where each ymraptic neuron

35
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generates a certain spike at a firing time. The firing time isutaled using
the intersection of the Gaussian function with the input valBased on the
firing time, a weight for each connection to the output neurageiserated. In
the training process, the output neuron stores the computigghtngd all pre-
synaptic neurons, a threshold value to determine when theioaguron will
spike and the class label to which the input sample belongbeltesting pro-
cess, similar to the training process, each testing sampeledasded to spikes
by the multiple pre-synaptic neurons. Then, the PSP of theubetpss neu-
rons is calculated. Once the neuron receives certain amégpilkes and the
PSP exceeds the threshold value, it fires an output spikeenmhies disabled.
The testing sample belongs to the output class defined bytbetneuron that
fires first among all output neurons. The major advantageSbdiNEare its fast
learning and ability of the trained network to incrementédigrn new samples
without retraining (Schliebs, Defoin-Platel, & Kasabov, 28D9

Input sample Receptive Pre-synaptic Evolving
fields neurons neuron repository

0.721 |——

Class 1

Class 2

1.793 b——

Figure 2.12: A simplified architecture of ESNN.

ESNN is widely applied in classification tasks, such as facegmition
(Wysoski et al., 2006b), person authentication based orwisdal informa-
tion (Wysoski et al., 2006a), taste recognition (Soltic let 2008), ecologi-
cal problems (Schliebs, Defoin-Platel, Worner, & KasaboW Q@) and has
achieved better results than traditional methods. ESNN ad @ general
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have a potential for solving complex problems. They were alsteten Maass
(1997); Thorpe et al. (2001); Bohte and Kok (2005); Belategsdhaguire, and
McGinnity (2006); Brette et al. (2007).

2.8 SUMMARY

This chapter has discussed the principle elements of SNNrhalso the core
elements of ESNN. ESNN inherits some SNN’s components, particulaidy da
encoding methods and neuron models. However, the unique egd@rincture
of ESNN makes this classifier able to retrain on new data sampleswtith
having to use the entire dataset. Another advantage of thisaués the one-
pass learning that enables the classifier to learn quicklyeder, it can direct
the classifier to unsatisfactory results because of the fpedmeter setting
during learning. If the parameter is incorrect, it is haréthieve the optimal
result. Because of the optimal parameters are crucial in ESINNgptimiser
IS hecessary.

In the next chapter, the optimiser for the classifier will becdssed. There
are many optimisers available and some with extensive motidica Choos-
ing an optimiser is equally important to choosing the classitself. With
the right combination, they produce a stable architectak more accurate
results.



REVIEW OF QUANTUM-INSPIRED EVOLUTIONARY
ALGORITHMS AND SPIKING NEURON METHODS

This chapter discusses the Quantum-inspired PSO (QiPSO)thearsasics of
PSO are introduced and followed by a discussion of the fundéahelements
of quantum computing. Second, the concept of the Quantum-etsgivolu-

tionary Algorithm (QEA) is explained followed by the explanationQ@PSO

that inherits some elements from PSO and QEA.

3.1 INTRODUCTION TO EVOLUTIONARY ALGORITHMS

An Evolutionary Algorithm (EA) is essentially an algorithm insgir by the
principle of natural selection and natural genetics (Galgh&989). EA is
a population-based search method that simulates the bialogyolutionary
process and mechanisms such as selection, recombinatidation and re-
production in order to solve optimisation problems. In EAgleandividual in
a population plays a role as a candidate solution for the tamdlem. Each
individual is evaluated by a fithess function that determitesjuality. The
best individual will be selected as a parent for reproduabiomew individuals
or solution candidates. Parents reproduce by undergoiegbpns such as re-
combination and mutation. Recombination sometimes redesis crossover, is
a process where two selected parents exchange chromosommatit;m and
this results in one or two new candidate solutions. Mutationrespaoduction
process that involves only one parent where information oetie material is
randomly altered to produce new offspring, i.e. candidatet®ns. The new
candidate will then compete with other candidates to achievbekefitness
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in the next generation (iteration). This process is repeatil a stopping cri-
terion is met such as maximum number of generations is reamh& targeted
solution has been found.

Several population-based algorithms that follow the EAcsqt have been
introduced. Amongst all, GA is arguably one of the most commasgd
evolutionary techniques and it has been utilised in manyjiedmwns. The GA
concept was first studied in 1960s and became popular aftatiale was pub-
lished by Holland (1975). The original idea came from the bimabevolution
process. GA exploits the idea of the survival of fittest whes belutions are
recombined with each other to form new better solutions. Toegss in GA
starts when a population of chromosomes is created, thenmdieldual’s fit-
ness is measured. There are two approaches for the reprodsetamge. The
first approach, called mutation alters the current statecbf@amosome to pro-
duce a better candidate. The second approach is crossowe e process
selects two chromosomes and the information from both chsmmes is ex-
changed to create two new chromosomes. The fitness of the nawdurad is
then evaluated. The process is repeated until the stop canditioet.

Another population-based technique that is attracting rattemtion recently
is Swarm Intelligence (SI). Sl is defined as any attempt to deaigorithms
or distributed problem-solving devices inspired by the atile behaviour of
the social insect colonies and other animal societies, as@mnt colonies, bird
flocking and school of fish (Eberhart & Kennedy, 1995; Bonabd2origo,
& Theraulaz, 1999). This population system is made up froroufation of
candidates interacting with each other in the swarm and leadgtobal be-
haviour. Algorithms in this category are: Particle Swarm Optatia (Eberhart
& Kennedy, 1995), Ant Colony Optimisation (Dorigo, Maniezzo, &IGrni,
1996), Fish School Algorithm (Li, Shao, & Qian, 2002), Bee Cgl@pti-
misation (Karaboga, 2005) and Firefly Algorithm (Xin-She, 2009owever,
among all these algorithms, PSO that pioneered the SIvetie most atten-
tion because of its relative simplicity and effectiveneédsrgh & Engelbrecht,
2000).
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3.2 PARTICLE SWARM OPTIMISATION

3.2.1 Principle of PSO

PSO is one of the algorithms based on the EA concept and wasntis-
duced by Eberhart and Kennedy (1995). PSO is a biologicallyiredpech-
nique based around the study of collective behaviour inmtegksed and self-
organised animal society systems. The systems are typicallerap from a
population of candidates (particles) interacting with onether within their
environment (swarm) to solve a given problem. The patrticle is inigdlisy
assigning random positions and velocities to particles@otdntial solutions
are then flown through the hyperspace. Unlike GA, PSO has no evolyion
erators such as crossover and mutation. In PSO, each partictediaswn
fitness value calculated during the optimisation procesktha best fithess
value achieved so far is stored and normally referred to esopal best or in-
dividual best fbest). The overall best fitness value obtained by any particle in
the population so far is called global begidst) and it stores the best solu-
tion. The particles learn over time in response to their owpeernce and the
experience of the other particles in their group (Fergu2004). According
to Eberhart et al. (2001), each particle keeps track of it$ fimess position
in hyperspace that has been achieved so far. During each itefatiepoch),
every particle is accelerated towards its quiest as well as in the direction of
thegbest position. The value gfbest andgbest would influence the direction of
the particle in the next iteration (Bergh & Engelbrecht, @0 his is achieved
by calculating a new velocity term for each particle basetherdistance from
its pbest, as well as its distance from théest position. Figure 3.1 shows the
basic PSO procedure.

In order to create a swarm afparticles, at all time pointg each particle:
has:

1. A current positionx,,
2. A velocity directionV,

3. Arecord of its own previous best positipbest,,
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4. Arecord of the previous best position of any member in its gipust,,

Initialise population
positions and velocities

—pl

— Evaluate every
particle fitness

4

If particle fitness
better than personal
best (pbest)

{ No

Update particle

Yes
—

Update
pbest

If pbest
better than global
best (gbest)

Yes
—

Update
gbest

If gbest
meets stopping
criteria

No

velocity and position

Y

Maximum iteration

| Yes

Exit learning <

Yes

Figure 3.1: PSO flowchart.

Given the current position of each particle, as well as othermimnédion,

the problem is to determine the change in direction of théges. As men-
tioned above, this is done by reference to each particle’seoyprrience and its

companions. Its own experience includes the directipand its ownpbest,,

position. The experience of others is represented by thgobegous position
of any member in its grougbest,,. This suggests that each particle might move

to the direction of:
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1. The same direction that it comes fram
2. The direction of its previous best positipest

3. The direction of the previous best position of any membatsigroup
gbest

The next trajectory vector of a particle is calculated ustggation 3.1. This
is a formula modified by Shi and Eberhart (1998a) from the origgn@posed

formula where an inertia weight is added to control the speed of the velocity

movementrand; andrand, are two uniform random numbers in interv@li].
c1 andcy are constants called the cognitive and social parametersah&ol
the exploration direction betweeficst andgbest.

Vitt1 = w-Vyp+cp-rand; - (pbest — Xp 1) + c2 - randy - (gbest — Xp 1) (3.1)

Then, the new position of the particle will simply be:

Xngr1 = Xpg + Vg (3.2)

Given the initial values of,,, V,,, pbest andgbest, Equation 3.1 and Equa-
tion 3.2 will determine the subsequent path that each particlearstfarm
will follow. To avoid particles flying beyond the boundary, thelocities are
clamped to a maximum velocity,,.. (Eberhart, Shi, & Kennedy, 2001). If
the sum of accelerations causes the velocity of that dimerisiexceed/,,, .,
which is a pre-defined parameter, then the velocity is limited,ig..

3.2.2 A Computation Example

Figure 3.2 and the following computation demonstrates hoartigbe (Particle

A) moves to the solutiopbest in a 2D space problem and is recalculated from

an example in Jones (2005). In this example, parameter 1.0, ¢; = 0.5
andcy = 1.0. Since the value of, is higher thanc;, Particle A will give
more weight to the global solution. Assume that Particle A veloediue
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calculated in previous iteration i3, ; = (0,1). Particle A current position at
coordinate(z,y) is (10,5) as shown in Figure 3.2(appest value (5,13) and
gbest at (15,13). First, the velocity vector must be updated for the current
iteration using Equation 3.1.

Calculate the velocity,, ;+, of Particle A:

Viggr = w-Vyy+c1-randy - (pbest — X;) + co - rands - (gbest — X;)
— 1.0-0.0+0.5-0.10 - (5.0 — 10.0) + 1.0- 0.35 - (15.0 — 10.0)
— 1.0-0.0+0.05- (—5.0) + 0.35 - (5.0)
= 1.0-0.0+ (—0.25) 4+ 1.75
= 1.5

Calculate the velocity;, ., of Particle A:

Vyitr1 = w-Vyi+cr-randy - (pbest — X)) + co - rands - (gbest — X))
= 1.0-1.0+0.5-0.45 - (13— 5.0) + 1.0 - 0.20 - (13.0 — 5.0)
= 1.0-1.0+0.225 - (8.0) +0.20 - (8.0)
= 1.0-1.0+1.80 4+ 1.60
= 44
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Based on current velocity value of Particlel = (1.5,4.4), the particle
position is updated using Equation 3.2

TAl = Tap+Va
= 10.0+1.5
= 11.5

YAi+1 = Yar+Va
= 50+44
= 94

The new position for Particle A (11.5, 9.4) is shown in Figur&(B).

Position t Position t+1
14 14 _|
[ )
124 pbest (5,13) gbest (15,13) 124 pbest(5,13) gbest (15,13)
10 10 ]
o
| s Particle A (1.5, 9.4)
y y

6| 6]
44 Particle A (10, 5) 4
2_| 2_]
0 T T T T 0 T T T T

5 10 15 20 5 10 15 20

X X

Figure 3.2: Particle movement in 2D space problem.

It is apparent that PSO shares many common features with GA. Both algo
rithms start with a randomly generated population, and useess function to
evaluate the population. Both methods update the populatidrall individual
search for the optimum solutions. However, PSO patrticles ugbataselves
with the internal velocity, and have memory as storage of histtm PSO,
gbest shares the information with others in the population. This esgbarti-
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cles in PSO more intelligent due to the information sharireghanism and all
the particles tend to converge to the solution representedest quickly.

3.2.3 Applications

1 4

Calculate velocity and update position

Initialise particle positions
based on gbest and pbest

(weight vector)

2.3564 321 | €
-0.9752 6.6531 6
6.0059 -9.5213 Repeat step 3, 4 and 5 until reach
4.2651 2.9635 :
31539 3.5741 targeted learning error/accuracy or
1.1557 5 0.9875 __maximum number of iterations
Particle 01 Train neural network l
Particle 02 using new positions
3
' Evaluate fitness and set gbest
Total nu‘mber > g
of particles > and pbest. If gbest acheived
2 targeted learning objective,
Train neural network using stop learning
initial particle positions

Figure 3.3: A diagram of neural network learning using PSO.

Initially PSO was tested on parameter and function optimisati&im &
Eberhart, 1999; Angeline, 1998; Clerc, 1999). Later, therdlgm has been
widely applied for the neural network learning such as in B€iP99); Bergh
and Engelbrecht (2000); Zhang, Shao, and Li (2000); Merdedez, Rocha,
and Neves (2002); Gudise and Venayagamoorthy (2003); MejsSctemuker,
and Schneider (2006). The particle’s position represestptbblem to be op-
timised such as weight in neural network learning. The partidees within
the weight space attempting to minimise the learning errbarn@ing the posi-
tion implies updating the weight of the network in order to reglthe error of
the current iteration. The new position thus uses a set ofmeghts to obtain
the new error. The particle with the lowest error is normally cd&red as the
global best solution. The training process continues gatilsfactory error is
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achieved by the best particle, or when computational limmés@ached. When
the training ends, the weights are used to calculate theifotasi®n error for

the training patterns. The same set of weights is used then tohtestet-
work using the test patterns. A diagram representing ANN with P&ileg
process is shown in Figure 3.3. Figure 3.4 shows the particle mevedur-

ing learning when the ANN-PSO is applied to a simple Exclusive OR (XOR)
problem. All particles are trying to reach the lowest errorgiule.

— Particle00
— Particle01
Particle02

Particle03

Particle04
— Particle05

— Particle06

Particle07

Particle08

Error

Particle09
Particle10
Particle11
Particle12
Particle13
Particle14
Particle15
— Particle16
Particle17
Particle18

Particle19

0 5 10 15 20 25 30 35 40 45 50
Iterations

Figure 3.4: Particle behaviour during learning process.

Because of its efficiency and simplicity, PSO has also be@tieapbas an
optimiser in many other applications such as in engineerorgrol systems
(Yoshida, Kawata, Fukuyama, Takayama, & Nakanishi, 2000; k@& Chris-
tod, 2005; Valle, Venayagamoorthy, Mohagheghi, Hernangiéiarley, 2008),
multiobjective optimisation (Coello, Pulido, & Lechuga,d) Hu & Eberhart,
2002), biomedical applications (Wachowiak, Smolikova, @ineZurada, & El-
maghraby, 2004; Zainud-Deen, Hassen, Ali, Awadalla, & Shay2088), im-
age classification and clustering (Omran, Engelbrecht, & 8aJr&006; Peng-
Yeng, 2004) and others. However, despite recent researchesxetbgment,
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there is still an opportunity to enhance the methods forrpatar optimisation
and feature selection tasks.

3.3 QUANTUM-INSPIRED ALGORITHMS

Information in the physical world is represented by somesptal system.
Quantum information represented by quantum physical systkifiess from
its classical counterpart in many notable ways. For exangulantum infor-
mation cannot be cloned arbitrarily (Wootters & Zurek, 1p&ince classical
computing can be described as manipulating classicalnrdton, quantum
computing is, in the same spirit, manipulation of quantunoiinfation. It is
possible that the properties of quantum information can tehesolve some
computational tasks more efficiently than when classicalrimédion repre-
sentation is used. In fact this was suggested already inrkrayr(1982), but
the most interesting example was given in a very remarkabtodssy where
Shor (1994) demonstrated that quantum computers would affaieat inte-
ger factorisation, a task assumed impossible for classif@imation process-
ing. Several notable quantum algorithms are presented in kale (2001)
and Nielsen and Chuang (2000). It is worth emphasising hetethbaeffi-
ciency of quantum computing comes from the ingenious useeo$tiperposi-
tion principle, not from the high "clock frequency” of quant.computers.

While there are certain technological limitations and asdglity problems
related to quantum computers, the quantum information s have been
proved to be useful for the development of new evolutiongoynaisation al-
gorithms that run on contemporary computers (Nielsen & Chuaa00; Hir-
vensalo, 2001; Han & Kim, 2002; Jang, 2004; Talbi, Draa, & Bateyu@006;
Defoin-Platel, Schliebs, & Kasabov, 2007; Abs Da Cruz, VellascBag&heco,
2007; Luitel & Venayagamoorthy, 2010). As shown in Narayand@99)} in
relation to classical neural networks and Kasabov (20079RB0relation to
spiking neural networks, quantum computing principles Hasen seen as a
source of inspiration for novel computational methods. Teaxmous quan-
tum applications are the factorisation problem (Shor, 129# the Grover’s
database search algorithm (Grover, 1996).
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3.3.1 Quantum Computation Principles

In classical computing, information is represented in Witere each bit must
hold a value of either O or 1. However, in quantum computing, infdrom
is instead represented by a quantum bit (qubit) where the vdlaesmgle
qubit could be 0, 1, or a superposition of both (Hey, 1999). eBopsition is
a state that represents both 0 and 1 simultaneously baseeéioprbbability.
The quantum state is modelled by the Hilbert space of wavetiimecand is
defined as:

[¥) = l0) + B[1) (3.3)

wherea andg are complex numbers defining probabilities at which the cor-
responding state is likely to appear when a qubit collapsesnstance, when
reading or measuring the state. Probability fundamentads that«|? +|3]? =
1, where|a|? gives the probability that a qubit is in the OFF (0) state &l
gives the probability that a qubit is in the ON (1) state.

3.3.2 Quantum Gates

The probability ofa and s can be modified by applying quantum gates. Sim-
ilarly to classical logic gates that perform conversionragiens in classical
logic computation, quantum gates execute conversion bperan qubits.
Several quantum gates are available and some are desigreeddecific:-bit
problems. The NOT-gate is the most commonly used gate in clhssicaits.
This gate simply inverts the qubit value, changing it from @ tor from 1 to
0. For qubit problems, a NOT gate has the capability to exchdhng prob-
ability in the superpositioned states. For example, chanthe probability
that the qubit will collapse ab > with the probability of collapse &t >,
al0 > +3|1 > becomes3|0 > +a|l >.

The Walsh-Hadamard Transformation Gate is simply refered tisealdada-
mard Gate. This gate is designed for one bit transformationlgmaband is
widely used in quantum computation problems. The objective isaoepthe
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un-superpositioned qubit into a superposition/iof> and |0 > states. The
transformation is defined by the Hadamard matrix in EquatidnBhe role of
Hadamard gates in quantum computation is discussed in Stte{ZG96).

1 (1 1
RN s

The second quantum gate is the general-purpose Rotation GateRdkth-
tion Gate is dependent on the valuand the transformation is conducted using
Equaition 3.5.0 is the quantum angle that will be discussed in Section 3.4.2.
In Zhang, Zhang, Rong, and Cheng (2010), the authors presetypes of
rotation gates that are derived from the standard archrectin interesting
investigation is conducted to compare all gates on imagessgkecomposition
problems. The experimental result shows that the QR-Gate5 tjiedsest re-
sults in term of the best visual quality and the highest pagkad to noise ratio
on the constructed images.

Up =

cos(0) —sin(0)
3.5
sin(0)  cos(0) ] (35)

Apart from these two commonly used gates, there are some aibes, dor
example, the Phase shift Gate where one component is changadivehe is
dissimilarity between two events. The Toffoli gate (Toffdl880) applies NOT
operation and is mostly used in reversal tasks where inpubatmlt matrix
must be of the same dimension. This gate is normally formedraetiqubit
format and only reverses the third qubit if the two qubitsiarthe |1 > state.
Similarly to the Toffoli gate, the Fredkin gate (Fredkin &ffiai, 1982) is also
designed for reversal operation. This three-qubit gateswlze last two qubit
if the first qubit is in the|1 > state. However, there is no swap operation if
the first qubit ig0 >. There are a few other quantum gates such as Controlled
NOT gate, Square-Root-NOT gate, Pauli gate and Swap gate. All tjatse
are explained in many quantum computation publications siscBarenco et
al. (1995) and Nielsen and Chuang (2000).
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3.4 QUANTUM EVOLUTIONARY ALGORITHM

QEA was inspired by the concept of quantum principle and wasilaoised
by Han and Kim (2000). Since then, this technique has attractedttie a
tion of many researchers around the world due to its manyrddgas when
compared to the classical EA. Building up on the basic EA cph@@EA is a
population-based search method that simulates a biologyotution process
and mechanisms, such as selection, recombination, mutattbreproduction.
Each individual in a population plays a role as a candidatdisoland its fit-
ness to solve a given task is evaluated. However, instead af tesathnumber,
information in QEA is represented in qubit. The value of a sirglbit could
be 0, 1, or a superposition of both. A single qubit is the smiaifdsrmation
unit and can be defined z{%} which satisfies the probability fundamentals
stating thata|? + |3|> = 1 as explained in Section 3.3.1. A QEA individual is
represented as a qubit vect@; """ g]’j] wherea andj are complex numbers
defining probabilities at which the corresponding states amedylito appear
when a qubit collapses, for instance, when reading or measisinglue. N
represents the problem dimension. Figure 3.5 describes QEAnas origi-
nally explained in Han and Kim (2002) and later applied in Defdiaié? et al.
(2007).

The three levels of QEA are the individual, group and populatigalleAn
individual i generated at timeholds a string of qubit oV number -Q;(¢) as
in Equation 3.6.

The probability value of3/|? will determine the state when a qubit col-
lapsed.C;(t) represents the collapsed value that will be used to determine the
fitness ofi. Attractor A;(¢) always keeps the best solution for a particular indi-
vidual:. In every iteration, the fitness af;(¢) and 4;(¢) are compared. If the
fitness value of4;(¢) is better thart;(¢), then the qubit 0);(¢) will be updated
using the rotation gate update technique described by Eouaty. In this sit-
uation, the value of);(¢) will be moving to attractor;(¢). In contrast, ifC;(¢)
fitness is better than;(¢), A;(¢) will simply be replaced by’;(¢). The rotation
angled determines the direction of rotation (clockwise for negatakies and
bounded in the range @f, 7 /2](Han & Kim, 2003). In the second level which
is referred to as a quantum group, there will be severadividuals. The
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best attractor from the grou®,,..,, will be stored and used to update another
individual attractor in the group. Finally, in the top poptida level several
groups create a population and the best attractor among t@SB,;,.; 1S
stored. Byoup, aNdBye Will be evaluated periodically during the optimisa-
tion process. QEA have been reported to be successful for gobamplex
benchmark problems (Feng, Wang, Ge, Zhou, & Liang, 2006; AbsiDa &t
al., 2007), multiobjective optimisation (Talbi et al., Z)Xim, Kim, & Han,
2006) and several real world problems (Jang, 2004; Fan a2l O'Sullivan,

& O’Neill, 2007; Gu, Gu, Cao, & Gu, 2010).

a2 .0 al
Qi=Q;Q7 ... QY = [gl 22 EN] (3.6)
od(t+1) | | cos(A8)  —sin(A0) | | of(t) (3.7)
Blt+1) | | sin(A)  cos(Af) B (t) '

Several modification on QEA have been proposed. Some new eiehmare
been added to improve search robustness and to provide bettezrgence
during optimisation (Han & Kim, 2004; You, Liu, & Shuai, 2006; ri§uXu,

& Fang, 2006; Xiao, Xu, Chen, Zhang, & Pan, 2009). Defoin-Platell.et a
(2007) and Schliebs, Defoin-Platel, Worner, and Kasabov4ap@roposed
an extended version of QEA called Versatile QEA (VQEA) and appliedot
ESNN optimisation. The result produced a faster convergemtee optimal
solution with better accuracy when compared to traditionakalenetworks
such as MLP and Nae Bayesian Classifier (NBC). Some principles of quan-
tum computation and QEA have been also implemented in other welkn
optimisers such as GA and PSO.

3.4.1 Quantum Genetic Algorithm

Adapting the principle of GA and quantum computation, the Quantspired
Genetic Algorithm (QiGA) was first discussed in Narayanan and M{$#86).
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Algorithm 2 QiGA procedure
1: Create population with-number of qubit chromosome
Do
Evaluate each individual's fithess
Select two individual with the best fithess
Execute the quantum crossover operation
Execute the quantum mutation operation
Check for termination criteria
While (stopping criteria not met)

o ukhwnN

The development of QiGA has been described in Zhang, Li, Jin, ar{@06),
starting with the introduction of QiGA concept and theory (Nar@gn & Moore,
1996), implementation of quantum operator (Han & Kim, 2000oduction
of parallel QiGA (Han, Park, Lee, & Kim, 2001), improving perfante with
guantum crossover and quantum mutation (Li & Zhuang, 200®Rjtiqubit
encoding and dynamic rotation angle mechanism (Yang, Li, &afig, 2003)
plus other improvements on QiGA such as in Zhang et al. (20G#6); Li-juan,
Ru-chuan, and Zhong-gen (2009).

The solution candidates or the chromosomes are presentectaag of
qubits and the quantum operations are applied to the chrmmes A series of
chromosomes assemble the population. Then, every chroneoisayuided by
the classifier or other algorithms to solve the given probl&éhe chromosome
update strategy is based on the standard GA. The parents areeddlased
on their fitness to create new offspring chromosomes. Algorithex#ains
the general QiGA procedure and further detail about QiGA algosthan be
found in Li and Wang (2007); Layeb and Saidouni (2007); Gu, G, Gu
(2009).

Several advantages of QiGA, such as good searching capability,capid
vergence, required small population size and short computétiee are dis-
cussed in Narayanan and Moore (1996); Han and Kim (2000); Li dniag
(2002); Zhang, Jin, and Li (2003); Jian et al. (2009). The application of
QIGA was to solve travelling salesman problem (Narayanan & iMob996).
Other applications of QIGA are engineering problems (Vlachogsa&rster-
gaard, 2009; Lee, Lin, Liao, & Tsao, 2011), image processifajb{, Ba-
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touche, & Draa, 2004; Benatchba, Koudil, Boukir, & Benkheld&0@&) and
scheduling (Li & Wang, 2007; Gu et al., 2009).

3.4.2 Quantum-inspired Particle Swarm Optimisation

Quantum principles have been embedded into PSO as a mechamishe f
probability calculation and normally referred to as QiPSO. TRSO con-
cept was first introduced in Sun et al. (2004). This conceptdeen extended

in Gao and Diao (2009) who employed the quantum principles expldiged
Han and Kim (2002). The main idea of QiPSO is to use the standard PSO
function to update the particle position represented asamtgm angle 4).
The quantum anglé has normally been used in quantum-inspired optimisa-
tion algorithms to calculate and update probability angémesented a@} .0
corresponds to the angle in the trigonometry and is bound#uetbrst quad-
rant. Figure 3.6 shows an example where the probability is coatowvhen the

6 = 40°. Coordinates x and y represent the cosine (cos) and sine éu® ke-
spectively.[4] = [©*)] satisfies the probability fundamental|of?+[3/? = 1

sin(0)

and can be substituted with Equation 3.8.

|sin(0)]? + |cos()* = 1 (3.8)

For 6 = 40°, cos(8) = 0.766 andsin(d) = 0.643. Following the consideration
of Equation 3.8, new probability ef obtained is 0.587 andis 0.413.

In QIPSO, changes of the during learning process is crucial to measure
next qubit collapse state. The formula for velocity updatetamdard PSO is
modified to get a new quantum angle which is translated to thepnebability
of the qubit by using Equation 3.9. Thg,,: represents the best angle stored
in asgbest andb,;.<; is the best angle found by the particle.

AbOp 41 =w-Aby 1+ c1-randy - (Oppest — Onyt) +c2-randz - (Ogpest — Onye) (3.9)
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90°
y N

0643F------------
sin (8)

Figure 3.6: Quantum computation of probability.

There are two approaches to updating the curteht the first approach, the
new quantum angle is determined by using a modified standa@lgdsition
update formula (Equation 3.10). Then, based on the fi@mgle, the new
probability of« ands can be calculated using Equation 3.8.

6n,t+1 = Hn,t + Aen,t (310)

The second approach uses a quantum gate to compute the fiéw most
commonly used quantum gate in quantum probability computagidine ro-
tation gate. Based on the neiwelocity, the new probability ofv and s is
calculated using a rotation gate as shown in Equation 3.11.

A+l e (3.11)
Br+1 B
Figure 3.7 presents an example of the qubit update in QIPSO usiaijon

gate. In this scenario, the previous anglat timet was assumed to ke°.
After computing direction changes using Equation 3.9, ckanghe angle\d

cos(Af) —sin(A0)
sin(Af)  cos(Af)
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Is found18°. The new probability ofr and 3 is calculated after applying the
Rotation Gate in Equation 3.11

9
sin ()
0.375

Figure 3.7: Quantum angle update in Trigonometry.

1| -COS(AH) —sin(Af) o
Br+1 sin(Af)  cos(Af) Bt
 [eos(18°) —sin(18)] [0.927
sin(18°)  cos(18°) 0.375
~ Jo.951 —0.309] [o.927
0.300 0.591 | |0.375
o766
0.643

Derived from Equation 3.8, the final probability is:



3.5 PRINCIPLES OF QUANTUMINSPIRED SNN 57

2 — -

a]  [o.766

Bin 0.643

[0.587]
0.413

After the probability ofa and 3 is obtained, a random value within the in-
terval [0, 1] is generated to observe the collapse state. A collapse staters dete
mined using the rule described in Equation 3.12 and is usealte the given
problems. Similarly to the standard PSO, the particle with trst fimess in
the entire swarm will be assigned @gst particle. The best fithess found dur-
ing learning for every individual particle is stored;asst. These two solutions
will be used for newy and s probability computation in the next iteration.

0, ifrandom> |a|?
C = (3.12)
1, if otherwise

QIPSO has been tested with promising results on several preldaoh as
benchmark functions (Yang, Wang, & Jiao, 2004; Wang & Zhd@Q72 Pant,
Thangaraj, & Abraham, 2008; Liu & Ma, 2008), benchmark protderu,
Tian, & Yin, 2006; Wang, Zhang, Niu, & Yao, 2011), control syste(Wikki
& Kishk, 2005; Ma, Liu, & Lin, 2007; Jeong, Park, Jang, & Lee 020, eco-
nomic applications (Meng, Wang, Dong, & Wong, 2010), imagersagation
(Lu, Liao, & Chen, 2007) and fuzzy system (Wang, Yang, Xu, & S2007;
Tang & Xue, 2008)

3.5 PRINCIPLES OF QUANTUMINSPIRED SNN

The quantum computation principles are explained in Secti®ri 3Qubit in-
formation representation can be applied to the applicatioat require changes
in its states during learning. The principle of feature sid® and parameter
optimisation of SNN using quantum representation and quarmpenations
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was first introduced by Kasabov (2009). As illustrated in Eque8dl3, a
string of qubits ;) is used to represent the whole feature sgt &nd each
feature is mapped into a single quhit.defines the probability of the collapse
state measured using Equation 3.12. Collapse value of ggsepts the fea-
ture is used for the learning process while 0 means the featutisdarded.
The same representation is employed for parameter optimmsatiqgoopula-
tion of qubits is used to represent a real value parameteg. cbHapse qubit
states correspond to a set of binary strings, which are |@eslated into a real
value. Further discussion on the implementation of QiISNN fplas with the
proposed integrated framework between ESNN, PSO and QiPSO, wheeby
rameters and features are optimised simultaneously isigBed in Chapter 4
and Chapter 5.

Qi1 Q2 ... QN
i
a1 1 .. N (3.13)
Bin B2 .. Bin
i
Tyl Tl ... TEN

Quantum operation can also be applied for spike representafibrsprin-
ciple has been applied in PSNM as explained in Section 2.3é pfobability
of spike emission depends on the evaluation of the qubit st&fesllapse
value of 1 means the spike is present while value of 0 meansvateer Two
other probability elements, the probability of connectexmstence and that of
spike contribution to PSP calculation in pSNM can also beasgmted using
qubit operations as explained in Kasabov (2010). Chapter 6 wplaén the
implementation of PSNM in ESNN framework.
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3.6 SUMMARY

This chapter presented a review of quantum-inspired PS@stitliscussed the
concept of a biologically-inspired optimiser, the PSO. Thrategy is simple
yet very efficient. Unlike GA, each particle in a swarm interacts witbhea
other and contributes to the solution throughst particle. Every particle has
its chance to bebest particle and thebest information is shared with other
particles. At the same time, every particle memorises its own dmstion
called pbest. gbest and pbest transform a swarm of particles to an effective
and intelligent solution finder. Second, the chapter expléie QiSPO that is
derived from PSO where the main objective is to solve binarpleros. The
QIPSO update the quantum angle to determine a particular state.

With the understanding of ESNN, PSO and QiPSO methods and together
with the concept of ECoS and quantum probability, the first irstegn be-
tween these methods will be discussed in Chapter 4. Since ESNNag(
optimisation in order to work effectively, the PSO and QiPSfirnisers will
be investigated for this task.



PROPOSED METHODS FOR INTEGRATING ESNN, PSO
AND QIPSO

Many real world problems require optimisation for seveeasons. Two com-
mon reasons are difficulty in tuning the optimal values aneesing up the
learning process. The same is also valid for ESNN where parao@ieisa-

tion is necessary as explained by Wysoski et al. (2006b) ahtiebs, Defoin-
Platel, Worner, and Kasabov (2009a). In this chapter, nowthods for the
integration of PSO and QiPSO with ESNN are introduced for the tims

and results are compared with well known classifier algorithniee dhapter
explains first the integration of ESNN and PSO and then explasmgithgra-

tion of ESNN and QiPSO. Discussion of the method and obtained results is
presented later in the chapter.

4.1 INTEGRATED ESNN-PSO FOR PARAMETER OPTIMISATION

In neural network models, an optimal combination of paramsetan influ-
ence their performance. It is not feasible to manually adjustparameters,
particularly when dealing with different combinations forfdrent datasets.
Consequently, parameter optimisation is vital and mucbaeesh has been con-
ducted on it (Bick & Schwefel, 1993). Like other models, ESNN is sensitive
to its parameters. Optimal combinations of parameters lebetter classifi-
cation accuracy. It is inappropriate to manually adjustgheameters to find
the correct combination since this process would be ineffi@ad unsystem-
atic. The performance, advantages and capabilities of PS@vimg problems
effectively, have drawn much attention to this techniqueer&fore, this chap-
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ter proposes how PSO can be used for ESNN optimisation. ESNNoisrkn
as a fast and efficient online processing method and its fidication is for
fast visual processing application (Wysoski et al., 2006B9r all proposed
integrated frameworks in this study, the optimisation & BENN classifier is
performed in offline mode before the optimised ESNN can be tmeohline
classification.

4.1.1 Framework

ESNN
Receptive Pre-synaptic Evolving
Input sample fields neurons neuron repository

0.721

Class 1

Classification
e
accuracy

Class 2

1.793

Particle 01
Mod »
Q
c |
g
©

i Update each particl

base% ?me elf:st gidlcsest Set gbest and pbest
Particle 02 g P

Particle 03

Figure 4.1: The integrated framework of ESNN-PSO.

The proposed ESNN-PSO framework is shown in Figure 4.1. Theefram
work integrates ESNN (the classifier) and PSO (the parametanigpr for
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ESNN). The middle part of the diagram represents ESNN as corapsetely
explained in Chapter 2. Since information in ESNN is represgas spikes,
input data must be encoded in spike pulses. Population BEmgodESNN dis-
tributes a single input value to multiple pre-synaptic inpeurons. Each pre-
synaptic neuron generates a spike at a certain firing timeyUsguation 2.4
and the illustration of this encoding process is shown in Fgi6. ESNN
utilises the Thorpe’s neuron model (Thorpe, 1997) becatige effectiveness
and simplicity. The fundamental concept of this model is thatearlier spikes
received by a neuron have a stronger weight compared to thepéekessOnce
the potential reaches a certain amount of spikes and the)R@8Eds the thresh-
old value, the neuron fires and becomes disabled. The neutiois imodel can
only fire once. The computation of the PSP in this model is expthin Equa-
tion 2.17. Since the first intention of ESNN is to introduce st fdassifier for
online classification, the one-pass learning has beesediiin the classifier.

Mod

C

Parameters

Sim

Figure 4.2: The particle structure in ESNN-PSO framework.

The integration is performed using the well known Wrapper aapin. This
approach was first introduced in John, Kohavi, and Pflege94)18nd com-
prehensively discussed later in Kohavi and Sommerfieldg)188d in Kohavi
and John (1997). The Wrapper approach combines the classifieamwibip-
timisation algorithm. In this case, PSO interacts with ESNN gtmoise the
ESNN parameters, namely modulation factiafof), proportion factor () and
neuron similarity value{:m). All particles are initialised with a set of random
values and they subsequently interact with each other basethssification
accuracy. Every particle holds certain parameter valusb@asn in Figure 4.2
and uses these values to construct ESNN. Then, the construciéd &akes
the input samples and classifies them according to theirtedgdasses. A
fitness function to evaluate particle’s performance isualed based on the
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classification accuracy. Valko, Marques, and Castelar®f2@entified the
fitness function as an important element in such integratedoagph. A par-
ticle with the best classification accuracy among all partieli#isbe saved as
gbest particle. The parameter value jfest is later used by other particles to
update its position. However, each particle also keeps tradts aiwn best
solution found during the learning. This value is callédst and is also an
important attractor in the particle’s next position updatkee learning stops ei-
ther when the system reaches the predefined maximum numberadiiter or
when one of the patrticles finds the desired classificationracguAlgorithm 3
explains the proposed integrated ESNN-PSO and the detailedptests are
presented in Appendix A.

Algorithm 3 Integrated ESNN-PSO
1: for all particledo
2: initialise all ESNN parameters
3: initialise fitness
4: end for
5. while not reaching maximum iteratiato
6. for all particledo
.
8
9

get fitness from ESNN (Algorithm 1)
if current fitness better thamest fithessthen
assign current particle asest

10: if currentpbest fitness better thagbest fithessthen
11: assignpbest asgbest

12: end if

13: end if

14: for all ESNN parameterdo

15: calculate velocity using Equation 3.1

16: update parameter using Equation 3.2

17: end for

18: end for

19: end while
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4.1.2 Experimental Datasets

Two synthetic datasets, the Uniform Hypercube dataset and PpivalSprob-
lems have been used to evaluate the performance of the p@pasnework.

Uniform Hypercube

The proposed integrated ESNN-PSO method was tested on a Uniform Hy
percube dataset (Estez, Tesmer, Perez, & Zurada, 2009). Thirty features
were created where only 10 made up the relevant features vectoy, ..., 1),
whereby a sample belongs to class 1 wher +~! x o for i =1 to 10. The
chosen parameters weye= 0.8 anda = 0.5. The features that were not rel-
evant to determine the output class consisted of 10 randatarfs with the
random value in interval [0,1], and 10 redundant featureseweepied from
relevant features with an addition of noise calculated froragSen function.
These redundant dimensions were generated by adding a Ganssiansing
standard deviation of = |p| x s with |p| being the absolute value of vector
while s is a parameter controlling the noise strength to the origiatd.d was

set to 0.3 for this dataset. The features were arranged rdpdomimulate

a real world problem, and the relevant features were scattertiek idataset
as presented in Table 4.1. The problem consisted of 500 sartiyé were
equally distributed into two classes. Details of Hyperculia deneration can
be found in Egtvez et al. (2009).

Table 4.1: Uniform hypercube feature arrangement
Features Arrangement

Relevant 02 04 09 10 11 15 19 20 26 30
Redundant 03 07 12 14 17 18 21 25 27 28
Random 01 05 06 08 13 16 22 23 24 29
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Figure 4.3: The Two Spirals data. Colours represent different class labels. Retlundan
data are copied from the original data with added noise while the random
data is generated randomly. As noise was added, the data became more
difficult to be distinguished between classes.

Two Spirals

The second synthetic dataset is the one from Two Spiraldgamglwell known
to be a difficult non-linear separation problem first introed in Lang and
Witbrock (1988). In order to evaluate the performance in fieagelection
task, two relevant data were copied with some noise added toitliraldata.
These redundant data were generated similarly to redundtairdHypercube
dataset by adding a Gaussian noise to the original spiral ppistgz,y)’.

The noise increased linearly according to the distance tterspiral origin
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(0,0)". The noise value was calculated as theentered Gaussian distributed
random variableV(p;,o?). The information available in a feature decreased
when a higher level of noise was applied as shown in Figure #.adtlition

to this, several irrelevant features with random dimensialues within the
interval [0,1] were also added to the dataset. The dataset irexpisriment
consisted of 20 features with two relevant features, 14 réduoifeatures with
the noise leve$ from 0.2 to 0.8 and four random features. Detailed explanation
of the data generation can be found in Schliebs, Defoin-Platel Kasabov
(2009a). The features were then arranged in a random order tdasara
scenario where relevant features were scattered in the dasssshown in
Table 4.2. Four hundred samples that were equally distributedelea two
classes were generated.

Table 4.2: Two Spirals feature arrangement
Position Features

01 Redundant 0.3
02 Original

03 Redundant 0.7
04 Redundant 0.5
05 Random

06 Redundant 0.4
07 Redundant 0.4
08 Random

09 Redundant 0.2
10 Redundant 0.3
11 Random

12 Redundant 0.6
13 Redundant 0.2
14 Redundant 0.6
15 Redundant 0.7

16 Random
17 Redundant 0.8
18 Original

19 Redundant 0.8
20 Redundant 0.5




4.1 INTEGRATED ESNN-PSO FOR PARAMETER OPTIMISATION 67

4.1.3 Setup

Receptive fields were used to produce a weight pattern or weighdrvef a
particular sample that could identify the output class. D#fe numbers of
receptive fields for each dataset influenced the accuracyeafesults. From
preliminary experiments and as suggested by Schliebs, DElaitel, Worner,
and Kasabov (2009a), 20 receptive fields were chosen.

There is no definite answer on how many particles should be ussdvie a
certain problem. Generally, higher numbers of particlesegeired for more
complex problems and lower number of particles for simple lemols. Ad-
ditionally, the balance between solution exploration (sliaug for good solu-
tions) and exploitation (refining the solutions by combininprmation gath-
ered during the exploration phase) must be taken into a¢c¢8tin& Eberhart,
1998Db). In this experiment, 20 particles were used to exph@eolution. Both
PSO parameters andc, were set to 1.2, which meant a balanced exploration
betweerpbest and gbest as well as the inertia weight = 2.0. The integrated
ESNN-PSO was tested on the Uniform Hypercube and Two Spirals datasets
and the average result was computed in 1000 iterations u$irfgld cross
validation.

These datasets were also used for obtaining test resultsMildihand Sup-
port Vector Machine (SVM) with the same conditions for comparipur-
poses. Details of MLP with BP learning procedure is described jpefsgix G
and also can be found in Chauvin and Rumelhart (1995). Theutation ex-
ample is explained in Jones (2005). In this study. the NeuGQiftware is used
to simulate the MLP for the given problems. The software reenldescribed
in Section 2.6. After preliminary experiments with tuning treggmeters, the
following values are found to be the optimal setting for thisexxpent: the
learning rate was set to 0.3 and the momentum rate at 0.9. Nurhbelden
units for Hypercube data was set to 30. Because of the high Iévabise
injected into the Two Spirals problem, 40 hidden neurons wsed. Both
problems have been trained for 1000 iteration with 10-foldssrealidation
procedure.

The Hypercube and Two Spirals datasets were also applied to SVl th&n
NeuCom software. SVM is a statistical method and was originallygdesl
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for linear separable problems. Nevertheless, the intraoluof kernel function
gives the method the capability of handling non-linear saipi@ problems.
Support vector is the data points that form a decision linecfassification
problem that helps classify the data in specific output elasBuring learning,
this method tries to formulate an equation to represent @l gaints with
respect to their classes. The key features of SVMs are the ukerioéls,
the absence of local minima, the sparseness of the solutiothanchpacity
control obtained by optimising the margin (Shawe-Taylor 8s@anini, 2004).
Comprehensive description and review of SVM can be found im@hEaylor
and Cristianini (2000). Polynomial kernel function hasrselected in both
experiments. The only parameter in polynomial kernel is #ra&l degree that
was set to 1 after several attempts of fine-tuning.

4.1.4 Performance Analysis

In both experiments conducted on two separate datasets,rdeeESNN pa-
rameters as explained in Section 2.7 evolve steadily ugditining certain op-
timal values. The combination of these values leads to befssification
results. As shown in Figure 4.4 and Figure 4.5, for both datatetsyalue
of Mod is in the range of 0.9 and 1.0. The parameter is important beaaus
represents the connection weight in the ESNN and should notodewo If a
low value was selected, it would end up with most connectiongmsd with
the weight value of O due to the nature of weight computation as shown
Equation 2.25. In contrast, a higher value means most weightsavidl & con-
nection value, which can be translated into well-presentediweitterns ac-
cording to their output class. On the other hand, the propoviadueC which
controls the PSP threshold value is between 0.55 and 0.85.rAsgfevolving
part, value ofSim is observed to be between 0.3 and 0.6. Higher value means
there are many neurons within the similarity range that angedewhile lower
value means otherwise. The similarity is calculated usingiflean distance.
It can be concluded that based on the value with 20 receptive fisield, most
of the neurons are within the similarity range and are merged.
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Figure 4.5: Evolution of accuracy and parameters on Two Spirals dataset.

The testing accuracy recorded from the proposed integragdiiou is 93.81%
for the Hypercube dataset and 73.26% for the Two Spirals. Mi&539.40%
and 52.40% respectively, while SVM achieves results companaith those
from the proposed method at 93.60% for the Hypercube and &2{00the
Two Spirals. Table 4.3 shows the overall testing results. Bati®nd SVM
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parameters also have been manually tuned to get the best sedttimig exper-
iment. Nevertheless, the result shows that ESNN with optimisedpeeas
gives better classification accuracy than these two trawditimethods.

Table 4.3: Comparison of classification accuracy

Method Hypercube Two Spirals

ESNN-PSO 93.81%+ 3.49 73.26%t* 7.33
MLP 89.40%+ 4.12 52.40%t 7.11
SVM 93.60%=+ 4.76 62.00%t* 7.12

Due to a higher number of irrelevant features in both datasetshwhary
lead to misclassification of some samples and subsequentijtagdower
classification accuracy, feature selection is necessasglert only few rel-
evant features that are significant for the classificatiofediure optimisation
method utilising the principle of quantum computation inQPiS proposed in
the next experiment.

Table 4.4: Comparison of computational time
Method Timein Sec Computational relativeto ESNN

ESNN 5 1.0%
MLP 18 3.6%
SVM 2 0.4%

Table 4.4 shows the computational time required to run these talgo-
rithms. The unoptimised ESNN is used for this comparison sincedther
algorithms are not optimised. All methods have been testedjukanHyper-
cube dataset. In order to execute a single run, ESNN requiresdnds while
MLP and SVM need 18 seconds and 2 seconds respectively. ThersfaP
needs 3.6% more while SVM used 0.4% less computational time aehpa
to ESNN. MLP requires more computational time compared to ESNN an
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SVM because learning mechanism in MLP involves cycle of iteratiOne-

pass learning in ESNN framework involves only single feedvlod learning
which requires less computational time. SVM is a statisticahoa and does
not require any repetition in learning which make the learrasg.

4.2 INTEGRATED ESNN-QIPSO FOR SIMULTANEOUS FEATURE SE
LECTION AND PARAMETER OPTIMISATION

The proposed framework of ESNN-PSO used in the previous expetise
able to obtain the best combination of ESNN parameters andr betglts
compared to the traditional methods. However, due to the highbrurof
irrelevant features in the datasets, results are beli@/ed much better if these
features can be removed. In contrast, classification with aigvant features
may lead to better outcomes. This section proposes a noweNEIPSO
framework that integrates ESNN with QiPSO where features andnedeas
are optimised simultaneously into a single framework.

4.2.1 Framework

The proposed ESNN-QiIPSO framework is very similar to the preViame-
work. However, the major difference is in the particle strueti8ince there are
two components to be optimised, each particle is divided intopperts. The
first part of each particle holds the feature mask value fatuie optimisation,
while the other part holds a binary string for parameter optititiea

The binary string mask is introduced in this experiment fa fiature se-
lection task. The mask determines which feature is going teelsetd from
the entire sample. Every feature is represented by a qubit imdsk. The
probability of selecting features depends on the final vidughich the qubit
collapses. Collapse value 1 means that the feature is selebiéxvalue 0
means it is not selected. The selected features are thesidrared into spike
trains using Population encoding as described in the pusvimmework.

For parameter optimisation, a set of qubits representsatrameters values.
Because the information held by particles is in binary repn¢ation, conver-
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Figure 4.6: A Framework of ESNN-QIPSO. The real value input features ardezbup
with a qubit feature mask. Final qubit value when collapsed is 1 or O indi-
cating a feature being selected or non-selected respectively. The selected
features are then mapped into spike trains for learning. For parameter opti-
misation, the string of collapsed values are then translated into real values
using the Gray code function.

sion into real value is required. For this task, the Gray codéhod is chosen
since it is proven to be a simple and effective way to convdrinary repre-
sentation into a real value (Gray, 1953). Following the procecef one-pass
learning, the connection weights in ESNN are trained accoridiige param-
eters obtained by the particles. All particles are initedisvith a random set
of binary values and subsequently interact with each otheedan their fit-
ness in classification accuracy. Figure 4.6 illustrategptioposed framework.
Algorithm 4 describes the proposed integrated ESNN-QIPSO frameand
the detailed implementations are described in Appendix B.
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Algorithm 4 Integrated ESNN-QIPSO

1

10:
11:
12:
13:

14
15

16:
17.
18:
19:
20:
21:
22:
23:
24:.
25:
26:
27.
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:

38

3
4
5
6:
7
8
9

. for all particledo
2:

for all ESNN parameterdo
for all qubitdo
initialise 6
get collape state using Equation 3.12
end for
convert binary string to real value using Gray code
end for
for all feature qubito
initialise 6
get collape state using Equation 3.12
end for
initialise fitness
. end for
: while not reaching maximum iteratiaho
for all particledo
get fitness from ESNN (Algorithm 1)
if current fitness better thamest fithessthen
assign current particle agest
if currentpoest fitness better thagbest fitnessthen
assignpbest asgbest
end if
end if
for all ESNN parameterdo
for all qubitdo
calculate velocity using Equation 3.9
apply rotation gate in Equation 3.11
get collape state using Equation 3.12
end for
convert binary string to real value using Gray code
end for
for all feature qubido
calculate velocity using Equation 3.9
apply rotation gate in Equation 3.11
get collape state using Equation 3.12
end for
end for
. end while
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4.2.2 Setup

The QiPSO utilised the same searching method as the PSO atha@ ss¢ of
candidates in a population. Twenty particles were defined tatfiecgolution.
The number of features mask was set to the same number of iegiulrés.
Since all three ESNN parameters ranged between 0 and 1, eaohgiar is
represented by six qubits and were sufficient to represenetiealue.

The proposed ESNN-QiPSO method was tested using the same dasasets a
before - the Uniform Hypercube and the Two Spirals. All other patens
were set to the same value as in previous experiments. Twempties fields
were chosen for data encodingandc, were set to 0.05 for this binary optimi-
sation and inertia weight = 2.0. Particle dimension vector refers to the num-
ber of variables to be optimised by QiPSO. Therefore, the Hyferproblem
dimension had three ESNN parameters and 30 features. On thehaier
there were 23 dimensions for the Two Spirals dataset.

A total of 1000 iterations were performed for learning with 1@3feross val-
idation was used. The datasets were applied to ESNN-QIPSO forarsap
with the previous proposed methods.

4.2.3 Performance Analysis

All particles were initialised with a random set of binary valaesl they sub-
sequently interacted with each other based on classificatiomracy. The two
main elements that contributed to classification accuracy Weature and pa-
rameter optimisation and they are discussed below.

Feature Selection

Figure 4.7 illustrates the average number of selectedrestiuring the learn-
ing process on the Hypercube dataset. The colours in the diageflect how
frequently the features were selected at a specific iteratibe brighter colour
means the corresponding samples were selected more often, vehdartker
colour means otherwise. The bar chart simplifies the final rmrrobsamples
being selected from 10 runs of 10 folds cross validations.tk® Hypercube
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Figure 4.7: Feature selection evolution on the Hypercube dataset. Ten relevant fea-
tures are selected as indicated by the bright colour representation. At the
same time, the redundant and random features are gradually been removed
by QiPSO during learning.

dataset, it is evident that in the early learning phase meatufes were used
by the particles. This contributed to the low accuracy, aswshin previous
experiments when many irrelevant features were used for ctzdsfn. The
irrelevant features that consisted of random and redurfdatires were con-
sistently discarded during the learning process. The femllt shows that all
10 relevant features were selected between seven and nine toneshie 10
runs. Meanwhile the irrelevant features, especially the@anones that con-
tained no information to distinguish between classes, weardyraelected in
the final stage of learning.
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Figure 4.8: Feature selection on the Two Spirals dataset. Two relevant features were
selected nine and eight times from 10 cross validation runs, while other
features were removed by QiPSO during learning.

On the other hand, because of the different levels of noise thatinyected
into the Two Spirals dataset, QIPSO was not able to simply reniower-
relevant features. Samples with noise level of 0.2, 0.3 evérstill contain
information that can be used to differentiate between ctasseshown in Fig-
ure 4.3. At noise level of 0.5, the starting point of the spiras still be
distinguished and datasets with higher noise levels werddenes as irrele-
vant and began to scatter. Figure 4.8 shows that while the twmaligatures
were selected in almost all experiment runs, the redundatiries were also
selected often. In contrast, the random features were staadigved during
learning. However, due to the reduced number of features arithfigelected
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features mostly containing information for the classifimat the accuracy of
the result shows some improvement in this experiment cordgara previous
experiment that was using all features, as depicted in EigLiO.

Parameter Optimisation

The correlation between feature selection and classifitatouracy are clearly
observed in the previous section. However, it is also clearttigatesult is not
only affected by feature selection, but also by parametémigation. Fig-
ure 4.9 and Figure 4.10 show the parameter optimisation by Qif®6 the
Hypercube and Two Spirals datasets. The results show thadralhpeters are
optimised into the same range, as observed in the previqueriexent. All
parameters are dependent on each other for optimal solutiden,hanges
in a certain parameter require changes in other parametevsla

The modulation factoh od is optimised in the range of 0.9 to 1.0 by QiPSO.
The value evolves steadily to a certain optimal value, aafigin Hypercube
data, where the optimal value after the learning is almost simihen ex-
amining value of firing threshold’, it starts almost at the same value at the
beginning and then advances towards an optimal value. Fihatlyhe simi-
larity thresholdSim, the value is significantly different compared to the value
optimised by PSO. This is because the connection similarity is lownvehe
high number of connections exists. In ESNN-PSO experimentseatufes
are used. In contrast, when the feature selection processasthe number of
features, number of pre-synaptic neurons and connectiecreases as well.
This improves the chance that more connections are in the sityilange and
subsequently improves the results.

The average accuracy for ESNN-QiPSO with simultaneous featleetison
and parameter optimisation is 94.74% for Hypercube and 84f08%vo Spi-
rals. This clearly shows that results can be improved not oplggiimising
the parameters. Better results have also been achievedinsimg the problem
noise by eliminating the irrelevant features and selediadures that contain
the most information for classification. The accuracy dumgly learning
is relatively low for ESNN-QIPSO. The reason is that the randomctele
approach by particles selects features that contain iitteemation to enable
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Figure 4.9: Evolution of accuracy and parameters on Hypercube dataset from the in-
tegrated ESNN-QiIPSO framework.
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Figure 4.10: Evolution of accuracy and parameters on Two Spirals dataset from the
integrated ESNN-QIPSO framework.

better classification. Gradually, learning is improved aredhrticles start to
find better features and parameter combinations. In addibiparameter opti-
misation, this experiment also demonstrates that betissitication accuracy
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can be achieved by selecting relevant features and elimintisgrelevant
ones. The overall results are shown in Table 4.5 for easy cosgpa

Table 4.5: Comparison of classification accuracy
Method Hypercube Two Spirals

ESNN-QIPSO 94.74%-+ 4.34 84.09%:t 6.43
ESNN-PSO 93.81%+ 3.49 73.26%t 7.33
MLP 89.40%+ 4.12 52.40%t 7.11
SVM 93.60%+ 4.76 62.00%¢t 7.12

Knowledge Discovery

Machine learning techniques involve the development ofritlyms and com-
puter programs that would enable the machine to learn aradlpeosolutions
to the given problems. Analysis of the results obtained froenld¢larning pro-
cess is performed in order to understand the problems.

In feature selection task, the features selected in thesloaQiPSO are nor-
mally considered as the relevant features. From this owtcteature selection
expresses some knowledge on which features that are importadetision
making process. This is important for understanding thdlpras and espe-
cially for achieving a good classification result. Some hiymensional real
world problems consist of a large number of variables. Catie between
variables can also be identified based on the final selecétdrés. Running
the experiment 10 times shows that some features will be selentgdvhen
certain other features are selected as well. For instansbpas in Figure 4.7,
whenever Feature 9 is selected, almost certainly Featura®Beature 26 are
also selected. Therefore, it can be concluded that these fhatures are rele-
vant and also interrelated. It also shows that the selectedries are important
in order to get higher classification accuracy.

Knowledge discovery from parameter optimisation can be fotite range
of optimal value. The higheit/od value represents early connections have
higher weight and more importance in deciding the output cldss sam-
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ple. On the other hand, the smaller value means early conns¢taore lower
weight. Therefore, more spikes are required to decide the puatass. For

the threshold”, it has been discovered that if the value is higher, more spikes
and time are required to make a decision. However, if smaller vialse-
lected, few spikes are enough to fire an output spike and detertime class

of the sample. Merge rate of output neurons is controlled bypdrameter
Sim. A higherSim value means more output neurons are merged. This leads
to the creation of a robust network architecture, where a smiatiber of out-

put neurons represent entire samples in the dataset. Frunmekperiments,

the optimal range ofi/od is between 0.9 and 1.0. On the other hafichnd

Sim range from 0.5t0 0.9 and 0.3 to 0.7, respectively. It can bbelcaled that
each ESNN parameter converges towards a certain range osvalovever,
there is no specific value range that can be applied to all@nabwhere each
problem will have its own combination of parameters.

In general, every dataset requires specific analysis inracdenderstand
the problems it represents. Comprehensive understanéling problem may
improve efficiency in decision making and also make futurasies making
easier and faster. Knowledge can be extracted from many sosumh as
time prediction result, visualisation, classificatiomstering and others. Many
studies have examined data mining and knowledge discovejgayFayyad,
Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996; Bramer, 1998s, Pedrycz,
Swiniarski, & Kurgan, 2007).

4.3 IMPLEMENTATION ISSUES

4.3.1 Qubit Representation of Parameters

Some problems persisted when using QiPSO algorithms for desptimi-
sation and feature selection The problems include the pbsds missing the
optimal parameter value when using only binary QiPSO. As the irdtion is
represented in a binary structure, the conversion fromrpittareal value can
cause such problems, especially if the selected numberlifsgepresenting
the parameter value is insufficient.
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Table 4.6: Example of conversion from qubit to real value
Qubit Real value

[00] 0.0
[01] 0.3
[10] 0.7
[11] 1.0

Table 4.6 shows an example where two qubits represent paravadties
within the interval [0,1]. In this example, if the optimal valus 0.8, there
will be no chance for the optimiser to obtain this value. An essltion is
to increase the number of qubits to cover more real values. Hawihis will
lead to longer computation time.

4.3.2 Feature Selection

In addition, QIPSO’s search strategy is based on random seladtieatures
at the beginning of the process. Each particle will update itsssEd on the
best solution subsequently found. A major problem with thigrepgh is that
the randomly selected features at the beginning may not beligaant. Other
particles that take part in the entire process are thustatlecThis is due to
each particle updating its information without relevanttiees as illustrated
in Figure 4.11.

Particle A Particle B
Fitness = 30% Fitness = 80%

' Relevant feature
. Irrelevant feature

Unevaluated
feature

Figure 4.11: Example of feature evaluation.
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The best solution is to explore all possibilities, but it rrealistic for high
dimensional problems. Figure 4.12 shows the search tree vafigressibil-
ities are taken into account. Thegkproblems resulted in 16 possibilities.
For a problem with 20 features, the search tree have 1,049&5%bilities, a
number that would make the computation far too slow.

0,0,0,0
1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1
1,1,0,0 1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,1 0,0,1,1
1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1
1,1,1,1

Figure 4.12: Search tree for four qubits with 16 possible combinations.

4.3.3 Number of Connections

The study of the feature selection process shows that the riefvesforms
well when the number of features is reduced, which also redueesuimber
of connections. In the experiment, fewer connections resuiaster learn-
ing process with better accuracy. This suggests that reddlcexgumber of
connections can be used to enhance the learning.

Motivated by this finding, a new enhancement to the optimiserEZ8NN
will be introduced in the next two chapters. A new search styated] be
introduced for the optimiser and this enhancement is dssalign Chapter 5.
The new evolving connection structure will be proposed in @rap as it
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appears that not all connections are necessary. This fintBogaigns with
the probabilistic neuron model as discussed in Chapter 2.

4.4 EXTENDED ESNN-QIPSO FRAMEWORK FOR STRING PATTERN
CLASSIFICATION

In a collaboration between Knowledge Engineering and DiscovexseRrch
Institute (KEDRI) where this research has been studied and therdhiio-
stitute of Information and Communications Technology (NiQ@&pan), the
proposed ESNN-QIPSO method has been tested on a string pattegmireco
tion problem. String pattern recognition is an approachdfgermining which
group of a string belongs to, based on analysing its cont&his.task, despite
being quite challenging, is very important to certain aeah as internet secu-
rity and virus detection. Strings can be texts, musical syisor others that are
not necessarily in numerical formats. Since most classfgarithms can only
accept numerical values, transformation from strings toenical values is re-
quired. String kernels are a well-known method for transfogratring input
values into high dimensional input vectors (Lodhi, Sausd&hawe-Taylor,
Cristianini, & Watkins, 2002). The kernel provides the ciiss algorithm
with the capability of mapping the original non-linear segide data into a
higher-dimensional space which is linearly separable. &hee several well-
known string kernels such as Bag of Words anrgrams. The output from the
kernel process is the kernel matrix which is used as input tolgeithm for
classification, clustering or ranking tasks. This techaitgiquite simple yet
effective in transforming the input from string format inmtamerical values.

4.4.1 Framework

This experiment has extended the ESNN-QiIPSO framework for ghattgrn
recognition with the addition of a string kernel. The aim is toestigate the
efficiency of QIPSO when it is used for optimising ESNN paramedsra/ell
as for selecting the most relevant features from the strarged matrix, both
of which have direct influence on classification accuracy.rtteoto allow the
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proposed method to operate on string datgrams string kernels were used to
transform the input data into the desired input format. #fggams approach
has been chosen whetegrams are n adjacent characters (substring) from an
alphabetA (Lodhi et al., 2002). For example, =3 for the string "KEDRI",

the trigrams output will be KED, EDR, DRI. Based on this approacot sim-
ilarity between strings is calculated and the result is theddematrix. This
process is illustrated in Figure 4.14. Figure 4.13 despi&ptbposed frame-

work.

Input sample

Particle 01

ESNN

Receptive Pre-synaptic Evolving
fields neurons neuron repository

HYF |—
MNA f—

EZS —
LTA |—

String
Kernel

Features

:]

Class 1

__, Classification

accuracy

6006060

006060

Parameters

006006

Class 2

Particle 02
Particle 03

Update each particle

based on gbest and pbest Set gbest and pbest

Figure 4.13: An extended ESNN-QIPSO framework for string classification.

The labeled and reformatted Reuters 21578 string datasselected for
this experiment. Only relevant information from tags topic, @thel body text
were extracted and some unknown tags such as "&”, "$” were rethoie
nally, all characters were changed to lowercase. The problesisted of 150
samples from four classes: 38 from acquisition, 36 from c8&from crude
and 38 from earn. Parameters chosen wierel and\ was set at the optimised

1 Reuters-21578 Text Categorization Collection Data S€&l, Machine Learning Repository.
http://www.ics.uci.edu/ mlearn/MLRepository.html
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String 1 String 2 String 3
Class 1 String 1 A B C
Class 1 String 2 B A C
Class 2 String 3 C C A

Figure 4.14: Kernel matrix from three strings. String 1 and 2 are class 1 and $igng
class 2. Comparison between same strings will give the highest similar-
ity value of A. The similarity calculation between the same classes will
give a value B that is slightly lower than A, while the similarity between
different classes is C, which is the lowest value. Based on this similarity
values, a feature pattern between input samples can be produced.

value of 0.5 inn-gram kernels.\ € [0, 1] is the weight to penalising the dis-
tance between substrings. If the appearances of substragsae coherent
they receive a higher weighting than appearances with la@es (Saunders,
Tschach, & Taylor, 2002). Twenty particles have been usedptoexthe so-
lution with six qubits to represent the real value. Parametemd c, were
set to 0.05 and the inertia weight = 2.0. The dataset was applied to two
frameworks - ESNN with feature and parameter optimisation andNE®ith
only parameter optimisation. To limit the computation céempiy, 10 recep-
tive fields were chosen, the experiment was run for six contiauioones and
the average result was computed in 300 iterations for bothristhgns.

4.4.2 Results

Figure 4.15 shows the evolution of classification accuratye dverage accu-
racy for ESNN with feature optimisation is above 70%, compdccESNN
using all features with average accuracy of 55%. The poorracgwf ESNN
with all features is due to several input features from thenxélematrix con-
taining information that cannot be used to differentiatgpaticlasses. These
irrelevant features act as a noise that leads to low claasditaccuracy. How-
ever, ESNN with feature optimisation is able to reduce thesévaet fea-
tures; hence higher classification accuracy is obtainesnRhe total number
of 150 input features, QiPSO is capable of reducing the featior&0 in 300
iterations. These 70 features are the significant feateeause of their capa-
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Figure 4.15: Result of string classification using ESNN-QIPSO with feature optimi-
sation and ESNN-QIPSO with all features. The top left graph shows the
evolution of connections until 70 features subset was found. Three ESNN
parameters for both experiments fall into certain ranges. The ranges
found are aligned to what has been discovered in previous experiment.
The right graph shows the evolution of accuracy.

bility to produce higher accuracy. Since the 20 particlegextiathe evaluation
process by picking random features, the average number of feiiaires se-
lected by theybest particle is around 80. Thehest particle always keeps the
best information and the best accuracy. Other particlestaddheir positions
according togbest as well aspbest until the new best particle was met. This
procedure was repeated to eliminate irrelevant featurdsefiber identification
of the most relevant features. A similar procedure was asd to find the best
combination of ESNN parameters. In this study, QiPSO managegtimise
ESNN parameters in binary string format to a certain optimale&lurhese
parameters are in pairs and are very closely related to eaeh ®verall, all
three ESNN parameters evolve steadily towards a certain dptahee, which
helps to produce better classification accuracy. This tiye&tson continued
with an experiment that fed the string kernel matrix into MARer manual
parameters tuning, the optimal value was found and set &0 the learn-
ing rate and the momentum rate was set to 0.9 with 120 hiddemongui he
training classification accuracy is 55.4% in 300 iterations wa#ting result of
50.6%.
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In this experiment, the data was transformed into anothdr-tignensional
form of representation. For such difficult problems, someroupments of the
framework can be investigated in future to enhance its legroapability. In
addition, the string kernel can also be improved by disdogahe best setting
of the kernels.

45 SUMMARY

This chapter has proposed two novel frameworks, the intedylBBENN-PSO
and ESNN-QIPSO. The integration between ESNN and PSO allows the opti-
miser to find the optimal parameter for ESNN automatically rathan hav-
ing to adjust the parameters manually. In the second extefidetework,
the QIPSO can optimise both parameters and features simulspecthe
proposed method for feature selection is more effectivepared to the pre-
processing feature selection technique. The reason forsth@cause the pa-
rameter can be directly optimised and tuned based on selectenles. Results
show that both optimisers, the PSO and QiPSO are able to optirSiNélfpa-
rameters with QIPSO can also select the relevant featureseTdapabilities
of QIPSO contribute to its higher classification accuracy.

This chapter also discusses the extention of the proposBNEIPSO for
string classification. The nature of string classificatiovoives an additional
component (or kernel) to translate the problem into a highedsional prob-
lems which poses another challenge. However, the structure RNE&N
easily adapt to the high-dimensional problem and also tleepass learning
allows fast learning of the given problem. In addition to thie feature selec-
tion in the proposed framework allows the problem dimensioretoenluced,
thus faster processing and better accuracy can be achi€@eetall, the re-
sults show that ESNN with parameter optimisation and using &l stmaber
of features produces promising results that can be explarkdure studies.

The evaluation of the proposed integrated framework redesdeeral issues
with the optimiser and the classifier. Therefore, some erdrarat to both
optimiser and the classifier are proposed in the next twotehspThe mod-
ification will be integrated with the main framework proposedhis study.
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The same dataset will be used to evaluate the performance withac@on to
results found in this chapter.



A NOVEL DYNAMIC QUANTUM INSPIRED PARTICLE
SWARM OPTIMISATION METHOD

In order to address the problems identified in Chapter 4, tlapter introduces
a new structure for QIPSO. First, a hybrid particle structurerappsed for
solving the problem of missing parameter value. Then, a sfateecart new
evaluation strategy is employed for feature selection. if@roved search
strategy selects the most relevant features and elimitla¢esrelevant ones.
This new QiPSO structure will be integrated within ESNN where festand
parameters will be optimised simultaneously and more effilgien

5.1 THE DYNAMIC QUANTUM INSPIRED PARTICLE SWARM OPTF}
MISATION

The proposed enhancement consists of two parts. The firsisp@ar address
the parameter problems caused by selecting an insufficienbar of qubits.
The conversion from qubit to the real value may lead to thaipdiy of miss-
ing optimal value as described in Chapter 4. At the same tim&jrieaelec-
tion depends on qubit representation for the selection coatipn. Since two
types of representation are required, hybridisation afrimiation representa-
tions may solve these problems. Hence, the efficiency of the @armand the
whole proposed framework can be improved.

89
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5.1.1 Hybrid Particle

The features are modeled as a qubit vector, where probability ai@tnmn is
added to perform the feature selection task. Updating this \gliges the
optimiser to decide whether a feature is going to be selectsbauld be con-
sidered irrelevant. On the other hand, parameter valuesrasemted as real
numbers. As discussed earlier, the major problem using only Qi®g pa-
rameter optimisation is that it may miss the optimal value.o¥ercome this
problem, a simple yet effective hybrid particle structure vifite combination
of QIPSO and conventional PSO is proposed for these two diffelaa types.
The hybrid DQIPSO patrticle is divided into two parts: the firattpuses quan-
tum probability computation for feature selection and theand part holds
the real value for parameters as shown in Figure 5.1. This metbbdnly
effectively solves this problem, but also eliminates theapeeter that holds
number of qubits representing the parameter value. Fewaners lead to
an algorithm that is simple to use and control.

5.1.2 Enhancement of Feature Selection Strategy

The search strategy of QIPSO is based on random selection atghmineg
of the process. Each patrticle will update itself based on tlsedmution sub-
sequently found. A major problem with this approach is the ibdig of not
selecting the relevant features at the beginning of legrmther particles tak-
ing part in the entire process are thus affected. An improvadchestrategy
has been introduced to find the most relevant features and alenirrele-
vant features. Blum and Langley (Blum & Langley, 1997) halessified the
feature selection techniques into three basic approaéimabedded approach
(Almuallim & Dietterich, 1991) adds or removes features in mese to pre-
diction errors on new instances; Filter approach (Liu & Seijd®96) is a pre-
processing method; and the Wrapper approach (John et @dl) thich uses a
learning algorithm to evaluate features. In this studyWhapper approaches
is used with embedding of some concepts from the Filter anddfiadd ap-
proach to utilise the advantages of these approaches. Ggnasang a higher
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Figure 5.1: The proposed hybrid particle structure in DQIPSO. Compared with the
QIPSO particle structure used in Chapter 4 (a), a particle in the proposed
method (b) is divided into two parts where the first part holds quantum
information and the second part holds real value information that is repre-

sented by th&® symbol.

number of features does not necessarily translate into hm#iesification ac-
curacy. However, better accuracy can be acheived when a highdyemwof
relevant features are selected.

A new strategy is proposed where five types of particles are us#ukin
DQIPSO. Apart from the normal particle, referred to as the Updateckar
which renews itself based on aptkst andpbest information, four new types
of particles are added to the swarm. The first type is the Ranéarticle,
which randomly generate new sets of features and parameteverny iger-
ation to increase the robustness of the search. The secoadstype Filter
Particle, which selects one feature at a time and feeds it toagtwonk and
calculates the fitness value. This process is repeated ¢brfeature. Then,
the average fitness is calculated. Any features with abovegeditness will
be considered as relevant. This method is targeted at Iseggaration prob-
lems. The third particle type is the Embed In Particle in whigbuinfeatures
are added to the network one by one. If a newly added feature vwepithe
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DQIPSO
Identify relevant features based gbest
on gbest and pbest update Particle

T

Save overall best solution found by any particles
as gbest and individual best as pbest

Update Random Filter Embedin EmbedOut
Particle Particle Particle Particle Particle

Check each feature to identify relevancy

Random feature
selection ¢

& & & K K
01|02|03|o4|05|

Features

Figure 5.2: DQIPSO feature selection strategy. Update Particle next value depends on
values of thegybest andpbest; Random Particle selects features randomly
while the other three particle types evaluate each feature to determine fea-
ture relavancy.

particle fitness, it will be considered as a relevant featQtherwise, the fea-
ture will be removed. The final particle type is the Embed Outi€larwhich
starts the identification process with all features fed tonévork to get the
initial fitness value. These features are gradually remarexdby one. If re-
moving a feature causes decrement of the fitness value, thefedtise will
be considered as relevant and hence will be kept. Otherwise, dhedewill
be considered as irrelevant and removed.

The main idea behind Filter, Embed In and Embed Out particles ishbifge
the relevance of each feature and to reduce the number ofieaes until only
a small subset remains. For subsequent iterations, feataresidered relevant
will be selected randomly to find the best combination of relevaatures.
This strategy helps to solve unevaluated relevant fegturiede reducing the
search space and facilitating the optimiser to find relefeatures faster. Sim-
ilar to the standard PSO in updating particles, if a new pariicfeund to be
the best solution, then it will be stored agtast. In this scenario, a newest
update rule has been implemented. A solution candidate willsbgyaed as
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gbest if it meets one of the following two criteria. The first criterioraparticle

will be assigned agbest if its accuracy better than the currejikst particle.

The second rule for appointing a neMest is when both the candidate and
the existinggbest particle have the same fitness but the candidate has fewer
features selected. This criteria guarantees that at &ditite cyclesgbest al-
ways has the best fithess with the lowest number of features. Mh#est
feature subset will determine the most relevant featuresamiven problem.

Due to the enhanced search strategies provided by DQIPSO, fevietgsa

are needed to perform the optimisation tasks. Hence, shodeegsing time

can be achieved. The summary of this strategy is illustrat€agure 5.2.

5.2 INTEGRATING DQIPSO WITH ESNN FOR SIMULTANEOUS FEA
TURE AND PARAMETER OPTIMISATION

The proposed DQIPSO is able to simultaneously select releeatires and
optimise the ESNN parameters. In this integrated environntlea features of
the model are represented probabilistically as a qubibve€in the other hand,
parameter values are represented as real numbers. The lgrioCgpuantum

superposition is used to accelerate the search for an dehaf features. In
contrast, the real value part of the particle will be updatgidgistandard PSO
update procedure.

Like all earlier frameworks, for a given classification taskwarm of parti-
cles is used to find the classification model with the best @oyuiThe simula-
tion starts with random values assigned to each particle isvtlaem. Informa-
tion held by the particle will be used to train the network. fihehe particles
interact with each other and exchange the optimal informatioiciwénsures
a faster optimisation process. The proposed integrateceframnk is shown in
Figure 5.3. Algorithm 5 explains the integration and the pisecode of the
proposed ESNN-DQIPSO is presented in Appendix C.

The proposed ESNN-DQIPSO method was tested on the Hypercube and
Two Spirals datasets, which are the same datasets employeévioys ex-
periments. Most of the parameters are derived from the pus\eaperiments.
For the encoding, 20 receptive fields were chosen with their ceateformly
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Algorithm 5 Integrated ESNN-DQIPSO
1: for all particledo
2: initialise all ESNN parameters
3: for all feature qubido
4 initialise 6
5 get collape state using Equation 3.12
6: end for
.
8
9

initialise fitness
: end for
: while not reaching maximum iteratiao
10: for all particledo
11: get fitness from ESNN (Algorithm 1)

12: if (current fitness better thawest fithess) or ((current fitness 3sbest
fitness) and (feature selected less than feature selecjeédd)) then

13: assign current particle agest

14 if (currentpbest fitness better thapbest fitness) or ((currenpoest

fithness ==gbest fithess) and (feature selected iy st less than fea-
ture selected bybest)) then

15: assignpbest asgbest

16: end if

17: end if

18: for all ESNN parameterdo

19: calculate velocity using Equation 3.1
20: update parameter using Equation 3.2
21: end for

22: for all feature qubito

23: calculate velocity using Equation 3.9
24: apply rotation gate in Equation 3.11
25: get collape state using Equation 3.12
26: end for

27 end for

28: end while

distributed between the maximum and minimum values of the ddta.con-
trolling parameteps is set to 1.5. Eighteen DQIPSO particles were used, con-
sisting of six Update, three Filter, three Random, three Ehlheand three
Embed Out Particles. The inertia weight was set to 210:; and #_c, for
probability update were set to 0.05 andandc; were set to 1.2 for real value
update for balance exploration giest andpbest. Ten-fold cross validations
were used and the average result was computed based on 10fi0nteta
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Figure 5.3: An integrated ESNN-DQIPSO framework for feature selection and param-
eter optimisation.

estimate the classification accuracy which determines thes&itoiethe model.
In the next section, the result obtained for the proposechdr@ork will be
compared with results obtained in previous experiments.

5.3 PERFORMANCE ANALYSIS

The performance of DQIPSO when selecting relevant featuresyuwiemir-
relevant features and optimising the parameters is diedussthis section.
These crucial tasks have a direct effect on the final classdicautcomes.
Results from DQiPSO optimisation are compared to the previgpsrenents
to evaluate its efficiency.

Feature selection

Figure 5.4 illustrates the comparison of selected featftres DQIPSO and
QIPSO for Hypercube dataset during the learning process. Ligialeurs
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correspond to features that are selected more often. Inasinttarker colours
represent features that are eliminated during the 10 runbeoéxperiment.
Figure 5.4(a) shows the result from a previous experiment witlintiegrated

ESNN-QiPSO framework, while Figure 5.4(b) shows the results obtaiutéd

the new proposed integrated ESNN-DQIPSO framework.

The top diagrams illustrate the feature evolution. All tenvale features
being selected during learning by DQIPSO are clearly shownmRhe fig-
ure, ten Hypercube relevant features that contain the masthaition can be
clearly identified and are constantly being selected by DQiP8@ohtrast,
the redundant and random features are completely rejear@tycthe optimi-
sation process. DQIPSO takes around 600 iterations to identifyetbeant
and irrelevant features.

All features have been ranked based on the number of selectadsfe&om
10 runs to determine their relevance after learning as showheibottom di-
agrams. Based on the feature ranking, the features found relesant are
Feature 15, Feature 19, Feature 26 and Feature 30, all of whwehtdeen se-
lected nine times in the 10 simulation runs. They are followedFbegture 9,
Feature 20, Feature 2, Feature 10, Feature 11 and Feature dudtitthe rel-
evant features are not selected together during all 10 stionlains, the result
shows that the few combinations of relevant features arecgiitito give good
classification results in a run. In addition, the major aghiment of DQIPSO
in this experiment is its ability to completely reject theluedant and random
features. In contrast, the ability of the QIPSO to reject thelevant features
is unsatisfactory. As shown in Figure 5.4(a), most of the ivahe features are
still being selected, which contributes to the low classiitcaaccuracy and
increased computation time.

For the Two Spirals problem, Figure 5.5(b) clearly shows thattito rel-
evant features which contained the most information, aretaotig being se-
lected at most of the time by DQIPSO. In contrast, the random \fekteires
are rejected during the learning process together with nfosteoredundant
features. Interestingly, Feature 9 which is the redundaitfe has been con-
sidered as the most relevant in the final feature ranking by DQiH&e reason
is simply because this feature contains almost the samemiatton as the orig-
inal feature as shown in Figure 4.3. This feature is complenddoye-eature
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Figure 5.4: Evolution of feature selection on the Hypercube dataset. The bar graphs
show the final features selected in 10 runs. (a) for ESNN-QIPSO and (b)
for ESNN-DQIPSO integrated framework.

2, Feature 13 and Feature 18 in the feature ranking, all sdleigt times
in the 10 simulation runs. These four features contain thet mésrmation
available to distinguish between two output classes. In adgisome redun-
dant features that contain information with a noise level.8fahd 0.4 are still
occasionally selected. Other features that are only oatalfycselected or not
selected at all can be considered as irrelevant features.

This situation is not much different for this dataset when parad to QiPSO.
In the previous experiment, QiIPSO also selected and condiflesigures with
noise level of 0.2, 0.3 and 0.4 as relevant in addition to thgraal features.
However, the ability of QIPSO to reject the irrelevant features wasatis-
factory. Most of the redundant and random features were stilctszle Also,
some irrelevant features were regarded as relevant as shdwgtbgumber of
times they were selected, for instance, Feature 14, FedwaedlFeature 20 in
Figure 5.5(a). This situation has affected the results aaaterall classifica-
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tion performance of the ESNN-QIPSO. This give slightly lower aacyrand
increased computing times since more features have beeatexklBecause of
QiIPSO has no mechanism to stimulate the particle if there isitetsolution
found, the algorithm may converge prematurely without obtaitine optimal
results.
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Figure 5.5: Evolution of feature selection on the Two Spirals dataset. The bar graphs
show the final features selected in 10 runs. (a) for ESNN-QIPSO and (b)
for ESNN-DQIPSO integrated framework.

Parameter optimisation

Parameter optimisation for the Hypercube problem is illdsttan Figure 5.6.
In the experiment with ESNN-DQIPSO, theéod value has converged to al-
most the same value as reported in the two previous experiméhts high
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value of this parameter is due to the higher number of connectiothe net-
work. The weight assignment in ESNN as described by Equatidnrgdires
a higher value if many connections exist. Otherwise, some exiions may
have a weight value of 0.0. This will severely affect the netwmekiormance,
especially when accumulating the PSP. Becauseé corresponds to the ESNN
weight, a higher value is required to make sure all connectians kveights
associated to them. Both parametérand Sim evolve to a certain optimal
value.

Learning accuracy Parameters
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Figure 5.6: Comparison between the accuracy and parameter optimisation of the three
frameworks when tested on the Hypercube dataset.

The same situations happen for the Two Spirals problem. lar€i§.7,M od
value steadily decreases because of a lower number of geshemtirections
due to the feature selection task. This time, DQIPSO manageehiowe a
significant number of irrelevant features. In line with thepous argument,
a lower number of features produce a lower number of connectioaefore
it requires a lowen/od value. In this experiment, the proportion parameter
Is found to be high. Meaning that more input spike trains acgiired in order
to reach the firing threshold. Lastly, tl$8m parameter evolves between the
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values obtained in the last two experiments to achieve thismapcombination
for all ESNN parameters. ESNN parameters behaviour has beensesely
studied (Wysoski et al., 2006b; Schliebs, Defoin-Platelrivgo, & Kasabov,
2009a). The results of this experiment support the finding ederstudies in
term of the optimal range of the parameters.
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Figure 5.7: Comparison between the accuracy and parameter optimisation of the three
frameworks when tested on the Two Spirals dataset.

In terms of the classification result, the average accu@dg$NN-DQIPSO
is improved by 1.00% for the Hypercube problem and 7.87% foiltixe Spi-
rals problem. Results of every single run are consisterbya 80% for both
problems. Table 5.1 shows a comparison of the accuracy resipared
to those in the previous experiments. The results show thpopsal inte-
grated ESNN-DQIPSO outperformed results obtained with ESNN-QiIPSEO an
ESNN-PSO, with a particularly large margin for the Two Spirals peob The
main reason for this achievement is that DQIPSO managed to seteetrel-
evant features and remove more irrelevant features in tleeSpirals dataset.
For the Hypercube dataset, both DQIPSO and QiIPSO methods were adle to s
lect the ten relevant features. However, DQIPSO managed to reafiorrele-
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vant features which QiPSO failed to do. This experiment cleagipahstrates
that the proposed DQiIPSO enables the network to discover raleneant fea-
tures, eliminate more irrelevant and noise features ancttieboptimise the
parameters. For ESNN-PSO, the algorithm is entirely deperuletiie pa-
rameter optimisation, which is inadequate and has affectetethdts. It has
the lowest accuracy among all three methods proposed in thig stud

Table 5.1: Comparison of classification accuracy
Method Hypercube Two Spirals

ESNN-DQiIPSO 95.74%+ 2.69 91.96%t 3.73
ESNN-QIiPSO  94.74%+ 4.34 84.09%t 6.43
ESNN-PSO 93.81%+ 3.49 73.26%¢t 7.33

DQIiPSO Performance Remarks

As demonstrated, the performance of DQIPSO is overall better tlegvettfior-
mance of the standard QiIPSO and PSO. Interestingly, DQiIPSO ustallars
number of particles in contrast to the other tested optireisBecause of the
robust search strategy, all particles in the swarm perforrh begh in fea-
ture selection and parameter optimisation problems. Theupelate strategy,
which is crucial forgbest selection, shows that the optimiser is continuously
keeping the number of selected features at the lowest raté@sPQIPSO
managed to completely remove all irrelevant features in trealmproblems.
Although in DQIPSO every particle has been assigned with a diffesegnich
strategy and also new selection approach, the proposed ogtirsiaot able
to remove all irrelevant features especially in difficuloblems such as Two
Spirals. However, the number of irrelevant features is sicanitiy reduced in
this case.

In term of gbest assignment, almost all types of particles have been selected
asgbest during learning. However, Update particle managed to searchette b
solution and selected gsest at most of the time. Other types of particles, are
occasionally selected agsest. Nevertheless, this shows that all proposed par-



5.4 SUMMARY 102

Run 1

Update L I
Random [ |

Filter

Particles

Embed In

Embed Out [ |

100 200 300 400 500 600 700 800 900 1000
Iterations

Run 2

Update 1 H 1 |
Random 1

Filter | 1

Particles

Embed In [ J | |

Embed Out

100 200 300 400 500 600 700 800 900 1000
lterations

Figure 5.8:gbest assignment during two validation runs. All the proposed particles
managed to find the best solution at certain iterations and assigpéekas
particle.

ticles are able to search better solutions which contribute lhetter learning
mechanism in the swarm. Figure 5.8 illustrates an exampj&:-ef assignment
during learning in two validation runs. Motivated by resultsm this exper-
iment, the DQIPSO was tested on a problem with greater dimensiorevehe
probabilistic element is introduced to the ESNN. Chapter éudises the prob-
abilistic ESNN architecture.

5.4 SUMMARY

This chapter has introduced a new DQiPSO model and has shown isapth
timiser can be implemented for feature selection and paemaoptimisation
tasks. The optimiser has been applied to ESNN can be used inrablems
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that require binary and the real value data to be optimisedisameously. In
addition to the patrticle structure, each type of particle itown way to dis-
cover the relevant features. Some patrticles in this modelustdithe normal
random selection at the beginning of the learning processr@trticles eval-
uate every feature to determine the relevancy. The propostidod results in
the design of faster and more accurate classification modmtstkie ones op-
timised with the use of standard evolutionary optimisatilgoathms.

Future work is planned to apply the proposed optimiser to theifredd
ESNN. The modified ESNN, which will be discussed in the next chapter,
quires an optimiser in order to work. DQIPSO optimises the ewbbe@n-
nections which may enhance the ESNN model and its classificatmmay.
Only selected connections will be used during learning. It Iebed that the
proposed DQIPSO will be able to perform optimisation in an efficieay.
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A NOVEL PROBABILISTIC ESNN ARCHITECTURE
AND ITS OPTIMISATION WITH THE USE OF DQIPSO

This chapter proposes a novel ESNN based on Kasabov's PSNM (#gsab
2010). In this modified ESNN, the connections are evolved baseth®
information it holds. Since the connections are dynamic, sprobability
computation is required, similarly to the process of feasglection task. An
integrated structure is proposed, in which DQIPSO is used to ogtigisul-
taneously connections, features and parameters. Featulennections are
modeled as a qubit vector while the parameter values arergegsas real
numbers. The proposed method is evaluated using the dataseitfon evalu-
ating the frameworks as discussed in previous chapteraltRese compared
with those obtained in previous experiments.

6.1 THE PESNN ARCHITECTURE

Kasabov (2010) introduced the probabilistic concept to thkirsp neuron
models to simulate biological neurons and also to enhancentgel capa-
bility. This chapter introduces the extended version offl&N that embeds
Kasabov's PSNM and is named the Probabilistic ESNN (PESNN). Onermajo
problem in ESNN is that a large number of pre-synaptic neuamasneeded
for each input feature. By introducing probability into tBENN connections,
the network can identify which connections are needed duriegdhrning
process. If PESNN can produce better results than ESNN, it shotwsdhall
connections are needed. Thus, selecting certain connsdiwh spike trains

104
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not only leads to better results but also demonstrates thahtérnal learning
process occurs during the selection of connections.

There are three probabilities in PSNM. The first one is the itibathat a
spike is emitted by pre-synaptic neurons if the connectiost® The second
one is the probability of the transmitted spike to be used &P Bomputation.
The final probability is the probability for the output neurtenemit an output
spike once the total PSP has reached the threshold. However, istulis
only the first probability is studied and applied to the Thedsmpmeuron model
in ESNN. In this PESNN, not only features are represented by a gediox
but also all connections between the neurons. A neuronalebiom is either
existent (1) or nonexistent (0), or in another interpretaither propagating a
spike or not propagating it. A qubit vector would be a suitabfgesentation
of all connections that can be optimised using DQIPSO. In thequegframe-
work, each particle is divided into three parts: the first fvaots use quantum
probability computation for feature and connection selectind the last part
holds the real value of the parameters. The PESNN structure igallad in
Figure 6.1.

Input sample Receptive Pre-synaptic Evolving
fields neurons neuron repository

O

0721 b——

Class 1

Class 2

1.793

Figure 6.1: PESNN Structure with evolving connections. The darker lines represent
selected connections while lighter lines indicate connections that are not
selected.
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The main idea is to get the best connections for the network.sé3gct-
ing a different connection arrangement, a different firingetisigenerated for
the pre-synaptic neurons and this might give a different wugs shown in
Figure 6.2. The figure provides a detailed illustration omtibe proposed
network works. There are two levels of selection, starting wileation of
features and followed by selection of connections. Seleaatlifes are en-
coded into spike trains using population encoding. Similah&feature se-
lection task, all the connections are mapped into a qubikmiasery particle
in the swam selects a string of connections based on the aqilaipsed states.
In the figure, two particles, Particle A and Particle B, haeerassigned to
select the connections during learning. The right diagrainasv the example
of connections selected by both particles and subsequestly for the classi-
fication. Different connections and number of selected cotmres may lead
to different classification outcomes and accuracy.

Feature Pre-synaptic
selection neurons

mask - -
Input Firing time Particle A | Particle B

neurons 1 1 0

Connection selection mask

iring time by Particle A
1

— | 1 1 1 0

1 0 1
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1 due to the feature
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1 1 1 O
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O
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— 1 = 1 0
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Figure 6.2: Example of connection selection task in PESNN.

6.2 A PROPOSED INTEGRATED PESNADQIPSO FOR SIMULTANE

OUS CONNECTION FEATURE AND PARAMETER OPTIMISATION

106

The proposed integrated PESNN-DQIPSO framework is almost identical to
the previous ESNN-DQiIPSO. However, the induction method is replaced by
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Figure 6.3: Integrated PESNN-DQIPSO framework.

the PESNN, which has evolving connections. The connections will kie op
mised by DQIPSO. Therefore in this framework, each particle has fhaes.
Two parts hold the quantum probability computation for gections and fea-
tures while the third part holds the parameter optimisati@onnections and
features are mapped into a string of qubits. In this case,dli@pse value 1
represents the connection or feature being selected wideea value 0 is as-
signed. Like in the previous frameworks, DQIPSO interacts withsdias and
in this case PESNN, to identify the best connection structhesmost relevant
features and best set of parameters. The learning starts wdbmaprobabil-
ity values for connections and features and random real sdhreparame-
ter. Every particle’s information will be used to train thetwerk to achieve
the highest classification accuracy for a given dataset. esulestly, every
particle updates its position based g@st and pbest found during learning.
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Algorithm 6 Integrated PESNN-DQIPSO
1: for all particledo
2: initialise all ESNN parameters
3: for all feature qubit and connection qublib
4 initialise 6
5 get collape state using Equation 3.12
6: end for
.
8
9

initialise fitness
. end for
: while not reaching maximum iteratiao

10: for all particledo

11 get fitness from ESNN (Algorithm 1)

12: if (current fitness better thawest fithess) or ((current fitness 3sbest
fitness) and (feature selected less than feature selectgttd3y) or
((current fitness =3best fitness) and (feature selected == feature se-
lected bypbest) and (connection selected less than connection selected

by pbest)) then
13: assign current particle agest
14: if (currentpbest fitness better thanbest fitness) or ((currenpoest

fithness ==gbest fitness) and (feature selected pyest less than
feature selected bybest)) or ((currentpbest fithess ==gbest fit-
ness) and (feature selected f¢st == feature selected bybest)
and (connection selected byest less than connection selected by
gbest)) then

15: assignpbest asgbest

16: end if

17: end if

18: for all ESNN parameterdo

19: calculate velocity using Equation 3.1
20: update parameter using Equation 3.2
21: end for

22: for all feature qubit and connection quldib
23: calculate velocity using Equation 3.9
24: apply rotation gate in Equation 3.11
25: get collape state using Equation 3.12
26: end for

27:  end for

28: end while

Learning continues until a termination criterion is met. c&inthe architecture
of PESNN is derived from ESNN, the same population encoding is graglo
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for the data encoding, the Thorpe’s model for PSP calculations avist
one-pass learning algorithm. Algorithm 6 explains the pemgbintegrated
PESNN-DQIPSO, Appendix D provides a detailed description of the frame-
work and Figure 6.3 illustrates the proposed framework.

In DQIPSO, a new approach of selectigigst has been discussed in Sec-
tion G.10. Any particle will only be assignegest if its current fitness is
better or with fewer selected features than the cuiggnt. However, an addi-
tional rule is appended to the optimiser for connection $eles and assigned
the gbest particle in PESNN. The new rule imposes that any particle will be
crowned agybest If it has the same accuracy and number of selected features,
but lower number of selected connections th&st. This is to ensure that the
optimiser always holds the best set of features and conneatiotine lowest
possible number in order to identify the optimal features emnnections.

6.2.1 Setup

Thirty receptive fields will be assigned to every selecteduiea A higher
number of receptive fields is chosen here than in previousrexents in order
to give more space for the optimiser to optimise PESNN'’s cotmres. As a
control measure, the minimum number of connections requoed feature
was set to 2. This is needed to avoid a selected connectiordtawith no
assigned connections. Eighteen DQIPSO particles were assigneisting of
six Update, three Filter, three Random, three Embed In ané tanebed Out
particles. ¢c; andc, were set to 0.05 for probability computation and 1.2 for
real value update. The inertia weightwas set to 2.0. Ten-fold cross valida-
tion was used and the average result was computed in 1000 itexatidis
method was tested on the Hypercube and the Two Spirals datdbetsesult
of the proposed method has been compared with result obtaineeviops
experiments.
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6.2.2 Performance Analysis

The performance of PESNN will be evaluated based on conneceatyre
and parameter optimisation.

Evolving connections

Figure 6.4 and Figure 6.5 show the results of the evolutidrESNN connec-
tions for both Hypercube and Two Spirals problems. The restdts@mpared
with the connections selected in ESNN-DQIPSO and ESNN-QIPSO. The total
number of selected connections for the previous experinaatsalculated by
multiplying the total number of features selected by the ogemwith the total
number of pre-synaptic neurons selected (which is 20) andetivby 10 runs.

In contrast, the total number of selected connections folNNE&re collected
directly from DQIPSO.

Evolution of connections
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Figure 6.4: Evolving connections on Hypercube problem as derived from three pro
posed methods in this study. PESNN-DQIPSO algorithm steadily elimi-
nates connections during the learning process. The method starts with a
high number of selected connections and gradually decreases that number
during learning. In comparison to the ESNN-DQiPSO and ESNN-QIPSO,
number of selected connections is based on a number of features selected
during the learning process for both algorithms. A lower number of fea-
tures selected leads to a lower number of connections used.

For the proposed PESNN-DQIPSO framework, the initial number of con-
nections randomly selected at the beginning of the learninggss is 217.7



6.2 A PROPOSED INTEGRATED PESNADQIPSO

connections for the Hypercube problem. Then the connectianstaadily
evolved and their number starts to decrease, aligning thleeswith the most
informative features during learning. The final average peinof connections
recorded after the learning is 123.50. In a problem space wittretevant fea-
tures and 20 presynaptic neurons used, it is equivalent@oc@fnections if
all features have been selected. Corresponding to the ficaracy result, it
demonstrates that even after almost half of the connectwa heen removed,
the remaining connections are still able to produce a resutiparable to pre-
vious ESNN results.

Evolution of connections
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Figure 6.5: Evolving connections for Two Spirals problem with comparison between
the three proposed methods. PESNN-DQIPSO optimises the connections
during the learning process. The high number of features selected by
ESNN-QIPSO can be translated into a high number of selected connec-

tions.

Similar results have been recorded for the Two Spirals prolale shown in
Figure 6.5. The number of connections gradually decreases the initially
selected 160.10, along with the total number of selected featurhe num-
ber of evolved connections in PESNN-DQiIPSO and number of conmaatio
ESNN-QIPSO was very similar due to the number of selected fedbyrbeth
algorithms are almost identical and fewer in number as showngar€& 6.7.
The final average number of connections selected by DQIPSO fopitbis
lem is 68.60. In contrast, the total number of connectionSSNN-QIPSO is
very high due to the large number of features selected durengileg. The
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final classification accuracy for Two Spirals is improved doeonnections
evolving in line with feature and parameter optimisation.

This experiment demonstrates that ESNN with evolving connesit®able
to produce improved results. More importantly, the evolviogreections in
PSNM improves the learning capability of the standard ESNN. Hewelue
to the sensitivity of each connection that holds some spikenmation, a cor-
rect combination and sufficient number of connections aneial. Otherwise,
the results may be worse than those obtained with the stai®iN due to
insufficient information supplied to the output neuronsfinal PSP computa-
tion.

Feature selection

The previous experiment discussed in Section 4.2 shows theamycof the
algorithm without feature optimisation is low compared to tlgoathm with
feature optimisation. Figure 6.6 shows the evolution of feat#lection dur-
ing 1000 learning iterations and the final selected featufesthe Hypercube
problem, the same DQIPSO is able to select all 10 relevant f=aturd elimi-
nates all redundant and random features. In this specifierarpnt, it shows
although the size of the particle is large due to three cormptsmneeded to be
optimised simultaneously, the feature selection ability hot been affected. In
addition, the DQIPSO optimiser also managed to remove all imeldeatures
around 600 iterations, the same time as in previous expatiriveore iterations
are required because of the problem size that each partitds.H-or PESNN-
DQIPSO, the most relevant features are found in Feature 4, leedfuand
Feature 19 with nine selected time from 10 runs. They are folldwydeeature
2, Feature 11, Feature 20, Feature 26, Feature 15, Featarel3tzature 9. In
feature selection mechanism of DQIPSO, after the relevantriesatue found,
the particles then try to reduce the number until the smadi@isset of relevant
features are found. This is the reason why there are still smtigties after
10 relevant features are found. Overall, the duty of findingost and small-
est subset of relevant features has been successfully canygliBQIPSO for
both PESNN and ESNN classifiers. For the QiIPSO performance, timeisgr
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has managed to select and give high ranking of all 10 relewattifes even
when some irrelevant features were still occasionally bekttssl together.

Number of selected features

Feature arrangement

01 - Random
02 - Relevant
03 - Redundant
04 - Relevant
05 - Random
06 - Random
07 - Redundant
08 - Random
09 - Relevant
10 - Relevant
11 - Relevant
12 - Redundant
13 - Random
14 - Redundant
15 - Relevant
16 - Random
17 - Redundant
18 - Redundant
19 - Relevant
20 - Relevant
21 - Redundant
22 - Random
23 - Random
24 - Random
25 - Redundant
26 - Relevant
27 - Redundant
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Figure 6.6: Evolution of feature selection on the Hypercube dataset. The bar graph at
the bottom show the final features selected in 10 runs from: (a) ESNN-
QIPSO framework, (b) ESNN-DQIPSO framework and (c) PESNN-
DQIPSO integrated framework.

In the Two Spirals problem, two original features and featuveeh the noise
level of 0.2 were selected by DQIPSO. Results are depicted in Figardré
these two experiments conducted for DQIPSO optimised PESNNESNN,
the four features - pair of original and features with noiszttave been con-
sidered relevant. Due to the small noise value, features witle hevel of 0.2
is very hard to be removed. Both features are almost identiwhlcantain a
lot of information that can be used to distinguish betweenwutfasses. This
experiment also shows that DQiIPSO is not able to remove complettedy o
redundant features, similar to previous experiments. Tiedeirant features,
some with noise levels of 0.5, 0.6 and 0.7 were still occasionalcsed after
1000 learning iterations. Although DQIPSO is not able to completéiyi-
nate the irrelevant features in Two Spirals problem, its abibtgignificantly
reduce the number of irrelevant features when compared to QiPSéatiss
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Figure 6.7: Evolution of feature selection on the Two Spirals dataset. The bar graph at
the bottom show the final features selected in 10 runs from: (a) ESNN-

QIPSO framework, (b) ESNN-DQIPSO framework and (c) PESNN-

DQIPSO integrated framework.

factory. The final features ranked highest by DQIPSO in this exypsart are
Feature 2, Feature 18, Feature 9 and Feature 13 which all cotiiaimsost
information. Features that have been selected less thahiealimes in the

10-fold cross validation runs can be considered irrelevant.

Parameter Optimisation

Figure 6.8 and Figure 6.9 show the evolution of parameter ogdition and ac-
curacy for Hypercube and Two Spirals problems, respectivdlyparameters
converge to a certain value that is within the range of valt@® forevious ex-

periments. Parameteérod for Hypercube dataset once again converges around

the value obtained from the previous experiments. From thetand previ-
ous experimental findings, it can be concluded that the optiamaje for) od
is between 0.985 to 0.990, far is between 0.65 and 0.95 and f&imn is be-
tween 0.3 to 0.7. This means thatod should be as high as possiblg,is
between the other two parameters a&hah is the lowest. Lower similarity pro-
portion value means that fewer outputs neuron converged. cbuisl happen
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to high-dimensional and non-linear separable problemgaltiee complexity
of their structure.

Learning accuracy Parameters
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Figure 6.8: Evolution of accuracy and parameters on Hypercube dataset from the in-
tegrated PESNN-DQIPSO framework.

In both problems, a slight improvement of accuracy is acliereompari-
son to the ESNN-DQIPSO experiment. The accuracy obtained for Hylperc
problem is 96.29% and for the Two Spirals problems is 92.68¥nerally, a
steady improvement of about 1.00% can be observed for eatle proposed
methods when applied on the Hypercube dataset. When compdEiaiy -
DQIPSO with ESNN-QIPSO, a significant improvement can be noticed espe-
cially for the Two Spirals problem which contains variabledeof noise. This
experiment has demonstrated that apart from optimisingegatufes and pa-
rameters, classification accuracy also can be improved lbgtsey the right
connections in the ESNN architecture.
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Figure 6.9: Evolution of accuracy and parameters on Two Spirals dataset from the
integrated PESNN-DQIPSO framework.

Table 6.1: Comparison of classification accuracy
Method Hypercube Two Spirals

PESNN-DQIPSO 96.29%+ 2.99 92.68%t 3.67
ESNN-DQIPSO  95.74%+ 2.69 91.96%t 3.73
ESNN-QiPSO 94.74%+ 4.34 84.09%t 6.43

6.3 COMPUTATIONAL COST

The average computational time for a single run when the m@gponethods
are applied to the Hypercube dataset is depicted in TableEESAIN-QIPSO
and ESNN-DQIPSO optimises parameters and executes feature sekdetio
multaneously during learning. The number of selected featunay affect
the computational time. Less feature selected, fasteregsieg time can be
achieved because of the fewer connections exist in ESNN. Since fea-
tures are selected by QIPSO, this resulted more computational¢iguered
compared to DQIPSO. In addition, the number of particles in QIPSO @ als
more than the number of particles in DQIPSO which requires more tiime
perform the optimisation. PESNN-DQIPSO takes significantly moreputa-
tional time than other proposed methods. This is becausdimiges not only
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parameters and features, but also the high dimensional SNES®nnections.
Although the increment of accuracy is only about 1% when PESNN-DQIPS
is tested in 10 fold cross validation for both datasets asg/shio Table 6.1, the
optimisation is run offline for a single time to optimise thetwork. The op-
timised network is then ready to be applied as an online classifiis worth

to have higher computation time during learning so that thevoik is well
trained for the online usage in the later stage.

Table 6.2: Comparison of computational time

M ethod Timein minutes
PESNN-DQIiPSO 49
ESNN-DQIPSO 18
ESNN-QiPSO 24

It is explicitly noted that the execution time is not the besly to compare
the performance between algorithms since it may run in a éiffiehardware
specification and also different software or programmindstoNevertheless,
the discussion will be very informative when the identicaldveare configu-
rations and tools are used between all algorithms.

6.4 SUMMARY

This chapter presents a novel PESNN framework, where connsctimive
based on spike information it held. The PESNN architecture altbe@snost
informative connections to be exploited. This method dassonly produce
a better classification accuracy, but also enhances thargarapability and
speeds up learning due to the lower number of selected conngctio

Since it is unrealistic to determine manually which connedtiare the best,
DQIiPSO has been used as an optimiser for PESNN. The connectionagpean
to the particle’s quantum mask to determine whether a particolamection is
selected or removed. Every particle has its specific seldetddres, parame-
ters and connections. The particle with the best connectelested, together
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with the best features and parameters that give the highestamy is then
set aggbest. Other particles update their positions including their cotinas
based on information supplied lyest and itspbest. From the conducted ex-
periment, it becomes apparent that the proposed integr&&8MNR-DQIPSO
method has demonstrated promising results and is worthfuftrer explo-
ration. The results have shown that DQIPSO is able to simultaneouesty id
tify relevant features, recognise a suitable number of eotions and opti-
mise parameters. PESNN provides accuracy that is better thactueacy
achieved with other tested methods. Thus, reveals that egobdnnections
improves the learning capability to the ESNN. However, this expaninmas
also addressed some problems regarding PESNN, especially #ssitgdor
a suitable number of connections for better results. The lowetber of se-
lected connections produces poorer results as found in ganieles during
the learning process.

In the next chapter, ESNN will be modified and tested on some afnibet
common types of real world problems. In spatiotemporal j[@wois, both spa-
tial and temporal components are important for decisioningakt is believed
that ESNN will be suitable for solving such problems becausa®temporal
component found in the architecture. However, some modificationseces-
sary to accommodate both spatio and temporal informatiompoments.



A NEW METHOD FOR SPATIOTEMPORAL PATTERN
RECOGNITION BASED ON AN EXTENDED ESNN

Often real world problems are spatiotemporal. Such problmnsist of space
(or spatial) and time (or temporal) components, both equalpomant for de-
cision making. A standard classifier is normally capablero€pssing only one
of the components, either spatial or temporal. In this clrapteew framework
is proposed on an ESNN for spatiotemporal problems. An additicoralpo-
nent is added to capture all information in spatiotemporabjems. The ad-
ditional module exploits the principle of reservoir compgtio capture both
spatial and temporal information and transforms it intothapdata represen-
tation form that enables ESNN to classify the data efficientlyis Thapter
also proposes a synthetic spatiotemporal benchmark datsse to evaluate
the proposed Extended ESNN (EESNN) framework.

7.1 SPATIOTEMPORAL PROBLEMS

Spatiotemporal data relates to objects whose position,esaag size change
over time (Theodoridis & Nascimento, 2000). Spatiotempprablems nor-
mally deal with a sequence of events within a given time frantee groblem

is defined by a time-evolving spatial object represented Isgtaof triplets
(04, si, t;) Whereo;q is an object with the identification number, ands the
location of then,,; at timet; (Theodoridis, Sellis, Papadopoulos, & Manolopou-
los, 1998). When solving spatiotemporal problems, spatiairmétion is
needed to represent the position of the object in space tegeith the tempo-
ral information indicating when an event has occurred. One@fhibst com-
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mon spatiotemporal problems is ElectroencephalograpBGiEsignal pro-
cessing and object recognition.

LV

ts t, t, t t,

Figure 7.1: A swing ball is an example of spatiotemporal data. The figure shows the
spatial position of the ball at five time points.

Figure 7.1 shows an example of spatiotemporal data. Fivet®eecurred
in a sequence of time. In spatiotemporal problems, one agsansufficient
to describe the problem. For instance, no decision can be mathe single
framet, alone. However, when all events accumulate, then the problemecan b
described. In this case, the problem is portrayed as a swihg ba

There are a number of algorithms and approaches for dealing wath sp
tiotemporal problems such as Time Delay Neural Networks (Wail@$9)
and recurrent Elman networks (Elman, 1990). However, more dpicddly-
inspired methods have been introduced for solving spatioteah problems.
Many of the biological neuron properties have been studieexatained in
Gerstner and Kistler (2002a), but have not been fully utilfeedhe creation of
more efficient models for solving complex spatiotemporalpems. SNN are
biologically plausible and offer some means for represerttmg, frequency,
phase and other features of the information being proce3$exmain reason
to study SNN for spatiotemporal problems is due to its ability to maéy
represent and process both spatial and temporal informatiequately.

Recently, a reservoir-based method has been proposed ksiarstor spa-
tiotemporal problems (Verstraeten et al., 2007). Inittady of the combina-
tion of the SNN variant, the ESNN with the LSM has found to be promgisin
for solving spatiotemporal problems (Schliebs, NuntalidK&sabov, 2010).
The study emphasises on the reservoir response after thietepgoral in-
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put pattern is injected to the reservoir. Inspired by theifigd of that study,
Chapter 7 and Chapter 8 present an extended structure of il E@ere an
additional component is introduced to deal with spatioteralpproblems. In
this chapter, a simplified structure is proposed where a nesluieas added to
capture spatiotemporal data sequence that needs to berfaldksified. This
module utilises the standard ESNN encoding method of populediakorder
encoding to turn spatiotemporal input pattern into a sgilknput pattern. Out-
put from this module is then passed on to the evolving classditanodule
that completes the classification task.

7.2 THE EESNN FRAMEWORK

The framework for the proposed EESNN is shown in Figure 7.2. NESE 8-
corporates two modules for information processing. The firsdule acts as
a memory that captures the whole spatiotemporal data patteahseld to
be classified. The second module is a standard ESNN used fotatbsfie
cation task. In the first module, both spatial and temporatmanents of the
spatiotemporal problem are captured and transformed into-diigensional
spiking patterns. Every spatial variable value at evergréig time unit is en-
coded using the standard ESNN population rank-order encadimgme. The
encoded information for every time point is stored in a mgmohe obtained
memory of spikes is then fed into the second module for claasidic.

A fast one-pass time-to-first-spike learning algorithmdsdithat enables the
new model to be more suitable for learning from the spatioteaisireams
in an adaptive and incremental manner. The high-dimensgpslotemporal
patterns are learned and classified in the evolving clagsdit module. The
Thorpe neuron model fires an output spike after sufficienticiganporal spike
trains are received. Output from the learning for every sangptompared
with the targeted output for classification accuracy computafldnve proposed
EESNN algorithm is described in Algorithm 7 and its detailed impatations
are presented in Appendix E.
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Figure 7.2: Extended ESNN framework with two modules.

Algorithm 7 EESNN
1: for all samples belonging to classlo
2. for all time pointsdo
3 encode input samples into firing time using Equation 2.3
4: end for
5. accumulate all firing time for entire time points in a spike noeyn
6: end for
7. apply spike memory into ESNN (Algorithm 1)

7.3 APPLICATION ON SPATIOTEMPORAL DATASET

In order to evaluate the proposed EESNN on spatiotempord&lgnrs, this
study proposes a synthetic spatiotemporal dataset. Thergasan for propos
ing this benchmark dataset is the need to have a problem wioosplexity
can be controlled. Thus, the proposed EESNN can be tested muvapa-
tiotemporal noise levels. The efficiency of the proposed [EES$o adapt to
the various noise levels is evaluated.

7.3.1 Rotating Dot Problem

The Rotating Dot dataset is a two-class synthetic spaticbeahproblem. The
objective of this problem is to determine the moving directidra dot. Two
original patterns are created in a matrix with predefined dsioem the first
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Figure 7.3: Rotating dot spatiotemporal synthetic dataset. Six datasets with different
noise level are created from the original spike trains. The two colours
represent the two classes.

dot rotates on clockwise direction and the second dot rotatastiolockwise
direction. Both dots use the same path when rotating. This sithleeproblem
more interesting because at any individual time point ongve decision can
be made about whether the point turns clockwise or anticlockvéeeeral or
whole events have to be considered to determine the trajectmribe dot. In
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this experiment, a matrix of x 5 has been created with the dot completes two
rotations for each direction.

The two original patterns have been encoded into spike traing the pop-
ulation encoding method. A desired number of samples hage generated
based on these spike trains. In order to control the difficultthe problem,
a uniformly distributed noise is added to the spike trainse ®hginal data
were jittered in a specific time interval. Figure 7.3 shows sitaskts that
have been generated each with 100 samples, 50 samples foclaash The
colours indicate the two classes, one for each direction efrdation. The
problem has been sampled at 60 milliseconds simulation tinte fifst top
diagram illustrates the spike trains with the lowest level@sa applied at 0.5
millisecond, thus the easiest problem. Increasing noikesviadicates higher
difficulty problems. For example, at the noise level of 5.00iseconds, the
spike trains between two classes have been blended togethénsadifficult
to distinguish between the classes. The proposed methoatbagddsted on all
six problems and this is explained in the following sectiod atso discussed
in Chapter 8.

7.3.2 Setup

The proposed EESNN has been tested on the six Rotating Dot dat#sets
rotation matrix of5 x 5 with 48 frames was generated and every frame repre-
sented one millisecond of simulation time and was encoded walrdiceptive
fields. The smaller number of receptive fields balances oulatige number
of rotation matrices and frames. In total, 6000 spike traiase generated and
stored in the memory.

No optimiser has been embedded to the proposed frameworkitbfaviher
complexity. The high problem dimension would make the optimesss effec-
tive, and more computation time and resources would be nedderefore, all
parameters were manually adjusted based on the results abteoneparam-
eter optimisation in the previous experiments. Followingéeonsiderations,
Mod was set to 0.99 in this experiment. In terms of proportion facébue,
the optimal values were found to be in the range from 0.65 to.G-@bvever,
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eightC values were tested in the range between 0.2 and 0.9 in this expérimen
This was mainly because different problems might need @iffeproportions

of spike trains for better results. These eight experimente wan withSim

set at 0.1 and 0.3 to evaluate how the similarity factor &fféice problems.
Lower Sim value resulted in lower merged number of output neurons, while
higher value indicated otherwise. Ten-fold cross validatde was followed

in all sets of the experiments.

7.3.3 Results

The proposed EESNN was first tested problems were first tested dRothe
tating Dot dataset with thg:m set to 0.3. The value was obtained from the
parameter optimisation when DQiPSO was used in the previousimers.
From the optimabim range, the lowest value was selected to give some ability
to the network to evolve and merge. In general, datasets with loaise level
achieved higher classification accuracy regardless of’tivalue. However,
the value ofC started to affect the accuracy when more difficult dataset were
applied and higher accuracy was achieved wiiemas set to a higher value.
On the other hand, the accuracy dropped severely when the snllierfor

C was used for all datasets. For instance('at 0.2, the dataset with noise
level 0.5 achieved 100% accuracy. The accuracy dropped do&a®ftowhen
EESNN was tested with a dataset with noise level 5.0. In contragnall
decrease was recorded when a higher valué€'faas used. The overall results
for this experiment are presented in Table 7.1.

The results for different settings of the proportion facioior spatiotempo-
ral problems show the best result can be obtained whenset at around 0.6
to 0.9, confirming the range found by the optimiser on the spiiraercube
and Two Spirals problems in previous experiments. In additiois, experi-
ment also found that good results could also be gained whemas set to 0.4
for certain datasets. Generally, the accuracy for smallesas lower than the
accuracy achieved with a largérvalue. SmallerC' value showed that a lower
number of spike trains were used to generate an output spikereésslt, lower
accuracy was recorded when less information was supplied wdhsifier.
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Table 7.1: Overall result for Rotating Dot spatiotemporal problem. EESNN was tested
with six datasets with different noise levéll od was set to 0.99 was set
to values in the range of 0.2 till 0.9. Both values assigneflite (0.1 and
0.3) produced the same result.

Level of Values of C
noise
(msec) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.5 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
10 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
’ +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
20 95.00% 99.00% 100.00% 97.00% 100.00% 100.00% 99.00% 100.00%
’ +5.27 +3.16 +0.00 +4.83 +0.00 +0.00 +3.16 +0.00
3.0 73.00% 94.00% 99.00% 88.00% 100.00% 100.00% 99.00% 100.00%
’ +9.48 +8.43 +3.16 +10.32 +0.00 +0.00 +3.16 +0.00
40 62.00% 74.00% 95.00% 77.00% 96.00% 97.00% 83.00%  92.00%

+10.32 +15.05 +5.27 +9.48 +5.16 +4.83 +12.51 +6.32

50 53.00% 63.00% 62.00% 63.00% 85.00% 90.00% 78.00% 93.00%
' +10.59 +8.23 +7.88 +1059 +£7.07 +1154 +13.16 +8.23

This experiment was repeated f&wn = 0.1. Surprisingly, the results for all
values ofC produced the same accuracy as previous experimentSasith=
0.3. The similarity value of 0.1 creates the same arrangeofemitput neu-
rons as when it is set to 0.3. More output neurons are created svhewalue
is low. This situation leads to the new sample to resemble withadribe
trained output neuron. However, this also leads to a higherbeurof out-
put neurons being created. For large problems with thousanksndreds of
thousands of input samples, more merged neurons lead toefiective clas-
sification. Although storage capacity is not an issue due toorgmnents in
current hardware and storage capabilities, the method Hestfewer resources
is preferable especially when dealing with online applicatibias require fast
processing that uses minimal resources. Optimal paranfetand in this ex-
periment on the tested spatiotemporal problem will be consdla the next
experiment where a new framework for spatiotemporal classtitas pro-
posed.
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7.4 SUMMARY

This chapter has proposed an extended structure of ESNN d&tiosgmporal
problems along with a spatiotemporal data encoding method cdmbina-
tion provides spike representation for the input patteras #ne required for
the classification process. The method accumulates all spatigonents in
the sequence of time into a memory. This method allows the ckastifeas-
ily classify the given problems. Its capability is demont&daon a proposed
benchmark dataset. Results show the proposed data encoelihgdns able to
capture all necessary information leading to promisingsifecation accuracy
achieved by ESNN.

In the next chapter, a new version of the extended ESNN is peajtosclas-
sify spatiotemporal problems. This new framework emplogd18M for more
complex reservoir construction. Both EESNN and the new exerieSNN
proposed in Chapter 8 will be tested on a case study dataspéffarmance
result comparison presented in Chapter 9.



RESERVOIR-BASED ESNN FOR SPATIO-TEMPORAL
PATTERN RECOGNITION

In this chapter, a novel reservoir-based ESNN (RESNN) framlewblising

LSM is presented. Its suitability as a classification methotested in the
computer simulations. The goal of the study is to gain somighis into the
working of the reservoir-based ESNN for classification. Itasibility as a
spatiotemporal classification method will also be evaluatetis chapter.

8.1 RESNN

Reservoir is an intermediate structure that maps an input taigts dimen-
sional output after accumulating all the input informatiénreadout function
is used to transform reservoir responses to the desiralpeithat can be used
for decision making. This chapter explains how the resemngogonstructed
from LIF neurons according to the preliminary study in Maassl. (2002)
and Schliebs, Nuntalid, and Kasabov (2010). The structurdfoféservoir is
studied in Section 2.3.

8.1.1 The Reservoir

The LIF neural model is based on an electrical circuit contgirrcapacitor
with capacitanc&' and a resistor with a resistanfewhere bothC andR are
assumed to be constant. The dynamics of a neuane then described by the
following differential equation:

128
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Tm% = —u;(t) + R I;(¢) (8.1)

The constant,,, = RC is called the membrane time constant of the neuron.
Whenever the membrane potentialcrosses a threshold from below, the
neuron fires a spike and its potential is reset to a reset pdtentidhe firing
time ¢!/ of a neuron is defined in Equation 8.2, as described in Gerstner and

Kistler (2002b).
£ty =0, fef0,... ,n—1} (8.2)

wheren is the number of spikes emitted by neuronThe synaptic current
1>** of neuroni is modeled using an-kernel:

) =3 wy Y a(t—t) (8.3)
J !

wherew;; is the synaptic weight describing the strength of the connection

between neuronand its pre-synaptic neurgn Thea-kernel itself is defined
as

alt)=er; te /TO®1) (8.4)

where©(t) refers to the Heaviside function in Equation 8.5 and parameter
75 IS the synaptic time constant.

0 If s<0
@(s){ i s> 0 (8.5)
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8.1.2 Spatiotemporal data encoding

Figure 8.1: Spatiotemporal data encoding.

The first step in the framework is to encode spatiotemport oo spike
trains. Figure 8.1 illustrates the process. Each realevafuhe data vector is
transformed into a spike train using a population encodinghis approach,
a single input value is encoded into multiple neurons, each wifipecific
spike trains calculated using intersection of Gaussian fumcéie described in
previous experiments. All frames or events in the data aredain the same
way. As a result, a sequence of spike trains for all pre-synaptiat neurons
Is produced. Based on the time order, the whole series of s@kestwill be
injected into the reservoir. Spikes with the earliest time walibjected first
followed by later ones.

8.1.3 Framework

Figure 8.2 shows the architecture of the proposed RESNN framkeW here
are four major components - spatiotemporal encoding, veseliquid states
as a reservoir output and the ESNN classifier.



Spatiotemporal input data
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Figure 8.2: Architecture of the extended ESNN capable of processing spatio-temporal
data. The coloured boxes indicate novel parts in the original ESNN archi-
tecture.

Each pre-synaptic input neuron is attached to a reservoipstineuron.
The generated spike trains are propagated into the resefSioice each pre-
synaptic neuron has a series of spikes, the spikes are coaslyuoeing in-
jected into the reservoir neuron. According to the LIF neupanciple, an
output spike will fire and propagate a spike to the next condewerons after
it reaches its firing threshold. This process is repeated ailhpike trains are
completely injected.

An output spike generated by a neuron may activate other ctetheeu-
rons. This activity can cause the reservoir to produce wapcumulated neu-
ron responses. Different input spike trains from differempiuinsamples may
produce different responses that could be used for dis@ethm sample ac-
cording to its class. After the simulation is completed basethe pre-defined
simulation time, the neuron responses are evaluated.

In order to perform the classification, readout functioresraquired to trans-
form the reservoir responses into liquid states. Liquitestaan be extracted at
all time points. However, due to little available informatiand because some
readouts require more information for the calculation, ligsidtes are nor-
mally calculated at certain time intervals. Different rea$goroduce different
quality of liquid states, which affects the outcomes. The licgiates then are
fed into the ESNN for classification into a desired class label.oAlgm 8
explains the proposed RESNN and the detailed descriptiongrasented in
Appendix F.



8.2 METHODS FOR RESERVOIR STATES REPRESENTATION

Algorithm 8 RESNN
1: construct reservoir with interconnected neurons using toud.1
2: for all samples belonging to classlo
3. for all time pointsdo
4 encode input samples into firing time using Equation 2.3
5. end for

6: store as spiketrains

.

8

9

. end for
. for all spiketraindo
feed into reservoir
10: calculate responses based on neuron spikes using Equéation 8.
11:  construct liquid states from reservoir responses
12: end for
13: apply liquid states into ESNN (Algorithm 1)

8.2 METHODS FOR RESERVOIR STATES REPRESENTATION

In order to understand the suitability of the RESNN classificatieethod, the
proposed framework was first implemented using simple syictbgike trains.
The objective of this experiment was to investigate the rk@seresponses
when spike trains were injected into the reservoir. The reseshould be
able to produce different responses between different oalpsses. Theo-

retically, higher dissimilarity means that better classifion can be reached.

Because the responses accumulate from the reservoir, tkigstasucial for
the classification phase.

8.2.1 Dataset

In this experiment, two random spike trains were generategresent a syn-
thetic two class problem. The original spike trains were jitlexrsing a Gaus-
sian function with the width of 1 millisecond where 50 samples veeates
for each class. All spikes were uniformly distributed betweem@ 300 mil-

liseconds, meaning that every sample contained the sambarurh spikes.
The problem was simulated in 500 milliseconds simulation tifagure 8.3

illustrates the generated spike trains.

132
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Figure 8.3: A simple two class synthetic dataset. The original data in each class were
jittered to produce 50 samples.

8.2.2 Setup

In this experiment, the LSM reservoir was constructed with thigeensional
network grid4 x 4 x 4, which is equivalent to 64 interconnected neurons. In the
network, two neurongl and B were interconnected with a connection proba-
bility according to Equation 9.1

—d(A,B)

P(A,B)=C xe (8.6)

whered(A, B) denotes the Euclidean distance between two neurons\ and
corresponds to the density of connections which was sat402. Higher
or smaller values ok represented higher or lower probability that a connec-
tion exists between the two neurons. The reservoir contaiféel é«citatory
(ex) neurons and 20% inhibitory (inh) neurons, which were oanlgt assigned
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to neurons. Parametér depends on the type of the neurons, ., = 0.3,
Cop—inh = 0.2, Cinh—ex = 0.5 @andC;,,—inn = 0.1. The connection weights have
been randomly selected by a uniform distribution in the irdakfv8, 8|nA.
The neural parametey, represents the decrease of the potential was set to 30
milliseconds, the firing threshol@l= 5mV and reset value, = 0omV. Further-
more, a refractory period of 5 milliseconds and a synapticstrassion delay
of 1 millisecond was used. Most of the parameters were directpiad from
a study by Grzyb, Chinellato, Wojcik, and Kaminski (2009).

For the ESNN classifier, paramet&fod was set to 0.99¢' = 0.6 andSim
= 0.1. These values were based on the optimal range found in ¢veops
experiment.

8.2.3 Results Analysis

Figure 8.4 shows the responses after the input spike trawesteen injected
into the constructed reservoir. The top two diagrams remtethe averaged
responses for 50 samples from each class, A and B respectiVélg. fig-
ure clearly shows that some of the neurons were still activatied alf input
spikes had been completely fed into the reservoir in 300 millisds. How-
ever, the difference between classes is hard to notice due ttetisty of the
responses. In order to investigate the quality of both neses, in terms of dis-
tinguishability between classes, these two average respavese subtracted.
The diagram at the bottom represents the whole responsesbldinle area
means no response while the colours correspond to the valuetladtsub-
traction operation. The figure shows that the responses femh ef the two
classes are dissimilar; this may lead to easier classtic@tiocess later.

In order to perform classification, the state of the liquid given timet has
to be read out from the reservoir. The way the liquid state isdé is critical
for the proper working of the method. In this experiment, ¢hdédferent types
of readouts have been investigated - cluster, frequencyaalbg readouts.
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Figure 8.4: Reservoir response on synthetic dataset.

Cluster Readout

The first type of readout is called cluster readout. In this w@tmeurons
in the reservoir are grouped into clusters and then the actiwitile neurons
in the clusters is determined. The population activity ifiral as the ratio
of neurons being active in a given time interyial- A.¢,¢]. This follows the
same principle as explained in Section 2.2.1 and also destiib Gerstner
and Kistler (2002b). In this experiment, 16 clusters were ctdkkan a time
window of A.t = 10 milliseconds. Similar readouts have also been employed
in previous related studies such as in Norton and Venturad(201

Figure 8.5 shows the continuous accuracy when the readoutesamto
the ESNN classifier. The top diagrams show the cluster reacmstructed
at three different time points. The readouts are sortedrdogpto the sample
class. Based on the readout setup, every sample producesl tomeat of



8.2 METHODS FOR RESERVOIR STATES REPRESENTATION 136

states at t =40 states at t =120 states at t =340

samples

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
neuron # neuron # neuron #

t =40
100

90
80
701

accuracy in %

60}

50o

100 200 300 400 500
time in msec

Figure 8.5: Classification accuracy from cluster readout. Three time points are se-
lected and the readout from each point is shown on the top. At time point
t = 160, the highest accuracy is obtained from the readout that is more
distinguishable between classes compared to other time points.

data. This new data was used in the classification processefne, the con-
struction of the readout is crucial to the samples being djatshable between
classes. The same condition applies to the next two readouts.

In this experiment, although the input spike trains were sgdattenly 300
milliseconds, neurons were still accumulating the spikes ativating after
all input spikes trains were fed into the reservoir. Thespoases contained
information that could be used for classification, as shown enbibitom dia-
gram. Some accuracy can be obtained after 300 millisecopdsspike trains.
This condition is referred to as the fading memory effectieBlrandom points
of accuracy have been selected in order to visualise the@utad liquid state
at+ = 40, 120 and 340. It can be seen that higher accuracy requivetiex
distinguishable state between output classes. In this deariguid state at
t = 40 gives the highest accuracy of 100%. This correspondstterdejuid
state compared to the staterat 120 with accuracy of 95%. Surprisingly, the
fading memory effect at time= 340 still produced good accuracy at 82%.
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Frequency Readout

The second readout is principally very similar to the firse.oim the interval
[t—Ayt, t], the firing frequency of all neurons in the reservoir were deieeoh
According to the reservoir setup, this frequency readoudyees a single vec-
tor with 64 continuous elements; each element refers to a simagleon over
collected time window of\ s¢. In this experiment, a time window af ;¢ = 30
was used.

states at t =30

states at t =312 states at t =437

I - .

i A — e i -
"

o =

Class B

samples

3 F LT
< 3 'E - -
g L ] B R
© 1 ] E Torsl T
o HE i EH £
S I If ! i 4 A R I
0O 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60
neuron # neuron # neuron #
L0 | 312
100} & L=
X
£ 90f
9
@ 80
g 70}
@ =437
60
50 . . . .
0 100 200 300 400 500

time in msec

Figure 8.6: Classification accuracy from frequency readout. A more stable accuracy is
achieved over time because a larger time window is required in this read-
out. Three time points were selected to illustrate the readout. Readouts at
t = 30 andt = 312 are more distinguishable between classes and there-
fore provide a high accuracy. However,tat= 437, the fading memory
effect took place and reduced the accuracy.

Similar to the previous readout, three random accuracy pwiete selected
to investigate the quality of the reservoir readout, as shoviigure 8.6. Low
density appears at= 30 because of the low number of responses, as can be
seenin Figure 8.4. However, because the response pattetifdognt classes
at this time are different, accuracy is high at 100%. The higihstty readout
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att = 312 represents many responses available for the readout. veiQwiee
accuracy slightly decreases because most of the informatiomthe readout

is resembled between two classes.t At437, the sharp decrease of accuracy
is due to the fading memory effect where not many responseavaikable at
the given time point. Thus, this affects the construction efrdadout and the
accuracy.

Analog Readout

Finally, in the analog readout, every spike is convolved hyalpha kernel
function derived from Equation 8.4. A convolved spike tra() is then given
as

st = Y -t
t—tf)

= Y ertt—the 70—t

tf

(8.7)

where©(t) refers to the Heaviside function (Equation 8.5) and R is a
real-value time constant.

The responses are sampled using a time stéyp,0f 10 milliseconds result-
ing in 50 time series. Similar readout has been used for ebam@chrauwen,
D’Haene, Verstraeten, and Campenhout (2008) for a speecgnmgionm prob-
lem.

The accuracy of this readout is consistently high most of the aisican be
seen in Figure 8.7. However, when there are fewer responses kitgua
spikes have been fed into the reservoir, the accuracy stadscrease which
is evident in all readouts. When the accuracy was measure@sitLt00% at
almost all time points, including at= 30 and:t = 150. The liquid states for
both time points show different patterns for the two clasge¢s = 410, the dif-
ference between the two classes is hardly noticeable due toridikrsumber
of activities. However, when the state was applied to the ESNNpd glassi-
fication result with accuracy of 89% was achieved. This is beedlie decay
of alpha kernel function still provides some informatioem\after several mil-
liseconds of neuron activity. Figure 8.4 shows that after#illseconds sim-
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Figure 8.7: Classification accuracy from analog readout. Readouts from the selected
time points are displayed at the top of the diagram. Accuracyis more stable
even when few responses are left as shown=ati10.

ulation time, very few responses were recorded. However, sofoeriation
can still be extracted when the kernel is applied, as shown inr&igur.

8.2.4 Discussion

Overall, three readouts came out with the highest accurac@@¥l Among
all, cluster readout results fluctuated significantly. Ataertime points, clus-
ter readout produced a high accuracy, but a few millisectatds a very poor
one was recorded. At the time when when the input spike trains werbestill
ing injected into the reservoir (before 300 milliseconds, other two readouts
were able to generate very high accuracy. However, the clustdouefailed
to utilise the responses, which consequently produced pgoomes.

On the other hand, even though the frequency readout gavedsagoaracy
almost at all time points, the larger sampling time causeagesdelay in the ac-
curacy measure. Figure 8.6 clearly shows that the first acgun@asurement
could only be made only after 30 milliseconds. As a result, trasloait would
be unsuitable for rapid, online and real-time processing.
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Similarly to the frequency readout, the analog readout adse gonsistently
high accuracy in almost the entire simulation time. But tt@madvantage of
analog readout compared to the frequency readout is the samafpling time
at only 10 milliseconds. Sampling time is important as it easuhat there
IS some neuron activity to be measured. The fading memosgctketin this
readout is also small, and therefore this readout is ablé/eogpod accuracy
due to information available from the alpha kernel function

Based on the findings in this experiment, the analog readoubevilised for
further analysis in the next section.

8.3 APPLICATION ON SYNTHETIC SPATIOTEMPORAL DATASETS

In order to further evaluate the performance of the propasettiod, the RESNN
framework was applied to the Rotating Dot dataset that is mepan Chap-
ter 7. All parameters in this experiment were derived from thegnggs in the
previous experiment as described in Section 8.2.2. The L&rwoir was
adjusted to accumulate the given problem and gridded4é x 5. The reser-
voir utilised 125 neurons with 80% excitatory (ex) neurond 206% inhibitory
(inh) neurons. All other reservoir parameters were left unged. The sim-
ulation time period was set to at 200 milliseconds. Similar toghevious
ESNN setupMod, C andSim were set to 0.99, 0.6 and 0.1, respectively.

8.3.1 Performance Analysis

In this experiment, the reservoir responses were only mappedtduoid states
using analog readout. The experiment shows that this reasloubre stable
and gives better outcomes compared to other readouts.

Figure 8.8 shows the example of average Rotating Dot respémsbe two
classes, clockwise and anticlockwise. Similarly to the presiexperiment,
the subtraction operation was performed on the both regsaanrsd the results
of the operation is shown in the bottom diagram. For the first d0set-
onds, half of the rotation can be clearly seen by the curvpeshaesponses.
After other neurons were excited, more activity was recordduk difference
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Figure 8.8: Rotating dot responses.

between output classes can be clearly identified due to data wigh 061.0
millisecond was used.

In analog readout, the decay of the Gaussian signal that isgepted by
the parameter is very important. In this experiment, the impact-oand the
several levels of problem difficulty to the accuracy is studi@tiree values
for the - parameter were selected to be studied: 2.0, 5.0 and 10.0.lt&kesu
are presented in Figure 8.9. The three x-axis columns reptéise different
values forr which controls the alpha kernel decay, while six rows in y-axis
represent the noise level

The first three top diagrams show the results for dataset witle nene! of
0.5, which is the easiest data. It clearly shows thdbes not affect the results.
the experiment gave consistent high accuracy over the siiomiltame for all
values ofr. Results at noise level 1.0 millisecond also show the sameacyg
pattern andr has no effect on the results. The next two rows of diagrams
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Figure 8.9: Analog readout accuracy over simulation time. The problem is presented
with different level of difficulty ¢€)andr value for kernel to evaluate the
correlation between these two aspect.

represent the problem with difficulty of 2.0 milliseconds &@ milliseconds,
where the smallest gave a lower accuracy over time compared to higher
values. For the more difficult problemsig 4.0 and 5.0), the highesprovides
a better accuracy.

Interestingly, good results were obtained for simulation tregveen 30 and
60 milliseconds in all experiments. This is when the inputepiwere injected
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into the reservoir. It can be concluded that the responsestine reservoir are
sufficient to classify the data after partial input was fed ihi® reservoir. The
Rotating Dot dataset consisted of several rotations of theFdom Figure 7.3,

it is apparent that the classifier should be able to identié&miovement of the
dot, i.e. to distinguish between the two classes, clockwiskaamiclockwise

in the first rotation. The accuracy starts to drop when thegs®of feeding
input spikes is completed. However, smaller decrement cartaged when
higher value forr are used. Thus, it produces higher accuracy compared to
lower values ofr.

It can be concluded that has no effect on accuracy in simple problems.
However, when the problems have higher difficulitystarts to play an im-
portant role. The kernel function continuously providesisanformation de-
pending on the value. Smaller values mean that the decay is very short and
less information is available in the next several millised®. In contrast, long
time of decay provides more information for the next few millizeds when
the value forr is larger and might cause the liquid state poured with massive
information. Therefore, a careful selectionofalue is necessary for optimal
outcomes.

8.3.2 Comparison of results obtained with EESNN

The overall results for the EESNN and the RESNN methods areniezsen
Figure 7.1 and in Figure 8.9 respectively. A discussion osdhiesults and the
related findings are presented in Chapter 7 and Chapter 8. WBENN only
provides the final accuracy after the learning process ispteted, RESNN
provides the accuracy continuously during the simulatioretiihe explana-
tion in this section refers to both figures.

Classification accuracy of 100% is obtained when the EESNN rdeshap-
plied to the Rotating Dot dataset with noise level of 0.5 and Tite RESNN
method achieved 99% to 100% accuracy at almost all time poxaespe for
the first and last few milliseconds when no responses were aleftairlassi-
fication. In fact, this situation occurred in all experimentith RESNN. Gen-
erally, both methods can achieve high accuracy for simplesdttavith low
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noise level at any' value for EESNN ane value for RESNN. When EESNN
was tested with the dataset with noise level 2.0, the smallesiiue gave the
lowest accuracy compared to others. Similarly to RESNN, resatisrded
from the smallest value shows that the accuracy at most of the time points is
low compared to higher value.

When EESNN is tested with a more difficult dataset with noise levels of
3.0, 4.0 and 5.0, a larger value gives a good accuracy most of the time.
However, there is also a certain time when a high accuracy carbtaeed
and wherC' is set to 4.0 as shown in the results when a dataset with noise level
of 3.0 and 4.0 is tested. Therefore, tuning thealue in EESNN for difficult
problems has to be done carefully since not only the high vaflag but some
lower values could also give a good accuracy. Largealue provides better
accuracy compared to the smalteralue as shown in the results when RESNN
is tested with a dataset with noise level of 3.0, 4.0 and 5.0. Ofdwaettings
achieved 100% accuracy. It can be concluded that the RESNNoohattvays
needs to use largervalue when dealing with the more difficult problems. It
can be concluded that largeralue always provide high accuracy. In contrast,
largerC values do not necessarily mean that EESNN can achieve higreagcur
results with difficult problems, since lower values may givecadjresult as
well. This makes finding the optimal value more difficult in EESNN.

The advantage of EESNN method over the RESNN method is that it is faster
as it has the simple spike trains memory construction thas dot require any
internal computation. On the other hand, RESNN has a more camgser-
voir structure with the integrated recurrent network and bEurons. The
method also requires more computational time and resotogasrform clas-
sification. Nevertheless, the advantage of the RESNN methodtig tiees the
capability to do classification at any selected time poiriie Tading memory
effect gives the network an extra ability to classify theegiyproblem even af-
ter all spike trains are fed to the reservoir. Interestinglyexperiments with
RESNN deliver 100% classification accuracy at certain timetpoiih can be
concluded that each of the two methods has its strengths aakhesses that
need to be further explored.
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8.4 SUMMARY

This study has proposed an extension of the ESNN architectaltegd RESNN,
that enables the method to process spatiotemporal data. dsiagervoir
computing approach, a spatiotemporal signal is projectedarsingle high-
dimensional pattern that can be learned by the ESNN trainiragitign. Con-

figuring the reservoir is not an easy task. However, once thevasés con-

figured properly, ESNN can be an efficient classifier of liquid statdracted
from the reservoir.

This chapter has also discussed three types of the readobts.reddout
construction is a crucial task that can affect the classifinaaccuracy. The
study found that the analog readout has some advantagesiahéén chosen
for the next experiment. In the analog readout experimengraéscenarios
have been set up to investigate the optimal value fahe analog alpha kernel
that provides information to the classifier. Results show @ahaigher value is
required for difficult problems, while any values can solve@@problems.

The next chapter will discuss the implementation of RESNN tagettith
EESNN in a case study. Results of both proposed methods will bea@u
and analysed.



A CASE STUDY ON A SPATIOTEMPORAL PROBLEM
- SIGN LANGUAGE GESTURE RECOGNITION

In order to investigate the performance of both novel EESNN RESNN
methods for classification of spatiotemporal data, a realed\gpatiotemporal
dataset is studied in this chapter. In the next few sectithes| L IBRAS sign
language dataset is explained. The experimental setup ambthined results
are discussed in the last part of this chapter.

9.1 THE DATASET

LIBRAS is the acronym for LIngua BRAsileira de Sinais, which is th&-of
cial Brazilian sign language. The LIBRAS dataset contairta dascribing 15
hand movements (signs) that can be learned and classifiec liydhstudied
methods. The movements data are obtained from recordedsvadéour dif-
ferent people performing the movements in two sessions. tah 360 videos
have been recorded, where each video recorded one movemelastisafor
about seven seconds. Forty five frames have then been extfaotedhe
videos according to uniform distribution. In each frame, ¢batroid pixels of
the hand are used to determine the movements. All samples baweolbgan-
ised in 10 sub-datasets, each representing a differerdifoctasion scenario.
Datasets 1 to 7 contain all samples while Datasets 8, 9 and 1(rcsrtacted
samples. More comprehensive details about the datasebedannd in Dias,
Madeo, Rocha, Bcaro, and Peres (2009). The data can be obtained from the
UCI machine learning repositofy

1 Available at http://www.ics.uci.edu/ mlearn/
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In this experiment, Dataset 10 has been chosen. It contains titlenhave-
ments recorded from three different people. The objectivesimg this dataset
is to train and test the proposed model for user-independemement classi-
fication and recognition, where the hand movement of one @rakpersons
can be used to train the system to identify the same movemeénther peo-
ple. This dataset consists of 270 videos with 18 samples fcn eathe 15
classes. An illustration of the dataset is given in Figure 9'he diagrams
show a single sample of each class.

curved swing horizontal swing vertical swing anti-clockwise arc clockwise arc
circle horizontal straight-line vertical straight-line tremble horizontal zigzag
vertical zigzag horizontal wavy vertical wavy face-up curve face-down curve
.’ f RQ)
o %@
O

Figure 9.1: The LIBRAS data set. A single sample for each of the 15 classes is.shown
The colours indicate the time frame of a given data point (black/white
corresponds to earlier/later time points).
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9.2 EXPERIMENT SETUP

The LIBRAS dataset is used to evaluate and compare the perfoemain
ESNN and RESNN. The results will be also compared with the results ob-
tained from MLP when used on the same LIBRAS dataset. All three algo-
rithms have different sets of parameters that need to beetkfis shown in the
three subsections below.

9.2.1 EESNN

The three ESNN parameterd,od, C' andSim, were set to 0.99, 0.65 and 0.05,
respectively based on considerations derived from preveaperiments in this
study and also in Schliebs, Defoin-Platel, and Kasabov (20B@jametep,
which controlled the Gaussian width was set to 1.5. The two LIBRp&ial
variables, x and y, represent the coordinates of each framead. All 45
frames formed an input pattern related to one of the 15 cdgssgns or move-
ments). The input data range was normalised and set to valtiles interval
[-0.5, 1.5]. Each of the spatiotemporal input patterns of|@&iotemporal vari-
ables was encoded using population encoding. Every varia@teencoded
using 20 Gaussian receptive fields. The EESNN was trained and ieste
9-fold cross-validation mode.

9.2.2 RESNN

As described in Chapter 2, population encoding is used tofranghe input
data into spike trains. This method is characterised by tineter of receptive
fields used for encoding along with the widtlof the Gaussian receptive fields.
After some initial experiments, 30 receptive fields were setkated a width
= 1.5. More details of the method can be found in Bohte et al. (2002).

In this experiment, a liquid with a small-world inter-contieity pattern
was constructed as described in Maass et al. (2002). A etu8NN was
generated by aligning 100 neurons in a three-dimensiomhbfisize4 x 5 x 5.
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Two neuronsd andB in this grid were connected with a connection probability
of:

—d(4A,B)

P(A,B)=C xe (9.1)

whered(A, B) denotes the Euclidean distance between two neurons\ and
corresponds to the density of connections which was sgtto2 in all sim-
ulations. Parameter depends on the type of the neurons. The neurons were
discriminated into excitatory (ex) and inhibitory (inh)ural types resulting in
the following parameters fof: Cep e = 0.3, Cop—inn, = 0.2, Cinh—ex = 0.5
andC;,,—inn = 0.1. The network contained 80% excitatory and 20% inhibitory
neurons. The connections weights were randomly selected biarrdis-
tribution and scaled in the intervat8, 8JnA. The neural parameters were set
to 7, = 30ms, ¥ = smV, v, = 0mV. Furthermore, a refractory period of
5ms and a synaptic transmission delay of 1ms was used. Using tifig-co
uration, the recorded liquid states did not exhibit the wnael behaviour of
over-stratification and pathological synchrony - effecist thre common for
randomly generated liquids (Norton & Ventura, 2006). Similaolyhe experi-
ments conducted in Chapter 8, three reservoir readouts waleated, namely
the cluster, frequency and analog readouts.

9.2.3 MLP

The results were compared with results obtained from an expatimith a
traditional Time Delay MLP, trained and tested in the same.wapm the
preliminary experiments with some parameter tuning to findotb&t combi-
nations, the optimal number of hidden nodes in the MLP wasaddo be 45,
learning rate 0.3. The original unprocessed LIBRAS datasstwged and the
learning in MLP was performed in 500 iterations. Similarly toSNEN and
RESNN, 9-fold cross validation was performed to the dataset.
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9.3 PERFORMANCE ANALYSIS

Both algorithms are evaluated to find out how well they can gaptiue spa-
tiotemporal data and transformed it into information that thassifier is able
to process. The overall accuracy results are also compared.

9.3.1 EESNN

Since in spatiotemporal problems both the spatial and teahgomponents
are needed for decision making, the entire dataset was tradste#o spike
trains and fed into a spike train memory, as mentioned in €&nap The entire
spike trains from the memory were then fed into ESNN for classiinaThe
average training accuracy of the EESNN in this experimentd8a35%-+0.30,
while for the testing, accuracy of 88.15% .26 was achieved.

Results show that although EESNN is a relatively simple apmgbros can
perform very well, considering that this is a 15-class probleim addition
to this, every sample that represents a movement within a stasetimes
contains incomplete information to represent the movemEat.instance in
the circle movement, each person produced six samples in amet class.
However, not all samples made a complete circle movement. Toidem is
more complicated since Dataset 10 contained movementsrpedioby three
persons. Thus, there are a lot of movement varieties alththey are in the
same movement class. The proposed EESNN demonstrated thabit egm
plied not only on a user dependent dataset, which means risoogthe move-
ments of only one person, but also on user independent détasetontains
movements of more than one person. This is because the edt@rstiéayer of
the EESNN captures the entire information in the first phasbebperation,
so that the complex patterns are better classified in thengdager.

9.3.2 RESNN

The LIBRAS dataset was encoded into spike trains and then fedha reser-
voir. Different samples produced different spike trains whiemerated dif-

150



9.3 PERFORMANCE ANALYSIS

ferent sets of reservoir responses. Figure 9.2 shows thenssg from four
different samples, each corresponding to a different cResponses from the
samples were extracted to form the readout for classification

100 curved swing horizontal swing vertical swing anti-clockwise arc
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60
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input neuron
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0
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time in msec time in msec time in msec time in msec

151

Figure 9.2: Raster plot of some typical neural responses recorded from a reservoir
of 100 neurons. Each diagram shows the response when stimulated by
samples belonging to different classes. It can clearly be seen that different

response patterns were recorded for different classes.

All readouts extracted at a given time were fed to the standahNEfSr
classification. Based on preliminary experiments, some i8N parame-
ters were chosen. The modulation factor was séftd = 0.99, the proportion
factorC' = 0.46 and the similarity threshold:m = 0.01. Using this setup, the
extracted liquid states over all possible readout times wassified.

The evolution of accuracy over time for each of the three seadhethods
is presented in Figure 9.3. Clearly, the cluster readous(je least suitable
readout among the three methods. The best accuracy found3g%Cdor
the readout extracted at time 40ms, the marked time point ididgram The
readouts extracted at time 40ms are presented in the botemgrac (a). Each
row in this diagram presents the readout vector of one of tllesamples, the
colour indicating the real value of the elements in that vedarker colour
represents higher readout value, while lighter colour regmes lower value.
The samples are ordered in a way that allows a visual discriminafioime
15 classes. The first 18 rows belong to class 1 (curved swing), dkield
rows to class 2 (horizontal swing) and so on. Given the extractadore
vector, it is possible to even visually distinguish betweentain classes of



samples. However, there are also some significant similaritieglea classes
of readout vectors, which clearly has a negative impact on ldmsification

accuracy.
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Figure 9.3: Classification accuracy of ESNN for three readouts extracted at different
times during the simulation of the reservoir (top row of diagrams). The

best accuracy obtained is marked with a small (red) circle. For the marked
time points, the readout of all 270 samples of the data are shown (bottom

The situation improves when the frequency readout is usadtirgs in a
maximum classification accuracy of 78.51% for the readouatoreextracted
at time 120ms, as shown in Figure 9.3(b). It clearly shows thatdhdout
vectors are much better discriminationed into output €ass shown in bot-
tom diagram (b): The intra-class distance between sampleadiatpto the
same class is small, but inter-class distance between saofpiéiser classes
is large. However, the best accuracy is achieved using the ganedalout ex-
tracted at time 130ms as shown in Figure 9.3(c). Patterns fefrélift classes
are clearly distinguishable in the readout vectors resgiti a good classifica-

row).

tion accuracy of 82.22%.
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Off-line parameter and feature optimisation of RESNN

The discussion above already demonstrates that many prgmoéthe RESNN
need to be selected optimally in order to achive satisfgasults. This is a
difficult task since the number of these parameters is highadso that some
of them are correlated to each other. To further improve ldsdication accu-
racy of the analog readout vectors, DQIPSO proposed in Chagesgd. The
parameters of the ESNN classifier are optimised along with the feptiires
(the vector elements that represent the state of the rager/be readout vec-
tors were extracted at time 130ms, since this time point haorted the most
promising classification accuracy in the experiment shownigure 9.3(c).
In DQIPSO, 20 particles were used, consisting of eight updatee thiter,
three random, three embed-in and three embed-out particleamBeers,
andc, which control the exploration corresponding to fitest and thegbest
respectively, were both set to 0.05 for probability updai A2 for real value
update. The inertia weight was setitc= 2.0. Eighteen-fold cross validations
were used and results were averaged in 500 iterations in or@stitoate the
classification accuracy of the model.

Figure 9.4 presents the evolution of the selected featuesgithe opti-
misation process. The colour of a point in this diagram r&sléow often a
specific feature was selected at a certain generation. Thieligte color, the
more often the corresponding feature was selected at tle@ gigneration. It
can clearly be seen that a large number of features have Issamded during
the evolutionary process (the darker colour). The pattémelevant features
matches the elements of the readout vector that have laagiers,ct. the dark
points in Figure 9.3 and compared to the selected featuregimed=9.4.

The evolution of accuracy obtained from the global best gartaring the
PSO optimisation process is presented in Figure 9.5. The matiion clearly
improves the classification abilities of ESNN. After the DQIPSO ojsgation,
accuracy of 88.59%1+2.34%) is achieved.
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Figure 9.4: Evolution of feature subsets. The objective is to obtain input vectors that
contain the most information. Compared with Figure 9.3, this figure shows
the feature selection process is able to select vectors in the range of 15 to
25 milliseconds and 40 to 55 milliseconds which contain most informa-
tion. Other vectors that hold less information are also occasionally being
selected during the learning process.
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Figure 9.5: Evolution of the accuracy based on the global best solution during the
optimisation with DQIPSO.

9.3.3 Overall Comparison

The test accuracy of an MLP under the same conditions of traamidgesting
As those used for EESNN and RESNN is found to be 82.96%39%). In
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comparison, EESNN achieves 88.15%.26, while RESNN obtains 88.59%
(£2.34%). Although it is clear that both proposed methods performdtebe
than MLP, there are some issues that need to be addressed.

In terms of computational speed, itis clear that EESNN is fakster RESNN
because of the advantages of one-pass learning that isufilibed in EESNN.
However, in order to obtain the best results, several adjustnerthe param-
eters have to be made manually. This is because the EESNN isnbedeled
with any optimiser. The main objective of EESNN is to proposeathod to
classify spatiotemporal problems faster. The method eniaid to be used for
online data processing that requires faster computatipahsbty.

In contrast, RESNN is more complicated and slower than EESNN. Henyvev

the main advantages of this methods is the ability to clasgiBny time even
while the input trains are still being fed into the reservdis shown in Fig-
ure 9.2, although reservoir responses to the LIBRAS inputespdce within
300 milliseconds, the RESNN method is able to start classifghegroblems
immediately from when the data are fed into the reservoir (allyuat 1 mil-
lisecond as shown in Figure 9.3). The classification accuaatye beginning
is low because the system is supplied with very little infatiora As soon as
the information is sufficient, the method is able to give goesults without
waiting for all spike trains to be fed into the reservoir ir03@illiseconds. The
fading memory effect is also another advantage of RESNN. Téerveir is
able to produce some responses that can be used to classifater all spike
trains have been completely fed into the reservoir, as showthe last 30
milliseconds in Figure 9.3. Interconnected recurrent oersirin the reservoir
keep activating other neurons when they receive enough sgoilggserate the
responses and the fading memory effect.

Generally, the advantages of the proposed methods when cednfmathe
MLP and other traditional NNs are:

1. Fast, one-pass, incremental learning, rather than multipléatch learn-
ing, i.e. hundreds and thousands of iterations for MLP.

2. Evolvability - both models can be incrementally trainechew data and
new classes without the need to be retrained on old data.
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On the other hand, setting the parameters for the reservoirasalex pro-
cess. For the offline classification, the DQIPSO optimiser e used for
feature and classifier optimisation. This is the first attetmppply this method
to real spatiotemporal problems and some improvements caulchdde to
solve this issue. These improvements are discussed in xhemapter.

9.4 SUMMARY

This chapter describes and discusses how two proposed nseEiBENN and
RESNN are tested on a LIBRAS sign language dataset. The aim is tordem
strate how these two methods can be used for a real-world tgraporal clas-
sification problem. The movement recognition is crucial whereloping a
system that will be used by a disabled person. For instancé, asystem
can be built into a computer interface that enables deaflpdopnteract with
computers. The result from this experiment shows that theracyg of identifi-
cation is satisfactory, even though the movement has beended from three
different actors. Every actor has different hand movemeehdor the same
sign class. In addition, the dataset also contains a fewri@gemovements
such as incomplete movement of circle and other shapes.

Both methods have their advantages and disadvantages.ditoadeach
method is intended for different use - EESNN for online and RESor of-
fline classification. From the experimental analysis, it barconcluded that
the suitable setup of the reservoir is not an easy task ancefatudies should
identify ways to automate or simplify this procedure. Howewace the reser-
voir is configured properly, the ESNN classifier is shown to be ffinient
classifier of the liquid states extracted from the reseraod satisfying classi-
fication results can be achieved.

The next chapter presents a summary of this study and discdssetions
for some future work.



CONCLUSION AND FUTURE DIRECTION

This chapter summarises the work that has been done to atchevesearch
objectives as specified in Chapter 1 and to answer the resgagesktions posed
in Chapter 1. Several suggestions for future work are alsasssd in this
chapter.

10.1 CONCLUSION

This thesis has studied two major areas of computational indeltig: the neu-
ral information processing and bio-inspired evolutionegymputation. Each
of these two areas has its own direction and is exciting to egplétecent
findings by researchers around the world have made these evea more
interesting and many applications have been proposed. Datdn and hy-
bridisation of methods is a current trend that is common&cpeed. Yet, there
is no absolute answer to which method is the best to solve the pnelileat
the scientific community faces. Hopefully, this researchdwadributed small
but significant pieces of knowledge to the community and candszl as a
useful reference for future research.

Aligned with the research objectives, the ultimate goal of tegearch is to
develop an effective method for spatial and spatiotempaatiérn recognition
by proposing integrated frameworks. This method integre¢eeral compu-
tational principles - ECoS, quantum computation and resenomputing to
address some specific problems of:

e Parameter optimisation,
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Feature selection,

Model optimisation,

Adaptation to new data,

Spatial classification, and

e Spatiotemporal pattern recognition.

In order to carry out the research, the first crucial step is ttetstand the
ESNN architecture. Most of the literature review presented hapfer 2 is
focussed on understanding this unique ECoS-inspiredifitassThe review
started by introducing the SNN from which ESNN inherits most of@spo-
nents. These components include the data encoding metheaisn models
and learning algorithms. The chapter also explains that émstouction of
LSM is based on the recurrent spiking neurons. All tools andiegdpns
of SNN are also described in this chapter. The need for pararoptenisa-
tion is identified as some unsatisfactory results causeddmcurate parameter
combinations are explained in Chapter 3. This chapter asortbes the PSO
algorithm and its variant, the QiPSO, which is used for binaynoigation.

The first attempt in this thesis to build an integrated strctardiscussed
in Chapter 4. It integrates the standard PSO with ESNN. The majoopa
is to understand how the ESNN model can be optimised by tuning ligsrpa
eters. Every particle in the PSO optimiser holds the ESNNrpaters that
need to be optimised. Utilising the Wrapper approach, the pestiateract
with each other based on their fitness function and share thenbesnation
found trough theybest particle. This method was tested using two synthetic
datasets, namely the Hypercube and the Two Spirals which isiegdlan de-
tail in Section 4.1.2. The results from the proposed methodwempared
with two commonly used classifiers, the MLP and SVM. The analykthis
framework shows that the optimised model can produce bettesifotasion
accuracy.

Very often in real world problems, not all input features @levant for good
classification. Therefore, a feature selection procesdearonsidered com-
pulsory along with parameter optimisation. In the next stethisf study, the
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guantum principle is added to the optimiser for the probabilitynputation in
the feature selection task as explained in the second frankeproposed in
Chapter 4. This time, both parameters and input featuresiamagtaneously
optimised in the integrated environment. The particlevsdéid into two parts,
where one part holds the ESNN parameter values and anothergbdstthe
qubit information for feature selection. This leads to a batlassification re-
sult than the one obtained with the previous framework whehgetbe param-
eters are optimised. The classification result (Table /16)vs that only some
of the features are needed in order to achieve better agogsults. Normally,
only some of the features contain relevant information ¢aathelp to produce
better outputs. For high dimensional problems, featurec8etealso helps to
reduce both the processing time and the complexity of thelenos. Analysis
of the selected features leads to a better understanding pfttblem at hand
and enables the discovery of new knowledge as explained in 8eLfa3. In
collaboration with NICT, the proposed method was applied fongtpattern
recognition. An additional component, a string kernel iseatithto the pro-
posed framework to transform string data to numerical vatagsired by the
classifier. The framework is depicted in Figure 4.13. A prongsesult is ob-
tained with the proposed framework as it managed to optimise tfaeder
and to reduce the problem size.

A few problems have been identified when analysing the expetsrian
Chapter 4. Section 4.3 explained the issues. This includepdbsibility of
missing the optimal parameter value due to data representalio& second
problem is the lack of ability of the optimiser to find the relevdeatures
because of the random evaluation method. Therefore, dev@nancements
have been proposed involving both the optimiser and the itixssFor the
optimiser, a hybrid particle structure is proposed in Chaptehere standard
PSO particles and QiIPSO particles are combined in order to soévprob-
lem effectively. This allows the standard PSO to optimise theameter as a
real value while the QiIPSO part handles feature and connectiimisgation
that involves probability computation. A new strategy fording the relevant
features is also proposed and it involves several typesrtities. Each parti-
cle has its own way to identify the relevant features. With thenlsination of
these types of particles, the relevant features can bdfieerdnd the irrelevant
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ones can be eliminated earlier, as shown in Figure 5.4 and FighreThese
improvements allow the proposed framework to achieve belssification
results.

On the other hand, it appears that adding some probabilistic etenmetme
classifier may lead to a model that is more efficient than a atestic model.
In Chapter 6, the ESNN is extended based on the concept of thalphstic
neuron model, whereby probabilistic connection is intralc This proba-
bilistic connection can also be considered as an evolvingection where
two principles, namely ECoS and quantum computation arebaued. This
experiment is conducted mainly to find out if the ESNN learning loa en-
hanced. In this method, the connections are not static abier evolve based
on information that the connections hold as shown in Figute@fd Figure 6.2.
A connection is selected if the firing time information it held significant for
the classification. Connections with least information wilt be selected by
the optimiser. The results show a slight improvement when ttubabilistic
principle is applied into the ESNN connections. The results sit®w that the
optimiser is able to reduce a significant number of connectrnsh leads to
a faster learning for the PESNN.

The next phase in this study is extending ESNN to solve spatiotexhpo
classification problems. Two approaches have been propdsde8NN and
RESNN. Chapter 7 starts with an explanation of the spatiotempoohlems
and this is followed by proposing the EESNN framework. This metbap-
tures both the spatial and temporal information and stoo#ls types of in-
formation in an additional memory. This information is thetopagated to
the second module for classification. This chapter alsogeep a synthetic
spatiotemporal dataset as a benchmark dataset to tesatheviork. The Ro-
tating Dot dataset explained in Section 7.3.1 is based on akags- problem
to determine the movement of a dot either clockwise or anticloakwisere
the same path is used by the dot in both directions. The rasuit the exper-
iments demonstrates that EESNN is able to classify the spapaierindata.
High classification results are obtained when correct paramate used even
when datasets with high noise rates are used for testing. Quiteilarsap-
proach is used in RESNN. However, this approach applies the corhSleg
as a reservoir to capture both spatial and temporal informatgexplained
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in Chapter 8. The RESNN framework is depicted in Figure 8.2. 3
tiotemporal data is encoded into a sequence of spike trathshem injected
into the reservoir. The responses from the reservoir is aredsdy the readout
functions and translated into liquid states for the clasaiion process.

Section 8.2.1 describes a simple series of spike trainsgplted to RESNN
for the feasibility study of the proposed framework as spatipteral classi-
fier. In this experiment, three readouts are evaluated:t€iuSrequency and
Analog readout. The results show the Analog readout is moréesaaid con-
sistently produces high classification accuracy over thiesesimulation time.
Analog readout is further studied when RESNN is tested on the RgtBion
dataset proposed in Chapter 7. Figure 8.9 shows the result whenidog
readout is tested on the dataset with different levels ofodiffy and with dif-
ferent parameter values for the Analog readout. It can belgded that higher
7 value provides better classification accuracy. The resuthe Rotating Dot
dataset obtained by RESNN is compared with that obtained byNBES the
last part of the chapter. Each method has its own strength: EESMNast
algorithm while RESNN is capable of classifying continuouslyaay time
point. The fading memory effect in RESNN helps the algorithm tdqren
classification even after all spike trains have been ingett the reservoir.

Chapter 9 discusses the results from testing both EESNN asiNREon a
case study with spatiotemporal problems. The dataset foratbe study is LI-
BRAS, which contains 15 sign language movements that need tas®fed.
An example of the movement for each class recorded is shown ime=&l.
Both methods show good capabilities to classify the givesetudy prob-
lems effectively. EESNN gives good classification accuracy Veisi learning
capability. On the other hand, all three RESNN readouts areestudr the
LIBRAS dataset. The result is consistent with findings in ChaBtarhere
Analog readout gives the best accuracy as shown in Figure ®8.specific
liquid states are then further tested with offine RESNN optimisetwith an
improved result is recorded as described in Section 9.3l sSummary of
contributions is depicted in Figure 1.2. Based on the objestand the work
done in this study, the contributions of this study are dbsedrin the next
section.
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Along with achieving the research objectives, this study haslsen aimed
at finding the answers to the related research questions. olloeving para-
graphs provide brief and concise answers to the researchiapses

1. How to integrate and optimise ESNN with PSO and QiPSO?

PSO can act as an optimiser for ESNN parameters. On the other hand,
QIPSO can be used not only for parameter optimisation, but atssi-fo
multaneous feature optimisation. To integrate these methibd Wrap-

per approach has been applied. In the Wrapper approach, tinesgy
supplies the information to the induction algorithm which iSNB§ or
PESNN, in this case. The induction algorithm use the information pr
vided by the optimiser solution candidates and return thesstfignction

to be evaluated by the optimiser. Detailed explanations anaged in
Chapter 4.

2. Can the learning of ESNN be improved by introducing probabiledte
ments?

The experiments have proven that some improvements of thefielass
cation results can be obtained from the modified ESNN - the PESNN.
Evolving connections in PESNN allows the network to select thetmos
informative connections that can contribute significamkepto achieve
better results as explained in details in Chapter 6.

3. How may the current ESNN be extended in order to solve spatioteinpo
pattern recognition problems?

In order to conduct classification on spatiotemporal prokldmoth time
and space have to be considered. Therefore, an additional cemipo
has to be added into the framework to capture both types of i@orm
tion. This study has proposed two solutions. The first solutictinés
framework proposed in Chapter 7, where a spike memory is intextiuc
to collect all information before sending it to the classifiehe second
solution is the framework proposed in Chapter 8, where the L&kl h
been introduced to accumulate all spatiotemporal informé&to classi-
fication. The responses from the reservoir are measuredamgfdrmed
into a liquid state format that can be interpreted by the classifi
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10.2 THESIS CONTRIBUTIONS

Contributions of this study are described as follows:

1. A major contribution of this study is the development of tbhkowing
algorithms:

e The development of DQIPSO. This thesis has developed a new PSO
structure and has shown how this optimiser can be implemented for
model optimisation of both parameters and connections arfdder
ture selection. The proposed optimiser provides a moreiegific
classification with optimal features selection, parameter @mn-
nection optimisation as explained in Chapter 5.

e The study presents a new ESNN structure as described in Chapter 6 -
the PESNN, which introduces the evolving connections that provide
the internal learning capability to ESNN.

e This study has proposed an extension of the ESNN architecture that
enables the method to process spatiotemporal data. The spatiote
poral data signal is transformed into a single high-dimeraioet-
work state that can be learned by the ESNN training algorithm. This
study proposes in Chapter 7 EESNN as an extended structure of
ESNN, where an additional module is integrated with ESNN to pro-
vide spike representation of the input patterns requirethi®clas-
sification task.

e This study also proposed the RESNN framework for spatiotemporal
pattern recognition explained in Chapter 8. The LSM has leen
perimentally demonstrated as reservoir that accumulatesdpath
tial and temporal data components and transforms it into the lig-
uid states that can be learned by the classifier. Furtherntioee,
framework also shows an enhanced capability to separate thet outpu
classes which leads to better classification.

2. This study has proposed and developed several novel itedgrame-
works for simultaneous feature selection and model optimisatibrch
are:
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e Integrated ESNN-PSO where PSO optimises all ESNN parameters
to get the optimal values (Chapter 4).

e Integrated ESNN-QIPSO, a novel integration between ESNN and
QIPSO. This framework allows features and ESNN parameters to be
optimised simultaneously to improve classification accuralye
extended version with string kernel allows the string dataset to be
classified by the proposed framework. (Chapter 4).

e Integrated ESNN-DQIPSO framework for simultaneous feature and
ESNN parameter optimisation. The improvements proposed in the
optimiser allow this framework to optimise features, parearseeand
connections effectively and lead to better classification rayu
(Chapter 5 and Chapter 6).

¢ Integrated PESNN-DQIPSO, where evolving connections were in-
troduced in the ESNN as part of the internal learning mecharmsm.
novel integration between PESNN and DQIPSO is proposed for si-
multaneous connection, feature and ESNN parameter optimisation
(Chapter 6).

3. This study has developed two new solutions to the real wandthlems
based on ESNN. The application of string classification has bgen e
plained in Chapter 4. LIBRAS hand movement recognition might lead
to the development of a system that helps members of the deahae
nity to interact with computers has been discussed in Chapter 9

4. In additon, a synthetic spatiotemporal dataset callgdtidg dot is pro-
posed in this study. The difficulty of the dataset can be cdettoThis
contributes to the better analysis of results obtained ftloenproposed
EESNN and RESNN method (Chapter 7).

5. As intended in the objective of the study, all experiments in shisly
have been shared with the scientific community by producing éigid
peer-review international academic papers as listed in €hap
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While the methods proposed in this study deliver promisirsgiits, efforts to
improve their performance should still continue. Below soene suggestions
for future work in the researched area:

10.3.1 Optimisation Strategy

As explained in chapter 6, optimisation of connections, festand parame-
ters for PESNN is quite slow because of the large dimension gbribielems.
This situation does not only happen to the PSO, but also to ofhtenisers
when dealing with high dimensional problems. Several appresare sug-
gested to deal with PESNN optimisation. The first approach is tovadioly
certain connections or a cluster area for optimisation. Ehizecause not all
connections have enough weight information to be used. Feanos, if an
input is distributed into 20 pre-synaptic neurons, noryntile first five and the
last five neurons hold insignificant weight values. Thus, thisnection can be
eliminated and the rest can be used for optimisation. Thiscagh not only
manages to reduce significantly the number of connection toptimised,
but also eliminates unnecessary connections that contsnritormation.
The second approach is to use the parallel computing as éleosslu-
tion to this problem. A problem can be divided into severdl-tasks with
each task solved a specific problem. This approach may peofdster and
effective method that can be applied in real world high disiemal problems.
Another approach is to use tigueFern supercomputeémwhich is currently
available in New Zealand for research purposes. Using a supger for
neural information processing as in the Blue Brain Proj&tarkram, 2006)
is an option on problems involves huge computation time aagiirements.
In terms of feature optimisation strategy, although theopsed DQIPSO opti-
miser is able to enhance the selection of relevant featurgaced to QIPSO,
there is still a gap to improve the strategy. Future worksatacus on finding
more effective methods for eliminating less relevant fesgurrhese may in-

1 More information about BlueFern is available at http://whhvefern.canterbury.ac.nz
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clude applying the three levels optimisation as propos€EA Defoin-Platel
et al. (2007).

10.3.2 Classifier

This study has demonstrated the proposed ESNN framework trakspad
spatiotemporal classification problems. Future studighigarea should fo-
cus on the characteristics of ESNN and PESNN and how to apply thethdo
possible problems such as prediction and clustering. ESNNIIkn@vn for
its fast learning and is very suitable for online or real tipneblems. Further-
more, the concept of recurrence in ESNN can also be an interestipecs to
be explored. A recurrent network allows the network to menes@me of the
previous information that could be used to solve the giverbiams.

One of the main challenges in ESNN application is to determinephimal
number of pre-synaptic neurons for a given dataset. Numbpresynaptic
neurons is required before the ESNN structure can be consiruties prob-
lem is similar to identify the number of hidden nodes in MLBwWer number
of pre-synaptic neurons causes less input spikes genaatedubsequently
may affect learning accuracy, while higher number increasesputational
time. Although the ESNN uses the Thorpe model for its neuronehakere
are some other potential neuron models to be explored. Iti@altb this, one
of the probabilistic elements from Kasabov’'s model has bggaied which
Is the probabilistic connection for the development of PESWinere are two
other probabilistic elements that can be further exploedxlained in Sec-
tion 2.3.6.

10.3.3 Reservoir

The LSM reservoir is a rather complex structure and futurdistucould in-
vestigate how to simplify it. The dynamic threshold (SchlieNsintalid, &
Kasabov, 2010) in the reservoir is interesting to investigai@plying the
dynamic threshold into the reservoir may create a diffesetitof responses,
which could lead to better classification. Future directimmsude the devel-



10.3 FUTURE DIRECTION

opment of new learning algorithms for the reservoir and th@iegtion of the
method on other spatiotemporal real-world problems suchiden or audio
pattern recognition tasks. Furthermore, future studiesdcalso focus on de
veloping and implementating specialised SNN hardware {grdi Chicca, &
Douglas, 2009; Indiveri, Stefanini, & Chicca, 2010) to alltwve classification
of spatio-temporal data streams in real time.

10.3.4 Neurogenetic optimisation

One of the future applications to be considered is in the afe®arogenet-
ics. The majority of existing models of neural developmera molecular
and biochemical models that do not take into account the mdedgnamics
of genes (Benuskova & Kasabov, 2007). Kasabov, Benuskova\\gsdski

(2004) introduced a novel connectionist approach to newatabork modelling
by integrating a neural network model with dynamic gene netaionterac-
tion of genes in the neurons affect the whole neural netwoherdfore, the
optimisation of the gene interaction network and the gen@ession values
are necessary for achieving the optimal state of neural mgtvaiture studies
could investigate the suitability of the proposed optimisehis study for such
problems.
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DESCRIPTION OF THE INTEGRATED ESNN-PSO

This section formalise the description of the proposedjiateed ESNN-PSO.
The pseudo code is split into several sub functions.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMaxz maximum input value
par No number of particle in the swarm
w inertia weight
c1 control exploration towardgbest
co control exploration towardgbest
rec number of receptive fields for input neurons
g for gaussian width

constructpbest, gbest andpar No of particle with a structure of:
parameter array to store ESNN parameters for optimisation
R array for constructed output repository
fitness value forparticle

define functions:
readData()encode dataset to spike trains
pso()particle update for training
training() get fitness value from ESNN
storeBest(ptoregbest andpbest
testing()
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readData()

for all n do

pso()
testing()
end for

Pseudocode 2 readData()function

read input samples and storesimple array
read output file and store ttput array

for all sample do
for all input data fielddo
createrec number input neurons using Gaussian function in Equation 2.3
bounded betweempMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parametes applied
store input neurons igpiketrains
end for
end for

allocatespiketrains according ta:, and store im foldspikes
allocateoutput according taz, and store im foldoutput

Pseudocode 3 pso()function

for all particle do
initialise all parameter
initialise fitness

end for

while not reaching maximumdo
for all particle do
training()
if fitness better than fitness of pbest then
storeBest()
end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
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w, c1, ¢, gbest andpbest
updateparameter position using Equation 3.2
end for
end for
end while

Pseudocode 4 storeBest(function

replace pbest with particle

if fitness Of pbest better than fitness of gbest then
replace gbest with pbest
end if

Pseudocode 5 training() function

retrieveparameter from particle
initialise neuron repository = {}

for all output classlo
for all nfoldspikes do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equatior® 2.2
calculate firing time threshold based on Equation 2.27
if min(d(weight, weight®)) < sim, weight*) € R then
weight®) « mergeweight andweight®) according to Equation 2.28
?*) + mergey andy®) according to Equation 2.29
else
add the new neuroR < R U {weight}
end if
end for
end for

compare training output withfoldoutput and calculate accuracy
fitness «— accuracy
return fitness
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Pseudocode 6 testing()function

retrieve R andparameter from gbest

for all testingn foldspikes do
calculate the connectianeight using Equation 2.25
while PSPlessthan ¥ do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for

compare testing output withfoldoutput and calculate accuracy
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DESCRIPTION OF THE INTEGRATED ESNN-QIPSO

The proposed integrated ESNN-QIPSO is described in this section.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
Q number of qubit
par No number of particle in the swarm
w inertia weight
c1 control exploration towardgbest
co control exploration towardgbest
rec number of receptive fields for input neurons
g for gaussian width
constructpbest, gbest andpar No of particle with a structure of:
for all parameter do
assignQ sizepar_6 to store parameter probability
assigny sizepar_col to store parameter collape bit
end for
for all feature do
assignfeat_0 array to store feature probability
assignfeat_col array to store feature collape bit
end for
R array for constructed output repository
fitness value forparticle
define functions:
readData()encode dataset to spike trains
gipso()particle update for training
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training() get fitness value from ESNN
storeBest(ptoregbest andpbest
testing()

readData()

for all n do

gipso()
testing()
end for

Pseudocode 2 readData()function

read input samples and storesiimple array
read output file and store ttput array

for all sample do
for all input data fielddo
createrec number input neurons using Gaussian function in Equation 2.3
bounded betweempMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parametés applied
store input neurons igpiketrains
end for
end for

allocatespiketrains according tan, and store im foldspikes
allocateoutput according taz, and store im foldoutput

Pseudocode 3 gipso()function

for all particle do
for all parameter do
for all Q do
initialise par_0
get collape bipar_col using Equation 3.12
end for
convert binary stringpar_col to real value
end for
for all feature do
initialise feat_6
get collape bitfeat_col using Equation 3.12
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end for
initialise fitness
end for

while not reaching maximumdo
for all particle do
training()
if fitness better than fitness of pbest then
storeBest()
end if

for all parameter do
for all Q do
calculatepar_0 velocity using Equation 3.9 with consideration
of w, c1, co, gbest andpbest
apply rotation gate in Equation 3.11
get collape bipar_col using Equation 3.12
end for
convert binary stringar_col to real value
end for

for all feature do
calculatefeat_6 velocity using Equation 3.9 with consideration of
w, c1, c2, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat_col using Equation 3.12
end for

end for
end while

Pseudocode 4 storeBest(function

replace pbest with particle

if fitness of pbest better than fitness of gbest then
replace gbest with pbest
end if




DESCRIPTION OF THE INTEGRATED ESNNQIPSO 175

Pseudocode 5 training() function

retrieveparameter from particle
initialise neuron repositorg = {}

for all output classlo
if feat_col == 1then
getn foldspikes of selectedfeature and store irselectspikes
for all selectspikes do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time threshold based on Equation 2.27

if min(d(weight, weight*)) < sim, weight*) € R then
weight™™) « mergeweight andweight®) according to
Equation 2.28
»*) + mergey andy®) according to Equation 2.29
else
add the new neuroR + R U {weight}
end if

end for
end if
end for

compare training output withfoldoutput and calculate accuracy
fitness «— accuracy
return fitness
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Pseudocode 6 testing()function

retrieve R andparameter from gbest

if feat_col in gbest == 1then
get testing foldspikes of selectedfeature and store irselect spikes
for all selectspikes do
calculate the connectianeight using Equation 2.25
while PSPless than 9 do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for
end if

compare testing output withfoldoutput and calculate accuracy
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This section describe the proposed integrated ESNN-DQIPSO.

Pseudocode 1 main()function

initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
par No number of particle in the swarm
w inertia weight
c1 control exploration towardgbest for real value
co control exploration towardgbest for real value
0_c, control exploration towardgbest for quantum angle
6_co control exploration towardghest for quantum angle
rec number of receptive fields for input neurons
3 for gaussian width
constructpbest, gbest andpar No of particle with a structure of:
parameter array to store ESNN parameters for optimisation
for all feature do
assignfeat_6 array to store feature probability
assignfeat_col array to store feature collape bit
end for
R array for constructed output repository
fitness value forparticle
define functions:
readData()encode dataset to spike trains
dgipso()particle update for training
training() get fitness value from ESNN
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storeBest(ptoregbest andpbest
testing()

readData()

for all n do

daipso()
testing()
end for

Pseudocode 2 readData()function

read input samples and storesiimple array
read output file and store ttput array

for all sample do
for all input data fielddo
createrec number input neurons using Gaussian function in Equation 2.3
bounded betweempMin andinpMax, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parametés applied
store input neurons igpiketrains
end for
end for

allocatespiketrains according tan, and store im foldspikes
allocateoutput according taz, and store im foldoutput

Pseudocode 3 dgipso()function

for all particle do
initialise all parameter
for all feature do
initialise feat_6
get collape bitfeat_col using Equation 3.12
end for
initialise fitness
end for

while not reaching maximumdo
for all particle do
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training()

if (fitness better than fitness of pbest) or

((fitness == fitness Of pbest) and

(selectedfeature lessthan selectedfeature of pbest)) then
storeBest()

end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
w, c1, c2, gbest andpbest
updateparameter position using Equation 3.2

end for

for all feature do
calculatefeat_6 velocity using Equation 3.9 with consideration of
w, O_c1, 0_co, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat_col using Equation 3.12
end for

end for
end while

Pseudocode 4 storeBest(function

replace pbest with particle

if (fitness of pbest better than fitness of gbest) or

((fitness of pbest == fitness of gbest) and

(selectedfeature of pbest lessthan selectedfeature of gbest)) then
replace gbest with pbest

end if

Pseudocode 5 training() function

retrieveparameter from particle
initialise neuron repositorg = {}

for all output classlo
if feat_col == 1then
getn foldspikes of selectedfeature and store irselectspikes
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for all selectspikes do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time threshold based on Equation 2.27

if min(d(weight, weight®) < sim, weight*) € R then
weight™®) « mergeweight andweight®) according to
Equation 2.28
9*) + mergey andy®) according to Equation 2.29
else
add the new neuroR + R U {weight}
end if

end for
end if
end for

compare training output withfoldoutput and calculate accuracy
fitness «— accuracy
return fitness

Pseudocode 6 testing()function

retrieveR andparameter from gbest

if feat_col In gbest == 1then
get testingn foldspikes of selectedfeature and store irselectspikes
for all selectspikes do
calculate the connectianeight using Equation 2.25
while PSPlessthan 9 do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for
end if

compare testing output withfoldoutput and calculate accuracy
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This section describe the proposed integrated PESNN-DQIPSO.

Pseudocode 1 main()function
initialise:
n fold cross validation
i iterations
inpMin minimum input value
inpMax maximum input value
par No number of particle in the swarm
w inertia weight
c1 control exploration towardgbest for real value
co control exploration towardgbest for real value
0_c, control exploration towardgbest for quantum angle
6_co control exploration towardghest for quantum angle
rec number of receptive fields for input neurons
3 for gaussian width
constructpbest, gbest andpar No of particle with a structure of:
parameter array to store ESNN parameters for optimisation
for all feature do
assignfeat_6 array to store feature probability
assignfeat_col array to store feature collape bit
end for
for all connection do
assigneon_6 array to store connection probability
assigncon_col array to store connection collape bit
end for
R array for constructed output repository
fitness value forparticle
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define functions:
readData()encode dataset to spike trains
dgipso()particle update for training
training() get fitness value from ESNN
storeBest(ktoregbest andpbest
testing()

readData()

for all n do

dgipso()
testing()
end for

Pseudocode 2 readData()function

read input samples and storesiimple array
read output file and store tutput array

for all sample do
for all input data fielddo
createrec number input neurons using Gaussian function in Equation 2.3
bounded betweempMin andinpMazx, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with control parametés applied
store input neurons igpiketrains
end for
end for

allocatespiketrains according tan, and store i foldspikes
allocateoutput according to:, and store im foldoutput

Pseudocode 3 dgipso()function

for all particle do
initialise all parameter
for all feature do
initialise feat_6
get collape bitfeat_col using Equation 3.12
if (feat_col == 1)then
initialise con_6
get collape biton_col using Equation 3.12
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end if
initialise fitness
end for

while not reaching maximumdo
for all particle do

training()

if (fitness better than fitness of pbest) or

((fitness == fitness Of pbest) and

(selectedfeature lessthan selectedfeature of pbest)) or

((fitness == fitness of pbest) and

(selectedfeature == selectedfeature of pbest)) and

(selectedonnection lessthan selectedonnection of pbest)) then
storeBest()

end if

for all parameter do
calculate velocity using Equation 3.1 with consideration of
w, c1, c2, gbest andpbest
updateparameter position using Equation 3.2

end for

for all feature do
calculatefeat_6 velocity using Equation 3.9 with consideration of
w, 0_c1, 0_co, gbest andpbest
apply rotation gate in Equation 3.11
get collape bitfeat_col using Equation 3.12

if (feat_col == 1)then
for all connection do
calculatecon_6 velocity using Equation 3.9 with consideration
of w, 6_c1, 0_ca, gbest andpbest
apply rotation gate in Equation 3.11
get collape biton _col using Equation 3.12
end for
end if
end for

end for
end while
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Pseudocode 4 storeBest(function

replace pbest with particle

if (fitness Of pbest better than fitness of gbest) or

((fitness of pbest == fitness of gbest) and

(selectedfeature of pbest lessthan selectedfeature of gbest)) or

((fitness of pbest == fitness of gbest) and

(selectedfeature of pbest == selectedf eature of gbest)) and

(selectedonnection of pbest lessthan selectedonnection of gbest)) then
replace gbest with pbest

end if

Pseudocode 5 training() function

retrieveparameter from particle
initialise neuron repository = {}

for all output classlo
If feat_col == 1then
getn foldspikes of selectedfeature and store inselectspikes
for all selectspikes do
If con_col == 1then
getselectspikes and store infinalspikes
end if
end for

for all finalspikes do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equation 2.26
calculate firing time threshold based on Equation 2.27
if min(d(weight, weight®)) < sim, weight*) € R then
weight™®) « mergeweight andweight®) according to
Equation 2.28
¥*) «— mergey andy®) according to Equation 2.29
else
add the new neuroR < R U {weight}
end if

end for
end if
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end for

compare training output withfoldoutput and calculate accuracy
fitness <— accuracy
return fitness

Pseudocode 6 testing()function

retrieveR andparameter from gbest

if feat_col in gbest == 1then
get testing foldspikes of selectedfeature and store irselectspikes
for all selectspikes do
if con_col in gbest == 1then
getselectspikes and store infinalspikes
end if
end for

for all finalspikes do
calculate the connectianeight using Equation 2.25
while PSPless than 9 do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for
end if

compare testing output withfoldoutput and calculate accuracy
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DESCRIPTION OF THE INTEGRATED EESNN

This section formalise the description of the proposed nattegl EESNN for
spatiotemporal pattern recognition.

Pseudocode 1 main()function

initialise:
n fold cross validation
mod modulation factor
c proportion factor
sim similarity value
inpMin minimum input value
inpMaz maximum input value
rec number of receptive fields for input neurons
S for gaussian width
define functions:
memory()encode dataset to spike trains
training() get fitness value from ESNN
testing()

memory()

for all n do
training()
testing()
end for
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Pseudocode 2 memory()function

read input samples and storesiimple array
read output file and store tutput array

for all sample do
for all time pointdo
for all input data fielcdo
createrec number input neurons using Gaussian function in
Equation 2.3 bounded betweemnMin andinpM az, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with parametas applied
end for
end for
accumulate all input neurons for entire time pointsjikeMemory
end for

allocatespike M emory according tae, and store im foldspike Rsv
allocateoutput according to:, and store im foldoutput

Pseudocode 3 training() function

requiremod, ¢, andsim
initialise neuron repositorg = {}

for all output classlo
for all nfoldspikeRsv do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equatior® 2.2
calculate firing time threshold based on Equation 2.27
if min(d(weight, weight®)) < sim, weight*) € R then
weight®) < mergeweight andweight®) according to Equation 2.28
?*) + mergey andy®) according to Equation 2.29
else
add the new neuroR < R U {weight}
end if
end for
end for

compare training output withfoldoutput and calculate accuracy
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Pseudocode 4 testing()function

requiremod
retrieveR

for all testingn foldspike Rsv do
calculate the connectianeight using Equation 2.25
while PSPless than 9 do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for

compare testing output withfoldoutput and calculate accuracy
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DESCRIPTION OF THE INTEGRATED RESNN

This section describe the proposed RESNN.

Pseudocode 1 main()function

initialise:
n fold cross validation
matriz dimension of reservoir
mod modulation factor
c proportion factor
stm Similarity value
inpMin minimum input value
inpMax maximum input value
rec number of receptive fields for input neurons
3 for gaussian width

define functions:
spiketrains()encode dataset to spike trains
Ismreservoir(Jaccumulate spike trains
training() get fitness value from ESNN
testing()

spiketrains()
Ismreservoir()

for all n do
training()
testing()
end for
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Pseudocode 2 spiketrains(function

read input samples and storesimple array
read output file and store ttput array

for all sample do
for all time pointdo
for all input data fielddo
createrec number input neurons using Gaussian function in
Equation 2.3 bounded betweerpMin andinpMazx, with:
1) centre is calculated in Equation 2.4
2) width calculated in Equation 2.5 with parameteas applied
end for
store input neurons igpiketrains
end for
end for

Pseudocode 3 Ismreservoir(function

constructnatriz Sizereservoir with interconnected neurons using Equation 9.1

for all sample do
for all spiketrains do
feed intoreservoir
calculate neuron spikes using Equation 8.2 and record-if@nse
constructiquidstates from response
end for
end for

allocateliquidstates according tan, and store im foldliquidstates
allocateoutput according to:, and store im foldoutput

Pseudocode 4 training() function

requiremod, ¢, andsim
initialise neuron repositorg = {}

for all output classlo
for all nfoldliquidstates do
calculate the connectianeight using Equation 2.25
get the maximum possible potential according to Equatiorf 2.2
calculate firing time threshold based on Equation 2.27
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if min(d(weight, weight®)) < sim, weight*) € R then
weight®) « mergeweight andweight®) according to Equation 2.28
%) «— mergey andy®) according to Equation 2.29

else
add the new neuroR < R U {weight}

end if

end for
end for

compare training output withfoldoutput and calculate accuracy

Pseudocode 5 testing()function

requiremod
retrieveR

for all testingn foldliquidstates do
calculate the connectianeight using Equation 2.25
while PSPless than 9 do
calculate PSP using Equation 2.17
end while
get output class from output neuron which spike first
end for

compare testing output withfoldoutput and calculate accuracy
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MLP can be considered the most established machine leangiogtam avail-

able and is widely used in many real world applications. All o@srin MLP

are interconnected and organised in several layers - inmdeh and output
layers. BP is the common learning algorithm in the MLP netwdrke algo-
rithm starts with assigning random weights to all connectioriee goal is to
adjust the weight so that the targeted output can be achiévéok first phase
of learning, samples presented to the input layer are paipag the hidden
and output layers. Output for every neuron in the hidden aridubdayers
Is obtained from the summation of all its connection weights gisietwork

activation function. Sigmoid activation function is widelgapted into BP
learning. Equation G.1 shows the Sigmoid activation functiogudion G.2
and Equation G.3 explain the computation from input neurenso(hidden

neurons f) and hidden neurong)to output neuronsk, respectively.

(G.1)

zj= () wili)e; (G.2)

wherez; is the output at the hidden layer;; is the weight between input
and hidden layerd; is the input data and; is the bias.
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Ty = (Z wikl;) P (G.3)

wherez;, is the output at the output layen,; is the weight between input
and hidden layerdj; is the output computed at hidden layer afds the bias
at output neuron. The error between feed forward output meanal actual
desired output is calculated using Equation G.4. The meaarsqerror is
normally used for computing the network error.

error = %(Ot — OC)2 (G.4)

whereQy is the target output and. is the computed output during the feed
forward phase.

In the second phase, the computed error is propagated betkwan the
output to the input layers. Weights are modified in order taucedthe error.
Equation G.5 shows the modification of the weights between outplihal-
den layers.

Wik < Wik + Awjy, (G.5)
where

ijk — Wi+ 775kfj + Oéijk (G6)

0k = 0:(04—0.)(1-0,) (G.7)

andwj; is the weight between hidden and output layes;;;, is the weight
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rate respectively); is the output at hidden layef; is the computed error at
output neurong, is the desired output ar@. is the computed output at output
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layer. Then the error is computed at the hidden neurons anchtgeigtween
input and hidden layers are adjusted using Equation G.8:

Wij < Wij + sz‘j (G8)
where

Awij — wij + 775]'],' + CYA"LUU (Gg)

5 = 0;0)_ drwir)(1 - 0;) (G.10)

andw;; is the weight between input and hidden lay&wy;; is the weight
adjustmenty, is the learning ratey represents momentum ratg,js the input
data,d; andJ are the errors at hidden and output neurons respectivglig

the desired output and; is the computed output at hidden layer. Details of BP

procedure can be found in Chauvin and Rumelhart (1995) antbth@utation
example is explained in Jones (2005).
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